
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Computer Science

2022 | LIU-IDA/LITH-EX-A--2022/002--SE

Integra ng SkePU’s algorithmic
skeletons with GPI on a cluster
Integrering av SkePUs algoritmiska skele med GPI på e cluster

Joel Almqvist

Supervisor : August Ernstsson
Examiner : Christoph Kessler

External supervisor : Bernd Lörwald of Fraunhofer ITWM

http://www.liu.se

Upphovsrätt

De a dokument hålls llgängligt på Internet - eller dess fram da ersä are - under 25 år från publicer-
ingsdatum under förutsä ning a inga extraordinära omständigheter uppstår.

Tillgång ll dokumentet innebär llstånd för var och en a läsa, ladda ner, skriva ut enstaka ko-
pior för enskilt bruk och a använda det oförändrat för ickekommersiell forskning och för undervis-
ning. Överföring av upphovsrä en vid en senare dpunkt kan inte upphäva de a llstånd. All annan
användning av dokumentet kräver upphovsmannens medgivande. För a garantera äktheten, säker-
heten och llgängligheten finns lösningar av teknisk och administra v art.

Upphovsmannens ideella rä innefa ar rä a bli nämnd som upphovsman i den omfa ning som
god sed kräver vid användning av dokumentet på ovan beskrivna sä samt skydd mot a dokumentet
ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-
nens li erära eller konstnärliga anseende eller egenart.

För y erligare informa on om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for a
period of 25 years star ng from the date of publica on barring excep onal circumstances.

The online availability of the document implies permanent permission for anyone to read, to down-
load, or to print out single copies for his/hers own use and to use it unchanged for non-commercial
research and educa onal purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are condi onal upon the consent of the copyright owner. The publisher
has taken technical and administra ve measures to assure authen city, security and accessibility.

According to intellectual property law the author has the right to bemen onedwhen his/her work
is accessed as described above and to be protected against infringement.

For addi onal informa on about the Linköping University Electronic Press and its procedures
for publica on and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Joel Almqvist

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

As processors’ clock-speed flattened out in the early 2000s, multi-core processors
became more prevalent and so did parallel programming. However this programming
paradigm introduces additional complexities, and to combat this, the SkePU framework
was created. SkePU does this by offering a single-threaded interface which executes the
user’s code in parallel in accordance to a chosen computational pattern. Furthermore it
allows the user themselves to decide which parallel backend should perform the execution,
be it OpenMP, CUDA or OpenCL. This modular approach of SkePU thus allows for dif-
ferent hardware to be used without changing the code, and it currently supports CPUs,
GPUs and clusters. This thesis presents a new so-called SkePU-backend made for clus-
ters, using the communication library GPI. It demonstrates that the new backend is able
to scale better and handle workload imbalances better than the existing SkePU-cluster-
backend. This is achieved despite it performing worse at low node amounts, indicating
that it requires less scaling overhead. Its weaknesses are also analyzed, partially from a
design point of view, and clear solutions are presented, combined with a discussion as to
why they arose in the first place.

Acknowledgments

This thesis was made possible through the hard work of the many previous contributors to
the SkePU framework. Without them there would be no framework to extend in this thesis,
and as such, I would like to extend a thank you to all them. Furthermore, the help, assistance
and many SkePU contributions of my supervisor August Ernstsson and examiner Christoph
Kessler has also been of particular help.

Outside of LiU, the Fraunhofer ITWM’s GASPI-team has also helped greatly in this thesis.
Both in the sense of being part in creating the used GPI framework, but also in providing
assistance with it. In particular, the assistance of my external supervisor Bernd Lörwald has
been of great help when using the GPI framework.

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 1
1.3 Research questions . 2
1.4 Delimitations . 2
1.5 Structure of this thesis . 2

2 Background 4
2.1 Flynn’s taxonomy . 4
2.2 Memory models, fork-join and SPMD . 5
2.3 Computer clusters broadly . 5
2.4 Cluster architecture . 6
2.5 Speedup and linear scaling . 7
2.6 Amdahl’s law . 8
2.7 Data containers . 9
2.8 Computational patterns . 9
2.9 Algorithmic skeletons . 12
2.10 OpenMP and scheduling . 13
2.11 Message Passing Interface (MPI) . 13
2.12 GASPI and GPI . 15
2.13 StarPU . 17
2.14 Problem types used by the benchmark programs 17
2.15 Related work . 20

3 SkePU 21
3.1 Purpose and usage . 21
3.2 Features and algorithmic skeletons . 22

4 Design and implementation 28
4.1 Prototype feature delimitations . 28
4.2 Design . 29
4.3 Matrix . 33
4.4 Map . 35
4.5 Reduce . 38
4.6 MapReduce . 39
4.7 Benchmark programs . 41

v

5 Method 43
5.1 The Sigma and Tetralith cluster . 43
5.2 Installation and compilation . 43
5.3 Creating the measurements . 44

6 Results 45
6.1 The n-body problem . 45
6.2 Matrix matrix multiplication . 46
6.3 Matrix vector multiplication . 46
6.4 The Mandelbrot Program . 47
6.5 The Taylor program . 47
6.6 Variance in execution time . 47

7 Discussion 55
7.1 Results of the programs . 55
7.2 Design and implementation . 58
7.3 Performance comparison . 60
7.4 Variance in execution time . 61
7.5 The work in a wider context . 62

8 Conclusion 63
8.1 Research questions . 63
8.2 Future work . 64

Bibliography 65

vi

1 Introduction

This section presents the scope of this paper, that is its aim, motivation as well as structure.

1.1 Motivation

With clock speeds flattening out, the main way processor chip manufacturers attempt to
achieve speedup is through more parallel cores [2]. This in turn changes how code has to
be written in order to properly use the new parallel architectures, typically resulting in more
complex code. This new programming landscape has created a need for tools which can
use the underlying parallel architecture with a minimal increase in code complexity. The
time it takes for the developers to write a program is an important part in any software
development process. As such, if improved performance through parallelization comes at the
cost of increased development time, it must be viewed as a trade-off rather than a net gain.
Work has been done to highlight this issue [26, 2] and it further motivates high-usability tools
which may reduce the development time while still using the underlying parallel architecture.
Of course this is yet another trade-off as such a tool likely would sacrifice some performance
for its usability, which is analogous to using higher abstraction-level languages rather than for
example assembly.

One such usability-tool is SkePU, which through its algorithmic skeletons allows for code to
be executed using different underlying models such as OpenMP, OpenCL and CUDA in order
to best match the target architecture [16]. Thus the algorithmic skeletons may be viewed as an
interface for the different execution models, which may themselves behave differently depending
on their implementation. This modular approach is easy to extend, and one communication
library which has shown promise is GPI [23, 37]. By combining these two it might let SkePU
improve its performance on cluster architectures, which in turn might help the code complexity
and performance dichotomy mentioned previously.

1.2 Aim

The aim of this thesis is to integrate SkePU and GPI in order to help determine whether this
integration is likely to work and if it would be beneficial for SkePU. Which in turn would help
make complex parallel architectures easier to use. In SkePU, the different models executing its

1

1.3. Research questions

algorithmic-skeleton-interface are called backends, and in this thesis a new prototype backend
based on GPI was created. It was then compared to the already existing cluster backend
[16], in order to analyze its performance and thus elicit strengths and weaknesses with its
design. One aspect which is of particular interest is whether the new prototype overlaps its
computations and communications, as previous evaluation of GPI required this for its strong
performance [23].

1.3 Research questions

1. How does the prototype GPI backend compare to the currently existing StarPU-MPI
one with regards to execution time?

2. Does the prototype’s design allow for overlap in its computations and communications?

3. How well does the GPI backend scale compared to the existing StarPU-MPI backend?

1.4 Delimitations

SkePU is a large project with many more features than is feasible to include in a proof of
concept prototype. As such, only three algorithmic skeletons are implemented, and only a
subset of all their features are included. The precise delimitations of the prototype itself is
available in Section 4.1. Furthermore, to limit the scope of the project, the prototype is only
compared with the existing SkePU cluster backend. This means that no comparisons are done
with pure MPI and also that no comparisons are done with a non-cluster version of SkePU.
The MPI comparisons are of interest due to the dominating popularity of MPI as well as being
the benchmark for previous GPI evaluations. Apart from this, the traffic and memory usage
is not measured but rather only execution time.

Limitations of the approach
The approach taken in this thesis project, which is to evaluate GPI by comparing the backend
based on it with another backend, comes with a few limitations. Firstly the comparisons are
done with one layer of indirection through the backends themselves. As such the comparisons
do not necessarily reflect the performance of the underlying tools, but rather this combined
with the quality of the implementation. As the GPI backend is meant to serve as a proof
of concept it lacks the maturity of the StarPU-MPI backend which has been under develop-
ment for a longer time. Hence any comparison done between the two need to take this into
consideration and attempt to distinguish factors which may arise because of it.

1.5 Structure of this thesis

Chapter 1 contains motivation, aim, delimitations, research questions as well as this section.
Chapter 2 includes relevant background for the subject at hand, parts of which are taken from
multiple disciplines. Chapter 3 lays out both the SkePU API in more detail and the purpose
of SkePU. This chapter can be viewed as a stand-alone extension of Chapter 2 as its aim also
is to provide background knowledge of the subject at hand.

Chapter 4 describes in detail how the prototype backend is implemented and highlights
some important design decisions taken. It also covers how the benchmark programs were
implemented and which part of their execution is likely to become their bottle-neck. This is
discussed in Section 4.7 and is complemented by a high-level description of the programs given
in Section 2.14. Afterwards comes Chapter 5 which covers technical details such as compilers
versions, hardware as well as some aspects of how the measurements were made.

2

1.5. Structure of this thesis

Chapter 6 contains the results of these benchmark programs. Chapter 7 discusses the
results of Chapter 6 using the knowledge of the prototype’s implementation from Chapter 5.
From this the effects of the design on the generated results is discussed. Within this chapter
the project and results are also discussed from a societal perspective. Chapter 8 links the
analysis of the previous chapter with the research questions and proposes possible extensions
of the thesis.

3

2 Background

This chapter outlines important concepts which are used frequently in this thesis. They may
be divided into abstract concepts such as in Sections 2.1 to 2.9 and 2.14, whereas Sections
2.10 to 2.13 primarily covers programming tools. These concepts are vastly different and their
only unifying feature is their usefulness for understanding this thesis. Notable with its absence
from this chapter is any mention of SkePU, which has its own dedicated chapter following this
one.

2.1 Flynn’s taxonomy

There are multiple ways to structure a parallel architecture and as such there needs to be
a way to distinguish between them. One way to do this is through their different control
structure at the level of computer architecture. This is the purpose of Flynn’s taxonomy1,
in which there are four categories: single instruction stream and single data stream (SISD),
single instruction stream and multiple data stream (SIMD), multiple instruction stream and
single data stream (MISD) and lastly multiple data stream and multiple data stream (MIMD).
SISD corresponds to a single list of instructions applied with a single input, in other words
the typical sequential execution model. MISD however uses multiple instructions on the same
data set, an uncommon model which allows multiple processors to generate the same output.
By comparing these outputs the system is able to detect errors and potentially recover from
them, which is why the MISD model is most commonly used for fault tolerance.

SIMD is a vector-style execution model where a single, usually simple, operation is applied
with multiple inputs generating multiple outputs. This pattern is common in computing
where the same simple operation is used a large number of times, such as in graphics and
machine learning. An important aspect of SIMD is its lockstep feature which mandates that
all operations are done simultaneously, resulting in an atomic operation. Hence there may not
be any data races in a SIMD-style execution.

The MIMD model is the most general one and in it multiple processing units receive both
their own instruction and data. Modern multi-core computers are examples of MIMD-style
execution whereas the older singe-core computers use SISD. It is possible to combine MIMD

1Further reading on Flynn’s taxonomy:
https://hpc.llnl.gov/tutorials/introduction-parallel-computing/flynns-classical-taxonomy

4

https://hpc.llnl.gov/tutorials/introduction-parallel-computing/flynns-classical-taxonomy

2.2. Memory models, fork-join and SPMD

with SIMD by letting the processors execute SIMD-style instructions in a MIMD fashion. This
setup allows for multiple and parallel vector-style execution, resulting in a very large amount
of simple instructions being executed quickly.

2.2 Memory models, fork-join and SPMD

Flynn’s taxonomy offers one way to divide the structure of parallel code centered around the
processors architecture, however this division fails to encapsulate other important aspects of
a parallel computer. In particular the processors in a MIMD-model may share a common
memory or they may have their own, resulting in two different system architectures. A shared
memory model requires that all processors have direct accesses to the memory through for
example a bus, which limits the physical distance between the two [35, pp. 34-37]. This makes
it difficult to scale such a system to a large number of processors, which is why other models
are typically used when doing this [35, p. 49]. Using distributed memory the processors are
only able to access their own memory directly whereas the others are accessible through a
network connecting all the processors. In this model accesses to unowned memory is more
cumbersome and often limited by the speed of the network rather than the memory or its bus.
As direct access is impossible, communication must be done through so-called message passing
where messages with the desired information are sent between processors. Compared with the
shared memory this process may be slow, but it scales better with increased numbers of nodes
[35, p. 49].

A common programming model using the shared memory architecture is the fork-join
style of programming. In it, programs start with a single master thread which then spawns
new threads to complete some subtask, after which they terminate [6, pp. 23-25]. As such,
the degree of parallelization is increased in the middle of the program while starting and
terminating at a single-threaded section. Using the shared memory the threads are able to
manipulate the same data structures and instantly read data created by another thread. The
downside of this style of programming as previously mentioned, is the need to synchronize the
thread’s memory accesses to avoid concurrency issues. Yet another one is the prerequisite of a
shared memory architecture, which may prove difficult to scale to a large number of processors.
However despite these limitations the fork-join style of programming is common and the model
of choice for POSIX threads (pthreads), which in turn is used by UNIX systems2.

Another programming model is single program, multiple data (SPMD) in which multiple
instances of the same program are started simultaneously but they all work on their own data
partition. In such a system there is no ”main instance” responsible for the progress of all the
others, instead the program terminates once all instances are finished. During the execution
of the program communication may be done between the instances either through a shared
memory or message passing. However as every instance is meant to work on their own separate
partition of the data during SPMD it more closely aligns with the message passing architecture
and is more commonly used with it. A popular tool using the SPMD model is Message Passing
Interface (MPI) which is commonly used on cluster computers, which lack a shared memory
and use the message passing architectures. For a further explanation as well as evaluation of
the SPMD model see the paper by Kamil and Yelick [28].

2.3 Computer clusters broadly

Computer clusters are a large collection of computers with a single unifying interface allowing
the programmer to use the capabilities of multiple computers. There are numerous reasons to
use a computer cluster and depending on what problem they aim to solve their structure may
vary quite a bit. A common cluster type is the capacity cluster which allows for a number of
independent small scale programs to be run. Such a cluster is typically used to host servers

2The pthreads API by IEEE: https://pubs.opengroup.org/onlinepubs/9699919799/

5

https://pubs.opengroup.org/onlinepubs/9699919799/

2.4. Cluster architecture

of different types and need not have fast communication between its nodes, the Ethernet may
suffice. The cluster type which is the most relevant for this thesis however is the capability
cluster which is intended to handle a single very large problem. Unlike the capacity cluster
its different parts need to communicate to a much larger degree as they all work on the same
problem. Hence minimizing the latency is crucial, meaning both that the cluster may not
be spread out geographically and that e.g. Ethernet is insufficiently fast. Capability clusters
are commonly used in scientific computing and in the field of High Performance Computing
(HPC) generally and is what the word cluster will refer to in this thesis here forth.

The principle of clusters is to scale horizontally, that is to use more computers rather than
better computers. This is analogous to the on-chip situation where recent speedup primarily
has been achieved by adding more processors to a single CPU [2]. Common among both of
these examples is the fact that they achieve their increased capabilities by executing more
code in parallel. As such the strength of a cluster is its capability of executing an enormous
amount of subtasks in parallel across multiple different computers. Using this technique the
top cluster computer of the ”Top 500” June 2021 list is able to achieve up to 4.4 ⋅1017 floating
point operations per second with about 7.6 ⋅ 106 processors 3.

2.4 Cluster architecture

The structure of a cluster is a set of interconnected stand-alone computers called nodes, which
are accessible through a unifying interface. The nodes contain their own memory, cache and
CPU, the last of which contains multiple processors called cores. Cores within the same node
share the same main memory and as such are able to use techniques such as fork-join. This
is however not possible between nodes, meaning that clusters are a sort of hybrid system with
shared memory within in a node and distributed memory from the viewpoint of the whole
system. Typically, communication between nodes is done through message passing.

In order for messages to be sent between nodes they need to be connected, the naive way
to do this is shown in Figure 2.1 where every node has a direct edge to all the others. However
as the number of nodes grows this becomes unsustainable and a more complex topology is
required [35, pp. 37-43]. One such topology is the tree based one shown in Figure 2.2 where
every leaf corresponds to a cluster-node and the other tree-nodes are switches. If a message
is sent in this network it always starts and ends at a leaf, meaning that in the worst case a
message must traverse the height of the tree twice. As the tree’s height grows logarithmically
with the amount of nodes, this path is guaranteed to be fairly short. However this graph has
a fatal flaw which is the amount of messages which must pass through the upper nodes of the
tree, and the root node in particular. If the messages’ origin and destination are uniformly
distributed then half of them have to pass through the root node, which is likely to overload
it. To improve on the tree design many clusters use the so-called fat tree which has increased
capabilities at the higher nodes in the graph [32]. This is achieved by having multiple root
nodes and more edges, which together splits the traffic among more nodes to avoid overloading
the ones high up the tree. Yet another extension made in some fat trees are to use higher
bandwidth cables near the roots as more traffic is expected along these edges. An illustration
of a fat tree is provided in Figure 2.3 and in it the colored edges could be interpreted as higher
bandwidth cables, if such an extension was made. The downside of the fat tree compared to
the regular tree is that it uses both more and potentially more expensive hardware. Despite
this topologies based on the fat tree are common among modern clusters.

Lastly all nodes in a cluster need not be equal in terms of hardware, in such a case the
cluster is said to be a heterogeneous cluster. Accelerators such as a GPU may be given to a few
nodes to specialize them for a certain kind of computations. In such a system it is important

3List of top performing supercomputers in June 2021 by Top 500:
https://www.top500.org/lists/top500/2021/06/

6

https://www.top500.org/lists/top500/2021/06/

2.5. Speedup and linear scaling

to make sure that the appropriate node type receives the correct subtask, a consideration not
needed in a homogeneous cluster.

Figure 2.1: A complete graph where every node has a direct edge every other node.

Figure 2.2: An example of a cluster using a tree topology. Every leaf in the graph corresponds
to a node in the cluster and the black dots to switches.

Figure 2.3: A fat-tree topology of a cluster where the leaves correspond to cluster-nodes and
the black dots to switches. Some edges are colored primarily for clarity sake, although they
could be viewed as higher bandwidth cables.

2.5 Speedup and linear scaling

Speedup in parallel programming is a concept for measuring how the execution time differs
when additional processors are used to execute the program. There are two kinds of speedups
discussed in this thesis and they mainly differ in what they consider to be the baseline value
of comparison. In relative speedup a time is measured against how well the parallel implemen-
tation does with a single processor whereas absolute speedup uses a different solution which
is expected to run on a single processor [40]. The difference between the two is thus that
the baseline in relative speedup is the same parallel program using a single processor whereas
in absolute speedup it is a properly implemented single threaded solution. Furthermore this

7

2.6. Amdahl’s law

single-threaded solution must use the best currently known algorithm for the problem. These
base-points are then compared to the parallel program’s execution time using p processors,
which is denoted T (p). Then let Tseq denote the sequential solution’s execution time and S

the speedup. Then we get the following expressions:

Srel =
T (1)
T (p)

Sabs =
Tseq

T (p)
Furthermore Tseq ≤ T (1) as the best sequential solution may never be slower than a parallel

solution using a single processor. If this would be the case then the parallel solution would
become the optimal sequential solution, contradicting its definition. Which means that the
following must also be true:

Sabs <= Srel

Both of these measures are useful but what they highlight is different and as such it
is important to distinguish between them. Relative speedup may be used to demonstrate
improvements within a program whereas absolute speedup could be used to clearly demonstrate
that a given problem is effectively solvable using a parallel implementation. Naturally their
use-cases are not limited to this, but it illustrates how they may be used differently. As
absolute speedup requires the creation of another solution it is typically easier to use relative
speedup.

Regardless of which kind of speedup is being measured the optimal scaling it can detect
is linear scaling, which is when doubling the amount of processors halves the execution time.
Any scaling higher than this would imply that halving a processor’s workload would reduce its
execution time by more than half. This is possible in fringe cases where the changed workload
improves the cache’s hit-rate. But as the hit-rate may only improve to a certain point this
super linear speedup is limited in duration. Due to this super linear speedup is more of a
curiosity than something actively striven for and linear speedup acts as the gold standard.
But even this is not truly achievable in practice, as it may only occur when adding more
processors does not entail a larger overhead. This is not possible as the nodes necessarily need
to communicate with each other, incurring at minimum some overhead. The highest aspiration
of any achieved speedup is hence to be as close to linear speedup as possible.

2.6 Amdahl’s law

A program may be divided into multiple parallel and sequential sections, and by accumulating
all the time spent in either one of them we can describe their relationships thus: Ttot = TS+TP .
In a sequential program TP = 0 whereas for a parallel one TP > 0. Typically TS > 0 holds for
parallel programs, certain models such as fork-join even mandates it. Adding more cores to
handle a problem will serve to speedup the parallel section but not the sequential one, assuming
that we have n cores and a linear speedup we then get the following expression:

Ttot = TS +
TP

n

Even in this toy example which assumes perfect parallel scaling with no overhead cost, the
execution time is still limited by the sequential section. To put this in more formal terms let

p =
TP

Ttot
, 1 − p =

TS

Ttot
and S(n) denote the speedup when using n cores. Thus p ∈ (0,1] and

the final expression becomes:

8

2.7. Data containers

S(n) =
1

(1 − p) +
p

n

Which implies:

S(n) <
1

(1 − p)
This is known as Amdahl’s law and it illustrates how the speedup of a program is limited

by its sequential section. Assuming that the sequential code takes 40% of the execution time
any speedup due to parallelization may never reach 60% and thus the execution time will never
go below 40% of what it is at n = 1. As such an important idea implied by Amdahl’s law is
the diminishing effects of adding additional cores to a program [6, pp. 33-34].

2.7 Data containers

In this thesis the term data container refers to a structured encapsulation of a data set.
Such a container may be of a certain dimensionality such the one-dimensional vector and two-
dimensional matrix. But it could also have a varying dimensionality such as the N -dimensional
tensor. Apart from this factor a container may structure the data in a specific manner as to
make it faster to use. Memory accesses which are increasing and sequential are significantly
quicker than those with large gaps between them. This is due to the cache reading the
chosen address and some subsequent addresses. Hence a data container may try to structure
itself in such a way as to make sure that its elements are accessed sequentially, even if the
elements are not necessarily sequential from a logical point of view. Furthermore they may
have different structures as to allow for quicker insertions and size increases. For example a
container which puts all elements sequential in the memory would have quick sequential access.
But it can not increase in size while keeping this feature without moving all of its elements
into a new larger contiguous memory space. It is of particular note to understand whether a
matrix implementation stores its rows or columns contiguously as the choice is arbitrary, but
it significantly impacts traversal speed. This illustrates the importance of knowing how a data
container is implemented and how it stores its elements,s in order to ensure good performance.

2.8 Computational patterns

In computer science there are many computational patterns, which are a structured way to
perform computations. The pattern itself determines how the computations are applied and
how the output is chosen, but the actual computations are left unspecified. In order to instan-
tiate a computational pattern the computations must be defined, which is done by the so called
user-function. The user-function is a function which takes in a certain number of arguments
depending on the pattern, and returns a value. Thus it offers a way to specialize the pattern
in order to fit the particular issue at hand. Furthermore, implementations of a pattern must
ensure that the user-function is executed in accordance to certain pattern-specific dependen-
cies. By adhering to them, an implementation is able to parallelize parts of its execution. This
section covers the patterns which are relevant for this thesis, many of which are fairly well
known.

Map
The most basic map pattern operates on a data set and transforms it by applying a user-
provided univariate function on every element and replacing it with the generated result. A
requirement for the map pattern is that there are no data dependencies between the elements,

9

2.8. Computational patterns

which results in the computations being so called ”embarrassingly” easy to parallelize. Math-
ematically every element i in the set C is thus transformed the following way.

Ci = f(Ci)
Historically the map pattern has existed as a concept for decades, for example Lisp has it

implemented as a primitive 4.

Reduce
The reduce pattern works on a data set and returns a scalar value. It uses a binary associative
and commutative function which is applied to an accumulator and element pair until every
element has been included once. Furthermore the accumulator may also have an initial value.
If we let A be the accumulator, f the user-function and C a data container with N elements
we can put this mathematically as:

A1 = f(Ainit,C1)
A2 = f(A1,C2)

AN = f(AN−1,CN)
The generated output of reduce is thus AN . Note however, that an actual implementation

of reduce may calculate the partial states of A in a different order than the definition above. An
important aspect of reduce is that its user-function is associative and commutative which allows
for an arbitrary accumulation order. Parallel implementations in particular may leverage this
by splitting the accumulation into smaller parts which are run in parallel. Then they may
accumulate the partial-accumulations to get the final result. Lastly, similarly to map, the
reduce pattern has been used for a long time and is also implemented in Lisp 5.

MapReduce
In this thesis, MapReduce refers to a computational pattern which combines both map and
reduce. Functionally there is no difference between a map followed by a reduce and a MapRe-
duce call but despite this there are good reasons to use it. The first of which is that it is easier
for the programmer to use a single computational pattern rather than two. Anecdotally the
use of a map followed by reduce proved to be common enough to merit the creation of this
combined pattern [11]. The second reason is that the combination of the two patterns is able
to be executed quicker than a map followed by a reduce. This can be achieved by eliminat-
ing some of the middle steps, in particular whenever the map function generates a value the
reduce function may immediately consume it. This leads to a much higher data locality than
the original approach while also removing the need to store the elements generated by map.
Hence MapReduce is able to improve performance while using less memory compared to a
two step approach of map plus reduce. The pattern requires both a map and reduce function,
both of which must fulfill the same data dependencies and use the same arguments as their
standalone counterpart. If we let A be an accumulator and C a data container of size N , then
MapReduce can be described mathematically as follows:

A1 = fred(Ainit, fmap(C1))
A2 = fred(A1, fmap(C2))

AN = fred(AN−1, fmap(CN))
The return value of a MapReduce is a single element just like in reduce and as such in the

example above AN would be the returned value.
4The syntax of Lisp’s map implementation: http://clhs.lisp.se/Body/f_map.html
5Lisp’s implementation of reduce: http://clhs.lisp.se/Body/f_reduce.html

10

http://clhs.lisp.se/Body/f_map.html
http://clhs.lisp.se/Body/f_reduce.html

2.8. Computational patterns

Cartesian product
This pattern is based on the definition from set theory where the cartesian product of two
sets is every possible combination of their elements. Furthermore the pattern also applies
a binary function on every combination. Given the two sets {A,B} and {C,D,E} and the
binary function f the pattern thus calculates:

f(A,C), f(A,D), f(A,E)

f(B,C), f(B,D), f(B,E)

Scan
Scan takes a one dimensional data container, a binary associative function and generates a
new set where every element is an accumulation of the previous elements. Given the binary
associative user-function f , input element E and resulting element R, we get:

Ri = f(Ei, f(Ei−1, f(Ei−2, f(...)))

Or, equivalently:

Ri = f(Ei,Ri−1)

There are two different versions of this pattern depending on whether the current element
is used in the calculations for the output or not. The example below does use the current
element and is thus inclusive whereas the example below is of the exclusive version:

Ri = f(Ei−1,Ri−1)

A question which arises from the description so far is how the pattern should behave when
there is not enough elements to give to the binary function. For example using the inclusive
definition above, if the indexing starts at one, it means that E0 does not exist and thus that
R1 is not properly defined. How the scan pattern should behave in these cases depends on
the implementation, one solution would be to simply output the provided argument. However
in the exclusive case R1 does not have even a single existing argument, as such another base
case would have to be added. Examples of these might be to set R1 = E1 or to set it to some
predefined value such as 0 or 1. How these base cases are handled is important but how this is
done is more closely tied to the implementation rather than the computational pattern itself.

Stencil computations
Stencil computations are a specific type of data-parallel computations applied on a dataset
where the output depends on the neighboring elements. What qualifies as a neighbor depends
on the implementation as well as the dimensionality of the data. For example, in a two-
dimensional grid a neighbor might be any element which is reachable within X non diagonal
steps from it. The input to the user-function is thus an elements whole neighborhood while its
output is a single value which the element assumes. Doing this for all elements thus transforms
the whole set. An issue with stencil computations are the complex data dependencies which
arise due to an element potentially belonging to multiple neighborhoods while simultaneously
needing to be transformed itself. Figure 2.4 illustrates how disregard to the data dependencies
would generate incorrect results. One way to solve this issue is to use an extra buffer to
store the elements, resulting in increased memory usage but making the problem trivial to
parallelize. Another way is to determine specific execution patterns which allow for high
parallelism at the cost of relaxing the constraints somewhat. A specific example of this is
the Gauss-Seidel update schema which works at a two dimensional grid with every neighbor
being defined as an element with a non diagonal distance of one. Every second diagonal may

11

2.9. Algorithmic skeletons

then be executed in parallel and so may all the remaining diagonals, although not the two of
them simultaneously. Note however that in this schema one of the two sets of diagonals will
use neighborhoods containing only modified elements, but despite this it may still be a useful
schema.

In general, stencil computations are good for emulating systems where changes propagate
through neighbors, such as in fluid-systems and image filtering. The execution patterns of
stencil computations vary more than for the previously mentioned computational patterns.
Not only does it have another parameter in the form of the neighborhood but how the data
dependencies are handled depends on this very choice. As such the execution pattern of
the user-function itself may vary between different stencil computations, unlike most other
computational patterns.

(a) Step 1 - The blue elements are the the red ele-
ments neighbor. (b) Step 2 - The new value is created

(c) Step 3 - The previously created value is now a
neighbor. (d) Step 4 - The generated value is incorrect.

Figure 2.4: An incorrect stencil computation which does not respect its data dependencies.

2.9 Algorithmic skeletons

Algorithmic skeletons, henceforth also referred to as skeletons, are a high-level abstraction
aimed at making it easier to use parallel hardware. The concept arose to alleviate the increased
complexity of writing parallel software in 1989 [8] and the concept has since been used with

12

2.10. OpenMP and scheduling

multiple different hardware such as multi-core CPUs [33], GPUs or clusters [15]. The idea of a
skeleton is that they apply a user-function in accordance with a computational pattern. The
benefit of this is that it abstracts away from many aspects of the parallelization-process while
simultaneously providing a well tested framework. As such the user does not need to deal with
any aspects of the parallelization, which can be an error-prone and time consuming process,
especially if the user is not an expert at this task. By using skeletons the user need only to
chose the appropriate skeleton and to write the user-function. This is however a trade-off as a
hand-optimized implementation without any skeletons is generally expected to execute quicker,
but it takes longer to write. In some sense this is analogous to the trade-off between higher-
and lower-level languages where one might substantially reduce development time at the cost
of performance by using Python rather than Assembly. Apart from abstracting away the
parallelization issues a skeleton may also hide other complexities such as the communication
aspect within a cluster. As all of these abstractions attempt to hide the hardware from the
user they also improve portability as the machine specific code is hidden within the skeleton.
Thus the high-level code written to the skeleton may more easily be reused between different
hardware. To summarize, a skeleton is a high-level concept which aims to make parallel
execution easier by abstracting the hardware away, whether it be CPUs, GPUs or clusters of
both.

2.10 OpenMP and scheduling

OpenMP is a framework for parallel execution on a single node using shared memory and the
fork-join execution style while being available for FORTRAN, C and C++6 [6, pp. 23-25]. It
uses compile-time directives to generate explicit parallel regions of code, meaning that code
outside of them is sequential. Furthermore there are directives to create parallel constructs,
the most notable of which is the parallel for-loop. There are multiple ways to customize the
behavior of these constructs and regions, such as whether the created variables are shared or
not and importantly how the scheduling is done. There are two classes of scheduling, static
scheduling and dynamic scheduling. In the static one every thread is given a set of tasks at
compile time, whereas for dynamic scheduling the tasks may be redistributed during runtime.
Thus the dynamic scheduling makes it possible to discover load imbalances while the program
is executing. For example if a large number of threads are all given N iterations of a task,
but every iteration may take either one time unit or a hundred it is likely that some threads
will finish much earlier than others. With dynamic scheduling the threads which finish early
may offload some of the work by taking some iterations of threads that got more of the time
consuming ones. This flexibility does however come at a cost in the form of overhead and
depending on how large the work imbalance is this overhead may not be worth the benefit it
provides. In such cases static scheduling is superior. The decision between the two thus largely
depends on how large the work imbalance is, and if this varies between constructs OpenMP
allows for them to be scheduled differently. An example of this and the OpenMP syntax in
general is demonstrated in Figure 2.5.

2.11 Message Passing Interface (MPI)

MPI is a standardized message passing interface intended for parallel execution. As it is
only an interface there exists multiple implementations of it for the three officially supported
languages C, C++ and FORTRAN. Furthermore MPI does not require a shared memory
address space and executes in a SPMD fashion, the latter of which makes it suitable for
cluster and HPC usage. It also offers intra-node parallelization by running multiple instances
of the program on a single node, using the shared memory to communicate when possible.

6An OpenMP tutorial given by Ruud van der Pas of Sun Microsystems at Nanyang Technological University:
https://www.openmp.org/wp-content/uploads/ntu-vanderpas.pdf

13

https://www.openmp.org/wp-content/uploads/ntu-vanderpas.pdf

2.11. Message Passing Interface (MPI)

Figure 2.5: An example of multiple scheduling approaches within the same parallel region
using OpenMP and C++.

// Do s i n g l e threaded work here

#pragma omp p a r a l l e l num_threads (8)
{

#pragma omp for schedu le (dynamic)
for (i = 0 ; i < N; i++)
{

i f (random ())
{

computat iona l_intens ive_funct ion () ;
}
else
{

t r i v i a l_ f un c t i o n () ;
}

}

#pragma omp for schedu le (stat ic)
for (i = 0 ; i < N; i++)
{

computat iona l_intens ive_funct ion () ;
}

}

Despite this however, combining MPI with another parallel execution model seems to be quite
common according to Laguna et al.’s survey of open source MPI HPC projects [30]. In it
74.5% used MPI in combination with other parallel software, many of which offered intra-node
parallelization through threading rather than MPI’s technique. Part of the explanation for
this is the usage of GPU accelerators which are better used with parallelization tools built to
support them such as CUDA. But even more generally the paper offers the explanation that
internal parallelization using non-MPI tools might be due to them fitting better with their
cluster architecture. It is clear however that MPI’s internal parallelization model seems less
popular than MPI itself, which is widely used in the HPC field.

MPI offers a plethora of different communication methods such as: send-receive (one to
one), broadcast (many to many), scatter (one to many), gather (many to one) and group
communications. One way to use these tools is in a two-sided manner which requires every
type of send call to be matched by a receive call in the remote process as illustrated in Figure
2.6. In it we can also see one of the most common synchronization directives, the barrier
function call. It takes in a group of MPI processes as an argument and then forces every MPI
process in said group to wait until every member has reached the barrier call. This call is used
to synchronize the processes at the cost of making some of them wait, which in turn may slow
down the execution speed of the program, especially if there is a load imbalance.

Apart from this, MPI also offers one-sided communication directives where the explicit
receive is not necessary. First we need to define the concept of windows, which are contiguous
memory segments owned by a node but visible and usable by remote nodes within the same
group. To use the one-sided communication directives the code segments are divided using
function calls called fences, and the code segments they divide are called epochs. Within these
the windows are usable by the other nodes without the need of any explicit call by the owner

14

2.12. GASPI and GPI

of the window. Conflicts may occur if multiple writes are done within the same epoch or if
both writes and reads are done during it. The epochs are bound to a window, which in turn
are bound to a group of MPI processes, as such every process need not participate in an epoch.
The end of an epoch is marked by a fence which a participating process may not pass until
every participant has reached it. Thus a fence works similar to a barrier, and if there is a load
imbalance they may also lead to slowdowns just like barriers. An example of the one-sided
communications may be seen in Figure 2.7.

Figure 2.6: Example of two-sided communication in MPI.

i f (node_id == 0){

MPI_Send (. . . , node_1 , . . .) ;

}
else i f (node_id == 1){

MPI_Recv (. . . , node_0 , . . .)
}

MPI_Barrier (. . .)

// do work a f t e r node 0 has sen t the data

Figure 2.7: Example of one-sided communication in MPI.

MPI_Win_fence(. . . , window_1 , . . .)

i f (node_id == 0){

MPI_Put (. . .) ;
}

MPI_Win_fence(. . . , window_1 , . . .)

// do work a f t e r node 0 sen t the data

2.12 GASPI and GPI

Global Address Space Programming Interface (GASPI) is an message passing API for clusters
created collaboratively by the following partners: T-Systems SfR, Fraunhofer ITWM, Fraun-
hofer SCAI, KIT, TU Dresden, Scapos AG, FZ Jülich, DLR and DWD [1]. GASPI offers more
fine-grained control of the communication and synchronization process when compared to, for
example MPI and its fence-method. Furthermore, it also provides fault tolerance mechanisms
and a logical wrapper for different memory types such as the GPU’s memory and the main
memory, a scheme known as heterogeneous memory [1]. GASPI is similar to MPI in how it is
used; it is neither a language nor an extension of one but rather an API which may be used
within an existing programming language. An implementation of the GASPI API is Global
Address Space Programming Interface (GPI) which was also created at Fraunhofer ITWM.
GPI focuses on overlapping computations with communications with its one-sided communi-
cations directives in order to reduce the time spent waiting. These directives differ from MPI

15

2.12. GASPI and GPI

in that they may execute at any point in the program’s lifetime as long as the communication
buffers, called segments, have been initialized. As such, GPI does not use a concept similar
to MPI’s fence nor epoch, instead the communications are synchronized through notifications.
These may be sent by any node; to any other node, and before modifying its segment a node
may wait for such notifications. The difference is subtle but it allows for less tightly linked
communications, for example in MPI if a node performs a read it must wait for its request to
finish before leaving the epoch. In GPI such a wait would not occur unless explicitly stated as
illustrated in Figure 2.8. The effect of this is that GPI allows for many concurrent requests,
some of which may span over what would be multiple epochs in MPI. The actual transfers
within GPI are based around segments, which are chunks of memory that are globally visible
for their group. These segments may then be read to and from by any node and are the basis
for all communications within GPI.

The motivation behind the creation of GASPI was MPI’s insufficient performance with a
large number of nodes [24]. To achieve this in GPI it attempts to overlap computations and
communications, while avoiding so called ”bulk-synchronous communication patterns”7. A
comparison between the two has been made with conclusion being that for GPI to outperform
MPI it needs to overlap the communication and computations appropriately [37]. Certain
concepts within GPI are clearly aimed at this goal, such as notifications which attempt to
reduce frequency of points in the code where many nodes wait for each other in favor of
spreading them out and involving fewer nodes. Furthermore, the concepts of queues are used
to separate different kinds of local requests by assigning them to queues of differing priorities.
Their purpose is thus to allow for a more fine-grained control of the communication process,
which is important when trying to overlap computations and communications. Hence it is
clear that this overlapping is crucial for GPI and that it is designed in such a way as to help
achieve this.

Figure 2.8: An example illustrating the different behavior of MPI’s epochs and GPI’s notifi-
cations.

i f (node_id == 0){

gaspi_read (. . . , node_1 , . . .) ;
ga sp i_not i fy (. . . , node_1 , . . .) ;

}
// Node 0 i s now a b l e to perform work wi thout needing
// to wai t f o r a respone from the read

MPI_Win_fence(. . . , window_1 , . . .)

i f (node_id == 0){

MPI_Get (. . . , node_1 , . . .) ;
}

MPI_Win_fence(. . . , window_1 , . . .)

// Any work done by node 0 here has to wai t f o r
// a remote respone from ge t

7GASPI further reading: http://www.gaspi.de/faq/

16

http://www.gaspi.de/faq/

2.13. StarPU

2.13 StarPU

StarPU is a high-level runtime system meant to provide a unifying execution model for hetero-
geneous systems, including both CPUs and GPUs [3]. The goal of StarPU is to create an API
which handles mapping and scheduling, requiring only the programmer to create tasks for the
runtime system to schedule8. As such it abstracts away from the hardware and the additional
complexities of properly utilizing a single heterogeneous node. However it has been expanded
to handle clusters of nodes using MPI combined with its previous runtime system [3]. This
newer cluster version is called StarPU-MPI but in this thesis it is simply referenced as StarPU
as it is the only version discussed in any detail. StarPU handles both the communication
between nodes and also its internal parallelization unlike GPI and how MPI is frequently used
[30]. From this it is clear that StarPU works on a higher abstraction level than both of them
and as such carries more responsibilities than either of them. Lastly the runtime system of
StarPU schedules the tasks itself and this is done by a scheduler which dynamically divides
them among all nodes. To schedule tasks in this way is another example of dynamic scheduling
which is the scheduling model of choice for StarPU.

2.14 Problem types used by the benchmark programs

This section outlines some problems from different disciplines which form the basis of this
projects benchmark programs.

The n-body problem
The n-body problem is a well studied problem in physics9 and pertains to how n bodies move
under the effect of gravity or electrostatics given a certain mass, initial velocity and charge.
The acceleration of every body is dependent on its distance to all the others, and as they
move the acceleration changes. While the problem is easy to formulate solving it has proven
to be difficult as an analytical solution is impossible for values of n larger than two [22]. The
favored approach is instead a computer simulation, a naive implementation of which would
grow in O(N2) as every pair of bodies needs to be evaluated. A parallel implementation would
face the issue of intense communication due to the strong data dependencies where every body
depends on every other. Despite this much research has been done leading to algorithms which
grow in O(N log(N) [9, 4, 43]. More work has been done with these algorithms when trying to
combine them with GPUs as they became more common place [25, 20]. The n-body problem
lies in the intersection of HPC and physics and is a well established problem in both domains.

The Mandelbrot set
The Mandelbrot set is a set of complex numbers named after the mathematician Benoit Man-
delbrot who was among the first to study the phenomenon and later on wrote a paper about
the subject in 1980 [34]. The set is defined as the complex numbers which when repeatedly ap-
plied with a specific function converge, and the complement being those number that diverge
given the same function. Given an input complex number c it is a part of the Mandelbrot set
if the absolute values of the following remains bounded for all n:

z1 = 0

zn+1 = z2n + c

When determining whether a number c is part of the set or not it is difficult to tell whether
a value will converge or not. If an iterative computational model is used to evaluate different

8User guide to StarPU: https://files.inria.fr/starpu/doc/starpu.pdf
9Additional reading on the n-body problem is available at: https://www.britannica.com/science/

celestial-mechanics-physics/The-n-body-problem

17

https://files.inria.fr/starpu/doc/starpu.pdf
https://www.britannica.com/science/celestial-mechanics-physics/The-n-body-problem
https://www.britannica.com/science/celestial-mechanics-physics/The-n-body-problem

2.14. Problem types used by the benchmark programs

c values the amount of iterations needed to reach this conclusion may vary greatly. In Table
2.1 this is shown as the c values of 0 + 0i and 1 + 0i are very easy to make a decision about
whereas 0.25 + 0i may require a few iterations and −1.1 + 0i is even more unclear as it seems
to oscillate between similar but not equal values. When determining whether a value belongs
to the set or not the numerical approach must have a stop criteria and as such may make an
incorrect classification. Oscillating values such as c = −1.1 + 0i typically need to be evaluated
for as many iterations as is allowed by the program since it is not clear if the oscillation will
ever stop. The result is that the computational complexity to decide whether a given c value
exists within the set has a great variance. There are many different ways of visualizing the
Mandelbrot set, there is the binary way shown in Figure 2.9. Other ways include, but are
not limited to, coloring the pictures in accordance to how many iterations where needed to
determine if the pixel would converge or not.

c 0 + 0i 1 + 0i −1 + 0i −1.1 + 0i 0.25 + 0i
z0 0 1 -1 -1.1 0.25
z1 0 2 0 0.11 0.31
z2 0 5 -1 -1.09 0.35
z3 0 26 0 0.08 0.37
z4 0 677 -1 -1.09 0.39
z5 0 4.6 ⋅ 105 0 0.09 0.40

Table 2.1: Example values produced by the Mandelbrot function given differing c values. Note
that all the presented c values have zero as their imaginary part, this is done to make the
table easier to read and not a feature of the set, which does contain values with a non-zero
imaginary part.

Figure 2.9: The Mandelbrot set where the blue pixels corresponds to points within the set.
The image was generated with the SkePU GPI backend and uses a maximal iteration count
of 104.

Taylor series
A Taylor series is the sum of an infinite polynomial approximation of a function at a certain
point [19]. The series is a good approximation of the function at the point and near it, but
the quality of the fit worsens as the distance from the point increases. The approximation

18

2.14. Problem types used by the benchmark programs

achieves this by matching the first N derivatives of the original function at the chosen point.
As the series is infinite N is made to approaches infinity, a larger N thus corresponds to higher
degrees of derivatives being considered and hence a better fit.

As the Taylor series is infinite given an infinitely derivable function solving it numerically
will never be perfectly exact. Research has been done in order to generate long series with high
precision through parallel multi-node execution by Hristov et al.[27]. Precision is of particular
importance of Taylor series as subsequent higher rank derivatives will have less impact on the
approximation. In Hristov et al.’s experiment they achieved a precision of about 3374 decimal
digits using MPI and OpenMP.

Matrix and vector multiplications
Matrices and vectors are a foundational objects in linear algebra and so are their basic manipu-
lation techniques such as addition and multiplication. The uses of linear algebra computations
are innumerable as they so often are a subtask of a larger problem, some examples include solv-
ing linear least-squares problems as well as linear equation systems. These smaller problems
may themselves use basic functionality such as matrix multiplication and addition multiple
times while only being subtasks of a larger one. Thus these basic operations may be called a
very large number of times, this was noticed already in 1979 with the creation of the Basic
Linear Algebra Subprograms (BLAS) library [31]. BLAS contains highly optimized imple-
mentations of common linear algebraic operations with the computational complexity of the
operation corresponding to its BLAS rank. Using this Dongarra, Bunch, Moler and Stewart
created LINPACK [13] in 1979 as a benchmarking suite where the problem to be solved is a
linear equation. LINPACK has since then been updated and expanded to benchmark HPC
clusters [12] and is the benchmark of choice for Top 500 [12]. The problem used to benchmark
the clusters is still within the domain of linear algebra and still uses the low level operations
along the lines of a matrix matrix multiplication. Thus these kinds of operations are of great
interest within the HPC community and a corner-stone of a prolific benchmarking suite within
the field.

Given a matrix matrix implementation C = A⨉B where B is of dimensions M ×N and C

of N × P . Then all M ⋅ P elements within C needs a row of elements from A and a column
of elements from B, corresponding to 2N number of elements. As such the computational
complexity becomes MP ⋅ 2N = 2NMP , if we then let N =M = P we get that the computa-
tionally complexity for a squared matrix matrix multiplication is O(N3). The communication
complexity however is only on the order of O(N2) as the transfer of both matrices would
require 2 ⋅N2 operations.

In matrix vector multiplication given the destination vector D of length N , the square
matrix E of dimensions N ×N and argument vector F of length N . Then every element of
D corresponds to a single element from vector F and a entire row from E. Thus the compu-
tationally complexity becomes N ⋅ (1 +N) which is O(N2). The communication complexity
is at most the size of the matrix E and vector D, which corresponds N +N2 number of ele-
ments and is O(N2). Interestingly here we see that the computational and communicational
complexity is the same in matrix vector multiplication when using a square-matrix, unlike
the previous example of matrix matrix multiplication. This fact has noteworthy consequences
for parallelization of the two problems as the matrix matrix multiplication is computationally
bound and more likely to benefit from increased computational power at the cost of communi-
cation. As matrix vector multiplication is equally bound by communication and computations
a parallel solution with an increased communication cost runs a larger risk of creating a new
bottleneck.

These two examples demonstrates the different properties of the operations using a naive
implementation, but as these operations are of crucial importance there exists many different
algorithms which outperform the naive ones. An example of non-naive implementation is
the Strassen algorithm which can perform a matrix matrix multiplication with O(N log2(7)),

19

2.15. Related work

where log2(7) ≈ 2.8 [39]. Another approach is the systolic one first presented by Kung in
1982 [29] and followed up by Wan and Evans presenting 19 systolic approaches for matrix
matrix multiplication [42]. Clearly these operations are of crucial importance to the field
of computation as they are continuously being researched with there existing many different
implementations of them.

2.15 Related work

Work similar to this thesis has already been done, for example the Muesli framework provides
parallel algorithmic skeletons for clusters using C++ [7]. The goal of this framework is very
similar to the GPI backend’s and hence the differences lie primarily with how they are used
and implemented. For example the syntax between the two is fairly different with Muesli
using its skeletons as a field within a container unlike SkePU where they are their own object.
Perhaps the most notable difference in this category is the fact that Muesli is only able to use at
most two containers in an algorithmic skeleton unlike SkePU which has no such limit at all [7].
Furthermore the map skeleton provided by Muesli is not able to access other elements, limiting
the problems it can handle. However, unlike the GPI backend Muesli is able to make use of
GPUs and is hence better adapted towards heterogeneous clusters. Lastly the communication
of Muesli is done with MPI whereas an important aspect of this thesis is the prototype’s GPI
usage [7]. Hence it should be clear that while Muesli and this thesis have a very similar goal
from a high level perspective, they are different in both implementation and use-case.

Another related framework is JaSkel, which is Java-based and offers algorithmic skeletons
able to execute on a cluster [18]. Unlike SkePU this framework works through polymorphism
and all domain-specific data is provided by creating a subclass and implementing its abstract
methods. A focus point for JaSkel is chaining different skeletons together by combining them
into for example a pipeline and then executing multiple of these chains in parallel [38]. How to
combine the different steps in the chain needs to be defined by the user. Thus JaSkel focuses
quite heavily on task parallelization whereas the GPI backend handles tasks sequentially but
with drift.

DatTel is a framework similar to SkePU which aims to provide data-parallel skeletons, but
it does this by attempting to extend the C++ standard library (STL) rather than creating its
own interface [5]. The STL already includes many functions which are similar to algorithmic
skeletons such as: ”for_every” ≈ map, and ”accumulate” ≈ reduce. As such extending it with
algorithmic skeletons would fit its stylistic choice. Much like the GPI backend DatTel assumes
a single control flow which enables it to weave in computations outside of the framework more
easily. Similar to SkePU it favors portability by letting the same code be run on different
hardware in either a single node fashion or by using a cluster. Unlike SkePU however it only
offers a single backend for its non-cluster execution which is pThread based. Also it diverges
further from this thesis through its cluster communications which are MPI based.

20

3 SkePU

This chapter is a complement to the background chapter and explains the purpose and usage of
SkePU as well as its features and syntax. The focus is on aspects of SkePU which are relevant
for the thesis hence some features of SkePU are omitted in this chapter. For an explanation of
such aspects and a more thorough discussion around SkePU in general please see Ernstsson’s
licentiate thesis [16].

3.1 Purpose and usage

SkePU is a C++ template library for parallel execution originally created by Enmyren and
Kessler [14] and later extended to SkePU 3 by Ernstsson, Ahlqvist, Zouzoula and Kessler
[17]. SkePU offers parallel algorithmic skeletons which makes it easier and less error-prone
for a user to parallelize his or her code. SkePU has multiple skeletons which in turn may be
executed using multiple different parallel tools such as OpenCL, OpenMP and CUDA among
others. These are known as backends and by adding flags during the compilation to signal
which backend is desired the user may choose dynamically which one to use. This allows for
the same program to be executed on different hardware without any changes in the code. For
example when running a program on a machine with a GPU selecting the CUDA backend for
execution might be appropriate, whereas on a machine without a GPU, the OpenMP backend
would be a better fit. The compilation of a SkePU program is done in two phases, a pre-
compilation phase followed by a regular compilation. This pre-compilation is done through a
tool provided by SkePU and generates appropriate code for the selected backend as not all of
them use C++. The second compilation step is done through the appropriate compiler of the
chosen backend. By adding multiple backend flags during the compilation steps it is possible
to enable multiple backends for the program, which lets it choose which one to use dynamically
at runtime. SkePU was at first only available on shared memory, single node systems, but it
has been expanded to allow for multi-node execution using StarPU.

The syntax of SkePU is the same regardless of the backend and it primarily uses two
constructs, the skeleton objects and the data-container objects. The skeletons takes in typically
one user-function at creation and are executed at later on with container objects as their
argument. The type of the skeleton determines which computational pattern it uses whereas
arguments in its creation and execution may alter its behavior somewhat. A trivial example of
how the SkePU syntax looks is illustrated in Figure 3.1. This sequential syntax is an important

21

3.2. Features and algorithmic skeletons

part of SkePU as it abstracts away from the parallel implementation and allows the user to
focus on the problem rather than the implementation of it. By using only SkePU constructs
it is possible to write a parallel program without needing to deal with any of the difficulties
of parallel programming.

Figure 3.1: A trivial example of how skeletons are used in SkePU.

int i , j ;
skepu : : Matrix<int> m{ i , j } ;

int add_f (int a , int b){
return a + b ;

}

auto add = skepu : :Map(add_f) ;

// Double every va lue in m and s t o r e i t in m
add (m, m, m)

3.2 Features and algorithmic skeletons

SkePU offers to the programmer a set of parallel algorithmic skeletons. Furthermore utilities
such as different kinds of containers exist. The skeletons which exist in SkePU are: Map,
Reduce, MapReduce, Scan, MapOverlap, MapPairs and MapPairsReduce. They all work
differently, but shared among them is that their inputs are SkePU containers or constants.
Their output is given by either modifying one of the argument containers or by returning
a scalar or some other object type. SkePU containers come in different dimensionality for
different tasks: Vector, Matrix and Tensor. This section is a short introduction to all of
SkePU’s skeletons, a more comprehensive layout of the syntax has been written by Ernstsson
[16].

Map
Map is one of the most flexible skeletons in SkePU and it is based on the well established
computational pattern of the same name, but is extended beyond it. It takes in an arbitrary
amount of argument-containers and typically a single destination container. In this case let
C be a container where its superscript denotes its name and the subscript its index, we can
write the map pattern as:

Cdest
i = f(C1

i ,C
2
i , ...C

N
i)

This is how the standard map pattern works, but SkePU allows for a more general exe-
cution. Firstly the index is provided to the user-function if its signature indicates that this
is desired. Furthermore an arbitrary amount of scalars are also valid arguments as long as
they are provided after the containers. If we let S denote a scalar, the execution model then
becomes:

Cdest
i = f(i,C1

i ,C
2
i , ...C

N
i , S1, S2, ..., SM)

In this classical Map accessing pattern we are prevented from accessing an element of a
different index. In SkePU’s skeleton however we may do so by using a random access proxy
container, yet again extending the previous mathematical description. As it is possible to
access any element from any index the pattern would look like the following:

22

3.2. Features and algorithmic skeletons

Cdest
i = f(i,C1,C2, ...CN , S1, S2, ..., SM)

In order to differentiate how the arguments are interpreted SkePU analyzes the signature of
the user-function. In the Figure 3.2 the function ”mult_f” demonstrates the different accessing
patterns as c is using the random access one whereas d is not. The first argument ”index” may
be omitted if this information is not needed. These utilities mean that SkePU’s map is able
to handle a wider range of problems than the original computational pattern. Lastly SkePU’s
map is capable of an arbitrary amount of return values of possibly different types. To achieve
this multiple destination containers are required and the signature of the user-function need
to match this. This thus allows the same map to calculate multiple values without needing to
iterate through a container multiple times.

The random access pattern within map is itself divided into multiple patterns: Vec, Mat,
MatCol and MatRow. These indicate how the random elements will be accessed and fulfills
the dual purpose of both making it easier for the user and letting SkePU optimize the data
access. Vec is used to access an element with a single index and Mat allows for two-dimensional
indexing. MatCol and MatRow however lets the user-function access only within a whole row
and or column, which are important in certain tasks such as matrix matrix multiplication.
Importantly a SkePU backend is able to optimize the memory-access speed for MatCol and
MatRow as it can expect further accesses within the same column or row. Contiguous memory
access is much faster and both columns and rows may not be contiguous in the memory
simultaneously, as such optimizations such as MatCol and MatRow may significantly improve
performance. To conclude, SkePU’s Map skeleton is more extensive than the traditional map
pattern it is based on and is thus able to handle many more problem types.

Figure 3.2: An example of SkePU’s Map’s different access patterns.

int i , j ;
skepu : : Matrix<int> m1{ i , j } ;
skepu : : Matrix<int> m2{ i , j } ;

int add_f (int a , int b){
return a + b ;

}

int mult_f (skepu : : Index index , skepu : : Vec<int> c , int d){
return c [index . i] * d ;

}

auto add = skepu : :Map(add_f) ;
auto mult = skepu : :Map(mult_f) ;

// s t o r e the r e s u l t in m1
add (m1, m1, m2)
mult (m1, m1, m2)

Reduce
Reduce is another well established computational pattern which works by accumulating all the
elements in a container with a binary and associative user-function. Unlike SkePU’s Map, its
Reduce is very similar to the computational pattern, which is described in Section 2.8. Figure
3.3 illustrates the fairly straightforward syntax of a one-dimensional reduction. An extension

23

3.2. Features and algorithmic skeletons

of the pattern exists in the form of two-dimensional reductions which work by applying the
user-function to all elements in a row or column and generating a vector. There are two ways
to handle these types of reductions, either the output is a vector or a second user-functions
may be provided which is then applied on the generated vector to create a scalar output.
Figure 3.4 illustrates the syntax of the latter approach.

Figure 3.3: Example demonstrating the syntax of a one dimensional reduction in SkePU.

int i , j ;
skepu : : Matrix<int> m{ i , j } ;

int add_f (int a , int b){
return a + b ;

}

auto add = skepu : : Reduce (add_f) ;
int r e s = add (m) ;

Figure 3.4: Example demonstrating the syntax of a 2D reduction in SkePU by Ernstsson [16].

f loat max_f(f loat a , f loat b){
return a > b ? a : b ;

}

f loat max_row_sum(skepu : : Matrix<f loat> &v){
auto max_sum = skepu : : Reduce (plus_f , max_f) ;
max_sum. setReduceMode (skepu : : ReduceMode : : RowWise) ;
return max_sum(v) ;

}

MapReduce
Just like the MapReduce pattern is a combination of map and reduce SkePU’s skeleton of the
same name combines the existing utilities of its map and reduce implementation. As such the
intricacies of the Map skeleton with its random access and scalar handling is also present in
MapReduce. The signatures of the user-functions supplied to the map and reduction part of
MapReduce shares the same meaning as in their own skeletons implementation. One differ-
ence between MapReduce and its component skeletons however is that only one-dimensional
reductions are allowed. Figure 3.5 illustrates how the syntax of SkePU’s MapReduce looks. As
discussed more in Section 2.8 the benefit of MapReduce is that combining the two functions
reduces execution time and memory usage while reducing the amount of skeletons the user
needs to create.

Scan
SkePU’s scan is an implementation of the computational pattern with the same name which
is described in Section 2.8. The syntax is very similar to the other skeletons, an example of
this can be seen in Figure 3.6.

24

3.2. Features and algorithmic skeletons

Figure 3.5: Example demonstrating the syntax of SkePU’s MapReduce

int i , j ;
skepu : : Vector<int> v1{ i , j } ;
skepu : : Vector<int> v2{ i , j } ;

int add_f (int a , int b){
return a + b ;

}

int mult_f (int a , int b){
return a * b ;

}

auto dot_product = skepu : : MapReduce (mult_f , add_f) ;
int r e s = dot_product (v1 , v2) ;

Figure 3.6: Example demonstrating the syntax of SkePU’s Scan by Ernstsson[16].

f loat max_f(f loat a , f loat b) {
return (a > b) ? a : b ;

}

skepu : : Vector<f loat> partial_max (skepu : : Vector<f loat> &v) {
auto premax = skepu : : Scan (max_f) ;
skepu : : Vector<f loat> r e s u l t (v . s i z e ()) ;
return premax (r e su l t , v) ;

}

MapOverlap
MapOverlap is based on a very broad pattern which goes under many different names de-
pending on discipline, such as convolution, stencil, filter and window function [16]. In this
thesis the computational pattern is denoted as stencil computations and is described in more
detail in Section 2.8. The functionality of MapOverlap is similar to Map in that it applies a
user-function at every index of a container, but it follows a very different accessing pattern.
While Map allows for multiple containers, MapOverlap does not. SkePU’s Map does allow
for random access whereas MapOverlap only allows for accesses to elements which are within
the same neighborhood. As a stencil operation MapOverlap must define a range and declare
that all indexes within this range are neighbors, these are the only elements the user-function
may access. This trades off the user-friendliness of the random access for the ability to handle
tasks which have too strict data dependencies to be used by Map. An example of the syntax
is seen in Figure 3.7.

MapPairs
MapPairs follows the cartesian product style pattern presented in Section 2.8. It takes in two
distinct sets of sets of vectors. The size of all vectors within the same set must be the same,
and the skeleton’s output is a matrix. Every index-pair of the two sets is combined and used as
an argument in the user-function to create an element in the output matrix. Let us denote two
vector-sets as V1 and V2 with the lengths N and M and their vectors as v11, v12, ..., v1N ∈ V1

and v21, v22, ..., v2M ∈ V2. Furthermore let the superscript of the vectors denote which index

25

3.2. Features and algorithmic skeletons

Figure 3.7: Example demonstrating the syntax of SkePU’s MapOverlap by Ernstsson[16].

f loat conv (
skepu : : Region2D<f loat> r ,
const skepu : : Mat<f loat> s t e n c i l
)

{
f loat r e s = 0 ;
for (int i = −r . o i ; i <= r . o i ; ++i)

for (int j = −r . o j ; j <= r . o j ; ++j)
r e s += r (i , j) * s t e n c i l (i + r . o i , j + r . o j) ;

return r e s ;
}

skepu : : Vector<f loat> convo lut ion (skepu : : Vector<f loat> &v){
auto convol = skepu : : MapOverlap (conv) ;
Vector<f loat> s t e n c i l {1 , 2 , 4 , 2 , 1} ;
Vector<f loat> r e s u l t (v . s i z e ()) ;
convol . setOver lap (2) ;
return convol (r e su l t , v , s t e n c i l , 1 0) ;

}

is referenced and let i and j be indexes. Lastly let Mat be the output matrix and f the
user-function, then we can express it as:

Matij = f(vi11, vi12, ..., vi1N , vj21, v
j
22, ..., v

j
2M)

The dimensions of Mat is thus N ⨉M , meaning that more vectors in the vector-sets do
not affect its dimensionality. Instead they provide additional arguments to the user-function.
Furthermore, like Map, MapPairs allows for a multi-type return value which is then put into
multiple destination matrices. An example of MapPairs’ syntax is given in Figure 3.8.

Figure 3.8: Example demonstrating the syntax of SkePU’s MapPairs provided by Ernsts-
son[16].

int mult_f (int a , int b){
return a * b ;

}

void c a r t e s i a n (s i z e_t Vsize , s i z e_t Hsize){
auto pa i r s = skepu : : MapPairs (mult_f) ;
skepu : : Vector<int> v1 (Vsize , 3) , h1 (Hsize , 7) ;
skepu : : Matrix<int> re s (Vsize , Hs ize) ;
p a i r s (res , v1 , h1) ;

}

MapPairsReduce
MapPairsReduce is analogous to MapReduce as it is functionally the same as executing a
MapPairs followed by a Reduce. Like in MapReduce combining these operations together
makes it is possible to compute them more efficiently while using less memory. The reason for
this is that the matrix created by MapPairs can be instantly consumed by the reduce-function.

26

3.2. Features and algorithmic skeletons

MapPairsReduce may only perform a 2D reduction, either row-wise or column-wise. As such
the output of MapPairsReduce will always be a vector.

Figure 3.9: Example demonstrating the syntax of SkePU’s MapPairReduce by Ernstsson [16].

int mult_f (int a , int b){
return a * b ;

}

int add (int a , int b){
return a + b ;

}

void mappairsreduce (s i z e_t Vsize , s i z e_t Hsize){
auto mpr = skepu : : MapPairsReduce (mul , sum) ;
skepu : : Vector<int> v1 (Vsize) , h1 (Hsize) ;
skepu : : Vector<int> re s (Hsize) ;
mpr . setReduceMode (skepu : : ReduceMode : : ColWise) ;
mpr(res , v1 , h1) ;

}

27

4 Design and implementation

This chapter goes into depth about the prototype’s design and its implementation. Concepts
integral to how the prototype operates, such as its consistency model and communication pat-
tern among others, are explained here. As the design is also mentioned so are its consequences,
limitations and alternatives in order to provide a wider view of the issues it attempts to handle.
Lastly an explanation of how the benchmark programs were implemented and what they aim
to measure is provided at the end of this chapter.

4.1 Prototype feature delimitations

SkePU is a large project and as such our prototype only implements a subset of the features of
other backends. The chosen ones are three algorithmic skeletons: Map, Reduce and MapRe-
duce, combined with the two container types Matrix and Vector. These were selected as they
are among the most commonly used types within SkePU and together they suffice to solve
a large number of problems. Furthermore using SkePU’s extensive Map pattern it is possi-
ble to emulate some other patterns at worse performance. For example Map may perform a
cartesian product like MapPairs does by accessing any needed element with the random access
proxy container. As such the chosen classes are able to solve enough problems to be able to
be compared against the existing StarPU implementation without being limited by problem
variety.

However even within the implemented classes not all of their features are included in the
prototype. They are excluded as the prototype is able to handle many different problems with-
out them, and as such is able to be measured against the existing StarPU backend without
them. By simply not using these features in the benchmark programs a valid relative compar-
ison can still be made, although it does not necessarily represent the backends’ performance
in absolute terms. It is worth noting thus that the performance of the benchmark problems
are not the same as the backend’s performance on the underlying problem as certain features
are not used. This does not however affect the relative performance comparisons which is the
central point of the thesis. The following features are not implemented in the GPI backend:
multi-variable returns, proxy container patterns other than the one and two-dimensional ones,
Vec and Mat. Notably this excludes MatCol and MatRow, which are important optimizations
for any program which accesses entire rows and columns. Lastly, any reduction which is done
row-wise or column-wise is not supported by the prototype, only reductions into a single value

28

4.2. Design

is. For more details regarding these excluded features as well as the motivation for why they
were added to other backends, please see the paper by Ernstsson et al. [17].

4.2 Design

This section highlights the overarching design of the GPI backend and how it operates on a
high level.

Usage and program structure
While an important part of a backend is that it implements the SkePU interface, its execution
model need not be the same as other backends. This is a natural effect of SkePU’s wide
applicability, executing a binary file on a single machine is a different process than doing so
on a cluster. In line with this variance the GPI backend takes a slightly different approach
than the other backends and does not use the pre-compilation step. The main reason for the
pre-compilation is to transform the code from C++ to a backend-language which the backend
then may compile itself. This is crucial for backends which do not use C++ code internally
such as OpenCL. However as the GPI prototype does do this the pre-compilation is not needed.
Furthermore as the prototype is a proof of concept adding compatibility features does not help
it fulfill its stated purpose. Hence the decision to exclude the pre-compilation step was taken.
Instead a SkePU program meant to use the GPI backend is compiled directly with the GPI
compiler, and later executed with GPI’s execution tool.

As stated above SkePU is an interface to be implemented by the backends, and as such
the new GPI backend is essentially a stand-alone library written from scratch. It is used by
including the SkePU the library and setting the compilation flags accordingly. Notably there
are no dependencies between the GPI backend and any existing SkePU code even if they share
the same interface.

The execution model of the GPI backend is SPMD. This means that the code written by
the user is executed on all of the nodes separately with only the SkePU constructs performing
calls to remote nodes. Thus any work not done using SkePU is run in parallel as many times as
there are nodes, hence it should constitute only a small part of the overall work of the program
for performance reasons. The SkePU constructs use the arguments provided to them combined
with their node ID to divide their workload accordingly. Depending on the construct it may
create an OpenMP parallel region to handle the task using the multiple cores it may have
available. This program structure assumes homogeneity among the nodes and would lead to
load imbalances if some nodes were using better or worse hardware as they would traverse the
sequential, and their share of the parallel, parts faster or slower. Which is an issue as a program
is only finished after its slowest node is finished. Furthermore the program structure leads to
a sort of determinism which is leveraged to help deduce a node’s workload asynchronously. If
the user does not access the node IDs or uses if-statements with arguments derived from the
hardware as shown in Figure 4.1, the control flow of the program is the same for all nodes.
Hence, using only its ID and the total node count, a node is able to deduce a large amount of
information about a SkePU call since it assumes that every other node will perform the same
SkePU call with the exact same arguments at some point in time. Allowing for deduction
about the other nodes’ states is important as it may be done without any communications,
which in turn are slow.

State tracking with operation numbers
Due to the program structure explained above it is possible to create a global order of every
SkePU call for all the nodes. These calls are then divided into phases, and every phase is given
an incrementally increasing and unique operation number. For example Map is divided into
a waiting stage, an execution stage and a finished stage which would correspond to operation

29

4.2. Design

Figure 4.1: An example of syntax which the GPI prototype is unable to handle. The reason
is that the value within the if-statement depends on the node’s hardware’s state and the GPI
backend assumes an identical control flow for all the nodes. In other words every creation of
a container, skeleton object or execution of a skeleton is assumed to be done by every node,
in the same global order.

int main (){
int i , j ;
skepu : : Matrix<int> m{ i , j } ;

int add_f (int a , int b){
return a + b ;

}
auto add = skepu : :Map(add_f) ;

// I f the curren t time i s even
i f (std : : chrono : : system_clock : : now() % 2 == 0){

add (m, m, m) ;
}

}

numbers: N , N + 1 and N + 2. By using these operation numbers, a node is thus able to
deduce the state another node is in currently and which operations it has not yet executed.
An important caveat is that a node can only deduce which operations another node has not
executed if it itself has executed more operation than the other one. In other words, it knows
which operations a node that is lagging behind will do, but it knows nothing about what a
node that has drifted ahead has done. Furthermore the operation numbers are bound to the
nodes themselves, whereas most other parts of the synchronization process are bound to a
container object. As such the operation numbers are used to order the other aspects of the
synchronization process, which are primarily based around the containers.

The method for propagating the nodes’ different operation numbers is based on a synchro-
nization schema known as vector clocks [10]. In this schema every node, processor or thread
depending on how it is used, has their own counter which is incremented whenever an ”event”
occurs. An event corresponds to either an independent calculation or a communication event.
Furthermore every node stores a vector of the highest occurred value for all the existing nodes,
including itself. Whenever it then receives a communication event it updates any values within
its vector to the incoming one if they are larger. This thus results in a system where it is pos-
sible to clearly see which events occurred before any given state. An illustration of the vector
clock schema is shown in Figure 4.2. There are different variations of the vector clock schema
depending on its usage, for example in a shared memory systems the size of the vector could
correspond to the number of shared objects while its elements are thread IDs [44]. Further-
more there exist more complex vector clock algorithms with better performance than the ones
presented so far [44].

The GPI backend’s synchronization model is heavily based on the vector clock schema
with the crucial difference that every node has the same local events. This does not mean that
every node necessarily performs the same computations but rather that every node performs
the same SkePU operations and hence passes through the same phases of these operations.
What a node does in these phases may vary, for example in the ”get” function within Matrix
some nodes must fetch the value remotely whereas others need not. As such the values within
the prototype’s vector clock correspond to certain phases of a SkePU operation. By leveraging
this, a node is able to deduce information regarding which transformations have been applied to
a container and which have not. Another benefit of the vector clock model is that information

30

4.2. Design

may propagate without direct contact, which is particularly beneficial at points which require
tight synchronization.

Figure 4.2: An example of how the vector clock schema could be implemented. The three lines
are processors and every arrow is an event.

Constraints
The synchronization process is based on operation numbers and constraints. A constraint is
a tuple containing a node ID and an operation number. At the end of an operation a node
adds constraints to indicate which nodes might read from it during this operation. Then
when the container wants to modify its content it has to fulfill all of its constraints before
it is safe to modify it. A constraint can be said to be fulfilled when the remote node has
reached an operation number larger than the constraint. Due to the SPMD nature a node is
able to deduce how the access pattern of an operation is going to look for all the other nodes
and as such set the constraints properly. The primary issue however comes in the form of
the random access pattern available in Map. That is when elements from other indexes than
just the current one is used. Here the user-function determines which nodes communicate
with each other. As a constraint indicates that a remote node will read from the current
node; this entails that the current node must be able to deduce which nodes a remote node
will read from. According to the famously unsolvable Halting problem this can only be done
by actually executing the user-function with the same arguments as the remote node [41].
This is clearly an unfeasible amount of work; just the argument transfer would result in a
transfer of size (#global_elements − #local_elements) ⋅ type_size bytes, for every node.
As constraints and the loose memory consistency attempts to limit the communication such
a cost is unacceptable. Instead every node is assumed to read from every other node if the
container is used with a random access pattern. This is a pessimistic assumption only used to
avoid the issues mentioned above. If the user-function only uses the current indexed element
in the container, then looser constraints can be used. In this case a node can deduce which
elements, and hence which remote nodes, all the nodes will access. Which in turn results in
constraints which more properly describes the data dependencies.

The constraints are set at the end of an operation and waited for at the start of it, ensuring
that data which a remote node might want is never replaced. This scheme guarantees that a
node which has drifted ahead does not replace needed data, but it does not guarantee that
the data has been produced yet. To complement this, all nodes must validate that the remote
node has reached the correct operation number before reading from them. This process is
explained in more detail further down.

Consistency model and double buffer
The ultimate purpose of the constraints and operation numbers discussed above is to allow for
a weak memory consistency. Every container has a double buffer of its data which other nodes

31

4.2. Design

are unable to read from. Whenever an operation modifies the container it always writes the
changes to the double buffer. To allow remote nodes to access this new data a container must
periodically flush its double buffer and put it into the actual GASPI segment. This is done as
sparingly and late as possible by letting nodes deduce whether a remote node might need to
read from them during an operation, and only then perform the flush. For example a simple
get(i) operation will make the node which holds i flush its changes but not any other node. In
order to track the changes every node saves the remote state of every other node through the
following two fields within the Matrix class: the last operation which modified it and the last
operation when it flushed its changes. With these fields every part of the container is able to
deduce at which operation number a remote node is safe to read from and when it is not. It
also adds fine grained synchronization where parts of a container may be flushed while others
are not. Thus the operation number where the flushed data is accessible may differ depending
on which node is being read. For example, suppose that node i changes one of its values at
operation number j and it got flushed at operation j + 1. If another node wants to read from
node i it now has to wait for node i to reach operation number j + 1. However for any other
remote node the required operation number to reach before reading may be lower than j+1 as
its value was not changed in operation j. The granularity of the scheme is thus at the level of a
node, where all values within a container that belongs to a node are either dirty or not. Lastly
note that the field tracking other node’s last flush operation is the last time they performed
a flush, not the last time they executed an operations where they flushed. To illustrate the
difference if a node made local changes at operation i and flushes at i + 1 and i + 2 then the
last flush field would say that this node flushed at i + 1.

Flushes
Flushes refer to the process of moving the data from the double buffer into the GASPI segment
where it may be read by other nodes. They are done in two cases, firstly if the local node
needs to modify its container which already is dirty. Then the existing changes are flushed
into the GASPI segment and the new ones applied to the double buffer. The second case is if
the local node deduces that another node needs to read data which exists in the double buffer,
which is only accessible locally. This architecture thus allows for every node to save two states
of its container and makes it the nodes’ responsibility to guarantee that the correct state is
available at certain operation numbers. The local nodes do however only have knowledge of
the operations they have processed so far and as flushes only are done when deemed necessary;
a waiting period may have to precede it. For example let operation i modify container A and
the subsequent 1000 operations not do so, but operation i + 1001 requires reading from the
container A. Before a node may read from another it must flush the changes from operation
i, but this flush will not be done until i + 1001 even though it could have been done earlier.
However in this case a node which has drifted ahead needs to wait for a slower one, which
is quite acceptable as it is the slowest node that determines the execution time. This case
would only lead to a slowdown if a node which is ahead needs to wait and later on becomes
the slowest node. This is an improbable scenario and as such this flushing implementation was
chosen.

Communication pattern
The benefit of the weak consistency model is that it allows for an infinite drift as long as there
are no data dependencies. A local node only needs to wait for a remote one if it either has
not produced and flushed the needed data, or if it needs to read a local value and is yet to
do so. With the states of remote nodes being propagated indirectly through the vector clock
and local deductions the expected communication is kept to a minimum. The communications
between nodes fall into two categories, polling for information about the remote nodes state
and reading remote elements from one of its containers. In particular, communication across

32

4.3. Matrix

different containers are never done as a container is responsible for all communications with
its remote partitions. This makes the design easier as the GASPI segments within every
container only need to be able to store remote data from other partitions. The dimensions of
this segment is thus adapted at these specific communication patterns and nothing else.

4.3 Matrix

This section describes in detail how the Matrix class is implemented and its purpose. It is the
largest class in the GPI backend with a wide set of responsibilities which leads it to interact
with most other classes in some manner.

Overall
Matrix is a two-dimensional container following SkePU’s Matrix interface. Its main responsi-
bilities are tracking the state of its local and remote elements as well as providing an interface
for accessing its remote elements. As such it works both as an abstraction layer for remote
communication and as a state tracker. Furthermore it also works as an alias for the vector
class by implementing a few extra functions such as a one-dimensional constructor. The mo-
tivation for the aliasing is that the differences between the two is minuscule implementation
wise and this solution was the most straight forward one while also not replicating any code
unnecessarily. If the GPI backend is to be extended beyond a proof of concept then the vector
could be implemented as a separate class.

Partitioning and workload balance
Matrix uses a simple one-dimensional partitioning of the global elements where the node with
the highest rank receives any left over elements. This one-dimensional partitioning of a two-
dimensional container means that rows and columns may be split across multiple nodes as
illustrated in Figures 4.4 and 4.5. Furthermore Figure 4.5 demonstrates another potentially
problematic partitioning result as a small matrix is split such that no node owns an entire row.
This case is however rare in practice and is the result of using more nodes than the problem
will benefit from. Regarding the overlapping rows it is worth noting that there may at most
be #nodes − 1 of them in any given matrix and if it is sufficiently large they will constitute a
low proportion of all rows. The reason why row splits are undesirable are due to it not being
uncommon for a user-function to need an entire row for its calculations. In such a case it is
both faster to fetch the row from a single node due to the high startup cost of remote reads,
while also requiring less synchronization.

Another potential issue of this partitioning scheme is the element imbalance which may
occur due to the last node receiving all elements which may not be evenly split. This extra
load can be up to #nodes − 1 elements, which may or may not be a significant amount of
elements depending on the container’s size. This issue is illustrated in Figure 4.4 and contrasted
by Figure 4.3. It is worth noting that if #elements >> #nodes then this imbalance will
become very small as a proportion to the overall amount of elements. For example if we
have N elements distributed among 3 nodes, then the last node may only receive at most two
extra elements. If N then grows large these two extra elements will become proportionally
insignificant.

Data transfers and caching
The Matrix class is important to the data transfers of the prototype as it manages the GASPI
segments, which are the destination and origin of all read requests. The elements of the local
partition of the Matrix are stored in a GASPI segment, but this segment also has extra memory
allocated for the transfer of remote elements. The size of this segment is the size of the local

33

4.3. Matrix

Figure 4.3: Partitioning of a matrix of size 4 × 4 with four nodes.

Figure 4.4: Partitioning of a matrix of size 4 × 4 with three nodes.

partition plus the global size of the container. Thus every remote element has its own unique
position in the segment at the cost of high memory usage. While the local elements in Matrix
also are stored in the same segment, logically the two parts are kept separate and referred to
as the container segment and communication buffer respectively. While the container segment
is only ever used for storing local values, the usages of the communication buffer are many
and determined by the algorithmic skeleton.

One of Matrix most important functions is proxy_get which is called from the proxy con-
tainer dummy class and allows for the access of any element, both local and remote. This class
is used by certain skeletons, namely Map and MapReduce, and its purpose is to provide the
user with a random accessing pattern of the elements. What proxy_get does is that it returns
a value from the container given an index and it does so in a thread safe manner. Conceptually
this function may either return the local or cached value instantly or it may need to transfer
it. If this is the case then it also transfers all elements of the remote node and puts them in
the communication buffer. Any further readings to this node will now read the cached data.
By leveraging the state tracking fields mentioned in section 4.2 as well as tracking the state
of the cache, the values within it may be reused for multiple operations. Thus the transfers
are very large but the transfered elements may be reused for multiple operations through the
cache, limiting the amount of transfers and hence their upfront overhead cost.

34

4.4. Map

Figure 4.5: Partitioning of a matrix of size 4 × 4 with eight nodes.

Furthermore in proxy_get the main struggle is its synchronization complexity. For example
different threads may want to read data from different containers of the same remote node.
In such a case they need to synchronize their access to the local vector clock, as well as their
access to the remote vector clock, in order to avoid overloading the remote node. To achieve
correctness proxy_get uses three layers of locks. The first of which is contained in the Matrix
class and is matched with a remote rank. These pairs thus ensure that only one thread is
able to transfer data from the same remote rank’s partition. Which is important as the data
transfers always move entire partitions and the first-level locks thus remove the possibility
of the same data being transfered twice. The second-level locks are shared among all local
container-objects and guard the access to the remote vector clocks. They are paired up with
a remote rank and thus every level-two lock corresponds to a remote rank. Before any local
thread is able to poll a remote node’s vector clock it first needs to gain access to the correct
level-two lock. This makes it so only one thread is able to poll the same remote node. The last
lock is the level-three lock, which unlike the other two levels is a single lock. A thread need to
access it before it is allowed to modify the local vector clock. This lock is also shared among
all local container objects within the same node. By putting these three levels together we
see that level-one prevents multiple transfers of the same data; level two prevents unnecessary
polling of a remote vector clock’s state, and level three simply ensures correct usage of the local
vector clock. A benefit of using this scheme is that it allows for multiple Matrix objects to read
from the same remote node concurrently. Note however, that as Matrix objects only read from
other partitions of the same objects; the concurrent reads occur when multiple objects want
to transfer different data simultaneously. Lastly, this transfer design also allows for concurrent
reads of different vector clocks through the level-two lock.

4.4 Map

Map is one of the larger classes in the GPI backend and the skeleton which is expected to
be used the most. Some important issues which are brought up in this section is how remote
elements are transfered through either pre-fetch or a proxy container. Furthermore the general
structure of how the class operates is explained as well as some of its behavior which is
marginally different from other backends.

Scheduling options
Every node is responsible for transforming the elements it owns, and the elements are in turn
divided evenly among a set of threads within a single node. The scheduling is thus doubly

35

4.4. Map

static as both the inter- and intra-node work partitioning is done statically. The internal
parallelization uses OpenMP which includes options for both dynamic and static scheduling,
hence it may easily be changed. The assumption for static scheduling is that every iteration
takes approximately the same amount of time. But, as the run time of the threads may
include waiting for a remote node to reach a certain state, this assumption is dubious. The
static scheduling was still chosen as it anecdotally resulted in a major speedup for Map when
using a trivial user-provided function such as add. This is of course the sort of problem which
static scheduling would excel at whereas the dynamic one would struggle. But the difference
provided to be sufficiently large, the static one was up towards 100 times faster, so that the
dynamic scheduler was deemed unable to handle such problems and instead the static scheduler
was chosen. However a more thorough evaluation of the two scheduling models would be an
interesting extension of the work and is needed in order to truly determine which is the better
fit for the GPI backend.

Type deduction and divergence from the SkePU interface
The GPI backend’s implementation of Map handles type deduction slightly differently than
the other backends. First it compares the arguments given to the Map object when it is
called, with the parameter type in the user-function. From this it can deduce how to handle
every argument. Note that the same user-function may behave differently depending on the
arguments given to a skeleton object as shown in Figure 4.6. By observing how the Map-
objects are invoked we can see that the argument integer desired by the user-function may
be supplied through either a container or as a stand-alone scalar. Deducing which case is
requested is done during the Map-object’s invocation unlike other SkePU backends which does
this during the object’s instantiation. One effect of doing the deduction at the call-site is that
the GPI backend does not need the concept of arity unlike the other backends. In the other
backends this concept is used to signal how many of the provided arguments are containers
and how many of them are not. It is provided at the creation of the skeleton objects and often
deduced automatically. But this means that there is less flexibility in reusing the same object
as the arity is bound to it. For example in Figure 4.6 only one case in A and another one in
B would be allowed in non-GPI backends as they can not handle different arities on the same
object.

Furthermore the arity is either stated explicitly or deduced automatically, however some
user-function signatures are ambiguous and hence the deduced arity may be incorrect. The
functions provided in Figure 4.6 are examples of such ambiguous ones. Thus another benefit
of avoiding the arity concept is the fact that the automatic type deduction of the GPI backend
is unambiguously correct. But more than this it also allows for containers and scalars to be
provided in an arbitrary order as long as they match the user-function’s signature. This is
different from the SkePU standard which states that scalars must come after any container
arguments and the difference is highlighted in Figure 4.7.

Execution and argument generation
In Map the workload is statically partitioned in the same way as the destination Matrix
container is. That is, every node is responsible for generating the result of all indexes which
it owns in the destination container, following the so called ”owner computes rule”. The first
step in this process is to build an argument tuple, which through type deduction is given four
possible values: an index, a scalar constant, a scalar value from a container and a random
access proxy container. The container-scalar values are fetched in a process called pre-fetching
where all elements which the node is responsible for in the destination container, but does not
currently possess, are fetched from remote nodes. This may occur due to the SkePU Map’s
syntax allowing for argument containers which are larger than the destination container and
may hence be partitioned differently. All such elements are fetched remotely and put in their

36

4.4. Map

Figure 4.6: A demonstration of how a user-function may behave differently depending on how
its skeleton object is called. Note that the arity is different between skeleton calls within the
same case, meaning that this example would only work in the GPI backend.

int i , j ;
skepu : : Matrix<int> m{ i , j } ;

int mult_f1 (skepu : : Index1D i , skepu : : Vec<int> a , int b){
return a (i . i) * b ;

}

int mult_f2 (int a , int b){
return a * b ;

}

auto mult1 = skepu : :Map(mult_f1) ;
auto mult2 = skepu : :Map(mult_f2) ;

// Cases A
mult1 (m, m, 2) ;
mult1 (m, m, m) ;

// Cases B
mult2 (m, m, m) ;
mult2 (m, m, 4) ;
mult2 (m, 4 , 4) ;

Figure 4.7: An example of the difference between the GPI prototype’s interface and the stan-
dard SkePU one. The improper version is acceptable in the GPI backend but not in the other
backends, whereas they both accept the proper one.

int i , j ;
skepu : : Matrix<int> m{ i , j } ;

int mult_proper (skepu : : Index1D i , skepu : : Vec<int> c , int d){
return c (i . i) * d ;

}

int mult_improper (skepu : : Index i , int d , skepu : : Vec<int> c){
return c (i . i) * d ;

}

auto mult_proper = skepu : :Map(mult_proper) ;
auto mult_improper = skepu : :Map(mult_improper) ;

mult_proper (m, m, 2)
mult_improper (m, 2 , m)

37

4.5. Reduce

corresponding communication buffer, where they are later fed into the argument tuples. This
process thus knows beforehand exactly which elements it needs and thus fetches them in as
few reads as possible. It is worth noting that Matrix objects only communicate with other
objects of the same global container structure, which means that the transfers are handled
by the argument containers and not the destination one. As it currently stands the entire
pre-fetch chain of events is single threaded, the internal parallelization through threads only
starts after the pre-fetch is done.

Another way to access remote elements is with the random access proxy container, which
is essentially a dummy object holding a pointer to the container object which it belongs to.
By using this object in the user-function it allows for access to any value within the container.
Due to the light-weight nature of this object, creating and adding it to the argument tuple
is a computationally cheap operation. The remaining two argument types are fairly simple
concepts, the index is a type containing the current execution index and the constants-scalar
are values which are the same for all indexes. The tuple itself corresponds to the arguments
given to every execution of the user-function and is primarily needed due to variadic template
programming. The parallel execution begins after all the pre-fetching is done and it divides the
local indexes evenly among the existing threads. Every thread performs a two step execution
where it first builds the argument tuple, and then applies the user-function. In this phase if
a remote value is accessed through the random access proxy container it results in a call to
proxy_get which is explained in section 4.3.

Outside of this tuple-generating and user-function executing section Map performs various
other tasks. At the start of a Map call it waits for the constraints of both the destination
and argument containers, afterwards it flushes any existing argument container. The flush
is only done if there exist unflushed changes in the double buffer and it guarantees that the
correct values are made available for remote reading. At the end of a Map call new constraints
are set for every container used as an argument. By matching the provided arguments and
user-function parameters the harshness of the constraints depends on whether the container
was used with random access or pre-fetch. If it used random access then the constraint is set
harshly and assumes that all nodes read from it as a precaution. However if it used pre-fetch
then the node can deduce which nodes would pre-fetch it and hence set the constraint for only
these nodes.

4.5 Reduce

Unlike SkePU’s Map, its Reduce is a simpler skeleton far more similar to the computational
pattern it is based on. The GPI implementation follows a typical distributed approach where
every node is responsible for calculating their partial sum which is later combined with the
rest.

Accumulation
Much like in Map, every node is responsible for the indexes that it owns, all of which are used
in the local accumulation. It works by evenly dividing the local indexes among the available
threads and letting them accumulate a partial sum. These partial sums are then combined
by a single thread and put into the communication segment where they are globally available.
After this begins the distributed accumulation phase, which is single threaded. This is an
iterative process where, in every iteration, a node reads the partial sum of another node and
combines it with its own. With every subsequent iteration half of the nodes are done, resulting
in: ⌈(log2(#nodes))⌉ iterations. This results in a single node owning the final value, which
it will then broadcast to all the other nodes in a manner which is the inverse to how it was
generated; a single node reads the global sum, and in every subsequent iteration the number
of readers double as the number of nodes holding the final value also doubles. Within a single
iteration no node is read multiple times as to avoid overloading. At the end of this algorithm

38

4.6. MapReduce

every node now holds the global sum. The first mentioned algorithm is a distributed reduce,
whereas the latter is a distributed broadcast. They are very similar and share the property of
only allowing a node to be read or perform a read at most once during an iteration. As such a
node only needs to handle at most ⌈(log2(#nodes))⌉ requests for either one of them, reducing
the chance of overloading a single node. The iterations are kept separate through operation
numbers, resulting in Reduce using a large amount of them every time it is executed. This
is however not an issue as the operation numbers are unsigned 64 bit integers resulting in
≈ 1.8 ⋅ 1019 possible values.

Meta tasks and data dependencies
Unlike Map, Reduce outputs a scalar and as such does not use a destination container. It also
does not need to flush any changes in its argument-containers as the only remote data needed
is the partial accumulation. This means that Reduce does not need to use any constraints,
instead other forms of synchronizations are used. As such every node is free to start its local
accumulation regardless of the states of the remote nodes, however the global accumulation
phase does of course require all nodes to partake. After the global accumulation phase however,
a particular data dependency occurs which does not fit the constraint model. A constraint
prevents a node from modifying its local values in a container segment, but not those in the
communication buffer. As such every node must validate that every remote node which is
going to read the global sum from it; has done so before exiting the Reduce. If a node did
not do this it may replace the global sum in its communication buffer before it was read. In
practice the Reduce skeleton requires such tight communication between all the nodes at this
point that almost no drift is possible. As such this wait is likely quite short.

4.6 MapReduce

The GPI implementation of MapReduce works quite differently depending on if it can reuse
an existing GASPI segment by having a container argument or if it can not. Both implemen-
tations are however similar and based on the previously explained implementations of Map
and Reduce.

Design and Structure
The implementation of MapReduce is based on both Map and Reduce, but it has a few key
differences. One of these is the fact that no argument to MapReduce is guaranteed to be a
container, which is a key assumption for the Map and Reduce implementation. By having a
container argument it is possible to use its partitioning scheme to divide the workload and
its communication buffer for the reduction part of MapReduce. If it does not exist, the Map
size needs to be provided beforehand and a GASPI segment created so that a reduction may
be done. As such the behavior of MapReduce is quite different depending on if a container
argument exists or not. To differentiate between the two cases the GPI backend looks at
whether the first argument is a container or not. In the SkePU standard, container arguments
are required to come before constant type arguments. Hence, if the first argument is a constant,
all following arguments should be as well. The GPI backend is able to handle any ordering of
the container- and constant-arguments for Map, but this assumption is still done as the user
is expected to follow the SkePU standard. However MapReduce does handle the case outside
of the standard where a constant is followed by a container like in the following example:
MapReduce(constant,matrix). But this handling will use the less optimized solution which
does not use the argument container’s GASPI segment for data transfers. This is mostly a
demonstration of how the GPI backend is able to handle certain problem formulations outside
of the SkePU standard and not something expected to be used.

39

4.6. MapReduce

From a high structural level both versions of MapReduce are quite similar, they divide their
given indexes evenly among their available threads. And for every element they first build an
argument tuple, then execute Map while immediately consuming the generated value with
Reduce. Afterwards it enters a global accumulation phase similar to Reduce’s where it first
reduces all the partial values and then broadcasts the global value. The implementation thus
leverages one of the most important aspects of MapReduce and that is immediate consumption
of the generated Map value. This thus results in less memory being needed while also removing
the need to write down the intermediate value only to read it later.

With a container argument
In Map the number of elements it works on is the same as the size of the destination container.
In Reduce it is the size of the input container. But MapReduce is unable to do this as it has
no data-container and a Map is allowed to use fewer indexes than the container has elements.
As such the size of the MapReduce is defined before its execution, otherwise it defaults to
the size of the first container argument as per the standard. The execution works just like a
combination of Map and Reduce, it waits for the argument constraints and then flushes the
containers. Afterwards it pre-fetches and builds the argument tuple and applies the map-user-
function. The difference is that the result is stored in a local variable and immediately used
by the reduce-user-function. Thus the local accumulation is done simultaneously as the Map
part is executed. After this broadcast, the local accumulated values are combined exactly
like in Reduce with a distributed reduce and broadcast. The partial sums are stored in the
GASPI segment of the first container argument. This creates a data dependency which is
shared with Reduce and explained more thoroughly in Section 4.5. Briefly, the partial sums
may overwritten in the GASPI segment during the next operation; as such a node must ensure
that the partial accumulations are no longer needed before leaving the MapReduce operation.
Furthermore, unlike Map, MapReduce does not modify a destination container and as such
do not need to use constraints. Meaning that unlike Map there is no section at the end of
MapReduce which adds constraints.

Without a container argument
If the first argument provided is a constant then this case is chosen. While it is referred to as
the ”no container case” it may in fact have container arguments after the constant argument.
This does go against the SkePU interface and is discussed more above with summation being
that it is possible but unadvised and slightly slower to do this.

The use case for this version of MapReduce is to first call ”setDefaultSize” and then call
the MapReduce instance object, as seen in Figure 4.8. In the setDefaultSize function, a global
GASPI segment is created if one does not previously exist. This segment is then used during
the reduction part for the distributed scatter and gather of the local accumulations. The
execution of the MapReduce works the same as the case with a container, except for the usage
of the global segment. From a design perspective, another minor difference is that certain
meta-data and utilities are accessed through a global singleton. For example, the Matrix class
provides access to the vector clock and related waiting functions; which needed to be made
available through the global singleton as well to accommodates this MapReduce case. In the
other MapReduce case, as well as for the other skeletons, such utilities are accessed through
Matrix as an old, and now incorrect, assumption was that every skeletal invocation would
have a container argument. These utilities should be made only available through the global
singleton but due to time constraints this change has not been implemented yet. This minor
design oversight is unlikely to have any noticeable impact on the prototype however.

40

4.7. Benchmark programs

Figure 4.8: Example syntax of SkePU’s MapReduce’s no container version

int add_f (int a , int b){
return a + b ;

}

auto obj = MapReduce (add_f , add_f) ;
obj . s e tDe f au l t S i z e (N) ;
int r e s u l t = obj (10 , 10)

4.7 Benchmark programs

The programs presented here are used to benchmark the prototype, a more theoretical descrip-
tion of them is presented in Section 2.14. The programs are all based on the already existing
SkePU examples of the same name, which in turn are naive solutions to their theoretical
counterpart.

The n-body problem
The n-body problem program works by simulating a set of particles of the same mass in three
dimensions. Furthermore the particles are spawned in a predetermined manner, which ensures
that their movements are minimal and thus avoids any potential collisions. The implementa-
tion uses a SkePU Map where every particle first updates their acceleration by observing its
distance to all other particles. Afterwards it updates its velocity depending on the acceleration
and time interval, and finally it moves according to its velocity. It is thus a naive implemen-
tation which reads the data of every other particle through a proxy container. This program
is iterative and every iteration performs the calculations explained above. The execution time
which is being measured includes the iteration-loop as well as the initialization of the contain-
ers but not their creation. The evaluation of the prototype using this program uses 2 ⋅ 105
particles and 20 iterations.

The Mandelbrot program
This program is based on the Mandelbrot set and attempts to deduce which pixels in an image
belong to the set and which do not. The implementation used in this project is based on the
previously existing one from SkePU. It differs however by not gathering all the pixels on to any
one single node, nor print out the resulting image. Furthermore the program was made more
computationally intensive as previous runs of the already existing implementation proved to be
too short for reliable measurements to be made. As such, the threshold which determines that
a pixel has increased to such a large absolute value that it will never converge, was increased.
Furthermore the maximal number of iterations spent at a single pixel was increased from 103

to 104. The former change increases the amount of computations done for every pixel which
is not part of the set and thus reduces the load imbalance. However for pixels which are far
from being in the set the difference will be marginal as they increase fast enough that the new
threshold is reached quickly. The latter change increased the computational intensity of pixels
which do belong to the set as they are evaluated for more iterations before being classified.
This would thus increase the work imbalance and help even out the previous change.

From the SkePU syntax the implementation relies solely on a Map whose only arguments
are constants in the form of the dimensions of the image. This program is thus notable in the
fact that there is no communication in it and that the computational time between two pixels
may differ by a factor up to 104. The execution of this program as a benchmark uses a picture

41

4.7. Benchmark programs

of 60000×60000 = 3.6 ⋅109 pixels. Every pixel corresponds to an element in the matrix where it
is modified by a SkePU Map and the program’s execution time only measures the time spent
within the Map. A smaller version of this program was run and the exported image saved in
Figure 2.9.

The Taylor program
This program attempts to calculate a Taylor series of the natural logarithm at a certain
point using a fixed number of terms. The implementation is mostly unchanged from the
original SkePU example it is based on, except for the code which measures the execution
time. By applying a MapReduce of size N, every element is first transformed according to
the Taylor series through the map-function and then summed up with addition as the reduce-
function. This program is not especially computationally intensive, but it demonstrates the
utility MapReduce has by allowing for a very large amount of elements to be used. It is thus
meant to use a much larger MapReduce than would be possible with a Map due to its memory
usage.

The matrix matrix multiplication program
There exists many different algorithms of matrix matrix multiplication, and even within SkePU
there are multiple different implementations. The one this program is based on uses the general
proxy container Mat and not the more specialized MatCol nor MatRow. As such this program
does not highlight a backend’s performance on a matrix matrix multiplication but rather its
relative performance compared to other runs of the same program. The reason for not using
MatCol nor MatRow is that neither of these are implemented in the GPI backend as discussed
in Section 4.1. The program itself uses a single SkePU Map with three equally sized squared
matrices of floats, two of which are randomly initialized either within the range of (0,9) or
(3,9). The dimensions of the three matrices are 18000 × 18000 and what the program does
is calculate the matrix matrix multiplication of the initialized matrices and stores it in the
uninitialized one. Note that unlike many other programs this one is not iterative, the matrix
matrix multiplication is only done once. Lastly, the measured execution time covers only the
SkePU Map call which performs the matrix matrix multiplication, meaning that both the
initializations and creation of the matrices are excluded from it.

The matrix vector multiplication program
This program is based on the SkePU example of the same name, and just like the matrix
matrix version it does not use the more specialized access patterns of MatCol or MatRow.
Furthermore it uses two vectors and one matrix of floats with the matrix being initialized
with values between three and nine and one of the vector with values between zero and nine.
Using a SkePU Map with the Mat access pattern it performs the matrix vector multiplication
and stores the result in the uninitialized vector. This Map is then used as many times as
there are iterations, alternating which vector is used as a data destination and which one is
used as an argument. The dimensions of the matrix is 50000 × 50000 while the vectors are
of size 50000 with the number of iterations being 104. The execution time measured only
includes the SkePU Map which performs the matrix vector multiplication and thus excludes
the initialization step of the containers as well as the creation of all objects.

42

5 Method

This chapter presents both what hardware the programs run on and which compiler was used
and what program they were used to compile. Furthermore it elaborates on how the data
points presented in this chapter were generated.

5.1 The Sigma and Tetralith cluster

All the runs presented in this thesis have been done on either the Sigma or Tetralith cluster.
These two clusters are operated by the National Supercomputer Centre (NSC) in collaboration
with LiU. The two clusters follow the same network architecture and use very similar hardware,
Sigma is essentially just a smaller version of Tetralith. While certain nodes have different
hardware, the ones which we used did not. These nodes have two Intel Xeon Gold 6130 CPUs,
which each have 16 cores, 32 hardware threads, 96GiB of main memory and a SSD disk1. Since
the clusters are expected to have equivalent performance, the test runs were split among the
two in an arbitrary fashion. The reason for this was that while the performance is expected
to be identical the allocated processing time of this thesis were split among them. However,
most of the runs presented in this paper were done on Sigma.

5.2 Installation and compilation

The cluster version of StarPU called StarPU-MPI was built on the cluster using gcc 7.3.0,
and the version of StarPU-MPI was 1.3. SkePU and GPI however were built using gcc 6.4.0.
The reason for this discrepancy are building issues which mandated changing the gcc version
from the default value on Sigma and Tetralith of 6.4.0 to 7.3.0. The programs themselves
were compiled using g++ and its MPI equivalent mpic++, all of them using g++ version
7.3.0. Furthermore the C++ version used was C++11, which is the oldest supported version
for SkePU, and the flag ”-O3” was added to all compiled programs to indicate that execution
speed is to be prioritized over memory usage.

The GPI programs were compiled directly at the cluster whereas the StarPU programs
were pre-compiled by another computer and then compiled at the cluster. The g++ version to

1NSC’s website describing Sigma and Tetralith’s hardware:
https://www.nsc.liu.se/systems/sigma
https://www.nsc.liu.se/systems/tetralith

43

https://www.nsc.liu.se/systems/sigma
https://www.nsc.liu.se/systems/tetralith

5.3. Creating the measurements

build StarPU and SkePU at this computer is 7.5.0 and the StarPU-MPI version 1.3. Furthmore
the GPI version used for this computer as well as the clusters was GPI-2 version 1.4.0.

5.3 Creating the measurements

The execution of the programs were limited with regard to time usage of the two clusters.
This project was alloted a certain amount of ”core-hours” and thus the programs were only
able to be run a limited amount of times as to not exceed the alloted core-hours. Furthermore
some of these core-hours were used to debug issues which only arose on the cluster and to test
run the programs in order to figure out their expected runtime. The result of this is that most
programs were only able to be run a single time when creating the result for the thesis. This
was deemed acceptable as during development the runtime between multiple runs of the same
program with the same backend was minuscule, typically differing around a few seconds for a
program which runs for thousands. Still this is a weakness of the generated data, but it was
chosen rather than cutting certain programs from evaluation.

The time measured by the programs primarily correspond to the time they spend in the
SkePU calls, which in turn corresponds to their most computationally intensive and most time
consuming phase. This means that the creation of containers is not included in the presented
execution time and neither are initializations, except for in the n-body problem. These factors
are not wanted in the measurements, as they might add new variables such as the quality of
their memory allocation and random number generation which would dilute the performance
differences of the actual SkePU skeletons. More details regarding this is laid out in Section 4.7
for every program. The execution time generated this way is different for every node and the
presented time is always that of the slowest node unless explicitly stated. The motivation for
this is that the program on a global scale can not be considered finished until every node is.

44

6 Results

This chapter lays out the results of all the programs for both the StarPU and the GPI backend
and later on in the chapter, the variance of the programs’ and backends’ execution speed is
also presented.

6.1 The n-body problem

Minor issues
Due to an error in the implementation of the n-body-problem program the calculations were
slightly different between the two backends, although not their complexities. In the StarPU
backend the particles were all initialized along a line instead of spread around a three di-
mensional space. As such, two dimensions were never used leading to a constant velocity,
acceleration and position in these dimensions. However this does not affect the amount of
computations done and hence it is assumed that it should not affect the execution time in a
meaningful way. This erroneous initialization was discovered and changed in the GPI backend,
meaning that the two backends worked on different numerical values.

N GPI StarPU
1, 2 1.91 0.95
2, 4 1.96 1.95
4, 8 1.99 1.93
8, 16 1.98 1.87

Table 6.1: The differential speedup, which is the speedup between the node pair given in N ,
of the StarPU and GPI backend for the n-body-problem program.

Comparison
By observing the non-logarithmic graph in Figure 6.1 we can see that both backends start
with a similar execution time. But when the node count goes to two the execution time of the

45

6.2. Matrix matrix multiplication

StarPU backend increases while that of the GPI backend decreases. After this divergence the
graphs do not converge until the node count is much higher, at 16. This is however an artifact
of the graph; if we look at the logarithmic one instead, we see that execution times continue
with about the same relative difference between them. In fact, by comparing the relative
differences it shows that at two nodes GPI has an execution time of 52.1% of StarPU, and at
16 nodes this becomes 47.3%. So while the two non-logarithmic graphs seem to be converging
their relative difference is in fact increasing. We can also see this in Table 6.1 where the
differential speedup of GPI is slightly higher than that of StarPU. For 16 nodes the scaling
of StarPU seems to be falling off slightly as the differential speedup is only 1.87, but more
data points would be needed to validate if it is a trend. Overall the performance of the GPI
backend is noticeably better than the StarPU backend for this task, it scales better and starts
doing so after two nodes. However, for a single node the StarPU backend is slightly faster,
although this is not a particularly noteworthy data point when comparing cluster execution.

6.2 Matrix matrix multiplication

As in the n-body problem we can see in Figure 6.2 that StarPU’s execution time increases
when going to two nodes whereas GPI’s decreases. Furthermore the pattern that StarPU is
quicker on a single node also holds, but in this case it is much more pronounced. Overall
we can see that StarPU outperforms GPI in all cases with the largest difference being at a
single node where it is almost five times faster. By observing the logarithmic graph of Figure
6.2 we can see that the log execution time of StarPU has a sharper decline than GPI, which
corresponds to better scaling. For N = 2 StarPU needs about 53.9% of GPI’s execution time
whereas for N = 16 it needs 44.3%. The relative difference between the two backends is thus
increasing and while the non-logarithmic graphs may make it look like they are converging
this is only the case in absolute numbers.

6.3 Matrix vector multiplication

In Figure 6.3 we see once again the characteristic increase of execution time for StarPU when
increasing from one node to two. But we also see that the scaling of StarPU is very inconsistent,
only becoming slightly faster at four nodes than at one, then stagnating and keeping about
the same execution time for eight nodes as for four. At eight nodes the StarPU backend seems
to reach its saturation point and becomes slower with increased node count. To contrast
this, the GPI backend has a much more consistent speedup and catches up with StarPU at
eight nodes and outperforms it at 16. In Table 6.2 this trend is shown even more clearly as
GPI has a consistent differential speedup whereas StarPU does not. However by looking at
these numbers it is clear that the scaling of GPI is limited and quite a bit away from linear
differential speedup, which would correspond to a factor of two. Notably the speedup between
eight and 16 nodes is particularly weak with a factor of 1.39 and may indicate that GPI is
close to the point where it does not scale anymore.

N GPI StarPU
1, 2 1.46 0.77
2, 4 1.67 1.51
4, 8 1.60 1.05
8, 16 1.39 0.66

Table 6.2: The differential speedup, which is the speedup between the node pair given in N ,
of the StarPU and GPI backend for the matrix vector multiplication program.

46

6.4. The Mandelbrot Program

6.4 The Mandelbrot Program

For the Mandelbrot program the StarPU backend had almost no scaling as the execution time
of the program was: 1450, 1430, 1390 seconds for 1, 2 and 4 nodes respectively. Furthermore
there was almost no difference in execution time between the nodes, the difference between the
fastest and slowest node when using four nodes was 18 seconds. Due to these times seeming
to be almost unchanged with increasing node quantity the experiments were not run for more
than four nodes, allowing the computational hours of the cluster be spent on other parts of
the project.

The GPI backend starts by being substantially slower than StarPU for one node, having
about the doubled execution time. Unlike StarPU however this decreases noticeably with
increasing node count, and at N = 2 it has almost caught up with the StarPU backend as
shown in Figure 6.4. Furthermore we can see a large spread between the execution times of
the fastest and slowest node. The execution time of the fastest node increases quicker than
the average or slowest but then seems to plateau around N = 8. At this point there exist two
nodes which finish within 14 seconds and for N = 16 there are four nodes that terminate within
16 seconds. The difference between the fastest and slowest node for N = 8 and N = 16 is less
than two seconds, unnoticeable in the normal graph and over-emphasized in the logarithmic
one.

6.5 The Taylor program

Unlike the other programs the experiment for the Taylor series only concluded with a single
data point. Given the problem size of N = 1011 the GPI backend was able to calculate the
Taylor sum in just under 76 minutes using a single node, 4534 seconds to be more precise. This
was not done for the StarPU backend as this program is meant to demonstrate MapReduce’s
capabilities and to verify that the GPI backend’s implementation of it is correct.

6.6 Variance in execution time

The time each individual node took to perform the task in every program was measured and
their variance formalized in Table 6.3 and Table 6.4. In these tables the variance is zero when
there is only one node as there is only a single data point, but in the StarPU table the variance
in the matrix vector multiplication is also zero. For this program there are multiple data points,
they are just identical. In Section 6.4 it is mentioned that the Mandelbrot program is only
run with up to four nodes with the StarPU backend and hence some data is missing in Table
6.4’s Mandelbrot column, indicated by a ”-”.

By observing the two backends it is clear that the GPI backend has a much higher variance
than the StarPU one, the difference for the same program and nodes amount are always
magnitudinal, and sometimes upwards of six orders. But despite this, the amount of variance
in the programs seems to follow the same order within both backends. This is in descending
order of variance: Mandelbrot, matrix matrix multiplication, and n-body problem. Missing
from this ordering is the matrix vector multiplication which has no variance in the StarPU
backend but enough variance to put it between the matrix matrix multiplication and the
n-body problem in the GPI backend.

The metric ”deviation / mean” shows how large the deviation is as a proportion of the
mean and helps illustrate how much the nodes differ given the total runtime. Using it we can
see that for the StarPU backend the proportionally highest standard deviation is still only
about 0.6% of the mean execution time. In the GPI backend for the Mandelbrot program
this becomes much more pronounced however, reaching up to 85% of the mean execution
time. In this case a node which is within one standard deviation away from the mean will
only run for 15% of the mean runtime. Apart from this problem however the difference in

47

6.6. Variance in execution time

the nodes’ execution time remains fairly low when compared to the mean, even for the GPI
backend. In both the n-body problem and matrix vector multiplication the deviation is less
than 0.1% of the mean for all tested node amount. It is significantly higher in the matrix
matrix multiplication program reaching up to 5% of the mean when using the GPI backend.
To contrast in the StarPU backend the variance never reaches above 0.22% of the mean in the
matrix matrix multiplication, demonstrating just how much lower its variance is.

48

6.6. Variance in execution time

Figure 6.1: Runtime of the n-body problem with 2 ⋅ 105 particles running for 20 iterations.

49

6.6. Variance in execution time

Figure 6.2: Runtime of the matrix matrix multiplication program M1 =M2⨉M3 where both
M2 and M3 is of dimension 18000 × 18000 totaling in 3.24 ⋅ 108 elements each.

50

6.6. Variance in execution time

Figure 6.3: Runtime of the matrix vector multiplication program M = MV where M is of
dimension 50000×50000 and V of length 50000. M thus has 2.5 ⋅109 elements and the program
was run for 104 iterations.

51

6.6. Variance in execution time

Figure 6.4: Mandelbrot program on a 6000 × 6000 matrix where the max iteration cap for
intensive pixels is 104.

52

6.6. Variance in execution time

G
PI

n-
bo

dy
pr
ob

le
m

M
at
rix

m
at
rix

m
ul
tip

lic
at
io
n

M
at
rix

ve
ct
or

m
ul
tip

lic
at
io
n

M
an

de
lb
ro
t

N
Va

ria
nc

e
D
ev
ia
tio

n
/
M
ea
n

Va
ria

nc
e

D
ev
ia
tio

n
/
M
ea
n

Va
ria

nc
e

D
ev
ia
tio

n
/
M
ea
n

Va
ria

nc
e

D
ev
ia
tio

n
/
M
ea
n

1
0

0
0

0
0

0
0

0
2

5.
00
⋅1
0−

5
6
.5
4
⋅1
0−

6
19

1
1.
07
⋅1
0
−2

0.
64

2.
18
⋅1
0−

4
5.
48

3.
66
⋅1
0−

3

4
6.
67
⋅1
0−

7
1
.4
7
⋅1
0−

6
19

1
1.
89
⋅1
0
−2

1.
55
⋅1
0
−3

1.
80
⋅1
0−

5
49

7
0
.8
0

8
5.
00
⋅1
0−

7
2
.5
5
⋅1
0−

6
38

8
5.
10
⋅1
0
−2

3.
70
⋅1
0
−3

4.
49
⋅1
0−

5
3
.3
2
⋅1
04

0.
85

3
16

1.
58
⋅1
0−

6
9
.0
0
⋅1
0−

6
26

.4
2.
59
⋅1
0
−2

6.
40
⋅1
0
−4

2.
58
⋅1
0−

5
7
.3
5
⋅1
03

0.
79

0

Ta
bl
e
6.
3:

T
he

va
ria

nc
e
be

tw
ee
n
th
e
no

de
sw

he
n
ex
ec
ut
in
g
th
e
pr
ob

le
m
sw

ith
th
e
G
PI

ba
ck
en

d.
T
he

de
vi
at
io
n
di
vi
de

d
by

m
ea
n
in
di
ca
te
s

ho
w

m
uc
h
th
e
ex
ec
ut
io
n
tim

e
va
rie

s
be

tw
ee
n
no

de
s
as

a
pr
op

or
tio

n
of

th
e
ru
nt
im

e.
T
hu

s
a
va
lu
e
of

10
−2

in
th
is

co
lu
m
n
co
rr
es
po

nd
s
to

th
e
st
an

da
rd

de
vi
at
io
n
be

in
g
1%

of
th
e
m
ea
n
ex
ec
ut
io
n
tim

e.

53

6.6. Variance in execution time

St
ar
PU

n-
bo

dy
pr
ob

le
m

M
at
rix

m
at
rix

m
ul
tip

lic
at
io
n

M
at
rix

ve
ct
or

m
ul
tip

lic
at
io
n

M
an

de
lb
ro
t

N
Va

ria
nc

e
D
ev
ia
tio

n
/
M
ea
n

Va
ria

nc
e

D
ev
ia
tio

n
/
M
ea
n

Va
ria

nc
e

D
ev
ia
tio

n
/
M
ea
n

Va
ria

nc
e

D
ev
ia
tio

n
/
M
ea
n

1
0

0
0

0
0

0
0

0
2

4.
0
8
⋅1
0−

7
3
.0
8
⋅1
0−

7
2
.8
8
⋅1
0−

4
2.
41
⋅1
0−

5
0

0
0.
65

8
5.
67
⋅1
0
−4

4
7.
0
6
⋅1
0−

5
7
.8
8
⋅1
0−

6
6
.9
5
⋅1
0−

4
7.
13
⋅1
0−

5
0

0
76

.6
6.
36
⋅1
0
−3

8
5.
5
1
⋅1
0−

5
1
.3
4
⋅1
0−

5
1
.6
4
⋅1
0−

4
6.
98
⋅1
0−

5
0

0
-

-
16

1.
0
4
⋅1
0−

3
1
.0
9
⋅1
0−

4
4
.2
1
⋅1
0−

4
2.
19
⋅1
0−

4
0

0
-

-

Ta
bl
e
6.
4:

T
he

va
ria

nc
e
be

tw
ee
n
th
e
no

de
s
w
he

n
ex
ec
ut
in
g
th
e
pr
ob

le
m
s
w
ith

th
e
St
ar
PU

ba
ck
en

d.
T
he

de
vi
at
io
n
di
vi
de

d
by

m
ea
n

in
di
ca
te
s
ho

w
m
uc
h

th
e
ex
ec
ut
io
n

tim
e
va
rie

s
be

tw
ee
n

no
de

s
as

a
pr
op

or
tio

n
of

th
e
ru
nt
im

e.
T
hu

s
a
va
lu
e
of

10
−2

in
th
is

co
lu
m
n

co
rr
es
po

nd
s
to

th
e
st
an

da
rd

de
vi
at
io
n
be

in
g
1%

of
th
e
m
ea
n
ex
ec
ut
io
n
tim

e.
N
ot
e
th
at

th
e
ze
ro
s
in

th
e
ta
bl
e
ar
e
du

e
to

th
e
un

de
rly

in
g

da
ta

an
d
”-
”
re
pr
es
en
ts

a
la
ck

of
da

ta
.

54

7 Discussion

In this chapter the results of the programs are analyzed using the knowledge of how the pro-
totype works provided in the implementation chapter. First the performance of the programs
are discussed and how the design affects this result. Afterwards the design itself is evaluated
given how it affects the programs and other important factors such as usability. Lastly the
node variance of execution speed is discussed and then the thesis is analyzed in a wider societal
context.

7.1 Results of the programs

In this section the results of the programs are discussed and how the design affects this.

The n-body problem
This program showed the most promising results for the GPI backend as it performed better
than the StarPU one for all numbers of nodes except one. Afterwards at two nodes the StarPU
backend’s characteristic increase in execution time meant that the two backends diverge dras-
tically at this point. But it is not the case that they diverge at N = 2 only to converge later as
the scaling of GPI continues to be slightly better than StarPU’s as shown in the Table 6.1. As
such the points where the relative performance of the StarPU backend is the best compared to
the GPI backend is at N = 1 followed by N = 2 and then by the remaining indexes in ascending
order. Thus the GPI backend both scales better and has a lower execution time when using
at least two nodes.

These good results likely stems from the fact that this problem matches very well with the
underlying implementation of the GPI backend. Whenever a remote value is read through the
proxy container all remote values of the same node are also read, all of which are needed in the
problem. This means that all the elements in the matrix which are transfered alongside the
requested element are all used, which is unlikely to be the case given an arbitrary user-function.
Furthermore the particles are accessed from lowest to the highest index by the user-function,
which matches how they are partitioned internally by the Matrix class resulting in a high
cache hit rate. Thus this problem matches very well with the underlying design of the GPI
backend, more so than what can be expected by an arbitrary SkePU program. However it also
matches well with GPI itself as it first accesses all elements from one node and then performs

55

7.1. Results of the programs

all calculations using these elements before accessing another node. Thus the program has
overlapped its computations and communication sections in a manner which GPI needs in
order to achieve good performance. Thus to conclude the GPI backend’s performance on this
task is significantly better than what can be expected and as such should not be viewed as
representing its performance in general. Instead it can serve as a demonstration of what the
backend is capable of when its design and given program lines up.

The matrix matrix multiplication program
For this program the GPI backend performs poorly for a few nodes while also scaling worse
than the StarPU backend, essentially showing a worse performances for any amount of nodes.
Compared with the n-body problem the GPI backend performs significantly worse here despite
some similarities between the problems. In both of them the entire content of a container is
transferred to all nodes through the proxy container. The difference however lies in how the
elements are transferred, for in the matrix matrix multiplication an entire column of elements
is needed before the first element can be calculated. Assuming that #elements ≫ #nodes a
column will always be distributed over all existing nodes. Combined with the fact that remote
reads fetch all elements of the target, it results in the whole container being transfered for the
first indexed element. An aspect which was pointed out as being needed for achieving good
performance with GPI is the need for computational and communicational overlapping [37].
As such having an intensive communication phase followed by a computation phase is ill fitted
with how GPI should be used, and as such poor performance is expected.

Another issue is the cache locality of how the transferred elements are used. They are stored
in a contiguous row-wise array and hence when accessing them column-wise poor cache locality
is expected. In fact, as the size of the matrix in this problem is very large, 18000 × 18000, it
is not possible for the node to cache it in its entirety. As such whenever the second element
in a row is accessed the whole column must first be read, and by this time the row has been
removed from the cache. This thus means that every column access is a guaranteed cache
miss, heavily slowing down the execution time. This is a general problem for matrix matrix
multiplication, but the way the GPI backend stores the remote values ensures that it occurs.
If the transfers were more granular, storing only partial rows in a contiguous memory, then
a single cacheline might correspond to multiple partial rows. In this case the cache might be
able to store a few columns in the cache, which if possible would reduce the cache miss rate.
The issues here are thus two fold, firstly the transfers are too coarse and thus front-load the
communications too much. Secondly the way the transferred elements are stored is ill-suited
for the cache.

Lastly it worth noting that the this problem is difficult to handle with a simple random
access pattern such as the proxy containers Vec and Mat. As such SkePU has more specialized
ones for these cases, such as MatRow and MatCol. This comparison is done without them as
they are not implemented in the GPI prototype as mentioned in Section 4.1, but this means
that results should only be viewed relative to each other. The StarPU backend’s performance
on a matrix matrix multiplication is better than the presented execution time in this thesis as
the program itself is unoptimized and does not use all of the StarPU backend’s features.

Matrix vector multiplication program
For this problem we can see that the GPI backend scales better while the StarPU one has
a more uniform run time which is lower up to and including eight nodes. The big contrast
between them is the constant speedup for the GPI backend for every point, as shown in Figure
6.3. As mentioned in Section 2.14 the complexity of matrix vector multiplication grows in
the same order of magnitude in both the communication and the computation aspect. Hence
achieving a speedup for it is more difficult as both factors need to scale. By comparing the
speedup in the n-body problem shown in Figure 6.1 and matrix vector multiplication’s speedup

56

7.1. Results of the programs

in Figure 6.2, we can see that the speedup in the later is lower even for the GPI backend. This
illustrates how it is more difficult to achieve speedup for the matrix vector multiplication.
The StarPU backend is thus able to achieve good scaling at the matrix matrix multiplication
problem but not at the matrix vector one. This seems to indicate that its issues lie with the
communicational aspect rather than the computational one.

The design of the GPI backend matches much better with this program rather than the
matrix matrix one. It only uses local values within the vector and it reads entire rows of the
Matrix to calculate the result. As discussed in Section 4.3 a row may only be owned by at
most two nodes assuming that #elements >> #nodes. Hence, while accessing a row in the
matrix a node has to do between zero and two remote reads depending on who owns the row.
Since these calls transfer all elements from the remote node this still results in a large scale
data transfer at the start of the execution, but fewer of these transfers are done compared with
the matrix matrix multiplication program. Furthermore the transfers may be more spread out
in the matrix vector program, for example the first and last element within the same row may
be owned by different nodes. This results in this iteration having two communication phases
separated by a computational phase. Furthermore once an element has been accessed from
a remote node, no more transfers will be done from it for subsequent indexes. As such an
iteration dominated by a long communication phase may be followed by multiple iterations
without any such phase. Which in turn matches decently with the desired interleaving of GPI
and may explain why the GPI backend’s performance is notably better for the matrix vector
multiplication relative the matrix matrix one.

The Taylor program
The Taylor program’s experiment demonstrated that the GPI backend is able to perform
tasks with MapReduce which would not be possible with a map followed by a reduce. In
this experiment to store the matrix of floats with size 1011 the current GPI implementation
would require 400 GiB of main memory for each node. Even with a less memory intensive
implementation it can not avoid allocating on average 400

N
GiB given N nodes. While this is

certainly not impossible, it would either require expensive hardware for low values of N or that
the program is only executable using multiple nodes. This experiment has demonstrated that
both of these issues can be sidestepped using a MapReduce instead of a Map for the Taylor
program.

The measured execution speed of 76 minutes is much slower than what would be reasonable
for a program of such size. Hence it is likely that some unwanted effect is also being measured,
such as for example the swap speed of the virtual memory. This thus hints at a performance
issue somewhere within the Taylor program or the GPI backend itself.

The Mandelbrot program
The StarPU backend generated curious results for the Mandelbrot program as the execution
time did not scale with increased nodes. It is possible that either a bug in the program or
in the backend might have lead to this strange non-scaling and more experiments are needed
to rule out this possibility. Assuming this is not the case, another explanation would be that
the additional overhead of StarPU’s load balancer is enough to offset any gains in increased
computational power. As this issue only arises in the Mandelbrot program, which does not
include a communications phase as stated in Section 4.7, the primary scaling overhead-cost
would come from StarPU’s scheduler. Furthermore the main property which differentiates
this program from the others is its large work imbalance. For a dynamic scheduler to perform
poorly at an unbalanced task is however unexpected as it is typically one of its main strengths
as discussed in Section 2.10. However as the StarPU backend is only dynamically scheduled
internally within a node, it may still struggle with imbalances between the nodes. Regardless,
further research is clearly needed before the cause of the poor scaling is able to be determined.

57

7.2. Design and implementation

Unlike the StarPU backend the GPI one is statically scheduled which may lead to many
issues with the Mandelbrot program. Firstly, the theoretical performance of a static scheduler
on the Mandelbrot program varies significantly depending on the quality of the partitioning
of the pixels. If a set of pixels is divided into two it is possible that all of the intensive ones
end up in one of them. Which means one partition gets essentially all of the work and the
other one gets none. The partitioning of the Mandelbrot program in the GPI backend is the
same as that of the Matrix class, hence every node gets a one-dimensional contiguous row or
rows of pixels. Figure 2.9 is a lower resolution version of the image which the Mandelbrot
program works on. By observing it we can see that most rows contains pixels both in and
outside of the set except near its top and bottom. As such, the load imbalance occurs when
the amount of nodes increases enough to make some partitions primarily contain pixels at the
top and bottom of the image. Per Figure 6.4 this seems to be when N = 8 as that is when the
fastest node stops scaling meaningfully. Furthermore the partitions around the center of the
image contain a large amount of intensive pixels. By decreasing their size while keeping the
intensive to non-intensive pixels ratio the amount of work decreases as the amount of nodes
increases. This is why the program gets a speedup with increased node amount while using a
static scheduler.

The internal parallelization of the GPI backend is also static, meaning that every thread is
given a set of pixels at compile time. This is likely to lead to the same load imbalance as the
one between nodes since some threads may get many more intensive pixels than the others.
However this is not measured in any experiment and as such it is not possible to tell as to
which extent such an imbalance exists and to what degree it affects the program. An indication
of this issue is seen in the large discrepancy between the GPI backend’s performance and the
StarPU one’s when using a single node. For this the GPI backend needed 2900 seconds to
the StarPU backend’s 1500 seconds, almost doubling its execution time. While this may be
due to a work imbalance among the threads it is important to note that the StarPU backend
outperformed the GPI backend in every program when using a single node. In most of them
the discrepancy was even larger than this, in fact this relative difference is the second lowest
one after the n-body problem. As such it is not clear whether this imbalance has a significant
effect on the program’s run time or not. But regardless of if it does or not, the fact that the GPI
backend is able to achieve a speedup using a doubly static scheduler for such an imbalanced
program is unexpectedly positive. Especially considering that no speedup is guaranteed due
to the static scheduling.

7.2 Design and implementation

This section outlines strengths and weakness of the GPI backend’s implementation and design
as well as discussing how they affect the experiments. Another focal point is on how well the
design is able to utilize GPI and which changes might improve this factor.

Drift and memory consistency
The design of the GPI backend has put a significant focus on keeping the memory consistency
weak and allowing a large drift between the nodes. This is achieved with state tracking logic
using operation numbers, flush states and tracking modifying operations. As such the design
only requires synchronization after a modification has been applied to a container with an
unflushed change, thus in theory allowing for an infinitely large drift as long as a container is
not used after a transformation. This feature is important to ensure that the prototype does
not enforce data constraints which do not exist. However the reality of the experiments does
not make use of it as they are all either iterative with an implicit barrier after every iteration, or
non iterative. As such the maximal drift is at most one iteration in all of the experiments. The
motivation for this feature is for the backend to use less communication and synchronization,

58

7.2. Design and implementation

which should lead to improved performance. But as there are no experiments which evaluate
the effect of this feature it is difficult to tell what impact it had on the performance.

Communication and computation overlapping
An important aspect of the GPI backend is the overlapping of computations and communica-
tions as it is a prerequisite for GPI to outperform MPI [37]. The prototype’s design attempts
to utilize this through its random access pattern through proxy containers used in Map and
MapReduce. The effectiveness of this however largely depends on the structure of the user-
function. For example, as discussed in Section 7.1, the program based on the n-body problem
does this well whereas the matrix matrix multiplication fails to do so. The prototype’s design
thus allows for the interweaving, but the user-functions seems to determine whether it actu-
ally occurs or not. The difference between a well-fit and ill-fitted user-function is seen in the
performance difference of aforementioned programs of Section 7.1. The result of this variance
is reduced user-friendliness as it requires that the user is aware of the internal workings of
the GPI backend. In contrast to this stands the purpose of an algorithmic skeleton, which
is to abstract away hardware details as explained in Section 2.9. Thus the current design
does leverage the strengths of GPI is some cases, such as the n-body problem and to a lesser
degree the matrix vector multiplication program, and in some cases such as the matrix matrix
multiplication program it does not. By making the data transfers more granular the design
could be made more robust and difficult to front-load with communication. Such a change
would likely improve the prototype’s performance for tasks such as the matrix matrix multi-
plication program. However programs which access all elements of a node sequentially and
already do not front-load the communications may perform worse with it. They would have
to do multiple reads, which have a high upfront cost, from the same node unlike the current
implementation. Dividing the execution into more communication and computations phases
might however offset this downside even for programs which are well adapted to the current
design. However as the variance of the program’s performance is so large it seems warranted
to attempt to normalize them more. Furthermore, if such a change results in making it more
difficult to frond load the GPI backend’s communication it could also results in improved
usability.

The GPI backend has another way of accessing elements, the pre-fetch method used when
the desired elements from a remote node are known before the execution of the user-function.
This accessing pattern is also very coarse in the way that it first fetches all remote values
before starting the computational phase. Dividing the phases in this way is problematic as it
actively prevents an interweaving of computations and communications, making poor use of
GPI. A more granular, streaming based, approach of fetching a subset of the remote elements
followed by executing the index-subset and then repeating, would make much better use of
GPI. The true performance of this feature is however hard to know as it was not compared
to the random access pattern in any experiment. But as it conceptually breaks an important
aspect of GPI it can safely be assumed that it is not beneficial for the execution time.

Memory handling
As explained in Section 4.2 the prototype uses a very large amount of memory as every con-
tainer object has a communication buffer with the size of the container’s global size. This
solution is essentially a stub in order to limit the amount of functionality needed to be im-
plemented. As such it is a lacking solution if the GPI backend is to be extended beyond a
proof-of-concept implementation. The problem which this stub hides is the fact that the sizes
of GASPI segments are immutable and the amount of them is limited to 256 segments. Given
these facts, three categories of implementation are proposed:

1. Expand the communication buffer when needed through creating new segments, limiting
the backend to only handle smaller programs with a few containers.

59

7.3. Performance comparison

2. Having a global segment handler shared among all containers, which dynamically creates
segments as transfer space is needed.

3. Having a single communication buffer per container which is logically divided into ”cache
lines” storing transferred data. When the buffer becomes full previously transferred data
is ejected, thus closely mimicking a cache.

All of these come with their own strength and weaknesses. The first one is easy to imple-
ment but severely limits the use-cases of the backend. The second one comes with an overhead
cost as these segments are adapted to the current task and attempting to reuse them for other
tasks is not always possible. For example a reduce only needs N ∗ T bytes where N is the
number of nodes and T is the size of the data type being reduced. If this reduce is followed
by a large map, then the old segment is too small and a new one has to be created. Thus
it must either over-allocate, which is the primary problem of the current implementation, or
perform multiple allocations. The allocation problem is inherent to all dynamic memory sys-
tems and it comes with a trade-off between efficient memory usage and increased execution
time through multiple allocations. The third solution requires elaborate multi-threading logic
in order to determine the state of the whole buffer and to know when a cache line needs to
be ejected. However it should be able to utilize a limited amount of memory better than the
second solution, and it will also allow for more containers as it does not create new dedicated
segments for data transfers. This solution is limited by thread synchronization overhead but
may use a limited memory more efficiently than the other solutions. Thus the most promising
alternatives are (2) for most systems but (3) for systems where memory is precious. Hence,
which method would be the best fit for improving the GPI backend would depend on how it
is intended to be used. If its scope does not change then (2) would fit the best.

There are of course multiple solutions outside of these three categories, some of which are
based on external libraries or tools. In the GPI specification the developers mention that they
do not want to implement a memory management functionality as its performance would be
too dependent on the specific problem [21]. Instead they have created a different tool based on
GPI called GPISpace, which is one abstraction-layer higher and thus provides its own solution
to this problem [36]. Using GPISpace would essentially be an entire new backend of its own,
but it is worth noting that there is a solution to this problem provided by the GPI team. Any
extension of the current backend needs to handle the memory allocation issues, and as seen in
this section there are many approaches possible.

7.3 Performance comparison

The performance of the GPI backend is highly dependent on the task, however when the task
and design line up it is capable of solving a problem at almost half the time of the StarPU
backend, as shown in the n-body problem. The issue is however that the coarse data transfer
makes it easy to front-load the communications to such an extent as to reduce the performance.
As such, the GPI backend seems to have a lower execution time if this can be avoided, which is
not user-friendly as it puts an undue responsibility on the user. Furthermore the GPI backend
scales better for most of the tested problems, but the StarPU backend typically outperforms
it for a lower node amount. For example, in every problem the StarPU backend has a better
performance with one node and in all but one case with two nodes. The previously mentioned
scaling trend is most clearly shown in the matrix vector multiplication program. In it the
GPI backend achieves mediocre scaling whereas the StarPU one does not scale at all. As such
the StarPU backend starts with a significantly faster execution time, but as more nodes are
added it is surpassed by the GPI backend, as seen in Figure 6.3. These things point to a trend
where the GPI backend is more adept at executing on a large number of nodes whereas the
StarPU one uses fewer nodes more effectively. The clear outlier of the trend is the matrix
matrix multiplication program where the StarPU backend is superior with both a few and

60

7.4. Variance in execution time

many nodes. But for the matrix vector multiplication, n-body problem, and the Mandelbrot
program the trends holds.

Of particular note is the matrix vector multiplication as it is equally bound computationally
and through its communications, as explained in Section 2.14. In order to scale such a problem
both of these factors need to scale with an increased amount of nodes. Which is contrasted
with a computationally bound program such as a matrix matrix multiplication where increased
computational capacity is enough to scale the program. As the StarPU backend is able to scale
the matrix matrix multiplication but not the matrix vector multiplication it seems likely that
its bottleneck lies within its communications. This hypothesis is further strengthened by
the fact that the StarPU backend’s execution time is higher when using two nodes rather
than one for all of the tested programs. As such, the primary strength of the GPI backend
when compared to the StarPU backend seems to be its scaling potential through its different
communication schema. GPI itself is of course integral to this, hinting that it may be the
primary reason for the backend’s scaling potential.

Lastly the StarPU backend seems to struggle with its work load balance when iterations
are very uneven, as demonstrated by the Mandelbrot program. This is particularly strange
as it uses a dynamic scheduler internally but still gets out-performed by the doubly static
scheduler of GPI when using four or more nodes. Overall the potential for a bug to be the
reason for this performance needs to be considered. If this is not the case then it seems likely
that either the StarPU backend’s dynamic scheduler incurs a very high overhead cost or that
the work imbalance between its nodes prevents it from scaling.

7.4 Variance in execution time

The results presented in Section 6.6 show a very marginal variance in execution times for all
programs except the Mandelbrot one. This is expected considering the low drift potential
of the iterative programs such as the n-body problem and matrix vector multiplication. In
these every node has to communicate with other nodes and is unable to drift ahead more than
one iteration, as such the difference in execution time may not grow very large. The matrix
matrix multiplication is however done in a single iteration and in the GPI backend there is
no barrier preventing a node from finishing it earlier than another. Thus the drift in this
program is larger than for the iterative ones. The last program, the Mandelbrot one, has as
expected significantly higher variance than the other ones. Unlike the other programs it is
heavily imbalanced by design and in both backends this is illustrated. However, in the StarPU
backend even this program only makes the node’s execution speed vary by less than 1%. The
reason for this is likely that the locally dynamic scheduling of StarPU is able to better balance
its workload, which would also explain why it has a lower variance for all programs relative
to the GPI backend. However, if the StarPU backend would execute the Mandelbrot program
on more nodes, it is likely that some of the nodes would receive very little work and thus
vastly increase the variance. Apart from this, the perfectly synchronized execution speed of
the matrix vector multiplication for the StarPU backend is rather strange and likely due to
some issue within the program’s implementation or possibly even in the backend itself.

The result that the statically scheduled GPI backend has a higher variance for all programs
and node combinations is expected simply due to the different scheduling schemas. However
the execution speeds presented in previous sections indicate that in some of the runs the GPI
backend outperforms the StarPU backend, this is despite its variance always being higher. As
such it illustrates that workload imbalances and subsequent unequal execution speed among
the nodes do not necessarily mean that the system performs poorly. The overhead cost of
balancing the workload can exceed its benefit, which be a factor in the StarPU backend’s
performances on the Mandelbrot program.

61

7.5. The work in a wider context

7.5 The work in a wider context

By attempting to improve the cluster execution of SkePU this will hopefully help bridge a
gap between the different communities which SkePU caters to. The common denominator
among these are the desire to execute code in parallel but other than that, they may be very
disparate groups. Some of them may use SkePU to execute parallel CPU code, parallel GPU
code or make use of its cluster capabilities. Improving SkePU and offering a single tool for
these different usages may help unify these communities, furthering an exchange of ideas.

Apart from this the usage of GPI may help to demonstrate that there exists alternative
tools to MPI and help with creating a more diverse ecosystem of message passing techniques.
This is not strictly positive as it may make migrating and integrating different systems more
difficult as they might not use the same technique. But it may also allow for more tools to
exist which are better adapted to fit different systems and use-cases. While this project in
itself will not have such an effect, it might be part of a larger evaluation of MPI alternatives,
and possible reduce its dominating status in message passing.

Given an even wider context, the work done in this thesis aims at making it easier to use the
complex hardware of a cluster. This in turn would make computationally demanding programs
easier to write and hence accessible for more people, companies and organizations. If physics
simulations become easier to write perhaps fewer on-ground experiments are needed, in turn
reducing the monetary and environmental cost of building it. Furthermore, as simulations do
not require any real-world construction they could be run more frequently and by more people
due to their lower startup cost. Thus allowing for more competition as smaller companies
would need fewer expensive on-ground experiments. From the scientific perspective making
it easier to write cluster-code reduces the need for outside expertise in the form of a parallel
programmer, allowing the research to progress faster. Hence the consequences of easier to use
clusters is likely that more simulations are run, and hence that more solutions are able to be
considered. From a societal perspective this might be viewed as more innovations being made
quicker. However in the short-term the effects may primarily lie with increased electricity
usage and hardware tear stemming from the larger cluster usage.

62

8 Conclusion

In this section the research questions are answered and potential extensions of the thesis
presented.

8.1 Research questions

In this thesis it has been shown that the GPI backend’s ability to overlap its communication
and computation largely depends on the structure of the given user-function. An ill-fitted
user-function may front-load the communications with the random access proxy container and
as such create distinct computations and communications phases. If the prototype on the other
hand uses the other communication pattern, pre-fetch, the backend is guaranteed to not overlap
in the computations and communications. As such, it is clear that the prototype fails to have
this overlap in these cases. However, there are also cases where the prototype does manage to
achieve such an overlap, such as in the n-body problem and matrix vector multiplication. Hence
the answer to research question (2) is that the backend is able to overlap its computations
and communications, as this has been achieved in at least some cases. However, whether this
overlapping actually occurs largely depends on how a specific user-function uses the backend.
As such, while the backend is capable of overlapping its computations and communications it
is not a given, nor possible for all user-functions.

The execution time comparison between the GPI and StarPU backend does not point out
one as superior to the other. Instead what can be shown is that the StarPU backend is consis-
tently faster for fewer nodes whereas the GPI backend has better scaling potential for certain
tasks. However this scaling trend does not hold for all experiments as the StarPU backend
scales better when the program’s structure would result in front-loading its communications
in the GPI backend, such as the matrix matrix multiplication. Apart from this, heavily imbal-
anced tasks seem to favor the GPI backend despite it using a static scheduler unlike StarPU’s
locally dynamic one. As such the answer to research questions (1) is that the GPI backend
performs better relatively to the StarPU backend at tasks which do not front-load its commu-
nications, and at heavily imbalanced tasks. Furthermore the GPI backend performs poorly
when compared to the StarPU backend if only a few nodes are used. Similarly, in reference
to research question (3), we can conclude that the GPI backend scales better for tasks which
avoid front-loading and also tasks which are heavily load imbalanced.

63

8.2. Future work

8.2 Future work

The work done in this thesis provides ample opportunity for future extensions in the form
of research and improvements of the prototype. Firstly more rigorous evaluation of the GPI
backend’s internal parallelization would be of interest. Comparing the dynamic and static
scheduling schema and their performance on different tasks would allow for a more informed
decision regarding which one to use. Furthermore, the tool used in the internal parallelization
OpenMP, may be compared with other ones. As SkePU has backends for both CUDA and
OpenCL these two would be a natural choice and allow for GPU usage. The final part of such
an extension would be to attempt to use one of SkePUs single node backends for the internal
parallel execution. Possibly by having a modular approach as to which of the single-node
backends is used internally.

Another direction for future work lies with using more and different metrics to evaluate the
GPI backend. Currently the one used is execution time, but other metrics such as memory and
communications usage would help give a more detailed view of the performance. In a similar
vein adding additional benchmarks to compare the results to other than the StarPU backend
would also help outline its the strengths and weaknesses. In this thesis it may be difficult to
tell whether performance differences arise from one backend performing well or from the other
one under-performing. By using more benchmarks such as stand-alone implementation of a
specific program using MPI, the results would be more robust and comparable.

Finally the last direction for future work based on this thesis comes in the form of imple-
menting the suggested improvements highlighted within it. The largest ones being the memory
management models outlined in Section 7.2 as well as making its data transfers more granular
as discussed in Section 7.2.

64

Bibliography

[1] Thomas Alrutz, Jan Backhaus, Thomas Brandes, Vanessa End, Thomas Gerhold, Alfred
Geiger, Daniel Grünewald, Vincent Heuveline, Jens Jägersküpper, Andreas Knüpfer, et
al. “GASPI – A Partitioned Global Address Space Programming Interface”. In: Facing
the Multicore-Challenge III. Springer, 2013, pp. 135–136.

[2] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John
Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David
Wessel, and Katherine Yelick. “A View of the Parallel Computing Landscape”. In: Com-
mun. ACM 52.10 (Oct. 2009), pp. 56–67. issn: 0001-0782. doi: 10.1145/1562764.
1562783.

[3] Cédric Augonnet, Olivier Aumage, Nathalie Furmento, Raymond Namyst, and Samuel
Thibault. “StarPU-MPI: Task programming over clusters of machines enhanced with
accelerators”. In: European MPI Users’ Group Meeting. Springer. 2012, pp. 298–299.

[4] Josh Barnes and Piet Hut. “A hierarchical O (N log N) force-calculation algorithm”. In:
nature 324.6096 (1986), pp. 446–449.

[5] Holger Bischof, Sergei Gorlatch, and Roman Leshchinskiy. “Generic parallel program-
ming using C++ templates and skeletons”. In: Domain-Specific Program Generation.
Springer, 2004, pp. 107–126.

[6] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP - Portable
Shared Memory Parallel Programming. Cambridge, Massachusetts: The MIT Press, 2007.

[7] Philipp Ciechanowicz, Michael Poldner, and Herbert Kuchen. The münster skeleton li-
brary muesli: A comprehensive overview. Working Paper 7. ERCIS, 2009.

[8] Murray I Cole. Algorithmic skeletons: structured management of parallel computation.
Pitman London, 1989.

[9] HMP Couchman. “Mesh-refined P3M-A fast adaptive N-body algorithm”. In: The As-
trophysical Journal 368 (1991), pp. L23–L26.

[10] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed Systems
- Concepts and Design. 5th ed. Boston: Pearson, 2011, pp. 609–610.

[11] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

65

http://dx.doi.org/10.1145/1562764.1562783
http://dx.doi.org/10.1145/1562764.1562783

Bibliography

[12] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. “The LINPACK benchmark:
past, present and future”. In: Concurrency and Computation: practice and experience
15.9 (2003), pp. 803–820.

[13] Jack J Dongarra, Cleve Barry Moler, James R Bunch, and Gilbert W Stewart. LINPACK
users’ guide. SIAM, 1979.

[14] Johan Enmyren and ChristophW. Kessler. “SkePU: A Multi-Backend Skeleton Program-
ming Library for Multi-GPU Systems”. In: Proceedings of the Fourth International Work-
shop on High-Level Parallel Programming and Applications. HLPP ’10. Baltimore, Mary-
land, USA: Association for Computing Machinery, 2010, pp. 5–14. isbn: 9781450302548.
doi: 10.1145/1863482.1863487.

[15] Steffen Ernsting and Herbert Kuchen. “Algorithmic skeletons for multi-core, multi-GPU
systems and clusters”. In: International Journal of High Performance Computing and
Networking 7.2 (2012), pp. 129–138.

[16] August Ernstsson. Designing a Modern Skeleton Programming Framework for Parallel
and Heterogeneous Systems. 2020. doi: 10.3384/lic.diva-170194.

[17] August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and Christoph Kessler. “SkePU
3: Portable High-Level Programming of Heterogeneous Systems and HPC Clusters”.
In: International Journal of Parallel Programming (May 2021). issn: 1573-7640. doi:
10.1007/s10766-021-00704-3.

[18] J.F. Ferreira, J.L. Sobral, and A.J. Proenca. “JaSkel: a Java skeleton-based framework
for structured cluster and grid computing”. In: Sixth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID’06). Vol. 1. 2006. doi: 10.1109/CCGRID.
2006.65.

[19] Göran Forsling and Mats Neymark. Matematisk analys, en variabel. 2nd ed. Solna, Stock-
holm: Liber, Aug. 2011. isbn: 9789147100231.

[20] Tushaar Gangavarapu, Himadri Pal, Pratyush Prakash, Suraj Hegde, and V Geetha.
“Parallel openmp and cuda implementations of the n-body problem”. In: International
Conference on Computational Science and Its Applications. Springer. 2019, pp. 193–208.

[21] GASPI: Global Address Space Programming Interface - Specification of a PGAS API for
communication. Tech. rep. 17.1. Fraunhofer ITWM, Feb. 2017.

[22] Leslie Greengard. “The numerical solution of the n-body problem”. In: Computers in
physics 4.2 (1990), pp. 142–152.

[23] Daniel Grünewald. “BQCD with GPI: A case study”. In: 2012 International Conference
on High Performance Computing & Simulation (HPCS). IEEE. 2012, pp. 388–394.

[24] Daniel Grünewald and Christian Simmendinger. “The GASPI API specification and
its implementation GPI 2.0”. In: 7th International Conference on PGAS Programming
Models. Vol. 243. 2013, p. 52.

[25] Tsuyoshi Hamada, Keigo Nitadori, Khaled Benkrid, Yousuke Ohno, Gentaro Morimoto,
Tomonari Masada, Yuichiro Shibata, Kiyoshi Oguri, and Makoto Taiji. “A novel multiple-
walk parallel algorithm for the Barnes–Hut treecode on GPUs–towards cost effective,
high performance N-body simulation”. In: Computer science-research and development
24.1-2 (2009), pp. 21–31.

[26] Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, Victor Basili, Jeffrey K
Hollingsworth, and Marvin V Zelkowitz. “Parallel programmer productivity: A case
study of novice parallel programmers”. In: SC’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing. IEEE. 2005, pp. 35–35.

[27] Ivan Hristov, Radoslava Hristova, Stefka Dimova, P Armyanov, N Shegunov, I Puzynin,
T Puzynina, Zarif Sharipov, and Zafar Tukhliev. “Parallelizing multiple precision Taylor
series method for integrating the Lorenz system”. In: arXiv e-prints (2020).

66

http://dx.doi.org/10.1145/1863482.1863487
http://dx.doi.org/10.3384/lic.diva-170194
http://dx.doi.org/10.1007/s10766-021-00704-3
http://dx.doi.org/10.1109/CCGRID.2006.65
http://dx.doi.org/10.1109/CCGRID.2006.65

Bibliography

[28] Amir Kamil and Katherine Yelick. “Hierarchical computation in the SPMD programming
model”. In: International Workshop on Languages and Compilers for Parallel Computing.
Springer. 2013, pp. 3–19.

[29] Hsiang-Tsung Kung. “Why systolic architectures?” In: Computer 15.01 (1982), pp. 37–
46.

[30] Ignacio Laguna, Ryan Marshall, Kathryn Mohror, Martin Ruefenacht, Anthony Skjel-
lum, and Nawrin Sultana. “A Large-Scale Study of MPI Usage in Open-Source HPC
Applications”. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’19. Denver, Colorado: Association
for Computing Machinery, 2019. isbn: 9781450362290. doi: 10.1145/3295500.3356176.

[31] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh. “Basic
linear algebra subprograms for Fortran usage”. In: ACM Transactions on Mathematical
Software (TOMS) 5.3 (1979), pp. 308–323.

[32] Charles E. Leiserson. “Fat-trees: Universal networks for hardware-efficient supercomput-
ing”. In: IEEE Transactions on Computers C-34.10 (1985), pp. 892–901. doi: 10.1109/
TC.1985.6312192.

[33] Mario Leyton and José M Piquer. “Skandium: Multi-core programming with algorithmic
skeletons”. In: 2010 18th Euromicro Conference on Parallel, Distributed and Network-
based Processing. IEEE. 2010, pp. 289–296.

[34] Benoit B Mandelbrot. “Fractal aspects of the iteration of z→ Λz (1-z) for complex Λ

and z”. In: Annals of the New York Academy of Sciences 357.1 (1980), pp. 249–259.
[35] Peter Pacheco and Matthew Malensek. An Introduction to Parallel Programming. 2nd ed.

Cambridge, Massachusetts: Morgan Kaufmann, 2020, p. 49. isbn: 978-0-12-804605-0.
[36] Tiberiu Rotaru, Mirko Rahn, and Franz-Josef Pfreundt. “MapReduce in GPI-Space”.

In: Euro-Par 2013: Parallel Processing Workshops. Ed. by Dieter an Mey, Michael
Alexander, Paolo Bientinesi, Mario Cannataro, Carsten Clauss, Alexandru Costan, Ga-
bor Kecskemeti, Christine Morin, Laura Ricci, Julio Sahuquillo, Martin Schulz, Vittorio
Scarano, Stephen L. Scott, and Josef Weidendorfer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 43–52.

[37] Faisal Shahzad, Markus Wittmann, Moritz Kreutzer, Thomas Zeiser, Georg Hager, and
Gerhard Wellein. “PGAS implementation of SpMVM and LBM using GPI”. In: 7th
International Conference on PGAS Programming Models. University of Edinburgh, 2013,
pp. 172–184.

[38] J. L. Sobral and A. J. Proenca. “Enabling JaSkel skeletons for clusters and computational
Grids”. In: 2007 IEEE International Conference on Cluster Computing. 2007, pp. 365–
371. doi: 10.1109/CLUSTR.2007.4629251.

[39] Volker Strassen. “Gaussian elimination is not optimal”. In: Numerische mathematik 13.4
(1969), pp. 354–356.

[40] Xian-He Sun and Lionel M Ni. “Another view on parallel speedup”. In: Proceedings of
the 1990 ACM/IEEE conference on Supercomputing. 1990, pp. 324–333.

[41] A. M. Turing. “On Computable Numbers, with an Application to the Entscheidungsprob-
lem”. In: Proceedings of the London Mathematical Society s2-42.1 (Jan. 1937), pp. 230–
265. issn: 0024-6115. doi: 10.1112/plms/s2-42.1.230.

[42] CR Wan and David J Evans. “Nineteen ways of systolic matrix multiplication”. In:
International journal of computer mathematics 68.1-2 (1998), pp. 39–69.

[43] Michael S Warren and John K Salmon. “A parallel hashed oct-tree n-body algorithm”.
In: Proceedings of the 1993 ACM/IEEE conference on Supercomputing. 1993, pp. 12–21.

67

http://dx.doi.org/10.1145/3295500.3356176
http://dx.doi.org/10.1109/TC.1985.6312192
http://dx.doi.org/10.1109/TC.1985.6312192
http://dx.doi.org/10.1109/CLUSTR.2007.4629251
http://dx.doi.org/10.1112/plms/s2-42.1.230

Bibliography

[44] Xiong Zheng and Vijay Garg. “An optimal vector clock algorithm for multithreaded sys-
tems”. In: 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). IEEE. 2019, pp. 2188–2194.

68

	Abstract
	Acknowledgments
	Contents
	Introduction
	Motivation
	Aim
	Research questions
	Delimitations
	Structure of this thesis

	Background
	Flynn's taxonomy
	Memory models, fork-join and SPMD
	Computer clusters broadly
	Cluster architecture
	Speedup and linear scaling
	Amdahl's law
	Data containers
	Computational patterns
	Algorithmic skeletons
	OpenMP and scheduling
	Message Passing Interface (MPI)
	GASPI and GPI
	StarPU
	Problem types used by the benchmark programs
	Related work

	SkePU
	Purpose and usage
	Features and algorithmic skeletons

	Design and implementation
	Prototype feature delimitations
	Design
	Matrix
	Map
	Reduce
	MapReduce
	Benchmark programs

	Method
	The Sigma and Tetralith cluster
	Installation and compilation
	Creating the measurements

	Results
	The n-body problem
	Matrix matrix multiplication
	Matrix vector multiplication
	The Mandelbrot Program
	The Taylor program
	Variance in execution time

	Discussion
	Results of the programs
	Design and implementation
	Performance comparison
	Variance in execution time
	The work in a wider context

	Conclusion
	Research questions
	Future work

	Bibliography

