EXAMENSARBETE INOM TEKNIK,
££Q§§% GRUNDNIVA, 15 HP
) 9

FKTHS

STOCKHOLM, SVERIGE 2021

VETENSKAP
28 OCH KONST 2%

eos®

Comparing database
optimisation techniques in
PostgreSQL

Indexes, query writing and the query optimiser

ELIZABETH INERSJO

KTH
SKOLAN FOR ELEKTROTEKNIK OCH DATAVETENSKAP

© 2021

| 1

Abstract

Databases are all around us, and ensuring their efficiency is of great importance.
Database optimisation has many parts and many methods, two of these parts
are database tuning and database optimisation. These can then further be split
into methods such as indexing. These indexing techniques have been studied
and compared between Database Management Systems (DBMSs) to see how
much they can improve the execution time for queries. And many guides
have been written on how to implement query optimisation and indexes. In
this thesis, the question "How does indexing and query optimisation affect
response time in PostgreSQL?" is posed, and was answered by investigating
these previous studies and theory to find different optimisation techniques and
compare them to each other. The purpose of this research was to provide
more information about how optimisation techniques can be implemented
and map out when what method should be used. This was partly done to
provide learning material for students, but also people who are starting to
learn PostgreSQL. This was done through a literature study, and an experiment
performed on a database with different table sizes to see how the optimisation
scales to larger systems.

What was found was that there are many use cases to optimisation that
mainly depend on the query performed and the type of data. From both the
literature study and the experiment, the main take-away points are that indexes
can vastly improve performance, but if used incorrectly can also slow it. The
main use cases for indexes are for short queries and also for queries using
spatio-temporal data - although spatio-temporal data should be researched
more. Using the DBMS optimiser did not show any difference in execution
time for queries, while correctly implemented query tuning techniques also
vastly improved execution time. The main use cases for query tuning are for
long queries and nested queries. Although, most systems benefit from some
sort of query tuning, as it does not have to cost much in terms of memory or
CPU cycles, in comparison to how indexes add additional overhead and need
some memory. Implementing proper optimisation techniques could improve
both costs, and help with environmental sustainability by more effectively
utilising resources.

Keywords

PostgreSQL, Query optimisation, Query tuning, Database indexing, Database
tuning, DBMS

Sammanfattning | 2

Sammanfattning

Databaser finns overallt omkring oss, och att ha effektiva databaser dar mycket
viktigt. Databasoptimering har ménga olika delar, varav tvéd av dem &r databas-
justering och SQL optimering. Dessa tvd delar kan dven delas upp i flera
metoder, sd som indexering. Indexeringsmetoder har studerats tidigare, och
dven jamforts mellan DBMS (Database Management System), for att se
hur mycket ett index kan forbittra prestanda. Det har dven skrivits manga
bocker om hur man kan implementera index och SQL optimering. I denna
kandidatuppsats stills frigan "Hur péverkar indexering och SQL optimering
prestanda i PostgreSQL?". Detta besvaras genom att undersoka tidigare experi-
ment och bocker, for att hitta olika optimeringstekniker och jamfora dem med
varandra. Syftet med detta arbete var att implementera och kartldgga var och
nir dessa metoder kan anvindas, for att hjilpa studenter och folk som vill ldra
sig om PostgreSQL. Detta gjordes genom att utfora en litteraturstudie och ett
experiment pa en databas med olika tabell storlekar, for att kunna se hur dessa
metoder skalas till storre system.

Resultatet visar att det finns manga olika anvindingsomraden for optimer-
ing, som beror pd SQL-frdgor och datatypen i databasen. Fran bade litteratur-
studien och experimentet visade resultatet att indexering kan forbéttra prestanda
till olika grader, i vissa fall vildigt mycket. Men om de implementeras fel
kan prestandan bli vérre. De huvudsakliga anvindingsomradena for indexering
ar for korta SQL-fragor och for databaser som anvinder tid- och rum-data
- dock bor tid- och rum-data undersdkas mer. Att anvinda databassystemets
optimerare visade ingen forbittring eller forsdmring, medan en korrekt omskriv-
ning av en SQL friga kunde forbittra prestandan mycket. The huvudsakliga
anvindi-ngsomradet for omskriving av SQL-fragor dr for langa SQL-fragor
och for nestlade SQL-fragor. Dock si kan ménga system ha nytta av att skriva
om SQL-fragor for prestanda, eftersom att det kan kosta véldigt lite nér det
kommer till minne och CPU. Till skillnad frén indexering som behdver mer
minne och skapar sd-kallad 6verhead". Att implementera optimeringstekniker
kan forbittra bade driftkostnad och hjidlpa med hallbarhetsutveckling, genom
att mer effektivt anvinda resuser.

Nyckelord

PostgreSQL, SQL optimering, DBMS, SQL justering, Databasoptimering,
Indexering

Acknowledgements | 3

Acknowledgements

I would like to thank Leif Lindbéck, the supervisor for this thesis, for making
this thesis possible. You helped me a lot with the planning and narrowing
down of the ideas, as well as provided me with an examiner.
I also would like to thank Thomas Sjoland for agreeing to be my examiner.
Lastly, I would like to thank my friend for helping me by answering
questions about report structure, and proofreading.

Thank you.

CONTENTS |4

Contents

1 Introduction 1
1.1 Background 2
1.2 Problem 3
1.3 Purpose 3
1.4 Sustainability and ethics 4
1.5 Research Methodology 4
1.6 Delimitations 4
1.7 Structure of the thesis 5

2 Background 6
2.1 Database systemso 6

2.1.1 Relational databases 6
2.1.2 Database management systems 7
2.2 Structured query language 8
2.2.1 Relational algebra 8
222 PostgreSQL 9
223 Queries e 10
2.2.4 Views and materialised views 11
2.3 Databasetuning 11
2.3.1 Database memory 11
232 Indexing 14
233 Indextypes 16
234 Tuning variables 21
2.4 Query optimisation 22
24.1 The query optimiser 23
2.4.2 The PostgreSQL optimiser 23
25 Relatedworks Lo 26

2.5.1 Database performance tuning and query
optimization Lo 26

CONTENTS |5

2.5.2 Database tuning principles, experiments, and troubleshooting

techniques 27
2.5.3 PostgreSQL query optimization: the ultimate guide to
building efficient queries 30
2.5.4 Comparison of physical tuning techniques
implemented in two opensource DBMSs 33
2.5.5 PostgreSQL database performance optimization 33
2.5.6 MongoDB vs PostgreSQL: a comparative study on
performance aspects 34
2.5.7 Comparing Oracle and PostgreSQL, performance and
optimization 35
2.5.8 Space-partitioning Trees in PostgreSQL.:
Realization and Performance 35
3 Method 37
3.1 Researchmethods 37
3.1.1 Quantitative and qualitative methods 37
3.1.2 Inductive and deductive approach 38
3.1.3 Subquestions oL 38
3.2 Applied methods and research process 39
3.2.1 Thechosenmethods 39
322 Theprocesso vt 40
3.23 Qualityassurance 41
4 Experiment 42
4.1 Experimentdesign, 42
4.1.1 Hardware 42
4.1.2 Docker and the docker environment 43
4.1.3 Othersoftware 44
414 Methodandpurpose 44
4.1.5 Databasedesign 44
416 Queries e 47
4.1.77 Improved queries 49
4.1.8 Keys and indexing structure 50
4.19 The experimenttests 51
5 Results and Analysis 52
5.1 Literature studyresult 52
5.1.1 Theory 52

5.1.2 Otherexperiments 56

5.2.1
6 Discussion
6.1 The result
6.1.1
6.2.1
6.2.2 Sources of error
6.3 Limitations
6.4 Sustainability
7 Conclusions and Future work
7.1 Conclusion
7.1.1
7.2 Future work
7.3 Reflections
7.3.1
7.3.2
References
A The database schema
B The script template
C Indexes
D Detailed graphs
D.0.1
D.0.3 Hash index
D.0.4 B-tree index
E EXPLAIN output
F Database link

5.2 Results

Reliability Analysis
6.1.2 Dependability Analysis
6.1.3 Validity Analysis
6.2 Problems and sources of error

Answering the subquestions
7.1.2 The research question

Thoughts about the work

Baseline test
D.0.2 Improved queries

Contents |6

80
85
89

91

LIST OF FIGURES |7

List of Figures

1.1 The three tier database design. 2
2.1 AB-treeindex. Lo oo 17
2.2 Hashindex. 18
2.3 Table of collected data for execution time of queries with and
withoutindexes. L. 34
3.1 Flowchart of the method. 40
4.1 Comparison of containers and virtual machine. 43
4.2 The IMDb-database table relations. 46
4.3 The table sizes in the database. 47
5.1 Execution time comparison for query 1 versions. 58
5.2 Execution time comparison for query 2 versions. 59
5.3 Execution time comparison for query 3 versions. 60
5.4 Execution time comparison for query 4 versions. 61
5.5 Execution time comparison for query 5 versions. 62
D.1 Execution time forquery 1. 93
D.2 Executiontime forquery 2. 94
D.3 Executiontime forquery 3. 94
D.4 Execution time forquery 4. 95
D.5 Execution time forquery 5. oL 95
D.6 Execution time for the improved query 1. 96
D.7 Execution time for the improved query 2. 97
D.8 Execution time for the improved query 3. 97
D.9 Execution time for the improved query 5. 98
D.10 Execution time for query 3 with Hashindex. 99
D.11 Execution time for query 3 with B-tree. 100

D.12 Execution time for the B-tree index implemented for query 1. . 101

LIST OF FIGURES | 8

D.13 Execution time for the B-tree index implemented for query 2.
D.14 Execution time for the B-tree index implemented for query 3.
D.15 Execution time for the B-tree index implemented for query 4.
D.16 Execution time for the B-tree index implemented for query 5.

. 102
. 102
. 103
. 103

List of acronyms and abbreviations |9

List of acronyms and abbreviations
BRIN Block Range Index

CD Compact Disk

CPU Central Processing Unit

DAG Directed A-cyclical Graph
DBMS Database Management System
DDL Data Definition Language

DML Data Management Language

GIN Generalised Inverted Index

GiST Generalised Search Tree
HDD Hard Disk Drive

I/O Input/Output

ID Identity Document

MCV Most Common Value

MVCC Multi-Version Concurrency Control
RAM Random Access Memory

SP-GiST Space Partitioned Generalised Search Tree
SQL Structured Query Language

SSD Solid State Drive

Introduction | 1

Chapter 1

Introduction

Traditionally, a database is a collection of related data that has inherent
meaning. What does this mean? For example, in a university, the database
keeps track of all the students registered to the university, their courses, and
other things related to the students and the university. This data can be stored
in different ways, like in a file or an excel sheet. Therefore, the database is the
information in it, and what the data’s value is in the real world [1, pg.3]. The
database needs to represent aspects of the real world. These aspects that build
up the database are called a miniworld. Changes that happen in the miniworld
need to be reflected in the database. The database also has other defining
traits such as the data it contains need to have logical coherence and inherent
meaning. As well as a purpose. A database cannot exist without being used,
as its purpose is to store data that can be retrieved, and for the database to have
meaning it needs to reflect changes that happen to its miniworld [1, pg.4-5].
Databases have had and continue to have an important role in many areas
that involve computers. It can even be said that databases have had a major
impact on the growth of computer usage [1, pg.3-4]. They are used in many
areas, such as business, social media, and medicine as a notable few. Even
normal everyday actions like bank transactions or shopping most likely have
a database backing them. For example by subtracting from shelf-inventory
in the store at check-out or accessing your bank account to see how much
money you have on your card. Another example of how prevalent databases
are in our everyday life is that most websites have a database backing them.
This can be explained by the three-tier model, the client tier, which contains
the internet, applications, and the users. The middle tier, which contains
webservers, scripts, and a scripting engine. And the database tier, which
contains the database and the DBMSs (Database Management System) which

Introduction | 2

Tier 0 | Tier 1 | Tier 2
1 1
| |
I I
1 1
I I
Request Request Request Exscute
. ! Application ! Data
Client Re_ sult p;! erver R:.sult Server RetmResut | DBMS

I

!

I

: Database Management
I System
!
1
I
1
I

Figure 1.1: The three tier database design.
[3]

is used to handle the database [2]. The three-tier architecture can be seen in
Figure 1.1.

What does this look like in practice? Whenever a user requests a website,
the request gets sent to the webserver that requests the database to retrieve
or operate on necessary data, and then finally display the results to the user
[2]. Applying this logic to a social media application, logging into an account
requires access to a database, loading the post history, or even message history
also needs access to a database. The database is used to store the related data
and efficiently retrieve it [1, pg.4].

1.1 Background

Now that it has been concluded that databases are all around us and used in
variety of situations, it would be very noticeable if they were slow. This is
due to how it takes just three seconds for users to drop a website if it’s still
loading, according to Sitechecker [4], which is a company that offers resources
to analyse statistics on web pages. Their target audience is other companies
that have some type of web traffic to monitor, and offer customer stories and
ratings to prove that the product they are selling is reliable.

Databases are often connected to applications - which are called database
applications [1, pg.9] - such as for social media. As development has brought
us faster and faster internet, internet speed can no longer be blamed for slow

Introduction | 3

access to information [5]. Therefore, it is important to maintain efficient
software, to have speedy responses for a good user experience. But how do
we optimise database systems for efficiency? And what is a database system?

A database system is the combination of a database and a DBMS. The
DBMS is a database software program that is often used to control the database
[6]. It generally serves as an interface between the database and its users
by performing the needed operations on the database and then presenting the
result. It is in the DBMS that performance monitoring and tuning takes place
to optimise the database. The DBMS uses Structured Query Language (SQL)
queries to communicate with the database from the user interface [6]. The two
main categories of database system optimisation are database tuning, which
deals with the database hardware and design. As well as query optimisation,
which mostly deals with ensuring how queries are performed in the database,
which is why knowledge over SQL is important [1, pg.541, 655].

1.2 Problem

There are several methods to optimising a database system, as stated in the
introduction, ensuring efficiency and speed is important for many different
reasons. But as there are many methods of optimisation, which ones should
be used? That is a question that this thesis aims to provide a starting point
for. Having a compiled document with methods, their use cases, and how
efficient they are in practice could simplify the process of choosing methods.
PostgreSQL specifically is a popular open-source DBMS and providing more
information to the community could be valuable.
The research question is as follows:

* How do indexing and query optimisation affect response time for a
PostgreSQL database?

1.3 Purpose

The purpose of this report is to describe and compare different methods for
optimising database systems. The purpose of the project is to develop an
understanding of how database tuning and query optimisation operate. It is
also to create material that can be used for teaching purposes in database
courses. This report should be able to lie as a starting point for further
experimentation and research.

Introduction | 4

1.4 Sustainability and ethics

It can be argued that optimising a database system has an environmental effect
as it reduces the resources a database uses. Shorter response time and efficient
use of hardware lead to lessening the total computing time and could reduce
the wear on hardware as well as a reduction in energy usage.

An ethical problem that is related to database efficiency, is the potential
that people more easily can manage to compile data from different data sets.
This can then be presented or used to discern information that causes privacy
issues.

1.5 Research Methodology

Firstly, a literature study is performed to identify methods for database tuning
and query optimisation, and their different use cases. As well as to find
research that also does these comparisons, to have as a basis for the experiment
and conclusions. The study is of qualitative nature, as information that is
chosen to be presented is based on what can be found, some areas might have
more information and some less. Every source was carefully examined for
relevance and trustworthiness.

After that, the experiment is planned, in part using the information found
in the literature study so that a meaningful comparison can be made. The use
cases for the methods are analysed to see if there is an overlap. Lastly, data is
obtained for evaluating the methods by performing an experiment. The result
is compared to the results from the literature study and is compiled in a way
that answers the research question.

1.6 Delimitations

Only a couple of optimisation methods are chosen to study in detail, these
methods are chosen based on the availability of information and the delimita-
tions of the performed experiment. The chosen areas are database indexing -
where indexes are chosen based on the available data - using the PostgreSQL
optimiser, as well as query tuning.

The delimitations of the experiment are to use PostgreSQL for the database
system and as a query language, the methods evaluated are limited to software
improvement. The database has a simple design but contains much data, and
the number of queries, indexes, and query improvements are based on the

Introduction | 5

information found, and limited to a couple of methods. The chosen methods
are based on found information and best suited for the data types used in the
database. These delimitations are chosen to get precise data and to ensure that
the project will be finished in the amount of time specified for it.

1.7 Structure of the thesis

Chapter two presents the relevant theoretical background to understand the rest
of the report. As well as introduces the findings from related studies.

Chapter three describes the research methods used.

Chapter four describes the experiment parameters and how it was performed.
Chapter five compiles the results for the experiment and the literature study.
Chapter six discusses the result and the evaluation of the result and methods.

Chapter seven contains the conclusion, answers to the research question posed,
and reflections about the work.

Background | 6

Chapter 2

Background

This chapter provides the basic information needed to understand the rest of
the report, as well as some related works for the literature study. It starts
with briefly going over some basics for SQL and database systems and then
moves on to describing memory aspects of database and indexes to provide
a background for tuning. As well as explaining what query optimisation is,
before moving on to the related works.

2.1 Database systems

The introductory chapter briefly describes a database system as the combination
of a DBMS and the database. The more detailed description of its parts is as
follows.

2.1.1 Relational databases

A relational database stores and organises data in tables that are linked based
on related data. The purpose of this is to ensure the ability to create a new
table from data in multiple tables with a single query. It can also help with
understanding how data is related, which could lead to improving decision-
making and help identify opportunities. The tables consist of fields (columns)
and the set of related data (rows) [7].

The main benefit of using relational databases is that it reduces redundancy
and through that reduces the risk for insert, update, and delete anomalies.
Reduced redundancy means that, in many cases, information only appears
in one table and only once. Reducing redundancy often happens during
the planning stages of a database, and is done by a database designer. The

Background | 7

process of doing this is called normalisation. The database designer often
uses database schemas to start off building the database. A database schema
is the structure of the database defined by formal SQL [7].

2.1.2 Database management systems

The DBMS is a program that is used to create and maintain a database. It also
simplifies the process of defining, manipulating, and sharing a database with
multiple users and applications. Defining the database specifies the constraints
around it. What data types? What data structures are involved? What are
some data constraints? Are all questions that are asked during this stage of
the process. This information is generally stored as meta-data in the DBMS’s
catalogue - which is used by the DBMS software and database users to get
information about the database’s structure. This is done because of how a
general-purpose DBMS is not customised for a database application, so the
software needs to refer to the meta-data to find out what the structure is like.
Constructing the database means storing data in a way that the DBMS can
control, and sharing the database means that multiple users and/or applications
can access and use the database concurrently [1, pg.5-10]. Other aspects that
define a DBMS are insulation and the ability to have multiple views over the
data. Insulation is an aspect that ensures that the structure of data - that
is stored by the DBMS - when changed, does not affect how the program
works. This is called program-data independence. The ability to have multiple
views over data means that data from tables can be manipulated and put
together with other tables to create other views over it. Another important
database definition is the ability to reduce redundancy. Although in some
cases, controlled redundancy can be used to improve query performance. The
act of reintroducing redundancy into a database is called denormalisation [1,
pg.10-12, 18].

The DBMS is what is used to optimise the database. This can be done
through the handling of effective query processing - i.e how queries are
executed and how data is fetched etc. Tuning hardware and creating indexes is
done because of how the database often is stored on disk. This means that the
DBMS needs to use special data structures, data types, and search techniques
to quickly find the data that the query is requesting. The most common way
to do this is by using indexes, as when a query is executed data needs to be
retrieved from disk to main memory for processing. The entire purpose of
indexes is to improve the search process for finding and retrieving data. There
are other ways to improve this as well, such as by tuning the hardware or

Background | 8

switching to more efficient parts. For example, the DBMS often uses caching
and buffers to improve performance. Caching means that the data retrieved
from disk is stored for a while - there are different methods to decide for how
long - with the prediction that it might be used again. This speeds up the
process as if the cached data gets used again the Central Processing Unit (CPU)
does not need to wait for retrieval from disk and can just use the cache instead.
The buffer helps to pipeline the process of retrieving data from disk to main
memory, it ensures that while the CPU works on data, the next data set can
get loaded into the buffer, so when the CPU is done it can immediately get the
new data. This is especially helpful if more data needs to be fetched than what
can fit in main memory [1, pg.20, 541-558].

The DBMS consists of multiple parts. One of them is the query optimiser,
which ensures that an appropriately effective execution plan is chosen for every
query, based on some variables, such as storage system and indexes. The
execution plan is the code that is built for the query, which decides what order
different aspects of the query get executed in [1, pg.655-658]. This will be
described further later on in this chapter.

2.2 Structured query language

SQL is the standard language for a relational DBMSs. It is a database language
that has statements for data definitions, queries, and updates, hence it is both
Data Definition Language (DDL) and Data Management Language (DML) [1,
pg.178]. DDL means that the query language can deal with database schemas,
their descriptions, and how the data resides in the database. DML on the other
hand deals with the manipulation of data in the database, it consists of the most
common SQL operations [8]. The query language is used to build the database
schemas, query the relational database, and manage the database [1, ch.6].

A database schema describes the organisation and structure of the database.
It contains all the database objects, such as tables, and can be visualised as
the tables, their attributes, and how they are related to each other. In some
DBMSs a database and a schema are equivalent and in others it is not [9]. A
good comparison for this can be that the database schema can be seen as a java
class, while the database objects are the methods in the class.

2.2.1 Relational algebra

Relational algebra provides a formal foundation for the relational model
operations and is used as a basis to implement and optimise queries. It defines

Background | 9

a set of operations that can be used on a relational model. Most relational
systems are based on relational algebra and some concepts are defined in
SQL. Therefore, a query can be translated into a sequence of relational algebra
operations, also called a relational algebra expression [1, ch.8].

It is assumed that the readers are familiar with relational algebra, which
means the report will not go into detail about it.

2.2.2 PostgreSQL

PostgreSQL is an open-source object-relational database system that uses
SQL, and offers features such as foreign keys - reference keys that link tables
together - updatable views and more [10]. Views will be described in the next
subsection.

PostgreSQL can also be extended by its users by adding new data types,
functions, index methods, and more [10]. Its architecture is a client/server
model, and a session consists of a server process - that manage database
files, accepts connections to the database from the client-side, and performs
database operations requested by the clients. And the client application that
requests database actions for the server to perform. Like a typical client/server
application, the server and client do not need to be connected to the same
network and can communicate through normal internet procedures. This is
important to keep in mind as files on the client-side might not be accessible
on the server-side. PostgreSQL can handle multiple client connections to its
servers [11] as most servers can.

Earlier it was mentioned that PostgreSQL is a relational database manage-
ment system. This means that it is a system for managing data stored in
relations - the mathematical term for a table. There are multiple ways of
organising databases [12], but relational databases are what is the focus of
this report. Each table in a relational database system contains a collection
of named rows, and each row has a collection of named columns that contain
a specified data type. These tables are then grouped into database schemas.
There can be multiple databases in one server, just like there can be multiple
schemas in a database. A collection of databases managed by one PostgreSQL
server is called a database cluster [12]. Another aspect of PostgreSQL is that it
supports automatic handling of foreign keys, through accepting or rejecting the
value depending on its uniqueness. This means that PostgreSQL will warn if
the value in the foreign key column is not unique, which is done to maintain the
referential integrity of the data. The behaviour of the foreign key can be tuned
to the application by the developer [13], this can be done through specifying

Background |10

deletion of referenced objects, the order of deletion, and other things [14].

2.2.3 Queries

Here some query concepts used in the experiment will be explained.

Query operations

Two of the query operations that are used in the experiment need some closer
examination. The LIKE and IN operations. To do this, the PostgreSQL
tutorial’s website is used. PostgreSQL tutorial is a website dedicated to
teaching PostgreSQL concepts. They show examples and explanations of how
to use operations and build a database [15].

The LIKE operation is used to pattern match strings to each other. This
can be done using wildcards, which in PostgreSQL is "%’ for any sequence
of characters and ’_’ for any single character. A wildcard is used for pattern
matching, as stated before. For example, matching the string Jen%’ could
give any string that starts with *Jen’. While using ’Jen_’ could match any
string starting with Jen’ and then a single character after [16].

The IN operator is used to match any string within a list of values. It does
this by returning true if the comparing string matches one of the stated values
in the IN operation. It is the equivalence of using equals and OR operations,
although PostgreSQL executes the IN queries faster than the OR queries [17].

Nested queries

A query that executes multiple queries in one contains an inner query - also
called a subquery - and an outer query [18]. Often these types of queries can
be split into multiple separate queries. PostgreSQL executes these queries by
first, executing the inner query, then getting the result and passing it to the
outer query. Lastly, it executes the outer query [18].

A correlated inner query is evaluated for each row that is processed by the
outer query, which differs from how a normal nested query executes according
to Geeks for Geeks, a website dedicated to learning programming languages
through examples [19]. As mentioned in the paragraph earlier, in a normal
nested query the inner query gets executed first and then the outer query. It
can also be said that the correlated query is driven by the outer query as the
result of the inner query is dependent on the outer query [19]. This works
similarly to how nested loops work in any other programming language.

Background | 11

2.2.4 Views and materialised views

A view is a named query that is often useful to have for queries that are run
often. It is a key aspect of a good SQL database design. Views can be used
in almost any place a real table can, and it is possible to build multiple views
on each other [20]. Although, it is important to note that views are not stored
as tables, and are instead stored as references to the queries. This means that
every time a view is called on, the query that it is based on is executed [21].

The materialised view uses the same system as a view does but stores the
result like a table. The main difference between a materialised view and a table
is that the materialised view cannot be updated. Instead, the query that creates
the materialised view is stored, so that it can be refreshed when the data needs
to be updated. The data is often faster to access through a materialised view
than a table, which can be useful in many cases even if the data is not entirely
up to date [22].

2.3 Database tuning

The goal of database tuning is to dynamically evaluate the requirements -
sometimes periodically - and to reorganise indexes and the file order to gain the
best over-all performance. This makes changes to the database and its structure
through normalisation or denormalisation, indexes, and the hardware aspect
of the database - such as how files are physically ordered on disk, optimising
Input/Output (I/O) operations, hardware upgrades et cetera [1, pg.459-461,
640].

Normalisation, denormalisation, and some aspects of hardware are outside
of the scope of this report and will not be discussed further but some memory
aspects are important to be aware of, this is discussed in the next subsection.

2.3.1 Database memory

A database is often too large to store in main memory, thus to manage
performance a basic understanding of how database hardware works are
necess-ary. The memory structure of a database is usually separated into
three parts [1, pg.542]. The primary storage, which is what the CPU uses
when executing operations. The secondary storage most usually consists
of Hard Disk Drives (HDDs) or Solid State Drives (SSDs), and lastly the
tertiary storage, which is offline storage such as Compact Disks (CDs) and
magnetic tapes. The most important aspect for optimisation of memory access

Background |12

is bringing data to the primary storage from the secondary storage, for the
execution of operations on the database. In some cases, a database can be
stored in the primary memory - a so-called main memory database - this
is often done for real-time applications. But because databases often store
persistent data, some of which needs to be read or handled multiple times
while it is stored, it needs to use secondary storage. The databases are also
generally too big to store on a single disk which means that multiple disks need
to be used, and the benefits of secondary storage hardware often outweigh the
benefits of the primary storage ones [1, pg.542-544].

Typically, the database application only needs small amounts of data to
process from the database, hence, the data needs to be accessed on disk and
effectively moved to main memory to increase the speed of execution. As
mentioned earlier this is partly done through hardware by the use of buffers,
as there is a noticeable difference between how quickly the CPU can process
data and the moving of data from disk to main memory. Other ways to do this
require a basic understanding of how the data is stored in the database and the
hardware.

The data on disks are stored as something called files of records, in which a
record is a set of data values that describe entities, their attributes, and relations
-i.e atable [1, pg.560]. Files of records are often stored in data blocks - also
called a page - which are fixed sizes of storage on a disk. This is important
to note as the transmission of data from disk to main memory usually is done
on a per-block basis. By physically storing data in contiguous blocks on disk
performance can be improved as it puts related data near each other, which can
prevent the arm on the disk (HDD) from having to move longer distances. This
can be further improved by prediction, which is done through reading multiple
blocks of data at once and putting it in main memory. This can reduce the
search time on disk access. It only works if the application is likely to need
consecutive blocks and the ordering of the file organisation allows it, though
[1, pg.561-563].

How files are ordered in memory can be done in different ways. Storing
the files in a specific order is called the file organisation [23], and it can be
described as the auxiliary relationship between the records that build up the
file. It is used to identify and access any given record [1, pg.545-546]. In the
database, there are two ways to store files, the primary file organisation and
the secondary file organisation. The primary file organisation decides how
file records are physically placed on disk. This is done by using different data
structures such as heaps, hash structures, and B-trees. For example, a heap file
would not store the records in any particular order and instead place them as a

Background |13

heap would order them. Unlike the primary file organisation, the secondary file
organisation is a logical access structure that improves the access to file records
based on other fields than what is used for the primary file organisation. This
is often done through indexing [1, pg.545-546, 604-611].

There can be different types of records in a file, the type is decided by
the collection of field names and their corresponding data types contained in
the record. This means that records in files can be constant or of variable
length. If a file has variable length records it can affect indexing and search
algorithms efficiency. This is due to the way files consist of sequences of
records. By having a constant length on records it is simpler to calculate the
start of each field in a record based on the relative starting point of the record
in the file. Therefore, algorithms handling variable-length records often need
to be more complex, which can affect the speed of execution [1, pg.560-561].
The different ways of how variable-length files can look are as follows:

* The file record is of the same type but one or more of the fields have
different sizes.

* The file record is of the same type but one or more of the fields have
multiple values for each record, this is called a repeating field.

* The file record is of the same type but one or more of the fields are not
mandatory.

* The file contains one or more records of different record types, this leads
to the records being of different sizes. This often happens in clusters of
related records.

[6, pg.]60-5611

As mentioned earlier, there are heap files and ordered files, which are the
main ways of storing records on a file. The heap files store records in a heap
structure, while the ordered files can use many different data structures for
storage. The main benefit of using ordered files is that other search algorithms
than linear search can be used when searching for a record. Although, ordered
files are rarely used unless a primary index is implemented [1, pg.567-572].
The main data structures implemented for ordered files are hash tables, hash
maps, and B-trees, which each have their pros and cons and are chosen
depending on what the file is used for [1, pg.583]. These data structures are
described in more detail later on in this chapter.

Background | 14

2.3.2 Indexing

An index is a supplementary access structure. It is used to quickly find and
retrieve a record based on specified requirements. They are stored as files on
disk and contain a secondary access path to reach records without having to
physically order the files [1, pg.601-602]. Without an index, a query would
have to scan an entire table to find the entries it is searching for. In a big table,
having to go through every element sequentially would be very inefficient,
especially in comparison to using an index. For example in a b-tree index, the
search would only need to go a couple of levels deep in the tree [1, pg.601-
602]. The index is handled by the DBMS in PostgreSQL. Which in part
handles the updates for the index when a table changes. The downside to
using indexes is that updating them as the tables change adds an overhead to
the data manipulation operations. This means that updating a table indirectly
adds to the execution time of the data manipulation operations [24], which is
an important aspect to keep in mind when deciding if an index should be built
on a table or not [1, pg.601].

The indexes are based on an index field, which can be any field in a file or
multiple fields in the file. Multiple indexes can also be created on the same
file. As mentioned earlier, indexes are data structures used to improve search
performance. Therefore, many data structures can be used to construct them.
The data structure is chosen depending on many different factors. One such
factor is what queries are predicted to be used on the index. Indexes can be
separated into two main areas, single-level indexing and multilevel indexing
[1, pg.601], which will be described below.

Single-level indexes

Single-level indexing using ordered elements has the same idea as a book
index, which has a text title and the page it can be found on. This can be
compared to how the index has the index field and the field containing the
pointers to where the data can be found on disk. The index field used for
building the index on a file - with multiple fields - with a specified record
structure, is usually only based on one field. Like earlier mentioned, the index
stores the index field and a list of pointers to each disk block that contains a
record with the same index field. The values - index fields - in an ordered
index are also sorted so that a binary search can be performed to quickly find
the desired data. How efficient is this? Well, if a comparison is made in the
case of having both the data file and the index file sorted, the index file is often
smaller than the data file. This means that searching through the index is still

Background |15

faster than through the data file [1, pg.602].

As stated in the background, the index types are often separated into
primary and secondary indexes. The single-level index can be either of these
types [1, pg.602].

A primary index is a file containing ordered keys for a sorted file record.
The primary index is used to physically order data on disk, which means that
a primary index can only be a single-level index and that there can only be one
primary index on a table. The field for the key is used to physically order the
files, each record must have a unique value for that to be possible. The primary
index only contains two fields, as stated earlier, which makes it effective for
searching for data records in a file. The first field is a primary key and the
second field is a pointer to a block address on disk. There is one index entry
for each block in the data file. Although, a primary index does not have to use
a key for the ordering field, and if it does not use a key it is called a clustered
index instead [1, pg.602.605].

Indexes can also be defined as compact or sparse indexes. A sparse index
has fewer entries than there are records on a file, which by definition makes a
primary index a sparse index. The main issue with a primary index - as is the
issue for most sorted data structures - is the insertion and deletion of elements.
For example, inserting a new element in a filled array requires expansion of the
array, and in a linked list, searching for where to insert the element takes time.
Cluster indexes are used to quickly find groups of data. It is also an ordered
index that has to deal with the issues of insertion and deletion of records.
To solve this, clustered indexes often reserve space in blocks for insertion.
Both cluster and primary indexes assume that the field for physical ordering
of records on disk is the same as the index field [1, pg.602-605].

A secondary index offers a second logical ordering alternative for accessing
a file when a primary option already exists. The records on the data file can be
ordered, unordered, or hashed, as it does not deal with the physical ordering
of records. The secondary index is also an ordered file with two fields, like a
primary index. But it is created on a field with a candidate key or that has a
unique value in each record. A candidate key is a field that could be a primary
key, and a primary key is a field - or fields - that can be used to uniquely identify
arow. This can be done by using counters, but also through other means. There
can be multiple candidate keys, but only one primary key, which means that
multiple secondary indexes can be created for the same file. In practice, it
just adds access paths to the file based on different fields. Secondary indexes
often take more memory space than primary indexes, although searching for
arbitrary records is noticeably quicker [1, pg.609-611].

Background | 16

Multi-level indexes

The idea behind a multilevel index is to reduce the part of the index that is
searched with the block factor (bfri) - also called the fan-out (fo) - for the
index. During a multilevel index search, the area that is searched is reduced
by fo, which if larger than two makes it more efficient than binary search. The
way the multi-level index works is by viewing the index file as an ordered file
with a distinct value for each entry. The index file counts as the first level
of the multi-level index and the second level is defined as the primary index
that is created on the first level. A block anchor is created for the second
level so that it has an entry for each block of the first level. The block factor
remains the same for every level of the multi-level index as the size for entries
remains the same - a field value and a block address. This process is then be
repeated, level three is another primary index created on the second level, et
cetera. More levels are only needed if a level needs more than one block for
storage as each level reduces the number of entries by a factor of fo, this means
each level requires less storage. This also means that only one disk block is
accessed per level, thus, for a multi-level index with t levels only t disk blocks
are accessed during a search. Which increases the speed of searches. Lastly,
the last level of the index is called the top index level, and the multi-level
index can use primary, secondary and cluster indexes [1, pg.613-614]. Multi-
level indexes still suffer from the issues of insertion and deletion of records.
Dynamic multi-level indexes aim to solve this by leaving space in blocks for
insertion of new entries and using appropriate insertion/deletion algorithms
for creating/deleting index blocks when the data file grows/shrinks. This is
often done by using B+-trees - which functions like a B-tree but has its leaf
nodes connected as well - as a data structure [1, pg.613-614].

2.3.3 Index types

PostgreSQL provides multiple index types, among them are B-trees, Hash
structures, Generalised Search Tree (GiST), Space Partitioned Generalised
Search Tree (SP-GiST), Generalised Inverted Index (GIN) and Block Range
Index (BRIN). The index types use different algorithms that are better suited
for different types of queries. The B-tree usually suits the broadest range of
queries which is why the default index type used for PostgreSQL is the B-tree
[25].

Background |17

B-trees

B-trees are balanced search trees that are useful for equality and range queries
on data that can be ordered [25]. The PostgreSQL query planner will consider
using a B-tree if any comparison operator is used in the query. B-tree indexes
are also useful for retrieving data in sorted order, due to the nature of the B-
trees [25]. PostgreSQL also supports multi-column B-trees. They are most
effective when there are constraints on the leading columns but can be used for
any subset of the index’s columns. The rule is that when an equality constraint
is used in the leading columns and any inequality constraint is used in the
first column the part of the index that is scanned is more restricted. Column
constraints to the right of these index columns are checked in the index so not
as many accesses to the table is done, but there is no reduction of what parts
of the index need to be scanned [26]. A visual representation of a B-tree index
can be seen in Figure 2.1.

331 47 -

28 41 | 46 #5

I

| Employee ID ||| First name Last name
4] Bob Smith
28 /| Billy Eobinson
33/ || Frank Bloggs
41 * | Tulia Griggs
A6+« | Amanda Hugankiss
47 Phillip Hunt
55 Jeorge Tasper
99 Gloria Steinberg

Figure 2.1: A B-tree index.
[27]

Hash indexes

Hash indexes are a secondary index structure that accesses a file through
hashing a search key - which can not be the primary key for the file’s
organisation system [1, pg.633]. PostgreSQL supports persistent, on disk hash

Background |18

indexes that are crash recoverable. One of the benefits of using a hash index is
that any data type can be indexed by it as it only stores the hash value of the data
being indexed, thus, there is no size constraint for the data column that is being
indexed [28]. Although the use cases for the hash index are limited as hash
indexes only support single-column indexes and cannot check uniqueness,
nor can they perform range operations. They are best used for SELECT and
UPDATE heavy operations that use equality scans over large tables. Another
pitfall of the hash structure is the problem of overflow, therefore, hash indexes
are most useful for mostly unique data. Because of the inherent nature of the
hash structure causing difficulty with expansion, it is most useful for tables
with few if any insertions [28].

A hash index can be implemented in different ways [1, pg.633], but in
PostgreSQL, it is done by using buckets [28]. These buckets have a certain
depth that is split when there are insertions into the index [1, pg.633-635]. An
example figure of this can be seen in Figure 2.2.

keys buckets entries
000 | X
X Lisa Smith 521-8976
001 | e+
John Smith
002 X
Y John Smith 521-1234
Lisa Smith
151 | x ¢
Sam Doe - X Sandra Dee 521-9655
153
154 | X
Sandra Dee
X Ted Baker 418-4165
253 | %
Ted Baker
254 | @
B Sam Doe 521-5030
255 | X

Figure 2.2: Hash index.
[29]

Background | 19

GiST indexes

A GiST index is a type of index that can be tweaked by the developer as
there are many different kinds of index strategies that can be implemented
[25]. It is based on the balanced tree access method to use for arbitrary
indexing schemes. The main advantage to using GiST is that it allows for
the development of a custom data type with an appropriate access structure
by a data type expert - a programmer that does not have to be a database
administrator [30]. How the GiST index is used depends on what operator
class is implemented, but the standard for PostgreSQL is to include several
two-dimensional geometric data types [25]. The operator class defines what
operators can be used on the columns in the index, for example, comparison
operations between different data types [31]. GiST indexes can optimise
nearest-neighbour searches, but this is dependent on the operator classes
defined [25]. A multi-column GiST can be used with query conditions that
use any subset of the index’s columns. Adding additional columns restricts
the entries returned by the index. The way this works is that the first column
is used to determine how much of the index need to be scanned. This index is
not very effective if the first column only has a few distinct values [26].

SP-GiST indexes

SP-GiST indexes expand on GiST indexes by permitting the implementation of
different non-balanced disk-based data structures, such as radix trees, tries et
cetera [25]. It supports partitioned trees which allow developing non-balanced
tree structures. The generally desired feature for the structures is to use it to
divide the search into pieces of equal size [32]. The standard operators for an
SP-GiST index in PostgreSQL is to use an operator class for two-dimensional
points [25].

GIN indexes

GIN indexes are similar to the previous two ones, although it differs by using
the standard operator class for standard array operators [25]. GIN is specially
designed to handle when the items to be indexed are composite values, and
the queries performed need to search for the element values in the composite
items. The word item refers to the composite values to be indexed and the
key is the element value. The way the GIN works is that it stores sets of
pairs - with the key and the posting list. The posting list is a set of rows
Identity Documents (IDs) where the keys occur. Each key-value is only stored

Background |20

once even though the same ID can occur multiple times [33]. Multi-column
GIN indexes work similar to multi-column GiSTs, the main difference is that
the search effectiveness is not dependent on what index column the query
conditions use [26].

BRIN indexes

BRIN indexes store summaries of the values in a table in consecutive physical
block ranges [25]. It is designed to handle very large tables that have columns
with some natural correlation to where the columns are physically stored
within the table. BRIN indexes can perform queries with regular bitmap index
scans which returns all tuples in all pages - within a specified range - if the
summary information stored by the index is part of the query conditions. This
summary information needs to be updated when new pages of data are filled.
This is not done when a new page is created, it is instead created when a
summarisation run is invoked. On the other hand, values in a table changing
can also cause the index tuple in the summary to be inaccurate. TO solve this,
de-summarisation can be run [34]. The operator class that BRIN uses depends
on the implemented strategies. For data with linear store order, the data in the
index usually correspond to the minimum and maximum values of the columns
for each block range, which makes some operations more suitable than others.
But as different types of data can be stored in this type of index, the operations
need to be chosen based on the type of data [25]. Multi-column BRIN indexes,
like GIN has no dependence on what column is used in the query condition.
Although there are few reasons as to why a multi-column BRIN would be used
[26].

More about PostgreSQL indexes

PostgreSQL can combine multiple indexes, including multiple uses of the
same type of index. This is useful when there are cases where a single index
scan done by a query cannot directly use the index, which can happen if values
are missing in the index that the query needs. To combine multiple indexes,
the system creates a bitmap over each needed index. It maps the location of
table rows that matches the index conditions, and the table rows are visited in
physical order as that is how a bitmap works. This means that the ordering in
the indexes is lost, and a separate sort needs to be applied if the query requests
ordering of elements [35]. Another index that is supported by PostgreSQL is
the partial indexes that are built over a subset of a table, which PostgreSQL
also supports. Another reason to use partial indexes is that it can help avoid

Background | 21

indexing common values, since querying common values most often do not
use indexes anyways. This reduces the size of the index so that many table
operations are sped up when performed on the index [36].

All indexes are secondary indexes in PostgreSQL. This means that the
table rows that are referenced can be anywhere on the PostgreSQL data heap.
To access the data from an index scan, therefore, involves random access.
Which depending on the disk drive can be slow. To make this more efficient,
something called an index-only scan is supported. What this means is that
a query can be answered without accessing the heap. The idea behind it
is to return index entries instead of consulting with the heap entries. In
PostgreSQL, only B-trees, GiSTs and SP-GiSTs can support index-only scans,
and only B-trees always has built-in support for it [37]. One requirement to
decide if an index-only scan is possible to form is that the query that wants
to use the index-only scan must only reference columns that are stored in
the index, otherwise, heap access is needed. Another requirement for index-
only scans is that each row retrieved is visible to the query’s Multi-Version
Concurrency Control (MVCC) snapshot [37]. The MVCC is something that
PostgreSQL uses for concurrency control. It works by showing each query
and transaction a snapshot of how the database was some time ago, no
matter how the data looks at the exact moment of querying. This protects
the transaction from seeing inconsistent data that could be caused by other
concurrent transactions [38]. The visibility information is not stored in the
index, but PostgreSQL keeps track of the data that is old enough that it should
be visible for all future transactions. This means that there is a loophole for
data that does not change often to use index-only scans [37]. To effectively
use this feature, a covering index can be used. This type of index is designed
to include columns needed by a specified query. Sometimes some columns
that are not part of the result is needed for a query, PostgreSQL supports
this by adding a payload that is not part of the search key with the command
INCLUDE [37], this can also be used to solve the problem of missing values
in indexes like discussed for combining indexes.

2.3.4 Tuning variables

There are many factors to consider when building the physical database design
to ensure efficiency. Among them are analysing queries to optimise the
structure of tables and indexes. This is done to ensure that indexes are used
and as efficient as predicted. the variables that each retrieval query looks
at to map efficiency are: the relations accessed by the query, the attributes

Background |22

on which a selection condition is specified, what type of condition it is, the
attributes of any join or multiple tables, or objects that are linked and the
attributes whose values will be retrieved by the query [1, pg.643-646]. As
well as for each update operation or transaction: the updated files, the type of
operations on each file, the attributes that the selection condition specifies, and
the attributes whose values will be changed by the updates need to be assessed.
The expected frequency of invocation of queries and transactions, as well as
the time constraints of them also needs to be analysed. These aspects also need
to be considered for update operations and uniqueness constraints on attributes
[1, pg.643-646].

The initial choice of indexes might need to change for many different
reasons, some of them might be due to the reasons listed in the previous
paragraph. Other reasons are listed below:

* Queries might take too long to run due to lack of indexing.
* Some indexes might not be used by the queries.

* Some indexes are updated too frequently because the index attribute
changes too often.

[1, pg.640]

To figure out if any of these issues apply to the database, many DBMSs have
commands for tracing how a query is executed. After doing that the issues
can be solved by either dropping, creating, or changing indexes (to or from
cluster indexes), and rebuilding the indexes. All of these options can improve
performance if the tracing is read correctly. The reason why rebuilding indexes
can improve performance is because of how in the case of there being many
deletions on the index key the index pages may contain space that is not used.
This space can then be reclaimed during a rebuild. Rebuilding can also solve
overflow issues caused by insertions [1, pg.640].

2.4 Query optimisation

Query optimisation is the action of finding the best possible way for a query
to be executed, based on the physical database structure and indexes available.
Although optimisation is not the best word for it, as there needs to be a limit
for how long it can take before a query needs to be executed, which means that
the optimal execution path might not be found. All of this is done by the query
optimiser in the DBMS and can be implemented in different ways [1, pg.655].

Background |23

2.4.1 The query optimiser

The purpose of the optimiser is to create a good query plan, as stated earlier.
This is done by the DBMS to retrieve results from the database file. This plan
is then translated to code by the code generator, which is done in three steps:
the first step is to scan a query to identify all the query tokens. In the second
step, the parser checks the syntax, and the validator checks all the attributes
and relation names. Thirdly, a query tree structure or a Directed A-cyclical
Graph (DAG) is created as an internal representation of the query. There are
many different execution strategies for a query and the process of choosing
one of them is what query optimisation is all about [1, pg.655-658].

As earlier mentioned, optimisation is not the best term for this process,
as most of the time, the optimal plan is not chosen. Rather a reasonably
efficient plan is. Finding the optimal strategy is too time-consuming - there
is an exception for simple queries - as there are many variables involved when
trying to find an optimal strategy. Such as detailed information about the sizes
of the table, the distributions of column values, and the expected size of the
result. Some of this information is not available for the DBMS. Despite this,
optimisation is still needed in relational databases since SQL is a high-level
query language. This means that there is only a specification of the intended
result, not how to get there [1, pg.655-658].

To do all this the query optimiser first translates the query into an equivalent
extended relational algebra expression. This is the tree mentioned for the
query plan. It is used to transform the query into an optimised one. The way
this is done is most often by deconstructing the query into query blocks, that
then are translated into algebraic expressions [1]. After that, the optimiser
can choose the best query plan for each block. This is done by improving on
the algebraic expressions, and by following a set of heuristic rules. In which
one of the most important rules is to preserve equivalence. This is due to
there being many algebraic expressions to represent the same query. While
the query is optimised it is not allowed to get switched into something else.
The equivalence preservation rules ensure that the algebraic expressions for
queries remain equivalent [1, ch.18].

2.4.2 The PostgreSQL optimiser

The PostgreSQL optimiser creates a query plan for every query it receives.
With the EXPLAIN command, it is possible to access what plans the planner
makes for any query. The structure of the planner is a plan tree with plan nodes,
in which the leaf nodes of the tree are scan nodes that return rows from a table.

Background | 24

There are different types of scan nodes depending on the type of scan that is
performed. If the query has other operations such as join, sorting, et cetera
there will be nodes above the scan nodes - which means that the tree grows
upwards [39]. As there are different ways to perform these operations, other
nodes can also appear. The output of EXPLAIN shows a line for each node
in the plan tree, its type, and the estimated cost of the execution of that node.
The costs are estimated in arbitrary units that are dependent on the planner’s
cost parameters. The cost of an upper level-node includes the cost of all its
children nodes.

An important thing to keep in mind is that the planner only will consider
things it cares about in the cost, transmitting the result is not one of them. This
is important to note as there can be other things that affect efficiency that the
planner does not count on [39], which could mean that optimising a query is
not the best solution to all efficiency problems.

To check the accuracy of the planners estimate the command EXPLAIN
ANALYZE can be used. This causes the EXPLAIN command to execute the
query and then display the row count and the run time for each plan node
as well as their estimates. For the executed plans the unit is in milliseconds
instead of an arbitrary unit, which is used by the statistics that EXPLAIN
shows. EXPLAIN also has other options, among them is a BUFFER option
that further can help with analysing run time statistics. This is done through
helping with analysing what 1/O operations are the most sensitive [39].

Itis also important to note that with EXPLAIN ANALYZE the transactions
need to be rolled back as the query is executed [39]. There are also other
pitfalls to using EXPLAIN ANALYZE, such as the statistics deviating from
normal run-time execution time. One reason as to why this happens is due
to no output rows being delivered to a client. This means that there is
no consideration to transmission time and I/O conversion costs. Another
issue is that the overhead to EXPLAIN ANALYZE can be significant, this
is because of how different operating systems can have different speeds for
their gettimeofday() operations, so the operation can take longer than actual
execution time due to this. The last pitfall to keep in mind is that EXPLAIN
results cannot be generalised among different tables. This means that the same
result cannot be expected to apply on a large table when tested on a small table
[39].

The query planner looks at statistics to make good estimates, it does this
for specific variables. For single-column statistics, important factors are the
total number of entries in each table, and index, as well as the disk blocks they
occupy. This information is kept as part of the table in the pg_class, under

Background |25

the names reltuples and relpages. These two columns are not updated very
often, so they often contain old values. VACUUM or ANALYZE can be used
to update them on a per-use basis, which means that they are incrementally
updated as they are used [40].

A common issue for slow queries is that the columns used in the query
are correlated. The planner assumes that multiple conditions are independent
[40]. PostgreSQL supports multivariate statistics to help with this. This is
done by creating statistics objects with the CREATE STATISTICS command.
Which facilitates an interest in a multivariate statistics object. The data
collection is still done with ANALYZE. There are different ways to handle
multivariate statistics, but the supported extended statistics in PostgreSQL
are: functional dependencies, multivariate N-distinct counts and multivariate
Most Common Value (MCV) lists [40]. The functional dependencies are the
simplest of the extended statistics. A functional dependency is defined as ’if
column a is functionally dependent on column b and if the knowledge of the
value in b is sufficient to derive the knowledge in column a’. For example,
having a column for social security number and also a birth month column,
the birth month can be derived from the social security number, i.e the birth
month is functionally dependent on the social security number. The reason
as to why functional dependencies have their own statistics tool is due to how
the existence of functional dependencies affects the accuracy of estimates in
queries [40]. One important thing to note is that for PostgreSQL version 13
functional dependency statistics are limited to simple equality queries [40].

Multivariate N-distinct counts in PostgreSQL help improve the estimates
for numbers of distinct values when combining more than one column - such
as in GROUP BY(a, b) operations. It is only advisable to create these objects
if combinations of columns are grouped, otherwise ANALYZE cycles are
wasted. The multivariate MCV lists improve the accuracy of estimates for
queries with conditions on multiple columns. This is done by ANALYZE
collecting MCV lists on combinations of columns, so the MCYV list contains
the most common values collected by ANALYZE in the specified columns.
This is not recommended to do very often as MCV lists are stored - unlike
the information collected by N-distinct counts - which then can take up too
much memory. It is advised to only use MCYV lists on columns that are used
in conditions together [40].

The planner can be controlled with JOIN clauses [41]. As there are many
JOIN possibilities between tables to form the same result for queries, the more
efficient ones need to be chosen. As JOINS deal with the cartesian product,
the less calculation, and processing needed for the same result the better. The

Background | 26

number of JOIN possibilities grows exponentially the more tables are involved,
and the PostgreSQL optimiser will then switch from exhaustive search to
genetic probabilistic search by limiting the number of possibilities. This takes
less time for the search but might not result in the best possible option [41].
There is less freedom for outer joins than inner joins for the planner [41].

2.5 Related works

This section describes some related works and is also the literature study. It
starts with works that describe more theory about how indexing and query
optimisation is done. It then moves onto related performed experiments.

2.5.1 Database performance tuning and query
optimization

In the article ‘Database performance tuning and query optimization’ [42]
Kamatkar. et al, describe database tuning as “minimising the response time for
queries by making use of system resources”. They further develop on this by
describing how it is done through minimising network traffic, I/O operations,
and CPU time. Doing this needs a good understanding of the data in the
database and how the database - and its application - is supposed to function,
the authors explain.

The article focuses on the tuning of a relational DBMS and it describes
the typical issues encountered when it comes to databases as CPU bottlenecks,
the memory structure, I/O capacity issues, design issues, and indexing issues.
They state that indexing can be the solution to many performance issues, but
indexing can become an issue if there are too many indexes on tables that
update frequently. This is due to how the DBMS creates an overhead when a
table is updated to ensure that the index is updated as well. Thus the cost for
updates in a table becomes greater when indexes are involved. Maintaining
the indexes can also increase CPU and 1/0 usage which would increase the
cost of writing to disk [42].

The article then continues to describe the purpose of query optimisation
and that query issues often are caused by bottlenecks, upgrade issues, design
issues, large tables, bad indexing, issues with keys, bad coding et cetera [42].
Some techniques to solve efficiency issues are by using column names for
SELECT statements instead of the ‘*’ as arguments. As well as ensuring that
the HAVING clause is executed after restricting the data with the SELECT

Background |27

statement, as SELECT works as a filter. Another thing is to try and minimise
the number of subquery blocks in a query. The article concludes by stating
that creating a data flow diagram makes it easier to understand how a query
should work, and then working on improving the queries based on the diagram
makes sure that improvements are made [42].

2.5.2 Database tuning principles, experiments, and
troubleshooting techniques

‘Database tuning principles, experiments and troubleshooting techniques’ [43]
further develops on this topic. It should be noted that it was written in 2002 and
might have some out-of-date aspects. But the material was cross-referenced so
that the relevant and reliable facts are the only things presented in this report.

Sasha and Bonnet state that tuning is easy, as there are no difficult
mathematical concepts that need to be understood. On the other hand, tuning
can be incredibly difficult due to how knowledgeable the tuner needs to be
about the database application. They state that there are five basic principles
to tuning. First, think globally and fix locally. Which is done by moving
data across disks or creating indexes. Creating indexes might be cheaper and
more effective than getting more disk space. They state that improving specific
queries and bench-marking them will not improve overall performance if the
query is not executed frequently. Secondly, partitioning breaks bottlenecks.
They describe this by stating that, often it is only one part of the system that
limits the whole. A good local fix for this is by creating an index or rewriting
the query. The global fix is to create more partitions, this causes the load to
get spread out, either over more resources or over time. Although they warn
that this might not always improve performance. Thirdly, start-up costs are
high while running costs are low. The example they use is for this is that it
is expensive to start a read operation on a disk but when the disk is reading,
it can deliver data quickly. The authors also warn that to tune a database one
must be prepared for trade-offs. Increasing the speed usually costs memory
and/or processing power [43].

The book then continues to explain other aspects of index tuning. They
describe the correct usage of indexes to have effects such as allowing queries
to access one or more aspects in a table more quickly. And that improper use
of indexes can lead to problems, such as indexes that are maintained but not
used, files that are scanned to return a single record, and multi-table joins that
run for a long time due to the wrong indexes being present.

To make more sense of how to implement indexes, as they are dependent

Background | 28

on the queries that are being executed, the authors have defined different query
types, which are the following:

* Point queries return one record or parts of a record based on an equality
selection.

» Multi-point queries return several records based on an equality selection.
* Range queries return a set of records whose values are within an interval.

* Prefix match queries are queries that use AND and LIKE statements, to
match strings or sets of characters.

» Extremal queries are queries that obtain a set of records that return the
minimum or maximum of attribute values.

* Ordering queries use the ORDER BY statement.
* Grouping queries use the GROUP BY statement.

* Join queries are queries that links two or more tables. There are different
types of join queries. For joins that use an equality statement (equijoins),
the optimisation process is simpler, for join queries that are not equijoins
the system will try to execute the select statement before joining. This
is due to non-equijoins often needing to do full table scans, even when
there is an index present.

The authors then go on to describe index types, how they function and,
what queries have the most use of them. There are clustering indexes - also
called primary indexes - and non-clustering indexes. This has been described
earlier in the background and will not be discussed further in this section.

They describe B-trees as good indexes for range, prefix match, and
ordering queries. They state that one benefit of using a clustering B-tree the
need for using an ORDER BY statement can be removed, this is good to keep
in mind if sorting queries often are used on that table. Although, generally
non-clustering indexes work best if the index covers all attributes necessary
in a query. This is due to the fact that the query then can circumvent the
need to access the table entirely if all information it needs is present in the
index. They further develop that B-trees are useful for partial match, point,
multipoint, range, and general join queries. And that hash indexes are good
for point, multipoint and equijoin queries [43].

The authors then describe composite indexes and their benefits. A composite
index is an index based on multiple attributes as its key. And having a dense

Background |29

composite index can sometimes entirely answer a query without accessing the
table. It is best used when a query is based on most of the key attributes in the
index, rather than only one or a few of them. The main disadvantage for this
type of index is the large key sizes as there are many more attributes that can
potentially need to get updated when the table is updated. They conclude the
chapter by stating that indexes should be avoided on small tables, dense indexes
should be used on critical queries and indexes should not be used when the cost
of updates and inserts exceed the time saved in queries [43].

The next part of the book describes query tuning and some tips on how
to implement optimisation. They promote tuning over indexing by writing
that inserting indexes can have a harmful global effect while rewriting a query
only can have positive effects if done well. But what is a bad query? How
is that determined? The authors state that a query is bad when it requires too
many disk accesses and that it does not use the relevant indexes. They follow
this up by describing some tips to use to improve queries. One of them is
to not use DISTINCT as it creates an overhead due to sorting. DISTINCT is
only needed if the fields returned do not contain a key as it then is a subset
of the relation created by the FROM and WHERE clauses. It is not needed
when every table mentioned returns fields that contain a key of the table by
the select statement - a so-called privileged table. Or if every unprivileged
table is joined with a privileged one - this is called that the unprivileged table
reaches the privileged one [43]. They also caution that many systems do not
handle subqueries well, and that the use of temporaries can cause operations
to be executed in a sub-optimal manner. Complicated correlation sub-queries
can often execute inefficiently and should be rewritten. But a benefit to using
temporaries is that it can help with subverting the need of using an ORDER BY
statement when there are queries with slightly different bind variables. They
also warn against using HAVING statements if a WHERE statement is enough
and encourage studying the idiosyncrasies of the system. Some systems might
not use indexes when there is an OR statement involved, to circumvent this
a union could be used. They state that the ordering of tables in the FROM
statement can affect the order of joins, especially if more than five tables are
used. They then discourage the use of views as it can lead to writing inefficient
queries [43]. Rewriting nested queries is highly encouraged by the authors as
query optimisers do not perform as well on many nested queries [43].

Background | 30

2.5.3 PostgreSQL query optimization: the ultimate
guide to building efficient queries

The book ‘PostgreSQL query optimization: the ultimate guide to building
efficient queries’ [21] continues to describe query tuning, but this time
specifically for PostgreSQL. Dombrovskaya et al, state that an SQL query
cannot be optimised outside the context of its purpose and outside its
environment, therefore it is not possible to generalise a perfect method for
query tuning. They also state that as a database application has many parts,
optimising one of them might not improve global performance. For example,
if network transactions are slow, optimising a query is not what would help
global performance the most. They then go on to caution that PostgreSQL does
not offer optimisation hints, like other DBMSs, but instead it offers one of the
best query optimisers in the industry. This means that queries in PostgreSQL
should be declarative - just stating what should be retrieved, not how to do it -
so that the optimiser gets to do its job [21].

How does the PostgreSQL optimiser work though? The authors describes
how it uses a cost theory for optimisation. It does this by using internal metrics
that are based on the resources needed to execute a query or operation within
a plan. The planner combines the primary metrics such as CPU cycles and
I/O accesses to a single cost unit that is used for comparison of plans. There
are different ways to access data and depending on different factors, and one
way can be more efficient than another. The main factors used are full table
scan, index-only scan, and index access, they write. For smaller values of
selectivity - the percentage of rows in a table that the query selects - index
access is preferable, as it is faster than a full table scan. But the best option is
to use an index-only scan if the query allows it. This is not a general rule and
is instead entirely dependent on what type of index is used [21].

The book then further develops on how the optimiser works. Such as the
transformation and heuristics it uses to convert one plan to a better one. This
is done in stages. The optimiser presents the plan as a tree that reads from the
leaf nodes to the root. The first step of optimisation is to enhance the code by
eliminating sub-queries, substituting views with their textual representation
et cetera. The second step is to determine the possible order of operations,
what execution algorithms are needed for the operations, and then compare the
costs between the different plans to select the better one. Something specific to
PostgreSQL is that it does not perform accessing and joining in the order they
are presented in the FROM clause, so that is not something the query writer has
to consider. The algorithm for the optimiser relies on the optimality principle,

Background | 31

which is that a sub-plan of an optimal plan is optimal for the corresponding
sub-query. This means that for the optimisation tree, which consists of leaf
nodes, - that represent file access - each node level contains more complex
sub-queries. Heuristics are used to cut out the branches that are unlikely to
be optimal and the cost for each node is calculated based on statistics that are
represented as histograms. These histograms contain statistics of the existing
data on tables, indexes, and distribution of values. The optimiser is not always
correct though. Some pitfalls of it are mainly due to the histograms not being
able to produce intermediate results, cost estimates are imprecise, and that
heuristics might cut a plan too early to see if it was not optimal [21].

The authors then go on to describe short and long queries, what they are
and how they can be optimised. A short query is a query that only needs a small
number of rows to compute its output. This means it can read the entirety of
a small table or about less than 10 % of a large one. Short queries benefit
from using restrictive indexes and are most efficient with unique indexes, as
these have fewer values to go through. Things to keep in mind when using
short queries are that column transformations make it so that an index search
cannot be performed on the transformed attribute. This means that in short
queries column transformations should not be used. LIKE statements also do
not utilise indexes, so they should also be avoided and can instead be replaced
by equivalent OR statements [21].

Some other PostgreSQL-specific things the authors bring up are that
PostgreSQL supports multi-index searches, which is done by creating bitmaps
of blocks with matching records in main memory and then OR or AND-ing
them together. When this is done, only blocks that match the search criterion
remain. Since blocks are scanned in the order they are stored, the index order is
lost. PostgreSQL also supports covering indexes that are used for extra support
for index-only scans. These indexes are used so that other criteria do not need
to be added to the index definition and can instead just INCLUDE the needed
attributes. Excessive selection criteria can be added to a query to force the
planner to use indexes or to reduce the size of joins. Another type of index
that is supported by PostgreSQL is the partial index. It is an index that is built
on a subset of a table and is used in a similar way to table partitioning but is
instead to ensure that an index-only scan can be performed [21].

They conclude this chapter by stating that indexes should not be used when
the table is small, or if the majority of the rows in a table are needed to execute
a query, or a column transformation is used. To force a query to use an index
the ORDER BY operation can be used.

A long query is described as when query selectivity is high for at least one

Background | 32

of the large tables. This means that almost all rows contribute to the output,
even if the output size is small. The way to optimise these types of queries is
by avoiding multiple full table scans and reducing the size of the result as soon
as possible. Indexes are not needed here and should not be used, the authors
state. For joins, a hash join is most likely the better algorithm for the job when
dealing with long queries. If GROUP BY is used by a long query, the filtering
needs to be applied first in most cases, to ensure efficiency. There are times that
GROUP BY can reduce the size of the data-set, but the rule of thumb is to apply
the SELECT statements first for the optimiser. Set operations can sometimes
be used to prompt alternative execution plans. This can be done by replacing
NOT EXIST and NOT IN with except, EXIST and IN with INTERSECT, and
use UNION instead of multiple complex selection criteria with OR [21].

The authors then describe the pitfalls of views and that their main use,
which is for encapsulation purposes. Materialised views on the other hand can
help improve performance. This is due to the fact that data is actually stored
and because indexes can be created on them. A materialised view should be
created if the data it is based on does not update often if it is not very critical
to have up-to-date data, the data in the materialised view is read often, and if
many queries could make use of it.

After this section, the authors discuss partitioned tables. The main use for
them is to optimise table scanning. If a query uses values in the range of the
partitioning, only one partition would need to get scanned. This means that
the key should be chosen to satisfy a search condition. Indexes can be applied
on these tables, and they are beneficial for short queries [21].

After this, multidimensional and spatial searches are discussed. The
authors state that spatial data often require range queries. Which means finding
all the data located at a certain distance or closer to a specified point in space.
And nearest-neighbour queries, which is to find a variable number of objects
closest to the specified point. These queries cannot be supported by one-
dimensional indexes or even multiple indexes. This is when GiST indexes
come into play. They describe GiST indexes as points and search conditions
are represented as arectangle and that all points within the rectangle or polygon
are returned as the result [21].

Lastly, the book concludes with the ultimate optimisation algorithm for
queries which summarises the points brought up in this section.

Background | 33

2.5.4 Comparison of physical tuning techniques
implemented in two opensource DBMSs

The report ‘Comparison of physical tuning techniques implemented in two
opensource DBMSs [44] questions if there are different tuning techniques
between MySQL and PostgreSQL, what techniques they support, and if they
improve performance. The goal of this study was to compare the two open-
source performance tuning techniques with each other and to answer the
problem of if there are any significant differences in the tuned and untuned
performance of queries between MySQL and PostgreSQL with regards to
indexes, BLOB management, and denormalisation. Only indexes are relevant
for this report so the other aspects of the result will be omitted. It is also
worth noting that this report was written in 2005 some aspects of it might be
outdated.

Only b-tree indexes and hash indexes were investigated as those were the
only indexes that the DBMSs had in common. The result showed that the
average time reduced for PostgreSQL with a B-tree index was 67.4% and that
the hash index increased query time for the queries tested [44].

2.5.5 PostgreSQL database performance optimization

In the report ‘PostgreSQL database performance optimization’ [45], the
question of how well indexes perform for certain queries and also if updating
the query statistic mattered. The result is shown in Figure 2.3.

Background | 34

Steps Without index With index Difference
Retrieve task 1402.842 261.275 1142.567
data

Retrieve worker | 1197.555 910.242 287.313
data

Hash worker 328.803 335.627 -6.824
records

Join task and 611.711 532.272 79.439
worked

Retrieve 2386.164 1358.244 1027.92
costumer data

Retrieve 170.747 279.589 -108.842
company data

Join customer 194.505 170.244 24.26
and company

Hash costumer 184.086 103.039 81.047
and company

records

Join task and 444 .445 450.632 -6.187
costumer

Sort 407.123 433.888 -26.765

Figure 2.3: Table of collected data for execution time of queries with and
without indexes.

The steps are the queries performed, the second column shows the time
of execution without indexes, and the third column the time after indexes and
clustering were implemented. The result for the prepared query execution was
that no major difference was noticeable on single queries. The prepared query
was done by running EXPLAIN ANALYZE to ensure that the optimisers
statistics were up to date [45].

2.5.6 MongoDB vs PostgreSQL: a comparative study
on performance aspects

The report ‘MongoDB vs PostgreSQL: a comparative study on performance
aspects’ [46] compares the two DBMSs on their available indexes for spatio-
temporal data. It investigates the performance of B-trees and GiST, but
also how queries are affected by indexes. The result was that PostgreSQL
performed on average 89 times faster with an index applied [46].

Background | 35

2.5.7 Comparing Oracle and PostgreSQL, performance
and optimization

In the report ‘Comparing Oracle and PostgreSQL, performance and optimi-
zation’ [47] the optimisation strategies between the Oracle DBMS and Postgre-
SQL were compared. This was done using benchmarks with a strategy of
adding column-based indexes to improve query execution. The result showed
that PostgreSQL can improve up to 91% with indexes, which means that it is
more sensitive to optimisation and shows better performance with them. By
only adding primary and foreign keys the performance was improved by 38%
and by adding indexes it was improved by 88% [47].

2.5.8 Space-partitioning Trees in PostgreSQL.:
Realization and Performance

This report [48] focuses on comparing different implementations of SP-GiST
indexes compared to B+-trees and tries. The SP-GiSTs was implemented
with PostgreSQL was extended to include prefixes and regular expression
matches, as well as a generic incremental NN search (nearest-neighbour
search). The result showed that a disk based SP-GiST trie performed two
orders of magnitudes better than a B+-tree when it comes to regular expression
match searches, while a disk based SP-GiST kd-tree performed more than
300% better for a point match than a trie. A disk based suffix tree was
also implemented for substring match purposes and it performed around three
orders of magnitude better than the existing technique (text scan) at the time
of this report. These implementations were made based on using different
SP-GiST operators, which the report describes as external methods to support
different types of queries.

The SP-GiST trie implementation was compared to the B+-tree in the
context of text string data, while the SP-GiST kd-tree and PMR quadtree was
compared to R-trees in the context of point and line segment data, respectively.
The suffix tree was compared to sequential scanning as there is was no other
method to support substring matches.

The result shows that a disk based SP-GiST trie performs two orders of
magnitudes better than a B+-tree when it comes to regular expression match
searches this was due to how B+-trees are sensitive to where single character
wildcards appear. A wildcard is used with the character *?". It retrieves
multiple data sets of a string for example: ?ove = cove, love, dove, etc. The
reason for the result was because the B+-tree used the wildcard in the search,

Background | 36

so if the wildcard appears in the first character then a full table search has to be
made, it explores all the avenues without filtering. The trie on the other hand
uses non-wildcard characters in the search for filtering.

In this report experimenting, the trie had better search performance than
the B+-tree when it came to exact match, around 150% better, it also scaled
better than the B+-tree. For prefix matches the B+-tree outperformed the trie,
this was due to the inherent nature of having the keys sorted in the leaf nodes.
Which allows the tree to answer prefix match queries very efficiently. For exact
matches the B+-tree scales better as well, this is due to how the trie consists
of more nodes and more node splits than the B+-tree.

Kd-tree and R-tree comparison was done over a two-dimensional point data
set. The kd-tree performed 300% better than the R-tree when it came to point
search and 125% better when it came to range search, although the R-tree has
better insertion time and better index size. This is due to how the kd-tree has
a node size (bucket size) of one and every insertion causes a node split. This
leads to the number of nodes being very large and the clustering technique that
SP-GiST uses to reduce the tree page height costs the index page utilisation.

PMR quadtree in comparison to R-tree for indexing was done on line-
segment data sets. The R-tree had better insertion and search performance.

The nearest neighbour search for the kd-tree and the point quadtree was
better than for the trie. This is due to how the trie performs the NN search
character by character while for the kd-tree and the point quadtree the NN
search is based on partitions.

Method | 37

Chapter 3
Method

This chapter describes the research methods and methods used for the testing
of optimisation methods. The first section describes the methodologies used
for the research and how they were used for the project. The sub-questions for
the project are then presented as well as the research approach.

3.1 Research methods

This section describes the chosen research methods and why they were chosen.

3.1.1 Quantitative and qualitative methods

These two methods are typically applied to projects that are either numerical
or non-numerical. One method needs to be chosen to show what the research is
based on. Quantitative research verifies or falsifies what is being tested or built
based on variables that can be measured with quantifications. These methods
need to use large data sets and use statistics to make the research project valid.
Qualitative research on the other hand is used to try and discern meanings to
develop theories for a conclusion. This method uses smaller data sets that are
trustworthy enough to reach a reliable result [49].

Using a qualitative method often has the purpose of creating an understand-
ing of why things are the way they are. While quantitative methods is a
research approach that is an objective, formal and systematic process that often
uses empirical data. It often describes, tests, and examines cause and effect in
relationships by using a deductive process. The difference between qualitative
and quantitative in that sense is that the qualitative approach develops a
theory inductively. Other differences can be seen in the sampling of data.

Method | 38

Qualitative methods often choose data sets that are small and selective, while
the quantitative approach uses large and random data. The purpose of the
random collection of data is to be able to draw general conclusions [50].

3.1.2 Inductive and deductive approach

The inductive approach is used to formulate theories by using explanations
from observation. Data is usually collected with qualitative methods and
by analysing the data to provide explanations for it, to understand what is
happening. The result is based on experiences and needs to contain enough
data to explain the phenomenon [49].

The deductive approach is used to verify or falsify a hypothesis, it is most
commonly used with a quantitative approach. The hypothesis needs to use
measurable terms and explain the variables measured, as well as express the
expected result. The result from this approach is a generalisation that is based
on the collected data, and the explanation of how variables are related to
understanding what is happening [49].

The purpose of the inductive approach is to allow findings from frequent,
dominant, or significant themes to be found in raw data without putting many
restrictions on it [S1]. Like, for example, when using a deductive approach
the restrictions of the wording formulating the hypotheses can cause the key
themes of the research left invisible or obscured. Therefore the inductive
approach is better suited to describe the actual effects, not just the planned
effects. Other purposes of the inductive approach are, to establish clear links
between the objectives and the findings from the raw data, and develop a theory
about the underlying structure that the data shows. In conclusion, the inductive
approach aims to question the core meanings there are for the research area.
This should then be presented by describing the most important themes [51].

3.1.3 Subquestions

The research question posed in chapter one is "how do indexing and query
optimisation affect response time for a PostgreSQL database?". To explain
what this means the question can be divided into sub-questions.

* What methods of indexing are there and what are their use cases?
* How does query optimisation work and how can queries be optimised?

* What is the overlap between indexing and query optimisation?

Method | 39

* How does indexing, the query optimiser, and query tuning compare to
each other?

3.2 Applied methods and research process

This section explains why the methods were chosen, as well as how they are
applied for this thesis by describing the process.

3.2.1 The chosen methods

The methods chosen for this project is the qualitative and quantitative method
with an inductive approach.

Finding information for the background and literature has to be done
qualitatively as some information is harder to find than others. Making sure
that the information is reliable is of higher priority than collecting a large
quantity of it. It is also suitable as there are some aspects of the research field
that are more explored than others, which means that the sample data in some
fields are smaller than others. This is not a big deal in qualitative research as
long as the data is reliable enough and relevant.

The quantitative method is chosen for the experiment. The experiment
deals with a large set of data - although in a specific case - and is performed
similarly to a laboratory experiment. Such as by including specified variables
to measure, that are measured in a specific environment and with specified
tools and scripts.

The inductive approach is chosen partly because of the qualitative method,
but also because of the purpose of the project. The goal is to observe the
behaviour of indexing and query optimisation to reach an understanding of
what is happening. Which matches the purpose of an inductive approach well.
Especially when there is no hypothesis and due to the delimitations that restrict
the amount of generalisation that can be made. The theories are formulated
from the inductive result are then tested with the quantitative method.

Method | 40

3.2.2 The process

Literature Experiment Reliable Conclusion and
Pre-study study and analysis result future work
No
Figure 3.1: Flowchart of the method.
Pre-study

As seen in Figure 3.1, the first step of the method is to conduct the pre-
study. This is conducted to gain a basic understanding of the research area
as well as to develop the aim and research question that are formed in this
report. This is the information found and presented in the background of this
report. This is done to ensure that the necessary skills and knowledge for this
report are known and that the researcher in question has that knowledge. By
learning more detail about databases and how to optimise them, delimitations
are formed, and the research question is worded in such a way that it included
the sub-questions.

The literature study

The second step is to conduct the literature study. Which was done by
following the research question and keeping track of the purpose of this
thesis. This is done with a qualitative and inductive approach as explained
earlier. Information is filtered by relevance and then analysed for reliability.
The reliability comes from seeing if there are multiple sources, as well as
comparing the studies found with each other to see if it follows a trend or if the
discussions of the result provides a viable explanation for it. If an explanation
is viable is deduced based on if these explanations also could be found or
deduced from other sources.

Method | 41

Experiment and analysis

The third step is done after the literature study was conducted and the theories
formed by the inductive approach, an experiment is developed to test these
theories. The planning of the experiment is, in part, based on the findings in
the literature study. This is done to be able to get a more reliable result as
well as to be able to compare the findings of the experiments to the literature
studies. The experiment conducted follows a quantitative approach by using a
large data-set in a database as well as measuring execution time over different
sizes of data-sets, and how the execution time changes with implementations
of indexes and query tuning.

Conclusion and future work

After interpreting the result, it is presented in this thesis and explained and
analysed in the discussion chapter. A conclusion is drawn and implications of
what was found is discussed, as well as reflecting on proposals towards further
studies. The result is also analysed for reliability. In this experiment this
is handled through performing the planned queries on the database multiple
times to get an average execution time that would be more reliable than only
performing it once. As well as comparing the result of the testing to the results
of the experiments performed in the literature studies. The procedure followed
to ensure quality is described in the next part.

3.2.3 AQuality assurance

To ensure the quality of the experiment the following criterion need to be met:

* Ensuring validity. Making sure that the research has been conducted
according to the rules of the project and that the meaning of the result
can be easily discernible. As well as making sure that any testing
instruments measure the correct things [49].

* Ensuring dependability. Judging the correctness of conclusions, by
reviewing the content, scrutinising it, and making sure to note down
the consistency of the result for each testing instance [49].

* Ensuring replicability. This means that there should be sufficient

information in this report to be able to replicate the study and get similar
results [49].

Experiment |42

Chapter 4

Experiment

This chapter goes into detail about the experiment performed for this project.
It tells of the hardware and software used, the database design and queries
performed. The improved queries can be seen in a section below. The database
schema, and the index design can be found in the appendixes A and C at the
end of this report. The details in this chapter should be sufficient enough to
ensure replicability.

4.1 Experiment design

This section describes under what hardware conditions the experiment was
conducted, as well as what software was used. It then moves onto describing
how the experiment was conducted.

4.1.1 Hardware

The following list presents the relevant hardware used to run the database
environment, for the purpose of replicability of the experiment:

Motherboard: ROG STRIX X99 gaming

Random Access Memory (RAM):Corsair Vengeance LED DDR4, 4x8
GB, 3400MHz

CPU:Intel core i7-6850K, 3.6 GHz, 15MB Cache

SSD: Kingston A400 SSD, 960 GB, 500MB/s read and 450MB/s write

Experiment |43

Containerised Applications

Virtual Virtual Virtual
Machine | | Machine| |Machine

3 3

Guest Guest Guest
oS 05 oS

Docker

Hypervisor
Host OS

Infrastructure

Infrastructure

Figure 4.1: Comparison of containers and virtual machine.

4.1.2 Docker and the docker environment

Docker is an open source containerisation platform. A containerisation
platform allows the developers to package applications into containers, which
are standardised executable components that combine the source code for
the application with the operating systems libraries and dependencies. The
purpose of this is to simplify the process of delivering distributed applications
[52]. The way this works is due to the nature of what a container is. A container
uses the isolation and virtualisation capabilities that are built into the Linux
kernel. This allows the parts of the application to share the resources of one
instance of the host operating system, similarly to how the relationship between
hypervisor and virtual machines work. This means that a container have many
of the same abilities as a virtual machine does, plus some additional benefits.
Such as, being more light weight than a virtual machine, being more efficient
than a virtual machine, and being faster to deploy, provision, and restart [52].
A comparison of containers and virtual machines can be seen in Figure 4.1.

The benefits of using docker specifically as a containerisation program is
that it allows automated container creation based on source code that can be
found on the docker official website - so called docker images [52].

The information about the docker version is Docker version 20.10.9, build
c2ea9%bc90b. With the PostgreSQL version being: psql (PostgreSQL) 14.0,
and the operating system: Debian 14.0-1.pgdg110+1. The image version is
the latest version as of this report (2021-10-07), with the id: 6ce504119cc8.
The additions that are added to this is: after the image was pulled, Debian is

Experiment |44

updated to the latest version as of 2021-10-06 and the time package is installed
(apt install time).

4.1.3 Other software

Other software used to handle the data produced and to manipulate the data in
the database file are software that comes with using a Linux system. The ’sed’
command is used to create smaller databases from the original SQL dump file.
For each version created the number of rows are divided by 10. So the first n
rows are taken from the dump file and placed in another file. The row numbers
for the tables in the database can be seen in Figure 4.3.

A small python script is also used to quickly calculate the mean of the
data-points collected in the files.

4.1.4 Method and purpose

The purpose of the experiment is to gather data to measure the difference in
execution time based on query improvement, implemented indexes and the
ANALYZE command for the optimiser. This is done to compare the difference
in efficiency, and if one of these methods show greater difference than the
others. Another thing measured is the scalability of these methods.

To do this, first a baseline measurement is taken by running the queries
- explained later in this chapter - on all database sizes. The queries are run
100 times to gather 100 data points that are then used to calculate a mean for
each query. This is repeated four times to calculate the mean of the mean,
for a more reliable result. The first time running the queries should not be
used in the mean calculations as the caches should be warmed up first, for
a more reliable result. The result gathered from this is plotted to show the
execution times for the queries and how they scale when the database grows.
Thereafter, the same procedure is followed to gather measurements for the
tuned queries, the implemented indexes, and the ANALYZE command. The
usage of ANALYZE is restricted to only be ran before the original queries are
run, and also not used as a data-point, as ANALYZE only is used to update the
statistics for the optimiser. This means that the ANALYZE command is run
for the queries before the looping of them.

4.1.5 Database design

The database can be seen in Figure 4.2 and the database schema can be seen in
the appendix A. The database is based on the IMDb-database (link in appendix

Experiment |45

F, which is a database filled with movies, games, tv-shows and other media.
It contains information about people who have worked in the media, and how
it is rated. The ratings are collected from users on the IMDb website. As the
figure shows, the database only has six tables, with a couple of attributes in
each table. The person table contains the person_id which is just a string of
characters to identify the row in the table - and is also the primary key. It also
contains the surname and last name of the person, their date of birth, and death
date - which is null if the person is still alive. This table has a one-to-many
relationship with the crew table as one person can be multiple crew members.
The crew table has a title_id - which is the id of the media the crewmember
worked on. The person_id to link to who the person is, a category - which is
the title of their work, i.e actor, director, writer, etc - and job. From looking
at the data in the database file the job column is mostly null values, with the
exception for producers who have a repeat of ’producer’, and writers which
have what they write - poem, play, book - and the title of it in a string.

The next group of tables is the ones that contain information about the
media in the database. The akas table is an overview of the media in the
database, it contains the basic information about the media such as the title,
the region it was produced in, what language it contains, what type it is - shows
IMDb display, original, alternative or null. What attributes it has - information
about the title, mostly null - and a boolean value for if the title is an original
title or not. This then gets further divided into an episodes table, that shows
information about the episodes in a show, i.e the episode number and season
number. More information about the titles can be found in the titles table. It
shows what type of media it is, the original and the primary title of the media, if
itis adult rated, when it premiered, when it ended (mainly for shows), how long
the runtime for the media is, as well as what genres the media is in. The genre
column contains a string of all the genres the media belongs to. The titles table
also contains the primary key, which is on the title_id column. The last table is
the ratings table, which contains the average rating for the title and how many
votes it has received, it also has a primary key on the title_id column. Thus,
there is a one-to-one relationship between titles and ratings, a one-to-many
relationship between titles and akas, and a one-to-many relationship between
titles and episodes.

It is important to note that the database does not contain any foreign keys,
the only key constraints that exist are the primary keys that can be seen in
Figure 4.2.

crew

akas

title id
title
region
language
types
attributes

is original title

title id
person _id
category
job

titles

people

name
born
died

person id (PK)

title id (PK)
type

primary title
original title
is adult
premiered
ended

runtime minutes

genres

Experiment |46

episodes

episode title id
show title id
season number
episode number

ratings
title_id (PK)

Figure 4.2: The IMDb-database table relations.

rating
votes

In Figure 4.3 the different amount of data can be seen for the testing. The
data is calculated by dividing the original amount of rows - seen under the
column named 1 - in each table by ten for each iteration. The first n rows are
taken from the original file and placed in separate files to fill the database with.

Experiment |47

Table name | 1 2 3 4

Akas 1436745 143675 rows | 14368 rows | 1437 rows
rows

Crew 9990049 999005 rows | 99901 rows | 9990 rows
rows

Episodes 593366 rows | 59337 rows | 5934 rows 593 rows

People 3571826 357183 rows | 35718 rows | 3572 rows
rows

Ratings 362285 rows | 36229 rows | 3623 rows 362 rows

Titles 2294719 229472 rows | 22947 rows | 2295 rows
rows

Figure 4.3: The table sizes in the database.

4.1.6 Queries

The queries used for the experiment are listed below, including a small
description as to what they are testing and why they are chosen. The reason
for there being a smaller amount of queries to test things is due to there being
more extensive testing, both to see scaling and performance, rather than trying
to find queries that have specific cases.

N

('"movie’,

Query 1

"video') ;

——how many movies are 1in the database?
SELECT COUNT (DISTINCT title_id)
FROM titles

WHERE type IN

Query 1 is used to test multi-point queries. This query is chosen due to the fact
that both hash indexes and B-tree indexes are good choices for point queries,
so seeing a difference in performance would be noticeable here. This query is
also easy to make improvements to when it comes to tuning, which is another
factor in the choosing of it.

1 -—how much content

in each type

database and what are the types?

[V N VO ¥

SELECT type,
FROM titles
GROUP BY (type)
ORDER BY

(type)

COUNT (*)

ASC;

Query 2

is on the

Query 2 looks at all the types that there are in the table and then how many of
each type there are. This is a large query which is why it was chosen. Seeing

Experiment |48

if it can be improved by any of the methods for this query type would be very

useful.

--1list all actors/actresses playing 1in

a spiderman movie

SELECT DISTINCT name

FROM (SELECT primary_title, original_title,
crew.title_id, person_id, category
FROM crew
INNER JOIN titles ON
titles.title_id = crew.title_id
WHERE primary_title
LIKE ’'Spider -Man%'’

OR original_title LIKE ’'Spider-Man%'’) as a
INNER JOIN people ON
a.person_id = people.person_id
WHERE a.category = ’'actor’
OR a.category = 'actress';
Query 3

Query 3 lists all the actors and actresses that have played in a Spider-Man
movie. This query is chosen in part because of how it has an inner query,
that could easily be transformed into a materialised view, so comparing that
in performance is of interest.

-—get the second-highest rating

SELECT DISTINCT rating

FROM ratings

WHERE rating =

SELECT MAX (rating) FROM ratings

WHERE rating != (

SELECT MAX (rating) FROM ratings)) ;

Query 4

Query 4 gets the second-highest rating for the media in the database, this
query is chosen due to how it has a correlated inner query and see if any of
the methods can improve this is of interest as correlated inner queries can be
likened to inner loops in other programming languages. Seeing if this could
be improved by the optimiser or an index is of great interest.

—-—find all movies made between 2000 and 2010

SELECT primary_title, premiered

FROM titles

WHERE type LIKE ’'movie’

AND premiered BETWEEN 2000 AND 2010

ORDER BY premiered ASC;

Query 5

N

[V N SV ¥}

Experiment |49

Query 5 gets all the movies that are premiered between 2000 and 2010. This
query is chosen to test range queries.

4.1.7 Improved queries

This part describes the improved queries and how they are improved.

——how many movies are 1in the database?
SELECT COUNT (title_id)

FROM titles

WHERE type = ’'movie’ OR type = ’'video';

Improved query 1

The difference between improved query 1 and query 1 can be seen in the
SELECT statement and the WHERE statement. The improved query does not
use DISTINCT, as it is deemed unnecessary due to the nature of primary keys
being unique. DISTINCT would just add extra overhead to the filtering. The
WHERE clause differs in how the improved query uses OR instead of IN. This
is done to see if IN and OR had any difference in performance. As IN checks
the column value and matches it to a list of values. Technically, as stated in the
background, the IN statement should be executed faster than OR, so it is not
an improvement, rather a difference in the query to see if it makes a difference
in performance.

——how much content 1in each type are on the
database and what are the types?

SELECT type, COUNT (title_id)

FROM titles

GROUP BY (type)

ORDER BY (type) ASC;

Improved query 2

The improved query 2 differs from query 2 by counting the column title_id
instead of *. This is done to test the the statement in the literature study. The
source states that by switching * to the column to be counted, performance
would be improved.

Experiment |50

--1list all actors/actresses playing 1in

a spiderman movie

CREATE MATERIALIZED VIEW g3

AS

SELECT primary_title, original_title,
crew.title_id, person_id, category
FROM crew
INNER JOIN titles ON
titles.title_id = crew.title_id
WHERE primary_title
LIKE ’'Spider-Man%'
OR original_title LIKE 'Spider-Man%';

SELECT DISTINCT name FROM people
INNER JOIN g3 ON

g3.person_id = people.person_id
WHERE g3.category = 'actor'’

OR g3.category = ’'actress’;

Improved query 3

The improved query 3 uses builds a materialised view instead of using an inner
query. As source from the literature study states that the query planner can
have a difficult time optimising queries with inner loops. It is also stated in the
background that running queries on materialised views can cause better query
performance.

—-—find all movies made between 2000 and 2010
SELECT primary_title, premiered

FROM titles

WHERE type = 'movie’

AND premiered BETWEEN 2000 AND 2010

ORDER BY premiered ASC;

Improved query 5

The improved query 5 differs from query 5 by switching the LIKE operation
to an equals operation which is done to test if there is a difference between
them. As LIKE uses pattern matching for the characters. It can be used to
use wildcards, but as the only thing that is matched is 'movies’ it was deemed
unnecessary if performance differs.

4.1.8 Keys and indexing structure

As there are primary keys in the database already no key constraints needed to
be added. Due to how generic indexes often are placed on foreign and primary

Experiment| 51

key constraints that are how indexes are decided to be placed.

The indexes tested are the B-tree index and the hash index, they are tested
one at a time and are placed in what is deemed a generic way, which is by
placing them on the primary keys and what would be the foreign keys of
the tables. The index on the titles and episodes table is sorted based on the
title_id. Crew is sorted on title_id, and the people index is sorted based on the
person_id. The akas and ratings indexes are sorted on title_id, as well.

After this, more personalised indexes are created to see how the queries
would interact with them. The personalised index is used in this report for
a lack of official wording. It is defined as an index that is tuned specifically
toward a query. The index on the titles table is on the type column and another
index on the premiered column. The episodes table is sorted based on the
show_title_id. Crew is sorted on category, and the people index is sorted based
on the person_id. The akas indexes are sorted on title_id, and the ratings table
on rating. These indexes replace the old general indexes.

The full indexing schema can be seen in the appendix C.

4.1.9 The experiment tests

The following list presents the experiments that are run on the IMDb database.

* The queries, this is used for baseline measuring and is used to decide if
the other results are slower or faster.

» Improved queries, the original queries that have been tuned for better
performance.

* The DBMS optimiser, this is done by running the ANALYZE command
with the queries, before looping them to ensure that the optimiser
statistics are up to date.

* General indexes, running the baseline queries with indexes built based
on key constraints.

 Personalised indexes, running the baseline queries with indexes that are
built based on columns used by the queries.

Results and Analysis | 52

Chapter 5

Results and Analysis

This chapter summarises the result of the literature study, as well as presents
the result from the experiment.

5.1 Literature study result

This section describes the results from the literature study, and can also be
seen as a summary of the main points of the Related works section.

5.1.1 Theory

In the report ’Database performance tuning and query optimization’ [42]
the main take-away points are that indexing can be the solution to many
performance issues, but maintaining an index can cause overhead when
updating tables. It can also cause CPU and I/O usage to increase which
also increases the cost of writing data to disk [42]. The book ’Database
tuning principles, experiments, and troubleshooting techniques [43] further
develops on this. First, it describes how a database administrator should think
to improve a database with a three-step technique:

* Think globally, fix locally: Creating indexes can be a good solution as
it can be cheaper than creating more disk space.

* Partitioning break bottlenecks: a local fix to breaking bottlenecks is to
create indexes.

* Start-up costs are high, running cost is low: improving execution time
often costs memory or processing power.

Results and Analysis | 53

The book then continues to describe how queries can be divided up into types,
and what indexes suit which query type. The query types are described as:

* Point queries return one record or parts of a record based on an equality
selection.

» Multi-point queries return several records based on an equality selection.
* Range queries return a set of records whose values are within an interval.

* Prefix match queries are queries that use AND and LIKE statements, to
match strings or sets of characters.

» Extremal queries are queries that obtain a set of records that return the
minimum or maximum of attribute values.

* Ordering queries use the ORDER BY statement.
* Grouping queries use the GROUP BY statement.

* Join queries are queries that links two or more tables. There are different
types of join queries. For joins that use an equality statement (equijoins),
the optimisation process is simpler, for join queries that are not equijoins
the system will try to execute the select statement before joining. This
is due to non-equijoins often needing to do full table scans, even when
there is an index present.

B-tree indexes are in particular good for range, prefix match, partial match,
point, multipoint, general join, and ordering queries. Clustering B-trees are
good for getting rid of the ORDER BY statement, due to the ordering nature of
B-trees in combination with physical storage. And for non-clustering indexes,
covering all the attributes necessary for a query is the best way to use them, as
then it is possible for the DBMS to use an index-only scan. Another type of
index is the composite index, whose use-cases are mainly to ensure minimal
table accesses for queries that use many of the key attributes in the index.
Although, there can become an issue with updates, as this type of index use
many attributes for its key, the chance of the index having to update when the
table does is higher. The major tip from this book is that indexes should be
avoided on smaller tables, dense indexes should be used on critical queries to
make use of the index-only scan, and building an index is dependent on if the
time saved in execution time is larger than the cost of updating the index [43].

Some methods for improving queries are getting rid of the * and instead
using the column name in operations. Make sure that the HAVING clause is

Results and Analysis | 54

executed after restricting the data with the SELECT statements. As well as
by minimising the number of subquery blocks that are in a nested query [42].
Query tuning should be considered before implementing indexes, as inserting
indexes can have harmful global effects. In comparison, rewriting a query can
only have positive effects, if done correctly [43]. Tips for rewriting queries
are:

* Do not use DISTINCT unnecessarily as it creates an overhead due to
sorting.

* Avoid subqueries as much as possible, as many systems do not handle
them well.

» Complicated correlation sub-queries can often execute in an inefficient
way and should be rewritten.

* The use of temporaries can cause operations to be executed in a sub-
optimal manner, but it can also help with subverting the need of using
an ORDER BY statement.

* Do not use HAVING statements if a WHERE statement is enough.

* Study the idiosyncrasies of the system. Some systems might not use
indexes when there is an OR statement involved, to circumvent this a
union could be used.

» They state that the ordering of tables in the FROM statement can affect
the order of joins, especially if more than five tables are used.

* The use of views as it can lead to writing inefficient queries.

[43]

The book ’"PostgreSQL query optimization: the ultimate guide to building
efficient queries’ [21] continues on building the theory for creating optimised
queries. The book begins by stating that a database application has many
parts, optimising one of them might not improve global performance. And
also, that PostgreSQL has one of the best query optimisers in the industry, so
declarative queries should be used. The way the planner works is by combining
the primary metrics such as CPU cycles and I/0O accesses to a single cost unit
that is used for comparison of plans. Some inaccuracies of the optimiser are
mainly due to the stored histograms not being able to produce intermediate
results, cost estimates being imprecise, and that heuristics might cut a plan too
early to see if it really was not optimal [21].

Results and Analysis | 55

A query can access data in different ways. The main ways are full table
scan, index-only scan, and index access. For smaller values of selectivity,
index access is preferable, as it is faster than a full table scan. This also means
that if selectivity is high, using a full table scan is preferable. But the best
option is to use an index-only scan if the query allows it. Although this is
entirely dependent on the index used [21].

The book then describes short and long queries and how they can be tuned.
Short queries benefit from using restrictive indexes and are most efficient with
unique indexes, as these have fewer values to go through. Things to keep in
mind when using short queries are that column transformations make it so
that an index search cannot be performed on the transformed attribute. LIKE
statements also do not utilise indexes, so they should also be avoided and can
instead be replaced by equivalent OR statements. Some tips for indexing on
the other hand are that indexes should not be used when the table is small, or
if the majority of the rows in a table is needed to execute a query, or a column
transformation is used. A tip to force a query to use an index is to use the
ORDER BY operation [21].

The way to optimise long queries is by avoiding multiple full table scans
and reducing the size of the result as soon as possible. Indexes are not needed
here and should not be used. Another tip is that hash join is most likely
the better algorithm for joining long queries. And if GROUP BY is used
by a long query, the filtering needs to be applied first in most cases. There
are times that GROUP BY can reduce the size of the data-set, but the rule
of thumb is to apply the SELECT statements first for the optimiser. Lastly,
set operations can sometimes be used to prompt alternative execution plans.
Another tip to improve execution time for queries is to use materialised views,
but a materialised view should only be created if the data it is based on does
not update often. This means that if it is not very critical to have up-to-date
data, the data in the materialised view is read often, and if many queries could
make use of it [21].

Lastly, multidimensional and spatial searches are discussed. Spatial data
often require range queries. Which means finding all the data located at a
certain distance or closer to a specified point in space. And nearest-neighbour
queries, which is to find a variable number of objects closest to the specified
point. These queries cannot be supported by one-dimensional indexes or even
multiple indexes, and must instead use special indexes, such as the GiST.

Results and Analysis | 56

5.1.2 Other experiments

In the report *Comparison of physical tuning techniques implemented in two
opensource DBMSs’ [44] B-tree indexes and hash indexes were investigated
to see how they affected execution time in two DBMSs. The result showed
that the average time reduced for PostgreSQL with a B-tree index was 67.4%
and that the hash index increased execution time for the queries tested [44].
This study is complemented by the report *PostgreSQL database performance
optimization’ [45], whose result can be seen in Figure 2.3. What can be seen is
that in most cases indexes improved performance, although hashing, joining,
retrieving, and sorting sometimes increased execution time. The PostgreSQL
optimiser was also investigated by running the ANALYZE command for
queries, the result was that no major difference existed by doing this, compared
to just running the queries [45].

Another study, investigating indexes and how they affect execution time is
the report "MongoDB vs PostgreSQL: a comparative study on performance
aspects’ [46]. The result showed that PostgreSQL performed on average 89
times faster with an index applied [46]. A similar study was done in the
report ’Comparing Oracle and PostgreSQL, performance and optimization’
[47] which showed that PostgreSQL can improve up to 91% with indexes and
by only adding primary and foreign keys the performance was improved by
38% and by adding indexes it was improved by 88% [47].

Lastly, the report *Space-partitioning Trees in PostgreSQL: Realization
and Performance’ [48] investigated how SP-GiST indexes compared to other
tree-based indexes. The result showed that a disk based SP-GiST trie performed
two orders of magnitudes better than a B+-tree when it comes to regular
expression match searches. The reason for the result was due to the fact that the
B+-tree used the wildcard in the search. The trie on the other hand uses non-
wildcard characters in the search for filtering. The SP-GiST trie had better
search performance than the B+-tree when it came to exact match, around
150% better, it also scaled better than the B+-tree. For prefix matches the
B+-tree outperformed the SP-GiST trie, this was due to the inherent nature of
having the keys sorted in the leaf nodes. Which allows the tree to answer prefix
match queries very efficiently. For exact matches the B+-tree scales better as
well, this is due to how the SP-GiST trie consists of more nodes and more
node splits than the B+-tree. The SP-GiST kd-tree performed 300% better
than the R-tree when it came to point search and 125% better when it came
to range search, although the R-tree has better insertion time and better index
size. This is due to how the kd-tree has a node size (bucket size) of one and

Results and Analysis |57

every insertion causes a node split. The R-tree had better insertion and search
performance than the SP-GiST PMR quadtree. Lastly, the nearest neighbour
search for the kd-tree and the point quadtree was better than for the trie. This
is due to how the trie performs the NN search character by character while for
the kd-tree and the point quadtree the NN search is based on partitions.

5.2 Results

In Figure 5.1, Figure 5.2 and, Figure 5.5 the baseline, improved query, and
using the baseline query on the personalised B-tree schema can be seen. The
result for using the ANALYZE command is omitted due to how it remained
the same as the query result, the same reason applies to the generic B-tree and
Hash indexes.

In Figure 5.3 there is also the addition of the generic B-tree and Hash
indexes, the optimiser result is once again omitted for the same reason stated
before.

In Figure 5.4 only the baseline query and the personalised B-tree results
can be seen. The same reason for omitted results stands as for the first
paragraph. The reason that there is no improved query result, is due to how
that was not tested here.

Detailed results for how the queries were executed, the EXPLAIN output,
and more detailed graphs can be seen in the appendix E and D.

5.2.1 Other results

The materialised view took less than a minute to build for all data sets. It
should be noted that different materialised views were tried and some of them
took too long to build in the largest data set. Towards 6 minutes before being
manually terminated.

Using the ANALYZE command for the optimiser did not show a very big
difference compared to executing the queries normally. Some queries on some
data sets had the same execution time, others were a millisecond more or less.

The Hash index could not be built for certain columns, due to the nature of
Hash structures, so that could not be tested. And for the general indexes, the
index was not used in most queries, which is why that result is omitted.

Further information about the result can be seen in the appendix, both more
detailed graphs -in appendix D - for each query executed and the explanation
from the DBMS, using the EXPLAIN command - in appendix E.

Time (s)

Results and Analysis | 58

Query 1

1.2

1
0.8 =& Query

== |mproved query
0.6 Personalised B-
tree

0.4
0.2

0 - *

1000 10000 100000 1000000 10000000

Rows

Figure 5.1: Execution time comparison for query 1 versions.

The graph shows the execution times (y-axis) for the query executed, the
improved query, and the query executed with a B-tree index and how they
scale over increased data in the table. The x-axis shows the rows in the table
with logarithmic growth. The query executed with the B-tree shows similar
performance to just executing the query, but has a slight improvement when
scaled to a larger data set. The result for the general indexes and the query
executed with the ANALYZE command were omitted due to how they did not
show any difference from just executing the query.

Time (s)

Results and Analysis | 59

Query 2
0.25
0.2
0.15 Query
—+— Improved query
01 =4 Personalised B-
tree
0.05
0
1000 10000 100000 1000000 10000000
Rows

Figure 5.2: Execution time comparison for query 2 versions.

The graph shows the execution times (y-axis) for the query executed, the
improved query, and the query executed with a B-tree index and how they
scale over increased data in the table. The x-axis shows the rows in the table
with logarithmic growth. The query executed with the B-tree shows similar
performance to just executing the query, but has a slight improvement when
scaled to a larger data set. The improved query also has similar performance
but scales worse. The result for the general indexes and the query executed
with the ANALYZE command were omitted due to how they did not show
any difference from just executing the query.

Results and Analysis | 60

Query 3
0.8
0.7
0.6
0.5 == Query
== [mproved query
0.4 Generic B-tree
=== Generic Hash
0.3 —p— Personalised B-
tree
0.2
0.1
0 = P
1000 10000 100000 1000000 10000000
Rows

Figure 5.3: Execution time comparison for query 3 versions.

The graph shows the execution times (y-axis) for the query executed, the
improved query, the generic B-tree and hash index, and the query executed
with a personalised B-tree index and how they scale over increased data in
the table. The x-axis shows the rows in the table with logarithmic growth.
The generic indexes show similar performance, they scale better than just the
query, the same can be said for the improved query. The personalised B-tree
line is difficult to see but it is behind the query line, which means that they had
similar performance. The ANALYZE performance was omitted due to how it
executed like just running the query.

Time (s)

Results and Analysis |61

Query 4
0.09
0.08
0.07
0.06

0.05 -8 Query

0.04 =4 Personalised B-

free
0.03

0.0z
0.01

100 1000 10000 100000 1000000

Rows

Figure 5.4: Execution time comparison for query 4 versions.

The graph shows the execution times (y-axis) for the query executed, and the
query executed with a B-tree index, and how they scale over increased data in
the table. The x-axis shows the rows in the table with logarithmic growth. The
query executed with the B-tree shows similar performance to just executing
the query at first, but shows a large improvement when it comes to scaling.
The result for the general indexes and the query executed with the ANALYZE
command were omitted due to how they did not show any difference from
just executing the query. This query was not tuned, which is why there is no
improved query result.

Time (s)

Results and Analysis | 62

Query 5
0.3
0.25
0.2
== Query
0.15 == [mproved query
Personalised B-
01 tree
0.05
0
1000 10000 100000 1000000 10000000
Rows

Figure 5.5: Execution time comparison for query 5 versions.

The graph shows the execution times (y-axis) for the query executed, the
improved query, and the query executed with a B-tree index and how they
scale over increased data in the table. The x-axis shows the rows in the table
with logarithmic growth. The query executed with the B-tree shows similar
performance to just executing the query, but scales worse. The result for the
general indexes and the query executed with the ANALYZE command were
omitted due to how they did not show any difference from just executing the

query.

Discussion | 63

Chapter 6

Discussion

This chapter discusses and provides explanations for the result in the experi-
ment by using the information provided in the background as well as the
appendix. It compares the result to the literature studies and analyses the
reliability and validity of the result. It also discusses the problems faced during
the thesis, how they were solved and what problems could not be solved. It
brings up the sources of errors to consider as well as the limitations of the result
and reiterates what sustainability and ethical effects this result may have.

6.1 The result

This section describes the result of the experiment, combines it with the
EXPLAIN output to shine light onto why the result looks like it does, and
compares it to other the result from the literature study.

As mentioned in the background, EXPLAIN is used to provide an output
of the query plan that the query planner in the DBMS has provided. The output
is read bottom-up, and it uses an abstract measurement

Query 1

As can be seen in Figure 5.1, the query and the query executed on the B-tree
have similar execution times, but the B-tree query scales slightly better. The
improved query on the other hand shows a very big improvement. To better
see the result see Figure D.6 in the appendix D. The difference between the
normal query and the improved query is the usage of DISTINCT, and IN and
OR. From the EXPLAIN output file (in the appendix E), it shows that it filters
the IN statement first for any strings that contain any of 'movie’ or ’video’, as

Discussion | 64

it contains it as listed values. Then a sequential scan is performed on titles.
In comparison, the improved query filters the text using OR statements. A
parallel sequential scan is run with two workers, which means that it most
likely uses one worker each to scan for either movie or video at the same time.
The OR statement seemed to have allowed the planner to use two workers
instead of one, which could have led to better performance, or the lack of
DISTINCT could have done this further tests would be needed to be sure of
what the cause was.

The query using the B-tree index functions similarly to how just running
the query works. What differs is how the query uses the B-tree index by
performing a bitmap index scan followed by a bitmap heap scan rather than
a sequential scan. The index it uses has the column type on the table titles as
the indexing column, which means that it has a faster time finding where the
correct rows are placed on file, but it still needs to access the data, which is
why the bitmap heap scan also is performed.

The Hash index could not be implemented on the types column, mainly
due to the nature of Hash structures and how they do not work well with many
entries that use the same hash key. The result for the generalised indexes was
also omitted from the result as the query did not use the index.

Query 2

In Figure 5.2 the result for executing the query, the improved query, and the
query on the B-tree index can be seen. What is most notable is that the
improved query was not improved at all. The query differs from the original
query by using SELECT(title_id) instead of SELECT(*). The difference in
performance is minimal, yet the sources from the literature study stated that
changing the * should improve performance. The query performed on the
index scaled better.

The EXPLAIN output shows that for the query first a parallel sequential
scan is performed, then it is partially hashed based on type, this is then sorted
on the type as well, and then finally merged into the result. The improved query
shows the same output as the normal query, which means that technically both
of them should have the same performance. This can be noted as until the
largest data-set was used, the performance was incredibly similar, and for the
largest data-set, the performance only differs by less than a millisecond. Which
could be a source of error, potentially due to caching. Or it could be an effect
of having implemented a materialised view, which might be hogging some
memory.

Discussion | 65

The query performed on the B-tree index uses the index with the types
column as the indexing column. It first performs an index-only scan, then
groups the types, and finally merges the result. It does this with two workers
as well. This explains why this is faster than performing the query without
indexes, as an index-only scan is faster than a sequential scan. It also does not
perform any type of sorting as the B-tree already has the data sorted which
also saves time.

As stated before, the Hash index could not be implemented on the types
column, mainly due to the nature of Hash structures and how they do not
work well with many entries that use the same Hash key. The result for the
generalised indexes was also omitted from the result as the query did not use
the index.

Query 3

As Figure 5.3 states, the query executed on the generic B-tree and Hash
indexes have the same execution times, and they both show slight improvement
compared to executing the query without an index. The tuned query also shows
slight improvement when it comes to scaling. The other B-tree index has the
same performance as just executing the query. The improved query shows
a big improvement compared to the other tests. It should also be noted that
building the materialised view for the improved query took less than a minute.

The EXPLAIN output is quite long but can be summarised as the following.
The query uses an index condition on the primary key for the people table, it
then does an index scan using the primary key on people. After this, the query
filters the movie titles and gathers the titles that are searched for. This is done
with a parallel sequential scan on titles and then hashed. Another parallel
sequential scan is run on crew, the result is then hashed and then a hash join is
applied to form the result of the nested loop. This is then sorted by name and
the result is merged.

The improved query on the other hand uses an index scan on the primary
key for the people table, it uses the cached key for the materialised view
(as it also contains person_id) for memoisation purposes. The set is then
filtered on the crew conditions and a nested sequential scan is performed on
the materialised view. The result is then sorted.

The query on the generic B-tree and Hash index shows similar outputs.
They both do an index scan based on the person_id column, they then filter
the category on the crew table and use the index condition for title_id (as it is
a primary key for titles). They then both do a parallel sequential scan on titles

Discussion | 66

and uses two nested loop - in comparison to just executing the query which
only uses one nested loop - and then sorts to gather the result.

Lastly, the personalised B-tree performs an index scan using the person_id
column, it then filters the title and performs a parallel sequential scan on the
titles table. It then parallel hashes the result from this part of the query. Then
it continues on to filter the crew table for the rows needed, does a parallel hash
join - like just performing the query does - and then sorts. This means that the
personalised B-tree performs almost exactly like just performing the query,
except for the usage of the implemented index instead of using the primary
key constraint. Which would explain why they have the same execution times.

Query 4

Figure 5.4 shows the result for the query and the query using the B-tree index.
What can be seen is that by using the index the query scales a lot better.

The query begins with performing a parallel sequential scan on the ratings
table with a variable filter ($3). This is then repeated again, but the result is
saved as ratings_2 that compares the result from the previous sequential scan
to find the second highest rating. After this another parallel sequential scan is
performed to gather all the media with this rating.

When the query is executed with the index, the same thing happens but
instead of using sequential scans, index only scans backwards are used instead,
and only done twice. This explains how the performance could improve by so
much. Like stated earlier, index only scans are a lot quicker than sequential
scans.

Query 5

In Figure 5.5 the query, improved query and the query performed on the B-tree
index can be seen. The B-tree index scales worse than the query. Whilst the
improved query scales slightly better.

The query is executed by first filtering the the premiered column on the
desired values, it then performs a parallel sequential scan on titles with this.
After this it sorts the result based on the premier dates. The improved query
does the exact same thing, which means that technically they should have the
same performance.

With the index on the other hand, a bitmap index scan is performed on the
types column, the result is then filtered on the premiered column as specified
in the query and applied to a bitmap heap scan on the titles table. The
result is then sorted. The cost of the bitmap index scan and the bitmap heap

Discussion | 67

scan combined is lower than the parallel sequential scan, which means that
there should be slight improvement. The reason as to why there is not any
improvement can be due to different things, it could be that the query planner
is inaccurate in the execution times of the planning due to not updated statistic.
Other issues, as mentioned in related works, could be that there are elements to
this query that the query optimiser does not take into consideration, something
that might have to be fixed manually with a statistics object or something else.

The most likely explanation for why the execution time was higher, is due
to how at a certain point for selectivity, the heap access (also called index
access) has a higher cost than doing a full table scan. Which means that for
this result, despite doing an index scan to find the correct entries to save time,
the heap scan takes more time than doing a table scan would.

Optimiser results

As stated in the result, the optimiser result was omitted from the graphs. This
is due to how they performed almost exactly like just performing the query,
sometimes some milliseconds better and sometimes some milliseconds worse.
The explanation for that is assumed to be measurement errors as the measuring
were done on different times and memory and cache usage could have changed
between them. The lack of change in execution time could be because of how
the statistics remained the same when just executing the query, so the need to
change query plan did not have to happen. For further research, testing the
ANALYZE command when executing queries on indexes might be of more
interest, as inserting an index could maybe cause the statistics in the query
planner to be out of date.

Comparing with the literature study

Overall, the result gathered from the experiment conducted in this thesis
matches well with the general consensus of the experiment conducted in the
literature study material. In general, the indexes - when used by the query -
improved performance. Although, what differed is that there was no difference
between using a B-tree index and a Hash index during the specific case tested
in the experiment. This is not to say that there cannot be a difference as there
was only one case where the Hash index could be tested in the performed
experiment. Another difference is that the B-tree index, in two cases, worsened
performance. Which can be explained by the theory in the literature study
result, and was explained earlier. What was not tested was adding primary and
foreign keys, to see how that would affect performance, but what could be seen

Discussion | 68

in the result was that by having primary keys, a type of index search could still
be performed, so it would be far-fetched, to believe that by implementing more
of these key constraints in the correct places would improve query execution
time. Although that is something that should be further tested. Lastly for the
experiment section of the litterateur study, the ANALYZE result showed that
there was no major difference between using it or not, which was the same
result gathered in this thesis’ experiment.

Some of the methods gathered in the literature study were tested when
tuning queries to optimise performance. Removing DISTINCT in Query 1
greatly improved performance. Changing * to the column to be counted did
not improve performance for Query 2. In the experiment the result showed
that it actually worsened performance, although the EXPLAIN output showed
that the execution strategy and the predicted time would remain the same -
dismissing any idea of there being errors - in this case doing this did not
improve the query. Avoiding subqueries was also something that was tested.
This was done in Query 3, by creating a materialised view. This improved
performance greatly, especially when it came to scaling the query over a larger
data-set.

Although idiosyncrasies were not studied in detail, through the result for
Query 1, either the lack of DISTINCT or the addition of OR (or both) could
have caused the planner to choose a plan that made use of two workers instead
of one, which is the most likely reason for improved performance. As that
was the main difference in the EXPLAIN output. Another thing that could be
seen was the described relation between full table scan, index only scan and
index access in Query 3 and Query 5. As the most likely reason as to why
the indexes did not improve performance was due to high selectivity, which
makes the index access (also called heap access) more inefficient than a full
table scan.

6.1.1 Reliability Analysis

As mentioned in the method, the queries were looped 100 times each, four
times (the way they were looped can be seen in the appendix for the script in
appendix B). The first time the loop was run was excluded as it counted as
warming up the cache. This ensured that a mean could be taken from all three
of the runs and then that a mean could be calculated from the three data points.
This should improve reliability, as if any of the means was vastly different from
the others, the data files generated could be inspected to see if one of the runs
had drastically different data points than the other runs.

Discussion | 69

The queries were also tested as they were constructed to ensure that they
gathered what they were supposed to so that the measuring would be accurate.

6.1.2 Dependability Analysis

To ensure the correctness of conclusions, comparisons between the experiment
and literature study was made to ensure that there was a reasonable explanation
for similarities or differences in results. In the experiment this was further
ensured by noting down and viewing each testing instance to see if any major
discrepancies could be found when timing the execution of the queries.

6.1.3 Validity Analysis

The result measures the execution time for the queries in different circumstan-
ces and how it scales to larger data sets. The script shown in the appendix
B does this. It used the /user/bin/time package to do this. The queries were
tested so that they gathered the intended data in all the cases beforehand so
that they were valid. The package to measure time was studied to ensure that
it would measure the execution time correctly and was compared to how it
was measured when using the Linux time command, as well as the built-in
PostgreSQL command for measuring the execution time of queries to ensure
that it was accurate, the ANALYZE command was also useful to see the
accuracy of measuring. To ensure further validity of the result, the literature
study and the experiment result were compared to see if there were any major
differences, and explanations were provided based on the information gathered
in the background. As well as by providing a print-out of the EXPLAIN
command for the result, explanations as to why the result looks like it does
has been provided.

6.2 Problems and sources of error

This section discusses the problems that came up during the thesis, as well as
the error sources that should be considered when analysing the result.

6.2.1 Problems

One issue at the beginning, that was realised at a later point, was the
delimitations. At first, they were too few and too imprecise. Both of these
problems were solved as the project went along and the research for the

Discussion |70

background and the literature study was found and analysed. The background
showed the extent of the area of database optimisation, which caused more
delimitations to be formed, and the literature study showed how other studied
formulated problems and described the problem area which made it easier to
form the research questions for this thesis.

Another issue found during this study was that there are many different
indexes for PostgreSQL, as mentioned in the background. The issue was that
the information found about them pointed towards their main use case is for
a specific type of data - spatio-temporal - or specific types of operations -
nearest neighbour search, find coordinates within an area, etc. Due to the
time constraints of this thesis, there was no time to experiment with these
types of indexes which meant that they were also put as a delimitation for
the experiment. Although, a couple of research papers were found within the
area of spatio-temporal indexing, in which a few of them contained tests done
with PostgreSQL. One of these reports was more relevant than the others and
was then put in the literature study result. This was done to have some relevant
information about the use cases of one of the indexes, and also how it compares
to other indexes used in the same problem area.

More problems were found when the experiment was being planned. First,
there was no documentation of the data in the database, therefore, some of
the data was looked over to check what each attribute actually meant. As
well as to see if there were any key constraints. At first, the constraints were
not found at all, because they were at the end of the file. When they were
found a plan was made to test to see if they could be changed to include
more foreign keys. Due to the nature of the data in the database, and that the
data was decided to be split for the multiple versions of the database, making
foreign keys was difficult, and had to be foregone entirely. Which meant that
only the original key constraints were used for the database and the indexes
implemented. Another issue found was some issues with query tuning, since
that was somewhat of a novel concept, formulating better queries was a bit
difficult and in some cases almost impossible. This can be seen in the case of
Query 4, which was not tuned due to a lack of knowledge.

6.2.2 Sources of error

One major source of an error discovered was the lack of ability to clear the
cache between query runs. Inreality, a database would not be running the same
queries on loop, which means that the cache may not have the data needed at all
times. There was not a way to do this, due to the nature of Docker only having

Discussion | 71

areadable operating system environment, which is why the exact times should
be taken with a grain of salt. Clearing the cache between queries would not
simulate a real database, but would instead measure the worst-case benchmark,
which would mean that most likely in a real-life scenario the benchmark would
be better than measured. Which means that the result would be more accurate.
As mentioned earlier, there were also issues with query tuning, which means
that the queries might not have been tuned very well, which means that the
result might not show the extent of how the query tuning can improve execution
time.

Another smaller source of error is that the running of tests happened during
different days, and times of days (query and improved query on one day, and
index and optimiser on another). This could cause errors in that cache and
memory performance can differ, which could lead to minor execution time
differences.

It should also be noted that for Query 3 the two smaller data sets did not
return any result, so the scaling could be inaccurate for them. And for Query 4,
the ratings table is a lot smaller than the other tables, which means that scaling
differences, in the beginning, could be a lot smaller than for the other results.
It would be of interest to have a larger ratings table to see if that reasoning is
correct or not.

6.3 Limitations

There are some limitations to the result that are worth mentioning. One of them
is what was brought up in the background. As mentioned, a database is often
not a standalone product, it most often is connected to some sort of application
as an interface of sorts, and a server. The result of this thesis does not take into
account how application or server issues play into efficiency. Neither does
it test hardware, to see how that affects efficiency. Both are limitations that
should be taken into consideration when optimising a database.

Another limitation is the fact that other PostgreSQL indexes than the B-
tree and Hash index could not be tested. The Hash index could not be tested in
all cases either. This means that the extent of improvement that indexes have
on a database could not be accurately measured. Although it could be argued
that by PostgreSQL using the B-tree as the standard indexing structure, there
could be something in that the B-tree most often is suitable for indexing.

Discussion |72

6.4 Sustainability

As mentioned in the introduction, optimising a database system has an
environmental effect as it reduces the resources a database uses. Shorter
response time and efficient use of hardware lead to lessening the total computing
time and could reduce the wear on hardware as well as a reduction in energy
usage. And an ethical problem that is related to database efficiency, is the
potential that people more easily can manage to compile data from different
data sets. This can then be presented or used to discern information that can
cause privacy issues.

Conclusions and Future work | 73

Chapter 7

Conclusions and Future work

This chapter summarises the result and the information discussed in the
discussion chapter, as well as answering the research questions, and sub-
questions posed.

7.1 Conclusion

The purpose of this thesis was to investigate how indexing and query optimisation
affect the response time for a PostgreSQL database, with the purpose of
furthering research in the area, as well as providing information for database
administrators and students alike. As one of the aims was to provide course
material for database courses.

To summarise the findings of the experiment and the literature study, the
research question and the subquestions are answered below.

7.1.1 Answering the subquestions

The subquestions posed for this thesis is the following:
1. What methods of indexing are there and what are their use cases?
2. How does query optimisation work and how can queries be optimised?
3. What is the overlap between indexing and query optimisation?

4. How does indexing, the query optimiser, and query tuning compare to
each other?

Conclusions and Future work | 74

Subquestion 1

As discovered in the background and literature study, there are many types
of indexes in PostgreSQL. The methods of implementing indexes differ
depending on if they are primary or secondary indexes. As in PostgreSQL,
only secondary indexes are used, the focus will lay there to answer this
question. The method to implement indexes is to look at the queries, analyse
their frequency, and what type of queries they are. As well as looking at
the table to see what type of data there is on there and how often it gets
updated. Depending on the data types and index structure that should be
chosen, this also depends on the types of queries that are supposed to use
the index. Thereafter it can be determined what should go into the index if
it should be sparse or dense. And also if the index needs to index all data in
a table, if it does not a partial index can be used. If the query uses multiple
tables, or other columns than what is indexed, determine if a composite index
can be used.

The use-cases of indexes are mainly determined by what indexing structures
are used. In most cases, the type of query or data type can determine what
index should be used. For example, as mentioned in the background, the
Hash index is suitable for point, and multi-point queries. Which B-trees also
are good for but are also extended to include range queries, prefix matches,
and ordering queries. SP-GiST, GiST, GIN and BRIN are mostly used for
implementing special data-types into a database. In the literature study SP-
GiST was described to mainly be used for spatio-temporal data, and depending
on how these indexes are implemented - i.e what data structures are used -
they can be useful for different types of queries. This result recommended
their implementations of SP-GiST trie for regular expression matches, exact
matches B+-trees for prefix match queries, the SP-GiST kd-tree for point
search and range searches, but if insertion and index size is of critical nature,
the R-tree works better. This also is the reason to use an R-tree over a SP-GiST
PMR quadtree. Nearest neighbour searches also benefit from using a kd-tree
implementation.

A generalisation based on the gathered result would be that using a B-tree
index is more versatile and suits more situations than using a hash index would
be, but if implemented incorrectly could instead slow down the execution time.
Removing DISTINCT from a query where possible makes the scaling of a
query a lot better than using the operation. On smaller data sets (in this thesis
tables with less than 100 000 rows) rarely show a difference in execution time
no matter if an index is implemented or if a query is tuned.

Conclusions and Future work | 75

Subquestion 2

Query optimisation can be separated into two parts, query tuning, and using
the query optimiser. The query optimiser is part of the DBMS and works
with statistics over the database, and the query planner to ensure that a good
query plan is chosen. This is done by looking at specific factors, such as CPU
cycles and I/O accesses, combining them to a single unit, and then comparing
this unit between plans. The PostgreSQL optimiser can update the statistics
by running the ANALYZE command for a query, as well as be improved by
implementing supported statistical objects - for multivariate statistics. This is
necessary as there are use cases where the optimiser does not work well, such
as for correlated columns in queries, etc. The query planner optimises a query
by setting up a plan tree, with plan nodes, in which each plan node contains
the cost of planned execution (in the special unit). To not have infinite plans,
and ensure that the optimised query is the equivalent of the starting query,
heuristics rules are used.

Query tuning on the other hand uses techniques and the skills of the query
writer. It is done by manually rewriting queries, to better make use of the
database resources. This is entirely based on the knowledge that the query
writer has about the database and the query language used. As different
types of queries benefit from different optimisation techniques. Summarised
techniques from the literature study result are:

* Do not use DISTINCT unless necessary.
* Avoid subqueries as much as possible, especially correlated subqueries.

» Temporaries can cause execution to be slow, but can also subvert the
need for using ORDER BY operations.

* Do not use HAVING if WHERE is enough.

* Depending on the system, some operations can cause the query to not
use indexes. These idiosyncrasies need to be studied.

* Ordering in the FROM statement can influence the ordering of JOINSs,
especially if more than five tables are joined.

* The use of views can lead to writing inefficient queries.

* Index-only scans are always faster than full table scans, but index access
can be slower than full table scans if the selectivity of the query is high.

Conclusions and Future work | 76

 Short queries benefit from using restrictive indexes, especially when the
indexes are unique as well.

* Doing a column transformation can cause indexes to not be used.
* ORDER BY can force the query to use an index.

* Long queries, do not benefit from indexes, and instead are optimised by
ensuring that few full table scans are done. It is also beneficial to reduce
the size of the result as soon as possible.

* Materialised views are good for improving execution time if it is not
critical for the query to have fully up-to-date data.

Based on the experiment result, using an OR statement instead of an IN
operation could also potentially improve performance, although more tests
would be needed to verify that.

Subquestion 3

From the information stated, indexing and queries are incredibly entwined.
The purpose of both query optimisation and indexing is to improve efficiency.
Although, this can be done in different ways. Indexing can be used for the
ordering of files, which would be one of the main differences. Another
difference is that because of how indexes need to be implemented on the
database as an auxiliary structure, query optimisation can be a less invasive
procedure to use when improving execution time on a sensitive database. Such
as for databases that cannot afford more memory allocation, or have their tables
changing often. From the experiment, it can also be seen that, in the case of the
experiment, it is only so much an index can do if the query is bad. So query
optimisation and indexing have areas where they both are entwined to have
good execution time. The query optimiser is always running as well, although
the accuracy can be improved by specific operations based on data type, query,
and other factors. This means that the optimiser overlap with both indexes and
query tuning.

Subquestion 4

From subquestion 3, it can then be argued to mean that one method cannot
be superior to the others, as something like this cannot be generalised. It all
depends on the situation. How the database looks if the database structure
can change, how much memory is available, and if there is a priority to

Conclusions and Future work | 77

queries. Although, based on the result we can split it up into some cases.
Implementing indexes for spatio-temporal data improves execution time for
queries - this should be complemented with seeing how query optimisation
affects it though. B-tree indexes are more well-rounded in their use cases, and
from the experiment worked really well for improving a correlated subquery.
Query tuning worked really well for a nested query (by using a materialised
view), as well as for a large query (selecting many rows in a table) - which
was also stated in the literature study as long queries benefit more from query
optimisation than indexes. Based on the literature study result, in cases of
column transformation query optimisation works better. And for short queries,
using indexes is more beneficial.

7.1.2 The research question

The research question summarises the subquestions. Indexing and query
optimisations affect the response time positively if implemented correctly, as
can be seen, both in the literature study and the experiment conducted for this
thesis report. Although, there are cases where indexes can increase execution
time. In the literature study, this happened during hashing records, retrieving
records from a specific table, joining certain tables, and sorting. In the case
of the experiment conducted in this thesis: Query 5 (range query) and also, in
part Query 3 (nested join query), which happened due to incorrect usage of
indexes. Tuning queries, on the other hand, had two cases of showing great
performance improvement, one of them being Query 3 (with the materialised
view) and Query 1 (removing DISTINCT), which concludes that materialised
views improves the execution time, and scales very well, but needs to be
weighed against the cost of creating and maintaining it. The other two cases
showed a lack of improvement, but this most likely was due to a lack of tuning
knowledge. The query optimiser (ANALYZE) on the other hand did not affect
response time majorly. This means that depending on the case response time
can be affected positively or negatively - or not at all - by implementing indexes
or query optimisation techniques.

7.2 Future work

For further research, ideas of interest can be seen in the following list.

* Testing more of the different query types that are mentioned in [43], to
see how they interact with indexes, the optimiser, and query tuning.

Conclusions and Future work | 78

 Testing the different statistical elements in the optimiser.

» Have larger data sets and different types of data, to be able to generalise
conclusions.

¢ See how normalisation affects execution time.
* See how key constraints affect execution time.

» Implement one of the other PostgreSQL indexes, to see how they affect
performance.

 Testing the cost of indexes by using update or remove operations on a
table, as well as testing the cost of updating a materialised view. To
better understand their use-cases.

This is mainly motivated by filling in the gaps for the limitations of the result
in this thesis. Having this information, and more information in general,
would make a stronger case for the conclusions of this thesis. As well
as, further mapping out more information about optimisation techniques in
general. As of this thesis, it was somewhat difficult to find other published
research focusing specifically on PostgreSQL and how to optimise a database
within it. Complementing this thesis with any of the above suggestions
would contribute to having more detailed and specific information for the
PostgreSQL community.

7.3 Reflections

This chapter describes some reflections of the works, suggestions towards
others, what I would change about the works, and the impact of the work done.
As well as some other thoughts about the project.

7.3.1 Thoughts about the work

During the course of this works, I found out and learned a lot more in-depth
about databases, as well as how to conduct a research project. What I also
found, was a lack of official, or published research about this area in particular.
It was difficult to conduct the literature study as most materials were not
very similar to the work being done in this thesis. So my suggestion for
others working within database systems would be to publish more detailed
information about optimisation techniques and their explanations. I would

Conclusions and Future work | 79

say that doing the pre-study was an integral part of this thesis, so for other
thesis students, I would recommend conducting a pre-study to collect basic
knowledge about what information is out there within their research area. To
ensure that what they are doing is possible, and within the delimitations.

Some things I would change if I were to redo this work are to summarise
the literature study result before conducting the experiment, as it would have
saved me more time than having to go back and forth in the report to find
the information I need. As well as, when writing, spending that time actually
formulating and editing as I go, instead of writing the necessary information
and then having to go back and edit large sections at a time. I believe that it
would have been faster if I had spent the time writing it better the first time.
This potentially could have given me more time for the experiment, so that I
could have tested more scenarios.

7.3.2 Impact

The impact of the result of this thesis, I believe is somewhat small on a
socio-econimic scale. I think it could have a larger impact on students as it
summarises a lot of information, and test it on a specified database language.
Which they then could use for their own learning purposes. I also believe
that it could potentially help database administrators that have started working
with PostgreSQL. I believe that if continued, this research has the potential of
having a high impact on the PostgreSQL community in the sense of making
it even more available. This could lead to more people, and companies using
PostgreSQL for their relational databases.

As mentioned in the discussion and the background, the impact of optimisation
can improve environmental costs. Partly by less usage of hardware leads to
less wear, and also software optimisation could lead to needing to upgrade
hardware less. Another environmental improvement would be that needing
less time for execution could lead to less energy usage overall. This could also
be argued to help companies to keep unnecessary costs down.

REFERENCES |80

References

[1]

[2]

R. Elmazri and N. B. Shamkant, The fundamentals of database systems.
Pearson, 2016.

H. E. Williams and D. Lane, Web Database Applications with
PHP & MySQL. O’Reilly Media, 2002-04-16, [Online]
https://www.oreilly.com/library/view/web-database-applications/
0596005431/ch01.html, (Accessed: 2021-09-01).

M. Bakni. (2017-08-02) Client-server 3-tier architecture. [Online]
https://commons.wikimedia.org/wiki/File:Client-Server_3-tier_
architecture_-_en.png, (Accessed: 2021-10-06).

N. Fialkovskaya. (2021-01-08) Speed test. [Online] https://sitechecker.
pro/speed-test/, (Accessed: 2021-09-01).

S. O’dea. Average internet connection speed in the
us. [Online] https://www.statista.com/statistics/616210/
average-internet-connection-speed-in-the-us/, (Accessed: 2021-08-24).

Oracle. What is a database? [Online] https://www.oracle.com/database/
what-is-database/, (Accessed: 2021-08-25).

IBM Cloud Education. Relational databases. [Online] https://www.ibm.
com/cloud/learn/relational-databases, (Accessed: 2021-09-01).

GeeksforGeeks. (2021-06-28) Dbms set
1. [Online] https://www.geeksforgeeks.org/

introduction-of-dbms-database-management-system-set- 1/, (Accessed:
2021-09-17).

Ian. (2016-06-06) What is a database schema? [Online] https://database.
guide/what-is-a-database-schema/, (Accessed: 2021-09-17).

https://www.oreilly.com/library/view/web-database-applications/0596005431/ch01.html
https://www.oreilly.com/library/view/web-database-applications/0596005431/ch01.html
https://commons.wikimedia.org/wiki/File:Client-Server_3-tier_architecture_-_en.png
https://commons.wikimedia.org/wiki/File:Client-Server_3-tier_architecture_-_en.png
https://sitechecker.pro/speed-test/
https://sitechecker.pro/speed-test/
https://www.statista.com/statistics/616210/average-internet-connection-speed-in-the-us/
https://www.statista.com/statistics/616210/average-internet-connection-speed-in-the-us/
https://www.oracle.com/database/what-is-database/
https://www.oracle.com/database/what-is-database/
https://www.ibm.com/cloud/learn/relational-databases
https://www.ibm.com/cloud/learn/relational-databases
https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/
https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/
https://database.guide/what-is-a-database-schema/
https://database.guide/what-is-a-database-schema/

REFERENCES | 81

[10] PostgreSQL Global Development Group. Postgresql documentation
introduction. [Online] https://www.postgresql.org/docs/13/intro- whatis.
html, (Accessed: 2021-09-03).

[11] ——. Architectural fundamentals. [Online] https://www.postgresql.org/
docs/13/tutorial-arch.html, (Accessed: 2021-09-03).

[12] ——. Sql concepts. [Online] https://www.postgresql.org/docs/13/
tutorial-concepts.html, (Accessed: 2021-09-03).

[13] ——. Advanced features: foreign keys. [Online] https://www.postgresql.
org/docs/13/tutorial-fk.html, (Accessed: 2021-09-03).

[14] ——. Constraints. [Online] https://www.postgresql.org/docs/8.3/
ddl-constraints. html#DDL-CONSTRAINTS-FK, (Accessed: 2021-09-
17).

[15] PostgreSQL Tutorial. Postgresql tutorial. [Online] https://www.
postgresqltutorial.com/, (Accessed: 2021-10-21).

[16] ——. Postgresql like. [Online] https://www.postgresqltutorial.com/
postgresql-like/, (Accessed: 2021-10-21).

[17] ——. Postgresql in. [Online] https://www.postgresqltutorial.com/
postgresql-in/, (Accessed: 2021-10-21).

[18] ——. Postgresql subquery. [Online] https://www.postgresqltutorial.
com/postgresql-subquery/, (Accessed: 2021-10-21).

[19] Geeks for geeks. Sql correlated subqueries. [Online] https://www.
geeksforgeeks.org/sql-correlated-subqueries/, (Accessed: 2021-10-21).

[20] PostgreSQL Global Development Group. Views. [Online] https://www.
postgresql.org/docs/13/tutorial-views.html, (Accessed: 2021-09-04).

[21] H. Dombrovskaya, B. Novikov, and A. Bailliekova, PostgreSQL query
optimization: the ultimate guide to building efficient queries. Apress,
2021.

[22] PostgreSQL Global Development Group. Materialised views. [Online]
https://www.postgresql.org/docs/current/rules-materializedviews.html,
(Accessed: 2021-09-04).

https://www.postgresql.org/docs/13/intro-whatis.html
https://www.postgresql.org/docs/13/intro-whatis.html
https://www.postgresql.org/docs/13/tutorial-arch.html
https://www.postgresql.org/docs/13/tutorial-arch.html
https://www.postgresql.org/docs/13/tutorial-concepts.html
https://www.postgresql.org/docs/13/tutorial-concepts.html
https://www.postgresql.org/docs/13/tutorial-fk.html
https://www.postgresql.org/docs/13/tutorial-fk.html
https://www.postgresql.org/docs/8.3/ddl-constraints.html#DDL-CONSTRAINTS-FK
https://www.postgresql.org/docs/8.3/ddl-constraints.html#DDL-CONSTRAINTS-FK
https://www.postgresqltutorial.com/
https://www.postgresqltutorial.com/
https://www.postgresqltutorial.com/postgresql-like/
https://www.postgresqltutorial.com/postgresql-like/
https://www.postgresqltutorial.com/postgresql-in/
https://www.postgresqltutorial.com/postgresql-in/
https://www.postgresqltutorial.com/postgresql-subquery/
https://www.postgresqltutorial.com/postgresql-subquery/
https://www.geeksforgeeks.org/sql-correlated-subqueries/
https://www.geeksforgeeks.org/sql-correlated-subqueries/
https://www.postgresql.org/docs/13/tutorial-views.html
https://www.postgresql.org/docs/13/tutorial-views.html
https://www.postgresql.org/docs/current/rules-materializedviews.html

REFERENCES |82

[23] GeeksforGeeks. (2021-09-07) File organization in dbms. [Online] https:
/Iwww.geeksforgeeks.org/file-organization-in-dbms-set-1/, (Accessed:
2021-09-17).

[24] PostgreSQL Global Development Group. Indexes: introduction.
[Online] https://www.postgresql.org/docs/13/indexes-intro.html,
(Accessed: 2021-09-03).

[25] ——. Index types. [Online] https://www.postgresql.org/docs/13/
indexes-types.html, (Accessed: 2021-09-03).

[26] ——. Multicolumn indexes. [Online] https://www.postgresql.org/docs/
13/indexes-multicolumn.html, (Accessed: 2021-09-03).

[27] Ta bu shi da yu . (2005-06-17) B-tree index. [Online] https://en.
wikipedia.org/wiki/File:Btree_index.PNG, (Accessed: 2021-09-27).

[28] PostgreSQL Global Development Group. Hash indexes. [Online] https://
www.postgresql.org/docs/13/hash-intro.html, (Accessed: 2021-09-04).

[29] J. Stolfi. (2009-04-10) Hash table. [Online] https://commons.wikimedia.

10-06).

[30] PostgreSQL Global Development Group. Gist indexes. [Online] https:
/Iwww.postgresql.org/docs/13/gist-intro.html, (Accessed: 2021-09-03).

[31] ——. Operator classes and operator families. [Online] https://www.
postgresql.org/docs/9.5/indexes-opclass.html, (Accessed: 2021-09-18).

[32] ——. Sp-gist indexes. [Online] https://www.postgresql.org/docs/13/
spgist-intro.html, (Accessed: 2021-09-03).

[33] ——. Gin indexes. [Online] https://www.postgresql.org/docs/13/
gin-intro.html, (Accessed: 2021-09-03).

[34] ——. Brin indexes. [Online] https://www.postgresql.org/docs/13/
brin-intro.html, (Accessed: 2021-09-03).

[35] ——. Combining indexes. [Online] https://www.postgresql.org/docs/13/
indexes-bitmap-scans.html, (Accessed: 2021-09-03).

[36] ——. Partial indexes. [Online] https://www.postgresql.org/docs/13/
indexes-partial.html, (Accessed: 2021-09-03).

https://www.geeksforgeeks.org/file-organization-in-dbms-set-1/
https://www.geeksforgeeks.org/file-organization-in-dbms-set-1/
https://www.postgresql.org/docs/13/indexes-intro.html
https://www.postgresql.org/docs/13/indexes-types.html
https://www.postgresql.org/docs/13/indexes-types.html
https://www.postgresql.org/docs/13/indexes-multicolumn.html
https://www.postgresql.org/docs/13/indexes-multicolumn.html
https://en.wikipedia.org/wiki/File:Btree_index.PNG
https://en.wikipedia.org/wiki/File:Btree_index.PNG
https://www.postgresql.org/docs/13/hash-intro.html
https://www.postgresql.org/docs/13/hash-intro.html
https://commons.wikimedia.org/wiki/File:Hash_table_5_0_1_1_1_1_1_LL.svg
https://commons.wikimedia.org/wiki/File:Hash_table_5_0_1_1_1_1_1_LL.svg
https://www.postgresql.org/docs/13/gist-intro.html
https://www.postgresql.org/docs/13/gist-intro.html
https://www.postgresql.org/docs/9.5/indexes-opclass.html
https://www.postgresql.org/docs/9.5/indexes-opclass.html
https://www.postgresql.org/docs/13/spgist-intro.html
https://www.postgresql.org/docs/13/spgist-intro.html
https://www.postgresql.org/docs/13/gin-intro.html
https://www.postgresql.org/docs/13/gin-intro.html
https://www.postgresql.org/docs/13/brin-intro.html
https://www.postgresql.org/docs/13/brin-intro.html
https://www.postgresql.org/docs/13/indexes-bitmap-scans.html
https://www.postgresql.org/docs/13/indexes-bitmap-scans.html
https://www.postgresql.org/docs/13/indexes-partial.html
https://www.postgresql.org/docs/13/indexes-partial.html

REFERENCES |83

[37] ——. Index-only scans. [Online] https://www.postgresql.org/docs/13/
indexes-index-only-scans.html, (Accessed: 2021-09-03).

[38] ——. Multi-version concurrency control. [Online] https:
/Iwww.postgresql.org/docs/7.1/mvce.html, (Accessed: 2021-09-18).

[39] ——. Query planner. [Online] https://www.postgresql.org/docs/13/
using-explain.html, (Accessed: 2021-09-04).

[40] ——. Query planner statistics. [Online] https://www.postgresql.org/
docs/13/planner-stats.html, (Accessed: 2021-09-04).

[41] ——. Oins and the query planner. [Online] https://www.postgresql.org/
docs/13/explicit-joins.html, (Accessed: 2021-09-04).

[42] S.J. Kamatkar, A. Kamble, A. Viloria, L. Hernandez-Fernandez, and
E. Garcia, “Database performance tuning and query optimization,” in
Lecture notes in computer science 10943 - Data mining and big data,

2018, pp. 3—-11.

[43] D. Sasha and P. Bonnet, Database tuning principles, experiments and
troubleshooting techniques. Morgan Kaufman, 2002.

[44] F. Oyvind, “Comparison of physical tuning techniques implemented in
two open source dbmss,” 2005.

[45] Q. Wang, “Postgresql database performance optimization,” 2011.

[46] A. Makris, K. Tserpes, G. Spiliopoulus, D. Zissis, and
D. Anagnostopoulos, “Mongodb vs postgresql: a comparative study on
perfomance aspects,” 2020.

[47] P.Martins, P. Tomé, C. Wanzeller, F. A. S4, and M. Abbasi, “Comparing
oracle and postgresql, performance and optimization,” in Trends and

applications in information systems and technologies, vol. II, 2021, pp.
3-11.

[48] M. Y. Eltabakh, R. Eltarras, and W. G. Aref, “Space-partitioning trees
in postgresql: Realization and performance,” in Proceedings of the 22nd
International Conference on Data Engineering, 2006, [Online] https:
/Iwww.cerias.purdue.edu/assets/pdf/bibtex_archive/01617468.pdf,
(Accessed: 2021-10-21).

https://www.postgresql.org/docs/13/indexes-index-only-scans.html
https://www.postgresql.org/docs/13/indexes-index-only-scans.html
https://www.postgresql.org/docs/7.1/mvcc.html
https://www.postgresql.org/docs/7.1/mvcc.html
https://www.postgresql.org/docs/13/using-explain.html
https://www.postgresql.org/docs/13/using-explain.html
https://www.postgresql.org/docs/13/planner-stats.html
https://www.postgresql.org/docs/13/planner-stats.html
https://www.postgresql.org/docs/13/explicit-joins.html
https://www.postgresql.org/docs/13/explicit-joins.html
https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/01617468.pdf
https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/01617468.pdf

[49]

[52]

REFERENCES | 84

A. Haékansson, “Portal of research methods and methodologies for
research projects and degree projects,” in WORLDCOMP’13 - The
2013 World Congress in Computer Science, Computer Engineering, and
Applied Computing, 2013.

N. B. Nkomo and J. Lihanda, “Qualitative and quantitative
methodology,” 2010-05-21, [Online] https://www.academia.
edu/44204575/QUALITATIVE_AND_QUANTITATIVE_
METHODOLOGY, (Accessed: 2021-09-21).

D. R. Tomas, “A general inductive approach for analyzing qualitative
evaluation data,” 2006-06, [Online] https://journals.sagepub.com/doi/
pdf/10.1177/1098214005283748, (Accessed: 2021-09-21).

IBM Cloud Education. (2021-06-23) Docker. [Online] https://www.ibm.
com/cloud/learn/docker, (Accessed: 2021-10-07).

https://www.academia.edu/44204575/QUALITATIVE_AND_QUANTITATIVE_METHODOLOGY
https://www.academia.edu/44204575/QUALITATIVE_AND_QUANTITATIVE_METHODOLOGY
https://www.academia.edu/44204575/QUALITATIVE_AND_QUANTITATIVE_METHODOLOGY
https://journals.sagepub.com/doi/pdf/10.1177/1098214005283748
https://journals.sagepub.com/doi/pdf/10.1177/1098214005283748
https://www.ibm.com/cloud/learn/docker
https://www.ibm.com/cloud/learn/docker

Appendix A: The database schema |85

Appendix A

The database schema

—-— PostgreSQL database dump

—-— Dumped from database version 13.0 (Debian
13.0-1.pgdgl00+1)

-— Dumped by pg_dump version 13.0 (Debian 13.0-1.
pgdgl00+1)

SET statement_timeout = 0;

SET lock_timeout = 0;

SET idle_in_transaction_session_timeout = 0;

SET client_encoding = 'UTF8';

SET standard_conforming_strings = on;

SELECT pg_catalog.set_config(’'search_path’, ',
false) ;

SET check_function_bodies = false;

SET xmloption = content;

SET client_min_messages = warning;

SET row_security = off;

20

21

22

23

24

25

26

27

SET default_tablespace

SET default_table_access_method

—— Name: akas; Type:
postgres

CREATE TABLE public.akas

28

29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44

45

46

47
48
49
50
51
52
53
54
55

56
57
58
59

60

61
62
63
64
65
66
67

Appendix A: The database schema |86

title_id character varying NOT NULL, --PRIMARY
KEY

title character wvarying,

region character wvarying,

language character varying,

types character varying,

attributes character varying,

is_original_title integer

ALTER TABLE public.akas OWNER TO postgres;

-— Name: crew,; Type: TABLE; Schema: public; Owner:
postgres

CREATE TABLE public.crew (

title_id character varying, --REFERENCES public
.akas
person_id character varying, --REFERENCES

public.people
category character wvarying,
job character wvarying
) i

ALTER TABLE public.crew OWNER TO postgres;

—-— Name: episodes; Type: TABLE; Schema: public;
Owner: postgres

CREATE TABLE public.episodes (
episode_title_id character varying NOT NULL, -—-
PRIMARY KEY
show_title_id character varying, --REFERENCES
public.akas
season_number integer,
episode_number integer

)i

ALTER TABLE public.episodes OWNER TO postgres;

68
69

70
71
72

73

74
75
76
77
78
79
80
81
82
83

84
85
86
87

88
89
90
91
92
93
94
95
9%

97
98
99
100

101
102
103
104
105
106
107
108

Appendix A: The database schema |87

—-— Name: people; Type: TABLE; Schema: public; Owner
postgres

CREATE TABLE public.people (
person_id character wvarying NOT NULL, --PRIMARY
KEY
name character varying,
born integer,
died integer

ALTER TABLE public.people OWNER TO postgres;

—-— Name: ratings,; Type: TABLE; Schema: public;
Owner: postgres

CREATE TABLE public.ratings (
title_id character varying NOT NULL, --
REFERENCES public.akas
rating double precision,
votes integer

ALTER TABLE public.ratings OWNER TO postgres;

-— Name: titles; Type: TABLE; Schema: public; Owner
postgres

CREATE TABLE public.titles (

title_id character varying NOT NULL, -—-
REFERENCES public.akas

type character varying,
primary_title character wvarying,
original_title character wvarying,
is_adult integer,
premiered integer,
ended integer,
runtime_minutes integer,
genres character varying

Appendix A: The database schema |88

109) ;

110

111

112 ALTER TABLE public.titles OWNER TO postgres;

113

114 ——

s —— Data for Name: akas; Type: TABLE DATA; Schema:
public; Owner: postgres

Keys

2 —— Name: people people_pkey; Type: CONSTRAINT;
Schema: public; Owner: postgres

s ALTER TABLE ONLY public.people
6 ADD CONSTRAINT people_pkey PRIMARY KEY (
person_id) ;

10 —— Name: ratings ratings_pkey; Type: CONSTRAINT;
Schema: public; Owner: postgres

13 ALTER TABLE ONLY public.ratings

14 ADD CONSTRAINT ratings_pkey PRIMARY KEY (
title_id) ;

15

16

17 ——

18 —— Name: titles titles_pkey; Type: CONSTRAINT;

Schema: public; Owner: postgres

21 ALTER TABLE ONLY public.titles
2 ADD CONSTRAINT titles_pkey PRIMARY KEY (
title_id) ;

Appendix B: The script template | 89

Appendix B

The script template

The commented lines (5-7) were used when the ANALYZE command was
run, this was to ensure that the latest statistics were used every time the script
was run.

The commented line 21 did not work due to permission errors, as mentioned
in the report.

#!/bin/bash

#execute ./loopl when in the right docker image
LIMIT=100

e #

Uncomment to execute the sql files that has the
ANALYZE

command

- e #

#psql -U postgres -d imdb -f amovies.sqgl > /dev/
null 2>¢&1

#psqgl -U postgres —-d imdb -f atypes.sqgl > /dev/null
2>&1

#psgl -U postgres -d imdb -f ajoin.sql > /dev/null
2>&1

#psqgl -U postgres —-d imdb -f asecondhigh.sgl > /dev
/null 2>¢&1

#psqgl -U postgres —-d imdb -f ainterval.sqgl > /dev/
null 2>¢1

for ((i = 0; i < LIMIT; di+4++));
do

#FORMAT BELOW
#/usr/bin/time -o <outputfile> -a —-f %e psql -U <

21

22

23

24

25

26

27

28

29
30

31

32

Appendix B: The script template | 90

username docker > -d <database name in docker> -f
<name of query file> > /dev/null 2>¢&l1
#-—a —-f %e flags has to do with the /usr/bin/time
package and how it formats time output
> /dev/null 2>&1 throws the sql output into null,
so it does not show in the terminal

/usr/bin/time -o moviesl.txt -a -f %$e psgl -U
postgres -d imdb -f movies.sgl > /dev/null 2>&l

/usr/bin/time -o typesl.txt -a -f %$e psgl -U
postgres -d imdb -f types.sgl > /dev/null 2>&l

/usr/bin/time -o Jjoinl.txt -a -f %e psqgl -U
postgres -d imdb -f Jjoin.sgl > /dev/null 2>¢&l

/usr/bin/time -o secondhighl.txt -a -f %$e psgl -U
postgres -d imdb -f secondhigh.sgl > /dev/null
2>&1

/usr/bin/time -o intervall.txt -a -f %e psgl -U
postgres -d imdb -f interval.sgl > /dev/null
2>&1

#sync && echo 1 > /proc/sys/vm/drop_caches #drops
cache?

done;

echo -ne ’'\n’

©

Appendix C: Indexes | 91

Appendix C

Indexes

B-tree indexes

The commented indexes are the generic indexes that were first tested.

——CREATE INDEX titles_b ON public.titles USING
BTREE (title_id) ;

—-—-CREATE INDEX akas_b ON public.akas USING BTREE (
title_1id) ;

—-—CREATE INDEX crew_b ON public.crew USING BTREE (
title_1id) ;

-—CREATE INDEX people_b ON public.people USING
BTREE (person_1id) ;

—-—-CREATE INDEX ratings_b ON public.ratings USING
BTREE (title_1id) ;

——CREATE INDEX episodes_b ON public.episodes USING
BTREE (show_title_1id) ;

CREATE INDEX titles_b ON public.titles USING BTREE (
type) ;

CREATE INDEX titlesprem_b ON public.titles USING
BTREE (premiered) ;

CREATE INDEX akas_b ON public.akas USING BTREE (
title_id) ;

CREATE INDEX crew_b ON public.crew USING BTREE (
category) ;

CREATE INDEX people_b ON public.people USING BTREE (
person_id) ;

CREATE INDEX ratings_b ON public.ratings USING
BTREE (rating) ;

CREATE INDEX episodes_b ON public.episodes USING
BTREE (show_title_id) ;

IS

[=

Appendix C: Indexes | 92

Hash indexes

The commented indexes are the personalised indexes that could not be generated
for the large database.

CREATE INDEX titles_b ON public.titles USING HASH (
title_id) ;

CREATE INDEX akas_b ON public.akas USING HASH (
title_id) ;

CREATE INDEX crew_b ON public.crew USING HASH (
title_id) ;

CREATE INDEX people_b ON public.people USING HASH (
person_id) ;

CREATE INDEX ratings_b ON public.ratings USING HASH
(title_id) ;

CREATE INDEX episodes_b ON public.episodes USING
HASH (show_title_1id) ;

-—CREATE INDEX titles_b ON public.titles USING HASH
(type);

—-—CREATE INDEX titlesprem_b ON public.titles USING
HASH (premiered) ;

-—CREATE INDEX akas_b ON public.akas USING HASH/(
title_id) ;

—-—CREATE INDEX crew_b ON public.crew USING HASH/(
category) ;

-—CREATE INDEX people_b ON public.people USING HASH

(person_1id) ;

-—CREATE INDEX ratings_b ON public.ratings USING
HASH (rating);

—-—CREATE INDEX episodes_b ON public.episodes USING
HASH (show_title_1id) ;

Time (s)

Appendix D: Detailed graphs | 93

Appendix D

Detailed graphs

D.0.1

1.2

0.8
0.6
0.4

0.2

1000

Baseline test

Query 1

10000 100000 1000000 10000000

Rows

Figure D.1: Execution time for query 1.

== Execution time

Time (s)

Time (s)

0.25

0.2

0.15

0.1

0.05

1000

0.8
0.7
0.6
0.5
0.4
0.3
0.2
01

a
1000

Appendix D: Detailed graphs | 94

Query 2

== Execution time

10000 100000 1000000 10000000

Rows

Figure D.2: Execution time for query 2.

Query 3

== Execution time

10000 100000 1000000 10000000

Row

Figure D.3: Execution time for query 3.

Time (s)

Time (s)

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

100

0.25

0.2

0.15

01

0.05

a
1000

Appendix D: Detailed graphs | 95

Query 4

== Execution time

1000 10000 100000 1000000

Rows

Figure D.4: Execution time for query 4.

Query 5

== Execution time

10000 100000 1000000 10000000

Rows

Figure D.5: Execution time for query 5.

Time (s)

D.0.2

0.035
0.03
0.025
0.02
0.015
0.01

0.005

1000

Appendix D: Detailed graphs | 96

Improved queries
Improved query 1

.__/_-

== Execution time

10000 100000 1000000 10000000

Rows

Figure D.6: Execution time for the improved query 1.

Time (s)

Time (s)

0.25

0.2

0.15

01

0.05

a
1000

0.0305
0.03
0.0295
0.029
0.0285
0.028
0.0275
0.027

0.0265
1000

Appendix D: Detailed graphs |97

Improved query 2

== Execution time

10000 100000 1000000 10000000

Rows

Figure D.7: Execution time for the improved query 2.

Improved query 3

—— Execution time

10000 100000 1000000 10000000

Rows

Figure D.8: Execution time for the improved query 3.

Time (s)

0.25

0.2

0.15

0.1

0.05

1000

Appendix D: Detailed graphs | 98

Improved query 5

== Execution time

10000 100000 1000000 10000000

Rows

Figure D.9: Execution time for the improved query 5.

Time (s)

D.0.3

0.16
0.14
0.1z

0.1
0.08
0.06
0.04
0.02

a
1000

Appendix D: Detailed graphs | 99

Hash index

Generic hash index query 3

== Execution time

10000 100000 1000000 10000000

Rows

Figure D.10: Execution time for query 3 with Hash index.

Time (s)

Appendix D: Detailed graphs| 100

D.0.4 B-tree index

0.16
0.14
0.1z

0.1
0.08
0.06
0.04
0.02

a
1000

Generic B-tree index query 3

== Execution time

10000 100000 1000000 10000000

Rows

Figure D.11: Execution time for query 3 with B-tree.

Time (s)

Appendix D: Detailed graphs| 101

Personalised B-tree index

Personalised B-tree query 1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
01

a
1000 10000 100000 1000000 10000000

—— Execution time

Rows

Figure D.12: Execution time for the B-tree index implemented for query 1.

Time (s)

Time (s)

Appendix D: Detailed graphs| 102

Personalised B-tree query 2

0.18
0.16
0.14
0.12

0.1
0.08 == Execution time

0.06
0.04
0.02

1000 10000 100000 1000000 10000000

Rows

Figure D.13: Execution time for the B-tree index implemented for query 2.

Personalised B-tree query 3

0.8
0.7
0.6
0.5
0.4 == Execution time
0.3
0.2
0.1

a
1000 10000 100000 1000000 10000000

Rows

Figure D.14: Execution time for the B-tree index implemented for query 3.

Time (s)

Time (s)

Appendix D: Detailed graphs | 103

Personalised B-tree query 4

0.031

0.03
0.029
0.028
0.027 - Execution time
0.026
0.025

0.024
100 1000 10000 100000 1000000

Rows

Figure D.15: Execution time for the B-tree index implemented for query 4.

Personalised B-tree query 5
0.3

0.25
0.2

0.15 == Execution time
0.1

0.05

a
1000 10000 100000 1000000 10000000

Rows

Figure D.16: Execution time for the B-tree index implemented for query 5.

Appendix E: EXPLAIN output| 104

Appendix E
EXPLAIN output

The EXPLAIN output was generated for the largest database only. The reason
as to why not all queries show all the tests is due to how information is repeated.
For example if an index was created for Query 1 but not used by the query
execution plan, then the execution plan would remain the same as running the
query without the index.

1 movies (gl)

2 Aggregate (cost=63728.93..63728.94 rows=1 width=8)

3 -> Seq Scan on titles (cost=0.00..63007.91
rows=288405 width=10)

4 Filter: ((type) ::text = ANY (’'{movie, video
Prostext []))

5
6 improved:

7 Finalize Aggregate (cost=49960.60..49960.61 rows=1
width=8)

8 -> Gather (cost=49960.39..49960.60 rows=2
width=8)

9 Workers Planned: 2

10 -> Partial Aggregate (cost
=48960.39..48960.40 rows=1 width=8)

1 -> Parallel Seg Scan on titles (cost
=0.00..48667.96 rows=116973 width=10)

12 Filter: (((type)::text = 'movie'::
text) OR ((type) ::text = ’'video'::text))

14 personalised btree:

15 Aggregate (cost=41827.01..41827.02 rows=1 width=8)

16 -> Bitmap Heap Scan on titles (cost
=3172.32..41105.89 rows=288446 width=10)

17 Recheck Cond: ((type) ::text = ANY (' {movie,

video}'::text []))

Appendix E: EXPLAIN output| 105

18 -> Bitmap Index Scan on titles_b (cost
=0.00..3100.20 rows=288446 width=0)

19 Index Cond: ((type) ::text = ANY (' {movie,
video}’'::text []))

0 - —F """ """ """ —-"~—-"~—-"—-~"—-~"—-~"—-~"—~"~—~"—-"~—~"—-~"~—~"—~"—~"—-~"—~"—"—"—"—"————

» types (g2):

3 Finalize GroupAggregate (cost=49668.25..49670.78
rows=10 width=16)

24 Group Key: type

25 -> Gather Merge (cost=49668.25..49670.58 rows
=20 width=16)

26 Workers Planned: 2

27 -> Sort (cost=48668.22..48668.25 rows=10
width=16)

28 Sort Key: type

29 -> Partial HashAggregate (cost
=48667.96..48668.06 rows=10 width=16)

30 Group Key: type

31 -> Parallel Seqg Scan on titles (

cost=0.00..43887.97 rows=955997 width=8)

32

33 improved:

3 Finalize GroupAggregate (cost=49668.25..49670.78
rows=10 width=16)

35 Group Key: type

36 -> Gather Merge (cost=49668.25..49670.58 rows
=20 width=16)

37 Workers Planned: 2

38 -> Sort (cost=48668.22..48668.25 rows=10
width=16)

39 Sort Key: type

40 -> Partial HashAggregate (cost
=48667.96..48668.06 rows=10 width=16)

41 Group Key: type

42 -> Parallel Seqg Scan on titles (

cost=0.00..43887.97 rows=955997 width=18)

43

4 personalised btree:

4 Finalize GroupAggregate (cost=1000.45..34694.65
rows=10 width=16)

4 Group Key: type

47 -> Gather Merge (cost=1000.45..34694.45 rows
=20 width=16)

48 Workers Planned: 2

49

50
51

56

57

58

59
60

61

62

63

64

65

66

67

68

69

70

71
72

73

Appendix E: EXPLAIN output| 106

-> Partial GroupAggregate (cost
=0.43..33692.12 rows=10 width=16)
Group Key: type
-> Parallel Index Only Scan using
titles_b on titles (cost=0.43..28911.35 rows
=956133 width=8)

join (qg3)
Unique (cost=192351.95..192429.28 rows=650 width

-> Gather Merge (cost=192351.95..192427 .66
rows=650 width=14)
Workers Planned: 2
-> Sort (cost=191351.93..191352.61 rows
=271 width=14)
Sort Key: people.name

-> Nested Loop (cost
=48670.51..191340.98 rows=271 width=14)

-> Parallel Hash Join (cost
=48670.08..191208.32 rows=271 width=10)

Hash Cond: ((crew.title_id) ::text = (

titles.title_1id) ::text)
-> Parallel Seg Scan on crew (
cost=0.00..138537.62 rows=1524040 width=20)

Filter: (((category)::text = 'actor
"::text) OR ((category) ::text = 'actress'::text)
)
-> Parallel Hash (cost

=48667.96..48667.96 rows=170 width=10)
- > Parallel Seg Scan on titles
(cost=0.00..48667.96 rows=170 width=10)

Filter: (((primary_title) ::text
~~ !'Spider-Man$%$'::text) OR ((original_title) ::
text ~~ 'Spider-Man%'’'::text))

-> Index Scan using
people_pkey on people (cost=0.43..0.49 rows=1
width=24)

Index Cond: ((person_id) ::
text = (crew.person_id) ::text)

JIT:

Functions: 19

Options: Inlining false,
Optimization false, Expressions true, Deforming
true

Appendix E: EXPLAIN output| 107

74 improved:

75 Unique (cost=524.38..524.70 rows=64 width=14)

76 -> Sort (cost=524.38..524.54 rows=64 width
=14)

77 Sort Key: people.name

78 -> Nested Loop (cost=0.44..522.46 rows=64
width=14)

79 -> Seq Scan on g3 (cost=0.00..5.17 rows
=64 width=10)

80 Filter: (((category) ::text = 'actor'’'::text)
OR ((category) ::text = 'actress'::text))

81 -> Memoize (cost=0.44..8.46 rows=1
width=24)

82
83

84

89
90

91
92

93

94

95

96

97

98

99

100

Cache Key: g3.person_id
-> Index Scan using people_pkey on

people (cost=0.43..8.45 rows=1 width=24)
Index Cond: ((person_id) ::text = (
g3 .person_1id) ::text)

generic btree:
Unique (cost=51267.26..51344.59 rows=650 width=14)

-> Gather Merge (cost=51267.26..51342.97 rows
=650 width=14)
Workers Planned: 2
-> Sort (cost=50267.24..50267.92 rows=271
width=14)
Sort Key: people.name
-> Nested Loop (cost=0.86..50256.29
rows=271 width=14)

—-> Nested Loop (cost=0.43..50123.63
rows=271 width=10)

-> Parallel Seqg Scan on titles (cost
=0.00..48669.99 rows=170 width=10)

Filter: (((primary_title) ::text ~~ '
Spider-Man$%$'’'::text) OR ((original_title) ::text
~~ !'Spider-Man$%$'::text))

-> Index Scan using crew_b on crew
(cost=0.43..8.53 rows=2 width=20)

Index Cond: ((title_id) ::text = (
titles.title_id) ::text)

Filter: (((category)::text = 'actor
"::text) OR ((category) ::text = 'actress'::text)

)
-> Index Scan using people_b
on people (cost=0.43..0.49 rows=1 width=24)
Index Cond: ((person_id) ::text
= (crew.person_id) ::text)

Appendix E: EXPLAIN output| 108

101
12 generic hash:

103 Uniqgque (cost=54417.46..54494.79 rows=650 width=14)

104 -> Gather Merge (cost=54417.46..54493.16 rows
=650 width=14)

105 Workers Planned: 2

106 -> Sort (cost=53417.43..53418.11 rows=271

width=14)

107 Sort Key: people.name

108 -> Nested Loop (cost=0.00..53406.48
rows=271 width=14)

109 -> Nested Loop (cost=0.00..53389.68
rows=271 width=10)

110 -> Parallel Seg Scan on titles (cost
=0.00..48669.99 rows=170 width=10)

111 Filter: (((primary_title) ::text ~~ '
Spider-Man$%$'’'::text) OR ((original_title) ::text
~~ !'"Spider-Man$%'::text))

112 -> Index Scan using crew_b on crew

(cost=0.00..27.74 rows=2 width=20)

113 Index Cond: ((title_id) ::text = (
titles.title_id) ::text)

114 Filter: (((category) ::text = 'actor
"::text) OR ((category) ::text = 'actress'’'::text)
)

115 -> Index Scan using people_Db
on people (cost=0.00..0.06 rows=1 width=24)

116 Index Cond: ((person_id) ::text
= (crew.person_id) ::text)

117
118 personalised Dbtree:

19 Uniqgque (cost=192356.32..192433.64 rows=650 width
=14)

120 -> Gather Merge (cost=192356.32..192432.02
rows=650 width=14)

121 Workers Planned: 2

122 -> Sort (cost=191356.29..191356.97 rows
=271 width=14)

123 Sort Key: people.name

124 -> Nested Loop (cost
=48672.55..191345.34 rows=271 width=14)

125 -> Parallel Hash Join (cost
=48672.12..191212.68 rows=271 width=10)

126 Hash Cond: ((crew.title_id) ::text = (
titles.title_id) ::text)

127 -> Parallel Seg Scan on crew (

cost=0.00..138539.81 rows=1524093 width=20)

128

129

130

131

132

133

134
135
136

137

138
139
140
141
142
143

144

145
146

147

148
149

150

151

152
153

154

Appendix E: EXPLAIN output| 109

Filter: (((category)::text = 'actor
"::text) OR ((category) ::text = 'actress'::text)
)
-> Parallel Hash (cost

=48669.99..48669.99 rows=170 width=10)
- > Parallel Seg Scan on titles
(cost=0.00..48669.99 rows=170 width=10)

Filter: (((primary_title) ::text
~~ !'Spider-Man$%$'::text) OR ((original_title) ::
text ~~ 'Spider-Man%'’'::text))

-> Index Scan using
people_b on people (cost=0.43..0.49 rows=1
width=24)

Index Cond: ((person_id) ::
text = (crew.person_id) ::text)

JIT:

Functions: 19

Options: Inlining false,
Optimization false, Expressions true, Deforming
true

secondhigh (g4):
Gather (cost=14182.88..19908.84 rows=3981 width=8)
Workers Planned: 1
Params Evaluated: $3
InitPlan 2 (returns $3)
-> Finalize Aggregate (cost
=13182.87..13182.88 rows=1 width=8)
InitPlan 1 (returns $1)
-> Finalize Aggregate (cost
=6327.97..6327.98 rows=1 width=8)
-> Gather (cost=6327.86..6327.97 rows=1
width=8)
Workers Planned: 1
-> Partial Aggregate (cost
=5327.86..5327.87 rows=1 width=8)
-> Parallel Seqg Scan on ratings

ratings_1 (cost=0.00..4795.09 rows=213109 width
=8)

-> Gather (cost=6854.78..6854.89 rows
=1 width=8)

Workers Planned: 1
Params Evaluated: $1
-> Partial Aggregate (cost
=5854.78..5854.79 rows=1 width=8)

Appendix E: EXPLAIN output|110

155 -> Parallel Seg Scan on ratings
ratings_2 (cost=0.00..5327.86 rows=210767 width
=8)

156 Filter: (rating <> $§1)

157 - > Parallel Seg Scan on
ratings (cost=0.00..5327.86 rows=2342 width=8)

158 Filter: (rating = $3)

159
160 personalised btree:

161 Unique (cost=1.35..115.01 rows=91 width=8)

12 InitPlan 4 (returns $3)

163 -> Result (cost=0.91..0.92 rows=1 width=8)

164 InitPlan 2 (returns $1)

165 -> Result (cost=0.45..0.46 rows=1 width
=8)

166 InitPlan 1 (returns $0)

167 —-> Limit (cost=0.42..0.45 rows=1
width=8)

168 -> Index Only Scan Backward using
ratings_b on ratings ratings_1 (cost
=0.42..10328.41 rows=362285 width=8)

169 Index Cond: (rating IS NOT NULL)

170 InitPlan 3 (returns $2)

171 -> Limit (cost=0.42..0.45 rows=1
width=8)

172 -> Index Only Scan Backward using
ratings_b on ratings ratings_2 (cost
=0.42..11234.12 rows=358304 width=8)

173 Index Cond: (rating IS NOT NULL)

174 Filter: (rating <> $1)

175 -> Index Only Scan using
ratings_b on ratings (cost=0.42..114.09 rows
=3981 width=8)

176 Index Cond: (rating = $3)

v -—-——-——-- """ —"—"—-"—-"—-"—-"—-"—-—"—-"—-"—-"—-"—-"—-"—-"—-"—-"—-"—-"—-"—-"—-"—-"—-—"—-"—-—"—-"—-"—-"—-"—-—"—-"—-—"—-~"—"—-~"—-~"—"—~"—~"—~"—"—~"—~"—"—"—"—"——"————

178
179 interval (gb5):

180 Gather Merge (cost=53532.97..58336.94 rows=41174
width=24)

181 Workers Planned: 2

182 -> Sort (cost=52532.95..52584.42 rows=20587
width=24)

183 Sort Key: premiered

184 -> Parallel Seg Scan on titles (cost

=0.00..51057.95 rows=20587 width=24)

Appendix E: EXPLAIN output| 111

185 Filter: (((type)::text ~~ ’'movie'’::text)
AND (premiered >= 2000) AND (premiered <= 2010))
186

187 improved:

188 Gather Merge (cost=53532.97..58336.94 rows=41174
width=24)

189 Workers Planned: 2

190 -> Sort (cost=52532.95..52584.42 rows=20587
width=24)

191 Sort Key: premiered

192 -> Parallel Seqg Scan on titles (cost
=0.00..51057.95 rows=20587 width=24)

193 Filter: ((premiered >= 2000) AND (premiered

<= 2010) AND ((type) ::text = ’'movie’::text))

194
195 personalised btree:

196 Sort (cost=43904.87..44028.40 rows=49413 width=24)

197 Sort Key: premiered

198 -> Bitmap Heap Scan on titles (cost
=2210.69..40052.48 rows=49413 width=24)

199 Filter: (((type)::text ~~ 'movie’::text) AND (

premiered >= 2000) AND (premiered <= 2010))

200 -> Bitmap Index Scan on titles_b (cost
=0.00..2198.34 rows=200788 width=0)

201 Index Cond: ((type) ::text = 'movie’::text)

Appendix F: Database link| 112

Appendix F

Database link

https://canvas.kth.se/courses/19966/files/3413108/download

TRITA-EECS-EX-2021:821

	Introduction
	Background
	Problem
	Purpose
	Sustainability and ethics
	Research Methodology
	Delimitations
	Structure of the thesis

	Background
	Database systems
	Relational databases
	Database management systems

	Structured query language
	Relational algebra
	PostgreSQL
	Queries
	Views and materialised views

	Database tuning
	Database memory
	Indexing
	Index types
	Tuning variables

	Query optimisation
	The query optimiser
	The PostgreSQL optimiser

	Related works
	Database performance tuning and query optimization
	Database tuning principles, experiments, and troubleshooting techniques
	PostgreSQL query optimization: the ultimate guide to building efficient queries
	Comparison of physical tuning techniques implemented in two opensource DBMSs
	PostgreSQL database performance optimization
	MongoDB vs PostgreSQL: a comparative study on performance aspects
	Comparing Oracle and PostgreSQL, performance and optimization
	Space-partitioning Trees in PostgreSQL: Realization and Performance

	Method
	Research methods
	Quantitative and qualitative methods
	Inductive and deductive approach
	Subquestions

	Applied methods and research process
	The chosen methods
	The process
	Quality assurance

	Experiment
	Experiment design
	Hardware
	Docker and the docker environment
	Other software
	Method and purpose
	Database design
	Queries
	Improved queries
	Keys and indexing structure
	The experiment tests

	Results and Analysis
	Literature study result
	Theory
	Other experiments

	Results
	Other results

	Discussion
	The result
	Reliability Analysis
	Dependability Analysis
	Validity Analysis

	Problems and sources of error
	Problems
	Sources of error

	Limitations
	Sustainability

	Conclusions and Future work
	Conclusion
	Answering the subquestions
	The research question

	Future work
	Reflections
	Thoughts about the work
	Impact

	References
	The database schema
	The script template
	Indexes
	Detailed graphs
	Baseline test
	Improved queries
	Hash index
	B-tree index

	EXPLAIN output
	Database link

