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Abstract

Simulating granular media at large scales is hard to do because of ill-conditioning
of the associated linear systems and the ineffectiveness of available iterative meth-
ods. One common way to improve iterative methods is to use a preconditioner which
involves finding a good approximation of a linear system A. A good preconditioner
will improve the condition number of A. If a linear system has a set of large eigen-
values of comparable magnitude, and the rest of the eigenvalues are small, so that
the gap between the set of large eigenvalues and the small ones is large, the ill-
conditioning caused by the small eigenvalues will not appear in the early iterations.
We investigate a new fibre-based preconditioner that involves finding chains of con-
tacting particles along the particles of a granular medium and reordering the system,
which leads to a diagonal preconditioner. We show its effects on the relative residual
and error of the velocity on linear systems where the ill-conditioning is caused by a
big gap between a set of large eigenvalues and small eigenvalues for three different
iterative methods: Uzawa, the Conjugate Residual (CR) and the Minimum Residual
Method (MINRES).
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1 Introduction

Algoryx develops a physics engine called AgX Dynamics, which is their core product.
For simulations, it is important to be able to model the real world as accurately as
possible with proper physics. This requires good mathematical models which represent
the physics accurately, but more than that, it also requires numerical methods which
perform efficiently both for interactive, real-time applications and for offline simulations.

Granular matter form a vast family, from grains of corn to minerals, from pharma-
ceutical pills to pellets. Granular matter is composed of grains with different shapes and
materials. At the grain level they are disordered, but at the macroscopic level, gran-
ular matter can behave like a solid or fluid and exhibits phenomena such as arching,
avalanches and segregation [1].

As it stands today, large scale system experiments and measurements with granular
media are almost impossible to conduct due to the ineffectiveness of the solution algo-
rithms (solvers) that are available. Granular media is involved in many industrial and
natural phenomena. In industry, problems of storage, transportation, flow and mixing
often occur. In Earth sciences, as our soil is composed mainly of grains, phenomena such
as sand dunes, earth slides, erosion patterns and pyroclastic flows can be observed [1].
Modeling and computer simulations are of great importance when it comes to under-
standing granular materials and for making improvements and innovations [2].

For simulations of granular matter, one widely used method is the discrete element
method (DEM). In the late 1960’s the discrete element method was developed by Cun-
dall and Stracks [3]. It was developed as an extension of molecular dynamics using
explicit time integration and smooth representation of contact forces to model macro-
scopic slightly deformable solid grains, and each particle is modeled as a rigid body. One
of the major challenges of using DEM simulation is to reduce the computational time of
large scale simulations [4].

When simulating granular matter with the discrete element method, the system of
equations that is being solved is ill-conditioned, meaning that the condition number
of the system is high which is not desired. It is undesirable since the solution to the
system becomes hard to find and convergence is slow for iterative methods [5]. One of
the approaches that has been identified to accelerate DEM simulations is to improve
the convergence rate of the solver that is being used [2]. The ill-conditioning on the
systems we are working with is caused by small eigenvalues that are many orders of
magnitude smaller than the rest of the eigenvalues. We will explore the implications of
ill-conditioning caused by these small eigenvalues.

By applying a preconditioner to an ill-conditioned system, it is possible to greatly
improve the convergence rate for iterative methods solving the system. During the course
of the project a fibre-based preconditioner has been developed and analysed. We will
decide if such a preconditioner is viable by looking at the accuracy of the preconditioner
for three different iterative methods: Uzawa, the Conjugate Residual and the Minimum
Residual Method.
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2 Background

In this section, already known and developed concepts will be described. The fibre-based
preconditioner is work that is built on top of all the these concepts, and understanding
them is important for understanding the work presented in this project.

2.1 Discrete Element Simulation

There are many different methods for simulating granular material. The one we are
using is the discrete element method, which requires solutions of linear systems of equa-
tions. For a particle a in the DEM simulation, a has six degrees of freedom. It can be
translated along the x−, y− and z−axis, and rotated around the x−, y− and z−axis,
but for the scope of our thesis, we do not look at rotation because all our particles are
spheres. Particle a has vectors containing a position #»x (a), velocity #̇»x

(a)
, force

#»

f (a),
torque #»τ (a), angular velocity #»ω (a), mass m(a) and inertia tensor J (a). The velocity
and angular velocity vectors are then concatenated into a generalized velocity vector,
v(a) and the mass and inertia tensor vectors are made into a system state matrix M (a),
where v(a) = ( #̇»x

(a)T , #»ω (a)T )T and M (a) = diag(m(a)I3,J (a)I3). These are then rep-
resented as a full system state vector v = (v(1), v(2), . . .) and full system state matrix
M = diag(M (1),M (2), . . .) [2].

The contact Jacobian G is a matrix where each block row corresponds to one contact,
and each block column is a particle. Each block row consists of either one or two non-zero
blocks. If a row has one non-zero block it represents a contact between a particle and a
geometry. If a row has two non-zero blocks it represents a contact between two particles.
The non-zero blocks contains information about a specific contact for a particle. The
two nonzero blocks G(i)

1 and G(i)
2 of G(i), that is, the two particles of contact i in G has

the following structure

G
(i)
1 =



nT −(n× p− p1)T
tT1 −(t1 × p− p1)T
tT2 −(t2 × p− p1)T
0 nT

0 tT1
0 tT2

 , G(i)
2 =



−nT (n× p− p2)T
−tT1 (t1 × p− p2)T
−tT2 (t2 × p− p2)T
0 −nT
0 −tT1
0 −tT2

 , (2.1.1)

where n is the contact normal, t1, t2 are contact tangents, p is the contact point and
p1, p2 are the positions of the two particles of the contact.

According to Newton’s third law, we know that action is reaction, and from that it
follows that G(i)

2 = −G(i)
1 . If the contact is a particle-geometry contact, then G(i)

2 = 0.
A three by three grid of particles would give the structure in the contact Jacobian

which is illustrated in Figure 1
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(a) Three by three particle grid (b) Contact Jacobian

Figure 1 – Three by three particle grid and the resulting contact Jacobian.

If we look at any given column, we can see each contact that a particle is a part of. Block
column one refers to particle zero, block column two to particle one and so on. If we
look at any given row, we can see the particles that are a part of that contact. From the
contact Jacobian we can see that the three by three grid has twelve contacts, which we
can also verify by looking at the grid.

To compute the velocities for the next step of the simulation vk+1 of the particles, and
to satisfy the constraints by computing the contact forces λ, we solve the linear system[

M −GT
G T

] [
vk+1

λ

]
=

[
p
q

]
, (2.1.2)

[4] where M and T are symmetric and positive-definite and p = Mvk + h and q =
1

1+4τ/h(−
4
hgk + Gvk) where h is the size of the time step. The dampening time for the

stability of the time integration τ is defined as τ = 2h, and gk is the constraint violations
of step k. M ∈ Rn×n represents the mass of each particle in the system and is block
diagonal and easily inverted. The contact Jacobian G ∈ Rm×n is a sparse matrix, and
usually m ≥ n. We know that G is usually rank deficient in granular systems, as in most
cases we have more rows than columns. The only time G is not rank deficient is when
we have the same amount of particles as contacts. We have a perturbation T ∈ Rm×m
that is diagonal, where each entry on the diagonal is a compliance and the compliance is
small. This perturbation corresponds to contact compliance and is used to ensure that
the linear system in (2.1.2) is not degenerate, but it will be very ill-conditioned. For the
velocities vk+1 we have the dimensions vk+1 ∈ Rn, and for the constraint forces λ we have
the dimensions λ ∈ Rm. In solving (2.1.2) we are interested in the new velocities vk+1

and the constraint forces λ [6]. To compute the constraint forces, we have to compute the
constraint violations. Constraint violations occur when bodies collide or are in contact
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with each other. A constraint violation manifests as a penetration depth g between two
bodies in a contact that describes how deep the bodies penetrate each other because of
elasticity. To satisfy the constraints we have that g(x) = 0, that is, there is no penetration
between two bodies in one time step. To achieve that, we need to compute the amount
of force required to separate the bodies. This needs to be done for all contacts and for
all particles. An illustration of a contact between two particles is shown in Figure 2.

g

τr

x0

x1

n
t2

t1

Figure 2 – Illustration of a contact between two particles x0 and x1.

2.2 Schur Complement

The Schur comeplement of a block matrix is a tool in linear algebra and theory of matrices
that is defined as

M =

[
A B
C D

]
(2.2.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m and M ∈ R(n+m)×(n+m). If A is
invertible. the Schur complement of the block A of matrix M is defined as

M/A = D − CA−1B, (2.2.2)

where M ∈ Rm×m. If D is invertible, then the Schur complement of block D of matrix
M is defined as

M/D = A−BD−1C, (2.2.3)

where M ∈ Rn×n. A property of the Schur comeplement is that if we have that B = CT

such that

M =

[
A CT

C D

]
(2.2.4)

and if A is invertible, then M is positive-definite [7].
The matrix in (2.1.2) is not symmetric, which is an important property for some

iterative methods. However, by taking the Schur complement of the matrix in (2.1.2) of
block M , we get

A = GM−1GT + T. (2.2.5)
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which is symmetric and positive-definite. From this point forward, when we mention the
Schur complement, we are specifically referring to the matrix in (2.2.5). An important
connection to make is that GM−1GT resembles structures found in other applications. It
corresponds to the linear differential operator ∇ ·

(
ρ−1∇·

)
of elliptic partial differential

equations. This suggests that the alternate direction implicit method resembles our
fibres [8]. However, if we do the Schur complement, we will not solve (2.1.2) anymore,
but instead we will solve

Aλ = q. (2.2.6)

We are interested in solving for vk+1 as well, and it is possible to do that if we obtain λ.
The equations of motion state that

Mvk+1 =Mvk + hf +GTλ, (2.2.7)

which we can use to solve for vk+1 if we have solved for λ [9].

2.3 Krylov Subspaces

Some variation of a Krylov subspace method is commonly used in iterative methods that
deal with large sparse matrices. Krylov subspaces are formed by applying a matrix to
a vector time and time again. A Krylov subspace of order m is generated by a matrix
A ∈ Rn×n and a vector v ∈ Rn such that

Km(A, v) = span{v,Av,A2v, . . . , Am−1v}. (2.3.1)

The dimension of K increases by one every time we apply A to v. An important property
of Krylov subspaces is that the vectors {v,Av,A2v, . . . , Am−1v} are linearly independent.
Krylov subspace methods converge in maximum N iterations since these methods form
a basis, where N is the size of the system. However the amount of iterations required to
reach convergence can exceed N in the presence of rounding errors. For very large sys-
tems, the chosen iterative method can reach desired accuracy far earlier. Today problems
are so large it is not feasible to run even N iterations [10].

2.4 Preconditioning

To find the solution to large sparse linear systems, it is in many cases beneficial to
use iterative methods instead of direct methods. The benefits of iterative methods for
these types of systems compared to direct methods are that they usually require less
memory, they are easier to program and adapt to different types of problems and often
a sufficiently accurate approximation to the solution is obtained with less computational
effort [11]. Direct methods are also not practical for very ill-conditioned matrices or
matrices that are nearly degenerate. For these types of matrices one would do Singular
Value Decomposition (SVD), which is very slow [12].

Iterative methods, such as CG, often suffer from slow convergence in typical appli-
cations. The higher the condition number κ(A) of the system matrix A is, the slower
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the convergence [10]. The condition number of a matrix A with respect to the norm is
defined as

κ(A) = ‖A‖‖A−1‖ (2.4.1)

and it can give us a clue to how sensitive a linear system is. If A is symmetric and
positive-definite, the condition number of A is defined as

κ(A) =
λmax

λmin
. (2.4.2)

where λmax is the largest eigenvalue, and λmin is the smallest eigenvalue. The condition
numbers of the matrices we work on throughout the project can reach as high as κ(A) =
1012.

Another weakness with iterative solutions is lack of robustness. Since computers
use finite precision arithmetic, rounding errors can lead to numerical errors and loss of
important properties in the algorithms. Both of these weaknesses can be improved by
using preconditioning [10].

Preconditioning is simply the process of transforming a linear system into another
linear system with the same solution but with an improved condition number. We follow
the exposition in Shewchuk and let P be a matrix that is assumed to be more easily
invertible than a matrix A and is symmetric and positive-definite. We can then solve

P−1Ax = P−1b (2.4.3)

and indirectly get the solution for Ax = b. This is called a left preconditioned system.
However, P−1A is not symmetric and positive-definite, but it is similar to a positive-
definite system. Since M is positive-definite it can be factored as P = EET , with
Cholesky for example. We can find a similarity transformation from P−1A to E−1AE−T .
Here we have that E−1AE−T is symmetric and positive-definite and has the same eigen-
values as P−1A. The standard preconditioned version is equivalent to working with that
system, therefore solving for (2.4.3) is equivalent to solving

(E−1AE−T )(ETx) = E−1b. (2.4.4)

However, we do not want to compute E, and to circumvent this, it is possible to elim-
inate E with variable substitutions and only work on P . If κ(E−1AE−T ) � κ(A) or
the eigenvalues of E−1AE−T are better clustered than those of A, we can solve (2.4.3)
iteratively faster than the original problem [11].

There are two common types of preconditioners: incomplete factorizations and ap-
proximate inverses. The main difference between the two are that incomplete factoriza-
tion computes P and P−1 is applied but not formed explicitly. Where the other P−1 is
directly built and applied. The fibre-based preconditioner is an incomplete factorization
[13].

In the context of iterative methods, a good preconditioner P should be cheap to
compute and it should be able to solve (2.4.3) faster than the original problem. A
preconditioner that satisfies these criteria will lead to faster and more accurate solutions.
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The best approximation of the original system would be P = A, as κ(P−1A) = 1.
However this would mean that we would have to solve the system Px = b for the
preconditioning step, which renders this preconditioner useless [11].

2.5 Conjugate Gradient Solver

The conjugate gradient method, first proposed by Hestenes and Stiefel [14], is a Krylov
subspace method used to solve linear systems of the form

Ax = b (2.5.1)

where x is unknown, and A and b are known. For CG, A needs to symmetric positive-
definite. For A to be positive-definite we have that

x̂TAx̂ > 0, (2.5.2)

for every nonzero vector x̂.
For iterative methods we generally have a residual r(i) = b− Ax(i) that tells us how

far we are from the correct value of b at iteration i. For each iteration, an iterative
method produces a candidate solution x∗, while the stationary point x is the actual value
of the solution.

The CG algorithm uses the Method of Conjugate Directions. The idea is to pick a
set of A-orthogonal search directions d, where two vectors d(i) and d(j) are A-orthogonal,
or conjugate, if

dT(i)Ad(j) = 0. (2.5.3)

The CG algorithm will take n steps, and take exactly one step in each search direction
with step length α(i) [11]. Let us start with the basic CG algorithm with the matrix
A in (2.2.5). We are solving for x in Ax = b. First we compute the step length for
iteration i, and then take a step in the current search direction with the computed step
length which updates our candidate solution. We then update our residual and then do
the conjugation step and compute β, which will ensure us that our next search direction
will be A−orthogonal to our other search directions. Finally we compute the next search
direction. We repeat this process until our residual is below a desired tolerance ε. Doing
this will result in Algorithm 1.
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Algorithm 1: Conjugate Gradient
Data: r(0), ε
Result: x(ν+1)

1 d(0) ← r(0) ;
2 ν ← 0 ;
3 while r(ν) > ε do

4 α(ν) ←
‖r(ν)‖2

dT
(ν)
Ad(ν)

;

5 x(ν+1) ← x(ν) + αd(ν) ;
6 r(ν+1) ← r(ν+1) − αAd(ν) ;
7 β(ν+1) ←

‖r(ν+1)‖2
‖r(ν)‖2

;

8 d(ν+1) ← r(ν+1) + β(ν+1)d(ν) ;
9 ν ← ν + 1 ;

10 return x(ν+1)

2.5.1 Preconditioned Conjugate Gradient

CG, as well as most other Krylov subspace methods, are not used without precondition-
ing. These types of algorithms perform poorly without preconditioning and does not
converge well. With a good preconditioner, the convergence of CG and other Krylov
subspace methods can drastically improve. Instead of solving for Ax = b, we can indi-
rectly solve for (2.4.3). The Untransformed Preconditioned Conjugate Gradient Method
showed in Algorithm 2 solves for the preconditioned system [11].

Algorithm 2: Untransformed Preconditioned Conjugate Gradient Method
Data: r(0), ε
Result: x(ν+1)

1 d(0) ← P−1r(0) ;
2 ν ← 0 ;
3 while r(ν) > ε do

4 α(ν) ←
rT
(ν)
P−1r(ν)

dT
(ν)
Ad(ν)

;

5 x(ν+1) ← x(ν) + αd(ν) ;
6 r(ν+1) ← r(ν+1) − αAd(ν) ;

7 β(ν+1) ←
rT
(ν+1)

P−1r(ν+1)

rT
(ν)
P−1r(ν)

;

8 d(ν+1) ← r(ν+1) + β(ν+1)d(ν) ;
9 ν ← ν + 1 ;

10 return x(ν+1)

We never compute the inverse P−1 of the preconditioner. Instead we solve a linear
system Ps = r =⇒ s = P−1r, which can then be used to initialize d(0) as well as
compute α and β. An important note to make is that even if preconditioning can improve
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the convergence of the algorithm, it does not necessarily mean the algorithm performs
better in real time measurement. The preconditioned algorithm requires one to solve a
linear system for each iteration, which costs time. A preconditioner does not necessarily
improve convergence either, a bad preconditioner can even impair convergence [10].

2.5.2 Uzawa Algorithm

We do not want to explicitly compute A in (2.2.5). The reason for this is because
we know that G is sparse and usually very large. As it often is when one performs
matrix multiplication with sparse matrices, they become dense, which is not desirable
for computational efficiency. A also has to be stored somewhere in memory, and it is so
big we can not realistically store it.

Instead of computing this explicitly, we can split the computation of Ax into two
parts. The equation to solve then becomes

x(ν+1) = Ax(ν). (2.5.4)

We know the Schur complement A from (2.2.5). We can rewrite Ax as GM−1GTx+Tx.
To compute this we can write it as

w =M−1GTx (2.5.5)

and
u = Gw + Tx (2.5.6)

where w and x are dummy variables and will be replaced by the true unknowns λ and v
later.

We can modify Algorithm 1 to arrive at the Uzawa algorithm [15] as shown in Algo-
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rithm 3.
Algorithm 3: Uzawa Algorithm with conjugate directions

Data: r(0), ε
Result: x(ν+1)

1 d(0) ← r(0) ;
2 ν ← 0 ;
3 while r(ν) > ε do
4 z ←M−1GTd(ν) ;
5 γ ← zTMz ;
6 ρ← dT(ν)Td(ν) ;
7 α← w

γ+ρ ;
8 λ← λ+ αd(ν) ;
9 v ← v + αM−1f ;

10 r ← r −Gv + Tλ− q ;
11 w1 ← ‖r‖2 ;
12 β ← w1

w ;
13 d← r + βd(ν) ;

14 return x(ν+1)

The important modifications done in this algorithm compared to Algorithm 1 is that
we do not explicitly compute A. For the scope of this thesis, we compute GTd and Gv
on line 2 and 8 with matrix-vector multiplications by explicitly forming G. However, if
this was to be used in practice, we would compute this implicitly without forming G.
Instead of doing matrix-vector multiplications we would implement kernels which can be
used to do these computations without doing the matrix-vector multiplications, as well
as computing γ, ρ and w in the kernels. The benefit of doing it with the kernels rather
than the explicit computation is better performance and less memory usage. If memory
usage can be reduced to a point where all the required memory for the computations can
fit in the CPU’s L3 cache, then considerable performance improvement can be achieved.

2.6 Conjugate Residual

The Conjugate Residual method (CR) is a Krylov subspace method and it is closely
related to CG. While CG only works on symmetric, positive-definite matrices, the only
requirement for CR is that the system matrix is Hermitian (equal to its own conjugate
transpose). The downside of CR compared to CG is that it requires one additional vector
update (2n more operations), and one more vector of storage. CG and CR typically
display similar convergence [10].

One issue that CG has, but CR does not, is that the residual in CG is not monoton-
ically decreasing, which causes problems with early termination. This is because for any
iterate, the candidate solution may be closer to the real solution, but the true residual
might be larger. This leads to the constraint error changing unpredictably between it-
erations. CR does not suffer from this issue, since the residual in CR is monotonically
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decreasing.

2.7 Minimum Residual

The Minimum Residual Method (MINRES) is a Krylov subspace method. Just like CR,
MINRES operates on symmetric linear systems, while CG requires the system to be
symmetric and positive-definite, MINRES works on indefinite systems as well. MINRES
can be preferable over CG if it is desired to terminate early on positive-definite systems.
The residual for MINRES is often smallar than for CG by an order or two of magnitude.
The downside of MINRES is that it is more computationally expensive [16].

3 Fibre Preconditioning

Using the information available about a matrix and exploiting its structure are valuable
tools when trying to find a good preconditioner for said matrix. The idea of the fibre
preconditioner is to change the structure of the contact Jacobian in such a way that a lot
of the important information in the Schur complement end up close to the diagonal, and
then extract a preconditioner as a block diagonal matrix. The idea is a continuation of
previous work by Mattias Linde on cloth simulation. Linde produced promising results
on grid-like structures as shown in Figure 3.

Figure 3 – Four by four particle grid.

He managed to get these promising results by first finding chains horizontally and
then vertically in the grid as shown in Figure 4. When finding horizontal chains he
would relabel the particles in an incrementing manner where the first particle got labeled
as particle zero, second particle as particle one and so on. When finding the vertical
chains, no particle labeling will be done since all the particles are already relabeled in
the horizontal sweep. The contacts are also relabeled on both the horizontal and vertical
sweeps.
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Figure 4 – An example on how Linde picked the chains. He first took the horizontal
chains (red) and then the vertical chains (blue). Doing this changes the structure of the
contact Jacobian and the Schur complement.
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Figure 5 – The left plot shows the structure of the contact Jacobian after reordering the
way Linde did. The right side shows the resulting Schur complement. As we can see in
the contact Jacobian we have a block structure where each block has a block bi-diagonal.

The reason the particles are relabeled in such a way is to get the blocks for each
contact in the chain to be adjacent to each other in the contact Jacobian. The reason
the contacts are relabeled as well is to get the bi-diagonal block structure as we can see
in the upper part of the contact Jacobian in Figure 5. When the Schur complement A is
constructed the blocks of bi-diagonals gets centered in the top left block of A as seen in
A in Figure 5.

To obtain the preconditioner, he then extracted the block tri-diagonal from A. We
can see what part of A this would correspond to in Figure 5 where the block tri-diagonal
is marked in red. He saw that reordering the contact Jacobian this way, it produced a
preconditioner that made the residual decay rapidly [17]. The obvious downside to this
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approach is that it only works on grid-like structures. We would want something that
works on any type of topology.

The fibre preconditioner involves finding chains of adjacent particles of a granular
medium and relabeling the particles and contacts in an incrementing manner. These
chains are what we call the fibres. The fibre preconditioner will try to replicate the bi-
diagonal blocks as much as possible in the contact Jacobian in Figure 5. A fibre consists
of a set of two or more particles, where all adjacent particles in the fibre are in contact
with each other. Unlike Linde, we do not restrict ourselves to only taking particles in a
certain direction in each fibre. We do put a a condition that a particle a can only belong
to a single fiber. How many particles there are in one fibre, or how many fibres will
be constructed is random and will be determined by the topology of the system and the
starting point of a fibre. A fibre will try to consist of as many particles as possible. When
a fibre can not take any more particles, the fibre ends and the construction of a new fibre
starts at a new particle that is not in any fibre. To then extract the preconditioner, we
extract the block diagonal with blocks of size six from the resulting Schur complement.
We do not extract the block tri-diagonal like Linde did, because for our tests it did not
improve the preconditioner any noticeable way compared to just the block diagonal. In
Figure 6 we can see an example of how one single big fibre is created and the contacts
that do not make it into the fibre end up under the block diagonal. In Figure 7 we can
see the resulting contact Jacobian and Schur complement.

Figure 6 – Example of how one big fibre can be created in the four by four grid case.
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Figure 7 – The left plot shows the structure of the contact Jacobian after reordering with
the fibres. The right side shows the resulting Schur complement. We can see that one big
fibre was created because we have one long bi-diagonal block.

In Figure 8 we can see an example of how two fibres are created. In the contact
Jacobian in Figure 9 we can also see how the structure changes when we get new fibres.
When a new fibre starts we can see that we start building a new bi-diagonal block.

Figure 8 – Example of how two fibres can be created in the four by four grid case. If we
start at the third particle from the left at the bottom row and work our way up to the top
left particle, we will not be able to take any more particles into the fibre. We then start
over at a new particle we have not taken and go from there.
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Figure 9 – The left plot shows the structure of the contact Jacobian after reordering with
the fibres. The right side shows the resulting Schur complement. We can see that one big
fibre and one small fibre was created.

We also have cases where not all particles are taken. On big systems this case is
the most common one. In Figure 10 we can see a case where all particles will not be
taken into a fibre. The way this manifests in the contact Jacobian is that the blocks of
bi-diagonals does not span across all the columns, as we can see in Figure 11. This will
leave us with a zero block on the top right block of the contact Jacobian.

Figure 10 – Example of how we will not take all the particles in the four by four grid
case. If we start at the second particle from the left at the bottom row and work our way
up to the top left particle, we will not be able to take any more particles into the fibre.
However when we try to start on a new fibre we discover that all adjacent particles are
taken, and we terminate without all particles belonging to a fibre.
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Figure 11 – The left plot shows the structure of the contact Jacobian after reordering
with the fibres. The right side shows the resulting Schur complement. We can see that
not all particles were taken into the fibre, as if it did we would have a bi-block diagonal
spanning through all the columns of the upper block. Instead we get a zero block at the
top right block.

An important thing to note is that even if the structure has changed from the re-
ordering, it is still the exact same system of equations. Generating the fibres is a graph
theory problem, where the particles are nodes and the contacts are edges. To generate
a fibre, we start at an arbitrary node. To determine which edge we will take to continue
the fibre we put weights on the edges. We do this so we can try to replicate how Linde
selected his horizontal chains, and by putting weights we can try to force this behaviour.
The weight of an edge is the absolute value of the difference in the z position of the
two particles of a contact. To determine what edge to take, we take the edge with the
smallest weight. Every node and edge we take gets marked, and are never taken again.
By taking the smallest weight, the algorithm will search for new nodes to add to the
fibre where the nodes are on a similar height in the z position. The algorithm shown in
Algorithm 4 shows how to generate one fibre by sending in a starting particle, as well as
a set of marked particles and contacts. The sets keep track of what particles and contacts
we have taken before, so if we start on a new fibre, we still know which particles and
contacts we can not take. In this algorithm we also save the the contacts and bodies in
a way to permute them in the contact Jacobian later, however as we will discuss later,
this is not the optimal thing to do. For better performance, the contacts and particles
should be relabled as we are constructing the fibres, so ideally this algorithm should not
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return anything, just create the fibres.
Algorithm 4: Fibre Algorithm

Data: current_particle, marked_particles, marked_contacts
Result: contact_permutations, particle_permutations

1 if current_particle in marked_particles then
2 return

3 while current_particle not None do
4 particle_permutations.add(current_particle);
5 SET l equal to EMPTY LIST;
6 for contacts of current_particle do
7 z ← abs (z_particle - z_particle in contact) ;
8 if particle in contact is not in marked_particles and contact is not in

marked_contacts then
9 l.add(z, contact_particle, contact);

10 if l is empty then
11 current_particle = None;
12 else
13 current_particle ← contact_particle of lowest z in l;
14 contact_permutations.add(contact of lowest z);

15 return contact_permutations, particle_permutations

This will in 2D-like structures, like grids, roughly correspond to the way Linde re-
ordered his structure, since we will only be taking horizontal edges as far as we can, until
there are no more horizontal edges to take, then a vertical contact will be taken and
the procedure will repeat. In 3D topologies, the algorithm will sweep across each plane,
taking as many particles in the fibre as it can before moving to the next plane. This is
illustrated for the topology in Figure 12, one possible way the algorithm could take the
fibres for this problem is shown in Figure 13.
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Figure 12 – An example with two layers of particles.

Figure 13 – One way the fibres can be selected. The algorithm takes as many particles
it can on the current plane before moving to the next plane.

In Figure 14, we can see a contact Jacobian and the reordering procedure on a bigger
and unstructured example. This example better highlights that we will most likely not
take all particles, as can be seen from the blocks of bi-diagonals not spanning across all
columns. This means that the top right zero block of the reordered matrix grows larger
as more particles do not end up in a fibre.
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Figure 14 – Example of how a contact Jacobian and the fibre reordering of the same
contact Jacobian can look at a bigger and unstructured example.

4 Methodology

To ensure that the implementations of our iterative methods are correct we have used
Scipy as a reference [18]. Scipy is a library that is widely used for scientific and technical
computing and is based on well tested and trusted methods from Netlib [19]. For Uzawa
we have used Scipy’s implementation of CG as a reference, and for CR we have used
Scipy’s implementation of MINRES as reference. MINRES and CR performs equally on
positive-definite matrices.

5 Testing Methodology

For the numerical experiments, we will conduct two types of tests. The first test is called
the silo test which we use because the silo test is a standard test for granular matter
simulation. For the silo test, a particle emitter that creates particles of different sizes and
masses is placed above a cone-like funnel, and when the particles exit the funnel they get
removed. When the test starts, the particles will pour out of the funnel at a slower rate
than they pour in, which leads to the funnel clogging up. The second test is called the
material test. For this test, a particle emitter that creates particles of different sizes and
masses is placed above a plane. When the test starts, the particles will fall down on the
plane and eventually pile up.

We will perform each type of test five times each with different amount of particles.
We will analyse the convergence rates of the relative residual. We use the relative residual
as measurement since the decay of the relative residual is dependent on the size of the
data, and this will give us a good idea of how the convergence is affected by the size of
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the problem. The relative residual is defined as

rr =
‖r‖
‖A‖

. (5.1)

The eigenvalues of the linear system we want to solve will also be analyzed for each test.
Looking at the eigenvalues is key to understand the behaviour of the convergence. We
will use Numpy’s [20] function eigs to compute the eigenvalues of the linear system A and
preconditioned system P−1A. The eigs function is implemented using LAPACK routines
[21], LAPACK routines are also well tested and trusted.

5.1 Error of the velocity

Another measurement we will look at is the error of the velocity. Recall from (2.2.7)
that we can compute the velocity of the particles for the next step of the simulation vk+1

if we have computed the contact forces λ. The reason we use the error of the velocity
as a measurement of the solution instead of something like the forward error, where the
forward error is defined as ‖x− x∗‖ is because the contact Jacobian G is rank deficient.
If we do a QR factorization of G we get

G = QR = Q

[
R1

0

]
=
[
Q1 Q2

] [R1

0

]
. (5.1.1)

Here we have that Q1 ∈ Rm×n, Q2 ∈ Rm×(m−n) and R1 ∈ Rn×n. We get this QR
factorization because G is a rectangular matrix with more equations than variables.
Now let us construct the Schur complement

A = GM−1GT + T =
[
Q1 Q2

] [R1

0

]
M−1

[
RT1 0

] [QT1
QT2

]
+ T

=
[
Q1 Q2

] [R1M
−1
11 R

T
1 0

0 0

] [
QT1
QT2

]
+ T

(5.1.2)

Since we know that T is a diagonal matrix with all elements on the diagonal being
t = 1e− 8, and Q is orthogonal by definition from the QR factorization, we can write

T = tI = tQQT = QTQT . (5.1.3)

Rewriting T in this way, we can then arrive at

A =
[
Q1 Q2

] [R1M
−1
11 R

T
1 0

0 0

] [
QT1
QT2

]
+
[
Q1 Q2

]
T

[
QT1
QT2

]
, from (5.1.2), (5.1.3)

=
[
Q1 Q2

] [R1M
−1
11 R

T
1 + T11 0

0 T22

] [
QT1
QT2

]
.

(5.1.4)
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We define

H =

[
R1M

−1
11 R

T
1 + T11 0

0 T22

]
, (5.1.5)

which then implies that
A = QHQT . (5.1.6)

Now we can write our system of equations as

Ax = (QHQT )x = QHy, QTx = y

=
[
Q1 Q2

] [R1M
−1
11 R

T
1 + T11 0

0 T22

] [
y1
y2

]
= b.

(5.1.7)

By multiplying (5.1.7) by QT from the left we arrive at

(R1M
−1
11 R

T
1 + T11)y1 = (QT b)1

T22y2 = (QT b)2.
(5.1.8)

We can now define the residual as

r = b−Ax
= b−QHy, from (5.1.7)

= Q(QT b−Hy).
(5.1.9)

The norm of the residual is then

‖r‖ =
∥∥∥∥[(QT b)1 − (R1M

−1
11 R

T
1 + T11)y1

(QT b)2 − T22y2

]∥∥∥∥ . (5.1.10)

From (5.1.7) we let y be a matrix-vector multiplication by some matrix QT and x. We
can then write the forward error as

‖x− x∗‖ = ‖y − y∗‖, (5.1.11)

where y∗ = QTx∗ and y = QTx. We now have a term ‖y − y∗‖ that depends on the
forward error.

Finally, we know that the residual can be expressed as a term of the forward error:

‖r‖2 = ‖A(x− x∗)‖2

= ‖H(y − y∗)‖2

=

∥∥∥∥[H11(y1 − y∗1)
T22(y2 − y∗2)

]∥∥∥∥2 = ‖H11(y1 − y∗1)‖2 + ‖T22(y2 − y∗2)‖2.

(5.1.12)

Here we can see that even if the residual is small, we can have a high forward error. If
‖r‖ is small, then ‖y2 − y∗2‖ can be large because we know that T22 = 1e − 8 is small.
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Thus it is possible to have a large forward error even with a small residual. If we do a
QR factorization of GT in (2.2.7), as we did on G in (5.1.1), we get that

GTλ ⇐⇒
([
Q1 Q2

] [R1

0

])T [
λ1
λ2

]
=
[
RT1 0

] [QT1 λ1
QT2 λ2

]
=
[
RT1Q

T
1 λ1 0

]
∼
[
GT1 0

] [λ1
λ2

]
.

(5.1.13)

This suggests that parts of λ, specifically λ2 will not affect the computed value of vk+1.
This is the reason why we choose the measure the error of the velocity instead of the
error of the solution we get from the iterative methods. From (2.2.7) we define the error
of the velocity as

ve = ‖(v +M−1f +M−1GTx∗)− (v +M−1f +M−1GTx)‖. (5.1.14)

5.2 Effective Condition Number

We will also look at the effective condition number of the original and the preconditioned
system. We will define exactly what this means, but first we need to look at some
properties of our systems and the implications of these properties.

If A has n eigenvalues, of which r of them are large and the remaining n−r eigenvalues
are small, and we let the eigenvalues of A be ordered such that λ1 ≥ λ2 ≥ . . . λn > 0, we
can define the small eigenvalues as λr+i ≤ ελr, where 0 ≤ ε � 1, and i = 1, 2, . . . , n −
r. If we have a set of large eigenvalues of comparable magnitude, and the rest of the
eigenvalues are small, it has been shown for CG that the residual associated with the
large eigenvalues are made small first [22], without changing the residual associated with
the small eigenvalues that much. Forsgren proves this by showing that the iterates of the
large eigenvalues are similar to those of another system that only has the same set of large
eigenvalues. In addition to this, he also shows that the iterates associated with the small
eigenvalues are close to the initial residual. Forsgren shows that the ill-conditioning of
the problem caused by the small eigenvalues does not appear until the residual associated
with large eigenvalues are made small. Forsgren’s analysis can also be applied to CR by
minimizing the function xTA2x− 2bTAx instead.

We can now define what we mean with the effective condition number. Instead of
looking at the condition number, we look at the effective condition number, where define
the effective condition number as the condition number of the large eigenvalues only.
That is, for a linear system A, the effective condition number κe(A) of A is defined as

κe(A) =
λ1
λr
. (5.2.1)

However as stated earlier, this analysis only applies if the large eigenvalues are of compa-
rable magnitudes. As we will see later, this will definitely be true for the preconditioned
systems, but not necessarily for the original systems.
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6 Numerical Experiments

The first experiment we will look at is the silo test for 346 bodies, as seen in Figure 15.

(a) Silo test with 346 bodies. (b) Schur complement of the
time step we are looking at.

Figure 15 – The scene at the timestep we are running our tests on and the Schur com-
plement.

We first look at the eigenvalues of the original and preconditioned system as shown in
the histograms in Figure 16. The red bins represents the small eigenvalues and the other
bins represents the set of large eigenvalues. From the histograms we can see that for both
the original and the preconditioned system, we have a set of large eigenvalues, while the
rest are small and there is a large gap between the small and the large eigenvalues. For
the preconditioned system, the large eigenvalues are all of comparable magnitude, so we
know that we can look at the effective condition number here. The same is not necessarily
true for the original system, where the orders of magnitude of the large eigenvalues differ.
We still measure the effective condition number of this system and put it as a best case
scenario of the condition number of the original system. The effective condition number
of the original system is κe(A) = 72906 and κe(P

−1A) = 159 for the preconditioned
system. If we did measure the regular condition number this would be in the order of
magnitude of 1012. One thing to note for the small eigenvalues of the original system is
that we know these eigenvalues already, without using any algorithm to compute them.
The small eigenvalues in the original system comes from the perturbation we add to
ensure our system is not degenerate, and these eigenvalues are all λ = 10−8. As of now,
we do not know any possible way to make these small eigenvalues better.
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(a) Histogram of the eigenvalue clustering for the silo
test with 346 bodies.
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(b) Histogram of the eigenvalue clustering for the
preconditioner for the silo test with 346 bodies.

Figure 16 – Histograms over the eigenvalue clusters for the silo test with 346 bodies.

From the convergence curve in Figure 17 we can see that the preconditioner performs
well for the early iterations. Once the residual associated with all the large eigenvalues
have been made small and we move on to the small eigenvalues, we can see a dramatic
shift in the convergence, and we stop converging instantly and stagnate. By the final
early iteration the relative residual for the preconditioned system is up to eight orders
of magnitude smaller. By the final iteration the change is minimal from the final early
iteration due to the stagnation. We plot a vertical dotted line at 100 iterations for visual
aid, this helps visualizing roughly how many absolute iterations we have performed and
not just how many iterations we have performed in relation to the size of the system.

The error of the velocity also looks good, as we see a similar decay in the error for
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the early iterations, and then a complete stagnation once we switch over to the small
eigenvalues. The performance of the three methods are roughly the same, as is expected.
We can see that CR and MINRES perform exactly the same for the large eigenvalues,
and Uzawa performs equally for most of the large eigenvalues.
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(a) Convergence plot for the relative residual for the silo test with 346 bodies.
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(b) Convergence plot for the error of the velocity for the silo test with 346 bodies.

Figure 17 – Convergence plots for the silo test with 346 bodies.

The second experiment we will look at is another silo test, but this time with 4988
bodies as seen in Figure 18.
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(a) Silo test with 4988 bodies. (b) Schur complement of the
time step we are looking at.

Figure 18 – The scene at the timestep we are running our tests on and the Schur com-
plement.

We will not look at the eigenvalue histograms for this test, for the simple reason
that on the workstation the tests were performed, it was not possible to compute all the
eigenvalues for the size of this test. It is possible to compute all but one eigenvalues for
sparse matrices with the Scipy library, but since that leaves out one eigenvalue which can
be anything, we do not compute the eigenvalues this way. If we look at the convergence
plots in Figure 19, we see similar behaviour to the convergence of the silo test with 346
bodies with a steep decrease during the early iterations and then it stagnates.
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(a) Convergence plot for the relative residual for the silo test with 4988 bodies.
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(b) Convergence plot for the error of the velocity for the silo test with 4988 bodies.

Figure 19 – Convergence plots for the silo test with 4988 bodies.

The third experiment we will look at is the material test for 313 bodies as seen in
Figure 20.

28



Master’s Thesis Project
Fibre-based preconditioner for granular matter simulation

January 27, 2022

(a) Material test with 313 bodies. (b) Schur complement of the
time step we are looking at.

Figure 20 – The scene at the timestep we are running our tests on and the Schur com-
plement.

For the material test, we again see in Figure 21 that the eigenvalues for the original
and preconditioned system have one large set of eigenvalues and the rest are small. The
effective condition number for the original system is κe(A) = 630634 and κe(P−1A) = 302
for the preconditioned system.
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(a) Eigenvalue clustering for the material test with 313
bodies.
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(b) Eigenvalue clustering for the preconditioner for the
material test with 313 bodies.

Figure 21 – Histograms over the eigenvalue clusters for the material test with 313 bodies.

Again, the decay of the relative residual and error of the velocity looks good as
seen in Figure 22. It does not perform as well the silo test. This indicates that our
preconditioner has a harder time solving this type of system, which is also reflected in
the effective condition number, as it is larger than the similar sized silo test.
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(a) Convergence plot for the relative residual for the material test with 313 bodies.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Normalized Iterations [n/N]

10 6

10 4

10 2

100

Ve
lo

cit
y 

Er
ro

r

Conjugate Residual
Precond. Conjugate Residual
MINRES
Precond. MINRES
Uzawa
Precond. Uzawa

Material 313 Bodies. A =(3090 3090). Final Iteration: 982.

(b) Convergence plot for the error of the velocity for the material test with 313 bodies.

Figure 22 – Convergence plots for the material test with 313 bodies.

The last experment we will look at is the material test for 5035 bodies as seen in
Figure 23.
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(a) Material test with 5035 bodies. (b) Schur complement of the
time step we are looking at.

Figure 23 – The scene at the timestep we are running our tests on and the Schur com-
plement.

For this experiment we will not look at the eigenvalues, for the same reason as for
the silo test with 4988 particles, we simply can not compute them all on the available
workstation.

As we can see in Figure 24, we continue to see the same behaviour with a rapid
early decrease in the relative residual and error of the velocity, followed by stagnation or
oscillation.
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(a) Convergence plot for the relative residual for the material test with 5035 bodies.
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(b) Convergence plot for the error of the velocity for the material test with 5035 bodies.

Figure 24 – Convergence plots for the material test with 5035 bodies.

The rest of the result plots can be found in Appendix A. They will not be listed here
since they are all similar to the tests we have looked at in terms of the behaviour of the
convergence. The rest of the results are compiled in Table 1 and 2.
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Test Bodies Method rr at 100 Iterations ve at 100 iterations
Silo 346 Uzawa 10−10 10−5

Silo 346 CR 10−12 10−5

Silo 346 MINRES 10−11 10−5

Silo 668 Uzawa 10−8 10−3

Silo 668 CR 10−10 10−3

Silo 668 MINRES 10−8 10−3

Silo 1377 Uzawa 10−8 10−2

Silo 1377 CR 10−10 10−3

Silo 1377 MINRES 10−8 10−3

Silo 2567 Uzawa 10−6 100

Silo 2567 CR 10−8 100

Silo 2567 MINRES 10−6 100

Silo 4988 Uzawa 10−7 10−2

Silo 4988 CR 10−9 10−2

Silo 4988 MINRES 10−8 10−2

Material 313 Uzawa 10−10 10−5

Material 313 CR 10−11 10−5

Material 313 MINRES 10−10 10−5

Material 631 Uzawa 10−8 10−3

Material 631 CR 10−9 10−3

Material 631 MINRES 10−8 10−3

Material 1271 Uzawa 10−8 10−3

Material 1271 CR 10−9 10−3

Material 1271 MINRES 10−8 10−3

Material 2514 Uzawa 10−6 10−1

Material 2514 CR 10−8 10−1

Material 2514 MINRES 10−7 10−1

Material 5035 Uzawa 10−6 10−1

Material 5035 CR 10−8 10−1

Material 5035 MINRES 10−7 10−1

Table 1 – The result of the preconditioner for all performed tests. The colored rows
indicates the tests previously shown in this section while the white rows indicates tests
that are shown in Appendix A.
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Test Bodies Preconditioned κe
Silo 346 No 72906
Silo 668 No 123656
Silo 1377 No 141024
Silo 2567 No 228939
Silo 4988 No X
Silo 346 Yes 159
Silo 668 Yes 466
Silo 1377 Yes 580
Silo 2567 Yes 5236
Silo 4988 Yes X

Material 313 No 630634
Material 631 No 746710
Material 1271 No 910868
Material 2514 No 790574
Material 5035 No X
Material 313 Yes 302
Material 631 Yes 1000
Material 1271 Yes 499
Material 2514 Yes 994
Material 5035 Yes X

Table 2 – Effective condition number for all performed tests. We do not compute the
eigenvalues for the largest tests because too much memory was required to be allocated to
do this, thus we can not compute the effective condition number. It is possible to compute
eigenvalues with sparse matrices but then you can compute at most N − 1 eigenvalues,
where N is the size of the system. The colored rows indicates the tests previously in this
section.

7 Discussion

We can immediately see from the results that the preconditioner does make the linear
systems easier to solve in the early iterations. The iterative methods tested can reach
relative residuals and velocity errors many orders of magnitude smaller with the fibre
preconditioner. With the fibre preconditioner there is a drastic decrease of the relative
residual and the error of the velocity in the early iterations and then it starts to stagnate
or oscillate. One thing that is not entirely clear is why the error of the velocity is not
monotonically decreasing for any of the methods. Krylov subspace methods should get
closer to the solution for every iteration, but for ill-conditioned problems this is not
necessarily true. For example, the search directions of CG can lose A-orthogonality due
to accumulated floating point roundoff error [11]. This could be one explanation for why
we see this unpredictable behaviour.

While the convergence of the preconditioner is good, there is one thing we have
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deliberately not mentioned until this late in the report and that is that we have not been
bothered to measure how effective it is to create the preconditioner. This has not been
done because as of now, there is no point in doing it, because the construction of the
preconditioner is incredibly slow. This process should be done in milliseconds, but can
take up to minutes. While this makes the preconditioner unusable in its current state for
any real application, there is a simple explanation for this, and the fix is not hard. As
of now, the preconditioner is created by reordering the contact Jacobian G, however, as
mentioned earlier in the report in a real setting one would not create this matrix. Further
improvements needs to be implemented to create the preconditioner without creating the
contact Jacobian. By doing this, there is a lot of performance to gain.

7.1 Future Work

There is quite a bunch of work that can be continued with for this project. First and
foremost relabeling the particles and contacts instead of permuting the contact Jacobian
is something that is very important. This will push down the time to create the precon-
ditioner by a large amount. Furthermore, kernels should be implemented to be able to
do all calculations without forming any matrices at all.

There is also work that can be done on how we construct the fibers. Different weights
can be used for the edges instead of the weights that I used, and that can change the
performance of the preconditioner. There is also something called multipreconditioning
which as the name suggests, makes use of multiple preconditioners. This can be an
interesting area to look at. We can also look at scaling the perturbation matrix T .

Finally, actually getting the fibre preconditioning into simulation is something that
should be done. All the tests done during this project has just been to gauge the fibre
preconditioner. Instead of just gauging it, it should be tested in a practical setting. This
is very important to see that it does work as expected.
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