Linképing Studies in Science and Technology
Dissertation No. 2205

Pattern-based Programming Abstractions
for Heterogeneous Parallel Computing

August Ernstsson

int add(int a, int b)
{

}

return a + b;

auto vsum = (add);

vsum(res, v1, v2);

LINKOPING
IIQ" UNIVERSITY

Linkdping Studies in Science and Technology
Dissertations, No. 2205

Pattern-based Programming Abstractions
for Heterogeneous Parallel Computing

August Ernstsson

LINKOPING
TR R

Linkdping University
Department of Computer and Information Science
Software and Systems
SE-581 83 Linkdping, Sweden

Linkoping 2022

Edition 1:1

© August Ernstsson, 2022

ISBN 978-91-7929-195-2 (print)
ISBN 978-91-7929-196-9 (electronic)
ISSN 0345-7524

DOl https://doi.org/10.3384/9789179291969

Published articles have been reprinted with permission from the
respective copyright holder.
Typeset using X4IgX

Printed by LiU-Tryck, Linkdping 2022

ii

“Simple things should be simple,
complex things should be possible.”

ALAN KAY

POPULARVETENSKAPLIG SAMMANFATTNING

Sanden p& en sandstrand bestdr huvudsakligen av kiselatomer. Den centrala
berdkningskretsen i en dator -kallad processor - dr ocksd uppbyggd av kisel, som har
utmidrkta halvledaregenskaper. En processor dr minutiost organiserad i otroligt sméa
transistorer - det far plats lika manga transistorer i en processor stor som en tumnagel som
det finns sandkorn pa en sandstrand. Samhéllets utveckling dr idag pa manga sitt beroende
av datorkraft, och den stindiga utvecklingen av snabbare och mer energieffektiva processorer
ar en forutsdttning for mycket av det vi idag tar for givet: allt frin vdderprognoser framtagna
dagligen i superdatorer stora som bostadshus till apparna i de mobiltelefoner som vi bar
med oss i fickan. Under datorteknikens tidiga utveckling gjordes snabba framsteg inom
miniatyrisering av kretstillverkning, vilket resulterade i en mycket snabb forbattring av
datorernas berdkningskapacitet. Programmerarna behdvde inte géra nagonting for att hinga
med pé tiget. Sedan en tid tillbaka 4r situationen ddremot inte lika enkel.

En dator féljer alltid ett program, en ldng sekvens av korta instruktioner skriven av en
programmerare, nir den genomfdr berdkningar. Programmet kan liknas vid de recept vi
féljer vid matlagning, ddr komplexa ritter tillagas efter sekvenser av enkla instruktioner. I
takt med att vi blir snabbare pa att fslja instruktionerna blir uppgiften klar pa kortare tid.
Precis som vid matlagning méter datorteknikens utveckling till slut hinder i form av fysikens
lagar: transistorerna blir mycket svdra att krympa nér storleken bdrjar nirma sig skalan av
enstaka atomer och elektroniska signaler kan inte fardas hur snabbt som helst. Om vi vill skala
upp produktiviteten i var matlagning maste vi till slut g& mot att organisera ett industrikdk,
bestdende av flera avdelningar med olika kompetens och sina egna speciella instruktioner
att folja. Utvecklingen av datorteknik har gatt i samma riktning. En modern dator bestar
idag av en uppsittning processorenheter dir varje enhet foljer sitt eget instruktionsfldde.
For att fd fram vettiga resultat méste enheterna koordineras genom kommunikation och
synkronisering, en utmaning som tillkommer programmerarens tidigare uppgift att endast
skriva sjdlva berdkningsinstruktionerna.

Egenskapen att en dator har flera processorenheter kallas parallellism; om enheterna skiljer
sig at i typ eller kapacitet anvinds termen heterogenitet. Uppgiften att programmera
sddana datorer 4r séledes betecknad parallellprogrammering. Att organisera berékningarna
i en parallell och heterogen dator kan vara utmanande - att effektivt nyttja alla
berdkningsresurser manuellt kriver expertkunskaper. Darfér bedrivs forskning inom
utformning och konstruktion av hjilpmedel som gor att komplexiteten hos moderna datorer
kan abstraheras utan att prestandaférlusterna blir for stora.

Den forskning som ligger till grund fér denna doktorsavhandling angriper problemet
genom att underséka abstraktioner i form av universella berdkningsménster. Forskningen
visar hur programmeringsgranssnitt och ramverk kan utformas for att skapa datorprogram
som kan anpassa sig till att anvinda alla berdkningsenheter i olika typer av datorsystem.
Flertalet av avhandlingens bidrag 4r direkta resultat av internationella samarbeten mellan
experter pd konkreta tillimpningar respektive programmeringsmiljer. Forskningens konkreta
resultat inkluderar bland annat mdjligheten att automatiskt anvinda berdkningsresurser
i storskaliga klusterdatorer, metoder f6r erfarna programmerare att integrera egna
handoptimerade komponenter i monsterbaserade program samt en deterministisk parallell
slumptalsgenerator. Forskningen ldgger stor vikt vid betydelsen av programmerbarhet
for att gora parallella och heterogena beridkningar tillgingliga f6r programmerare utan
expertkunskaper. Samtidigt beaktas betydelsen av prestanda och integrationsmdjligheter hos
existerande mélgrupper f6r hégprestandaprogrammering.

ABSTRACT

Contemporary computer architectures utilize wide multi-core processors, accelerators such as
GPUs, and clustering of individual computers into complex large-scale systems. These hard-
ware trends are prevalent across computers of all sizes, from the largest supercomputers down
to the smallest mobile phones. While these innovations provide high peak computing perfor-
mance, software developers find it increasingly difficult to effectively target all the processing
resources without expert knowledge in parallelization, heterogeneous computing, communi-
cation, synchronization, and so on. To ensure that software can keep up with the development
of hardware architectures, advanced high-level programming environments and frameworks
are needed to bridge the programmability gap. In addition, as the industry is trending towards
increased vertical integration of software development stacks, vendor lock-in presents a risk of
coupling software projects to proprietary technologies. Combined with problems of technical
debt in large-scale software systems, it is clear that portability and open source are desirable
properties of high-level parallel programming environments. One example of a programming
framework fulfilling the above criteria is SkePU, a framework for high-level data-parallel pat-
tern programming consisting of a compiler toolchain, programming interface, and run-time
system.

The work presented in this thesis proposes a design of the pattern-centric skeleton program-
ming model of the SkePU framework based on modern C++ with variadic template metapro-
gramming and state-of-the-art compiler technology. The design enables further flexibility, ex-
pressivity, and portability and gives rise to several new performance optimization techniques.
The focus lies on a strong set of programming abstractions: providing new and extended pat-
terns, improving the data access locality of existing ones, and using both static and dynamic
knowledge about program flow. The work combines novel programming interfaces and imple-
mentations with practical evaluation on synthetic and real-world applications. Several con-
tributions are results from international collaborations in application-framework co-design:
a single-source parallelization approach of skeleton programs on heterogeneous clusters, an
extension mechanism for inserting platform-optimized code variants in high-level skeleton
programs, and an integrated abstraction for portable parallel deterministic random number
generation. The work places a strong emphasis on programmability aspects to make hetero-
geneous parallel computing accessible to non-experts, while also providing sufficient perfor-
mance and interface familiarity for the high-performance computing community.

vi

Acknowledgments

First and foremost I want to thank my supervisor at Linkdping University
(LiU), Professor Christoph Kessler, for continued and tireless efforts, expe-
rienced supervision, and caring friendship. Also thanks to my secondary
supervisor José Daniel Garcia Sdnchez, professor at University Carlos III of
Madrid and member of the ISO C++ Standardization Committee, for being
available when we need consultation and for valuable insight into the C++
development process.

Thanks also to my colleagues at or around PELAB, my home at LiU for
the past five years and counting. Particular thanks go to Kristian Sandahl for
being a highly appreciated lab leader, to Ola Leifler not only as a colleague
at PELAB but also for his and other contributors’ work on BIfX thesis tem-
plates, and to Anne Moe for administration and help throughout my grad-
uate program. Extra special thanks go to Johan Ahlgvist for his enthusiasm
in contributing to the work presented in this book and other engaging con-
versations during his time as part of our small group.

An important acknowledgement goes to everyone who has made direct
and lasting contributions to the SkePU framework or conducted research on
SkePU since its inception in 2010. A selection of names are listed in chrono-
logical order of earliest contribution: Johan Enmyren, Usman Dastgeer, Lu Li,
Oskar Sjéstrém, Tomas Ohberg, Henrik Henriksson, Johan Ahlqgvist, Basel Nsralla,
Joel Almgvist, and Erik Tedhamre.

Thanks also to everyone not mentioned by name who contributed
to SkePU indirectly, including but not limited to all project partners in
EXA2PRO for involvement that led to the design of SkePU 3, as well as stu-
dents at Linkdping University who provided feedback on SkePU over the
years.

vii

I also thank the Swedish National Supercomputing Centre (NSC) and SNIC
for access to their HPC computing resources through two generations of
clusters, Triolith and Tetralith.

Finally, my thanks goes to my family, my friends, and colleagues at LiU
and beyond for encouragement and support.

Work presented in this thesis has been partly funded by EU FP7 project
EXCESS (611183) and EU H2020 project EXA2PRO (801015), by the Swedish Na-
tional Graduate School in Computer Science (CUGS), and by SeRC.

August Ernstsson
Linkdping, January 2022

viii

Contents

Abstract v
Acknowledgments viii
Contents ix
1 Introduction 1
1.1 Aimsandresearchquestions. 1

1.2 Published work behind thisthesis 3

1.3 Other work behind thisthesis 5

1.4 Structure i e e 5

2 Background and related work 7
2.1 Motivation e 7

2.2 High-level parallel programming 9

2.3 Skeleton programming 10

2.4 Relatedwork. 10
241 GrPPI e e e e 11

242 Musket 13

243 Kokkos i 15

244 SYCL ... i e e e e 16

245 MLIR e e e 18

2.4.6 StarPU e e 18

2.4.7 C++ AMP, and other industry efforts. 19

2.4.8 Other related frameworks, libraries, and toolchains . 21

2.5 Independentsurveys 25

2.6 Earlier related workonSkePU 25

3 SkePU overview 27
3.1 Basicconstructs.............. 27
3.2 Backendarchitecture 31

33 History 34
3.4 SkePU 2 design principles 34
3.5 SkePU 3 designprinciples 36

4 Skeleton set

4.1
4.2

4.3
4.4

4.5

4.6
4.7
4.8
4.9
4.10

4.11
4.12
4.13

Skeletonset,
Mapskeleton
4.2.1 Freely accessible containers inside user functions. . .
4.2.2 Variadic type signatures
4,23 Multi-valuedreturn.
4.2.4 Index-dependent computations
MapPairsskeleton
MapOverlapskeleton
44.1 Edgehandlingmodes.
44.2 Updatemodes
Reduceskeleton.
4,51 One-dimensional reductions
4,5.2 Two-dimensional reductions
Scanskeleton
MapReduceskeleton
MapPairsReduce skeleton.
Callskeleton
Userfunctions.vuununnenen...
4,10.1 User functions as lambda expressions
Usertypes e
Userconstants
Stridedskeletons
4.13.1 Strides Map, MapPairs, and their reduce variants . . .
4,13.2 StridesinMapOverlapuvvvvun...

5 Data representation with smart data-containers

5.1

5.2

5.3

Smart data-containers.
5.1.1 Containerindexing
Container proxiesc.u ..
521 MatROWPIrOXyo v v i i v i i,
5.2.2 MatColproxyvuvuunenen....
523 ReEGIONPIOXY . . v v v v v vt e i e e oo
Memory consistencymodel
5.3.1 Externalscope,

6 Standard library

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Deterministic random number generation
Complexnumbers
Linearalgebra
Image filtering and visualization
Benchmark utilities
High-level consistent input and output
Generalutilities

41
42
44
45
45
47
48
49
50
52
54
55
56
57
58
59
61
62
63
65
66
68
68
68
69

71
71
73
74
74
76
78
78
80

7 Implementation
7.1 Implementation overview
7.2 Language embedding and typesafety
7.2.1 Improved type safety from SkePU1............
7.3 Source-to-source compiler
74 Backends
7.4.1 Sequential CPUbackend
7.4.2 Multi-core CPU backend: OpenMP.
7.4.3 GPU backends: OpenCLandCUDA
7.5 Cand Fortran language bindings
7.6 Continuous integration and testing
7.7 Dependencies
7.8 Availability L

8 Hybrid CPU-GPU skeleton execution
8.1 Introduction,
8.2 Workload partitioning and implementation
8.2.1 StarPU backend implementation
83 Auto-tuning e

9 Skeleton programming on large-scale cluster systems
9.1 Background
9.2 StarPU-MPlbackend
9.3 GPlbackend
9.3.1 GASPIandGPIc.uuuuunun..
9.3.2 Implementation
933 Design
9.3.4 Synchonization and state tracking
9.3.5 Consistency model and double buffering
9.3.6 Communicationpattern
9.3.7 Datarepresentation......................
9.3.8 Datatransfersand caching
9.4 Conclusions

10 Extending smart data-containers for data locality awareness
10.1 Introduction
10.2 Large-scale data processing with MapReduce and Spark . . .

10.2.1 MapReduceo it
10.2.2 Sparko
10.3 Lazily evaluated skeletons with tiling
10.3.1 Basic approach andbenefits
10.3.2 Backendselection
10.3.3 Loopoptimization.
10.3.4 Evaluationpoints

Xi

91
91
92
93
95
96
96
100
101
101
103
103
104

105
106
106
110
112

115
116
117
120
120
121
122
122
124
125
125
125
126

10.3.5 Further applicationareas
10.3.6 Implementation
10.3.7 Lazy tiling for stencil computations
10.4 Applications and comparison to kernel fusion.
10.4.1 Polynomial evaluation using Horner’s method
10.4.2 Exponentiation by repeated squaring
10.4.3 Heatpropagation
10.5 Relatedwork. L

11 High-level skeleton fusion
11.1 Comparisontolineages
11.2 Kernelfusion
11.3 Typesoffusions.
11.4 Example: N-body simulation.
11.5 Futurework

12 Multi-variant user functions

121 Introductiono v v vt
12.2 Idea and implementation
123 USECases . . . v v v ittt e e
12.3.1 Vectorizationexample

12.3.2 Generalized multi-variant components with the Call
skeleton L L

12.3.3 Otherusecasesc.uvuvuunen..

12.4 Relatedwork.

13 A deterministic portable parallel pseudo-random number
generator
13.1 Introduction
13.2 Determinism in heterogeneous parallel computing
13.3 Parallel pseudo-random number generation.
13.4 Previous manual parallelization of PRNG in SkePU programs
13.4.1 Monte Carlo pi calculation—index-based scrambling .
13.4.2 Markov Chain Monte Carlo methods in LQCD—PRNG
with explicitstate
13.5 Designing a deterministic PRNG for SkePU
13.5.1 Global synchronization
13.5.2 Streamsplitting
13.5.3 Stateforwarding.
13.5.4 Optimizing long or iterated skeleton chains by pre-
forwarding
13.5.5 APlextensiondesign
13.6 Relatedwork

xii

14 Towards a modernized auto-tuner 177

14.1 Background 177
14.2 SkePU variadic tunerdesign 178
14.3 Implementation. 179
14.3.1 Multi-dimensional argument sequences 179
14.3.2 Sampler 180
14.3.3 Execution plan and persistence 181

14.4 Futurework 182
15 Evaluation results 185
15.1 SkePU usability evaluation 186
15.1.1 SkePU 2 prototypesurvey 186
15.1.2 SkePUBSUIVEY .« o v v e e e e e e e e e e 187

15.2 Initial SkePU 2 performance evaluation 188
15.3 Performance evaluation of lineages 191
15.3.1 Sequences of Mapsuvuunn.. 191
15.3.2 Heatpropagation 193

15.4 Hybridbackend 194
15.4.1 Single skeleton evaluation 194
15.4.2 Generic application evaluation. 194
15.4.3 Comparison to dynamic hybrid scheduling using StarPU 196

15.5 Evaluation of multi-variant user functions 197
15.5.1 Vectorization, . 198
15.5.2 Medianfiltering 199

15.6 Application benchmarks of SkePU3 200
15.6.1 Libsolve ODEsolver 201
1562 N-bOAY . . oo e e 201
15.6.3 Blackscholes and Streamcluster 202
15.6.4 Brainsimulation........................ 203
15.6.5 COzcaptureo v v it 203
15.6.6 Supercapacitor simulation 206
15.6.7 Conjugate gradient 208

15.7 Experimental evaluation of deterministic PRNG 209
15.7.1 Monte-Carlo Pi approximation 209
15.7.2 LQCD Mini-Application. 210
15.7.3 Miller-Rabin primality testing 210
15.7.4 Natural noise generation 212
15.7.5 Programmability evaluation 213

15.8 SkePU-GPIclusterbackend 214
15.9 Microbenchmarksof SkePU3 215
15.9.1 OpenMP schedulingmodes 215
15.9.2 SkePU memory consistency model 216
15.10Variadic tuner prototype 216
15.11High-level skeleton fusion 216

16 Limitations and future work

16.1 Limitations
16.1.1 Applicability of data-parallel patterns
16.1.2 Dynamic datastructures.
16.1.3 Limitations of language embedding

16.2 Futurework
16.2.1 Further backend targets: reconfigurable accelerators
16.2.2 Extending the parallel pattern set: stream paralleliza-

tiono
16.2.3 Testing, debugging, and visualization
16.2.4 Higher-level language interface

17 Conclusions

Bibliography

A

Additions and changes from the licentiate thesis
A1 Newcontributions
A2 Otherchanges..............

Definitions

B.1 Abbreviations
B.2 Domain-specific terminology
B.3 SkePU-specific terminology

SkePU-BLAS API

Application source code samples

D.1 N-bodysimulation
D.2 Gameoflife
D.3 Conjugategradientvuuun...
D4 COzcapture i

Xiv

219
219
220
220
220
221
221

222
222
222

225

227

247
247
248

249
249
250
251

253

Introduction

Contemporary computer architectures are increasingly parallel designs
with multiple processor cores. In addition, massively parallel accelerators,
such as GPUs, make these systems heterogeneous architectures. This de-
velopment is a consequence of the power and frequency limitations for sin-
gle, sequential processors. Parallel architectures help overcome this barrier
and maintain Moore’s law-like growth of computing power [155]. For pro-
grammers and programming languages designed for sequential and homo-
geneous systems, it is a challenge to utilize the resources available in mod-
ern computer systems in an efficient manner. The challenges are many:
communication, synchronization, load distribution, and so on. This is espe-
cially true if also performance portability is desired, as different systems can
vary widely in terms of both the number and types of processing cores, as
well as in other characteristics such as memory hierarchy.

1.1 Aims and research questions

This thesis aims to introduce the modern approach to high-level parallel
programming taken by SkePU version 2 and later. SkePU implements its
own interpretation of the skeleton programming concept, which is a widely
researched programming model using patterns and parametrizable higher-
order functions as programming constructs. Throughout the thesis, the
skeleton programming approach is explored, with emphasis on recent re-
search and the current landscape of available skeleton programming frame-

1

1. INTRODUCTION

works. The thesis aims to give a good overview of SkePU syntax and fea-
tures, but is not intended to be an exhaustive documentation of the frame-
work. Rather, the approach is to provide insight into the thoughts and de-
sign considerations of the contributions that has been made to SkePU over
the past few years. During this time, SkePU has seen significant change,
both in terms of interface adaption and modernization as well as extensions
in feature set and target hardware platforms.
The work on SkePU 2 and SkePU 3 attempts to address the following:

RQ1 How can a contemporary skeleton programming interface utilize mod-
ern C++ capabilities such as variadic templates and lambda expressions?

RQ2 Can flexibility and type-safety be improved by providing a custom
source-to-source compiler instead of C-style macros, for backend code
generation?

RQ3 How can SkePU be improved for real-world applications, e.g., for sci-
entific computing, by applying application-framework co-design?

The thesis goes into detail on six specific contributions, providing an-
swers to the following research questions:

RQ4 How can lazy evaluation be utilized in SkePU programs composed of se-
quences of skeleton operations on the same data set, and specifically,
is inter-skeleton tiling an optimization technique that can be applied
in this scenario?

RQ5 Can CPU-GPU hybrid execution of skeletons be implemented as a back-
end target through the variadic SkePU interface? What is the optimal
split ratio of work between CPU and GPU backends, and what is the
possible performance gain?

RQ6 Large-scale computations require more resources than what is avail-
able in a single computer. What are the possible performance gains
of extending the SkePU programming model to target cluster execu-
tion, and what, if any, are the tradeoffs in regards to capabilities and
programmability in such an extension?

RQ7 How can SkePU be utilized or provide benefit for applications which
are not a perfect fit for automatic generation of backend-specific
code? Should there be a way for expert programmers to override back-
end code generation in cases for which this is desirable?

RQ8 A multi-backend programming framework is expected to behave sim-
ilarly or, ideally, identical across target systems. What are the lim-
itations of pseudo-random number generation (PRNG) in terms of re-
producibility across backends, and how can a skeleton programming

1.2. Published work behind this thesis

framework accommodate a deterministic PRNG in its interface and im-
plementation?

RQ9 How can the known optimization technique kernel fusion be applied
in skeleton programming? In particular, to what extent does SkePU
allow for manual skeleton fusion, and in which ways can automated fu-
sion combine static (compile-time) and dynamic (run-time) program
flow information?

1.2 Published work behind this thesis

This thesis is based on the work presented in eight papers, of which seven
are published in peer-reviewed journals or proceedings and one is, as of
writing, accepted and awaiting publication.

1. SkePU 2: Flexible and Type-Safe Skeleton Programming for Het-
erogeneous Parallel Systems [62]
August Ernstsson, Lu Li, and Christoph Kessler
This paper was first presented at the HLPP 2016 symposium in Miin-
ster, Germany on July 4, 2016. The journal paper was published in In-
ternational Journal of Parallel Programming in 2017 as Open Access under
CC BY 4.0. Initial prototype and design work of SkePU 2 was carried out
as part of August Ernstsson’s master’s thesis [58]. The same work was
also disseminated at the EXCESS project workshop in Gothenburg,
Sweden on August 26, 2016 and at MCC 2016 workshop on November
29, 2016. A poster on SkePU 2 based on the contributions in this paper
was represented at HIPEAC 2017 in Stockholm, Sweden.

2. Extending smart containers for data locality-aware skeleton pro-
gramming [60]
August Ernstsson and Christoph Kessler
This paper was first presented at HLPP 2017 in Valladolid, Spain on
July 11, 2017. The paper was published in Concurrency and Computation
Practice and Experience in 2019. The same contribution was also pre-
sented at MCC 2017 by means of a poster and short presentation.

3. Hybrid CPU-GPU execution support in the skeleton programming
framework SkePU [119]
Tomas Ohberg, August Ernstsson, and Christoph Kessler
This paper was first presented at HLPP 2018. This journal paper was
published in The Journal of Supercomputing in 2019 as Open Access un-
der CC BY 4.0. The contributions in this paper are results of the mas-
ter’s thesis project by Tomas Ohberg [118], supervised and guided by
August.

1. INTRODUCTION

4, Multi-Variant User Functions for Platform-Aware Skeleton Pro-
gramming [61]
August Ernstsson and Christoph Kessler
This paper was first presented at ParCo’19 in Prague, Czech Republic
on September 10, 2019. The journal paper was published in Advances
in Parallel Computing in 2020 as Open Access under CC BY-NC 4.0. A pre-
view of this contribution was represented at HLPP 2019 with a poster
exhibition and short presentation. The work was also disseminated
at the MCC 2019 workshop in Karlskrona, Sweden on November 27,
20109.

5. Portable exploitation of parallel and heterogeneous HPC architec-
tures in neural simulation using SkePU [121]
Sotirios Panagiotou, August Ernstsson, Johan Ahlqvist, Lazaros Papadopou-
los, Christoph Kessler, and Dimitrios Soudris
This conference paper was presented at SCOPES’20 in 2020 and pub-
lished in the proceedings the same year. The paper is the first pub-
lished result of collaborations within the EU project EXA2PRO, and pro-
vides results from applying SkePU in a real-world application context.

6. SkePU 3: Portable High-Level Programming of Heterogeneous
Systems and HPC Clusters [59]
August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and Christoph Kessler
This paper was presented at HLPP 2020 on July 9, 2020. A revised
version was published in International Journal of Parallel Programming
in May 2021 as Open Access under CC BY 4.0. Also a direct result of
EXAZ2PRO collaborations, the paper introduces SkePU 3, including its
new cluster backend.

7. EXA2PRO: A Framework for High Development Productivity on
Heterogeneous Computing Systems [122]
Lazaros Papadopoulos, Dimitrios Soudris, Christoph Kessler, August Ernsts-
son, Johan Ahlqvist, Nikos Vasilas, Athanasios I. Papadopoulos, Panos Seferlis,
Charles Prouveur, Matthieu Haefele, Samuel Thibault, Athanasios Salamanis,
Theodoros loakimidis, Dionysios Kehagias
This paper summarizes the work and results of EXA2PRO. It will be
published in IEEE Transactions on Parallel and Distributed Systems in April
2022 as Open Access under CC BY 4.0.

8. A Deterministic Portable Parallel Pseudo-Random Number Gen-
erator for Pattern-Based Programming of Heterogeneous Parallel
Systems [63]

August Ernstsson, Nicolas Vandenbergen, Jérg Keller, Christoph Kessler
This joint work within the EXA2PRO project resulted in a paper pre-
sented at HLPP 2021 on July 12, 2021. A revised version has been ac-

1.3. Other work behind this thesis

cepted for publication in a future issue of International Journal of Parallel
Programming.

Papers 2, 3, 4, and 8 are reproduced in this thesis in large part, presented
as main contributions. Paper 1 and 6 have the introduction of SkePU version
2 and SkePU version 3, respectively, as their main contributions, and there-
fore material from these papers is extended and reworked into the chap-
ters of this thesis that present the history, interface, and implementation
of SkePU (Chapters 3, 4, 5, and 7). In addition, experimental results and
evaluation from all papers is collected and reproduced in Chapter 15.

Publications in the form of project deliverables from the EXA2PRO
project also form part of the basis for this thesis. Most of the deliverables
are publicly available in CORDIS® except for a few with confidential classi-
fication. Of the published deliverables, those with August Ernstsson listed
among the authors [26-38] are of relevance to the work presented in this
thesis.

1.3 Other work behind this thesis

In addition to the published material, this thesis is shaped by the experience
gained from the exposure of the SkePU framework to potential users by the
means of numerous tutorials, given, e.g., in conjunction with HLPP 2019,
MCC 2019, PPoPP 2021 and eScience 2021 and in teaching through the
course TDDD56: Multicore and GPU programming.

Design and implementation work for several contributions has been
conducted through master’s thesis projects, with August Ernstsson acting as
supervisor. The thesis project by Tomas Ohberg [118] eventually resulted in
a publication [119] and is the basis of Chapter 8; the projects by Joel Almgvist
[3] and Basel Nsralla [116] are not adapted into peer-reviewed publications at
the time of writing, but are nonetheless represented as important contribu-
tions to Chapters 9 and 14, respectively. Evaluation results of these master’s
thesis projects, including a project by Erik Tedhamre? are also summarized in
Chapter 15.

1.4 Structure

This thesis roughly follows a three-part structure. The initial chap-
ters (1-7) set the context through background and descriptions of pro-
gramming frameworks, most notably SkePU. Then follows a middle part
(Chapters 8-15), the main contributions of the work followed by evaluation

LCommunity Research and Development Information Service, project 801015, https://
cordis.europa.eu/project/id/801015/results
2Erik’s project is in the final stages of progress, but there is not yet a report to cite.

1. INTRODUCTION

results. The final part contains discussion, introspection, and summarizes
the key insights.

Chapter 2 presents background surrounding the skeleton programming
paradigm for high-level parallel programming. Various applications of the
skeleton programming model from the scientific community and the indus-
try are also surveyed in this chapter, as related work.

Chapter 3 provides an initial concise overview of the SkePU framework,
the main topic of the thesis. The deep dive into SkePU then begins with
Chapter 4, which explores the skeleton set of SkePU. Chapter 5 contains a
study of SkePU’s data representation abstraction, smart data-containers.
The interface overview of SkePU is completed with Chapter 6 covering the
standard library. Once the outwards-facing aspects of SkePU are well in-
troduced, Chapter 7 explains the implementation of SkePU with its header
library and compiler toolchain.

The subsequent seven chapters presents the main contributions. First,
we have two backend-related contributions: Chapter 8 presents the hybrid
backend and Chapter 9 details the two cluster backends.

Chapter 10 covers the work on a data-locality optimization through
lazy evaluation, continuing into Chapter 11 discussing the related topic of
skeleton fusion.

Chapter 12 details multi-variant user functions and Chapter 13 covers
a library contribution in depth: the design of a deterministic parallel ran-
dom number generator. Progress towards a modernized variadic auto-
tuning system is documented in Chapter 14.

These contribution chapters omits evaluation results, which are col-
lected in Chapter 15 together with other published and unpublished results
including performance evaluation.

Chapter 16 discusses limitations of the approaches explored in the the-
sis and presents ideas for future work. Chapter 17 concludes the thesis.

This book is a doctoral dissertation, and follows up on a licentiate thesis
published and defended in late 2020. Additions and changes from this pre-
vious book are documented in Appendix A.

Background and related
work

This chapter starts with an extended problem motivation (Section 2.1), giv-
ing a context for the work presented later in the thesis. A series of im-
portant concepts are then introduced, starting with high-level parallel pro-
gramming in Section 2.2 and the specific approach of skeleton programming
in Section 2.3.

The later sections cover related work of various types. Parts of the re-
lated work discussion assumes some familiarity with the SkePU framework;
readers who feel a little lost are encouraged to come back after reading
Chapters 3-5.

2.1 Motivation

The motivation behind the need for parallel computing, provided in Chap-
ter 1, answers the question of why there is a need for (high-level) parallel
programming systems to utilize the available computational resources. In
this chapter, we focus on the software systems attempting to answer the
how. On the hardware side, we have access to processing units of ever in-
creasing width, be it traditional CPU-style cores or accelerator devices, and
these units are assembled in larger and larger clusters. As of the time of
writing, the leading supercomputer cluster in the world (Fugaku at RIKEN)

2. BACKGROUND AND RELATED WORK

Cluster

NUMA node

Physical core
[]]]
3102 (LINS) [133180"[

Accelerator

Cluster node

Figure 2.1: Schematic for the compute units of a typical HPC cluster archi-
tecture.

has millions of cores' and total parallel performance of almost half an exa-
flop. Figure 2.1 contains a schematic over the various computational re-
sources provided by a modern cluster node. We can see parallelism and het-
erogeneity in multiple levels?.

Our goal is to achieve portability of programs, such that they can run
without error on many types of systems and architectures. In this work,
we primarily investigate high-level abstractions to reach this goal, starting
with the next section. However, portability can also be reached by specializa-
tion;, the choice here can have an important impact on the properties of the
resulting codebase. Which is better is dependent on the context, but gen-
erally, increased abstraction will result in greater programmer productivity

LA twice-yearly updated list of the most powerful supercomputers in the world is main-
tained by Top500.org. At the time of writing, the latest version was available at https:
//www.top500.0rg/lists/top500/2021/11/.

ZSupercomputers tend to be mostly homogeneous in their node-level structure, but it is
not uncommon to find a relatively small amount of specialized nodes, for instance with addi-
tional memory or unique accelerators.

2.2. High-level parallel programming

)
=]

g
c
.
=5
<

Figure 2.2: Impact from portability through abstraction and specialization.

while specialization is important to maximize performance portability [111,
125] (Figure 2.2).

2.2 High-level parallel programming

Programming of parallel hardware is inherently more challenging for the
user than traditional sequential programming, especially when the parallel
system is heterogeneous, and parallel computing systems need to accom-
modate this fact in the systems and interfaces presented to the program-
mer. As expressed by Cole [25], finding the right abstraction level is the key
to balance the equation, and this is an ever-moving target—as hardware ca-
pabilities increase, the penalties imposed by additional levels of abstrac-
tion become more forgiving. As it happens, there seems to be some scien-
tific consensus, judging by the breadth of work published on the subject
as presented in this chapter, that the time has come for algorithmic skeletons
(throughout this thesis mostly referred to by the term skeleton programming)
to be a viable high-level abstraction for programming of parallel hardware.

High-level parallel programming frameworks aim to reduce the user-facing
complexity of parallel programs while still achieving as good resource uti-
lization as possible. A small number of highly optimized, but still general,
programming building blocks are presented through a high-level interface.
This category of frameworks include application specific languages, PGAS
(Partitioned Global Address Space) interfaces, dataflow models, and more,
but most importantly for this thesis: the skeleton programming concept.

Two recent literature studies investigate the state of parallel program-
ming languages: Amaral et al. [4] focus on the HPC domain, and Ciccozzi
et al. [21] take an even broader look at trends and challenges in parallel
programming languages overall.

2. BACKGROUND AND RELATED WORK

2.3 Skeleton programming

Skeleton programming [25, 74] is a programming model for parallel systems
inspired by functional programming (See also Hammarlund et al. [79] for a for-
mal presentation of the relationships between functional and data-parallel
programming.) The central abstraction of the concept are the skeletons
which are inherently parallelizable computational patterns. These patterns
are known from functional programming as higher-order functions: functions
accepting other functions as parameters. Common examples include map
and reduce. The supplied function is applied to a structured set of data ac-
cording to the semantics of the particular skeleton. Typically, the func-
tion is assumed to have no side effects and the computation can thus be
reordered and parallelized.

Compositions of skeletons can model entire programs, which are se-
quential in interface but with parallelizable semantics. Aspects such as
communication and synchronization are nowhere to be (explicitly) seen,
and even particulars about how and where computation is performed in the
underlying system is decided by the system itself, not the programmer. In
other terms: skeleton programming tends to be more on the declarative side,
at least pertaining to overarching computational structures in a program.

Rabhi and Gorlatch [131] compare patterns in the sense of algorithmic
skeletons to design patterns from software engineering. They note that while
there are similarities and even direct analogues between the two, skeleton
patterns are formal constructs used for performance-related reasons, while
design patterns are loosely defined and applied, e.g., for reliability. In this
thesis, the term pattern strictly refers to algorithmic skeletons. Danelutto
et al. [44] more recently surveyed and compared the algorithmic skeleton
research community to that of parallel design patterns.

Several parallel programming frameworks implement the algorithmic
skeleton model [55, 56, 106, 146], some of them for multiple different paral-
lel architectures (backends) with a single common interface. Selection of
backends can be done with auto-tuning [46]. Examples of skeleton pat-
terns are often divided into two categories: data parallel patterns such as the
aforementioned map and reduce, and task parallel patterns including task
farming and parallel divide-and-conquer, among others. Particularities of
how the skeleton programming model is adapted in the actual frameworks
can differ significantly, visible for instance in the available skeleton set (and
even the naming of skeleton patterns), backend set, and naturally also the
general program syntax, among others.

2.4 Related work

The skeleton approach to high-level programming of parallel systems was
introduced by Cole in 1989 [24, 25]. Since then, many academic skele-

10

2.4. Related work

ton programming frameworks have been presented, and the concept also
increasingly found its way into commercial and industrial-strength pro-
gramming environments, such as Intel TBB for multi-core CPU parallelism,
Nvidia Thrust or Khronos SYCL for GPU parallelism, or Google MapReduce and
Apache Spark for cluster-level parallelism over huge data sets in distributed
files.

While early skeleton programming environments attempted to define
and implement their own programming language, library-based and DSL-
based approaches have, by and large, been more successful, due to fewer
dependencies and lower implementation effort. Frameworks for skeleton
programming became practically most effective in combination with (mod-
ern) C++ as base language. Moreover, the approach was fueled by the in-
creasing diversity of processing hardware with upcoming multi-core and
heterogeneous parallelism since the early 21st century.

This section first surveys three pattern-based frameworks in more de-
tail: GrPPI in Section 2.4.1, Musket in Section 2.4.2, and Kokkos in Sec-
tion 2.4.3. All are relatively recent contributions from the academic com-
munity and actively maintained and published, and they provide both sim-
ilarities and differences when compared to SkePU. Some attention is also
given to industry-led high-level parallel programming, which are led either
by individual corporations or through consortia and standardization com-
mittees. SYCL is an important standardization initiative and is given extra
attention in Section 2.4.4. We then look at two programming frameworks
which are not related to data-parallel patterns, but nonetheless relevant to
the topics brought up in this thesis: MLIR in Section 2.4.5 and StarPU in Sec-
tion 2.4.6. Section 2.4.7 then explores industry efforts. These are important
especially as their wide availability makes them targets or dependencies of
academic work. The remainder of the related work section is spent on just
that: the wide variety of large and small contributions of academic research,
most of which come with implementations and programming systems of
their own.

2.4.1 GrPPI

GrPPI [135] is a relatively recent interface for generic parallel patterns. Like
SkePU, it takes full advantage of modern C++ and is designed as an interface
abstracting from and selecting among lower-level frameworks: C++ threads,
OpenMP, Intel TBB, and Thrust [13].

The patterns offered by GrPPI (it does not use the term skeletons, but
it is a matter of terminology choice) are split into stream parallel and data
parallel groups.

As SkePU does not feature stream parallelism, this is a good opportunity
to discuss common stream parallel patterns. In GrPPI, these are:

11

2. BACKGROUND AND RELATED WORK

12

« Pipeline: Pipeline parallelization is in essence the opposite of data

parallelism: parallelization is gained not from the width of the data
set, but from the depth of the computation sequence. A pipeline con-
sists of a chain of function calls (which can, but are not required to be,
data parallel patterns in themselves). Each function is evaluated in
parallel with the others, but due to the dependency chain, each func-
tion call are on a different packet from the data stream. The pipeline
eventually fills up and reaches a steady state where all pipeline stages
have independent data to work on.

Farm: Much like a stream map, farm computes a transformation of the
incoming packets and places the results in the output stream. Each
function invocation is "farmed” out to a set of parallel workers.

Filter: The filter pattern takes as input a stream and returns a stream
where packets may be filtered out by a predicate (boolean) function.
Parallelization is extracted by computing several stream packets at
once, with the requirement that the invocations of the filtering func-
tion are independent.

Accumulator: Much like a stream version of reduce, the accumulator
pattern combines packets from the source stream using an associative
and commutative binary combination operator. The output stream is
partial "sums” of the packets in the source stream, with the number
of elements dependent on a set window size.

The set of data parallel patterns is as follows:

« Map: Map is conceptually the same pattern as the SkePU Map pre-

sented later in this thesis. As with all pattern libraries, the full capa-
bilities, interface, and implementation can differ significantly.

Reduce: A finite data set is accumulated into a single value by an asso-
ciative and commutative binary combination operator, like the SkePU
Reduce.

Stencil: Stencil is the GrPPI name for the same pattern as represented
in SkePU by MapOverlap.

MapReduce: Unlike the prior data parallel skeletons, GrPPI MapRe-
duce differs in interpretation from the one in SkePU. GrPPI MapRe-
duce is more closely aligned with the big data analytics framework
style MapReduce, where the mapping function not only computes a
transformation of its argument, but also assigns a key and returns a
tuple of the processed result and the key. In the reduction phase, a
computation following the process in Reduce is performed on each
subsequence of tuples with the same key.

2.4. Related work

« Divide & Conquer: Divide and conquer is an established parallel pat-
tern which is missing from SkePU but available in GrPPIL. The input
data set is recursively broken down into smaller subsequences until
a base case is reached. The pattern is parametrizable with splitting,
merging, and base case functions.

Listing 2.1 shows a sorting computation using the GrPPI interface.

2.4.2 Musket

Musket [134] approaches the high-level parallel interface not by integrating
into an existing language like C++, but rather with a domain-specific lan-
guage and custom compiler toolchain. Unlike SkePU, the Musket compiler
is provided as a plugin to the Eclipse integrated development environment,
allowing model validation and the resulting errors and warnings to be con-
trolled from a graphical user interface. Musket can target GPUs, but un-
like SkePU has investigated OpenACC as the backend interface in addition
to CUDA [157].

Musket uses generally the same terminology as SkePU, with skeletons pa-
rameterized with user functions. The skeleton set differs quite a bit, with the
fundamental skeleton types in Musket being map, fold, mapFold, zip, and
two different shift partition skeletons. Operand data distribution and
collective data communication in cluster execution is exposed to the pro-
grammer in Musket, whereas it is abstracted away in SkePU.

Map and fold correspond to the SkePU constructs Map<1> and Reduce,
respectively, and as in SkePU, an explicit fusion of the two is provided in
mapFold. The zip skeleton is a way to merge two data structures element-
wise, and as such acts like a map with input arity 2, Map<2> in SkePU.

The basic skeletons may have variants, such as map having the mapin-
Place when the input data structure is the same as the output, mapIndex
and mapLocallndex which can access the index within the processed data set.
While similar features exist in SkePU, the approach of expressing them are
different. The fact that both fundamental skeleton patterns and auxiliary
features are shared between Musket and SkePU under different terminol-
ogy and syntactical means (and this fact is merely illustrated with the two,
and not limited to just the SkePU-Musket comparison) can make it chal-
lenging for programmers to go from one to the other, and it also presents
a challenge for attempting an approachable categorization and comparison
of different skeleton programming implementations.

A sample application using the Musket DSL is provided in Listing 2.2,
illustrating the fact that its syntax is strongly evocative of C++ conventions,
but a Musket program is not a valid C++ program.

Recent work on Musket has extended the framework to target multi-GPU
cluster platforms [157].

13

10

15

20

25

30

35

40

45

2. BACKGROUND AND RELATED WORK

Listing 2.1: Excerpt from sample code from the GrPPI repository: Sorting a

sequence of integers using Divide & Conquer.

/*
* Copyright 2018 Universidad Carlos III de Madrid

*

* Licensed under the Apache License, Version 2.0 (the '"License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

F

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and

* limitations under the License.

*
~

#include "grppi/grppi.h"

std::vector<range> divide(range r) §
auto mid = r.first + distance(r.first,r.last)/2;
return § §fr.first,mid? , §mid, r.last? %;

3

void sort_sequence(grppi::dynamic_execution & exec, int n) §
using namespace std;

std: :random_device rdev;
std::uniform_int_distribution<> gen{1,1000%;

vector<int> v;

for (int i=0; i<n; ++i) §
v.push_back(gen(rdev));

3

range problemf{begin(v), end(v)3};

grppi::divide_conquer(exec,

problem,

[I(auto r) -> vector<range> { return divide(r); 3%,

[J(auto r) § return 1>=r.size(); %,

[J(auto x) § return x; 3%,

[J(auto rl, auto r2) §
std::inplace_merge(ril.first, ril.last, r2.last);
return rangefrl.first, r2.lastz;

3

)i

14

10

15

20

25

2.4. Related work

Listing 2.2: Complete sample code from the Musket repository: computa-
tion of the Frobenius norm.

#config PLATFORM GPU CPU_MPMD CUDA
#config PROCESSES 1

#config GPUS 1

#config CORES 4

#config MODE release

const int dim = 8192;
matrix<double,dim,dim,dist,dist> as;

double init(int x, int y, double a)§
a = (double) (x +y + 1);
return a;

3

double square(double a)§
a=a#%*a;
return a;

3

maing
as.mapIndexInPlace(init());
mkt::roi_start();
double fn = as.mapReduce(square(), plus);
fn = mkt::sqrt(fn);
mkt::roi_end();
mkt::print("Frobenius norm is %.5f.\n", fn);

2.4.3 Kokkos

The Kokkos C++library [18, 150] seems to be gaining traction in the scientific
community, often being used for comparative evaluation purposes. Kokkos
has its origins as an internal portability layer for linear algebra kernels and
brings a strong focus on efficient data representation. Kokkos manages data
trough multi-dimensional arrays called Views, which offers the program-
mer the flexibility of declaring array dimensions as a mix of static or dy-
namic sizes (Listing 2.3). Static size information is taken advantage of for
automatic layout decisions and efficient element addressing at run-time.
Compared to SkePU, this approach offers more flexibility by not being lim-
ited to a maximum of four dimensions, and optimization opportunities arise
from the static dimensions. The programming interface for declaring multi-
dimensional arrays in Kokkos requires the user to provide the dynamic di-
mensions first in the list, which is comparable to SkePU user functions en-
forcing an ordering of parameter types (element-wise first, etc.). There are
significant advantages to be gained from embedding programming models
in existing high-profile languages such as C++, but these two examples show
ways that the host language can limit the expressivity of the framework.

15

10

2. BACKGROUND AND RELATED WORK

Listing 2.3: Array declaration in Kokkos, with one dynamic and one static
dimension size.

const size_t N = ...;
Kokkos: :View<double*[3]> b ("debugging label", N);

Listing 2.4: Parallel "hello-world” program in Kokkos, from the Kokkos pro-
gramming guide.

#include<Kokkos_Core.hpp>
#include<cstdio>

int main(int argc, char* argv[]) {
Kokkos::initialize(argc,argv);

int N = atoi(argv[1]);
Kokkos::parallel_for('"Loopl", N, KOKKOS_LAMBDA (const int& i) §
printf("Greeting from iteration %i\n",i);

;

Kokkos::finalize();

For parallel computation, Kokkos provides three data-parallel pat-
terns (called dispatch operations): parallel_for, parallel_reduce, and
parallel_scan. Kokkos’ “reduce” is rather a full mapreduce, and both re-
ductions and scans require an associative operator which is user-defined.
Furthermore, Kokkos contains a limited task abstraction and random num-
ber generation facilities.

Listing 2.4 shows a complete Kokkos program using the parallel_for
construct. As of the time of writing, Kokkos 3 [150] is a recent evolution
including a new abstraction for multi-dimensional parallel iteration with
optional tiling and the ability for hierarchical parallelism, the latter suitable
for, e.g., matrix-vector multiplication.

2.4.4 SYCL

Over the past decade, there have been standardization efforts of skeleton-
like interfaces. One such instance is SYCL [129] from the Khronos Group®.
The Khronos Group manages open standards, including OpenGL and
OpenCL. SYCL is an attempt at bringing heterogeneous C++ programming to
as many programmers as possible. While primarily designed as a higher-
level abstraction layer to OpenCL or multi-threaded CPU processing, the
framework is extensible for other hardware platforms. SYCL is intended

3https://www.khronos.org/sycl

16

10

15

20

25

2.4. Related work

Listing 2.5: SYCL 1.2 code sample adapted from Khronos tutorial material.

#include <CL/sycl.hpp>
#include <iostream>

int main()

£

using namespace cl::sycl;
int data[1024];

// create a queue to enqueue work to
queue myQueue;

// wrap our data variable in a buffer
buffer<int, 1> resultBuf(data, range<1>(1024));

// create a command_group to issue commands to the queue
myQueue.submit([&] (handler& cgh)
£

// request access to the buffer

auto writeResult = resultBuf.get_access<access::write>(cgh);

// enqueue a parallel_for task
cgh.parallel_for<class simple_test>(range<1>(1024),
[=]1(id<1> idx) § writeResult[idx] = idx[0]; %
)i
3

both as a programmer-facing interface and a backend target for domain-
specific languages and tools, such as BLAS-style libraries or machine learn-
ing environments.

SYCL addresses the limitations in OpenCL by providing a single-
source interface and by reducing boilerplate and state-machine operations
through, for instance, high-level parallel patterns (parallel_for). Amod-
ern C++ foundation also ensures type safety through the use of templates
and lambda expressions.

Listing 2.5 illustrates a minimal SYCL program invoking a
parallel_for task.

While initially SYCL was primarily available in reference implementa-
tions from Codeplay, several projects have since built upon or integrated
SYCL in various programming environments. Examples include Intel’s
oneAPI as discussed later and Celerity [149], the latter of which adopts (and
slightly adapts) SYCL for cluster computations. Celerity is especially inter-
esting when comparing SkePU to SYCL, as both originate as heterogeneous
single-node APIs which gets adapted for distributed computing in a later
stage. However, the comparison is not completely fair as SYCL exposes
more low-level constructs than SkePU and is to a higher degree designed
to be a compilation target for other programming environments.

17

2. BACKGROUND AND RELATED WORK

2.45 MLIR

High-level languages have a few options for to realizing a programming
model and interface in a concrete implementation. Often, the approach
taken is a pure library-based one, which for C++ libraries can mean either
a separately linked code base with interface header files, or a pure include
library with only header files. The other extreme is to implement a cus-
tom language and compiler stack. The approach taken by the work in this
thesis and the SkePU framework lies somewhere in between, with language
extensions processed by an additional precompilation step. As compilers,
or metacompilers/precompilers [16], involve a lot of work, most of which
could be classified as reinventing the wheel, such tools are typically based
on existing compiler infrastructure, examples which include LLVM [94],
ROSE [130], and Mercurium [10, 65] for C++; and many more for other lan-
guages, including for example Java [81].

MLIR [95] is an effort to address the limitations in LLVM with regard to
representation of high-level (e.g., parallelism) constructs. MLIR is primary
targeted at the machine learning domain. The framework is designed to be
highly modular, and is architectured around a hierarchical chain of internal
representations, progressively lowering high-level constructs in a way such
that information about program structure is not lost. Transformations are
carried out in ways that still allows tracing back source code locations and
validating correctness of the transformed structures.

While MLIR is not a high-level parallel programming interface in its own,
it could prove to be the basis of future contributions in this domain, as LLVM
has been in the past. An early example of a parallel pattern framework built
on MLIR is RISE [102], described as a spiritual successor to Lift (covered in
Section 2.4.8).

2.4.6 StarPU

StarPU* [8] is a C-based task programming library for hybrid architectures.
The goal of StarPU is to provide a unified runtime system for heteroge-
neous computer systems, including different execution units and program-
ming models. StarPU also offers a high-level C++ interface or, optionally,
compiler-extension pragmas.

A task in StarPU is defined in terms of codelets. Describing a compu-
tational task, codelets are combined with input data to form tasks. Tasks
are passed to the runtime system asynchronously, and later mapped and
scheduled to be executed on any of the available computing resources. The
codelets can contain code written in C/C++, CUDA, and OpenCL. StarPU’s
modular implementation ensures that different scheduling policies and
performance models can be used. Examples of scheduling policies include

‘http://starpu.gforge.inria.fr

18

2.4. Related work

eager-based, priority-based, and random-based schedulers. It is also possible to
construct custom schedulers using the pre-implemented scheduling com-
ponents. Similar to SkePU, StarPU performs its own data transfer optimiza-
tion by caching data on the computational units where it was last accessed.

StarPU has been used in a number of application scenarios, recent ex-
amples including finite-volume CFD [39] and seismic wave modeling [108].

The latest versions of StarPU have been extended to target cluster
systems [7]. StarPU integrates MPI communication with its existing
accelerator-enabled codelets for a system that can utilize all the available
computing resources in heterogeneous clusters.

2.4.7 C++ AMP, and other industry efforts

Intel TBB (thread building blocks)® is a relatively low-level parallel program-
ming interface with explicit thread parallelism, but providing task schedul-
ing and memory management abstractions as well as data-parallel con-
structs. While TBB is relatively old, it is continuously maintained and up-
dated, for instance with modern C++ conventions such as lambda expres-
sions. TBB is often one of several implementation targets for higher-level
skeleton programming frameworks. OpenMP is frequently used as an alter-
native, being standardized and not controlled by a single actor.

The corresponding role TBB and OpenMP have on CPUs is on GPUs han-
dled by OpenCL and CUDA. Both are GPGPU programming interfaces at a
fairly low level with a lot of manual control flow and data management re-
quired from the programmer. OpenCL is defined with a C interface and an
industry standard managed by the Khronos consortium, while CUDA uses
more expressive C++ and is proprietary to Nvidia GPUs.

Nvidia Thrust [13] is a C++ template library with parallel CUDA imple-
mentations of common algorithms. It uses common C++ STL idioms, and
defines operators (comparable to SkePU user functions) as native functors.
The implementation is in effect similar to that of SkePU, as the CUDA com-
piler takes an equivalent role to the source-to-source compiler presented in
this article.

The C++ISO commiittee has included a parallel version of STL algorithms
in C++17, which as of recently is starting to see wider adoption.

Although Microsoft’s solution for C++ parallelism is separate from the
standardization efforts, their C++ AMP (Accelerated Massive Parallelism) in-
terface is largely similar, but with more explicit data management across
devices. C++ AMP provides an extents mechanism for emulating higher-
dimensionality data structures through arrays.

Recently Intel has collected several existing technologies together with
their compiler and profiler toolchains and community language extensions

5https://softwar‘e.intel.com/content/www/us/en/develop/tools/thr‘eading—
building-blocks.html

19

10

15

20

25

2. BACKGROUND AND RELATED WORK

Listing 2.6: Sample code from the Microsoft documentation: Vector sum
with C++ AMP.

#include <amp.h>
#include <iostream>
using namespace concurrency;

const int size = 5;

void CppAmpMethod() §
int aCPP[] = €1, 2, 3, 4, 5%;
int bCPP[] = {6, 7, 8, 9, 10%;
int sumCPP[size];

// Create C++ AMP objects.
array_view<const int, 1> a(size, aCPP);
array_view<const int, 1> b(size, bCPP);
array_view<int, 1> sum(size, sumCPP);
sum.discard_data();

parallel_for_each(
// Define the compute domain, which is the set of threads created.
sum.extent,
// Define the code to run on each thread on the accelerator.
[=]1(index<1> idx) restrict(amp) §
sum[idx] = a[idx] + b[idx];
3
)i

in what they call oneAPI®. Their proposed programming language is DPC++,
data parallel C++, which is based on standard C++ and SYCL with compiler
technology built on the Clang and LLVM stack. Intel is targeting systems
using a combination of CPU, GPU, and FPGA compute units with extensibil-
ity for other specialized accelerators.

Nvidia is simultaneously providing their own toolchains targeting C++
standard parallelism’ (stdpar). The Nvidia HPC SDK C++ compiler, NVC++,
targets GPU parallelism using only C++ standard library constructs, as seen
in the example in Listing 2.7.

Together, the Intel and Nvidia efforts indicate that the industry is em-
bracing parallel pattern methodologies and moving towards unification
and standardization of pattern-based parallel programming. This obser-
vation pertains specifically to the domains which favor C++ and similar
generalized programming languages, for example traditional HPC applica-
tions. Domain-specific toolchains for big data analytics and machine learn-

Shttps://software.intel.com/content/www/us/en/develop/tools/oneapi.
html

"https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-
using-stdpar/

20

2.4. Related work

Listing 2.7: C++ standard parallelism example from Nvidia.

int ave_age =
std::transform_reduce(std: :execution: :par_unseq,
employees.begin(), employees.end(),
0, std::plus<int>(),
[J(const Employee& emp)$
return emp.age();
b))

/ employees.size();

ing have shown tendency to accommodate parallel programming faster
through dedicated frameworks and tools.

2.4.8 Other related frameworks, libraries, and toolchains

While the number of pattern-based high-level parallel programming sys-
tems, libraries, and frameworks is too large to list all of them here, this sec-
tion tries to cover an assortment of approaches. An attempt has been made
to give an idea on the breath of applications of the basic skeleton program-
ming ideas and other pattern-based solutions. Direct competitors to SkePU
are also included, as well as work that has been influential in the design of
SkePU especially for SkePU 2 and 3. There is a never-ending stream of new
frameworks, and it would not be possible to cover them all here. (Exam-
ples of more recently proposed frameworks with similarities to the pattern
libraries in this chapter include PHAST [124] and SKLP [97].)

FastFlow

FastFlow [45] is a high-level programming interface targeting stream paral-
lelism. FastFlow emphasizes efficiency of basic operations and employs lock-
free internal data structures and minimal memory barriers. The FastFlow
interface is strongly centered around C++11-style attributes, using source-
to-source compilation to generate the FastFlow constructs.

FastFlow was originally designed for multicore CPU execution but added
GPU support later.

Lift

Lift [147] is a high-level functional intermediate representation (IR) based
on parallel patterns. The goal of Lift is to encode GPU-targeted computa-
tions (specifically OpenCL constructs) with an intermediate language which
is also adaptable to other computing targets. This language can be targeted
by other high-level pattern frameworks. Lift contains the data-parallel pat-
terns mapSeq, a map transformation; reduceSeq, a reduction; id, the iden-
tity transform, and iterate, which composes a function with itself a spe-

21

10

2. BACKGROUND AND RELATED WORK

Listing 2.8: Syntax of a simple FastFlow computation.

#include <ff/parallel_for.hpp>
using namespace ff;
int main() §
long A[100];
ParallelFor pf;
pf.parallel_for(0,100,[&A](const long i) §
A[i] = 1i;
3

return 0;

cific number of times before applying it to a data set. Lift also has sev-
eral data-layout patterns such as split and join in addition to yet more
hardware-oriented patterns. The Lift compiler generates efficient backend
code by performing optimizations such as barrier elimination and smart
data allocation.

Extensions and optimizations to Lift for stencil computations [148] have
been carried out without using a specific stencil pattern often seen in other
pattern frameworks (such as MapOverlap in SkePU), demonstrating the
strength of composing small building blocks which encode both computa-
tion and data layout.

Lift has recently been demonstrated to target high-level synthesis of
VHDL code targeting FPGAs. [89]

SkelCL

SkelCL [146] is an OpenCL-based skeleton programming library. It is more
limited than SkePU, both in terms of programmer flexibility and available
backends. Implemented as a library, it does not require the usage of a pre-
compiler like SkePU, with the downside that user functions are defined as
string literals.

SkelCL includes the Al1Pairs skeleton [145], an efficient implemen-
tation of certain complex access modes involving multiple matrices. In
SkePU 2 matrices are accessed either element-wise or randomly, and
AllPairs was part of the inspiration for including both the MapPairs
skeleton and the MatRow<T> and MatCol<T> container proxies in SkePU 3.
This again shows how otherwise similar frameworks based on the same un-
derlying programming model have differences in their approach. Best prac-
tices even for fundamental computations such as in this case matrix-matrix
multiplications are frequently differing across frameworks.

SkelCL has support for dividing the workload between multiple GPUs,
but does not support simultaneous hybrid CPU-GPU execution. Asitisbased
on OpenCL and lacks a precompilation step, the user functions must be de-

22

2.4. Related work

fined as string literals, lacking the compile time type checking available in
SkePU.

Muesli

Muesli (Muenster skeleton library) [22, 56] is a C++ skeleton library built on top
of OpenMP, CUDA and MPI, with support for multi-core CPUs, GPUs as well
as clusters. Muesli implements both data and task parallel skeletons, but
does not have support for as many data parallel skeletons with the same
flexibility as in SkePU 3. A MapStencil skeleton, similar to MapOverlap
in SkePU, with backend support for multi-GPU cluster systems was demon-
strated at HLPP 2021 [82].

Muesli has support for hybrid execution using a static approach [156],
where a single value determines the partition ratio between the CPU and the
GPUs, just as in SkePU’s hybrid backend. The library also supports hybrid
execution using multiple GPUs, with the assumption that they are of the
same model. The library currently does not provide an automatic way of
finding a good workload distribution which requires the user to manually
specify it per skeleton instance.

Marrow

Marrow [106, 143] is a skeleton programming framework for single-GPU
OpenCL systems. It provides both data and task parallel skeletons with the
ability to compose skeletons for complex computations. The library uses
nesting of skeletons to allow for more complex computations. Marrow has
support for multi-GPU computations using OpenCL as well as hybrid exe-
cution on multi-core CPU, multi-GPU systems. The workload is statically
distributed between the CPU threads and the GPUs, just like it is in SkePU.
Marrow identifies load imbalances between the CPU and the GPUs and im-
proves the models continuously to adapt to changes in the workload of the
system. The partitioning between multiple GPUs is determined by their rel-
ative performance, as found by a benchmark suite.

Bones

Bones is a source-to-source compiler based on algorithmic skeletons [117].
It transforms #pragma-annotated C code to parallel CUDA or OpenCL using
a translator written in Ruby. The skeleton set is based on a well-defined
grammar and vocabulary. Bones places strict limitations on the coding style
of input programs.

23

2. BACKGROUND AND RELATED WORK

Listing 2.9: Convolution kernel in PSkel, adapted from [126].

__stencil__ void stencilKernel(
Array2D<float> input, Array2D<float> output,
Mask2D<float> mask, int i, int j)

£
float accum = 0.0;
for (int n = 0; n < mask.size; n ++)

accum += mask.get(n, input, i, j) * mask.getWeight(n);
output(i,j) = accum;

3

PACXX

PACXX is a unified programming model for systems with GPU accelerators
[78], utilizing the C++14 language. PACXX was an inspiration in the initial
design and prototyping work for SkePU 2 [58], for example using attributes
and basing the implementation on Clang. However, PACXX is in itself not
an algorithmic skeleton framework.

CU2CL

A different kind of GPU programming research project, CU2CL [107] was a
pioneer in applying Clang to perform source-to-source transformation; the
library support in Clang for such operations has been greatly improved and
expanded since then.

PSkel

PSkel [126] is an example of a high-level parallel pattern library focusing
only on stencil computations. PSkel provides data abstraction though one,
two, and three-dimensional arrays and matching mask objects. The C++
template library is used to specify element-wise stencil kernels which are
computed by PSkel offloading to either CUDA, OpenMP, or TBB. Abstrac-
tions enable array and mask indexing using either linear or dimensional
coordinates.

Qilin

Qilin [103] is a programming model for heterogeneous architectures, based
on TBB and CUDA. Qilin provides the user with a number of pre-defined
operations, similar to the skeletons in SkePU. The library has support for
hybrid execution by automatically splitting the work between a multi-core
CPU and a single NVIDIA GPU. Just as in SkePU, one of the CPU threads is
dedicated to communication with the GPU. The partitioning is based on
linear performance models created from training runs, much like SkePU’s
auto-tuner implementation.

24

2.5. Independent surveys

Lapedo

Recent work in hybrid CPU-GPU execution of skeleton-like programming
constructs include Lapedo [83], an extension of the Skel Erlang library for
stream-based skeleton programming, specifically providing hybrid variants
of the Farm and Cluster skeletons where the workload partitioning is tuned
by models built through performance benchmarking; and Vilches’ et al.
[115] TBB-based heterogeneous parallel for template, which actively mon-
itors the load balance and adjusts the partitioning during the execution of
the for loop. Both approaches exclusively use OpenCL for GPU-based com-
putation.

2.5 Independent surveys

De Sensi et al. [50] have contributed the P3ARSEC benchmark suite, in-
tended to cross-evaluate high-level parallel programming frameworks and
libraries, specifically pattern-based ones. Being based on a subset of the
original PARSEC [15] benchmark suite, P3ARSEC is intended as a means to
compare performance, but just as importantly, programmability aspects.
The authors specifically highlight lines of code, the total length of a program,
and code churn, the number of changes lines when converting a previous
(often sequential) application to using the high-level interface, as measures
of programming effort. The work is also intended to prove the viability of
skeleton programming (or pattern-based parallel programming) at large,
and the results demonstrate that 12 out of 13 PARSEC benchmark can be
expressed by a small set of common patterns, specifically using FastFlow [2].

Arvanitou et al. [6] conducted a technical debt (TD; a financial metaphor
for measuring software quality and maintainability) [9] investigation on
parallel programming using SkePU and StarPU, specifically analyzing the
trade-offs between portability, performance, and maintenance. In the
study, SkePU was considered representing a highly portable implementa-
tion and for StarPU performance was emphasized. The results show that
SkePU does not seem to negatively affect technical debt across three stud-
ied applications.

2.6 Earlier related work on SkePU

The work presented in this thesis does not stretch back to the inception
of SkePU as a skeleton library. Even though the interface has changed in
fundamental ways, the current version of the SkePU framework is either
directly reliant on, or builds in top of, contributions by the people who have
worked on SkePU before.

We refer to earlier SkePU publications [47, 48, 55] for other work relating
to specific features, such as smart data-containers.

25

SkePU overview

SkePU is central to all contributions in this thesis. While there will be more
detailed coverage of SkePU in the following chapters, the way each individ-
ual part of SkePU interact with the others requires that we first start with a
high-level overview of the framework, as follows in this chapter.

3.1 Basic constructs

SkePU [55, 59, 62] is a multi-backend skeleton programming framework for
heterogeneous parallel systems with a C++11-based interface. A SkePU pro-
gram defines user functions which act as the operators applied in the skeleton
algorithms. SkePU contains both a source-to-source transforming precom-
piler and a runtime library, working in tandem to transform high-level ap-
plication code and execute it in parallel in the best possible way on available
computational units, providing performance portability. As the precompiler
is aware of the C++ constructs that represent skeletons, it can rewrite the
source code and generate backend-specific versions of the user functions.
Listing 3.1 shows an example application implemented on top of SkePU:
computation of the Pearson product-moment correlation coefficient.

27

10

15

20

25

30

35

40

45

50

55

3. SKEPU OVERVIEW

Listing 3.1: A SkePU program computing the Pearson product-moment cor-
relation coefficient of two vectors.

#include <iostream>
#include <cmath>
#include <skepu>

// Unary user function
float square(float a)
£

return a * a;

3

// Binary user function

float mult(float a, float b)

£
return a * b;

3

// User function template
template<typename T>

T plus(T a, T b)

£

return a + b;

3

// Function computing PPMCC
float ppmcc(skepu::Vector<float> &x, skepu::Vector<float> &y)
£
// Instance of Reduce skeleton
auto sum = skepu::Reduce(plus<float>);

// Instance of MapReduce skeleton
auto sumSquare = skepu::MapReduce(square, plus<float>);

// Instance with lambda syntax

auto dotProduct = skepu::MapReduce(

[] (float a, float b) § return a * b; 3%,
[] (float a, float b) § return a + b; 2
)i

size_t N = x.size();
float sumX = sum(x);
float sumY = sum(y);

return (N * dotProduct(x, y) - sumX * sumY)
/ sqrt((N * sumSquare(x) - pow(sumX, 2))
* (N * sumSquare(y) - pow(sumY, 2)));
3

int main()

£

const size_t size = 100;

// Vector operands
skepu::Vector<float> x(size), y(size);
x.randomize(1, 3);
y.randomize(2, 4);

28

60

65

3.1. Basic constructs

std::cout << "X: " << x << "\n";
std::cout << "Y: " <<y << "\n";

float res = ppmcc(x, y);

std::cout << "res: " << res << '"\n";

return 0;

For data abstraction, SkePU provides smart data-containers which man-
age coherency states automatically. Smart data-containers are available in
different shapes:

Vector, for one-dimensional data sets;
Matrix, suitable for two-dimensional data, e.g., images;

Tensor, for three-dimensional or four-dimensional data sets of fixed
size.

SkePU as of version 3 includes the following skeletons:

Map, data-parallel element-wise application of a function with arbi-
trary arity;

MapPairs, cartesian product-style computation, pairing up two one-
dimensional sets to generate a two-dimensional output;

MapOverlap, stencil operation in one or two dimensions with various
boundary handling schemes;

Reduce, generic reduction operation with a binary associative opera-
tor;

Scan, generalized prefix sum operation with a binary associative op-
erator;

MapReduce, efficient nesting of Map and Reduce;
MapPairsReduce, efficient fusion of MapPairs and Reduce;

Call, a generic multi-variant component for computations that may
not fit the other available skeleton patterns.

Figure 3.1 contains a visual analogy for the most central operation in
SkePU, which is the composition of skeleton instances from the patterns
provided by the framework together with the operators from the user, self-
contained code snippets which are the "user functions”. We illustrate this
using a puzzle sketch, where the user function is a small puzzle piece made

29

3. SKEPU OVERVIEW

Figure 3.1: Puzzle piece analogy used to illustrate how skeletons are user-
parametrizable.

to fit into the empty space of the provided pattern construct. To some ex-
tent this analogy works well to convey the fundamental idea, and the shape
of the puzzle piece (e.g., the prongs) can be formed to indicate that a cer-
tain interface is required from the user code, as seen in Figure 3.1 with the
MapReduce skeleton (requiring that the reduction function is binary and as-
sociative; more on this topic in Section 4.7). However, as will be made clear
further on throughout Chapter 4, the skeleton set of SkePU offers flexibil-
ity, and in particular, variadicity which allows for the skeleton constructs to
shape their interfaces to accommodate a wide variety of user function sig-
natures. Therefore, the puzzle-piece analogy can be seen as understating
the capabilities of the framework, but nonetheless functional in serving as
a first introduction.

Section 4.1 goes into much more depth on the particular modes and fea-
tures of each individual skeleton.

SkePU provides smart data-containers [47], data structures that reside in
main memory but can temporarily store subsets of their elements in ac-
celerator memories for access by skeleton backends executing on these de-
vices. Smart data-containers also perform software caching of the operand
elements to keep track of valid copies of their element data, resulting in
automatic optimization of communication and device memory allocation.
Smart data-containers are well suited for iterative computations, where the
performance gains can be significant. Smart data-containers are further de-
tailed in Chapter 5.

30

3.2. Backend architecture

Figure 3.2: Color legend for Figures 3.3 and 3.4.

(a) Backend cPU (b) Backend OpenMP

(c) Backend OpenCL and CUDA (d) Backend Hybrid

Figure 3.3: Node-level backends of SkePU.

3.2 Backend architecture

SkePU has seven different backends, implementing the skeletons for differ-
ent hardware configurations. These are as follows:

« Sequential CPU backend: Mainly used as a reference implementation
and baseline, the sequential "CPU” backend (Figure 3.3a) uses only one
thread, and thus only one logical CPU core.

« OpenMP backend: OpenMP targets multi-core CPUs, and will use
anything from one thread to as many as requested by the user (Fig-
ure 3.3b). In most cases, there is little reason to use more threads than

31

3. SKEPU OVERVIEW

32

(a) Backend StarPU-MPI

(b) Backend StarPU-MPI-CUDA

Figure 3.4: Cluster-level backends of SkePU.

3.2. Backend architecture

the target system has logical cores, and for certain classes of work-
loads, little if any performance increase is gained from going over the
number of physical cores. The OpenMP backend does not need to re-
serve a core for thread management; all threads are used for compu-
tation.

 CUDA backend: Targets Nvidia GPUs only, either single or multiple.
One CPU thread is used to schedule and manage the GPU computa-
tions. (Figure 3.3c).

* OpenCL backend: Targets single and multiple GPUs of any OpenCL
supported model (Figure 3.3¢), including other accelerators such as
Intel Xeon Phis. OpenCL can also target CPU cores, but SkePU does
not surface this capability. Like in the CUDA backend, one CPU thread
is used for management.

+ Hybrid backend: An intermediate control layer that splits up work on
two other backends simultaneously. Currently supports the OpenMP
backend in combination with either of the CUDA or OpenCL backends
(Figure 3.3d). See Chapter 8.

« StarPU-MPI: Cluster backend operating in an SPMD mode. This back-
end uses the StarPU runtime system for scheduling workload across
large-scale cluster systems, including supercomputers (Figure 3.4a).
This variant uses only CPU cores, and reserves one thread for man-
agement duties. See Chapter 9.

¢ StarPU-MPI-CUDA: A variant of the StarPU-MPI cluster backend
which instead offloads all computations to GPUs using CUDA (Fig-
ure 3.4b).

An additional cluster backend built on top of an alternate programming
model is presented in Chapter 9.

Backend selection is either automatic, guided by an auto-tuning system,
or manually configured by the application programmer. SkePU abstracts
everything related to backend code execution, such as OpenMP directives or
OpenCL kernel launching. However, certain configuration parameters are
optionally exposed! as part of the manual backend selection interface, such
as thread count. Smart data-containers provide the abstraction layer for
backends with separate or split memory spaces, with data movement han-
dles automatically by SkePU before and after backend delegation of skele-
ton computations, as discussed above and in greater detail later in the thesis
(Section 5.1).

This is in particular useful for debugging and performance measurements.

33

3. SKEPU OVERVIEW

3.3 History

SkePU (version 1) was introduced in 2010 [55] as a skeleton programming li-
brary for heterogeneous single-node but multi-accelerator systems, from
the beginning designed for portability to include single- and multi-GPU
backends for the C-based OpenCL and for CUDA (which then only partly
supported C++), and had thus been technically based on C++03 and on C pre-
processor macros as the interface to user functions.

SkePU 2, introduced in 2016 [62], was a major revision of the SkePU
[55] library, ushering in ideas from modern C++ to the skeleton program-
ming landscape. Rebuilding the interface from the ground up, the skeleton
set was updated to be variadic, leaving the old fixed-arity skeletons from
SkePU 1 behind. Variadic skeleton signatures was the first main motivator
of SkePU 2: flexible skeleton programming.

This rewrite also took the opportunity to integrate patched-on function-
ality in SkePU 1 into the core design of the programming model. One such
example is the absorption of SkePU 1 MapArray into the basic SkePU 2 Map.
MapArray was a dedicated skeleton in SkePU 1 created as a clone of Map with
the ability to accept an auxiliary, random-accessible array operand into the
user function, allowing deviations from the strictly functional map-style
patterns when demanded by the target application. This was one of the
first lessons from practical experience [142] that skeleton patterns are not
always perfectly suited to algorithms in real-world application code.

SkePU 2 also introduced the precompiler, lifting SkePU from its humble
origins as a pure template include-library into a full-fledged compiler frame-
work. This, together with the effort to push the C++ type system farther than
most, if not all, comparable frameworks enabled the second main motivator
of SkePU 2: type-safe skeleton programming.

Table 3.1 gives a synopsis of the different features of the three main
SkePU versions.

3.4 SkePU 2 design principles

SkePU was conceived and designed in 2010 with the goal of portability
across very diverse programming models and toolchains such as CUDA and
OpenMP; since then, there has been significant advancements in this field
in general and to C++ in particular. C++11 provides fundamental perfor-
mance improvements, e.g., by the addition of move semantics, constexpr
values, and standard library improvements. It introduces new high-level
constructs: range-for loops, lambda expressions, and type inference among
others. C++11 also expands its metaprogramming capabilities by introduc-
ing variadic template parameters and the aforementioned constexpr fea-
ture. Finally, the new language offers a standardized notation for attributes
used for language extension. The proposal for this feature explicitly dis-

34

3.4. SkePU 2 design principles

cussed parallelism as a possible use case [110], and it had been successfully
used in, for example, the REPARA project [43]. Even though C++11 was stan-
dardized in 2011, it was only in the time around the introduction of SkePU 2
that compiler support was getting widespread, see, e.g., Nvidia’s CUDA com-
piler.

For this project, we specifically targeted improvement of the following
limitations of SkePU 1:

« Type safety: Macros are not type-safe and SkePU 1 does not try to
work around this fact. In some cases, errors which semantically be-
long in the type system will not be detected until run-time. For exam-
ple, SkePU 1 does not match user function type signatures to skeletons
statically, see Listing 7.3. This lack of type safety is unexpected by C++
programmers.

« Flexibility: A SkePU 1 user can only define user functions whose sig-
nature matches one of the available macros. This resulted in a steady
increase of user function macros in the library: new ones have been
added ad-hoc as increasingly complex applications has been imple-
mented on top of SkePU. Some additions also required more funda-
mental modifications of the runtime system. For example, when a
larger number of auxiliary containers was needed in the context of
MapArray, an entirely new MultiVector container type [142] had to
be defined, with limited smart container features. Real-world appli-
cations need more of this kind of flexibility.

An inherent limitation of all skeleton systems is the restriction of
the programmer to express a computation with the given set of pre-
defined skeletons. Where these do not fit naturally, performance
will suffer. It should rather be possible for programmers to add
their own multi-backend components [49] that could be used together
with SkePU skeletons and containers in the same program and reuse
SkePU’s auto-tuning mechanism for backend selection?.

« Optimization opportunity: Using the C preprocessor for code trans-
formation drastically limited the possible specializations and opti-
mizations which can be performed on user functions, compared to,
e.g., template metaprogramming or a separate source-to-source com-
piler. A more sophisticated tool could, for example, choose between
separate specializations of user functions, each one optimized for a dif-
ferent target architecture. A simple example is a user function spe-
cialization of a vector sum operation for a system with support for
SIMD vector instructions.

The initial release of SkePU 2 presented the Call skeleton as a first step towards this
goal. Later, the addition of multi-variant user functions [61] (Chapter 12) provided further
contribution in this direction.

35

3. SKEPU OVERVIEW

Listing 3.2: Vector sum computation in SkePU 1.

BINARY_FUNC(add, float, a, b,
return a + bj;

)
skepu: :Vector<float> vi(N), v2(N), res(N);

skepu: :Map<add> vec_sum(new add);
vec_sum(vl, v2, res);

« Implementation verbosity: SkePU 1 skeletons were available in mul-
tiple different modes and configurations. To a large extent, the vari-
ants were implemented separately from each other with only small
code differences. Using the increased template and metaprogram-
ming functionality in C++11, a number of these could be combined into
a single implementation without loss of (run-time) performance.

SkePU 2 built on the mature runtime system of SkePU 1: highly opti-
mized skeleton algorithms for each supported backend target, smart data-
containers, multi-GPU support, etc. These were preserved and updated for
the C++11 standard. This is of particular value for the Map and MapReduce
skeletons, which in SkePU 1 were implemented thrice for unary, binary and
ternary variants; in SkePU 2 and later, a single variadic template variant
covers all N-ary type combinations. There are similar improvements to the
implementation wherever code clarity can be improved and verbosity re-
duced with no run-time performance cost.

The main changes in SkePU 2 were related to the programming interface
and code transformation. SkePU 1 used preprocessor macros to transform
user functions for parallel backends; SkePU 2 and 3 instead utilizes a source-
to-source translator (precompiler), a separate program based on libraries
from the open source Clang project®. Source code is passed through this tool
before normal compilation. This remains true for SkePU 3 and is discussed
in detail in Chapter 7.

Listings 3.2 and 3.3 contains a vector sum computation respectively in
SkePU 1 and SkePU 2 syntax, showing the interface changes across versions.
Listing 3.4 shows the equivalent code for SkePU 3 for completeness, but the
changes from SkePU 2 are trivial.

3.5 SkePU 3 design principles

The, as of the time of writing, all-new SkePU version 3 builds on top of the
redesign in SkePU 2 while largely retaining the existing syntax and fea-

3http://clang.llvm.org

36

10

10

3.5. SkePU 3 design principles

Listing 3.3: Vector sum computation in SkePU 2.

template<typename T>
T add(T a, T b)

£
return a + b;

3
skepu2::Vector<float> vi(N), v2(N), res(N);

auto vec_sum = skepu2::Map<2>(add<float>);
vec_sum(res, vi1, v2);

Listing 3.4: Vector sum computation in SkePU 3.

template<typename T>
T add(T a, T b)

£
return a + b;

3
skepu::Vector<float> vi(N), v2(N), res(N);

auto vec_sum = skepu::Map(add<float>);
vec_sum(res, v1, v2);

ture set. For SkePU 3 the design focus is on meeting the requirements of
real-world skeleton programming and the use of SkePU with HPC clusters,
larger-scale applications and build systems. This work was done in close
collaboration with partners from both the scientific community and the in-
dustry, as part of the EXA2PRO project.

The approach is holistic, with advancements being done in aspects rang-
ing from syntactical simplification of common constructs and idioms to a
re-evaluation of the memory coherency model of SkePU data-containers
and the introduction of all-new skeletons and other features.

Some particularly important focus areas are as follows:

« Skeleton set: MapPairs is introduced as a new skeleton, a general-
ization of the map pattern for cartesian combinations of container el-
ements; as well as MapPairsReduce, a sibling to MapPairs with ef-
ficient partial reduction of results. Other skeletons were revised and
updated with new features, including a new syntax and update modes
for MapOverlap.

« Smart data-containers: The container set is amended by the addition
of tensors, supporting higher-dimensional access patterns, and new
container proxies (MatRow, MatCol) allowing e.g. for more scalable
data movement on clusters.

37

3. SKEPU OVERVIEW

« Memory coherency model: The coherency model of out-of-skeleton

container access is clearly defined, to help increase predicability and
performance.

Syntactical improvements: Programmability and readability of
SkePU-ized code is improved in response to feedback and experiences
from users, including developers of large-scale scientific applications.

Transparent execution on HPC clusters: The single-source, wide
portability approach of SkePU programs is extended to cover compu-
tation over multiple nodes in HPC clusters without any cluster-specific
programming constructs in the source code, thus fully abstracting
away the underlying distributed platform.

Reduction of boilerplate code: The addition of a standard library is
aimed towards eliminating the need to define common user functions,
such as simple arithmetic operators. Other parts of the library pro-
vide abstractions for common functionality required in SkePU appli-
cations, for example complex numbers, linear algebra primitives, and
random number generation.

Refinement work of SkePU 3 continues as of writing, and more features

and enhancements will be added.

38

3.5. SkePU 3 design principles

*23° ‘sanIun
‘Sy1d ‘staqunu xa[dwiod ‘ONYd

V/N

V/N

KIeaqi] pIepuels

Koua3sisuod [erjuanbas AJjeuony
-do ‘(3negep) AoualsISUOD YeaM

£oua3sisuod [erjuanbag

Kouagsisuod [eryuanbag

[opow AIOWSN

(dWuado)
orweuA(q ‘O13ess oness o13e3s 3urnpayds
“ ‘IdN-NdIeIS ‘NdD (Touado ‘vano) Ndo (Touado ‘vand) ndo payroddns
/Ndd pHgAY ‘ndo ‘Ndd ‘(duado “++2) NdD ‘(dnuado “0) ndd suLIojIe[d
<>UO0TS8Y ‘<>T0J1eN ‘<>MO¥1ep
‘<>pJ0osua] ‘<>gdosua]
‘<>XTJ1ep ‘<>J0323A <>XTJ1ep ‘<>J0303A\ <>XTJIep ‘<>J0303A\ SIoUTEIUO)
orpeLIeA pue ajes-odA L dIperiea pue ajes-odA L Kj11e paxij ‘ojes-adA) JON || 90€JIa3UI UOJI[SYS
sadng snyd sjonuajs Jasn SJONIIS J9SN V/N|| sod43 punodwo)
SUOI}oUN] JISN JUBLIBA-[} NI
snjd ‘suorouny ++) PajoLIISAY SUOIJOUNJ ++) PAIOLIISY sodoew Jossaooadaad H|| se suorgouny Jasn
aonpaysJTeddep 931eJauag
‘suteddep ‘TTeD ‘deTdanpdej 1TeD ‘deTuanpdely | ‘deTuanpdel ‘Reduydep

‘aonpaydep ‘ueas ‘aanpay ‘de|‘@anpaydep ‘Ueds ‘@anpay ‘del | ‘@anpaydely ‘Ueds ‘@aanpay ‘dep SU033[S
(xxow ‘Buepd) Jaidurodaud (3uep) soqidwodaag Jossaooadaad o J10JeJaUa3 9p0o)
‘TT++D ‘TT++D ‘(110z-24d) ++2 D uo paseq [dV

[65] (0202) € NdS]

[29] (9102) Z NdAS]

[s5] (0102) T ndS]|

|

saInjeay NdAS JO MAIAISAQ :T°E d[qeL

39

n Skeleton set

The application programming interface, API, of the SkePU framework is
one of its most central aspects. In high-level parallel and heterogeneous
programming, the interface is what determines whether the goal of being
"high-level” is met. Being high-level is not an absolute metric; it is a mov-
ing target as the field of computer science and engineering progresses. The
C programming language was originally seen as quite high-level, and there
are still people working as programmers in assembly language who might
hold that view. In contemporary high-level parallel programming libraries
and frameworks, however, C or Fortran are generally avoided. SkePU makes
extensive use of C++ syntactical features such as classes, templates, and
lambda expressions. Raw pointers and arrays are absent from the interface
as well.

While syntactical aspects are important, the true strength of a high-
level programming interface lies in the available constructs. In the skele-
ton programming paradigm these manifest naturally as the skeleton pat-
terns themselves, and the skeleton set is often considered one of the most
fundamental defining aspects of a particular skeleton programming im-
plementation. In this chapter, the skeleton set of SkePU is explored in
detail in Section 4.1, with a special emphasis on the most fundamental
data parallel skeleton Map. This skeleton is a natural starting point to in-
troduce characteristic SkePU features such as auxiliary data set access in
Section 4.2.1, flexible variadic signatures in Section 4.2.2, tuple returns in
Section 4.2.3, and index-dependent computations in Section 4.2.4. Con-

41

4, SKELETON SET

tinuing the skeleton set exposé, MapPairs is presented in Section 4.3 and
MapOverlap in Section 4.4; both being specialized variants of the map pat-
tern. Section 4.5 details the Reduce skeleton, the similar Scan is featured
in Section 4.6. This is followed by the fused skeletons MapReduce in Sec-
tion 4.7 and MapPairsReduce in Section 4.8. Finally Call in is covered in
Section 4.9.

While the skeleton patterns are provided by the framework, they need
user code to be instantiated and used in applications. Because of backend
compatibility requirements, not any C++ code can be used in this way. The
chapter therefore continues by covering the different ways a SkePU pro-
grammer can adapt the skeletons for their purposes: user functions in Sec-
tion 4.10, user types in Section 4.11, and user constants in Section 4.12. The
recent addition of strided element access is discussed in Section 4.13.

This thesis aims to give insight into the design and implementation be-
hind the SkePU framework; the content in this chapter is not intended as
a specification on SkePU, nor as an introductory guide to SkePU program-
ming. Such documentation can be found on the SkePU web page.!

4.1 Skeleton set

SkePU provides a number of skeletons which represent different data-
parallel patterns, as mentioned in Chapter 3. The skeletons can be loosely or-
dered into three groups: the map-based Map, MapPairs, and MapOverlap,
being element-wise transformations of data; Reduce and Scan, two forms
of data accumulation patterns with internal dependency structures; and ex-
plicit fusions of a map-based skeleton in sequence with some form of reduc-
tion in MapReduce and MapPairsReduce. Call is a pseudo-skeleton and
does not fit into any grouping. Table 4.1 summarizes skeleton attributes
and features to show similarities and differences between them.

Thttps://skepu.github.io

42

4.1. Skeleton set

"parjddns s1 Xepur JuaIInd a3 SUTPUNOLINS SJUIUIA[D JO U0l

*kk
*%

*

$930Uj00]

Axoad [oD3eIN/MOYIEIN
Axoad uor3ay
saojowreed wrrojrun
saojourered Axoad [n3
saojowrered asiM[3
wInjaI-pmN

paxapur

N0 UOISUSWIP ISIM[T

Ul UOISUSUIIP 3SIM[T

sonpaysaregde

sonpayden

ueds aonpay | defreapdeiy saregden denw

uo3ja[NS \ d2anjeay

XLJjell aJnjeaJ Uoje[a3S Ty 9[qeL

43

10

4, SKELETON SET

a b MatRow<T> mr Mat<T>m
i
Output Element-wise Random-access-row Random-access
inputs inputs inputs

Figure 4.1: Illustrative diagram of the operand access scopes in the Map
skeleton.

4.2 Map skeleton

Map is a term widely used in programming interfaces, sequential as well as
parallel, as a name for a construct that transforms a set of values to another
set of values in accordance with some transformation (mapping) function
f. This function is typically a pure function, deterministic and without side
effects, which aids the compiler or interpreter in automatic program trans-
lation and optimization. In a statically typed language like C++, the types
of the domain and image are fixed but typically they can be different from
each other.

SkePU borrows the map label for its Map skeleton. While Map is and does
everything in the preceding paragraph, its versatility and importance in
SkePU greatly exceeds that of typical map constructs. Map is the fundamental
building block of the SkePU programming interface: it is the default building
block for encoding data parallel computations unless a particularly specific
pattern is needed, and in those cases, the vast majority of skeleton patterns

Listing 4.1: Example usage of the Map skeleton.

float add(float a, float b)
£

return a + b;

3

Vector<float> vector_sum(skepu::Vector<float> &vl, skepu::Vector<float> &v2)

£
auto vsum = skepu::Map(add);
skepu::Vector<float> result(vl.size());
return vsum(result, vi1, v2);

3

44

4.2, Map skeleton

in SkePU are directly based upon the foundations of Map. Indeed, the names
tell the story: MapReduce, MapPairs, MapPairsReduce, and MapOverlap
are all either specialized variations of Map or fusions with another pattern.
The important role played by Map means that understanding the syntax, ca-
pabilities, and limitations of this skeleton is of utmost importance for any-
one interested in using or otherwise learning SkePU.

4.2.1 Freely accessible containers inside user functions

Map patterns often only concern themselves with providing a single ele-
ment from the input data set as argument to the mapping operator. To per-
form a computation with a non-trivial dependency pattern, the operators
can be defined as lexical closures which capture the enclosing scope, allowing
the use of any free variables inside the operator.

The multi-backend nature of SkePU makes such constructions imprac-
tical from an implementation standpoint.? The backend environments can
have different programming models and the memory spaces are typically
separate from the C++ domain perceived by the SkePU user. SkePU therefore
require that any auxiliary data structures—limited to smart data-containers
and scalar values—are declared as bound variables in the user function sig-
nature. There are particular rules for how these objects are declared and
passed, discussed in Section 4.2.2.

SkePU smart data-containers are C++ objects of intricate class templates,
and cannot be made available in a backend execution context. Therefore,
smart data-containers as bound variables in user functions are encoded as
proxy containers, further covered in Section 5.2. Listing 4.2 illustrates the
use of auxiliary smart data-containers in the matrix-vector multiplication
skeleton instance mvmult® and Figure 5.5 illustrates how using proxies bring
entire container data sets into the user function. This is a Map instance with
no element-wise inputs, which is a surprisingly powerful construct enabled
by the SkePU design principles presented in Section 4.2.2.

4.2.2 Variadic type signatures

The central aspect of Map which gives it this flexibility and power is the vari-
adic interface. Along with type-safety, flexibility was the main contribution
of the original SkePU 2 paper [62] and master thesis [58], and prompted the

2SkePU user functions may be defined as lambda expressions, which can act as lexical clo-
sures in C++, but SkePU treats them strictly as "syntactic sugar”. See Section 4.10.1 for further
discussion.

3Note that this is not the preferred way to encode matrix-vector multiplication since
SkePU 3, with the introduction of the MatRow proxy container. A better way is shown in List-
ing 5.2.

45

10

4, SKELETON SET

Listing 4.2: Matrix-vector multiply in the SkePU 2 style, without MatRow.

template<typename T>
T mvmult_f(skepu::Index1D row, const skepu::Mat<T> m, const skepu::Vec<T> v)
£
T res = 0;
for (size_t j = 0; j < v.size; ++3j)
res += m(row.i, j) * v(3);
return res;

3

skepu::Vector<float> y(height), x(width);
skepu: :Matrix<float> A(height, width);
auto mvmult = skepu::Map(mvmult_f);
mvmult(y, A, X);

complete API redesign from SkePU 1.* The underlying C++11 features which
enable this generational leap® are designed to be used by framework engi-
neers, and the significant complexity of implementation is elegantly hidden
beneath the framework boundaries. For the SkePU user, it means that us-
ing the map construct is very easy for trivial computations but enables great
adaptivity for more involved situations.

A Map skeleton instance and the corresponding user function are four-
way variadic. Arguments of a call to the instance are effectively grouped
into four sets:

« output arguments (see Section 4.2.3),
« element-wise input arguments,
« random-access input arguments, and

« uniform input arguments.

The size (henceforth arity) of each group is flexible and up to the user to
choose based on the use-case at hand. The only restriction is that there has
to be at least one output argument.® All Map-like skeletons in SkePU use the
output container to determine the degree of parallelism: each element corre-
sponds to an invocation of the user function and is an independent task that
could be mapped and scheduled for execution as a unit. It does not matter
how each group is ordered internally, but the relative order of each group
must be taken: outputs come first, followed by element-wise containers (if

“The original impetus for this change was that the SkePU 1 model of having separate skele-
tons for unary, binary, and ternary Map is not ideal neither from a user nor maintainer per-
spective in a high-level parallel programming framework.

SMainly variadic templates and advances in template meta-programming: the same tech-
niques behind the implementation of, e.g., std: : tuple from the C++ standard library.

6Call is much like a Map with no return value or element-wise arguments.

46

4.2, Map skeleton

any), followed by random-access containers (if any), and finally uniform
scalars (if any).

Element-wise ("elwise”) parameters in a user function are scalar values
(or user types, see Section 4.11), with the corresponding arguments in a
skeleton invocation being SkePU containers. Each element of the container
is uniquely mapped to the parameter of a single user function invocation,
in a data-parallel fashion. Random access parameters and arguments are
both containers (but expressed slightly differently, as explained later) and
all elements are accessible from within a single user function invocation.

In user function definitions, the function signature encodes the outputs
as the return type of the function and the rest of the arguments come within
the parentheses. Extra care has to be observed when crafting a user func-
tion, since SkePU uses the function signature when determining the type
information for a skeleton instance. Because random-access container ar-
guments are represented as container proxy types (see Sections 4.2.1 and 5.2)
in the user function signature, the four groupings have natural separations
in the type system. SkePU uses template meta-programming and the pre-
compiler to analyze the types in the function header and construct the in-
ternal groupings. Figure 5.5 contains an illustration of how the parameter
groups bring data from the arguments into the user function in different
ways.

Astute readers may notice that the random-access container group is
allowed to be empty, in which case the distinction between where the
element-wise arguments end and the uniform scalars begin is unavailable.
A Map instance definition can optionally contain an explicit template argu-
ment, as in auto instance = skepu::Map<N>(...); where N denotes
the element-wise arity, and if not present in the construct, SkePU will make
a best-guess deduction based on the parameter list (the formal arguments)
of the user function. Skeleton instances are fully statically typed, so if the
deduced arity differs from the actual arguments at the skeleton invocation
site, a compile-time error occurs.’

4.2.3 Multi-valued return

SkePU 3 introduced tuple-like return functionality for cases where a single
skeleton instance requires multiple (element-wise) output containers. This
way, multiple return values can be computed by the same user function,
operating on the inputs in one sweep, potentially improving data locality
compared to two separate skeleton invocations after each other. Although
the values are returned in a tuple-like manner, the output containers are

"The pre-compiler has access to the entire AST and can in principle look at both skeleton
instantiation and skeleton invocations for arity deduction; however, SkePU is designed and im-
plemented (Chapter 7) such that programs are semantically sound C++ programs also without
the pre-compiler.

47

4, SKELETON SET

skel(resA, resB, inputs...); skel(res, inputs...);

esal [[T T[T 1]
e8| [[T T 111
Figure 4.2: Difference in return value storage between using multi-valued

return (left) and single-value (by manually managed array-of-struct) return
(right).

A3 I I U U N N .

Listing 4.3: User function with multi-valued return.

skepu::multiple<int, float>
multi_f(int a, int b, skepu::Vec<float> c, int d)

£
return skepu::ret(a * b, (float)a / b);
3

Listing 4.4: Using multi-valued return with Map in SkePU 3.

skepu::Vector<int> vi(size), v2(size), ril(size), r2(size);
skepu::Vector<float> e(1);

auto multi = skepu::Map<2>(multi_f);

multi(rl, r2, vi, v2, e, 10);

completely separate objects (see Figure 4.2). This distinguishes this new
feature from the use of custom structs ("user types”, see Section 4.11) as
return values, as those are stored in array-of-records format.

To use this feature, we specify the return type in the user function signa-
ture as skepu: :multiple<T, [U, ...]>,i.e., analogous tostd: :tuple.
Then, at the site of the return statement, we construct this compound ob-
ject by skepu::ret(expr, [expr, ...]1).

Listing 4.3 shows an example of a user function utilizing multi-valued
return.

The skeleton instance declaration and invocation follows the syntax of
ordinary Map, but instead of supplying one output container as the first ar-
gument, specify several of the correct types and order, as in Listing 4.4.

Multi-valued return statements are available in the skeletons which fol-
low the typical map pattern: Map, MapPairs, and MapOverlap.

4.2.4 Index-dependent computations

Another feature of Map is the option to access the index for the currently
processed container element to the user function. This is handled automat-
ically, deduced from the user function signature. An index parameter’s type

48

4.3, MapPairs skeleton

Listing 4.5: Index types corresponding to each smart container.

struct Index1D { size_t i; 3;

struct Index2D § size_t row, col; %; // note!
struct Index3D § size_t i, j, k; 3;

struct Index4D § size_t i, j, k, 1; %;

Hsize (dynamic)

22| [T | I [T 11
3 2
Varity (static) I I I I I I I I I
—_—— .
J
5 -
IS
g i
)
N —
= -
) Ians Output

Figure 4.3: llustrative diagram of the MapPairs skeleton.

is one out of four types: IndexND where N is the dimensionality of the in-
dex, as shown in the type declarations in Listing 4.5. This feature replaces
the dedicated Generate skeleton of SkePU 1, allowing for a commonly seen
pattern—calling Generate to generate a vector of consecutive indices and
then pass this vector to MapArray—to be implemented in one single Map
call.

The Mandelbrot fractal generation in Listing 4.17 is a typical example of
a computation where the user function is reliant on the current index into
the resulting Matrix container.

4.3 MapPairs skeleton

SkePU 3 added an additional top-level skeleton, MapPairs. This skeleton
represents a Cartesian product-style pattern, operating on two distinct sets
of element-wise container inputs. Each vector set may contain an arbitrary
number of vector containers, similar to the variadicity of Map. All of the
vectors in a set are expected to be of the same size. The arities in both di-

49

10

4, SKELETON SET

Listing 4.6: Example usage of the MapPairs skeleton.

int mul(int a, int b) § return a * b 3

void cartesian(size_t Vsize, size_t Hsize)

£

auto pairs = skepu::MapPairs(mul);

skepu::Vector<int> v1(Vsize, 3), hil(Hsize, 7);
skepu: :Matrix<int> res(Vsize, Hsize);
pairs(res, vi, hl);

rections are always present in the skeleton construction as explicit template
arguments.

Each Cartesian combination of vector set indices generates one user
function invocation, the result of which is an element in a Matrix. As in
Map, there is an optional Index2D parameter in the user function signature
to access this index.

Advanced and more flexible use of MapPairs can be carried out simi-
larly to other SkePU skeletons. For instance, it retains flexibility of Map with
regards to variadicity (5-way variadic, compared to Map being four-way):

« Resulting outputs (see Section 4.2.3),

* Element-wise-V ("vertical”, column-aligned) input arguments,
+ Element-wise-H ("horizontal”, row-aligned) input arguments,
« Random-access input arguments,

« Uniform input arguments.

A MapPairs instance of higher arity looks like
auto pairs = skepu::MapPairs<3, 2>(...);.

This instance would accept three vertical and two horizontal input vec-
tors.

4.4 MapOverlap skeleton

MapOverlap represents a computational pattern with as many names as
there are application domains. It is known as a convolution in signal pro-
cessing, stencil filter in image processing, window function in statistics, and
so on. The SkePU name of MapOverlap indicates that it is another variant
of the archetypal map pattern, which would typically indicate that there
is a degree of parallelism equal to the number of elements in the result

50

4.4. MapOverlap skeleton

Region<T>r Mat<T> m
[—
Output Region input Random-access
inputs

Figure 4.4: Illustrative diagram of the MapOverlap skeleton.

container. This is almost true, but not quite: the number of user function
invocations—and therefore schedulable tasks—follows this metric, but the
“overlap” part of the name reveals that these tasks are not independent. In
aMapOverlap user function, not only is a single element-wise mapped el-
ement from an input container accessible, so is also a region of surrounding
elements. The individual regions overlap each other, and therefore gives rise
to read-after-write dependencies between user function invocations and in
general creates a more complex dependency structure between input and
output container elements.

In SkePU, the surrounding region is always a hyper-rectangle, i.e., a reg-
ular multi-dimensional box (in up to four dimensions). The side length of
the hyper-rectangle can vary in each dimension, and is defined by a over-
lap radius, which is the number of included elements away from the center
element. Therefore, the total amount of elements included in the overlap
regionis [T7 (1+20;), where o; is the overlap radius for dimension i and D is
the number of dimensions of the MapOverlap instance as determined from
its user function.

A MapOverlap example showing a two-dimensional convolution is
shown in Listing 4.7.

MapOverlap skeleton instances in SkePU can be of several different di-
mensionality types:

« 1D MapOverlap applied on

- Vector containers or

- Matrix containers with either row-wise or column-wise overlap.
« 2D MapOverlap applied on Matrix containers.

+ 3D MapOverlap applied on Tensor3 containers.

51

10

15

4, SKELETON SET

Listing 4.7: Example usage of the MapOverlap skeleton.

float conv(skepu::RegionlD<float> r, const skepu::Vec<float> stencil)

float res = 0;

for (int 1 = -r.0i; 1 <= r.oi; ++i)
res += r(i) * stencil(i + r.oi);

return res;

3

skepu: :Vector<float> convolution(skepu::Vector<float> &v)
£
auto convol = skepu::MapOverlap(conv);
Vector<float> stencil {1, 2, 4, 2, 13;
Vector<float> result(v.size());
convol.setOverlap(2);
return convol(result, v, stencil);

« 4D MapOverlap applied on Tensor4 containers.

Dimensionality of a MapOverlap instance is determined by the NV in the
RegionND<T> type used for the element-wise argument in the user func-
tion. These are compiler-known types and dictates what variant of the
skeleton to use for code generation. Note that the dimensionality of the
MapOverlap pattern encoded in the skeleton instance does not necessarily
match the dimension of the smart data-containers the instance is applied
on. In principle, there could be a MapOverlap variant for any overlap di-
mension smaller than or equal to the dimension of the element-wise con-
tainer input. However, for practical reasons, only the combinations listed
above are implemented in SkePU.

Experiences from SkePU users, and in particular the application of
SkePU in teaching, has showed that the syntax for MapOverlap user func-
tions is one of the more challenging aspects of SkePU. In SkePU 2, the user
function acting as a stencil operator was specified with a combination of an
explicit pointer parameter and overlap size parameters, and required the
user to understand explicit stride addressing of overlap regions.

For SkePU 3 the MapOverlap syntax is completely redesigned and sim-
plified. A container proxy, RegionND, encapsulates the aforementioned pa-
rameters, plugging the leaks in the abstraction. Further discussion on this
proxy type can be found in Section 5.2.3.

The contemporary syntax for a stencil computation using MapOverlap
can be seen in Listing 4.7.

4.4.1 Edge handling modes

When MapOverlap user functions are evaluated near the edges of the in-
put container, the overlapping region may reach outside the bounds of

52

4.4. MapOverlap skeleton

Output Input

Figure 4.5: Expected input and output container sizes when edge element
synthesis disabled, here in 2D MapOverlap.

Region<T>
r i 1
pad0) [x <[A] 5 | o el *
Duplicate | A i A [A [B [D B H I J 9

CyclicABCD FI6 [H I J ENE:E

Figure 4.6: Edge handling modes of 1D MapOverlap.

the input. The expected behavior of out-of-bounds overlap regions are
application-dependent, but to avoid invalid memory accesses, the imple-
menting framework must do something to handle these scenarios. SkePU
approaches this problem in several ways. There are a total of four options
for edge handling, three of which are proper edge-handling modes:

+ no edge handling (default for 2D, 3D, and 4D MapOverlap),
« fixed padding with a user-set value,

+ duplicate padding of the value closest to the edge (default for 1D
MapOverlap), or

« cyclic (toroidal) padding.

If the "no edge handling” option is specified, SkePU requires that the
size of the input container is larger than the size of the output container,
to ensure that all user function evaluations correspond to a well-defined
overlap region. Figure 4.5 illustrates this restriction: the overlap radius in
this example is 2 in the x-axis and 1 in the y-axis, and the output® container

8Recall that SkePU always parallelizes skeletons on the output container range.

53

4, SKELETON SET

size is 6 x 6 elements. The input container is therefore expected to be of
size 6+ 2 x 2 = 10 in the horizontal dimension and 6 + 2 x 1 = 8 in the vertical
dimension.

In all other modes, the output container will be of equal size to the input
container, and in cases where the overlap region intersects the container
boundaries, SkePU synthesizes virtual elements for out-of-bounds accesses.
The properties of each mode is visualized in Figure 4.6.

Synthesis of out-of-bounds elements adds some run-time overhead, but
auxiliary memory usage is kept low: proportional to the overlap region size,
not to the input data size. Depending on various aspects of the skeleton
instance at hand (especially container type), elements in the region may be
either pre-allocated or synthesized lazily upon access.

4.4.2 Update modes

For certain use cases of the MapOverlap skeleton, specifically iterative
workloads with convergency objectives, the way SkePU implements and
parallelizes the stencil computation is overly restrictive. SkePU assumes
that container operands are either only read from or written to; as a con-
sequence, the implementation can be optimized to minimize the number
of copy operations and synchronizations. MapOverlap therefore must be
operating on two distinct data sets: one input array and one output array
(Figure 4.7).

In the application domain of iterative equation solvers, two update
schemas are well-known: Jacobi, which uses only old values in the update
step, and Gauss-Seidel, which partially uses new values as well. From the
above paragraph, it should be clear that only the Jacobi schema can nor-
mally be implemented with MapOverlap. Gauss-Seidel operates in wave-
fronts, which allows the computation to be carried out on just a single copy
of the data set: input and output arrays are the same. The drawback of this
approach is a greatly reduced degree of parallelism (for an N x N matrix
calculation, Jacobi is O(N?) parallel operations and Gauss-Seidel enables
only O(N).) If successive Gauss-Seidel sweeps are pipelined, however, the
steady state forms a bipartition of the container elements. Half the ele-
ments, those with even index parity, are updated in one iteration; the other
half, with odd index parity, are updated in the next. This multi-dimensional
checkerboard is referred to as either odd-even or red-black update ordering
(Figure 4.8) and has recently been implemented in SkePU’s MapOverlap.

There are different tradeoffs for red-black update mode compared to the
default mode. Iterative applications, as shown in Figure 4.9 can reduce the
memory footprint by half, and the computation may benefit from the im-
proved convergence rate of the Gauss-Seidel schema. On the other hand,
synchronization overhead per average element update is doubled, and the
degree of parallelism is reduced to only half of standard MapOverlap.

54

4.5. Reduce skeleton

4__
AR
AR
AR
-
AR

P
TrrCrTe ey TeT
— JRLECERAEARARA
- B
e A A e AR AEA]
JACM KM A A R A

Figure 4.7: MapOverlap normally requires distinct data sets for input and
output operands.

l l l l l l
v V. V. v v. v
——>?<—— i ——»f—— i ——>T<—— i l ——>T<—— l ——»f—— l ——»f——
A AP e r e e e
Ap o oinn B RN RS ERARNK:
——>T<—— i ——>T<—— i ——>T<—— i l ——>T<—— l ——»f—— l ——»f——
AP PP e e e e
ARErREE B S RN ERARNK:
——>T<—— i ——>T<—— i ——>T<—— i i ——»f—— i ——»f—— i ——»f——
Pl Pl Pl e e e
$ +) t t T
(a) Red step (b) Black step

Figure 4.8: Red-black update mode phases.

4.5 Reduce skeleton

Reduce is another well-known pattern in functional programming inter-
faces. Also known as a fold, the main differentiator from the transformation
of map is that reduce will turn a collection of values into a single value by
the means of a binary reduction operator (here denoted by @). Conceptu-
ally, this is performed by reducing or folding the value set linearly from the
right or left, while carrying a partial result through the chain. This model is
typically relaxed by enforcing additional restrictions on the reduction op-
erator, by requiring it to be associative and also commutative. Associativity of
an operator permits an expression to be rearranged with regards to prece-
dence, i.e., order of application of said operator. For instance, the expres-
sion (a ® b ® ¢ ® d) can be interpreted as either (((a @ b) @ ¢) @ d), a left
fold; or ((a ® b) ® (c ® d)), a tree reduction. Which interpretation is the
most efficient way to implement the reduction depends on the context: a
left fold has excellent spatial locality in its memory access pattern, and is
thus highly suitable for efficient sequential processing; while a tree reduc-

55

4, SKELETON SET

SYNC SYNC

(a) Normal update mode

SYNC SYNC SYNC SYNC
.
RN R R RARRA R
¥ £ N ¥ 3 ¥
B KA Lyl -+ [Lr] Ly Ty]
0 ¥ ¥ 0 0 ¥

~—— LA LL R Eagp 2t

4} *:* *}] »} *} *}
: »:* »:*, bt it Pt

,*:* ,i* *:‘] ,»?* *} »}

(b) Red-black update mode

Figure 4.9: Two full iterations of MapOverlap in different update modes.

tion enables concurrent execution of operators near the leaf nodes of the
tree and is therefore suitable for highly parallel scenarios. Commutativity
says that the order of the operands themselves can be interchanged: (a ®b)
is equivalent to (b @ a). SkePU can take full advantage of these properties
thanks to its multi-backend design, where the same computation will be
carried out in different ways depending on the selected backend and other
aspects.

Due to the aforementioned restrictions on properties of reduction op-
erators (or rather user functions, in skeleton parlance), the typing limita-
tions on them are quite strict, as the result and both parameters must be
of the same single type. This limits what type of reduction computations
can be encoded in the Reduce skeleton in isolation. It is therefore a com-
mon pattern to pre-process a data set before the reduction stage, preferably
done by a variant of Map. In fact, this sequence of Map immediately preced-
ing a Reduce is so common that this pattern is available in the separate,
fused skeletons MapReduce and MapPairsReduce. Further discussion on
this topic can be found in Section 4.7.

4.5.1 One-dimensional reductions

The basic reduction in SkePU is a linear, one-dimensional reduction over a
data set, represented by a smart container. A Vector is therefore a natural
fit for most reductions, but a Reduce skeleton instance will accept smart

56

10

4.5. Reduce skeleton

=TI ITTTTTTT]

Output Input

Figure 4.10: Illustrative diagram of the Reduce skeleton in 1D mode.

Listing 4.8: Example usage of the Reduce skeleton for linear reductions.

float min_f(float a, float b)

£
return (a < b) ? a : b;

3

float min_element(skepu::Vector<float> &v)

£
auto min_calc = skepu::Reduce(min_f);
return min_calc(v);

3

container arguments of any dimensionality and treat them as linear sets of
values.’

One common application of reduction can be seen in Listing 4.8, where
the computation finds the minimum element in a vector. The syntax is
straightforward, but the programmer has to be careful about another as-
pect of the Reduce skeleton: each instance carries with it a starting value for
reductions, which by default is zero-initialized. It can be set on the instance
by supplying the start value in a member function call. In this case the com-
putation is done on float elements, so the start value would likely be set to
positive infinity, lest the computation would evaluate to 0 if the input data
consists of strictly positive values.

4.5.2 Two-dimensional reductions

SkePU also provides two special reduction modes operating on two-
dimensional data, i.e., Matrix. The first is a reduction in one dimension,
along either all rows or all columns. In this scenario the result is passed in
a Vector output argument, distinguishing this mode from a purely linear
reduction of all elements in the matrix.

The second matrix reduction mode instead accepts two user functions
at the skeleton instance definition: both satisfying the requirements for re-
duction operators. The first is being used for reduction in one dimension,
just like in the previous paragraph, and the second then reduces the partial
results from the first phase, with a scalar result remaining.

The linear interpretation follows the memory layout order presented in Section 5.1, but
the commutativity constraint implies that the reduction semantics allows any element order.

57

4, SKELETON SET

M MM MIMIM
Intermediate

Input b3

[

Output

Figure 4.11: Illustrative diagram of the access pattern in two-dimensional
Reduce.

Listing 4.9: Example usage of the Reduce skeleton for 2D reductions.

1 | float plus_f(float a, float b)

£
return a + b;

3

float max_f(float a, float b)
£
return (a > b) ? a : b;
3
10
float min_element(skepu::Matrix<float> &v)
£
auto max_sum = skepu::Reduce(plus_f, max_f);
sum.setReduceMode (skepu: :ReduceMode: :RowWise) ;
15 return max_sum(v);

3

The initial reduction can be either row-wise or column-wise. A setting
on the skeleton instance object controls which dimension comes first.

4.6 Scan skeleton

Prefix sums are fundamental building blocks in many parallel algorithms
[91]. The generalized pattern is applicable to a wide variety of problems far
beyond the pure functional data processing in SkePU, such as pointer ma-
nipulation in list ranking algorithms. That said, the generalized prefix sums
pattern, like reductions, can be realized in many different ways, each with
their strengths and weaknesses, suitable for different execution targets. So
their relevancy also applies to skeleton programming interfaces, and SkePU
provides a generalized prefix sum pattern with the Scan skeleton. The se-

58

4,7. MapReduce skeleton

Partial
Partial >

Wi T T T T T T

Partial >
—_ Input
Partial =

Partial

Output

Figure 4.12: Illustrative diagram of the Scan skeleton.

Listing 4.10: Example usage of the Scan skeleton.

float max_f(float a, float b)
£
return (a > b) ? a : b;

3

skepu::Vector<float> partial_max(skepu::Vector<float> &v)
£

auto premax = skepu::Scan(max_f);

skepu::Vector<float> result(v.size());

return premax(result, v);

3

mantics are similar to reduce, with scan producing the equivalent result of
computing a reduction on all subsequences of the data set, starting with the
first element. These partial sums (or the generalized operator) are returned
in a linearized container. Whether the element of index i is included in the
prefix sum result at index i in the result container or not is controlled by
a parameter on the Scan skeleton instance. These variants are known as
inclusive and exclusive prefix sums in the literature.

There is no "MapScan” in SkePU to mirror MapReduce, but chaining sep-
arate Map* and Scan skeleton invocations still utilizes the memory man-
agement and data movement optimizations built-in to the smart data-
containers (see Section 5.1).

4.7 MapReduce skeleton

MapReduce is also the solution to the problem presented in Section 4.5
about the requirement of Reduce to only accept associative reduction op-
erators. As an example, consider a reduction with the goal to find both the
maximum value and the minimum value in a data set. This can be done in a
straightforward way with two Reduce instances, but for the sake of discus-

59

10

15

4, SKELETON SET

a b MatRow<T> mr Mat<T>m
2
= :
e i
9]
E
[J]
E
> Element-wise Random-access-row Random-access
D inputs inputs inputs
Output

Figure 4.13: Illustrative diagram of the MapReduce skeleton.

Listing 4.11: Example usage of the MapReduce skeleton.

float add(float a, float b)

£
return a + b;

3

float mult(float a, float b)

£
return a * b;

3

float dot_product(skepu::Vector<float> &vl, skepu::Vector<float> &v2)

auto dotprod = skepu::MapReduce(mult, add);
return dotprod(vl, v2);
3

sion we want to do with only one skeleton instance.'® This operator would
be non-associative, since it takes scalar values as input and somehow re-
turns a tuple of both a maximum and a minimum partial result. If SkePU
allowed non-associative reduction operators, we could encode this as a left
fold, with the left hand side operand being the running result and the right
hand side being the next value from the data set.

Working within the constraints of SkePU, the solution is given in List-
ing 4.12. MapReduce is used to preprocess the initial data set into the
MaxMin custom data type encoding the reduction results, which allows the
reduction part (max_min_f) to only work on values of this type. There is no

191t might help performance to only do one pass through the data set due to cache effects,
so the example is not as arbitrary as it may seem.

60

10

15

20

25

30

4.8. MapPairsReduce skeleton

Listing 4.12: Using MapReduce to compute non-associative reductions.

struct MaxMin

float max;
float min;

3;

MaxMin preprocess(float val)
£

MaxMin res;

res.max = val;

res.min = val;

return res;

3

MaxMin max_min_f(MaxMin a, MaxMin b)

£
MaxMin res;
res.max = (a.max > b.max) ? a.max : b.max;
res.min = (a.min < b.min) ? a.min : b.min;
return res;

3

void find_max_min(skepu::Vector<float> floats)

£
auto maxmin = skepu::MapReduce<1>(preprocess, max_min_f);
maxmin.setStartValue({-INFINITY, INFINITY2);
MaxMin result = maxmin(floats);

std::icout << "Max: " << result.max << "\n";
std::cout << "Min: " << result.min << "\n";

computation here, only a translation of the data format. Because of the effi-
cient fusion of the two phases as SkePU evaluates the skeleton application,
the overhead of this transformation is minimal.

4.8 MapPairsReduce skeleton

MapPairsReduce is the combination of a MapPairs followed by a row-
wise or column-wise reduction over the generated matrix elements. Like
MapPairs it supports arbitrary arities of the vertical and horizontal input
Vector groups (<0,0> and up). It returns a Vector containing the row-
wise or column-wise reduction, where the reduction dimension is specified
as in 2D Reduce. Example usage of this skeleton can be seen in Listing 4.13
and Listing D.2; a conceptual illustration is shown in Figure 4.14.

61

10

15

20

4, SKELETON SET

Hsize (dynamic)

Harity
(static)

Inputs

Varity (static)

'BRE. .

2
: z [
: '] =13
e s | £
L1 O
> -
L z—
Inputs 2 2 2 X XX X2z Xz
LI TP T T T TTT]
Output

Figure 4.14: Illustrative diagram of the MapPairsReduce skeleton.

Listing 4.13: Example usage of the MapPairsReduce skeleton.

int mul(int a, int b)

£
3

return a * b;

int sum(int a, int b)
£

return a + b;

3

void mappairsreduce(size_t Vsize, size_t Hsize)
£

auto mpr = skepu::MapPairsReduce(mul, sum);

skepu: :Vector<int> vi1(Vsize), hil(Hsize);
skepu::Vector<int> res(Hsize);

mpr.setReduceMode(skepu: :ReduceMode: :ColWise);
mpr(res, vl, hl);

4,9 Call skeleton

Not all applications have a computational structure that is straightfor-
wardly reformulated as skeleton patterns. This is especially true for the
particular skeleton set offered by SkePU, which has a strong focus on data-
parallel patterns. At the time of the SkePU 2 interface redesign, the skele-

62

4.10. User functions

tons (especially the core Map building block) was generalized to handle more
complex memory access patterns inside of user functions themselves (as
discussed in depth in earlier sections, such as 4.2.1). There are advantages
of placing chunks of application code inside the user functions like this, as
the code is then able to access specialized computing resources (e.g., of ex-
ternal accelerators) while the smart data-containers handle memory trans-
fer and coherency management automatically. The clear downside is that
a user function is a sequential block of code: parallelism in SkePU patterns
is due to concurrent evaluation of several user function invocations.

To close this gap, the experimental Call skeleton was included in
SkePU 2. Call semantics is like that of Map, without the data parallelism.
It can therefore be regarded as a pseudo-pattern, and is more closely de-
scribed as a multi-variant task (or component). Using escape mechanisms
in the form of preprocessor directives, explicit parallelism can be inserted
into user function code. The same computation then has to be explicitly
provided for all desired backends. Listing 4.14 contains a sorting task using
Call in this way.

The Call skeleton has been in part superseded and in part comple-
mented by the work presented in Chapter 12 on multi-variant user func-
tions.

4.10 User functions

User functions are a central component in SkePU programming. In the con-
ceptual definition, and also at their most basic practical application, user
functions are the operators which instantiate skeletons.

While most user functions are short, perhaps even single-expression
computations—such as the scale function given in Listing 4.15—they are
expressed as general C++ functions, and can contain comparatively complex
code structures. User function code can have local state variables (allocated
on the stack), have conditional branches, nested loop structures iterating
over large data sets, and so on. However, as with any high-level parallel or
heterogeneous programming interface embedded within C++, there are sig-
nificant limitations on what type of operations are allowed within the user
function scope. The reasons are the same that necessitates CUDA to differ-
entiate between __host__and __device__ functions, and C++ AMP to in-
troduce a restrict keyword, to mention only two such instances. Other
interfaces approach the same problem by having clear separation between
the sequential ("host”) code and parallel or heterogeneous ("device”) code,
such as OpenCL with external kernels, or constraining entire applications to
a DSL, as done in Musket and others. The decision in SkePU to use a single-
source model is motivated by cohesive and readable programs, as user func-
tions can be very small and seamlessly interspersed throughout the appli-

63

10

15

20

25

30

35

4, SKELETON SET

Listing 4.14: Example usage of the Call skeleton.

void sort_f(skepu::Vec<int> array, size_t nn)

£
#if SKEPU_USING_BACKEND_CL

size_t idx = get_global_id(0);
size_tl=nn/2+ ((hn%21!=0)21:0);

for (size_t i =0; i < 1; ++i)
£
if (idx % 2 == 0 && idx < nn - 1 && array(idx) > array(idx + 1))
swap_f(&array(idx), &array(idx + 1));
barrier(CLK_GLOBAL_MEM_FENCE);

if (idx % 2 == 1 && idx < nn - 1 && array(idx) > array(idx + 1))
swap_f(&array(idx), &array(idx + 1));
barrier(CLK_LOCAL_MEM_FENCE);
3

#else

for (size_t c = 1; ¢ <= nn - 1; c++)
for (size_t d = c; d > 0 && array(d) < array(d-1); --d)
swap_f(&array(d), &array(d - 1]1);

#endif
3

void sort(skepu::Vector<int> &v, skepu::BackendSpec spec)

£

auto sort = skepu::Call(sort_f);
spec.setGPUBlocks(1);
spec.setGPUThreads(v.size());
sort.setBackend(spec);

sort(v, v.size());

Listing 4.15: A basic user function and associated skeleton instance..

int scale(int e)

£
3

return e * 2;

auto vectorscale = skepu::Map(scale);

scale(result, input);

64

4.10. User functions

cation with minimal syntactical overhead. Tight C++-integration in SkePU
allows for an intuitive and recognizable syntax and reduced friction when
integrating SkePU skeletons into larger C++ applications.

Due to the inherent limitations discussed in the previous paragraph,
SkePU user functions come with restrictions. Conceptually, the goal of
parallel execution requires the user functions to be pure functions: their
computations are deterministic given a set of arguments, and they cannot
have side effects. Communication across user function invocations are thus
not allowed, nor is dynamic memory allocation as it requires accessing a
shared memory heap. Targeting systems with heterogeneity or otherwise
distributed memory spaces implies that there by necessity has to be a mem-
ory barrier between the unmanaged and managed scopes (see Section 5.3,
in particular Figure 5.5). Smart data-containers are made to bridge this gap
with as little friction as possible for the programmer, but other data sets and
arbitrary pointers cannot be used at all from within user function code. Fur-
thermore, syntactical limitations in certain backend targets preclude usage
of many C++ features, such as operator overloading or range-for loops. This
restriction, unlike the previous ones listed, are not inherent to the parallel
programming domain but limitations in the SkePU pre-compiler, and the set
of allowed syntactical constructs grow as SkePU matures. SkePU user func-
tions are best approached as using a C-style subset of C++, unless exceptions
are explicitly mentioned.

A skeleton instance always needs a user function to be instantiated (pos-
sibly more than one, as with MapReduce). The reverse is not true: functions
do not need to be mentioned within a skeleton construction for SkePU to
treat them as user functions and make them subject to backend code gen-
eration. The chance of a function being called within the dynamic scope
of another skeleton-instantiating user function is enough. In most aspects,
these "indirect” user functions are subject to the same restrictions. There is
an important distinction, however: a skeleton cannot be instantiated with
a function with parameters of pointer type, as this represents bridging the
gap between unmanaged and managed scope (and thus possibly different
memory address spaces), but indirect user functions can accept pointer ar-
guments. As illustrated in Figure 4.15, recursion, either direct or indirect,
is not allowed within managed scope.

4.10.1 User functions as lambda expressions

In 4.15, scale is a user function defined as a free function. This is one of two
ways to define user functions in SkePU; the other is with lambda expression
syntax as in Listing 4.16, where the function is written inline with the skele-
ton instance. Free functions are suitable for cases where a user function
is large and an inline definition distracts from the pattern-program flow,
or when user functions can be shared across skeleton instances. In most

65

4, SKELETON SET

User

function
e
S
i} Indirect
@© recursion
§2
c
(D .
g Recursion
% User
5 function
i3}
£
[e]
o
S function
£ A
3
<
©
b . .
g Instantiation
©
Q- .
o Skeleton instance

Figure 4.15: User function call graph.

Listing 4.16: Skeleton instance with lambda syntax for the user function.
1 ‘auto vsum = Map<2>([](float a, float b) § return a + b; 3); ‘

cases, however, the lambda syntax is superior: it increases code locality
while eliminating namespace pollution. There are no run-time differences
between the two, as identical code is generated by the pre-compiler.

4.11 User types

For many applications, basic types such as int and float may not be suffi-
cient in a high-level programming interface. SkePU therefore includes the
possibility of using a custom struct as the element type in smart data-
containers or used as extra argument to a skeleton instance. Even then,
there are major restrictions on such types depending on the backends used;
the type should not have any features outside those of a C-style struct and
the memory layout needs to match across backends.

Listing 4.17 demonstrates user types in SkePU with the use of a complex
number type cplx for Mandelbrot fractal generation. Functions operating

66

10

15

20

25

30

35

40

45

4.11. User types

Listing 4.17: Mandelbrot fractal generation in SkePU.

[[skepu::userconstant]] constexpr float
CENTER_X = -.5f,
CENTER_Y = 0.f,
SCALE = 2.5f;

[[skepu::userconstant]] constexpr size_t
MAX_ITERS = 1000;

struct cplx

float a, b;
3

cplx mult_c(cplx lhs, cplx rhs)

£
cplx r;
r.a = lhs.a * rhs.a - lhs.b * rhs.b;
r.b = lhs.b * rhs.a + lhs.a * rhs.b;
return r;

3

cplx add_c(cplx lhs, cplx rhs)
£

cplx rj;

r.a = lhs.a + rhs.a;

r.b = lhs.b + rhs.b;

return r;

3

size_t mandelbrot_f(skepu::Index2D index, size_t height, size_t width)

£

cplx a;
a.a = SCALE / height * (index.col - width/2.f) + CENTER_X;
a.b = SCALE / height * (index.row - width/2.f) + CENTER_Y;
cplx ¢ = a;

for (size_t i = 0; 1 < MAX_ITERS; ++i)
£
a = add_c(mult_c(a, a), c);
if ((a.a * a.a + a.b * a.b) > 4)
return i;

3
return MAX_ITERS;
3

auto mandelbrot = skepu::Map<0>(mandelbrot_f);

67

4, SKELETON SET

on objects of type cplx are defined as free functions and are treated as user
functions by the pre-compiler.

4.12 User constants

SkePU does not allow C-style macro constants in user function code. This
is mainly a side-effect from the way source-to-source compilation is imple-
mented through the Clang tools (see Chapter 7) but fits with the general
aim of SkePU to move away from macros and instead rely on type-safety
through the C++ type system.

Uniform user function parameters (Section 4.2.2) can be employed as
a substitute for macros, but their purpose is typically aimed at scenarios
where the value of the argument changes dynamically between skeleton
invocations. Therefore, SkePU provides user constants to more directly ad-
dress the need for global, static parameters in user function code. These
objects are basic C++ types with literal assignment, thus making them more
type-safe than macros, annotated with the [[skepu: :userconstant]] at-
tribute. Usage of user constants can be seen in the N-body simulation in
Listing D.2. The example in Listing 4.17 also uses them, e.g., for MAX_ITERS.

4.13 Strided skeletons

Recently, the SkePU skeletons have been extended with a prototype API for
strided access into the smart data-containers. The stride configuration is
set as a persistent property on the skeleton instance object, and results in
a sparse addressing of containers upon skeleton invocation. Smart data-
containers remain contiguous blocks of data, and stride access effectively
causes only a subset of container elements to be read or written. Unlike
iterators, which also only address a subset of elements, strided subsets are
regular interleavings of indices. Stride configuration and iterators may be
combined, but at the time of writing all combinations of skeletons, stride
lengths, and backends are not yet implemented in the public SkePU distri-
bution.

4.13.1 Strides Map, MapPairs, and their reduce variants

Strided access of smart data-containers in skeleton evaluations have use
in certain linear algebra applications. For instance, consider a SkePU con-
tainer initialized with the elements of a matrix in (for the sake of illustra-
tion) column-major order. The user may want to compute the dot product
of a single column in the matrix and another vector. This can be achieved
with a standard MapReduce call if non-unit stride length is configured for
the parameter corresponding to the packed matrix argument, specifically
with the stride length set to the row width of the matrix.

68

4.13. Strided skeletons

Listing 4.18: SkePU Map call using strided container access.
int f(int a, int b) § /* ... */ 3%;

auto mapper = skepu::Map(f);
mapper.setStride(2, 4, 3);

skepu: :Vector<int> out(16), in_a(N_A), in_b(N_B);

mapper(out, in_a, in_b); // out stride = 2, in_a stride = 4, in_b stride = 3

e e

0 [0|0 00

Figure 4.16: Illustration of element access patterns in the program from
Listing 4.18.

5 - :
00 i

The stride (step) length semantics in SkePU is borrowed from BLAS. The
first element of the container is always accessed, and the rest are decided
by stride increments, as illustrated in Figure 4.16. A negative stride length
reverses the order of elements.

As SkePU skeletons are variadic, strides for all element-wise arguments
must be provided. For Map, MapPairs, and MapPairsReduce, the stride for
the output container is declared first in the stride length list, corresponding
to container arguments in a skeleton invocation. Refer to Listing 4.18 for a
code sample corresponding to Figure 4.16.

4.13.2 Strides in MapOverlap

The MapOverlap skeleton is not variadic. Due to this, in combination with
future plans regarding extensions of the MapOverlap syntax and capa-
bilities, the stride semantics is defined differently. The stride length list
instead corresponds to step increments in the respective dimension: 1D
MapOverlap expects one stride length, 2D MapOverlap expects two, and
so on.

69

Data representation with
smart data-containers

This chapter introduces the data representation model used in SkePU, in-
cluding the concept of smart data-containers and the memory consistency
model presented by the SkePU programming model.

5.1 Smart data-containers

The availability of smart data-containers for data abstraction and memory
management in SkePU, previously restricted to vector and matrix types,
has a significant effect on the usability of a skeleton programming frame-
work. Even though a basic one-dimensional data set can be used to emulate
more complex data representations, doing so at a framework level rather
than on the user level provides more information to the implementation
about access patterns, thus bringing increasing opportunities for optimiz-
ing communication- and memory access patterns; while also providing a
more intuitive user interface and reduced application code size for users.
SkePU’s smart data-containers are precompiler-known run-time data
structures which reside in main memory, but can temporarily store subsets
of their elements in device memory for access by skeleton backends execut-
ing on these devices. Smart data-containers additionally perform transpar-
ent software caching of the operand elements that they wrap, with a MSI-
based coherence protocol [47]. Hence, smart data-containers automatically
keep track of valid copies of their element data and their locations, and can,
at run-time, automatically optimize communication and device memory al-

71

5. DATA REPRESENTATION WITH SMART DATA-CONTAINERS

ij|9|1|2|3|4|

BIE 4
1|[s 9
2| [10]11]12[13]14]
ilelalz]sla] s|[as]ae]a7]18]19
o [1]B3]2] «|[e0]21]22]23]24
(a) Vector o (b) Matrix
ik
0]
I e |
olelelellolale] |2
o|]l O 9 0
1{1 3 12 1T‘
211 6| 7]8]1|115]|16]17 ?‘242526 33]34|35
(c) Tensor3 o (d) Tensor4

Figure 5.1: Container indexing and memory layout.

location. Smart data-containers can lead to a significant performance gain
over "non-smart” data-containers, especially for iterative computations on
sufficiently large data, where data can stay on the accelerator devices or
remain partitioned across cluster nodes.

The SkePU container set is recently [59] extended with tensors, which
are higher-dimensionality data-containers, completing the picture in Fig-
ure 5.1. In SkePU 3 there are tensors of three (Tensor3<T>) and four
(Tensor4<T>) dimensions, complementing the existing one-dimensional
Vector<T> and two-dimensional Matrix<T>. Smart container dimension-
ality in SkePU is therefore fixed by the framework, though their sizes in
each dimension are user-defined. While the template metaprogramming
technologies used elsewhere in SkePU can be used to implement container
types of arbitrary dimension, also providing each skeleton pattern for cus-
tomizable dimensionality (esp. MapOverlap) is currently outside the scope

72

5.1. Smart data-containers

Listing 5.1: Smart container set in SkePU 3.

skepu: :Vector<float> v(diml);
skepu::Matrix<float> m(diml, dim2);

skepu: :Tensor3<float> t3(diml, dim2, dim3);
skepu: :Tensor4<float> t4(diml, dim2, dim3, dim4);

of SkePU, and as such the container set is restrained to cover up to four di-
mensions.

The interfaces for tensor containers are virtually identical to those of
vectors and matrices, differing in the obvious ways of naming and element
access as detailed below. Instances of the tensor classes are created with
one constructor argument for each dimension. Optionally an additional
argument of type T specifies the default value of all elements in the con-
tainer. The full set of smart data-containers in SkePU 3 now covers up to
four-dimensional structures; see Listing 5.1 for their definitions.

The set of Index object types in SkePU, usable in e.g. user function sig-
natures to identify the index of the element being operated on, is likewise
extended with 3D and 4D equivalents (Listing 4.5).

Tensors are available in the skeleton API as element-wise inputs to Map,
Reduce, MapReduce, Scan, and MapOverlap. They are also accessible freely
in user functions as proxy objects, where applicable. In some skeleton con-
figurations the dimensionality of element-wise inputs is irrelevant by de-
sign, though in Map-based skeletons it can be accessed by using Index pa-
rameters.

5.1.1 Container indexing

Even though SkePU aims for a high-level programming interface and its
data-containers are strongly evoking mathematical terminology, it features
zero-based indexing. SkePU is C++-based and it is to be expected that pro-
grammers with existing C++ experience are used to this mode of indexing,
that arguably exposes implementation details of the containers being rep-
resented as memory arrays. Care has to be taken when porting applica-
tions from languages popular in the scientific communities that feature
one-based indexing, such as Fortran and MATLAB.

When indexing smart container objects, regardless of dimensionality,
the first index is always the most significant, that is, changing this index will
cause the biggest jump in the memory offset. This index is typically named i
with the subsequent indices increasing alphabetically: 4, j, k, 1. These labels
are exposed in the interface of the index types discussed in Section 4.2.4.
Figure 5.1 illustrates the memory layout by numbering each element in the
containers, and how it relates to each index coordinate.

Formally, the access syntax is

73

5. DATA REPRESENTATION WITH SMART DATA-CONTAINERS

container(i,[j, [k, [1]]]) [= value];.

Indexing semantics are slightly different in Region container proxy
types, with the zero index denoting the center element in the region and
accepting negative indices. See Section 5.2.3 for more details.

Figure 5.1 illustrates indexing and memory layout of the four smart con-
tainer types. Figure 5.1a shows a Vector of size 5, Figure 5.1b shows a
Matrix of size 5 x 5, Figure 5.1c shows a Tensor3 of size 2 x 3 x 3, and Fig-
ure 5.1d shows a Tensor4 of size 2 x 2 x 3 x 3.

5.2 Container proxies

Smart data-containers typically reside in the unmanaged scope of a SkePU
program, outside of user functions. They are complex C++ template types
and manage coherency states across backends, which makes them, in
general, impossible to directly be accessible on the backends themselves.
For the basic skeleton formulations with element-wise operand mappings,
there is never a need to interface with the container objects themselves in
user function code. With random-access parameters as described in Sec-
tion 4.2.1, this is no longer true. In SkePU 1, this problem was solved with a
specific skeleton (MapArray) with a pointer parameter in the user function
as the way to interface with the full extent of the container data. In SkePU 2
and later, a more general and less leaky abstraction is instead available in
most skeletons: the proxy container objects. Expressed in code as Vec<T>,
Mat<T>, Ten3<T>, or Ten4<T>; these objects provide clear and type-safe ac-
cess to an entire container’s data. Indexing is done just like in unmanaged
scope (Section 5.1.1) and the proxy objects provide member fields with con-
tainer size for each dimension. Otherwise, the proxies have no features, as
they are kept lightweight for preserving performance.

In addition to whole-container proxy objects, there are three (or six) in-
stances of proxies for partial container access: MatRow<T> and MatCol<T>
for matrices, and RegionND<T> representing the neighborhood around a spe-
cific element for each of the four dimensions of smart data-containers. Each
such partial proxy object is covered further in the upcoming sections.

5.2.1 MatRow proxy

SkePU has since version 2 allowed for flexible parameter lists for user
functions, including random-access containers (implemented in terms of
lightweight proxy objects) in addition to the default element-wise inputs.
While this allows for powerful expressivity, very little about the access pat-
terns of these random-access containers is known to SkePU, and perfor-
mance may thus not always be ideal.

74

10

5.2. Container proxies

float func(T a, T b, MatRow<T> mr, Mat<T>m) { ... }

a b MatRow<T> mr Mat<T> m
_E
Element-wise Random-access-row Random-access
inputs inputs inputs

Figure 5.2: Element accessibility for MatRow vs. Mat parameters in a user
function.

Listing 5.2: Matrix-vector multiply using MatRow in SkePU 3.

template<typename T>
T mvmult_f(const skepu::MatRow<T> mr, const skepu::Vec<T> v)
£
T res = 0;
for (size_t i = 0; i < v.size; ++i)
res += mr(i) * v(i);
return res;

3

skepu: :Vector<float> y(height), x(width);
skepu: :Matrix<float> A(height, width);
auto mvmult = skepu::Map<0,0>(mvmult_f);
mvmult(y, A, x);

One very common pattern when using Matrix as a random-access con-
tainer parameter is that each user function invocation is only interested in
one row of the matrix. This pattern is seen in matrix-vector multiplication
and similar multi-reduction-style computations. To improve SkePU perfor-
mance in these cases, SkePU 3 introduces a new proxy object, MatRow<T>.
Bridging the gap between element-wise mapped and random-access con-
tainer arguments, this proxy type when used in a Map skeleton instance that
maps over vectors (i.e., the result container(s) of the skeleton are vVector),
makes available one single row of the argument matrix container to the user
function, see Figure 5.2.

As an example, matrix-vector multiplication using MatRow<T> may be
implemented as shown in Listing 4.2. Compared to the closest correspond-
ing SkePU 2 implementation which only provides the more generic Mat
proxy container, the code is more succinct and there is more information
about the access pattern available to SkePU.

75

5. DATA REPRESENTATION WITH SMART DATA-CONTAINERS

There is no change in syntax of skeleton instantiation or skeleton invo-
cation needed for this feature to apply.

The performance benefit of using MatRow (where applicable) instead of
the more general Mat container proxy comes from significantly reduced
operand data transfer volume when executing over distributed memory
scenarios, both in multi-GPU execution and in cluster execution: the com-
munication pattern with MatRow is a scatter operation, while with Mat it is
a broadcast.

5.2.2 MatCol proxy

Analogous to MatRow, SkePU 3 provides a proxy container encoding column
accesses to random-access matrix containers in MatCol. In most respects
MatCol behaves just like its sibling, with two major differences. Firstly,
SkePU matrices are stored in row-major order in memory, and providing a
slice or view into a single column of a matrix is therefore not as straightfor-
ward. Here SkePU again utilizes its strengths as a high-level multi-backend
framework: by using MatCol, the programmer declares their intent of only
accessing elements from a single column, but not the imperative instruc-
tions of how this will be done. For a shared memory system and a suffi-
ciently small matrix, SkePU may choose to provide direct, strided access
to the underlying container object. On distributed memory, such as multi-
GPU or cluster systems, SkePU will create a transposed clone of the matrix
container (alternatively viewed as now being stored in column-major or-
der) and divide it among memory subspaces. Even in the shared memory
case, SkePU may use information from the application state (such as con-
tainer size, lineage structures, and tuning data) and decide that transposing
is worthwhile.

Secondly, the semantics of which column is selected for each invocation
of the user function has to be defined. SkePU abides to the following rules:

1. If the result container is a vector, let the current element index be i:
a) MatRow binds to the ith row of the corresponding random-access
matrix argument.
b) MatCol binds to the ith column of the corresponding random-
access matrix argument.

2. Otherwise, if the result container is a matrix, let the current element
index be (i, 5):

a) MatRow binds to the ith row of the corresponding random-access
matrix argument.

b) MatCol binds to the jth column of the corresponding random-
access matrix argument.

76

10

5.2. Container proxies

width
N
'_
- ~
[0}
£ 3
= +
«
=
inner
_ J
R
[0}
<
MatRow<T> Output

Figure 5.3: MatRow and MatCol access patterns in the computation in List-
ing 5.3.

3. Otherwise, the skeleton instance is malformed.

Listing 5.3: Matrix-matrix multiply with MatRow and MatCo1l.

template<typename T>
T mmmult_f(skepu::MatRow<T> ar, skepu::MatCol<T> bc)
£
T res = 03
for (size_t k = 0; k < ar.cols; ++k)
res += ar(k) * bc(k);
return res;

3

skepu: :Matrix<float> a(height, inner), b(inner, width), c(height, width);
auto mmmult = skepu::MapPairs<0,0>(mmmult_f<float>);
mmmult(c, a, b);

For computations on matrices, these rules are natural and analogous to
the element-wise indexing in the MapPairs and MapPairsReduce skele-
tons. In fact, MatRow and MatCol are a perfect fit together with MapPairs,
extending the skeleton to handle computations with the structure of matrix-
matrix multiplications. Listing 5.3 shows how such a computation may look.

Matrix-row and matrix-column user function proxy containers are
available in user functions for Map, MapReduce, and MapOverlap skeleton
instances that satisfy the above requirements.

77

5. DATA REPRESENTATION WITH SMART DATA-CONTAINERS

Figure 5.4: Indexing into a Region2D matrix proxy with overlap size (1,1).

5.2.3 Region proxy

Specifically for the MapOverlap skeleton, the element-wise iterated input
argument container provides access not only to the current element, but
rather a region of elements surrounding the current index. To achieve a
high-level interface for this pattern, SkePU provides the RegionND<T> fam-
ily of types, with N ranging from 1 to 4.

An object of the RegionND<T> types can be indexed to access values in
the region, and also carries information about the size of the overlap region
(which can be set dynamically before a skeleton invocation). See Listing 4.7
for an example of region objects used in a convolution computation.

In Figure 5.1, for each container, the third element (indexed 2 in the least
significant index and 0 elsewhere) is darkly shaded, and the surrounding
region with a radius of 1 in each dimension is medium shaded. The neigh-
boring elements are important for the MapOverlap skeleton. Note that the
region is significantly truncated for all dimensions larger than 1; a full four-
dimensional radius-1 neighborhood would be 3* = 81 elements in total, in-
cluding the center element.

Indexing into region objects is zero-based with the center element at the
0 position. Positive and negative indices are used in each dimension to ac-
cess the full region, see Figure 5.4.

5.3 Memory consistency model

Experiences from users of SkePU 2 demonstrated that the dual-mode model
of SkePU can be a bit challenging to adapt to. As with, for instance, GPU pro-
gramming models, SkePU programs execute code in one of two modes, or
rather scopes: unmanaged scope or managed scope. In GPU programming par-
lance (exposed directly in the CUDA interface) these are known as "host”
and "kernel” mode. In SkePU, these are represented by being either outside

78

5.3. Memory consistency model

Application
. #include <skepu>
User function
(0]
8. skepu: :Mat<T>
8 T func(T e, skepu::Mat<T> p, T s)
he]
(5] /* iterate through p */
%) T T return /¥ .. */;
% 3
=
(O]
% auto skel = skepu::Map(func);
3 Element- Container Uniform
g proxy scalar skepu: :Matrix<T> m1(N), m2(N), res(N);
&)
§ T some_val;
g
< -
5 skel(res, ml, m2, some_val);
skepu::Matrix<T> skepu::Matrix<T>
) skepu::external
Q
VU) skepu::external(skepu::read(res), []1()
- . A €
g Input/output: disk, network, ... my_serialization(res, my_file);
S ;i
> P
Wi

Figure 5.5: Scopes with differing capabilties in a SkePU program.

or inside of the dynamic scope of a skeleton user function. While syntactically
highly similar, the capabilities in each mode are very different. Code resid-
ing in unmanaged scope is treated effectively like any C++ environment, as
it is the goal of the framework to be possible to embed in existing C++ appli-
cations. This means that the programmer can use any C++ constructs and
idioms such as classes, dynamically allocated structures, virtual function
calls, and so on. Inside a user function, however, the environment is effec-
tively a single-threaded, no-side-effects, C-like land.!

These differences also mean that the memory consistency models are
different in the two views. SkePU handles memory consistency at the
boundary—during entry and exit of a skeleton invocation and the user func-
tion evaluation. Inside the user function, side effects are not allowed and
therefore random memory reads are disabled, and the coherency model is
straightforward.

SkePU 2 separated container accesses in unmanaged scope into two
kinds: [] array notation and () functional notation. Array notation main-

1The reason for this is to preserve compatibility with as many accelerator environments
as possible, such as OpenCL C or even FPGAs.

79

5. DATA REPRESENTATION WITH SMART DATA-CONTAINERS

tained consistency while functional notation bypassed any checks and en-
abled direct reads and writes on the internal, host-side memory array. The
bracket operator checked for the accessed element’s state in the data con-
tainer’s metadata (updated or invalid) and, if necessary, would trigger a
(bulk) data movement to update the container’s copy in host memory from
a currently valid device copy.

During the design of SkePU 3, experiences gained from field observations
of SkePU 2 made it clear that this model was confusing, as the checked array
notation incurred overhead when used in tight loops, and spurious usage of
functional notation could lead to unintended errors. Thus, SkePU 3 removes
the array-style angle bracket notation completely, and functional-style el-
ement access is not consistency-checked unless explicitly requested by a
compile-time command. Functional notation is chosen as it scales naturally
to the multi-dimensional container types, matrices and tensors. (Element
indexing of smart data-containers is covered in more detail in Section 5.1.1.)

Instead, the programmer should flush the whole container instead be-
fore doing single-element accesses of user function data, as described be-
low.

Hence, there is no longer a coherency-satisfying single-element access
mechanism to SkePU smart data-containers except inside user function
proxy objects (Vec<T>, Mat<T>, etc). However, optional runtime checks
outside user functions can be (re-)activated for parenthesis accesses by set-
ting a compiler flag, e.g., for debugging purposes or for backwards compat-
ibility with code written for SkePU 2.

A common pattern in SkePU applications is that smart data-containers
are used for a computationally intensive part of the application, and the
data is then either handed over to a non-SkePUized section, or serialized
e.g. to disk. To accommodate this pattern, it is important that there is a way
to ensure consistency of the local container contents. SkePU 3 provides this
through the flush operation to complete the new consistency model.

Flushing smart container data can be performed on smart container in-
stances or collectively by a variadic free function. Either approach accepts
a flush mode enum argument providing options, e.g. if the remote data
buffers should be cleaned up or not, as seen in Listing 5.4.

The flush (member) functions are known symbols to the pre-compiler,
so the presence or absence of flush operations in SkePU source code is sub-
ject to static analysis and optimization.

5.3.1 External scope

Recently introduced as part of SkePU 3, the final piece of the puzzle in the
SkePU memory consistency model is the external scope. Code placed in an
external scope is guaranteed to be executed in a sequential and synchronous
context, and as long as smart container dependencies are declared correctly,

80

10

5.3. Memory consistency model

Listing 5.4: Examples of using the flush operation.

skepu::Vector<int> vi(n), va(n);
skepu: :Matrix<int> mi(n, n), m2(n, n);

v1l.flush(); // FlushMode: :Default
ml.flush(); // FlushMode::Default

skepu::flush(v2, m2); // FlushMode::Default
vl.flush(skepu: :FlushMode: :Dealloc);

ml.flush(skepu: :FlushMode: :Dealloc);
skepu: : flush<skepu: :FlushMode: :Dealloc>(v2, m2);

all data belonging to containers declared as read will be made available to

read inside the external scope, and all changes to those declared as write

are kept consistent and available to skeletons as soon as the scope is exited.
The syntax is as follows:

skepu::external (
[skepu::read(rdcontlist),] [&]1() £

3[, skepu::write(wrcontlist)]
);
where the optional arguments skepu: :read() and skepu::write() list
container objects that may be read from respectively written to main memory
in the code block (.. .).

The main purpose of this scope and corresponding construct is to main-
tain a sequential programming interface even when a SkePU program is
launched as a SPMD program, i.e., when the cluster backend is used (see
Chapter 9). As the name implies, any operation using external resources,
such as a file system or network communication, should be placed within
the external scope. This semi-automatic solution with an explicit fram-
ing construct allows to not depend on static analysis by the pre-compiler,
which may not be feasible in the context of separate compilation and using
libraries.

A typical SkePU application may have a program structure of an
external construct early on to read input data from a file, followed by a
sequence of skeleton invocations performing computation, and finally an-
other external block for serializing results.

81

n Standard library

This chapter presents an overview of a recent addition to SkePU: the stan-
dard library. This title is somewhat misleading, as SkePU is not a stan-
dardized interface; nonetheless, the idea is to provide a collection of func-
tionality offered by the framework that cannot be sorted under the la-
bels of "skeletons” or "data abstractions”. As the library term emphasizes,
these components are generally not precompiler-driven language exten-
sions, and rather implemented as header files operating on top of the core
SkePU constructs.

We introduce seven modules from the standard library. Figure 6.1 il-
lustrates the header file names of them, and with the asterisk annotation
shows the two exceptions to the aforementioned rule; the marked modules
are dependent on the precompiler for their implementation. In addition to
what is listed in the chapter, we have ideas for multiple new library modules
in the future.

6.1 Deterministic random number generation

Deterministic parallel random number generation is an important compo-
nent of SkePU’s standard library. As we consider it a key contribution of the
work, it is covered in significant detail in Chapter 13.

83

6. STANDARD LIBRARY

%* *
random complex)
.hpp .hpp blas.hpp filter.hpp
ben.ﬂ;?ark io.hpp util.hpp

Figure 6.1: SkePU standard library modules as of early 2022.

6.2 Complex numbers

As previously described in Section 4.11, SkePU skeletons can operate on
smart data-containers with user-created types. These types have to be
defined as simple C-like structs, which means that user types cannot uti-
lize general C++ class features such as member functions or operator over-
loading. In particular the case of overloaded operators become a problem
when writing applications dependent on complex numbers!. C-derived lan-
guages, including C++, OpenCL, and CUDA, do not have a history of complex
numbers as a language-integrated fundamental type, so custom implemen-
tations continue to be prevalent. Standard-library complex number imple-
mentations are not language-agnostic, and such cannot be used in SkePU
user function code.

It has therefore been the case that any SkePU application with complex
numbers needed to define their own complex type as a user type. Without
access to operator overloading and member functions, accessors and arith-
metic operators had to be defined as free functions meeting all user function
requirements.

The standard library introduces a complex number class to increase
the programmability and readability of SkePU programs. While the stan-
dard library files declare the basic types and functions, this part of the li-
brary needs to be compiler-known and integrated into the SkePU precom-
piler’s code generation phase. Implementing complex numbers this way
also serves as an initial effort to widen the scope of the user type function-
ality in SkePU, as the complex number library type goes beyond the basic C
struct limitations, e.g., by being declared as template types, parameterized
on the underlying floating-point type.

n the mathematical sense: numbers consisting of a real part and an imaginary part.

84

10

15

6.3. Linear algebra

Listing 6.1: Example program using SkePU complex numbers.

#include <skepu>
#include <skepu-lib/complex.hpp>

using Complex = skepu::complex::complex<float>;
using InnerType = Complex::value_type; // float

auto complex_dotprod = skepu::MapReduce(
skepu: :complex: :mul<Complex>,
skepu: :complex: :add<Complex>

)i

int main(int argc, char* argv[])
£
const size_t sizef1000%;
skepu: :Vector<Complex> vi(size, {1, 13), v2(size, §1, 03);

auto res = complex_dotprod(vl, v2);
std::cout << "Result: " << res << "\n'";

The operator overloads of SkePU complex numbers also extends to
combinations of complex numbers with different underlying precision
or with real-valued data types. SkePU complex numbers are moreover
binary-compatible with std: :complex, the complex number type offered
by the C++ standard library. With the proper type cast, a SkePU smart
data-container can be initialized from a corresponding C++ std: : complex
pointer with O(1) time and memory overhead.

Listing 6.1 shows an example program, a complex-valued dot product
computation, using the SkePU standard library interface.

6.3 Linear algebra

During the 1970s, an initial subset of what would become BLAS (Basic Linear
Algebra Subprograms) level 1 was designed for Fortran as a library specifi-
cation and implementation of commonly used linear algebra computations.
Over the next decade, the library was complemented with level 2 and 3. It
has since become a key library for the HPC domain.

The BLAS subroutines have names and signatures following a set pat-
tern, making the specification cohesive and predictable for users. Crucially,
the BLAS specification provides each subroutine in variants for each of four
different data types? which are single and double-precision real and com-
plex numbers.

When designing the interface for SkePU-BLAS, one central goal is inter-
operability with other BLAS libraries. However, the reference implemen-

2Except in cases where such a specialization would be meaningless.

85

6. STANDARD LIBRARY

tation of BLAS remains written in Fortran, with the separate CBLAS distri-
bution existing, as well. However, SkePU-BLAS cannot be exactly modeled
after CBLAS, since the other, even more important goal is seamless integra-
tion of SkePU smart data-containers in each BLAS call. CBLAS parameters
are declared as raw pointers, which cannot encode the type signatures of
smart data-containers alone>.

The online repository hosting BLAS references is Netlib?, While not a
part of the main reference material of the repository, Netlib are endorsing
the SLATE project’s [1] C++ conversion of the BLAS interface, BLAS++ [71].
The decision was therefore made to design the SkePU-BLAS library in as
close accordance with BLAS++ as possible, as this is expected to provide the
best chance of cross-library BLAS compatibility in the future for C++-derived
languages and frameworks.

A notable difference between BLAS++ and SkePU-BLAS are the fact
that SkePU-BLAS uses smart data-container parameters whenever possible.
SkePU containers carry information about the inherent size of the vector
or matrix, which also renders some parameters redundant.

Complex number computations with SkePU-BLAS use smart data-
containers of skepu::complex values (as described in Section 6.2). The
SkePU complex data type is guaranteed to be binary-compatible with
std::complex which is used in BLAS++,

Listing D.4 contains a full conjugate gradient solver implemented with
the SkePU-BLAS interface. The current state of SkePU-BLAS coverage is doc-
umented in Appendix C.

6.4 Image filtering and visualization

Image filtering is an application domain which SkePU has a natural affinity
to. Thanks to the expressive Map skeleton configurations, most pixel-level
transformations such as color channel adjustments, color space changes,
and layer blending are efficient to describe and result in good performance.
In addition, MapOverlap has a natural application in stencil (or convolu-
tional) image filters, most notably blur operations.

SkePU has the advantage of strong GPU backends, originating as a
CPU+GPU library. As the name suggests, GPUs (graphics processing units)
excel at processing image-like datasets. Non-trivial image filters are com-
monly built as "pipelines” of smaller filter stages, which integrates well with

3A smart container can in certain contexts be converted to a C pointer, but not the other
way around.

4https://www.netlib.org/blas/

SIn particular, the 1dX parameters, where X is some letter, declare the size of the first
dimension of pointer argument X, which in SkePU is equivalent to the row length of a Matrix
container.

86

6.4. Image filtering and visualization

(a) 100 iterations (b) 1000 iterations (c) 10000 iterations

Figure 6.2: Visualizing the progress of a heat diffusion simulation.

a0t - ~ ; 'E‘ -
- ¥
'_ - o {:\:‘Jﬁ o re = 1 1 -ﬂ-
!, LRI o n “ .
=k - = Ll
NE.;. F2 ! Tl e o o
= ¥ &= Lo ‘.}"' "'"n.-?' Yl Fo0 @:._
o - 1
. o EI - = N - il g;l'l' &
1 ' L] -:F"F'; ;':'. “ 1 ' - | " "
11) {' o - , =1] - X~
it st - ::'-_.:;.f;P . - - "1:'5- 4 1
= - [" AR L

Figure 6.3: Game of life simulation snapshot, computed using SkePU skele-
tons and rendered with its image processing library component.

the memory management systems in the smart data-containers, ensuring
that the pixel data is kept in GPU memory during the entire filter pipeline.

A standard library component for image filtering helps exposing SkePU’s
natural affinity for such computations by providing a selection of user func-
tions and data types for converting between color spaces and computing
common filter stages, often with additional parameters.

However, image filtering is in itself an application domain which does
not have the highest relevance for HPC. The filtering functionality of the
standard library is first and foremost useful for auxiliary purposes, such as
visualization.

A different noise visualization using the image processing constructs can
be seen in Figure 15.26.

There are several reasons to why an academically-oriented program-
ming framework like SkePU benefits from an accessible image processing
and visualization components:

« Validation and debugging: SkePU is suitable for rapid prototyping
as a way to test the workload and performance potential of paral-
lelization. A prototype is likely to contain errors, and an iterative
programming workflow needs good debugging facilities. Visualizing

87

6. STANDARD LIBRARY

»

Figure 6.4: Part of the Mandelbrot fractal set (black pixels) generated by
SkePU, with the surrounding gradient indicating how many iterations are
required to determine the Mandelbrot set membership for each pixel.

the dataset throughout its execution (as seen in Figure 6.2) can be one
of several tools to informally verify that the application behaves cor-
rectly, and if not, it can be used to track down the stage where the
error is introduced and possible causes.

Tutorials: When users are introduced to SkePU for the first time, vi-
sualization of the result can be a good way to provide immediate feed-
back of their work. SkePU consists of data-parallel pattern constructs
which are intended to be used on large data sets, and the output of
SkePU applications are difficult to convey through textual print-outs
alone. "Game of life” has been used in SkePU tutorials for this purpose
(see Figure 6.3).

Teaching: SkePU is used in teaching of parallel programming con-
cepts in masters-level university courses. In each lab assignment, the
task often includes visualization. This can be of a performance plot,
which can be generated by the library module for time measurement
(Section 6.5), or of the working dataset itself. A problem domain such
as Mandelbrot fractal generation provides a direct visual intuition to
load-balancing problems: in Figure 6.4, the darker pixels take consid-
erably more time to compute than the lighter ones.

A concrete example is described in Section 15.11, where the image fil-

tering components of the standard library are used for the evaluation of
high-level skeleton fusion.

88

10

15

6.5. Benchmark utilities

Listing 6.2: Example usage of SkePU time measurement utilities.

auto time = skepu::benchmark: :measureExecTime([&]()

// workload to measure

D

std::cout << "Time: " << time.count() / 1E6 << "\n";
const int repeats = 11;

auto medianTime = skepu::benchmark: :basicBenchmark(

repeats, 0, [&](size_t)

// workload to measure several times

3

std::cout << '"Median: " << medianTime.count() / 1E6 << "\n";

6.5 Benchmark utilities

Since SkePU is mainly intended, and used, as a scientific research frame-
work, the standard library provides time measurement functionality. The
fundamental building block is a collection of lambda-based time measure-
ment functions, which allows for high-level timing code in a similar style to
the rest of SkePU. Internally, the library uses std: : chrono primitives from
C++11.

On top of the basic timing utilities, the library provides "benchmarking”
abstractions. These functions run the code snippet multiple times, filtering
the results and reporting, e.g., the median duration. Other variants can take
lists of backend specifications and run multi-backend comparisons without
further user intervention. Example usage is provided in Listing 6.2.

6.6 High-level consistent input and output

Our experience from using SkePU in the wild include observations of promi-
nent boilerplate code. Since many SkePU applications in practice are
smaller computational kernels, input and output often take up a significant
fraction of the entire program. With the change to weak consistency in
SkePU 3, this issue became more critical. Writing a SkePU smart data-
container to disk or to the command line is a common operation, either as
the final step of a program or temporarily during the implementation and
debugging process. With weak consistency, however, a container cannot
simply be handed over to the std: : ostreamoperators, as the values inside
can be stale. So rather than forcing the programmer to remember flushes in
conjunction with every 1/0 operation, we extended standard library with a
SkePU variant of 1/0 streams, enforcing consistency of data passing through
them. See Listing 6.3 for a short sample usage.

89

6. STANDARD LIBRARY

Listing 6.3: Example usage of SkePU consistent I/0 streams.

skepu: :Vector<Atom> atoms(atomcount);
skepu: :Matrix<float> energy_out(N, N);

// Compute full or partial result
coulombic(energy_out, atoms, ...);

// Print the data for debugging
skepu::io::cout << "Energy out: " << energy_out << "\n';

6.7 General utilities

As mentioned in the introduction, small code segments tend to appear quite
often in SkePU programs. The utilities module of the library attempts to
remedy this by providing common user functions, such as arithmetic op-
erators, for considerably less verbose skeleton instantiation. The functions
are provided as templates whenever possible for maximal utility. This is an-
other aspect of the standard library which gives no real benefit for perfor-
mance or portability, but rather benefits the general usability of the SkePU
framework.

90

Implementation

This chapter provides insight into the implementational aspects behind the
SkePU project. Anything presented below is not intended to be required
knowledge by users of SkePU as a programming interface and framework,
and relying on implementation details (including the generated code) dis-
cussed in this chapter could lead to SkePU applications breaking as the im-
plementation evolves.

7.1 Implementation overview

SkePU is implemented in three parts. There is a sequential runtime system,
a source-to-source compiler tool, and the parallel runtime system' with
multiple backends supported. The integration of these parts is illustrated
in Figure 7.1.

A SkePU program can be compiled with any standard C++11 compiler,
producing a sequential executable. This means that the sequential skele-
tons can act as a reference implementation, both to users—who can test

1The parallel runtime of SkePU 2 and later is based on the original SkePU 1.x backends. By
a combination of using new and powerful C++11 language features, offloading boilerplate work
to the precompiler, and general improvement of the implementation structure, the verbosity
and code size of the implementation was greatly reduced. In some areas, e.g., combining the
source code for unary, binary, and ternary Map skeletons into a single variadic template, the
amount of lines of code was reduced by over 70 percent. [58]

91

7. IMPLEMENTATION

SkePU
program
source
Sequential Parallel
runtime backend
library runtime

SkePU
source-to-source
compiler

C++11 C++11

compiler

compiler

Sequential Parallel
executable executable

Figure 7.1: SkePU compiler chain.

their applications sequentially at first, with the advantages of simpler de-
bugging and faster builds—and to SkePU backend maintainers.

7.2 Language embedding and type safety

SkePU is an API, or arguably language extension, on top of C++. C++ is not
formally a type-safe programming language [17], and SkePU also does not
claim type safety in the formal sense. There are, however, design and imple-
mentation consequences which affect the perceived type safety of SkePU.
In particular, the change from macro expansions to template metaprogram-
ming and source-to-source compilation in SkePU 2 had such consequences
(see Section 7.2.1).

One scenario where SkePU is more type-safe than its host language is
shown in Listing 7.1. The final skeleton invocation fails at compile-time,

92

10

15

20

25

30

35

7.2. Language embedding and type safety

Listing 7.1: Example SkePU program illustrating its type-safety behavior.

#include <skepu>

double square(double val)

{

return val * valj;

3

int main(int argc, char *argv[])

£
const size_t N = 10;
skepu::Vector<float> vec_float(N, 5.0f);
skepu: :Vector<double> vec_double(N, 5.0);
skepu: :Vector<double> vec_res(N);

float scalar_float = 5.0f;
double scalar_double = 5.0;

auto skel = skepu::Map(square);
// Works: same type
auto resl = square(scalar_double);

// Works: implicit conversion
auto res2 = square(scalar_float);

// Works: same type
skel(vec_res, vec_double);

// Compile time error: type mismatch
skel(vec_res, vec_float);

return 0;

even though C++ normally allows implicit type conversions from float to
double.

Another interesting case is the Reduce skeleton. Both parameters and
also the return value for the reduce operator needs to be of equal type to
allow for optimizations through, e.g., tree reductions. This constraint (re-
lated to the associative property) does not apply for general folds, but is
enforced in SkePU, as seen in Listing 7.2.

7.2.1 Improved type safety from SkePU 1

One of the goals with the SkePU 2 design was to increase the level of type
safety from SkePU 1. In the following example, a programmer has made the
mistake of supplying a unary user function to Reduce. Listing 7.3 shows the
error in SkePU 1 code, and Listing 7.4 illustrates the same in SkePU 2 syntax.

93

10

10

10

15

7. IMPLEMENTATION

Listing 7.2: Example SkePU program illustrating the type enforcement of
the Reduce skeleton.

double add(double lhs, float rhs)

£
return rhs + lhs;

3
auto fold = skepu::Reduce(add);

//error: no matching function for call to 'Reduce'
//auto fold = skepu::Reduce(add);

// FAG NN LN NN NTNTNTNT VT Y]
//note: candidate template ignored: deduced conflicting types
// for parameter 'T' ('double' vs. 'float')

Listing 7.3: Faulty SkePU 1 code.

UNARY_FUNC(plus_f, float, a,
return a;

)

skepu::Vector<float> v(N);
skepu: :Reduce<plus_f> globalSum(new plus_f);
globalSum(v);

// In SkePU 1, at run-time:
[SKEPU_ERROR] Wrong operator type!
Reduce operation require binary user function.

Listing 7.4: Faulty SkePU 2 code.

float plus_f(float a)
£

3

return a;

skepu2: :Vector<float> v(N);
auto globalSum = skepu2::Reduce(plus_T);
globalSum(v);

// In SkePU 2, at compile-time:
error: no matching function for call to 'Reduce'
auto globalSum = skepu?2::Reduce(plus_f);
AN
note: candidate template ignored: failed template argument deduction
Reduce(T(*red) (T, T))

94

7.3. Source-to-source compiler

The SkePU 1 example compiles without problem, and only at run-time
terminates with an error message. The message itself is shared between all
reduce instances, limiting the information obtained by the user. SkePU 2, on
the other hand, halts compilation and prints an error message even before
the precompiler has transformed the code. It directs the user to the affected
skeleton instance.?

7.3 Source-to-source compiler

The role of SkePU’s source-to-source precompiler is to transform programs
written for the sequential interface for parallel execution. The precompiler
has four major tasks:

« Kernel code generation: For backends like OpenCL, which are not
compatible with C++ syntax or runtime features, the precompiler will
generate kernel code compiled and run on the external device.

* Run-time support: In addition to the kernel code itself, the precom-
piler generates "glue code” that launches the device kernel as well as
supporting definitions and data structures. This way, the implemen-
tation of parallel skeleton patterns in the SkePU library can be sim-
plified and support backend compilers with less feature-rich or stable
template metaprogramming implementations.

« Analysis and optimization: Having full access to the source code and
its AST, the precompiler can suggest or perform optimizations on the
program to improve performance while preserving functionality. This
aspect of the precompiler is promising but limited so far; it remains
one of the promising areas for future work on SkePU.

« Error checking: SkePU comes with several limitations on what can
and cannot be done in, e.g., the user functions. Many of these re-
strictions are not enforceable within the C++ type system and can lead
to compilation errors in the backends, or even undefined run-time
behavior of programs. Since the precompiler is based on the Clang
framework, it has access to inline error and warning formatting and
will catch common mistakes early on. The checking is inherently lim-
ited, since guaranteeing a C++ program’s correctness is impossible.

The task of the precompiler is limited by design. Its main purpose is
to transform user functions, for example by adding __device__ keywords
for CUDA variants and stringifying the OpenCL variant. A user function is
represented as a struct with static member functions in the transformed

2The message does not directly describe the issue, an aspect which can be further improved
with C++11’s static_assert.

95

10

7. IMPLEMENTATION

Listing 7.5: Before precompiler transformation.

#include <skepu>

template<typename T>
T add(T a, T b)

£
return a + b;

3
int main()

£
auto adder = skepu::Map(add<float>);
3

program. The precompiler also transforms skeleton instances, redirecting
to a completely different implementation accepting the structs as tem-
plate arguments. It also redefines user types for backends where necessary.
For some backends such as OpenCL and CUDA, all kernel code is generated
by the precompiler.

An example of a transformation of the template user function in List-
ing 7.5 can be seen in Listing 7.6. In this case, only the sequential CPU (on
by default), OpenMP, and OpenCL backends are enabled. Each GPU backend
adds significantly more code to the generated output: everything executed
as a kernel on the GPU device is generated by the SkePU precompiler, as
well as additional boilerplate glue-code used to launch said kernels. List-
ing 7.7 contains an excerpt of the kernel code generated (in the OpenCL
kernel language, as a static text string) for the SkePU program in Listing 7.5
and Listing 7.8 shows part of the code generated on the CPU side to launch
the kernel. Note that both of these listings are edited for presentational
purposes.

7.4 Backends

After a SkePU program has been processed by the precompiler, the gener-
ated source code now has access to the full SkePU runtime library of imple-
mentation backends.

The hybrid backend is a major contribution and covered in great detail in
Chapter 8; similarly, the two cluster backends are detailed in Chapter 9.

7.4.1 Sequential CPU backend

The most straightforward of the SkePU backends is the sequential CPU vari-
ant, which is different compared to the direct compilation path of SkePU.
When using the precompiler and the sequential backend, the application
uses the full smart data-container implementation and goes through the

96

10

15

20

25

30

35

40

45

50

55

7.4. Backends

Listing 7.6: After precompiler transformation.

#define SKEPU_PRECOMPILED
#define SKEPU_OPENMP
#include <skepu>

template<typename T>
T add(T a, T b)

£
return a + b;

3

struct skepu_userfunction_adder_add_float
£
using T = float;
constexpr static size_t totalArity
constexpr static size_t outArity =
constexpr static bool indexed = 0;
using IndexType = void;
using ElwiseArgs = std::tuple<float, float>;
using ContainerArgs = std::tuple<>;
using UniformArgs = std::tuple<>;
typedef std::tuple<> ProxyTags;
constexpr static skepu::AccessMode anyAccessMode[] = {3;
using Ret = float;
constexpr static bool prefersMatrix = 0;

:2;
1;

#define SKEPU_USING_BACKEND_OMP 1

#undef VARIANT_CPU

#undef VARIANT_OPENMP

#undef VARIANT_CUDA

#define VARIANT_CPU(block)

#define VARIANT_OPENMP(block) block

#define VARIANT_CUDA(block)
static inline SKEPU_ATTRIBUTE_FORCE_INLINE float OMP(float a, float b)
{

return a + b;

3
#undef SKEPU_USING_BACKEND_OMP

#define SKEPU_USING_BACKEND_CPU 1

#undef VARIANT_CPU

#undef VARIANT_OPENMP

#undef VARIANT_CUDA

#define VARIANT_CPU(block) block

#define VARIANT_OPENMP(block)

#define VARIANT_CUDA(block) block
static inline SKEPU_ATTRIBUTE_FORCE_INLINE float CPU(float a, float b)
£

return a + b;

3
#undef SKEPU_USING_BACKEND_CPU
3;

int main()
£
skepu: :backend: :Map<2,
skepu_userfunction_adder_add_float,
bool, void> adder(false);

97

10

15

10

15

20

25

30

7. IMPLEMENTATION

Listing 7.7: Generated OpenCL kernel.

__kernel void add_precompiled_MapKernel_add_float_arity_2(
__global float* skepu_output,
__global float *a,
__global float *b,
size_t skepu_n,
size_t skepu_base

[

size_t skepu_i = get_global_id(0);
size_t skepu_gridSize = get_local_size(0) * get_num_groups(0);

while (skepu_i < skepu_n)
£
skepu_output[skepu_i] = add_float(a[skepu_i], b[skepu_i]l);
skepu_i += skepu_gridSize;
3
3

Listing 7.8: Generated OpenCL kernel launcher code.

template<typename Ignhore>

static void map

(
size_t skepu_devicelD,
size_t skepu_localSize,
size_t skepu_globalSize,
skepu: :backend: :DeviceMemPointer_ClL<float> *skepu_output,
skepu: :backend: :DeviceMemPointer_CL<float> *a,
skepu: :backend: :DeviceMemPointer_CL<float> *b,
Ignore,
size_t skepu_n,
size_t skepu_base

M

skepu: :backend: :cl_helpers: :setKernelArgs(
skepu_kernels(skepu_deviceID),
skepu_output->getDeviceDataPointer(),
a->getDeviceDataPointer(),
b->getDeviceDataPointer(),
skepu_n,
skepu_base

)i

cl_int skepu_err = clEnqueueNDRangeKernel(
skepu: :backend: :Environment<int>::getInstance()

->m_devices_CL.at(skepu_deviceID)->getQueue(),

skepu_kernels(skepu_devicelD),
1, NULL,
&skepu_globalSize, &skepu_localSize,
0, NULL, NULL

)i

CL_CHECK_ERROR(skepu_err, "Error launching Map kernel);

98

7.4. Backends

13B0TJ, :,3€0TS, ,0, 8600829EESILXO JEAUJE] BNTBAT ,3€0T4,:,3€0T4, <ET:T00> QIEETTIECII/XO JAXIIBYTOB0-\
<3NTeAYOLaNTeAT> ,3e0Td, :,3€0Td, <ET:T09> 820BTTIEECII/XO JOXIISEIITOTTAWI-,
13B0TJ, :,3B0TS, ,B, 0200829EES4LX0 JEAUJSEd SNTEAT ,3€0T4,:,3e0T4, <6:T00> QPEETTIEEIILXO JdX3I4ayTo8a-. |
<aNTeAYOL1aNTeAT> ,3BOT4,:,3BO0TS, <B:T00> OTAETTIEEII/XO JdXI3SeIITOTTdwI-|
1+ 13B0TY, <ET:T0D ‘B:T109> OYOBTTIEEIILXO JoIedddpohueutd—,
<ET:T0D “2:QT:dUTT> Q9GETTIECIILXO IWISUINIBY-,
<T:/T:8UTT ‘TiGTIAUTT> OLOETTIEEII/XO JWISPUNOdwod—,
13e0T4, ¢ ,380T4, G Pasn pT:T03 <pT:T0d “2T:T0J> 8EUOSSIEEIILXO TO9QUeAwed-|
13B0TJ, :,3€0TS, © PAsn :T00 <E:T0D ‘L:T00> P200829EEIILXO TO8QJeAwed-|
138074, @adA3 juawn8uyajerdwa)-|
,(3e0T4 “3e0TJ) 3e0TJ, PpPe pasn S:pT:8UTT <T:/T:9UTT ‘T:yT:ddo-30npoudiop/satdurexa/ndays/oddgex3q/SutuysJdo4/3sn8ne/saasn/> @EOP8ZIEEI /X0 TI2QUOTIIUNS

7.5.

ing

Clang AST of the add user function from Listi

Figure 7.2

99

7. IMPLEMENTATION

C++ interface (skeletons, smart containers, library components)

Figure 7.3: Backends available in SkePU.

standard backend selection process. Thus, the motivation for a sequen-
tial CPU implementation is a more fair comparison for performance evalua-
tions. The sequential backend is also generally more optimization-oriented
compared to the direct compilation, and may have fewer correctness checks
and programmer feedback mechanisms. Compared to the multi-core CPU
backend, the sequential CPU implementation avoids potential overhead of
OpenMP directives and thread management. However, the sequential back-
end is rarely relevant for real-world computations, where the data sets are
sufficiently large.

7.4.2 Multi-core CPU backend: OpenMP

For multi-core systems, SkePU provides a multi-threaded backend based on
the industry standard OpenMP interface. Using this backend requires an
OpenMP-supported C++ compiler such as GCC or ICPC.

In SkePU 2 and earlier, all skeletons, in particular the Map based skele-
tons, assumed an equal load distribution of the user function executions
over the entire range of input container elements. Some applications may
however exhibit an irregular workload distribution instead, especially in
CPU-affine computations and sometimes even in combination with very
short input vectors, which are typically prime targets for the OpenMP back-
end.

For these cases, SkePU 3 adds support for dynamic scheduling in the
OpenMP backend. Available scheduling modes in the OpenMP backends are
dynamic, guided self-scheduling, auto (for auto-tuned scheduling as imple-
mented in the OpenMP target compiler), and of course static which is the
default scheduling mode.

In addition, the chunk size (the smallest number of user function invo-
cations to schedule as a group) can be explicitly set in the backend specifi-
cation.

Performance evaluation results for three load-balancing benchmarks
using the OpenMP backend are given in Section 15.9.1.

100

7.5. C and Fortran language bindings

7.4.3 GPU backends: OpenCL and CUDA

SkePU targets GPUs using either the CUDA or OpenCL frameworks. OpenCL
can also target other types of accelerators, such as Intel Xeon Phi, while
CUDA is vendor-specific to Nvidia GPUs. Most of the skeletons in SkePU can
target several GPUs at once, splitting up the work between them. (A sepa-
rate hybrid backend can optionally use GPUs and OpenMP simultaneously,
with a load-balanced work distribution.)

7.5 Cand Fortran language bindings

C++ is a strong and growing language for applications in high-performance
computing, but the the lower-level alternatives C and Fortran remain fre-
quently used, in particular for older codebases. (The study by Amaral et al.
[4] provides thorough insight into a recent statistical snapshot of the field.)
It has therefore been suggested that SkePU ought to provide an interface
for C and Fortran, specifically to widen its application target space. As a
subproject within EXA2PRO, a prototype was designed to evaluate the fea-
sibility of such an interface. While Fortran was the main goal, one of the
conclusions of the attempt is that a C interface should be used as an adap-
tor layer. Exposing a C API for SkePU integration will also allow for easier
extension to other languages in the future.

The SkePU API is inherently based on modern C++ features that do not
exist in C nor Fortran, most importantly variadic templates. For this rea-
son, we concluded that there will be no full-fledged Fortran or C API for the
complete SkePU interface. The solution for non-C++ applications is to write
the actual skeleton code, including instantiation and user functions, in C++.
User functions and skeletons form the computational core of an applica-
tion, which in practice can be just a fraction of an entire application stack.
Wrapper translation overhead in the computational core would also come
at a significant performance cost.

The SkePU precompiler provides interface layers for smart data-
container access through C and Fortran. Since containers are user-
instantiated templates, the data access API is not provided as static header
and source files; the precompiler generates the wrappers on demand. The
full build process involves compilation into multiple binaries and a linking
phase as illustrated in Figure 7.4.

Because of the absence of templates, the C and Fortran interface is much
wordier than standard C++ SkePU. An example program is shown in List-
ing 7.9; note that the prototype syntax may change in the future.

101

10

15

20

25

30

35

40

45

7. IMPLEMENTATION

Listing 7.9: Sample program utilizing the prototype SkePU-Fortran bind-
ings.

program skepu_in_fortran
use skepu
use f_skeleton
implicit none

integer :: N

integer :: vec_handle, mat_handle
integer :: i

integer :: val, newval

write(*,*) 'Enter size: '
read(*,*) N

! Allocate
vec_handle = skepu_create_vector_int(N)
mat_handle = skepu_create_matrix_int(N, N)

call skepu_write_matrix_int(vec_handle, 0, 0, 1)

! Initialize
doi=0, N-1

call skepu_write_vector_int(vec_handle, i, i)
end do

! Some in-line processing
doi=0, N-1

val = skepu_read_vector_int(vec_handle, i)

newval = val * 2

call skepu_write_vector_int(vec_handle, i, newval)
end do

! Call FORTRAN wrapper to C wrapper with skeleton call
vec_handle = square(vec_handle, vec_handle)

! Logging
call skepu_flush_vector_int(vec_handle)
write(*,*) 'Contents of vector: '
doi=0, N-1
val = skepu_read_vector_int(vec_handle, i)
write(*,fmt="(i0,1x)",advance="no") val
end do
write(*,*) '!

! Deallocate
call skepu_delete_vector_int(vec_handle)

end program skepu_in_fortran

102

7.6. Continuous integration and testing

f_appi.f SCIECnEI €= skeleton3.cpp

1] 1 L} 1]
: C / Fortran ! ! C++ '
! pm—— : : :
]] L} 1]
: : : !
! [r—— : :
1 1]
: c_app2.c B skeiotonz.o DUV
] L} 1]
1 1]
] : :
: i !
] L} 1]
1] 1 1
] L} 1]
1] 1]

Linker

Executable

Figure 7.4: Build system for SkePU applications using the Fortran interface.

7.6 Continuous integration and testing

SkePU is primarily a research-oriented project, distributed as open-source
and not marketed as a commercial product. However, part of the goal of
SkePU is to be a viable tool for integration into existing or new C++ applica-
tions as a way to parallelize computation in a portable and performant man-
ner; or at the very least be a good choice for prototyping skeleton program-
ming or high-level parallelism in general. This goal requires some level of
stability and reliability of SkePU as well as an accessible installation process.
As SkePU has matured as a framework over the past few years, it has been
evolving in these aspects too, and as of now has an established continuous
integration system in place, including automated testing facilities ranging
from unit-level tests (for instance, on smart data-container operations) as
well as system-level tests of the entire build-and-run process of SkePU ap-
plications. The testing infrastructure is relatively new and the number and
types of tests are steadily increasing.

7.7 Dependencies

SkePU requires the target platform to provide a C++11-conforming com-
piler. C++11 support in compilers is quite mature today, and support is
available in all recent versions of GCC, Clang, and the Intel, Microsoft, and
Nvidia toolchains. Access to the precompiler tool is also necessary for par-
allel builds, so by extension a development system needs to be able to build
LLVM and Clang. These code repositories and the generated build files are
quite large, several hundreds of megabytes in total. However, the SkePU
toolchain is designed to allow for cross-precompilation. In other words,
all decisions based on the architecture and available accelerators, etc., are

103

7. IMPLEMENTATION

made after the precompilation step, and it is possible to split the build pro-
cess of SkePU programs such that the precompilation occurs on a system
with the full precompiler LLVM stack installed. The final compilation step
only needs the backend compiler, and can be done, e.g., on an embedded
system with a small storage footprint.

Cmake is used throughout LLVM and also for the SkePU examples. For
testing, SkePU relies on the ctest build environment (included as part of
Cmake) and on Catch 2 for the test program implementation.

7.8 Availability

SkePU is made available to the general public through an open-source dis-
tribution of all its source code, including the source-to-source compiler. It
is published with a permissive modified four-clause BSD license and hosted
on GitHub®. Cmake support and extensions helps making the SkePU com-
piler toolchain possible to integrate in existing application build systems.
Documentation and code samples are hosted at the SkePU website, and sev-
eral recent publications on SkePU are available as open access.

Shttps://skepu.github.io

104

Hybrid CPU-GPU
skeleton execution

This chapter is closely based on the following publication:

Tomas Ohberg, August Ernstsson, and Christoph Kessler. “Hybrid CPU-
GPU execution support in the skeleton programming framework SkePU.”
in: The Journal of Supercomputing (Mar. 2019). 1SSN: 1573-0484. DOI: 10.
1007/s11227-019-02824-7

Experimental evaluation is presented later, in Chapter 15.

In this contribution, initiated during Tomas Ohberg’s master’s thesis
[118] supervised by August Ernstsson, we present a hybrid execution back-
end for SkePU. The backend is capable of automatically dividing the work-
load and simultaneously executing the computation on a multi-core CPU
and any number of accelerators, such as GPUs. We show how to efficiently
partition the workload of skeletons such as Map, MapReduce, and Scan! to
allow hybrid execution on heterogeneous computer systems. We also show
a unified way of predicting how the workload should be partitioned based
on performance modeling.

1The implementation has since been extended to cover MapPairs and MapPairsReduce,
which were introduced later.

105

8. HYBRID CPU-GPU SKELETON EXECUTION

8.1 Introduction

An effective parallel programming framework should not only let the pro-
grammer implement the applications to run on any processing unit the
hardware provides, but also to run on all processing units, dividing the
workload between multiple processing units, possibly of different kind.
This way of simultaneously executing an algorithm on multiple, heteroge-
neous processing units is referred to as hybrid execution. To relieve the bur-
den of partitioning and scheduling from the programmers, the frameworks
should preferably figure out the best way to divide the workload automat-
ically. Such a system must take the relative performance of the hardware
components of the system executing the application into consideration, as
well as the characteristics of the computation.

The rest of this chapter is structured as follows: Section 8.2 presents the
new hybrid backend implementation and how the workload is partitioned
in all skeletons. This is followed by Section 8.3, where the auto-tuner is de-
scribed. Related libraries and frameworks with support for heterogeneous
architectures are discussed in Chapter 2.

The results of performance evaluations made on the hybrid execution
implementation are presented in Chapter 15.

8.2 Workload partitioning and implementation

The old implementation of hybrid execution in SkePU 1 used the StarPU
library as a backend. This implementation was ported to SkePU 2 and later
as a baseline to compare the new hybrid backend to. See Section 2.4.6 for
further background on the StarPU programming environment.

The new hybrid execution implementation in SkePU is made as a new
backend, allowing the programmer to explicitly choose whether or not to
use it. During precompilation the hybrid backend is automatically included
if the OpenMP and either CUDA or OpenCL is selected. The hybrid backend
works with both CUDA and OpenCL. Which accelerator implementation will
be used is determined by availability and the programmer’s preference.

In the first stage of a skeleton invocation, the workload is partitioned
into two parts by the hybrid backend: one for the CPU and one for the ac-
celerators. The CPU and accelerator parts are then further divided between
the CPU threads and any number of accelerators respectively. The hybrid
skeleton implementations use OpenMP, where the first thread will manage
the accelerators and the rest of the threads will work on the CPU parti-
tion. The implementation is very similar to the already existing OpenMP
backend, in order to match its performance. To reduce duplication of code
within SkePU, the accelerator partition is computed by the already exist-
ing CUDA or OpenCL backend implementations. To make this work, some
of the internal APIs of the accelerator backends (CUDA and OpenCL) had to

106

10

8.2. Workload partitioning and implementation

Listing 8.1: Using the hybrid backend with a manually set partition ratio.

const int NUM_THREADS = 16;
const int NUM_GPUS = 1;
const float PARTITION_RATIO = 0.2;

skepu::Vector<int> in, out;

skepu: :BackendSpec spec(skepu::Backend::Type::Hybrid);
spec.setCPUThreads (NUM_THREADS) ;
spec.setDevices(NUM_GPUS) ;
spec.setCPUPartitionRatio(PARTITION_RATIO);
skeleton_instance.setBackend(spec);

skeleton_instance(out, in);

be generalized to work on subparts of containers. As both accelerator back-
ends already have support for multi-accelerator computations, also the hy-
brid backend has support for hybrid execution with multiple accelerators.
The workload partitioning in the accelerator backends is however, still lim-
ited, as the work is evenly divided between all accelerators. This works well
when all accelerators are of the same type, but will not be optimal in case
different accelerator models are used.

The workload is partitioned according to a single parameter: the parti-
tion ratio. The ratio defines the proportion of the workload that should be
computed by the CPU; the rest is computed by the accelerators. The parti-
tion ratio can either be manually set by the programmer, or automatically
tuned per skeleton instance to make SkePU predict the optimal partition
ratio for a given input size. The auto-tuning will be described later in this
paper. How to use hybrid execution with a manually configured partition
ratio is shown in Listing 8.1. This example shows how to set up hybrid exe-
cution for 16 CPU threads and one accelerator, where 20% of the workload
will be computed by the CPU threads, the rest by the accelerator. Which ac-
celerator implementation (CUDA or OpenCL) to use is specified by compiler
flags.

Map is highly data parallel by nature and is therefore straightforward to
partition. The ratio defines how many output elements to compute on the
CPU, the rest is computed by the accelerator backend. The CPU partition
is further divided into equal sized blocks, one for each CPU thread. The
partitioning scheme of the Map skeleton is shown for three CPU threads in
Figure 8.1.

Reduce is performed in two steps. The partition ratio defines how many
input elements to be reduced on the CPU, the rest is reduced by the accel-
erators. The CPU partition is further divided into equally sized blocks, one
per CPU thread. First, each CPU thread and the accelerator backend reduce
their block of the input data to produce a temporary array of partial reduc-

107

8. HYBRID CPU-GPU SKELETON EXECUTION

Input 1 ”]

Input 2

= |

Output H]

CPU Thread #1 || CPU Thread #2 || CPU Thread #3 Accelerator backend

Figure 8.1: Partitioning of the Map skeleton.

tions. This small array is then reduced by a single CPU thread to a global
result. Partitioning of the Reduce skeleton for one-dimensional input con-
tainers with two CPU threads is shown in Figure 8.2.

ol | LT PP
® 02 b2 X ® ® ® b2
b2 b2 b2 ®
CPU CPU ®
Thread #1 Thread #2 Accelerator backend

Temporary array Djj

Single CPU thread 02y Q

Output D

Figure 8.2: Partitioning of Reduce skeleton.

MapReduce is implemented in a similar way to the Reduce skeleton. The
input arrays are first partitioned as in the Reduce skeleton and the CPU
partition is evenly divided between the threads. Each CPU thread and the
accelerator backend reduce their part of the data, by first performing the
Map step. The intermediate results are then reduced down by a single CPU
thread. Partitioning of the MapReduce skeleton is shown in Figure 8.3.

MapOverlap is similar to the Map skeleton. The partition ratio defines
how many output elements to compute on the CPU, the rest being computed
by the accelerators. The CPU partition is then divided into one block per

108

8.2. Workload partitioning and implementation

warl | [J VLI LT[]

36656 608056608888 a s
ozl | | QLTI

& & | & 8| 8 8 & &

®r @ ‘R ®x

CPU CPU \ ®"
Thread #1 Thread #2 \ : Accelerator backend

Temporary array I:I:I:‘

Single CPU thread @(®
R

Output |:|

Figure 8.3: Partitioning of MapReduce skeleton.

CPU thread. Extra consideration had to be taken to all variations of edge
handling and different corner cases caused by the size of the overlap region.
Partitioning of the one-dimensional MapOverlap skeleton with an overlap
of 1 element on each side is shown in Figure 8.4. The work of a single user
function call is highlighted in yellow.

Input

QW RN QRN IR

Output

CPU Thread #1 || CPU Thread #2 || CPU Thread #3 Accelerator backend

Figure 8.4: Partitioning of MapOverlap skeleton.

Scan has more data dependencies than the other skeletons and requires
a more complex partitioning implementation. The input array is parti-
tioned into a CPU and an accelerator part as before, and the CPU partition
is further divided into equally sized blocks, one per CPU thread. Each CPU
thread and the accelerator backend start by performing a local scan of their

109

8. HYBRID CPU-GPU SKELETON EXECUTION

block of the input data. After this step, each block misses the scan offset of
the preceding blocks. The last resulting element of the local scan of each
CPU block are collected into an temporary array and a single CPU thread
performs a scan on that array. This produces an array of the missing offset
values of each block. In the second step, each CPU thread (except for the
first, as its block is already complete) combine their local scan result with
the missing value from the array. For the CPU, the local scan step and the
combining step require the same number of operations, one per element in
the block. This makes the two steps take approximately the same amount
of time. This is not the case for the accelerators on the other hand, espe-
cially not a GPU. The first step is much less data parallel and takes longer
than the second step where a number of independent operations are made
on different data elements. This means that a GPU will go idle if the first
and second steps are to be made synchronized with the CPU, as it will fin-
ish its second step much faster than the CPU. This was solved by letting the
accelerator backend take care of the last part of the input array. As noth-
ing is dependent of the result of the last block, the result of the local scan
of the accelerators’ partition is not needed in the missing values array. We
can thus let the accelerators spend more time on the first step than the CPU
threads are spending, and only make the accelerators check that the CPUs
have produced the array of missing values before starting the second step.
This makes load balancing between CPU and accelerators much easier and
utilizes the available processing capacity better. Partitioning of the Scan
skeleton is shown in Figure 8.5.

Apart from the partitions shown here, there are also variants for Map
on matrices, one-dimensional and two-dimensional Reduce on matrices as
well as row-wise MapOverlap on matrices. The implementation partitions
the elements between the PUs based on the partition ratio, just as if it was
an array. In the case of Reduce and MapOverlap, the matrix is partitioned
row-wise, so all PUs get whole rows to operate on. This can make it hard to
balance the workload for matrices with few rows. However, in connection
with automatic backend selection tuning [48], such cases would probably
not select the hybrid execution at all. A more sophisticated partitioning for
matrices would be hard to realize, especially for the MapOverlap skeleton,
due to the many corner cases and complex data access patterns.

8.2.1 StarPU backend implementation

To show the advantages of the static workload partitioning in the new hy-
brid execution backend, the experimental StarPU integration from SkePU 1
was ported to SkePU 2. Similar to SkePU, StarPU uses its own custom data
management system. In order to keep SkePU’s smart container API [47], the
smart containers automatically transfer the control to StarPU once they are
used with the StarPU backend. The control is taken back by SkePU once the

110

8.2. Workload partitioning and implementation

) | [P LTI
X b2y ®
® ® ® & ® @ (24 !
HEEEEEEEEEEE ®
CPU Thread #1 CPU Thread #2 CPU Thread #3 %
®

Master CPU Thread ® ‘

Array of missing values I:Ijj Accelerator backend

CPU Thread #1 CPU Thread #2 CPU Thread #3 Accelerator backend

HEEEEEEEEEEEEEEE

Figure 8.5: Partitioning of Scan skeleton.

Output

container is used with one of the other backends. The memory manage-
ment code in SkePU 2 was not changed since SkePU 1, allowing this part of
the code to be reused from the old SkePU 1 integration of StarPU. StarPU is
integrated into SkePU 2 as a separate backend, just as our hybrid execution
implementation. This, together with the memory management implemen-
tation allows the already existing SkePU backends to be used alongside the
StarPU backend. No changes had to be made to the API of SkePU, apart from
adding StarPU as an extra backend type. Currently only the main features of
the Map, Reduce and MapReduce skeletons are ported, but more skeletons
and features will be ported in the future.

As StarPU is a task-based programming framework, a SkePU skeleton in-
vocation must be mapped to a number of tasks. This is done by splitting the
workload into a number of equal-sized chunks. The programmer can man-
ually tweak the number of chunks, as this affects the performance. More
chunks are desirable for larger input sizes as it makes load balancing easier,
but for small input sizes too many chunks will lead to significant scheduling
overheads. The StarPU backend has two implementation variants, one us-
ing OpenMP and one using CUDA. The already existing OpenMP and CUDA
backend implementations could not be reused due to the abstraction gap
between SkePU and StarPU. This gap was noticed already during the inte-

111

8. HYBRID CPU-GPU SKELETON EXECUTION

gration of StarPU into SkePU 1 and it has since grown even more in SkePU 2
with the increased use of metaprogramming and other high-level C++ fea-
tures. StarPU uses a lower level C-style APl and passes arguments using void
pointers and runtime type casting. SkePU 2, on the other hand, builds argu-
ment lists at compile time using variadic templates and parameter packs. It
was still possible to integrate them by implementing the StarPU functions
as static member functions, creating the argument handling code at com-
pile time.

8.3 Auto-tuning

Apart from manually setting the partition ratio, SkePU can automatically
predict a suitable partition ratio by performance benchmarking. Due to how
general and flexible the SkePU framework is, implementing an auto-tuner
that works well for every imaginable skeleton instance may not be possible.
The execution time could, for example, be bound by the size of the ran-
dom access containers, by uniform arguments, or even be data-dependent
on container elements. Predicting optimal partition ratio for such skeleton
instances would require very sophisticated and time consuming algorithms
and/or user interaction. Instead focus was put on implementing a tuner
that would give good predictions for common cases, where the execution
time grows linearly with the size of the element-wise accessed containers.
For specific skeleton instances the partition ratio can always be set by hand.

The auto-tuning presented in this paper resembles the tuning presented
by Luk et al. [103] in their Qilin framework, although our tuner extends this
work by supporting multiple accelerators. This is possible as our implemen-
tation sees multiple accelerators as one single device, thanks to the already
existing multi-device implementations in the CUDA and OpenCL backend.
Our tuner builds two execution time models, one for the CPU and one for the
accelerator backend. At tuning time the programmer must choose the num-
ber of CPU threads and accelerators to tune for. The tuning is performed
once per each skeleton instance in the application for a specific machine.
In case the configuration of the machine changes (for example if accelera-
tors are added/removed or if more or less CPU cores are used) the skeleton
instance has to be re-tuned. The tuning is performed on the OpenMP and
CUDA/OpenCL backends. The OpenMP backend will be executed with one
thread less than specified by the programmer, as one thread in the hybrid
backend will be fully dedicated to running the accelerator backend. The
programmer can choose upper and lower limits to the input size, as well
as the number of input sizes to benchmark. The input sizes to benchmark
is then evenly spread over the interval defined by the limits. The OpenMP
and CUDA/OpenCL backends are executed five times on each input size, and

112

8.3. Auto-tuning

the median value is inserted into the execution time model of that backend.
This is made to minimize the impact of temporary fluctuations.

Once the execution time benchmarks are stored in the model, the model
is fitted to a linear curve using least-squares fitting. As the execution time
grows linearly with all skeletons (assuming the user function takes O(1)
time), a linear approximation of the execution time is sufficient for our
needs. The fitting will create two linear equations on the form:

t=ax+b (8.1)

where t is the execution time, x is the input size and a and b are parameters
found by the least-squares fitting.

Let us consider a problem size N and a (CPU) partition ratio R. The parti-
tion size of the CPU will then be N R and the partition size of the accelerator
N(1- R). This gives us execution times ¢, and t,.. for the CPU and accel-
erator respectively:

tepu = Gepu N R + bepy, (8.2)

tace = aach(]- - R) + bacc (83)

The workload is perfectly balanced between the CPU and the accelera-
tor if ¢.py = tace. Combining the equations 8.2 and 8.3 and solving for the
partition ratio R gives:

AgeeN +bgee — b
R — acc acc cpu 8'4
N(acpu + aacc) ()

At runtime Equation (8.4) is used to predict the optimal partition ratio
for a given input size N. In practice the value of R can be in three inter-
vals: the interval 0 < R < 1, where hybrid execution is predicted the opti-
mal strategy, and the value of R is used as the partition ratio; R < 0, where
accelerator-only execution is considered optimal; or R > 1, where CPU-only
execution is considered optimal. In the last two cases, the hybrid backend
will automatically fall back to executing the skeleton using the OpenMP or
CUDA/OpenCL backends, as the overhead of hybrid execution is predicted
to be too high.

113

Skeleton programming
on large-scale cluster
systems

This chapter is partly based on the following publication:

August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and Christoph
Kessler. “SkePU 3: Portable High-Level Programming of Heterogeneous
Systems and HPC Clusters.” In: International Journal of Parallel Programming
49 (2021), pp. 846-866. DOIL: 10.1007/s10766-021-00704-3

The SkePU-GPI section of the chapter is adapted from the following mas-
ter’s thesis:

Joel Almqvist. “Integrating SkePU’s algorithmic skeletons with GPI on a
cluster” LIU-IDA/LITH-EX-A-22/002-SE. MA thesis. Department of Com-
puter and Information Science, 2022

Implementation of the StarPU-MPI cluster backend detailed in this chap-
ter was initiated as a student project; Joel Almqvist likewise implemented
the StarPU-GPI backend as part of a master’s thesis project. Both were
conducted internally at LinkGping University, supervised by August Ernsts-
son. The StarPU-MPI backend has since been further integrated as a proper
SkePU backend and was extended with new ideas as part of the EXA2PRO
project. The GPI backend detailed later remains an internal prototype.

Experimental evaluation is presented later, in Chapter 15.

115

9. SKELETON PROGRAMMING ON LARGE-SCALE CLUSTER SYSTEMS

9.1 Background

For any kind of parallel programming application, the key to large-scale per-
formance is execution on cluster systems. A computational cluster consists
of a large number of computers, called nodes, linked together by a high-
speed interconnection network along with peripheral systems such as high-
throughput persistent storage. Each individual node is typically very simi-
lar to a stand-alone computing workstation, albeit especially powerful and
with server-grade components such as large CPUs and ECC memory. This
modular cluster architecture built on off-the-shelf components is used in
supercomputers and data centers and makes such systems relatively cost-
efficient and scalable. As there are often many thousands of nodes, the clus-
ter is typically work-time shared between several users and running pro-
grams simultaneously. Specialized job and resource management software
(for example, SLURM?) schedules and maps user jobs to subsets of the avail-
able nodes. Note that cloud computing may use cluster resources, but the
term implies an additional level of virtualization and resource distribution.
In this text, we are only interested in running programs directly on the clus-
ter through its job scheduler, as is the common practice for scientific high-
performance computing workloads.

Cluster systems have some fundamental differences from what we will
from now call "single-node” computing. Firstly, the memory in a cluster is
split up among its nodes; they are so-called distributed memory systems. This
is similar to how accelerators (e.g., GPUs) on single-node platforms come
with their own memory pool and address space, but different in that the ac-
celerator memory is heterogeneous with the main memory, often smaller
and with different performance characteristics. The main memory in a clus-
ter is homogeneously split up in equal parts among all nodes. Secondly, con-
trol flow works differently. Whereas a single-node system can run a single
process with several individual threads providing parallelism, the cluster
architecture necessitates at least one individual process on each node, typ-
ically launched from a common program executable (see Figure 9.1). This is
known as the SPMD model (single program, multiple data). Such processes
can only communicate by using the interconnection network, called mes-
sage passing.

Note that the cluster environment of SPMD, distributed memory, and
message passing can be naturally simulated on a single-node system. Indi-
vidual processes may be launched from the same executable and implicitly
are assigned their own memory address space (oblivious to the fact that the
virtual memory feature of the operating system maps all addresses to the
same physical memory). In practice, the above means that any program-
ming environment targeting clusters can run also on single-node systems.

1https://slurm.schedmd.com/

116

9.2. StarPU-MPI backend

As they will run without the assumptions of shared memory, there is typ-
ically significant overhead, and in practice high-performance software de-
signed for clusters combine two programming models into one: distributed
memory programming for inter-node communication and synchronization,
and shared-memory programming in the inter-node context.

Unfortunately, the inverse of the situation detailed in the previous para-
graph is not true: a programming framework, like SkePU, designed for
shared-memory, single-node platforms is not trivial to extend to clusters?.
In this chapter, we will investigate two approaches of achieving cluster ex-
ecution from SkePU single-source programs: one relatively mature imple-
mentation using StarPU-MPI in Section 9.2, and one recent project using GPI
in Section 9.3.

9.2 StarPU-MPI backend

StarPU is a high-level runtime system designed to provide a unified, task-
based programming model for heterogeneous systems, including both CPUs
and GPUs. The goal of StarPU is to create an API which handles mapping and
scheduling, requiring only the programmer to create tasks for the runtime
system to schedule (see Section 2.4.6 for more discussion on StarPU itself).
StarPU has recently been expanded to handle clusters of nodes using MPI
[7].

SkePU 3 provides two different modes of using cluster resources:

« Outer MPI mode: the application code already contains explicit MPI
code for cluster-level parallel execution, using SkePU only locally on
each node for execution of skeletons on multicore CPU and/or accel-
erators.

+ Inner MPI mode: The application does not contain any MPI (nor other
parallelization) code. If an environment for MPI parallel execution
is available (usually, multiple nodes on a cluster), then skeletons can
transparently execute in parallel across these nodes if selecting the
MPI backend.

Outer and Inner MPI mode are mutually exclusive, i.e., for applications
that are pre-parallelized using explicit MPI code the MPI backends of all
skeletons are disabled.

The implementation of inner MPI parallelism is technically based on
generating StarPU task code using the MPI interface of the StarPU runtime
system [8], which detaches each node’s generated send and receive opera-
tions into special CPU codelets that are exposed to StarPU as separate tasks
for dynamic scheduling [7].

2The alternative would be designing a new skeleton programming framework targeting
clusters from the start, such as Musket [157].

117

9. SKELETON PROGRAMMING ON LARGE-SCALE CLUSTER SYSTEMS

SPMD processes

.. Skeleton invocation
.. Skeleton invocation

_Skeleton invocation
_Skeleton invocation

Synchronize
v v v 4 v
(a) single-node SkePU (b) Cluster-SkePU

Figure 9.1: Conceptual control behavior of SkePU programs on single nodes
and in SPMD on clusters.

118

9.2. StarPU-MPI backend

Manual Sequential/weak
communication consistency

SkePU SkePU
- SkePU [SkePU
A4 SkePU l SkePU

(a) Outer MPI (b) Inner MPI

Figure 9.2: Cluster execution modes in SkePU.

Distributed variants of the smart data-containers (Vector, Matrix etc.)
with the same interface as the node-local counterparts come with default
distributions, and each cluster node runs one copy of the SkePU executable
atop a local instance of StarPU in SPMD style. Execution over distributed
container operands follows the "owner-computes rule”, stating that each
node only executes those operations that calculate (write) elements it owns
(i.e., are part of its local partition of the result container).

For using inner MPI parallelism, no syntactic changes in SkePU code are
required, thus following SkePU’s portability principle. The illusion of a sin-
gle SkePU process performing all the work on a single node even with the
MPI backend is maintained by implementing the Reduce skeleton by an MPI
Allreduce operation so that the reduction result is available on each of the
SPMD processes. The weak memory consistency model of SkePU (see Sec-
tion 5.3) applies also to distributed containers: the programmer must ex-
plicitly flush (i.e., gather) them back to the master (i.e., the rank 0 process)
before the most recent values of elements of remote partitions can be ac-
cessed by a read access on the master, or after a write access by the master.

The remaining issue with SPMD execution is that certain operations
(e.g.,1/0) need be protected from being executed everywhere. To make sure
that such code is executed only by some "master” process, such code should
be guarded by the skepu::external construct covered in Section 5.3.1.
The distributed data of the operands to skepu: :external is automatically
flushed. Before the code block is evaluated, read containers are gathered,
and afterwards the write containers are distributed using scattering.

119

9. SKELETON PROGRAMMING ON LARGE-SCALE CLUSTER SYSTEMS

Listing 9.1: GASPI notifications.

if (node_id == 0)
£
gaspi_read (... , node_1, ...);
gaspi_notify(... , node_1, ...);
3
// Node 0 is now able to perform work without
// needing to wait for a respone from the read

Listing 9.2: MPI epochs in one-sided communication.

MPI_Win_fence(..., window_1, ...)
if (node_id == 0)

£
MPI_Get(..., node_1, ...);
3
MPI_Win_fence(..., window_1, ...)
// Any work done by node 0@ here has to
// wait for a remote respone from Get

9.3 GPI backend

The aim of this contribution is integrate SkePU and GPI in order to help de-
termine whether this integration is likely to work, and whether the perfor-
mance behavior of an partitioned global address space (PGAS)-based backend
would be different from that of the StarPU-MPI task-oriented approach. A
prototype implementation has therefore been designed and implemented,
and then compared to the existing cluster backend in order to analyze its
performance and thus evaluate strengths and weaknesses with its design.
One aspect which is of particular interest is whether the new prototype
overlaps computations and communications, as previous evaluation of GPI
required this for good performance [76].

9.3.1 GASPI and GPI

Global Address Space Programming Interface (GASPI)® is a PGAS specifica-
tion created at Fraunhofer Institute for Industrial Mathematics ITWM) for
message passing in clusters. It is similar to MPI in how it is used, as it is
neither a language nor an extension of one, but rather library-based, us-
able within an existing programing language. GPI* is an open-source im-
plementation of the GASPI AP, also created at ITWM. GPI focuses on over-
lapping computations with communications with its one-sided communica-

3http://www.gaspi.de/
‘https://www.itwm.fraunhofer.de/en/departments/hpc/products—-and-
services/gpi-programming-model-future-supercomputers.html

120

9.3. GPI backend

tion primitives, in order to reduce the time spent waiting. These primitives
differ from MPI in that they may execute at any point in the program life-
time once the communication buffers, called segments, have been initialized.
GPI does not use a concept similar to MPI's fences and epochs [164], instead
the communications are synchronized through notifications. These may be
sent by any node, to any other node, and before modifying its segment a
node must wait for such notifications. The difference is subtle, but allows
for less tightly linked communications; for example, in MPI, if a node per-
forms a read, it must wait for its request to finish before leaving the epoch
(Listing 9.2). In GPI, such a wait would not occur unless explicitly stated,
as illustrated in Listing 9.1. The effect of this is that GPI allows for many
concurrent requests, some of which may span over what would be multiple
epochs in MPL The actual transfers within GPI are based around segments,
which are chunks of memory that are globally visible for their group.

The motivation behind the creation of GASPI was MPIs insufficient per-
formance at a large node counts [77]. To achieve this, GPI attempts to over-
laps computations and communications while avoiding bulk-synchronous
communication patterns. A comparison between the two concluded that,
for GPI to outperform MPI, it needs to overlap the communication and
computations appropriately [140]. Certain concepts within GPI are clearly
aimed at this goal, such as notifications which attempt to reduce the num-
ber of global (or group) synchronization points. Furthermore, the concepts
of priority queues is used to separate different kinds of local requests. This
allows for a more fine-grained control of the communication process, which
is important when trying to overlap computations and communications.

9.3.2 Implementation

The GPI prototype only implements a subset of SkePU’s features. The se-
lected skeletons are Map, Reduce and MapReduce, combined with the con-
tainers Matrix and Vector. These were selected as they are among the
most commonly used constructs within SkePU and together they suffice to
solve a relatively large number of problems. Furthermore, by using SkePU’s
flexible Map, it is possible to emulate some other patterns, with subopti-
mal performance. Furthermore, the prototype does not utilize the SkePU
precompiler infrastructure. Recall that any SkePU program is a valid C++
program—this means that any backend which is not strictly dependent on
code generation, e.g., for OpenCL kernel code, can be prototyped indepen-
dently of the precompiler stack.

In this section, we assume that each cluster node runs exactly one pro-
cess®. While the terms are used interchangeably here, the implementation
is generalizable to multiple processes on each node.

SWith a separate level of thread parallelism utilizing multi-core node architectures.

121

10

9. SKELETON PROGRAMMING ON LARGE-SCALE CLUSTER SYSTEMS

Listing 9.3: An example of syntax which the GPI prototype is unable to han-
dle.

skepu: :Matrix<int> m(N , M);
int add_f(int a, int b) § return a + b; 2
auto add = skepu::Map(add_f);

// If the random value is greater than 0
if (std::rand() > 0) § add(m, m, m); %

// If the current time is even
if (std::chrono::system_clock::now() % 2 == 0) { add(m, m, m); %

9.3.3 Design

The execution model of the prototype matches that of GPI and is SPMD,
just like the StarPU-MPI backend. Internally, depending on the construct,
the backend may create an OpenMP parallel region to handle the task us-
ing multiple threads, reducing parallelism overhead internally on each clus-
ter node. The implementation assumes homogeneity among the nodes: as
nothing like the StarPU task management and scheduling layer is present
here, the GPI backend is more sensitive to load imbalances. Furthermore,
the program structure leads to a sort of determinism which is leveraged
to help deduce individual node workloads asynchronously. As long as the
user does not access the node IDs, use if-statements with arguments derived
from node-local sources, or similar, as shown in Listing 9.3, the control flow
of the program is the same for all nodes. Hence, using only its ID and the
total node count, a node is able to deduce global information about a SkePU
call since every other node will perform the same SkePU call with the same
arguments in identical sequence. Allowing for deduction about the other
nodes states is important, as it reduces communication and synchroniza-
tion work.

9.3.4 Synchonization and state tracking

Thanks to the program structure explained above, it is possible to create
a global order of every SkePU call, for all the nodes. These calls are then
divided into phases, and each phase is given an incrementally increasing
and unique operation number. For example, Map is divided into a waiting
phase, an execution phase and a finished phase, which would correspond to
operation numbers N, N + 1 and N + 2. By using these operation numbers,
a node is thus able to deduce the state another node is in currently and
which operations it has not yet executed. An important caveat is that a
node can only deduce which operations another node has not executed if

122

9.3. GPI backend

[0,0,0] [1,2,1] [2.2,1] [3.2,1]

Py ° >
P, [0,0,0] [0,1,1] /[0,2,1] \ (3.3.1]
p, 200 A,OJ]

Figure 9.3: Vector clock schema for three processes; each arrow is an event.
(Figure adapted from [3].)

it itself has executed more operations than the other one. In other words, it
knows which operations a node that is lagging behind will do, but it knows
nothing about what a node that has drifted ahead has done. Furthermore,
the operation numbers are bound to the nodes themselves, whereas most
other parts of the synchronization process are bound to a data-container
object. Hence, the operation numbers are used to order the other aspects
of the synchronization process, which are primarily oriented around data-
container state.

The method for propagating the nodes’ different operation numbers is
based on a synchronization schema known as vector clocks [163] (Figure 9.3).
In this schema, every node has its own counter which is incremented when-
ever an event occurs. An event corresponds to either an independent calcu-
lation or communication. Furthermore, every node stores a vector of the
highest occurred counter for all the existing nodes, including itself. When-
ever it then receives a communication event, it updates any values within its
vector if the incoming counter at the corresponding index is greater. This
results in a causal system where it is possible to see which events occurred
before any given state.

The GPI backend’s synchronization model is heavily based on the vec-
tor clock schema, with the crucial difference that every node has the same
local events. This does not mean that every node necessarily performs the
same computations, but rather that every node performs the same SkePU
operations. What a node does in these phases may vary; for example when
indexing a smart data-container, some nodes must fetch the value remotely
whereas others need not. As such the values within the prototype’s vector
clock correspond to certain phases of a SkePU operation.

The synchronization process is based on operation numbers and con-
straints. A constraint is a tuple containing a node ID and an operation num-
ber. At the end of an operation, a node adds constraints to indicate which
nodes might read from it during this operation. Then, when the node wants
to modify its data, it has to fulfill all of its constraints before it is safe to pro-
ceed. A constraint can be said to be fulfilled when the remote node has

123

9. SKELETON PROGRAMMING ON LARGE-SCALE CLUSTER SYSTEMS

reached an operation number larger than the constraint. Due to the SPMD
nature, a node is able to deduce how the access pattern of an operation is
going to look for all the other nodes and set the constraints properly. The
primary issue here is the random access proxy-containers available in skele-
tons such as Map. Here the user function determines the access pattern and
anode is unable to deduce it without essentially executing the function with
the remote data. As such, to ensure correct behavior, every operation with
arandom access pattern is assumed to read from every other node.

9.3.5 Consistency model and double buffering

The ultimate purpose of the constraints and operation numbers discussed
above is to allow for a weak memory consistency. Every node has a dou-
ble buffer of its local smart data-container partition, which other nodes are
unable to read from. Whenever an operation modifies the data, it always
writes the changes to the double buffer. To allow remote nodes to access
this new data, a node must periodically flush its double buffer and put it
into the actual GASPI segment. This is done as sparingly and late as possi-
ble by letting nodes deduce whether a remote node might need to read from
them during an operation, and only then perform the flush. For example a
simple get (1) operation will make the node holding i flush its changes, but
not any other node. In order to track the changes every node saves the re-
mote state of every other node through the following two fields within the
Matrix class: the last operation which modified it and the last operation
when it flushed its changes. With these fields, every part of the data con-
tainer is able to deduce at which operation number a remote is safe to read
from and when it is not. It also adds fine grained synchronization where
parts of a data container may be flushed while others are not. Thus the op-
eration number where the flushed data is accessible may differ depending
on which node is being read.

Flushes refer to the process of moving the data from the double buffer
into the GASPI segment where it may be read by other nodes. They are done
in two cases, firstly if the local node needs to modify its container which
already is dirty. Then the existing changes are flushed into the GASPI seg-
ment and the new ones applied to the double buffer. The second case is if
the local node deduces that another node needs to read data which exists
in the double buffer, which is only accessible locally. This architecture thus
allows for every node to save two states of its container, and makes it the
nodes’ responsibility to guarantee that the correct state is available at cer-
tain operation numbers. The local nodes do, however, only have knowledge
of the operations it has processed so far, and as flushes only are done when
deemed necessary that an idle waiting period may occur.

124

9.3. GPI backend

9.3.6 Communication pattern

The benefit of the weak consistency model is that it allows for an infinite
drift as long as there are no data dependencies. A node only needs to wait
for a remote node if either it has not produced and flushed the needed data,
or if it needs to read a local value and is yet to do so. With the states of re-
mote nodes being propagated indirectly through the vector clock and local
deductions the expected communication is kept to a minimum. The com-
munications between nodes fall into two categories, polling for information
about the remote nodes state and reading remote elements from one of its
smart data-containers. In particular, communication across different data
containers are never done as a data container is responsible for all commu-
nications with its remote partitions. This makes the design easier, as the
GASPI segments within every data container only needs to be able to store
remote data from other partitions. The dimensions of this segment is thus
adapted at these specific communication patterns and nothing else.

9.3.7 Datarepresentation

This section describes how the Matrix class is implemented in the GPI back-
end. It is the largest class in the GPI backend with a wide set of responsibili-
ties, most importantly tracking the state of its local and remote elements as
well as providing an accessor interface for them. Furthermore it also works
as an alias for the vector class by implementing a few extra functions such as
a one-dimensional constructor. The motivation for the aliasing is that the
differences between the two is minuscule implementation-wise, and this
solution was the most straightforward one while also not replicating any
code unnecessarily.

9.3.8 Data transfers and caching

The Matrix class is important to the data transfers of the prototype as it
manages the GASPI segments, which are the destination and origin of all
read requests. The elements of the Matrix is stored in a GASPI segment,
but this segment also has extra memory allocated for the transfer of remote
elements. The size of this segment is the size of the local partition plus
the global size of the container. Thus every remote element has its own
unique position in the segment at the cost of high memory usage. While
the elements in Matrix also are stored in the same segment, logically the
two parts are kept separate and referred to as the data container segment
and communication buffer, respectively. While the data container segment
is only ever used for storing local values, the usage of the communication
buffer are many and determined by the algorithmic skeleton.

One of Matrix most important functions is proxy_get which is called
from the proxy container dummy class and allows for the access of any ele-

125

9. SKELETON PROGRAMMING ON LARGE-SCALE CLUSTER SYSTEMS

ment, both local and remote. This class is used by certain skeletons, namely
Map and MapReduce, and its purpose is to provide the user with a random
accessing pattern of the elements. proxy_get returns a value from the data
container, given an index, in a thread-safe manner. Conceptually this func-
tion may either return the local or cached value instantly or it may need to
transfer it. If this is the case then it also transfers all elements of the remote
node and puts them in the communication buffer. Any further readings to
this node will now read the cached data.

By leveraging the state tracking fields mentioned in Section 9.3.4, as well
as tracking the state of the cache, the values within it may be reused for mul-
tiple operations. Thus the transfers are very large but the transferred ele-
ments may be reused for multiple operations, limiting the amount of trans-
fers and amortizing the overhead.

9.4 Conclusions

This chapter has presented two approaches for cluster execution of SkePU
programs. Both the StarPU-MPI backend and the GPI backend are posi-
tioned as abstractions one level above other programming frameworks,
which to some extent couples SkePU’s performance to that of the under-
lying library. This is in particular the case with StarPU, which provides
dynamic scheduling through its task interface. This gives SkePU load-
balancing options not present to this level in other backends, but comes
with task management overhead. Several of the evaluations in Chapter 15
are applied to the StarPU backend; the GPI backend has seen limited initial
evaluation (Section 15.8). Future work will perform further evaluation and
performance analysis of the two approaches.

126

Extending smart
data-containers for data
locality awareness

This chapter is closely based on the following publication:

August Ernstsson and Christoph Kessler. “Extending smart containers for
data locality-aware skeleton programming.” In: Concurrency and Computa-
tion: Practice and Experience 31.5 (2019), €5003. DOI: 10.1002/cpe.5003

Material from the above paper is ©2018 John Wiley & Sons, Ltd. and in-
cluded in this thesis with permission from the copyright holder.

Experimental evaluation is presented later, in Chapter 15.

In this chapter, we present an extension for the SkePU to improve the
performance of sequences of transformations on smart data-containers. By
using lazy evaluation, SkePU records skeleton invocations and dependen-
cies as directed by smart container operands. When a partial result is re-
quired by a different part of the program, the run-time system will process
the entire lineage of skeleton invocations; tiling is applied to keep chunks
of container data in the working set for the whole sequence of transforma-
tions. The approach is inspired by big data frameworks operating on large
clusters where good data locality is crucial. We also consider benefits other
than data locality with the increased run-time information given by the lin-
eage structures, such as backend selection for heterogeneous systems.

127

10. EXTENDING SMART DATA-CONTAINERS FOR DATA LOCALITY AWARENESS

10.1 Introduction

In data centers and supercomputers, parallelization is taken to a differ-
ent level. A large number of computer nodes are integrated with an inter-
connection network, processing large amounts of data. In these systems,
computational resources typically exist in abundance, while data access is
the performance bottleneck. In big data analytics, frameworks with inter-
faces similar to algorithmic skeletons have been constructed to solve mostly
the same problems of programmability, performance, and portability. The
MapReduce programming model [51] from Google was the first successful
such framework. It gained popularity outside of Google though the open-
source implementation Hadoop®. An evolution of MapReduce is Spark?, like
Hadoop open-source and maintained by the Apache Software Foundation.

As data access latency is important in big data scenarios, Spark and re-
lated frameworks have developed techniques to optimize data locality and
reduce the number of unnecessary loads and stores. However, memory ac-
cesses are also an important consideration on the smaller scale of single-
chip parallelism, as the memory technology and interfaces have not im-
proved at the same pace as multi-core processors. This is known as the mem-
ory wall [158]. In this contribution, we apply ideas from big data frameworks
to skeleton programming and evaluate the results.

This chapter contains a description of the implementation of lazy eval-
uation and loop tiling of sequences of skeleton invocations as well as a dis-
cussion of application scenarios. Performance evaluation of loop tiling on
example applications using the Map and MapOverlap skeletons is presented
in Chapter 15.

We first present an overview of big data technologies in Section 10.2.
Section 10.3 details our contribution, lazy evaluation and loop tiling for the
SkePU skeleton framework, and its implementation. Section 10.4 compares
our contribution to compile-time kernel fusion and presents applications
better suited to our dynamic solution. Section 10.5 lists related work.

Performance evaluation results are presented later, in Section 15.3.

10.2 Large-scale data processing with MapReduce and
Spark

This section introduces the MapReduce and Spark programming environ-
ments for big data applications. These models share a basic functional in-
terface with algorithmic skeletons, but the trade-offs and design choices are
different. In big data contexts, the cost of computation is small compared

Ihttp://hadoop.apache.org
2http://spark.apache.org

128

10.2. Large-scale data processing with MapReduce and Spark

to the cost of data movement, and as such higher-level programming lan-
guages such as Java or Python are typically used.

10.2.1 MapReduce

The MapReduce programming model is designed for large-scale data pro-
cessing on clusters. It is a high-level model while still being flexible enough
to allow any computation to be expressed with a sequence of the funda-
mental programming construct: the MapReduce block. As the name sug-
gests, this building block has similar semantics to the MapReduce skeleton
in SkePU, but there are additional parts to accommodate the cluster sce-
nario. MapReduce can roughly be deconstructed into three steps:

1. Map phase
This step performs a transformation of each key-value pair in the in-
put sequence to zero, one, or several key-value pairs in the output se-
quence, perhaps in different domains.

2. Shuffle phase
The shuffle phase will shuffle and sort the key-value pairs so that ele-
ments with identical keys are located on the same node.

3. Reduce phase
The reduce phase will, for each key, perform some accumulation of the
set of values associated with this key.

Due to this separation of computation into super-steps with communi-
cation only occurring at well-defined points, the MapReduce model can be
considered an implementation of the bulk-synchronous programming (BSP)
model [120, 152]. Each MapReduce super-step begins with each node read-
ing its assigned subset of the input data from secondary storage, and ends
with a write of the output to disk.

10.2.2 Spark

The goal of Spark is to improve upon the performance of MapReduce, specif-
ically in iterative applications such as machine learning [113], by means of
avoiding unnecessary reads and writes to the file system [161]. Spark does
this by introducing an abstraction called resilient distributed datasets (RDDs),
read-only collections of arbitrary data partitioned over a set of nodes. Spark
classifies the computations that can be done on RDDs into two classes: trans-
formations and actions. In essence, computations that can preserve the cur-
rent partitioning (i.e., can be done locally on the residing node) are trans-
formations. These include, but are not limited to, map, filter, union, and
intersection. A transformation on an RDD always returns a new RDD.

129

10. EXTENDING SMART DATA-CONTAINERS FOR DATA LOCALITY AWARENESS

Listing 10.1: Word count program with Spark in Scala.

val textFile = sc.textFile("hdfs://...")

val counts = textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...™)

Actions, in contrast, all require some form of collection or reduction of the
RDD objects. Typical actions include reduce, count and collect.

The reason for classifying computations into transformations and ac-
tions are that operations on RDDs are lazy. The computation is not carried
out immediately upon evaluation of a function call, instead recorded into a
lineage graph associated with the returned placeholder RDD. As long as only
transformations are performed, Spark can build up the lineage graph with-
out performing any actual computations.

10.3 Lazily evaluated skeletons with tiling

In this section, we present an approach to apply the idea of lineages and
lazy evaluation to skeleton programming.

10.3.1 Basic approach and benefits

Lazy evaluation of skeleton invocations works by, instead of computing
the skeleton algorithm immediately at the call site, recording the skeleton,
smart container arguments, and the surrounding context. The system will
detect dependencies across skeleton invocations and build a graph, a lin-
eage, where the nodes are skeleton invocations with recorded contexts and
the edges represent dependencies.

A lineage graph is therefore fundamentally tied to the smart data-
containers. A single smart container can be used as input or output in mul-
tiple nodes of a lineage. As long as the operations on smart data-containers
are element-wise transformations, the lineage graph can continue to be
built up (otherwise, it is an evaluation point, see Section 10.3.4). The lineage
graph essentially encodes a partial order of skeleton invocations, where the
ordering relation models dependencies and thus is dependent on the con-
tainers used as arguments. As the lineage graph contains all dependency
information, the physical call order of skeleton invocations is irrelevant and
the runtime system is free to execute skeleton invocations in any sequence
that is compatible with the dependency-carried partial ordering. The run-
time can as such aim to find the sequence that offers the best locality of
reference. As will be clear later, evaluations of skeleton invocations will in

130

10.3. Lazily evaluated skeletons with tiling

Listing 10.2: Before transformation.

for i in 1 to N do
a[i] = a[i] * b[i]

for i in 1 to N do
c[i] = a[i] + a[i]

practice not even follow a strict sequence, as the runtime will interleave
different phases on a per-element basis.

With the introduction of lazy skeletons in SkePU, the following areas will
all have opportunities for performance improvements, among others:

« Backend selection on lineage level instead of single invocation level.

« Cache-aware skeleton algorithms with tiling applied to sequences of
skeleton transformations.

« Big data scenarios, by further applying tiling on secondary storage-
aware smart data-containers.

« Secure smart data-containers, where data is stored in encrypted
form in off-chip memory and is decrypted only when part of the cur-
rent working set.

10.3.2 Backend selection

The lineage makes more information available to the run-time backend se-
lection mechanism. Instead of greedily applying the tuning parameters to
a single skeleton invocation at a time, the backend can be selected for the
whole sequence at once. A typical consideration for backend selection is
whether the advantage of performing a computation on an accelerator is
worth the effort of moving data back and forth. For a sequence of compu-
tations, data movement will only happen once in either direction but the
computational load will encompass all skeleton invocations in the lineage.

10.3.3 Loop optimization

By collecting information about a series of data transformations (Map skele-
ton invocations) we can apply several loop optimization techniques to im-
prove the temporal locality of reference [52].

Loop fusion is a known technique for low-level compiler optimization.
Two or more loops can be combined into one, as in Listings 10.2 and 10.3.
However, in the context of skeleton lineages, the overhead of switching be-
tween the contexts of different skeleton invocations for every single el-

131

10. EXTENDING SMART DATA-CONTAINERS FOR DATA LOCALITY AWARENESS

Listing 10.3: After transformation.

for i in 1 to N do
ali] a[i] * b[i]
c[i] al[i] + a[i]

; e .

e

A/“l"f ! '/’; A/: 1 fi e ,

e
(a) No tiling (b) Tiling

Figure 10.1: Sequence of skeleton transformations with and without tiling.

ement is too large for it to be practical. Locality can still be preserved,
though, if the switching is done in between processing chunks of elements.

Loop tiling (also known as loop blocking or nesting) is a well-known tech-
nique for optimizing the locality of reference [92], especially on large, two-
dimensional data sets.

Figure 10.1 conceptually illustrates tiling of skeleton lineages. fj, f1, and
f2 are skeleton transformations lazily recorded in a lineage. At evaluation
time, without tiling, each transformation will be processed completely be-
fore moving on (as is the case without lazy evaluation), see Figure 10.1a.
With tiling, a chunk of the container space will have all transformations ap-
plied before moving on to the next chunk, as in Figure 10.1b. (In practice,
there may be multiple containers involved and the destination container
may or may not be the same as one of the inputs.)

10.3.4 Evaluation points

In contrast to the read-only RDDs in Spark, SkePU offers much more flexi-
bility in how smart data-containers can be used. One consequence of this
is that operations on smart data-containers cannot easily be separated into
transformations and action classes, and from there decide when to apply
the lazily accumulated skeleton invocations. A smart container’s lineage
will be evaluated if it is used as an input to Reduce or Scan, if it is used as a
random-access input argument to Map, MapReduce, MapOverlap, or Scan,
or if individual elements are accessed.

132

10.3. Lazily evaluated skeletons with tiling

Lineages can also be discarded without evaluation, as skeleton algo-
rithms are semantically free of side effects. This will occur if a smart con-
tainer is destroyed or reused as output before an evaluation point has been
reached.

10.3.5 Further application areas

The proposed technique offers an automatic solution to make skeleton pro-
gramming more cache-aware. However, the approach is general enough to
accommodate any scenario in which there is a substantial cost associated
with loading and storing data to and from the current working area. In big
data processing, the working area is instead the primary memory of a com-
pute node, and the load and store operations are slow network communi-
cation or disk I/0.

As security and integrity become increasingly important aspects of com-
puting, we can also envision use-cases where data is permanently encrypted
in main memory and only decrypted and moved to a smaller, isolated (and
secured by other means) memory area for processing. The cost of decrypt-
ing and encrypting data would be significant compared to the typically rel-
atively simple Map transformations.

10.3.6 Implementation

The technique described above has been implemented in SkePU for its Map
skeleton, and subsequently extended to also include the MapOverlap skele-
ton as described later in Section 10.3.7. For lazy skeleton evaluation, we
use C++11 lambda expressions to capture the context of a skeleton invoca-
tion (container iterators, uniform arguments, and skeleton settings such as
a user-set backend specification). Lineages are graphs of linked nodes, each
node containing a function object resulting from the lambda expression as
well as dependency information as addresses of the container arguments.
The containers themselves need not be captured, as the lifetime of a lin-
eage is tied to the scope of a smart container. Unevaluated lineage nodes
will simply be discarded when the associated containers go out of scope.

The syntax for SkePU is unchanged. Lazy evaluation and lineage con-
struction occur automatically, with optional API added for explicit control,
such as requesting the evaluation of container. Adding a node to a lineage
will create dependencies to all nodes with corresponding container argu-
ments, as such, an operation is introduced to remove transitive dependen-
cies from the lineage graph.?

An example program can be seen in Listing 10.4. The program contains
only Map skeletons with various transformations and parameter configura-

3This could also be done at node insertion time, but may induce some overhead when the
lineage grows large.

133

10. EXTENDING SMART DATA-CONTAINERS FOR DATA LOCALITY AWARENESS

Listing 10.4: Program generating a lineage graph when evaluated lazily.

// Smart containers

skepu: :Vector<float>
vl(size, 1), v2(size, 2), v3(size, 3),
v4(size, 4), v5(size, 5), v6(size, 6),
v7(size, 7), v8(size, 8), v9(size, 9);

10

15

20

25

30

35

40

45

50

// User functions

float add_f(float a, float b)
£

3

float sub_f(float a, float b)
£

3

return a + b;

return a - b;

float mult_f(float a, float b)
£

3

return a * b;
float square_f(float a)
£
3

// Skeletons

return a * a;

auto add = skepu: :Map(add_f);
auto sub = skepu::Map(sub_f);
auto mult = skepu::Map(mult_f);
auto square = skepu: :Map(square_T);
auto copy =
auto generate =
£

return index.i + start;
3

// Transformations

add(vl, v3, vé4);

copy(v9, vl);

mult(ve, vl, v3);

square(vl, v2);

add(vS, v5, vl);

add(vS5, v5, v9);

add(v6, v7, generate(v6, 5.f));

for (int 1 = 0; i < 5; i++)
add(v8, v8, v8);

134

skepu::Map([](float a) § return a; 3);
skepu: :Map<0>([](skepu: :Index1D index, float start)

10.3. Lazily evaluated skeletons with tiling

6 generate

3 square
in: v2
out: v1

Figure 10.2: Lineage constructed by the program in Listing 10.4.

tions. The resulting lineage graph, combined for all smart data-containers
in the program, shows skeleton invocations and dependencies, see Fig-
ure 10.2. The graph also shows the starting nodes for evaluating each con-
tainer. Each node is a recorded skeleton invocation and shows a global in-
crementing timestamp, skeleton name, input and output container argu-
ments. The directed edges represent dependencies; only the black edges
are true data dependencies while red edges indicate write-after-read de-
pendencies and blue edges correspond to write-after-write dependencies.
Note that Spark only has true dependencies due to the read-only nature of
RDDs. The existence of these false dependencies in SkePU could open up

135

10. EXTENDING SMART DATA-CONTAINERS FOR DATA LOCALITY AWARENESS

for a smart container "renaming” optimization where possible, similar to
register renaming in a microprocessor.

10.3.7 Lazy tiling for stencil computations

MapOverlap is the SkePU skeleton implementing stencil operations on
smart data-containers. To extend the lazy evaluation and tiling implemen-
tation for MapOverlap instances, care must be taken to ensure that depen-
dencies from the input elements to the output elements are not violated
during the lazy evaluation. Naively tiling the computation like Map forms
dependencies across tile borders. Eissfeller and Miiller [53] proposed the
triangle model for reducing data transfer times for iterative computations.
A variant of that method is implemented in SkePU for tiling MapOverlap
skeletons.

We start by observing that there are ”safe” regions in the data sets where
all of the elements can be computed for each skeleton invocation in the
lineage, each tile independently of the others. These regions shrink for
each subsequent invocation in the lineage, as the cumulative overlap will
increase with each stencil computation. When illustrating the safe regions
for each tile and iteration as in Figure 10.3, a triangle pattern emerges. An
initial approach for the tiling, which handles the unsafe elements in a sep-
arate phase from the non-overlapping regions, is given in Algorithm 1.

Procedure 1 Stencil tiling, first approach

Input: Lineage of n dependent stencil computationsi=0,...,n-1

1: procedure TRIANGLE

2 B < tiling block size

3 overlap; < overlap for stencil computation i

4: indent; < prefix sum overlapg + overlapy + ... + overlap; for all i

5 for each tile T, from left to right do > Phase 1

6 for all instances i, in dependence order do > Elements in tile T
without dependencies from other tiles

7: Compute instance i from BT +indent; to B(T+1)-indent;~1

> Phase 2

8: for all instances i, in dependence order do I> Remaining
elements in tile T

9: Compute instance i from BT to BT +indent; — 1

10: Compute instance i from B(T + 1) + indent; to B(T +1) - 1

Though this first approach can be reworked to improve access locality
and reduce the number of skeleton context switches, by merging phase 1
and 2 when possible without violating dependencies. This is used for the
implementation in SkePU and is formulated in Algorithm 2.

136

10.4. Applications and comparison to kernel fusion

Procedure 2 Stencil tiling, improved

Input: Lineage of n dependent stencil computationsi=0,...,n-1
1: procedure TRIANGLE2
2: B « tiling block size

3: overlap; < overlap for stencil computation i
4: indent; < prefix sum overlapg + overlap + ... + overlap; for all i
> First tile, phase 1
5; for all instances i, in dependence order do
6: Compute instance i from 0 to B - indent; — 1

> Inner tiles
7: for each tile T, from left to right do

8: for all instances i, in dependence order do
9: Compute instance i from B(T-1)-indent; to BT +indent;~1
D> Last tile, phase 2
10: T « last tile
11: for all instances i, in dependence order do
12: Compute from BT - indent; to BT -1

The approach is exemplified in Figure 10.3. A sequence of three
MapOverlap calls, with overlaps of 1, 0, and 2 in that order, is evaluated
lazily with a block size of 16. The sequence is computed in three phases,
but the size of the region for each phase varies slightly from the block size
and also across the different skeleton calls. The darker shaded elements
indicates the overlapping, unsafe regions of the data at each point in the
lineage sequence.

Y.Y!Y.Y.T......
NKAAA

e OO0

Map
(0,=0)

MapOverlap
(04=2)

Tile size

Figure 10.3: Evaluation scheme for tiling sequenced MapOverlap calls.

10.4 Applications and comparison to kernel fusion

Building the skeleton lineage at runtime is a dynamic approach to optimiz-
ing sequences of skeleton invocations. The contrasting static approach is to
analyze data flow at build time and combine user functions and the skele-
ton instances they are used in. This approach is known as kernel fusion [138].

137

10

15

20

25

10. EXTENDING SMART DATA-CONTAINERS FOR DATA LOCALITY AWARENESS

Listing 10.5: Manual kernel fusion in SkePU where a, b, and c are smart data-
containers. User functions are omitted for brevity.

float mult_f(float a, float b)
£

return a * b;
3
float add_f(float a, float b)

£
return a + bj;

3

auto mult = skepu::Map(mult);
auto add = skepu::Map(add);

mult(res, a, b);

add(res, res, <c);

// Fused:

float fused_mult_add_f(float a, float b, float c)

£
return a * b + c;

3
auto muladd = skepu::Map(mult_add_f);

muladd(res, a, b, c);

Kernel fusion is supported in SkePU by manually combining user functions,
achievable thanks to the flexibility provided by SkePU skeletons.

The example given in Listing 10.5 illustrates how element-wise multiply-
add operations using two binary Map skeleton instances can be fused into a
single ternary Map. Data locality is improved.

Kernel fusion has been implemented in skeleton programming frame-
works as an automatic optimization technique where the data flow across
skeleton invocations can be determined at compile time. Our proposed
tiling approach is more general, applicable to applications with data- or
parameter-dependent skeleton sequences. It is also conceivable to com-
bine the two approaches, with just-in-time fusion of kernels based on the
lineage.*

The following sections contain two applications where the sequence of
skeleton invocations are dynamic and data-dependent, exemplifying situa-
tions where lineage-based tiling is applicable.

4The topic of skeleton fusion as applied to SkePU has been investigated further in later
work, presented in Chapter 11.

138

10

15

10.4. Applications and comparison to kernel fusion

Listing 10.6: Parallel polynomial evaluation in SkePU. User functions are
omitted for brevity.

skepu: :Vector<float> horner_eval_nonfused(
skepu::Vector<float> &coeffs, skepu::Vector<float> &x_vals)

£
size_t degree = coeffs.size() - 1;
auto mult = skepu::Map(mult_f);
auto add = skepu::Map<1l>(add_f);

skepu::Vector<float> res(x_vals.size(), coeffs(degree));
for (int i = degree-1; i >= 0; —--1i)
mult(res, res, x_vals);

add(res, res, coeffs(i));

3

return res;

10.4.1 Polynomial evaluation using Horner’s method

Horner’s method for polynomial evaluation is based on rewriting a polyno-
mial
n
p(x) =Y a;x’ = ag + a1x + asa® + aza® + -+ + apz”
=0
as p(x) = ag + z(a; + z(az + - + x(a,_1 + a,x))) to reduce the number of
operations, i.e., exponentiations of x, required for evaluation.

Noticing that the formula is a repeated sequence of multiplications
and additions, a data-parallel implementation can be expressed as in List-
ing 10.6. Manual kernel fusion can be applied to the loop body as in List-
ing 10.5, but there is a bigger optimization opportunity of improving data
locality across loop iterations. Simply fusing two kernels is not applica-
ble here, and the number of loop iterations is dependent on the input data
(polynomial degree).

10.4.2 Exponentiation by repeated squaring

Exponentiation by repeated squaring computes the value 2" in O(logn)
multiplications. For example, 1%, naively computed by nine multiplica-
tions, can be written as z?z® = z2((2?)?)? and by repeatedly squaring z this
is reduced to four multiplications. The rewritten form is analogous to the
binary representation of , e.g. 1019 = 1010,.

This is implemented as a data-parallel SkePU program in Listing 10.7. In
this case, in addition to the properties of the program in Listing 10.6, invo-
cations of the mult skeleton instance is skipped for loop iterations where

139

10

15

10. EXTENDING SMART DATA-CONTAINERS FOR DATA LOCALITY AWARENESS

Listing 10.7: Parallel exponentiation by squaring in SkePU.

skepu: :Vector<float> exp_by_squaring(
size_t exp, skepu::Vector<float> &x_vals)

£

auto bitmap = generate_bitmap(exp);

auto square = skepu::Map(square_f);
auto mult = skepu::Map(mult_f);

skepu: :Vector<float> res(x_vals.size(), 1);

for (int i = bitmap.size()-1; i >= 0; —--1i)
£
square(res, res);
if (bitmap[i] == 1)
mult(res, res, x_vals);

3

return res;

the corresponding bit in z is 0. The resulting lineage will look very different
when varying the exponent.

10.4.3 Heat propagation

A heat propagation algorithm uses iterative stencil computations to find
the convergent temperature in some shape. The iterative pattern should
fit the lazy evaluation scheme, but for determining the stop condition a re-
duction on the entire data is typically used to find the error (the maximum
temperature difference on some point the volume) after each iteration. As
the reduction will break the lineage formation and prevent tiling across it-
erations, the iteration loop can be unrolled. The error calculation is only
done after every few iterations. Inside the unrolled iteration loop, there is
perfect opportunity for lineage building. The implementation can be seen
in Listing 10.8.

With an unrolling factor R, R - 1 intermediate data structures are re-
quired in addition to the default two. R MapOverlap calls, each with the
prior ones output as input, are followed by a MapReduce call to find the
maximum error. The reduction causes the lineage to be evaluated at the
end of each loop iteration. Figure 10.4 illustrates the lineage building and
evaluation in this application.

10.5 Related work

Apache Spark is the primary inspirational source for this work, introduc-
ing lineages and related concepts for big-data processing on large dis-

140

10

15

20

25

30

35

40

10.5. Related work

Listing 10.8: Heat propagation, unrolled to enable lineage construction.

// Main MapOverlap skeleton
auto kernel = skepu::MapOverlap([](skepu::RegionlD<double> a)

double sum = 0Q;

for(int 1 = -a.0i; i <= a.o0i; ++i)
sum += a(i);

return sum / (a.oi*2 + 1);

3
kernel.setOverlap(1l);

// Error calcualtion skeleton
auto max_diff = skepu::MapReduce(
[](double a, double b) § return abs(a - b); 3%,
[J(double a, double b) § return (a > b) 2 a : b; 3
)i

// Initialize volume with non-uniform values

auto init = skepu::Map<0>([](skepu::Index1D index, size_t size) §
size_t left = index.1i;
size_t right = size - index.i - 1;
return (double) (left < right ? left : right);

3);

skepu: :Vector<double> m@(size), ml(size), m2(size), m3(size), m4(size);
init(m@, size);

int iters = 0;
double error = INFINITY;
while (error > ERR_TOLERANCE)
£

kernel(ml, mO);

kernel(m2, ml);

kernel(m3, m2);

kernel(m4, m3);

iters += 4;

// Lineage is evaluated before the reduction here
error = max_diff(m3, m4);
std::swap(m@, m4);

141

10. EXTENDING SMART DATA-CONTAINERS FOR DATA LOCALITY AWARENESS

sub-iteration 1

ml

sub-iteration 2

m2

sub-iteration N

mN

Lineage build-up

while error > threshold

EE PR |

Evaluation point

3

Figure 10.4: Lineage building for iterative heat propagation using MapOver-
lap.

tributed memory clusters. Spark is a development of MapReduce [51] and
the Hadoop implementation. For a related discussion on big data frame-
works and the connections to skeleton-like programming paradigms, see
[114].

Another very recent project is FlashR by Zheng et al.[162]. Matrix oper-
ations are evaluated lazily in a memory-hierarchy-aware manner targeting
the R programming language and SSDs for machine learning applications.

The run-time approach to optimizing skeleton sequences presented in
this paper can be contrasted with compile-time techniques, such as the fu-
sion optimizing framework by Sato and Iwasaki [138] for GPU-based sys-
tems.

142

High-level skeleton
fusion

SkePU exposes a set of core patterns, skeletons, which form the building
blocks of SkePU programs. Each skeleton can be instantiated by parameter-
izing it with a user function operator, forming a callable object that may be
invoked at several times in a program. Each invocation of a skeleton instance
conceptually forms an atomic computation in the sense that backend selec-
tion (mapping) and scheduling are done per invocation. Normally, this se-
lection is done just-in-time, at the point in the dynamic program execution
when the corresponding invocation expression is encountered. Without a
global view of what skeleton instances are invoked and when, this restricts
backend selection and scheduling to locally optimal but globally suboptimal
choices at best.

11.1 Comparison to lineages

The first steps towards a more flexible system were taken with the addition
of lazy evaluation of skeleton invocations, as described in Chapter 10. Lazy
skeleton evaluation works by separating the evaluation time from the invo-
cation point, postponing it for some later time. By repeatedly building up
the graphs (DAGs) of invocations, the lineages, more information about the
dynamic execution environment of the program is revealed to the SkePU
run-time system, which can be exploited in backend selection and schedul-
ing. However, because of the global invocation graph may be dependent of

143

11. HIGH-LEVEL SKELETON FUSION

the results of those very same computations, the lineage will in general be
a sub-graph of the global invocation graph.

The lineage system as implemented by lazy evaluation is a run-time only
approach. To extract more information and to more accurately model the
global view, utilization of the compiler is required. Program analysis at
compile-time (or pre-compile-time) gives information about all possible in-
vocation graphs at the global level, but also due to data dependencies can-
not deduce the actual dynamic execution path of the program. However, by
combining static analysis and dynamic lineage information, optimizations
can be realized that are unavailable from only one of the approaches on its
own.

Note that the lineage approach, because of state saving, management,
and restoration overhead, is a good fit for multi-core CPU targets but is not
scalable to GPU backends.

11.2 Kernel fusion

One such optimization is kernel fusion. Conceptually similar to a fundamen-
tal compiler optimization, loop fusion [84], the idea is to fuse multiple "ker-
nels” (as the terminology suggests, this optmimization is highly suitable for
GPU targets), in the case of skeleton programming, these would be skeleton
invocations. In addition to data locality benefits, fusion reduces overhead
of GPU kernel launches.

SkePU already provides the fused skeleton patterns MapReduce and
MapPairsReduce in addition to the separate Map, MapPairs, and Reduce;
but it is left to the programmer to know about these fused patterns and
when to use them. The reason for this are several, and includes reduction
of overhead from repeated kernel invocations as well as data access local-
ity improvements. Through static analysis in the compiler, most cases of
chained Map+Reduce patterns can be identified, but not all. Situations may
occur when e.g. the Reduction portion is guarded by a conditional branch.
It may be unlikely to be skipped over in practice, but the compiler must be
careful and cannot do anything.

However, automatic kernel fusion is not a new idea [54, 66, 117, 129, 138];
to some pattern libraries the fusion can even be a natural part of the compi-
lation environment. For extended and automatic kernel fusion in SkePU to
be a relevant scientific contribution, it would have to do something new or
better than the prior work. Since SkePU already has a highly flexible skele-
ton interface, we think that the idea of high-level skeleton fusion can be the
foundation for such a contribution in the future.

144

11.3. Types of fusions

a b
Map<2>
Map<1>
Map<3>
Map<2>
(a) Before fusion (b) After fusion

Figure 11.1: Skeleton fusion of a sequence of three Map skeleton instances.

a b
Map<2> h > < /‘ﬂ Map<2> Map<2>’
a) Before fusion b) After fusion

Figure 11.2: Skeleton fusion of two Map skeleton instances operating inde-
pendently on the same data set.

11.3 Types of fusions

This section investigates the types of fusions allowed by SkePU’s variadic
template interface. Three types of fusions are to be considered:

« Linear chains, as seen in Figure 11.1, denoted in Table 11.1 with a >>
symbol. Sequences of skeleton instances where the output of one in-
stance is the input of the next can be eligible for fusion. Intermediate
data sets are eliminated, so this fusion type can reduce memory pres-
sure and utilize temporal access locality.

145

10

15

20

11. HIGH-LEVEL SKELETON FUSION

Listing 11.1: SkePU code demonstrating manual skeleton fusion, corre-
sponding to Figure 11.1.

skepu::Vector<int> a(N), b(N), res(N);

// Without fusion

auto s1 = skepu::Map<2>([](int a, int b) -> int { return a + b; 3);
auto s2 skepu: :Map<1>([](int a) => int § return a * a; 3);
auto s3 skepu: :Map<2>([](int a, int b) -> int § return a * b; 3);

skepu::Vector<int> tmpl(N), tmp2(N);
sl(tmpl, a, b);
s2(tmp2, tmpl);
s3(res, tmp2);

// With fusion

auto f = skepu::Map<3>([](int a, int b, int c)

£
int tmp = a + b;
return tmp * tmp * c;

3

f(res, a, b);

« Independent computations on partially the same data sets, as seen in
Figure 11.2, denoted in Table 11.1 with a | | symbol. As long as skele-
ton invocations are independent and applying the same skeleton pat-
tern on equal-sized data sets, control logic and synchronization can
be shared between them. When input operands are shared between
them, temporal access locality is improved after fusion.

« Loop-carried chains. If the same skeleton instance is called repeat-
edly on the same data set, it can conceptually be unrolled into sepa-
rate skeleton instances forming a linear chain, and fusion may thus be
applicable by the same means as the first fusion type.

Table 11.1 lists all identified types of fusions that can be encoded within
the variadic skeleton interface itself. The same relations are visualized in
the context of the full skeleton set of SkePU in Figure 11.3. A necessary
requirement for linear fusion is that there exists a direct dependency be-
tween a pair of skeletons listed in Table 11.1. Further conditions must be
met for fusion to be guaranteed applicable, e.g., there can be no dependen-
cies linking intermediate data sets to skeleton invocations outside the fu-
sion. MapOverlap fusions must also operate on data of the same dimen-
sionality.

As an example, consider the restriction to only Map and Reduce skele-
tons. Map fusions utilize the already present variadic Map approach in
SkePU, and Map+Reduce fusions utilize the MapReduce skeleton which is
among the fused patterns already present in the framework. Note that not

146

10

15

11.3. Types of fusions

Listing 11.2: SkePU code demonstrating manual skeleton fusion, corre-
sponding to Figure 11.2.

skepu::Vector<int> a(N), b(N), res1l(N), res2(N);

// Without fusion

auto s1 = skepu::Map<2>([](int a, int b) -> int §{ return a / b; 3);
auto s2 = skepu::Map<1>([](int a, int b) —> int § return a % b; 3);
sl(resl, a, b);

s2(res2, a, b);

// With fusion
audo f = skepu::Map<2>([](int a, int b) —> skepu::multiple<int, int>

£
return skepu::ret(a / b, a % b);

3

f(resl, res2, a, b);

Reduce

Map MapPairs
Overlap Reduce

MapPairs

oo oL NS
Figure 11.3: A graph illustration of the relationships in Figure 11.1. A di-
rected arrow between two nodes indicates that sequences of such skeletons
can be fused. A dashed arrow indicates that independent fusion is possible.

all possible fusions are implemented by the existing skeletons. For example,
Reduce can operate in either 1D or 2D mode, but MapReduce only reduces
in 1D, which adds further constraints on when fusion can be applied.

Each fusion type can be iterated and composed, so, e.g.,
Map+Map+Reduce is first matched by fusing Map+Map to a compound virtual
single Map instance. Map+Reduce is then matched in the next iteration and
replaced by a virtual MapReduce node. The reverse fusion order would
have the same end result.

147

11. HIGH-LEVEL SKELETON FUSION

Skeleton A Op SkeletonB Result skeleton
Map(f) > Map(g) = Map(g-)

Map(f) >> Reduce(g) = MapReduce(f, g)*
Map(f) >> MapReduce(g, h)* = MapReduce(g-f, h)*
Map >> MapOverlap[r] = MapOverlap[r]
MapOverlap[r] >> Map = MapOverlap[r]
MapOverlap[r] >> MapOverlap[s] = MapOverlap[r+s]
MapPairs >> Map = MapPairs
MapPairs >> Reduce = MapPairsReduce*
Map(f) | Map(g) = Map(f,)
MapOverlap[r] || MapOverlap[r] = MapOverlap[r]
MapPairs || MapPairs = MapPairs

Reduce(f) || Reduce(g) = Reduce(<f, g>)
Scan(f) || Scan(g) = Scan(<f, g>)
MapReduce(f, h)* || MapReduce(g, h)* = MapReduce(<f, g>, h)*
MapPairsReduce* || MapPairsReduce* = MapPairsReduce*

*) Need not be part of the interface; internal implementation node only.

Table 11.1: All possible skeleton fusions in SkePU and their resulting skele-
ton types.

11.4 Example: N-body simulation

Consider the computational core of an N-body simulation program in
Listing 11.3. Lines 6-7 are guaranteed to be evaluated in sequence, and each
one uses only the outputs of the other as input (except for the very first in-
vocation in the first iteration). They happen to be invocations to the same
skeleton instance, but that does not matter for fusion selection (though it
can potentially reduce code size of generated fused skeleton instance). This
should be a good target for fusing into a single skeleton, reducing the num-
ber of kernel calls and selection overhead by a factor of two in the iterative
loop. The particles container would in practice be the only input and

148

11.5. Future work

Listing 11.3: N-body iteration loop in SkePU.

nbody_init(particles, cbrt_np);

// Iterative computation loop

for (size_t i = 0; 1 < iterations; ++i)

£
nbody_simulate_step(doublebuffer, particles, particles);
nbody_simulate_step(particles, doublebuffer, doublebuffer);

3

only output to the fused skeleton invocation. There is, however, one big
problem with this fusion: the skeleton invocations act as global synchro-
nization points. As SkePU user functions cannot contain communication or
synchronization, this loop cannot be manually fused. An automatic fusion
implementation built into the framework could detect this synchronization
constraint and would have to adapt the pattern accordingly after fusion,
which brings us to the next section.

Another, fully fusible, example using image filtering operations with ac-
companying performance evaluation is described in Section 15.11.

11.5 Future work

While manual fusion is a strong feature arising as a consequence of SkePU’s
flexible skeleton interface, automating the fusion process is of interest for
future work. SkePU should not expect that the user knows when manual fu-
sion is critical for performance; an automated fusion system could also re-
move the need for explicit MapReduce and MapPairsReduce skeleton con-
structs, simplifying the API surface of the framework. SkePU’s precompiler
is well positioned to, through static analysis, identify cases where fusion
conditions are met and generate fused skeleton instances.

However, our experience is that such cases are fairly rare in SkePU pro-
grams, as the interface makes it natural to find trivial cases of fusion already
in the programming process. We therefore propose a direction for future
work in an optimistic static fusion system, i.e., code generation of fusible in-
vocation sequences that may occur during runtime, but cannot be statically
guaranteed. Combined with the lazy evaluation system from Chapter 10,
target fusions can be disambiguated at runtime, and the lineage evaluator
can select from pre-fused skeleton instances for matching invocation nodes.

149

Multi-variant user
functions

This chapter is closely based on the following publication:

August Ernstsson and Christoph Kessler. “Multi-variant User Functions
for Platform-aware Skeleton Programming.” In: Proc. of ParCo-2019 confer-
ence, Prague, Sep. 2019, in: 1. Foster et al. (Eds.), Parallel Computing: Technology
Trends, series: Advances in Parallel Computing, vol. 36, I0S press. Mar. 2020,
pPp. 475-484. DOI: 10.3233/APC200074

Experimental evaluation is presented later, in Chapter 15.

This contribution extends the multi-backend approach of SkePU by pro-
viding the possibility for the programmer to provide additional variants of
user functions tailored for different scenarios, such as platform constraints.
This chapter introduces the overall approach of multi-variant user func-
tions, provides several use cases including explicit SIMD vectorization for
supported hardware, and evaluates the result of these optimizations that
can be achieved using this extension.

12.1 Introduction

The core contribution of this work is a generalization of the variant selec-
tion mechanism for the skeleton programming framework SkePU, where
the problem-specific, sequential user code used to customize a skeleton at
skeleton instantiation can be provided in several variants, some of which

151

12. MULTI-VARIANT USER FUNCTIONS

might even be platform-specific. This is done in a general-purpose pro-
gramming environment, which differentiates the approach from existing
domain-specific variant selection [64]. Our work is also tightly integrated
with a platform modeling system [85] allowing build-time lookup of eligible
variants going beyond only algorithmic choice or minor variations in per-
formance tuning parameters. The approach is powerful and flexible enough
to allow selection based on hardware architecture, levels of heterogeneity,
software installations, and more.

The idea and implementation of the core contribution is presented in
Section 12.2, followed by several use cases in Section 12.3.

12.2 Idea and implementation

There are multiple scenarios where a user function with a singular defini-
tion can be too restrictive for the purposes of performance: use cases in-
clude algorithms with different tradeoffs in time complexity versus mem-
ory complexity (some platforms may have very limited memory space avail-
able per execution thread), instruction set architecture differences such as
native double or half precision floating point arithmetics, the existence of
SIMD vector instructions, or other hardware-accelerated implementations
of common computations. Since these attributes are constrained on the un-
derlying platform, the software-defined code variants must somehow be de-
clared compatible only with the appropriate hardware configurations. For
this we employ a combination of language attributes, annotations at source-
code level that are recognized by the SkePU source-to-source compiler, in
addition to the platform description language XPDL [85].

A platform description (such as the one given in Listing 12.1) is supplied
to the SkePU source-to-source compiler and depending on the attributes in
the model, user function variants are either included or removed from the
resulting program. In this example, the user function variant in Listing 12.3
requires the Intel AVX extension to the instruction set. The list of variants
for each user function and their prerequisites for inclusion are declared in
a manifest file (example given in Listing 12.4). Here XPDL metaprogramming
queries or other statically evaluated expressions can be used. As the model
in Listing 12.1 declares the platform to support this extension (line 7 in List-
ing 12.1), this vectorized variant will be included for variant selection at
run-time. In cases where library or binary compatibility is not required for
the extension, this filtering of eligible variants can also happen at run-time,
as long as the XPDL model is available for querying. This approach is pre-
ferred when a single program executable might run on different hardware
configurations.

User function variants are defined externally from the main source file.
The variants are placed in individual source files in subdirectories, following

152

10

15

12.2. Idea and implementation

User function variants

latform.xml
(subdirectories) e

manifest.hpp XPDL Compiler

variant1.cpp Program sources

variant2.cpp !
Source-to-source compiler

Backend sources SkePU
(C++, OpenCL, etc.) headers

Backend compiler (e.g., GCC)

Executable

Figure 12.1: Overview of the components involved in SkePU variant selec-
tion and subsequent build process.

Listing 12.1: XPDL model for an Intel Xeon Gold 6130 CPU. Please refer to
XPDL publications [85] and documentation for details about the syntax.

<?xml version="1.0" encoding="UTF-8"?>
<xpdl:model xmlnhs:xpdl="http://www.xpdl.com/xpdl_cpu"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.xpdl.com/xpdl_cpu xpdl_cpu.xsd ">
<xpdl:component type='"cpu" />
<xpdl:cpu name="Intel_Xeon_Gold_6130" num_of_cores="16"
num_of_threads="32" isa_extensions="avx avx2'">
<xpdl:group prefix="core_group" quantity="16">
<xpdl:core frequency="2.1" unit="GHz" />
<xpdl:cache name="L1" size="32" unit="KiB" set="16" />
<xpdl:cache name="L2" size="1" unit="MiB" set="16" />
</xpdl:group>
<xpdl:cache name='"L3" size="22" unit=""MiB" set="1" />
<xpdl:power_model type="power_model_Gold_6130"></xpdl:power_model>
</xpdl:cpu>
</xpdl:model>

a standard naming schema, with one directory for each user function. A
component implementation descriptor file defines the hardware platform and
run-time requirements for each variant. See Figure 12.1 for an illustration of
the workflow: the outlined rectangles denote directories in the file system
and the filled rectangles represent files.

153

12. MULTI-VARIANT USER FUNCTIONS

Listing 12.2: A SkePU program performing element-wise vector addition.

float add(float a, float b) § return a + b; 3

int main(int argc, char *argv[])
£
const size_t size = N; // multiple of 8
auto vector_sum = skepu::Map(add);
skepu::Vector<float> vi(size), v2(size), res(size);
vector_sum(res, vl, v2);

12.3 Use cases

In this section we present two use cases in detail: user function vectoriza-
tion and multi-variant components with the Call skeleton. We also provide
further examples for application of multi-variant components at the end of
the section.

12.3.1 Vectorization example

As an example of where user function variants are applicable, consider in-
struction set extensions for SIMD vectorization. These extensions allow the
processor to compute the same instruction in parallel over multiple data
items, even from a single thread. Many compilers today are auto-vectorizing
[93, 98, 104], but this optimization requires a number of preconditions to
be satisfied, such as the correct data alignment and no pointer aliasing; and
even then, additional compiler flags are often required. For a high-level
parallel program such as a SkePU application, aggressive inlining and loop
unrolling must also be applied by the backend (external to SkePU) compiler
before there is even an opportunity for auto-vectorization.

For the aforementioned reasons, vectorization is a good motivational use
case for multi-variant user functions. Consider the SkePU program in List-
ing 12.2. The program performs element-wise addition of two vectors using
the SkePU Map skeleton with arity 2. The user function add is trivial, with
two inputs (one from each vector) and the function body returning the sum
of the two elements. This user function is straight-forward for the SkePU
source-to-source compiler to handle when generating output for all back-
ends: sequential CPU, OpenMP, CUDA, and OpenCL, it is just a matter of
copying the function body. However, by this approach, the CPU backends
will not be guaranteed optimal performance in the case of the hardware
platform supporting SIMD ISA extensions. As such, it makes sense to pro-
vide a variant of add and make it available for run-time selection.

Listing 12.3 contains a variant of add that is defined in a separate file as
outlined in Section 12.2. This file is referenced from the manifest, as seen in

154

12.3. Use cases

Listing 12.3: Variant of the add user function with explicit vectorization.

#pragma skepu vectorize 8
void add(float* c, const float *a, const float *b)
£
__m256 av = _mm256_load_ps(a);
__m256 bv = _mm256_load_ps(b);
__m256 cv = _mm256_add_ps(av, bv);
_mm256_store_ps(c, cv); // return by pointer

3

Listing 12.4: Manifest file for user function add.

skepu::VariantlList §
skepu: :Variant("add_avx",
skepu: :Requires(
xpdl::includes<xpdl::cpu_1::isa_extensions, xpdl_avx>::value
), skepu::Backend::Type::CPU
)
3;

Listing 12.4. In this case, there needs to be a block of eight elements available
for the function to enable the use of SIMD instructions, which is different
in signature to the default variant.! This variant uses compiler intrinsic
functions which map directly to Intel AVX instructions. The elements in
this variant are passed and returned by pointer, and the component imple-
mentation descriptor contains the specification of how many elements it
accepts in one block (here illustrated by an inline pragma). The elements in
the array have to be copied to intermediate vector registers before compu-
tation.

12.3.2 Generalized multi-variant components with the Call
skeleton

The version 2 revision of SkePU [62] introduced an atypical skeleton con-
struct known as Call. The Call skeleton, unlike all other skeleton constructs
in SkePU and other typical skeleton programming libraries, does not encode
a computational pattern, but rather is an entry point for a self-contained
component for arbitrary computations. This construct is highly useful in
SkePU for two main reasons: firstly, not all computations can be efficiently
expressed as data-parallel algorithms, which is the type of patterns present
in SkePU, and it is desirable to let generic computations integrate with the
smart container and backend selection and tuning systems within SkePU.

'The need for framework support in this example is not a universal trait; user function
variants can be defined with the same signature and even without any required platform con-
straints.

155

12. MULTI-VARIANT USER FUNCTIONS

Secondly, the optimal way to structure computations is in general different
for different parallel backends; there needs to be a way to provide variants
also for these non-skeleton computations.

A common class of computations that fit the above criteria are sorting al-
gorithms. Another example is the fast Fourier transform (FFT) [159], which
has several highly optimized implementations available at library level. In
cases such as FFT, an instance of Call can be instantiated with a naive se-
quential FFT algorithm as the default user function, and additional user
function variants are specified as shown in Figure 12.1 and implemented
as thin wrappers over libraries such as FFTW for CPU and CuFFT for Nvidia
GPUs. Both the backend type and the presence of libraries in the target sys-
tem is specified and taken into account for variant selection.

12.3.3 Other use cases

There are a number of other use cases for when multi-variant user func-
tions can be useful for improving performance portability. Below are some
suggestions: The user can specify a hand-optimized user function variant
to be used only with a certain backend, such as CUDA (declared via the
platform attribute in the user function’s component implementation de-
scriptor), while the generic auto-generated user function is used for all
other backends. Even within the same backend and the same platform con-
straints, complex user functions may offer multiple variants implementing
the same computation by different algorithmic approaches. Selection be-
tween the variants can be controlled by input size and shape, as well as other
run-time properties such as idle resources and memory pressure. See e.g.
the CellSort sorting algorithm [72] where the algorithm used is closely cou-
pled to the characteristic architecture and instruction set of the Cell pro-
cessor. When SkePU skeletons are invoked from a language other than C++,
components that have a variant defined for that language would have lower
overhead due to bridging and data representation and would open up for
improved compiler optimization.

12.4 Related work

High-level parallel programming using skeletons or patterns [25] allows to
model semantics as well as parallelization-relevant properties (such as type
of parallelism, data access pattern, data locality constraints) of a compu-
tation using special predefined generic constructs (called skeletons or pat-
terns) at a level of abstraction that is clearly above that of source code (such
as OpenMP, OpenCL or CUDA). Existing skeleton programming frameworks
include SkePU [55, 62], FastFlow [2], Marrow [106], GrPPI [135], Thrust [13]
and others.

156

12.4. Related work

None of these skeleton programming frameworks considered auto-
mated, platform-specific operator specialization for multi-element groups
in skeleton instantiations or calls. Lift, [147] on the other hand is a frame-
work consisting of a functional pattern-based programming language, a
compiler and an intermediate representation with pre-defined skeleton-
like constructs for the hierarchical, functional modeling of data-parallel
computations. It allows for (cost-model directed) rewriting of Lift IR trees
by a design space exploration process to automatically take into account
platform-specific structures such as SIMD operations, data transfers and
data layout transformations, which can be expressed by OpenCL-specific
constructs. While Lift is more general than our method, it requires the pro-
grammer to specify skeleton instances as a hierarchically nested functional
decomposition of multiple primitive operators. In contrast, our approach is
based on the simpler SkePU programming API, which is more high-level and
does not require special tooling nor automated design space exploration nor
an explicit intermediate representation.

PetaBricks is another framework which also exposes algorithmic vari-
ant ("choice”) selection [5, 128]. In contrast to SkePU, PetaBricks is task-
oriented with a more involved run-time scheduling system, and does not
integrate a platform modeling subsystem into the toolflow.

It is also possible to take a more domain-specific approach. SLinGen [144]
is a generative programming environment for linear algebra which outputs
optimized C code, including optional vectorization driven by intrinsics. The
Click system for matrix computations [64] focuses on generating multiple
alternative application variants for a single operation.

The limitations of compiler auto-vectorization are explored by Larsen et
al. [93] who also suggest improvements to the programming language and
environment to facilitate the optimization in more scenarios.

157

A deterministic portable
parallel pseudo-random
number generator

This chapter is based on the following publication:

August Ernstsson, Nicolas Vandenbergen, Jorg Keller, and Christoph
Kessler. “A Deterministic Portable Parallel Pseudo-Random Number Gen-
erator for Pattern-Based Programming of Heterogeneous Parallel Sys-
tems.” In: International Journal of Parallel Programming (). To appear.

Experimental evaluation is presented later, in Chapter 15.

13.1 Introduction

Many scientific applications, such as Monte Carlo simulations, use pseudo-
random number generators (PRNGs) as part of the computation. In the
interest of correctness and debugging, deterministic parallel or heteroge-
neous execution of such a program that remains consistent with sequential
execution also in terms of generated random numbers is a desirable prop-
erty, which however requires a deterministic parallel pseudo-random num-
ber generator. This becomes a challenge with SkePU’s design of late deci-
sion about sequential, parallel or accelerator execution.

In this chapter, we present the principle, API and implementation of a
deterministically parallelized portable PRNG extension to SkePU that ex-
hibits the same behavior regardless where and with how many resources a
SkePU program is executed. Our deterministic PRNG parallelization also re-

159

13. A DETERMINISTIC PORTABLE PARALLEL PRNG

laxes the implicit dependence structure of applications using the PRNG. We
show that the implementation is scalable on both multi-core CPU and GPU
resources, and hence supports the universal portability of SkePU code even
in the presence of PRNG calls. It also leads to more compact source code.
Core contributions are the determinism and the high-level language inte-
gration of our approach. While our solution is prototyped and evaluated in
SkePU, where it is important due to the execution unit of a skeleton call be-
ing statically unknown, the approach could be adapted and integrated into
other frameworks for high-level portable pattern-based parallel program-
ming.

The remainder of this chapter is organized as follows: Sections 13.2 and
13.3 introduce background about determinism and parallel random num-
ber generators, shows two motivating examples of previous workarounds
used with SkePU to achieve deterministic parallel PRNG behavior, and dis-
cusses their drawbacks. In Section 13.4, previous efforts to implement and
utilize pseudo-random numbers in SkePU are examined. Section 13.5 ex-
plains three fundamental parallelization methods for PRNGs and presents
the new API and implementation of the new built-in deterministic parallel
PRNG in SkePU. Section 13.6 discusses related work.

13.2 Determinism in heterogeneous parallel computing

In general, a program is called deterministic if it always yields the same re-
sult for identical inputs (see e.g. Lu and Scott [101] for other possible defini-
tions of deterministic parallel programs). For most programs, determinism
is a necessary condition for correctness: we would expect the program to
behave consistently over several runs or something is wrong. Sometimes,
however, nondeterminism may be part of the program design, such as in
Monte Carlo simulations. Nondeterminism may be introduced into a pro-
gram if it is dependent on external or environmental conditions (and this is
not considered part of the program input). For example, the program may
access the current time or assume a certain structure of the host file sys-
tem. The use of pseudo-random-number libraries does not typically intro-
duce nondeterminism alone, as these are dependent on a seed which may,
e.g., come as part of the program input or by polling the system clock. Sys-
tem libraries may also expose sources of randomness through high-entropy
hardware noise [11].

In a parallel programming context, race conditions can act as a source of
nondeterministic behavior. Race conditions occur when several program
threads (or processes, etc.) are not properly synchronized, and the order
of thread operations determines how the program behaves. Avoiding race
conditions and related phenomena is a significant reason why parallel pro-
gramming can be challenging and motivates the use of high-level frame-

160

10

15

13.2. Determinism in heterogeneous parallel computing

Listing 13.1: SkePU program demonstrating the possibility of nondetermin-
istic behavior across backends.

#include <skepu>

float add(float lhs, float rhs) § return rhs + lhs; %
auto fold = skepu::Reduce(add);

int main(int argc, char *argv[])
£
size_t N = atoi(argv[1]);
auto spec = skepu::BackendSpecfargv[2]3;
skepu: :setGlobalBackendSpec(spec);

float el = 1 / ((float) N);
skepu: :Vector<float> vec(N, el);

float res = fold(vec);
std::cout << "Result: " << res << "\n';

Listing 13.2: Test runs of the program in Listing 13.1.

% ./parallel/nondeterminism 100000000 CPU
esult: 0.25

% ./parallel/nondeterminism 100000000 OpenMP
Result: 0.88587

% ./parallel/nondeterminism 100000000 OpenCL
Result: 1

pe)

works. The parallel patterns of a framework such as SkePU abstract away
the synchronization challenges for the user, who can assume that the pat-
tern implementations are deterministic and race-free.

However, there is another source of nondeterminism when parallel pro-
grams are expected to adapt to a changing execution environment. This
may be as simple as altering the number of program threads, but is espe-
cially notable in multi-backend execution on heterogeneous environments
such as heterogeneous CPU-GPU systems. Floating-point number represen-
tations used widely, especially in high-performance contexts, are imperfect
and operations on them lack several key properties of real numbers [73]. For
example, the associative property of addition does not hold. Associativity is
assumed in parallel computations of reductions in, e.g., SkePU. Listing 13.1
contains an example SkePU program where the result is not deterministic
across different backends.

Listing 13.2 demonstrates the result of the same computation on dif-
ferent backends.! From the result, we can guess that the sequential CPU

INote that the expected result (in real number arithmetic) is 1, and if the float declara-
tions are changed to double, the CPU and OpenMP backends both produce the expected value.

161

13. A DETERMINISTIC PORTABLE PARALLEL PRNG

backend adds together the small values linearly, and eventually the accu-
mulator value is so large that the dynamic range difference renders further
additions meaningless. The parallel backends seem to be using one accu-
mulator variable per thread, which are all of the same order of magnitude
when the accumulators are added up.

It can be argued whether the nondeterministic floating point behavior
discussed here is the fault of the parallel framework or of the underlying
backends. It should, in either case, be clear that it is desirable for a high-
level parallel program to be deterministic across backends as far as possi-

ble.?

13.3 Parallel pseudo-random number generation

A pseudo-random number generator is a finite state automaton. Each time it
is invoked, its output function computes and outputs a pseudo-random num-
ber in a pre-defined range from the current inner state, and transitions the
inner state via the state transition function (also called update function) into
the follow-up state. The generator only receives input upon the time of
seeding, when the seed is processed by the initialization function to produce
an initial inner state. Thus, the generator only has a very limited amount
of randomness, which is stretched over many outputs, i.e. pseudo-random.
Still, current generators pass statistical tests such as Diehard. The complex-
ity to achieve this may lie in the output function and/or the update func-
tion. For a complex output function, the update function can be as simple
as a counter [86].

If an output of m bits is produced, the inner state comprises more than m
bits. The state transition function mostly is non-bijective®. Thus, the state
graph of the PRNG comprises one node for each state z, and a directed edge
(z, f(z)) for the transition from x to its follow-up state f(z), assuming f as
the state transition function. Thus each node has an outdegree of exactly 1,
but the indegree can vary. An example state graph is shown in Figure 13.1.

Flajolet and Odlyzko [67] investigated the expected structure of state
graphs if all possible transition functions are equally likely. The graph falls
into a small number of weakly connected components, of which one com-
prises the majority of the nodes (about 75%). Each component comprises a
cycle with a number of trees directed towards the cycle, where the largest
tree is expected to comprise 50% of all nodes. The expected length of the
longest cycle is less than 2v/N, where N is the number of nodes, i.e. quite
short. Trees are ragged with depth about \/N.

2The rest of this chapter works to address the issue of determinism in parallel pseudo-
random number generators, and solving the problems of floating point computations is left
for future work.

3A notable exception is the linear congruential generator with transition function f(z) =
ax +bmod N for a,b chosen such that the period is maximum [87], e.g. a prime and b = 0.

162

13.4. Previous manual parallelization of PRNG in SkePU programs

oy

Figure 13.1: State space of a pseudo-random number generator.

The sequence of generated pseudo-random numbers is only dependent
on the seed. In a sequential program with a deterministic program flow,
the calls to the pseudo-random number generator will produce exactly the
same numbers at the same program place if the seed is fixed. If the program
is parallelized, then the PRNG state becomes a shared resource. Moreover,
the order of calls to the PRNG changes: consider e.g. a nested loop with
one call per iteration of the inner loop, where the outer loop is parallelized,
so that now the first iterations of all instances of the inner loop call the
PRNG first. Still, a deterministic parallel execution with results similar to
the sequential version (and independent of the number of threads used to
parallelize the outer loop) demands that the sequence of PRNG outputs for
each inner loop execution remains unchanged, e.g. to do debugging in the
sequential version when the parallel version has an error. This calls for a
deterministic PRNG implementation as part of the parallelization.

13.4 Previous manual parallelization of PRNG in SkePU
programs

With previous versions of SkePU, a deterministic parallel random number
generator behavior had been achieved by the two workarounds described
in the following. However, we will show that both have drawbacks.

13.4.1 Monte Carlo pi calculation—index-based scrambling

As a first example, we consider a simple Monte Carlo simulation, namely
probabilistic Pi approximation. This computation can be easily expressed
as a MapReduce instance, see Listing 13.3, where the user function needs
to generate two pseudo-random numbers, one per dimension. Here, a de-
terministic parallel PRNG was simulated by an index-scrambling technique,
i.e., generation of pseudo-random numbers does not follow the automaton-

163

10

15

20

25

30

13. A DETERMINISTIC PORTABLE PARALLEL PRNG

Listing 13.3: Ad-hoc deterministic pseudo-random number generation by
index scrambling in a Monte Carlo method for Pi calculation in SkePU.

#include <iostream>
#include <skepu>

// Define c, s, s2, s3, MY_RAND_MAX as preprocessor constants
float scramble(int in)

return ((((int) (10%s*s2%in + 4*c*s3 + 5¥in + 10%s*in)) % MY_RAND_MAX)
/ ((float)MY_RAND_MAX));
3

float monte_carlo_sample(skepu::Index2D index)
£

float x = scramble(index.row);

float y = scramble(index.col);

// check if (x,y) is inside region:

return ((x*x + y*y) < 1) ? 1.f : 0.f;
3

float add(float lhs, float rhs) § return lhs + rhs; 3%
int main(int argc, char *argv[])
£

auto montecarlo = skepu::MapReduce<0>(monte_carlo_sample, add);

const size_t samples = atoi(argv[1]);
montecarlo.setDefaultSize(samples, samples);

float pi = montecarlo() / (samples * samples) * 4;
std::cout << pi << "\n";

based best-practice technique described above; instead, they are calculated
independently of each other based on a transformation of the index in the
parallelized main loop. In the code example in Listing 13.3, the scramble
function itself has been extracted from a SPH (Smoothed Particle Hydro-
dynamics) simulation code. The drawback of the index scrambling method
is that it may not really produce random numbers of high quality but can
expose more regular patterns.

13.4.2 Markov Chain Monte Carlo methods in LQCD—PRNG
with explicit state

The code excerpt in Listing 13.4 is extracted from a Lattice QCD mini-
application which computes the Yang-Mills theory of the SU(3) group. This
computation is typically done by applying the Metropolis algorithm, a com-
mon Markov Chain Monte Carlo (MCMC) based method. The Metropolis
calculations are performed on a 4D tensor whose elements are structures

164

13.5. Designing a deterministic PRNG for SkePU

of complex number arrays, with a 81-point (3 x 3 x 3x 3) stencil computation
required to evaluate the Metropolis acceptance function. For an in-depth
introduction to MCMC methods in LQCD, see [80].

Unlike the conventional Monte Carlo method showcased in Listing 13.3,
MCMC methods are inherently sequential. Thus, a PRNG for MCMC methods
has to be stateful, i.e. a finite state automaton as outlined in Section 13.3.
This conflicts with the requirement that SkePU user functions must be side-
effect free. The chosen solution for the user functions of Listing 13.4 is a
sequential PRNG which is algorithmically equivalent to POSIX drand48 but
has an explicit state argument instead of drand48’s internal state variable.

For such an approach, the PRNG state has to be explicitly managed. As
a dedicated PRNG state container is not a viable solution due to syntactical
constraints of the MapOverlap skeleton, the state is embedded directly in
the data set. This has the drawback of having an unusually large memory
footprint for a PRNG. Specifically, the memory requirement for storing the
PRNG states grows by O(L*) where L is the side length of the 4D tensor, i.e.
linearly with the problem size. Usage of the proposed new library PRNG in-
side SkePU is expected to lower the memory footprint of PRNG state storage
to O(p) where p is the number of computational units used in the selected
backend.

While it would be possible to adapt the index-based scrambling tech-
nique of Listing 13.3 to perform the initial seeding of the resulting parallel
PRNG, Listing 13.4 contents itself with using the Scan skeleton to force a
non-repeating state set into existence. While this is viable as a quick and
dirty solution to deterministic parallel PRNG seeding, it is likely to produce
random numbers of suboptimal quality; in that respect, a mathematically
robust library solution is preferable.

13.5 Designing a deterministic PRNG for SkePU

We will now introduce a more systematic approach that provides determin-
istic parallel random number generation for use in SkePU, together with an
API extension of SkePU 3 that makes PRNG streams a fundamental part of
the API. We will start by discussing inherent challenges to pseudo-random
number generation in parallel programming and proceed step by step to-
wards a deterministic PRNG implementation at the framework level.

13.5.1 Global synchronization

A straightforward approach to random number generation in parallel ap-
plications is to consider the PRNG as a shared resource. As such, the PRNG
needs to be protected by the appropriate synchronization operations dur-
ing access, to avoid race conditions such as multiple threads reading the

165

10

15

20

25

30

35

40

45

50

55

13. A DETERMINISTIC PORTABLE PARALLEL PRNG

Listing 13.4: Simplified SkePU code for an explicit-state parallel PRNG for
Markov-chain-based LQCD applications (Section 13.4.2).

typedef uint64_t PRNGState;

// Seeding:

skepu: :Tensor4<PRNGState> ones(L, L, L, L, 1), prngs(L, L, L, L);

auto seedPRNGs = skepu::Scan([] (PRNGState x, PRNGState y) § return x+y;3);
seedPRNGs(prngs, ones);

// Extracting:
inline PRNGState statelessDrand48(PRNGState prng)

£
return (0x5deece66d * prng + 11) % (1LL<<48);

inline double normalize(PRNGState prng)
£

3

return (double)prng / (double) (1LL<<48);

// Parallel state management:
struct localGauge; // 36 double-precision complex numbers
struct localGaugeAndPRNG

localGauge data;
PRNGState prng;
3
skepu: :Tensor4<localGaugeAndPRNG> gaugeField(L, L, L, L);

// Gauge randomization:
localGaugeAndPRNG randomizeGauge (PRNGState prng)

localGaugeAndPRNG gaugeNew;

for (int idx = 0; idx < 36; idx++) §
prng = statelessDrand48(prng);
gaugeNew.data.at(idx).re = normalize(prng);
prng = statelessDrand48(prng);
gaugeNew.data.at(idx).im = normalize(prng);

3

gaugeNew.prng = prng;

return gaugeNew;

3

// Metropolis step:
localGaugeAndPRNG localUpdate(skepu: :Region4D<localGaugeAndPRNG> stencil)
1
localGaugeAndPRNG proposal = randomizeGauge(stencil(0,0,0,0).prng);
double limen = someDeterministicStencilArithmetic(stencil, proposal);
stencil(0,0,0,0).prng = statelessDrand48(proposal.prng);
if (normalize(stencil(®,0,0,0).prng) >= limen) §
stencil(0,0,0,0).data = proposal.data;
3
return stencil(0,0,0,0);
3

auto metropolisUpdate = skepu::MapOverlap(localUpdate);

for (int iter = 0; iter < Niter; iter++) §
metropolisUpdate(gaugeField, gaugeField);

3

166

13.5. Designing a deterministic PRNG for SkePU

same random value, which would decrease the quality of the random num-
ber stream, or even the PRNG state itself being corrupted due to simultane-
ous writes.

This approach ensures a high-quality random number stream as each
value is generated in the same manner as in a sequential program. Any
random number generator can be used in this approach, including external
entropy sources, since synchronization guarantees protected sequential-
ized access. This synchronization does however add significant overhead
and is unfeasible in massively parallel accelerators such as GPUs. Only if
the synchronization method guarantees a deterministic order of accesses
to the critical section containing the PRNG state (which is usually not the
case for ordinary lock-based synchronization), the random number stream
generated from this method will be itself deterministic. We cannot predict
in which order the threads will generate a value from the PRNG and update
the state space.

13.5.2 Stream splitting

With the goal of avoiding or minimizing global synchronization of the PRNG
state, we consider a different approach [69]. As a PRNG state has to be con-
sidered a shared resource for proper operation, we can get around the syn-
chronization requirement by assigning each individual thread its own PRNG
state. A thread-private PRNG stream does not need protected access and
will yield a perfect sequential series of random values by itself. However—
aside from a large increase in memory space consumed by the replicated
states—with several or many parallel threads in the system, the aggregate
random number stream over all task invocations will differ greatly from a
sequential program.

Whether data-parallel tasks are assigned in blocks or interleaved, we ef-
fectively have split the single PRNG stream into many shorter sequences dis-
tributed over the working set in the same pattern as the data-parallel tasks.
The resulting pattern can be seen in Figure 13.2a. This degrades the quality
of the random values in aggregate, which is undesirable for sensitive appli-
cations.

There is another unfortunate consequence of this approach: ensuring
determinism in the random value stream is possible, but with significant
restrictions. Due to the aforementioned parallelization of the computation
using the PRNG, the observed PRNG stream across the data set is a man-
gled mixture of (a potentially large number of) individual streams. This
mangling has to be replicated in the sequential execution of the program
to preserve determinism; and worse, all parallel backends have to observe
the same such mapping. This can prove tricky when the parallel backends
vary significantly in properties such as the available parallelism degree. A
consequence of this behavior is also that in any execution of the program

167

13. A DETERMINISTIC PORTABLE PARALLEL PRNG

SEED SEED
maste] PRNG H

0 Q O, 6 O 0, @*@ e
ST

56EEE050 BOOOBEOE

(a) Stream-splitting approach to parallel (b) State-forwarding approach to parallel
pseudo-random number generation. pseudo-random number generation.

Figure 13.2: Approaches for parallelizing a PRNG sequence.

for which deterministic random values are desired, the maximal number of
threads has to be known a priori, before even executing a sequential back-
end variant. If the degree of parallelism ever is increased, e.g. by moving to
a larger processor, GPU, or cluster, the previous runs are invalidated with
respect to the determinism criterion.

13.5.3 State forwarding

The approach taken in this work is state forwarding. We attempt to side-step
the issues of both the global synchronization as well as the stream splitting
approaches. This is done by utilizing properties of the PRNG state spaces.
A true sequential single-stream variant of the program is taken as the gold
standard output, and the goal is to replicate the same output on any parallel
backend, without the need of global synchronization or advance knowledge
of parallelism degree. As in the stream splitting approach, data-parallel
work items are deterministically mapped across available computational
units (threads). This means that the number of tasks assigned to each thread
is known ahead of time, and for simplicity without the loss of generalization
we assume the work can be split evenly among threads.

Furthermore, we assume that the number of times a PRNG state is up-
dated (i.e., the number of times a random value is generated) is known ahead
of time for each work unit. Combining the knowledge of work unit count and
random calls per work unit, we know exactly how many state-forwards each
thread will generate in the respective data-parallel construct (i.e., skeleton
invocation).

168

13.5. Designing a deterministic PRNG for SkePU

We can therefore, for each thread, pre-forward the state of the PRNG and
store a copy of the forwarded state. These per-thread forwarded clones of
the original PRNG can now act as the thread-private PRNG streams in the
stream-splitting approach, with the additional property that when inter-
leaved during the data-parallel execution, the aggregate observed stream
now is equivalent to the sequential stream, which was the primary hurdle
in the stream-splitting approach. Figure 13.2b illustrates the resulting pat-
tern.

still, the extra memory footprint of the thread-private PRNG states per-
sists and will lead to additional overhead. The state-forwarding adds an
additional computation step before the execution of the tasks, which can in
the worst case be equally costly as the PRNG value extraction process itself
(though it can also be parallelized). Properties of the PRNG state space have
to be exploited to speed up the forwarding process and reduce the induced
overhead.

The leapfrog resp. sequence splitting method for state forwarding, intro-
duced by Celmaster and Moriarty [19] for use with vector computers, con-
siders a special case that allows to parallelize the forwarding phase of the
PRNG. A linearly congruential PRNG with factor a is partitioned into p lin-
early congruential PRNGs each to be used r times, which are defined based
on the same linear factor a, by seed(i) = (a"-seed(i-1)) mod mfori=1,...,p,
rand(i,0) = seed(i) and rand(i,j) = a-rand(i,j — 1) mod m. Hence, the
p PRNGs equally partition the period of the seed PRNG in contiguous sub-
sequences of length r. First, the a*” fori = 0,...,p - 1 and the seed sequence
can be calculated in parallel by a Scan in O(log p) steps, using the property
a?* mod m = ((a* mod m)?) mod m. Then the rand calls are independent
for each 4. (For reasonably low numbers of p such as for a current multi-
core CPU, sequential computation of the seeds should be faster; this is done
in the current implementation.) The leapfrog / sequence splitting method
scales well but is known to have problems for lcg with power-of-2 values for
modulus and p. Skipping can also be applied for counter-based PRNGs [137]
with output functions based on block ciphers for better statistics at a higher
cost.

13.5.4 Optimizing long or iterated skeleton chains by
pre-forwarding

While some applications may consist of a single parallelized step (such as
a parallel for loop or skeleton call; we will use the latter here), others, in
particular larger applications, will have multiple phases which are individ-
ually parallelized. A common example is iterative applications where each
iteration in turn consists of one or more skeleton calls. To achieve good
efficiency, we need to ask the question: when is the PRNG state split and

169

13. A DETERMINISTIC PORTABLE PARALLEL PRNG

%Q
O
SRR Rieees

(a) No pre-forwarding between iterations. (b) Pre-forwarding the PRNGs once before
the iterative loop.

Figure 13.3: Container indexing and memory layout.

forwarded for the purposes of parallelization in a skeleton invocation sce-
nario?

In a naive implementation of the state-splitting approach, the state split-
ting and forwarding step (see Figure 13.3a) is done right before each skele-
ton call. On the other hand, if we have a known number of skeleton calls (de-
terminable by static analysis, lineage building [60], or program instrumen-
tation), we only need to perform the splitting and forwarding of the PRNG
states once per application. This is referred to as pre-forwarding and is illus-
trated in Figure 13.3b. In practice, restrictions such as data-dependent con-
trol flow (e.g., branches or iteration bounds) may limit the degree to which
pre-forwarding can be applied, and application programmers may benefit
from awareness of the cost-reduction opportunities from pre-forwarding
already during program design.

13.5.5 API extension design

We have implemented the state-forwarding approach in the skeleton pro-
gramming framework SkePU 3. SkePU did not previously have a random
number generation component, and as shown in Section 13.4, previous
manual implementations of PRNG-like functionality in SkePU applications
have been ad-hoc and substantially different from each other. A baseline
contribution of a framework-level PRNG library in SkePU is the programma-
bility gains from reducing the effort of designing probabilistic applications

170

13.5. Designing a deterministic PRNG for SkePU

Listing 13.5: User function with calls to the SkePU random number genera-
tor.

float uf(skepu::Random<5> &prng, skepu::RegionilD<float> region)
H
float res = 0;
for (int i = -2; 1 <= 2; ++i) // 1D stencil with random weights
res += region(i) * prng.getNormalized();
return res;

on top of SkePU, as well as readability benefits from having a unified system
for random number generation across all SkePU programs.

Random number extraction in user functions

As explained in Chapter 4, a SkePU skeleton is defined entirely by its type
(e.g., Map), the signature of its instantiating user function, and state prop-
erties set on the resulting skeleton instance (such as .setOverlap(...)
for MapOverlap instances). PRNG extraction is made available in all skele-
tons with a fully data-parallel mapping stage, which is the entire skeleton
set except for Reduce and Scan.*

As such, the user function signature (“header”) itself should encode the
use of random number extraction. This is analogous to the preexisting op-
tion for mapping user functions to request the index of the currently pro-
cessed element (see Listing 13.3). Therefore, we encode PRNG reliance in
the same way. At the start of the parameter list (after the index parameter,
if any), a parameter of type skepu: :Random<N>& is added. N is a compile-
time constant used in SkePU’s template metaprogramming-based implemen-
tation to deduce the number of random values extracted by the user func-
tion in the dynamic extent of its evaluation. N is required to be known ahead-
of-time for the state forwarding to work and determinism to be preserved.
A compilation option allows for run-time verification that the extraction
count is obeyed.

Value extraction is carried out by a call to one out of two member func-
tions of the skepu: :Random<N> object. random.get () produces integers
in [0,SKEPU_RAND_MAX) while random.getNormalized() returns real
numbers in [0,1). Each call corresponds to one extraction and state up-
date of the PRNG stream. A basic example of a user function with 5 random
number extractions is shown in Listing 13.5.

“Reduce and Scan are parallelized through tree reductions reliant on the associativity
property of their user functions.

SIf determinism is not required by the application, N can be treated as an upper bound,
which instead guarantees that no sub-sequences of random numbers are overlapping.

171

13. A DETERMINISTIC PORTABLE PARALLEL PRNG

Skeleton
evaluation

Pre-forward state for
all registered skeletons

Forward state for
single skeleton

Figure 13.4: Flow-chart of the deterministic PRNG implementation. Here
ellipses are events and boxes correspond to processes.

SkePU user functions are allowed to call other functions, subject to some
but not all restrictions of skeleton-instantiating user functions. As the ex-
traction count N is only required for instantiation, passing a PRNG stream
object to indirect user functions is instead done with a skepu: :Random<>*
parameter with no positional requirement.

PRNG streams and skeleton invocations

Once a skepu::Random<N>&-enabled user function is present, a skele-
ton can be instantiated as usual. In addition to the skeleton instance, a
PRNG stream object needs to be defined in the program: an object of type
skepu: : PRNG. Initialization of the PRNG stream takes an optional seed in-
teger argument. The seed changes the deterministic sequence generated
in the stream and can be assigned from an external entropy source (e.g., a
timestamp) if non-determinism across program runs is preferred.

The stream object is a state machine which registers skeletons ahead of
invocation time. Also in this way PRNG streams work like SkePU’s index
parameters: the stream is not part of a skeleton call’s argument list. In-
stead they are registered as skeleton.setPRNG(prng), if the programmer
wants explicit control over stream objects and the way they map to skele-
ton instances; if no stream is registered, the skeleton picks a global PRNG
stream by default at invocation time. The full flow chart of the registration
and evaluation process is shown in Figure 13.4. In short, several skeleton
instances may be registered before reaching an evaluation event. Only at this
point is the PRNG sequence split across computational units and forwarded
to the appropriate state. The input size (i.e., the maximum degree of paral-
lelism) has direct impact on the forwarding leaps and is only known at the
evaluation point from the input arguments to the skeleton call.’ In subse-
quent skeleton invocations, the PRNG object checks for existing forwarded
state and skips directly to evaluation (refer to Figure 13.3b).

The input size is assumed to be uniform over a sequence of skeleton calls.

172

10

15

20

25

13.5. Designing a deterministic PRNG for SkePU

Listing 13.6: Pi approximation using the new SkePU PRNG API.

#include <iostream>
#include <skepu>

int monte_carlo_sample(skepu::Random<2> &random)

float x random.getNormalized();
float y random.getNormalized();
// check if (x,y) is inside region:
return ((x¥x + y*y) < 1) 2 1 : 0;

3

int add(int lhs, int rhs) { return lhs + rhs; 3

int main(int argc, char *argv[])
£

auto montecarlo = skepu::MapReduce<0>(monte_carlo_sample, add);

skepu: :PRNG prng; // optional
montecarlo.setPRNG(prng); // optional

const size_t samples = atoi(argv[1l]);
montecarlo.setDefaultSize(samples);

double pi = (double)montecarlo() / samples * 4;
std::cout << pi << "\n";

Listing 13.6 shows a variant of the Monte Carlo Pi calculation algorithm
using the new SkePU API. Implementation with a MapReduce<0> skeleton
enables a data-parallel computation without explicit container allocation,
as the algorithm needs no element-wise input data to the user function; all
input is derived from the PRNG stream. Internally, SkePU will use two con-
tainers: one input data set for the split PRNG sub-sequence states, and one
output data set for the results of the user function invocations. Note, how-
ever, that SkePU will optimize the size of these intermediate data sets; they
grow by O(p), the number of computational units, and not O(n), problem
size (here the sample count).

Our prototype implementation handles multiple PRNG stream objects
across different skeleton calls, but a single skeleton call (and thus its user
function) can only receive values from one PRNG stream per invocation.
skepu: :Random usage can be combined with most other SkePU features,
with a notable exception being dynamic scheduling for multi-core execu-
tion introduced [59] in SkePU 3.

The SkePU implementation of deterministic PRNG streams cover a wide
set of backend targets. For OpenMP, OpenCL, and CUDA, the forwarding is
straightforward as the worker threads are homogeneous, running on equal
hardware resources. In SkePU’s hybrid backend which simultaneously tar-
gets multi-core CPU and GPU resources, the normal forwarding process is

173

13. A DETERMINISTIC PORTABLE PARALLEL PRNG

:Random

Forwarding

Jaded

skepu:

(a) Forwarding on node-level backends.

Forwarding

skepu::Random

Forwarding

Forwarding

NI

(b) Forwarding on cluster-level backends.

Figure 13.5: Differences in state-forwarding approach in cluster backend.

done twice in sequence: first once for the GPU, then the same stream is for-
warded again for the CPU threads. The end result is a single set of forwarded
thread-specific state objects (Figure 13.5a), but with non-equal step count.
Finally, we have an early prototype implementation targeting the cluster
backend. In this case, parallelization is done in two steps: once among nodes
through StarPU and once among CPU cores by means of OpenMP. The for-
warding process for PRNG streams is therefore hierarchical, as illustrated
in Figure 13.5b.

13.6 Related work

Kneusel [86] has a chapter on parallel PRNGs, but with respect to deter-
ministic execution only reports a manual construction of duplicating the
state variable for each thread, plus skipping a number of states in order
to achieve the same state as in a sequential execution. He also explains
counter-based PRNGs and their suitability for parallelization because they
allow skipping any given number of states with constant effort. Fog [68]
discusses requirements on PRNGs in parallel computations, but focuses on
avoiding overlapping sequences in different threads by combining genera-
tors, while UEcuyer et al. [90] focus on providing independent streams and
substreams. Salmon et al. [137] focus on output functions for counter-based
PRNGs to provide fast skipping of states but still provide good statistical

174

13.6. Related work

quality. All do not focus on deterministic execution independent of paral-
lelization, and have static mapping of tasks to threads in mind.

Leiserson et al. [96] argue that SPRNG [109], which provides a determin-
istic parallel PRNG, shows poor performance on Cilk programs and thus is
not suitable for massive parallelism. They propose pedigrees, a mechanism
to achieve a kind of linearization (i.e. a kind of equivalence to a sequential
execution) in a Cilk program independent of the Cilk scheduler. However,
they do not address pattern-based parallelization.

Parallel PRNG specifically for GPU include the cuRAND library for CUDA,
SYCL-PRNG for SYCL, and work by Ciglari¢ et al. [23] for OpenCL. The Thrust
skeleton library for CUDA also includes a PRNG library. Passerat et al. [123]
discuss general aspects of PRNG on GPGPUs. GASPRNG [70] is an early at-
tempt at realizing the full SPRNG generator set on CUDA GPUs, including
clusters of CUDA GPU nodes.

175

Towards a modernized
auto-tuner

Parts of this chapter are based on the following bachelor’s thesis project,
supervised and developed jointly by the author:

Basel Nsralla. “Modernizing and Evaluating the Auto-Tuning Framework
of SkePU 3. Bachelor’s Thesis. Department of Computer and Information
Science, 2022

14.1 Background

A high-level parallel programming framework with multiple backend tar-
gets presents a problem for the user: how to choose the appropriate backend
for a particular program run? Predicting which backend is the best one de-
pends on several factors. Firstly, different backends are better suited for dif-
ferent applications. A multicore CPU processor is designed to handle com-
plex control flow logic (MIMD), while a GPU accelerator excels at managing
large numbers of threads following the same instruction sequence (SIMD),
and so on. Secondly, applications may not even agree on the metric which
defines the "best” backend. For some applications execution time is im-
portant, while others are more concerned about power consumption [100].
Finally, the problem size is a crucial property when tuning against different
types of parallel backends, as the overhead of scheduling a task on a back-

177

14. TOWARDS A MODERNIZED AUTO-TUNER

Sequential Multi-core CPU == GPU

—

Execution time

Problem size

Figure 14.1: 1dealized performance behavior of a multi-backend application,
with crossover points.

end is typically independent of problem size and therefore amortized over
tasks with large problem sizes.

Figure 14.1 illustrates an hypothetical idealized run of some data-
parallel application. With large problem sizes, backends with greater paral-
lelism complete the task the fastest, but these backends are also expected to
have significant time penalty at startup. For a GPU, this time includes driver
overhead, data movement, and possibly even kernel compilations. Sequen-
tial computation has very little startup costs and the execution time curve
is close to linear. This model is a good rough approximation of the perfor-
mance behavior of data-parallel applications such as those in SkePU and is
the basis of its auto-tuner implementation®. If we assume that the perfor-
mance curves as seen in Figure 14.1 are reasonably convex, the answer to
the question stated at the top of the chapter is then transformed into the
task of finding the crossover points where the fastest backend changes. These
points are marked in the figure with vertical lines. A related approach is
to generate an execution plan, which separates the problem size parameter
space into intervals and records the predicted best backend for each inter-
val. In either case, the tuner estimates the performance at various problem
sizes, either by offline estimations or by sampling the problem itself with
generated input data.

14.2 SkePU variadic tuner design

Work on the original auto-tuner in SkePU predates this thesis. Dastgeer et
al. [46, 48] implemented the auto-tuning strategies of SkePU 1, and while

n practice many other factors have to be accounted for, including data locality effects
from cache hierarchies and smart data-container coherency states.

178

14.3. Implementation

the underlying tuner is still present, the interface is not a perfect fit with
the variadic template metaprogramming-enabled skeletons of SkePU 2 and
later. Element-wise operands of the same skeleton instance share the same
size, but other operands such as random-access data-containers are decou-
pled from the element-wise size and adds another dimension to the problem
size parameter space. When the parameter space grows, tuning strategies
need to be re-evaluated. At the same time, the auto-tuning field is evolving,
with new optimizations being introduced [99]. SkePU needs a modernized
tuner implementation, and the rest of this chapter presents an early proto-
type of a variadic auto-tuner interface for it.

Work on the modernized auto-tuner thus far does not include revised
prediction models, search pruning, or other similar tuning strategies, but
is rather aimed at generating variadic execution plans with existing tuning
infrastructure.

14.3 Implementation

This section elaborates on three key parts of the variadic auto-tuner imple-
mentation: generation of multi-dimensional problem size sequences from
argument sequences in SkePU user functions, sampling such sequences into
concrete input data sets, and from the resulting performance samples gen-
erate an execution plan with persistent serialization to file storage.

14.3.1 Multi-dimensional argument sequences

Each user function has a set of parameters, classified into element-wise,
random-access, and uniform types. Each of those parameters are based on
data types with a fixed dimension, e.g., Matrix is always 2D and Vector is
always 1D. Some exceptions are found in skeletons where it is possible to
call the skeleton with either 1D or 2D data types. This makes the dimen-
sion of the parameters incompatible between the auto-tuner and the ex-
pected input argument. To solve that problem, dimension collapsing is ap-
plied on the specific parameter. Collapsing means that, after determining
the dimensions for an ambiguous skeleton (for instance 1D MapOverlap),
the auto-tuner can change the dimensions of the input to match the one
the auto-tuner deduced.

Collapsing the argument dimensions will not affect the search. On the
other hand, if the dimension expectation at compile time is not the largest
possible, a dimension extension will be required. This extension would
affect the search in the execution plan as the search space will then not
contain the extended dimensions and a new auto-tuning process would be
needed. This problem has not been observed in practice. Dimension col-
lapsing has been a very rare occasion and will only happen if the skeleton

179

14. TOWARDS A MODERNIZED AUTO-TUNER

Listing 14.1: Declarative sequence generation.

Permutation<
Group<Standard<Dimensions<ret...>>, Standard<Dimensions<elwise...>>>,
Single<Ultra<Dimensions<cont...>>>,
Single<Ultra<Dimensions<uni...>>>

>()

does not specify the data container type in the declaration, but rather spec-
ifies pointers or index types as element-wise arguments. Future develop-
ment of the tuning infrastructure can take these edge cases into account.

To perform the auto-tuning, multiple variations of the input need to be
generated; each variation forms a sample sequence. The sequence gener-
ator takes the dimensions of the parameter types and the sampling limit
as input, and generates a sample of all possible sizes for each parameter.
Each sequence will be used by the auto-tuner and run on each backend to
identify the apparent "best” backend for it. The sizes are incremented by
a power of two; the choice of exponential size increment was done to form
an estimation for the dynamic range of sizes and is subject to change in the
future.

The argument sequences are generated systematically, as many skele-
tons have a defined relationship between their arguments. To solve this
problem, a declarative interface was implemented to manage the relation-
ships between the arguments. An example of how the interface can be used
can be seen in Listing 14.1. The Group type groups two or more parame-
ter types to always have the same size, Single makes the parameter inde-
pendent, Standard and Ultra determines if the permutations of the ar-
guments should be applied on an inner level, Ultra would create combina-
tions considering the inner dimensions of the parameter, Standard ignores
the inner level combinations, which means that Standard and Ul tra would
be equivalent on a one-dimensional parameter. This interface is used only
by SkePU developers; it is not part of the user-facing SkePU API.

14.3.2 Sampler

The Sampler class template takes a skeleton class as its template argument.
Sampler represents an abstract base class that constructs the types of the
different argument categories as if they were user types. This is needed
because the sampler is invoked in the same way a SkePU program is. The
argument categories are using declarations that exist in every skeleton.
The types constructed are often containerized versions of the same type,
with some exceptions. Those exceptions occur in Mat<T>, MatRow<T>,
MatCol<T>; all specialized to yield Matrix<T>. Similarly, Vec<T> yields
Vector<T> instead. Containerizing is important as the internal parts of

180

14.3. Implementation

SkePU will call the user function based on the skeleton type, and the pa-
rameters will be extracted from the provided containers, the same way a
normal SkePU program would invoke the skeleton instance.

Sampler objects are specialized for skeletons which expose operand in-
terfaces not compatible with the basic Map assumptions. While Map can be
applied to smart data-containers of any dimensionality (1D-4D), the skele-
ton will interpret the problem space as a linearization of the input, and tun-
ing is thus always one-dimensional in the element-wise space.

While MapOverlap can also be applied for any dimensionality, here the
size in each dimension is directly impacting the pattern evaluation, and thus
also the performance characteristics. Configured overlap radius presents yet
more parameters for the input space, one for each overlap dimension. If
no overlap size has been configured, the sampler class assumes an overlap
radius heuristically.

14.3.3 Execution plan and persistence

The expected output of any auto-tuning implementation is an execution
plan (encoding a model), which represents the result of the auto-tuning in
a form of mapping from an input size to the expected optimal backend for
that input. The execution plan uses linear search to find the target input
size, and returns the backend as a BackendSpec which encapsulates infor-
mation about the backend in more detail. BackendSpec is SkePU’s preex-
isting representation of each backend configuration.

As execution plans are expensive to generate, serialization to file-system
storage is utilized to persist the execution plan for each compilation. The
ExecutionPlan class was made serializable to JSON format using the
nlohmann JSON C++ library?. To distinguish between serialized execution
plans throughout changes to a program, a version number constant is main-
tained. In the tuner prototype, this number is generated by a compiler
macro; in the future, the SkePU precompiler can be extended to provide
a unique ID for each code generation. A comparison at runtime between
the version number of the program and the saved version in the serialized
execution plan is then enough to determine whether the file storage is in-
validated.

The auto-tuner starts by looking, for each skeleton instance, for a previ-
ously generated execution plan, and returns it if found. Otherwise, it pro-
ceeds by decomposing the skeleton call into its parameter categories passed
to the dimension builder. The dimensions are passed to the argument se-
quence generation which returns the sequences consisting of sizes to be
applied. The sequences are then passed to the Sampler, which builds the
sample data. The sample data, namely the constructed arguments, are then

2https://github.com/nlohmann/json

181

10

15

20

14. TOWARDS A MODERNIZED AUTO-TUNER

Listing 14.2: Matrix-vector multiplication in SkePU using Mat.

#include <skepu>

template<typename T>
T mvmult_f(skepu::Index1D row, const skepu::Mat<T> m, const skepu::Vec<T> v)
£
T res = 0;
for (size_t i = 0; 1 < v.size; ++1i)
res += m(row.i, i) * v(i);
return res;

3

int main(int argc, char *argv[])
£
size_t rows = atoi(argv[1]);
size_t cols = atoi(argv[2]);
auto spec = skepu::BackendSpecfargv[3]3%;

skepu: :Vector<float> v(cols), r(rows);
skepu: :Matrix<float> m(rows, cols);

auto mvprod = skepu::Map(mvmult_f<float>);
mvprod(r, m, v);

passed to the benchmarking system which executes the skeleton using all
the different backends and finds the fastest one. The fastest backend is then
added to the execution plan as the best backend for the particular sample
size. The execution plan is fully constructed when all the samples are tested
and gets flushed to the disk. The plan is then used as a source for the back-
end choice, by providing the problem sizes at invocation time.

14.4 Future work

With the internal implementation of a variadic auto-tuner in place, imme-
diate future work will be about exposing an interface for multi-parameter
tuning to SkePU programmers. Practical SkePU applications expose more
problem size parameters than is actually relevant for tuning. Consider, for
example, a matrix-vector multiplication y = Az. Shown in Listing 14.2,
the vector y is produced element-wise from a Map skeleton instance, with
the user function signature exposing one Mat and one Vec proxy-container
parameter. The sampler system in the variadic tuner identifies four dis-
tinct tuning parameters: the output vector size, the input matrix height
and width, and the input vector size.

As is also evident from the full program in Listing 14.2, the problem has
actually only two independent size parameters. The output vector size is
coupled to the height of the matrix, and the input vector size is coupled to
the matrix width. Switching to the MatRow construct introduced in SkePU 3

182

14.4. Future work

gives the compiler and runtime more information about the access pat-
terns, but even this can only eliminate one of the two superfluous dimen-
sions (MatRow encodes the coupling between the output vector size and the
matrix height), and the solution is not general. SkePU therefore needs a
tuning interface wherein the user can declare such couplings explicitly, and
furthermore express whether any scalar user function parameters are con-
sidered performance-impacting so the sampler can register tuning intervals
for them.

183

Evaluation results

This chapter collects quantitative results from evaluations done on SkePU
in general as well as the specific contributions presented throughout the
thesis.

Being a high-level programming interface, we are interested in the us-
ability of SkePU for programmers of different skill levels. Section 15.1 there-
fore presents a survey on the usability of SkePU code, including aspects of
readability and programmer feedback through error messages.

However, as a parallel programming framework, the speedup relative to
sequential processing is one of the most important measurable metrics for
SkePU. Absolute speedup numbers require optimized sequential implemen-
tations of application in addition to ”SkePU-ized” code performing compu-
tations generating exactly the same result. Such performance evaluation
can be found in Section 15.6.

Evaluation results from the mini-apps in the EXA2PRO project is sum-
marized in Sections 15.6.4, 15.6.5, 15.6.6, and 15.7.2.

Because of the effort of constructing such benchmarks, performance
evaluation of specific innovations or additions to SkePU is often done by
comparing relative to SkePU itself. Section 15.2 evaluates SkePU backends
against each other and in addition compares skeleton structures introduced
in SkePU 2 to the closest corresponding construction in SkePU 1.2.

Section 15.3 evaluates the performance of the lineages optimization
(Chapter 10), Section 15.4 presents performance results of the hybrid back-

185

15. EVALUATION RESULTS

end implementation from Chapter 8, and Section 15.5 evaluates the multi-
variant user functions of Chapter 12.

Section 15.7 presents results related to the deterministic parallel ran-
dom number generator as implemented in SkePU.

Section 15.8 and Section 15.10 include selected results from two master’s
thesis projects, covering the SkePU-GPI cluster backend and the modernized
variadic auto-tuner, respectively.

Section 15.9 contains micro-benchmarks (synthetic code or small-scale
applications) on features introduced in SkePU 3, and Section 15.11 finishes
with an evaluation of high-level skeleton fusion.

15.1 SkePU usability evaluation

The results in this section were first published in the paper SkePU 2: Flexi-
ble and Type-Safe Skeleton Programming for Heterogeneous Parallel Systems [62].
The survey was based on the work-in-progress programming interface for
SkePU 2.

15.1.1 SkePU 2 prototype survey

The interface introduced in SkePU 2 (and still being the basis of SkePU 3)
aims to improve on that of SkePU 1 with increased clarity and a syntax that
looks and feels more native to C++. To evaluate this, a survey was issued to
16 participating respondents, all master-level students in computer science.
The participants were presented with two short example programs: one
very simple and one somewhat complex, each both in SkePU 1 and SkePU 2
syntax. To avoid biasing either of the SkePU versions, the order of intro-
ductions was reversed in half of the questionnaires. See the thesis [58] for
more discussion on the survey, including the code examples presented to
the respondents.

Note, however, that the survey was issued when the syntax of
SkePU 2 was not yet finalized. At the time C++11 attributes were re-
quired to guide the precompiler: skepu::userfunction on user func-
tions, skepu::instance on skeleton instances, skepu::usertype
on user-defined struct types appearing in user functions, and
skepu: :userconstant for global constants on constexpr global vari-
ables. The attributes allowed for a straightforward implementation of the
precompiler, and the reasoning was that clearer expression of intent from
the programmer could improve any error messages emitted.

Figure 15.1 presents the responses comparing the two SkePU versions
in terms of code clarity (to the question How would you rate the clarity of this
code in relation to the previous example?). The usability evaluation indicates
that the SkePU 1 interface is sometimes preferred to the SkePU 2 variant, at

186

15.1. SkePU usability evaluation

SkePU 1 first SkePU 1 first
M SkePU 2 first W SkePU 2 first

AN

0
SkePU 1 . Neutral - SkePU 2 SkepU 1 - Neutral - SkePU 2
Preferred SkePU version Preferred SkePU version

Responses
S
Responses
N

(a) Simple example (b) Complex example

Figure 15.1: Comparison of code clarity, SkePU 1 vs. SkePU 2.

least when the user is not used to C++11 attributes as indicated by the free-
form comments in the survey. We realized that the decision to use attributes
as a fundamental part of the syntax needed to be revisited.

In the more complex example, respondents generally considered the
SkePU 2 variant to be clearer. We believe that the reason for this is the fact
that it has fewer user functions and skeleton instances than the SkePU 1
version (thanks to the increased flexibility offered in SkePU 2). The user
functions are also fairly complex, so the macros in SkePU 1 may be more
difficult to understand.

The results can still be considered valid for SkePU 3, since the interface
of the specific skeletons in the survey has not changed much except for the
attributes. However, an updated and expanded usability survey of state-of-
the-art SkePU interface would be of general interest.

15.1.2 SkePU 3 survey

A similar survey was conducted by Erik Tedhamre as part of his in-progress
master’s thesis project. We present an early summary of the results here.
Unlike the SkePU 2 prototype survey, which was comparing generations of
SkePU syntax, for this one the goal was to compare SkePU to common par-
allel programming interfaces taught to university students: OpenMP and
CUDA. Respondents were picked at random among university students in
computer science-related programs.

Implementations of three applications® were selected for comparison
purposes. The implementations in OpenMP and CUDA were taken from the
benchmark repositories, while the SkePU variants were written by Erik Ted-
hamre under supervision from August Ernstsson. Each respondent was ran-
domly assigned one of the three applications.

1Breadth-first search (bfs) from Rodinia [20], covariance (covariance) from PolyBench
[160], and finite-difference time-domain method for 2D data (fdtd-2d) from PolyBench.

187

15. EVALUATION RESULTS

14
12
10

- M SkePU B CUDA M OpenMP
l |]
.
— — I
||

1 2 3 4 5 6 7 8 9 10

Responses

S N e O

Understandability scoring

Figure 15.2: Understandability scoring frequency results from the SkePU 3
survey. The figure shows the aggregate of all three applications for each
programming model.

A summary of the scoring for all three programming models is shown in
Figure 15.2.

SkePU achieves the best average score. The difference is, however, quite
small and the spread is significant. The survey results are planned to be dis-
cussed in detail in an upcoming master’s thesis report by Erik Tedhamre,
including correlations between framework ranking and a control question
designed to evaluate the programming proficiency of the respondents. Pre-
liminary results indicate that stronger programmers tend to rank SkePU
understandability higher, relative to CUDA and OpenMP.

15.2 Initial SkePU 2 performance evaluation

The results in this section were first published in the paper SkePU 2: Flexi-
ble and Type-Safe Skeleton Programming for Heterogeneous Parallel Systems [62].
Experiments were carried out on an early version of SkePU 2 and on hard-
ware available at the time.

The system used for testing consists of two eight-core Intel Xeon E5-2660
”Sandy Bridge” processors at 2.2 GHz with 64 GB DDR3 1600 MHz memory,
and a Nvidia Tesla k20x GPU. The test programs were compiled with GCC g++
4.9.2 or, when CUDA was used, Nvidia CUDA compiler 7.5 using said g++ as
host compiler. Separate tests were conducted on consumer-grade develop-
ment systems, showing similar results after accounting for the performance
gap. The framework has also been tested on multi-GPU systems using CUDA
and OpenCL, and a Xeon Phi accelerator using the Intel’s OpenCL interface,
the latter shown in Figure 15.4. All tests include data movement to and from
accelerators, where applicable.

188

15.2. Initial SkePU 2 performance evaluation

102 coulombic 102 mandelbrot
== OpenMP . == OpenMP
10t gPpSnCL 10t gsanL
100 [L=-_cupa 100 [L==_cuoA
w10t w10t
(] ()
£10? E10?
10° 107
10" 10 s
10° ad 10° ’
10° 100 10° 10° 10* 10° 10° 10’ 10° 10° 10! 10° 10° 10*
problem size problem size
(a) Coulombic potential (b) Mandelbrot fractal
100 ppmcc 103 nbody
== OpenMP i == OpenMP
R + OpenCL ¥ 102 '+ opencL
10" H e cpu e CPU
- CUDA 10* [== cupa
2
0 10
o @
@ 10° e 210"
E Fovm i s ?” £
- 10* 107
et 102 [ww
-5 " o
10 L’ - 10"
1076 ‘l‘]”””””‘l‘””m“ ‘Z 3 4 5 3 7 8 10-5 0 1 2 3 4
10° 100 107 10° 10° 10° 10° 107 10 10 10 10 10 10
problem size problem size
(c) Pearson product-movement correlation (d) N-body simulation
coefficient

Figure 15.3: Test program evaluation results. Log-log scale.

Results are shown in Figure 15.3. The following test programs were eval-
uated:

+ Pearson product-movement correlation coefficient
A sequence of three independent skeletons: one Reduce, one unary
MapReduce and one binary MapReduce. The user functions are all
trivial, containing a single floating point operation. The problem size
is the vector length.

+ Mandelbrot fractal
A Map skeleton with a non-trivial user function. There is no need for
copy-up of data to a GPU device in this example, but the fractal im-
age is copied down from device afterwards. In fact, there are no non-
uniform inputs to the user function, as the index into the output con-
tainer is all that is needed to calculate the return value. The problem
size is one side of the output image.

189

15. EVALUATION RESULTS

PPMCC Mandelbrot

== OpenCL R == OpenCL
S f e cru of[*+ cru
10 e 10
102 e wett 10 R
T ke 0 S
103 102 i,
gl g1
10" 102 o
10° 10"
-6 10%
007 107 107 10° 10° 10° 10° 107 10° 0107 10" 107 10°
problem size problem size
(a) Pearson product-movement correlation (b) Mandelbrot fractal

coefficient

Figure 15.4: Evaluation results on Xeon Phi using OpenCL.

10! taylor 10! taylor

10*

== OpenMP == OpenMP
100 [| '+ OpencL N/A 100/ '+ OpencL
+ CPU " CPU
10 = CUDA 101 = CUDA
w1072 © 10
() AR 9]
€ 1p- ot et € 10"
£10° u £ 107
10 10
10° 10°
1075 1 2 3 4 5 3 7 8 1076 1 2 3 4 5 6 7
100 10° 10° 10° 10° 10° 10" 10 100 10° 10° 10" 10° 10° 10
problem size problem size
(a) SkePU 1.2 (b) SkePU 2

Figure 15.5: Comparison of Taylor series approximation

¢ Coulombic potential

This program calculates electrical potential in a grid from a set of
charged particles, as an iterative computation invoking one Map
skeleton per iteration. The user function takes one argument, a
random-access vector containing the particles. It also receives a
unique two-dimensional index from the runtime, from which it cal-

culates the coordinates of its assigned point in the grid.

¢ N-body simulation

Performs an N-body simulation on randomized input data. The pro-
gram is similar to Coulombic potential, both in its iterative nature and

the types of skeletons used.

The preview release of SkePU 2 had not been optimized for perfor-
mance. Even so, it has already shown to match or surpass the performance

190

10°

15.3. Performance evaluation of lineages

of SkePU 1.2 in some tests. However, the results vary with the programs
tested and seem particularly dependent on the choice of compiler. A ma-
ture optimizing C++11 compiler is required for SkePU 2 to be competitive
performance-wise.

In cases where the increased flexibility of SkePU 2 and later allows a
program to be implemented more efficiently—for example by reducing the
amount of auxiliary data or number of skeleton invocations—SkePU 2 may
outperform SkePU 1 significantly. Figure 15.5 shows such a case: approxi-
mation of the natural logarithm using Taylor series. For SkePU 1, this is im-
plemented by a call to Generate followed by a call to MapReduce; in SkePU 2
and later a single MapReduce is enough, reducing the number of GPU kernel
launches and eliminating the need for O(n) auxiliary memory.

15.3 Performance evaluation of lineages

The results in this section were first published in the paper Extending smart
containers for data locality-aware skeleton programming [60]. Experiments
were carried out on an experimental branch of SkePU 2 and on hardware
available at the time.

We have conducted performance evaluation of the lazy tiling approach
by benchmarking the applications presented earlier: Horner’s method in Sec-
tion 10.4.1, exponentiation by repeated squaring in Section 10.4.2, and heat
propagation from Section 10.4.3. The first two are sequences of Maps while
the latter uses MapOverlap.

All performance evaluation was performed on Intel Xeon CPU model E5-
2630L at 2.40 GHz and hyperthreading enabled. The cache memory hierar-
chy was as follows: 32 kB L1 data cache, 256 kB L2 cache, and 15 MB L3 cache.
All programs were precompiled with the SkePU source-to-source compiler
into C++ source files, which were then processed by the GCC C++ compiler
version 5.4.1 in C++11 mode. The optimization level was set at -03 with no
other flags explicitly set. SkePU’s built-in benchmarking API uses standard
C++11 functions (std: : chrono library) for wall-clock-based time measure-
ments.

15.3.1 Sequences of Maps

Both Horner’s method and exponentiation by repeated squaring are itera-
tive sequences of Map skeletons with small user functions and virtually ideal
situations for lineage building. With a trivial user function, the benchmark
is memory bound and tiling should give a significant performance improve-
ment. The source code is very similar to Listings 10.6 and 10.7, but instru-
mented with measurement directives and additional constructs for explic-
itly requesting lineage evaluation.

191

15. EVALUATION RESULTS

1

= 4194304 |
1
I

67108864
16777216

1048576

103 104 10° 106 107 108
chunk size

(a) Horner’s method

= 4194304

: 1
== 1048576 I
] I

67108864
16777216

- = ==

103 104 10° 106 107 108
chunk size

(b) Exponentiation by repeated squaring

Figure 15.6: Benchmark results for Map sequences.

The lineage length is data dependent for both examples. We used a coef-
ficient vector of size 8 for Horner’s method and the exponent 87 for repeated
squaring. Note that the exponent not only defines the length of the lineage
but also the shape, i.e., how many calls to mult occur in between iterations.

Results are visible in Figure 15.6, where each line represents one of
four problem sizes (size_r in the source code). Different chunk sizes
(chunksize) are tested for each problem size. We can see that a signifi-
cant speedup can be achieved from loop tiling, as long as the problem size
is large enough. The optimal chunk size seems relatively consistent across

192

15.3. Performance evaluation of lineages

== 134217728 , ——
8.25 /
/
8.00 I
I
7 7751 I
(0]
€ 7.50 1 I
B I
7.251 I
I
7.001 N 1
> I
6.75 b I [
10 104 105 106 107 108
chunk size

Figure 15.7: Heat propagation with tiled MapOverlap.

the tests, but this will be dependent on the memory hierarchy of the tar-
get system. There is still some overhead with the lambda expression-based
implementation, but the advantages of tiling are still apparent. A chunk
size equal to the problem size will result in the same behavior as if the lazy
tiling is not enabled, and is included as the last data point for each series as a
baseline. Comparing that with the optimal chunk size shows that the tiling
implementation can provide over 3x speed-up. Considering the attributes
of the benchmarks as described above, this is likely to be a best-case sce-
nario.

15.3.2 Heat propagation

We have also instrumented the code from the heat propagation example in
Listing 10.8 for performance evaluation. Using an unrolling factor of 4 gives
the results in Figure 15.7. Compared to the Map benchmarks, this applica-
tion is less well-suited for the lineage-based tiling, as there is more work
per element and the algorithm is relatively more computation bound. A
single container is also not used more than twice in the scope where the
lineage is built up. Even so, Figure 15.7 shows a similar behavior to the Map
benchmarks with a big performance gain once the chunk size fits in the
caches. Both the maximum performance gain and the relative overhead of
lazy evaluation is less significant here, but the optimal chunk size still has
23 % speed-up when compared with no tiling.

193

15. EVALUATION RESULTS

15.4 Hybrid backend

The results in this section were first published in the paper Hybrid CPU-GPU
execution support in the skeleton programming framework SkePU [119].

The implementation was evaluated on a system consisting of two octa-
core Intel Xeon E5-2660 (16 cores in total) clocked at 2.2 GHz with 64 GB of
memory and a Nvidia Tesla K20x GPU with 2688 processor cores and 6 GB of
device memory. The programs were compiled with nvcc (v7.5.17) using g++
(v4.9.2) as host compiler.

15.4.1 Single skeleton evaluation

First each skeleton type was evaluated with typical user functions. Input
sizes ranging from 100, 000 to 4,000,000 in increments of 100, 000 were used.
Each input size and backend combination was executed seven times and the
median execution time was noted to eliminate outliers caused by other op-
erating system processes occasionally running on the CPU. The predicted
partition ratio used in the hybrid backend was also noted for each input
size. The hybrid backend was tuned with the auto-tuner a single time and
the same execution time model was then used for all input sizes. The results
are shown in Figure 15.8. As can be seen in the graphs, the hybrid backend
improves upon the performance of the OpenMP and CUDA backends for all
skeletons, at least as the input size grows. For most skeletons the hybrid
backend even manages to match the performance of the OpenMP and CUDA
backends for small input sizes, by switching to CPU-only or GPU-only exe-
cution. For the Scan skeleton however, a leap in the hybrid backend curve
can be seen, where the partition ratio prediction switches from CPU-only to
hybrid too early, as the predictor overestimates the performance of hybrid
execution. This is likely due to the extra complexity of the hybrid execution
implementation of the Scan skeleton, where the performance of the CPU
and the accelerator partitions do not completely match the performance of
the OpenMP and CUDA/OpenCL backends used in the auto-tuning.

15.4.2 Generic application evaluation

To evaluate the implementation in a more realistic context, we also com-
pared the performance of the new hybrid scheme on some of the example
applications provided with the SkePU source code. A presentation of the
applications and which skeletons they use is shown in Table 15.1. In the
Skeletons column, the number within <> tells the arity of the skeleton in-
stance, i.e. how many element-wise accessed input containers it uses.

The applications were executed with five different configurations. First
with the sequential CPU backend as a baseline. Then the OpenMP, CUDA and

194

15.4. Hybrid backend

100 10 p-mmmm e - 100
80 8
=z —
A X
: E
ﬁ 60 § 6
8 g
g w £ OF oaf
= =)
20 2
0 UO 0.5 1 1.5 2 2.5 3 3.5 40
Problem size [num elems] 108 Problem size [num elems] 106
(a) Map (b) Reduce
100
80
= =
g 2 g
= 0EE
g 0§ E
E :
20
0 U0 0.5 1 1.5 2 2.5 3 3.5 4()
Problem size [num elems] 106 Problem size [num elems] 108
(c) MapReduce (d) MapOverlap
0 {100
N
=
E
B
E 6f
P
E
R
4
&
N — OpenMP
..... CUDA
0 | | | | | | | 0 —+— Hybrid
0 05 1 15 2 25 3 35 4 . .
Problem size [num elems] 106 --- (CPU) Partition ratio

(e) Scan

Figure 15.8: Execution time of skeletons

hybrid backends. For the hybrid backend, all skeletons were tuned with the
auto-tuner. Tuning was done with 10 steps and the tuning time was not in-
cluded in the measured execution time. Finally, we used an oracle to find
the upper limit to the speedup possible to achieve with the hybrid backend
implementation, given an optimal partition ratio choice. Oracles has been
used in earlier research to show the upper bound of hybrid execution im-
plementations [75, 103, 141]. We let the oracle execute the application using
the hybrid backend with a manually set partition ratio for each skeleton in-

195

15. EVALUATION RESULTS

Application Algorithm Skeletons

CMA Cumulative moving average Map<1>, Scan

Coulombic Coulombic potential Map<1>

Dotproduct Dot product MapReduce<2>

Mandelbrot Mandelbrot fractal Map<0>

PPMCC Pearson product-moment correlation coeff. Reduce, MapReduce<1>, MapReduce<2>
PSNR Peak signal to noise ratio Map<2>, MapReduce<2>

Taylor Taylor series expansion of log(1 + z) MapReduce<0>

Table 15.1: List of applications used in the evaluation.

stance, ranging from 0% to 100% in increments of five percentage points.
For multi-skeleton applications all combinations of ratios were tested. The
fastest of these execution times was then saved as the oracle’s time. All
backends, including all partition ratio combinations tested by the oracle,
were executed seven times, and the median execution time was used. The
results are shown in Figure 15.9. The figure shows that the hybrid backend
improves upon the OpenMP and CUDA backends in most applications. By
comparing the hybrid bar to the oracle bar we can see that the auto-tuning
finds good partition ratios, but there is some room for improvement. Ac-
cording to the oracle two of the applications (PSNR and Taylor) do not gain
from hybridization, at least not the tested problem sizes. This is also found
by the auto-tuner in the Taylor case, as it falls back to CPU-only execu-
tion. PSNR is the only application where the hybrid backend fails to improve
upon the performance of the OpenMP and CUDA backends. The reason for
this is that the auto-tuning finds the optimal partition ratio to be 40% for
the Map skeleton and CPU-only for the MapReduce skeleton. Although this
is the optimal partition ratio for each individual skeleton instance, it is not
the optimal choice when both skeletons are considered because of the need
to move data between CPU and GPU memory. According to the oracle, of-
floading all data to the GPU gives the best execution time in this case.

15.4.3 Comparison to dynamic hybrid scheduling using StarPU

Finally, we show the improvement over the experimental hybrid execution
implementation based on the StarPU runtime system that was implemented
in SkePU 1. To make a fair comparison, parts of the old StarPU implemen-
tation was ported to SkePU 2. We also compared the execution time to the
OpenMP and CUDA backends. As StarPU is supposed to get better over time
by learning how to schedule the work, we tried executing the same skeleton
multiple times. Each backend was executed 30 times in a row. New input
containers were allocated each time to rule out the impact of data locality.
The results are shown in Figure 15.10. In the graphs we can see the stability
of the OpenMP, CUDA and hybrid backends. It is also apparent that the hy-
brid backend with the auto-tuning manages to find a good load balance and
improves upon the execution time of the individual processing units. The

196

15.5. Evaluation of multi-variant user functions

30 | |
IrOpenMP
CUDA
Oracle
20l In Hybrid

Speedup over sequential CPU

O > &
O > N
: & S S S

Nl 00\3
L

Figure 15.9: Speedups comparisons of example applications

performance of the StarPU backend is unstable, even though it manages to
match the performance of the hybrid backend in some iterations. For the
Reduce skeleton both the hybrid and the StarPU backend have a hard time
to improve the performance, as the skeleton works much better on the CPU
compared to the GPU.

The execution time of the StarPU backend stabilizes somewhat with
time, but it is still uneven after 20-30 repeated executions. This is likely due
to the low number of tasks (manually found to be between 3 and 14) each
skeleton instance had to be divided into for the best performance. This in
turn is a result of the relatively small input size that was used in the eval-
uation. StarPU comes with a substantial overhead and might therefore be
better suited for applications with even larger input sizes. The StarPU back-
end can also be of interest for special kinds of user functions with a very
skewed workload, where adaptation is needed at runtime. But as these cor-
ner cases were not the target of the new auto-tuning implementation, no
experiments were performed with such applications for this paper.

15.5 Evaluation of multi-variant user functions

The results in this section were first published in the paper Multi-variant
User Functions for Platform-aware Skeleton Programming [61].

We present performance evaluations for two distinct use cases for multi-
variant user functions: vectorization of Map-type skeleton applications on
real and complex numbers, and specialization of the algorithms used in the
user function of a stencil-type image filtering operation using MapOverlap.

197

15. EVALUATION RESULTS

| ‘ ‘ ‘ ol |
§ : :
120 : 120+
— l H e,
E 100 i
2wl S T ;
g H 7 el W,
ERNC) A
g LAY . i
Bl S AL LAY,
20 20
R T TR R R) R T R R)
Iteration Iteration
(a) Map, 20 - 10° elements (b) Reduce, 90 - 10° elements
i 3
O
120 #
Z 100 H i
E w0 YU N
A —— OpenMP
= 60 v 1
| | CUDA
20 1 e Hybrld
T I -#- StarPU
Iteration

(c) MapReduce, 20 - 10° elements

Figure 15.10: Execution time of repeated invocations of the same skeleton

15.5.1 Vectorization

To demonstrate the performance gained from vectorization of user func-
tions in a scenario in which automatic compiler optimization might be pro-
hibited, we test the example from Section 12.3.1 using the Intel C++ Com-
piler v.18.0.1. -03 level optimization is enabled for all benchmarks, and the
results are presented as the average of 100 runs. All computations are per-
formed on single-precision floating point data. The target system uses Intel
Xeon Gold 6130 processors. Two vectorization scenarios are evaluated:

Element-wise vector addition: Three variants are compared: no vec-
torization, and vectorization by a factor of four and eight, respectively.

Element-wise vector multiplication of complex numbers: Complex
numbers stored in struct-of-arrays format, with four input data contain-
ers in total. Three versions are tested: no vectorization, factor eight direct
vectorization, and a refactored vectorized version using fused multiply add
(FMA) vector instructions.

For scalar element addition, the results show that there is always a ben-
efit of vectorization if available. However, as seen in Figure 15.11 the over-
head of loading and storing vector registers is significant when there is only
one vector instruction to compute. The choice between four element vec-

198

15.5. Evaluation of multi-variant user functions

L3 Non-vectorized L1 Vectorized x4 Vectorized x8
» 1,8x107-05
©
C
e}
O
2 1,4x10"-05
o
Q
E 9,0x101-06
C
[}
€
2 4,5x107-06
@
£
& 0,0x107+00
1000 10000 100000 1000000 10000000

Problem size, elements

Figure 15.11: Element-wise vector addition, three variants. Execution time
normalized (per element).

3 Non-vectorized L1 Vectorized x8 Vectorized x8 FMA
» 1,40x107-04
©
C
o
(5]
2 1,05x107-04
o
S
€ 7,00x101-05
c
[}
1S
£ 3,50x107-05
S
[}
E —0—@p o o—S—p—p o o o0
=

0,00x107+00
1000 10000 100000 1000000 10000000

Problem size, elements

Figure 15.12: Element-wise complex vector multiplication, three variants.
Execution time normalized (per element).

tor instructions and eight element variants does not matter as much, as the
best performer is inconsistent. It is clear that more computation is required
to get the most out of manual vectorization.

We also evaluate complex number multiplication (Figure 15.12). The
complex numbers are stored in cartesian form and multiplied element-wise
according to (a+bi)x (c+di) = (ac-bd)+ (ad+bc)i. There are more vector in-
structions to amortize the register transfer overhead over in this case, even
though the number of inputs is doubled. An alternate version with FMA in-
structions provides more efficient computation but at the cost of reducing
this amortization factor.

15.5.2 Median filtering

To demonstrate and evaluate the application of multi-variant user functions
to provide different algorithmic approaches to the same computation, we
look at the median filtering operation on images. For each pixel in the out-

199

15. EVALUATION RESULTS

Table 15.2: User function variants for median filtering.

Variant Time Memory | Dependencies
Double loop | O(n?) O(1) None

Histogram | O(n+|D|) | O(|D|) None

gsort O(nlogn) | O(n) C standard library

Bl Histogram@CPU I Double Loop@CPU gsort@CPU

100000 W Histogram@OpenCL Double Loop@OpenCL

10000
1000

g |
1 2 3 4 5 6 7 8 9

Filter radius

o
o

Time, milliseconds
s

Figure 15.13: Median filtering using different median computation algo-
rithms.

put image, the filter selects the median value of all pixels in a region sur-
rounding the corresponding pixel in the input image. The region is defined
by a radius, the same in both x and y dimensions. Using the MapOverlap
skeleton, the image filter is then implemented directly by providing the
median-finding algorithm as the user function. This can be done in several
ways: by sorting the elements in the region, brute-force counting search, or
by a histogram collection, among others. The characteristics of the afore-
mentioned three approaches are compared in Table 15.2 (in the table, n de-
notes input size and |D| denotes the size of the value domain).

A comparison of execution times for the different variants is presented
in Figure 15.13. The OpenCL variants target a single Nvidia Tesla K20c GPU.
The radius is varied in the range 1-9 pixels, but note that this has an effect in
two dimensions and will scale the input region in the user function quadrat-
ically. The input image is fixed at 512 x 512 pixels, in 24-bit RGB format. The
results show that there is no algorithm that is optimal across both backends;
we even see that, on the GPU, the best variant varies with the filter radius.

15.6 Application benchmarks of SkePU 3

The results in this section were first published in the paper SkePU 3:
Portable High-Level Programming of Heterogeneous Systems and HPC Clusters
[59].

200

15.6. Application benchmarks of SkePU 3

1200
—Orig. solver A, seq.
1000 SkePU-A seq.
SkePU-A OpenMP

800 SkePU-A OpenCL

600

400

200 -~

0 .
N=250 N=500 N=750 N=1000

Figure 15.14: Execution times (seconds) of the SkePU 3 port of Variant A
of the Embedded Runge-Kutta ODE solver implementation in the Libsolve
library [88], solving the Brusselator 2D-MIX problem for 4 different system
sizes.

15.6.1 Libsolve ODE solver

Figure 15.14 shows SkePU 3 performance results for an embedded ODE
solver from the Libsolve library? [88], solving the Brusselator 2D-MIX prob-
lem with 7 stage vectors for four different system sizes (N = 250, 500,
750, 1000 rows) on a server with 12 cores Xeon(R) CPU E5-2630L and a
K20c GPU, with pre-selected single-node CPU and GPU backends respec-
tively. The solver core uses 9 different skeleton instances (of Map, Reduce
and MapReduce) with an average of 63 calls to skeleton instances per time
step; it iterates over 1976 time steps in total for the largest scenario in Fig-
ure 15.14, for which it performs 124,532 calls to skeleton instances in total.

15.6.2 N-body

Figure 15.15 shows performance results for the N-body scenario of Sec-
tion 4.8 using the OpenMP backend, taken on the same server. There is a
slight increase in execution time, although too small to account for an inlin-
ing issue (discussed in Section 4.8). A likely explanation for the slowdown
is due to the change in memory access pattern. Depending on the envi-
ronment, the more significant improvement in memory footprint might be
enough to prefer the MapPairsReduce variant.

201

15. EVALUATION RESULTS

B Nbody Map Il Nbody MapPairsReduce

Time

0 01 02 03 04 05 06 07 08 09 1 1,1

Memory

Figure 15.15: Normalized execution time and memory footprint for two
variants of N-body: the Map variant (Listing D.1) and MapPairsReduce vari-
ant (Listing D.2).

250000 100
—s—Execution Time (ms)

140000 Blackscholes - 10M input 200000 —+—Relative Speedup
— 120000
@A

B PARSEC m SKEPU3 190000
100000
80000 100000
60000 50000
40000 , 1
20000 I 1 2 4 8 16 32 64 128 256

seriaAl OMP1 OMP2 OMP4 OMP6 OMP 12 OMP 24 OpenCL
version thread threads threads threads threads threads

(m

Execution time

Figure 15.16: Execution time (ms) of the SkePU 3 port of the PARSEC bench-
mark Blackscholes on its largest input set. Left: Time with serial, OpenMP,
OpenCL backends in SkePU and for manually multithreaded code in PARSEC.
Right: Time and speedup with MPI backend on the cluster of Figure 15.18.

15.6.3 Blackscholes and Streamcluster

Execution time results for SkePU 3 ports of PARSEC benchmarks Blacksc-
holes and Streamcluster on the same server can be found in Figures 15.16
and 15.17. The results show that the SkePU abstraction overhead com-
pared to the hand-multithreaded PARSEC code is small (Blackscholes) or
very small (Streamcluster), and that SkePU provides further targets for free
(here, OpenCL for Blackscholes). The Streamcluster benchmark also ex-
hibits a common problem encountered in SkePU-izing legacy C/C++ code:
arrays containing a pointer-based data structure (e.g., a directed graph), if
packaged e.g. in a Vector container, work very well with the OpenMP back-
end but are not portable to execution on e.g. a GPU with a different address

Libsolve repository: https://github.com/UBT-AI2/rk

202

15.6. Application benchmarks of SkePU 3

1200000 Streamcluster - 1000000 data points

1000000
B PARSEC m SKEPU3
800000
600000
400000
200000 I I I I
0 Bl mm

serial pthreads / pthreads/ pthreads/ pthreads/ pthreads/ pthreads/
version OMP 1thr. OMP 2thr. OMP 4 thr. OMP 6 thr. OMP 12 thr. OMP 24 thr.

Execution time (ms)

Figure 15.17: Execution times of the SkePU 3 port of the PARSEC benchmark
Streamcluster on 10° data points.

space, as host addresses are not portable to device memory. For such cases,
more advanced container types (e.g., directed graphs) would be required,
which is left for future work.

15.6.4 Brain simulation

The results in this section were first published in the paper Portable Ex-
ploitation of Parallel and Heterogeneous HPC Architectures in Neural Simulation
Using SkePU [121].

Figure 15.18 shows the scaling behavior of the SkePU 3 port of a brain
simulation mini-application [121] performing 200 time steps with 90000
neurons and dense synapse connectivity using up to 32 nodes (each node
having two Xeon Gold 6130 with 16 cores each) of the Tetralith cluster at
NSC Linkdping. The version that uses the MatRow container proxy benefits
from more scalable communication compared to using the default Mat con-
tainer. For comparison, the diagram also shows a manual MPI paralleliza-
tion of the SkePU code (i.e., outer-MPI SkePU) where the communication
structure corresponds to that of the MatRow version; while the scaling be-
havior is similar, it also shows that the execution time overhead of using
SkePU with the StarPU-MPI based backend is here up to a factor of 2.

15.6.5 CO; capture

The results in this section were first published in the paper EXA2PRO:
A Framework for High Development Productivity on Heterogeneous Computing
Systems [122]. The experiments were conducted by our partners in the
EXA2PRO project.

This application pertains to CO, capture systems described in [42], im-
plemented with advanced programming models and evaluated on hetero-

203

15. EVALUATION RESULTS

30720

15360 \ =@—Quter MPI Time
7680 S =H=|nner MPl Mat Time

3840 Inner MPI MatRow Time

3z

1920

]

3

= 960

Q

E

S 480

.0

§ 240

& R

/{

o))
o

30
1 2 4 8 16 32 64 128 256 512 1024

Figure 15.18: Execution time (in seconds, logarithmic scale) of the SkePU 3
port of a brain simulation mini-application [121] performing 200 time steps
with 90000 neurons using up to 32 nodes (each with 32 cores) of the Tetralith
cluster. "Outer MPI” refers to a manual MPI parallelization, the two "Inner-
MPI” versions use SkePU’s StarPU-MPI backend instead.

geneous cluster systems to assess their scalability and speedup. Problem
size ranged from 4 x 10? to 4 x 10° algebraic equations, whereas tests are
performed in up to 1000 CPU threads and to GPUs in a local cluster?, in ad-
dition to the ARIS* and Piz Daint®> supercomputers. The Map skeleton of
SkePU is used as illustrated in Listing D.5.

In the CO, capture case, the core operation ported to SkePU is repre-
sented by the non-linear system of algebraic equations that are used to
model the chemical process system [42]. The ported functions are used in
a sequence of two calculation stages. In the first stage, the functions are
used within a constrained optimization problem formulation, to determine
the optimum solution under steady-state operation. In the second stage,
the Karush-Kuhn-Tucker optimality conditions [14] are used to transform
the problem into an equivalent algebraic formulation [139]. In both stages,
the constraints of the optimization problem and their gradients are imple-
mented in SkePU. The algorithms used in the two stages are IPOPT [154]
and PITCON [133]. The former calls the functions in SkePU to calculate the

34-core Intel Xeon E-2174G@3.8 GHz and Nvidia Quadro P620
420-core Intel Xeon E5-2680v2@2.8 GHz
512-core Intel Xeon E5-2690v3@2.6 GHz and Nvidia Tesla P100

204

15.6. Application benchmarks of SkePU 3

-1
44 @ = Openvp | 10730
B OpenCL]
B CUDA 107 4
3 4 E
=) = 107 3
3 2
221 £
N = 107 4
—o— SkePU create
1 1075 - o= OpenMP call
—eo— CUDA call
106 4 —e— CUDA flush
0_ -"""'I ML | ML | HELELRALLL | T
40 400 4000 10! 10? 10° 10*
Number of CO, model equations (x10%) Number of CO, model equations (x10%)

Figure 15.19: CO, capture [122]: (a) Speedup using SkePU for various back-
ends on a single node, considering all tasks of Listing D.5. (b) Breakdown
of time for tasks create of SkePU vector, call with OpenMP, call with CUDA
and flush with CUDA. (Results on a single node of the local cluster for both
figures).

Hessian and to perform the Newton step for the solution of the non-linear
equations.

Figure 15.19a depicts the speedup based on the total execution time, us-
ing SkePU parallel backends over single-core execution. The total execu-
tion time comprises the durations of data allocation, skeleton invocation,
and flushing data to CPU memory if GPUs are used.

Figure 15.20a shows that when only the call task is considered, speedup
is observed due to the use of SkePU in both the OpenMP and CUDA cases.
The same pattern also appears in Figure 15.20b, but Piz Daint enables higher
speedup, especially for the CUDA case and large number of equations,
thanks to the faster GPU.

Figure 15.20d shows the execution time, in a log-log plot, of 1000 simu-
lations of a CO, capture process model consisting of 4 x 10® equations for an
increasing number of CPU cores and up to 64 nodes. Overall, the method
scales nicely up to 200 cores. However, as the number of cores increases,
and a fixed workload is distributed to the parallel cores, the task size per
core decreases. Since the task size becomes lower than 1ms, the runtime
overhead per task [151] has significant impact on the execution time.

The effort of applying SkePU to the CO, capture was performed by a se-
nior engineer, already familiar with the application, that required about 2
weeks of training on SkePU and 4 weeks of development.

205

15. EVALUATION RESULTS

(a)

(© %

== CPU Piz Daint == CPU Cluster
GPU Piz Daint === GPU Cluster

40 400 4000 10? 103 10°

Number of CO, model equations (x103)
60 4]
(b) E OpenMP 10" (&
S 40 = CUDA = 10° 4 N
2 5 ~
g E S
20 1 = 102 '; === Theoretical
i SkePU-StarPU MPI
T L) T L)
40 400 4000 1 10 100 1000
Number of CO, model equations (x10%) # cores

Figure 15.20: CO, capture [122]: (a) Speedup when only the call task is con-
sidered in all cases (local cluster). (b) Speedup for increasing number of
equations when only the call task is considered (Piz Daint). (c) Execution
time on CPUs and GPUs of Piz Daint and local cluster. (d) Execution time on
ARIS using SkePU-StarPU MPI backend for multiple MPI nodes.

15.6.6 Supercapacitor simulation

The results in this section were first published in the paper EXA2PRO:
A Framework for High Development Productivity on Heterogeneous Computing
Systems [122]. The experiments were conducted by our partners in the
EXA2PRO project.

Metalwalls [105] is a classical molecular dynamic code dedicated to the
accurate simulation of electrochemical systems like supercapacitors, de-
vices able to store energy under electrostatic form. The typical simulated
system is made of two carbon electrodes immersed in an ionic liquid. At
each time step, the evaluated mini-app computes (with a matrix-free con-
jugate gradient) the charge density on electrodes such that they conserve a
constant potential.

The original code is written in Fortran 90 (Listing 15.1) and is parallelized
with MPIL With the introduction of OpenACC directives, a single GPU version
is also available. Listing 15.2 shows how its serial version has been rewritten
in the SkePU framework with a single MapPairsReduce. In addition, a DFE
implementation using Max]J® was also produced.

®Max] is Maxeler’s programming language for their DFE accelerator hardware. See e.g.
Voss et al. [153].

206

10

10

15.6. Application benchmarks of SkePU 3

Listing 15.1: Original code for the serial version of a single kernel of Metal-
walls.

double V[num_atoms], z[num_atoms], q[num_atoms];
for (int 1 = 0; i < num_atoms; i++)
£
vi = 0.0;
for (int j = 0; j < num_atoms; j++)
£
zij = z[J] - z[i];
pot_ij = exp(-zij*zij;) + zij*erf(zij));
V[i] = V[i] - q[j] * pot_ij;
3
3

Listing 15.2: SkePU code for the serial version of a single kernel of Metal-
walls.

real_t map_function(
skepu::Index2D i, const real_t zi,
const real_t zj, skepu::Vec<real_t> q)

real_t zij = zi - zj;
real_t qj = q[i.col];
return - qj * (exp(-zij * zij) + zij * erf(zij));

3
real_t plus (real_t a, real_t b) § return a + b; 3
auto pairs2reduce = skepu::MapPairsReduce(map_function, plus);

pairs2reduce.setReduceMode (skepu: :ReduceMode: :RowWise);
pairs2reduce(V, z, z, q);

These implementations have been evaluated on the test-case used in
production [112] with 42490 electrode atoms. In the context of material
science for supercapacitors, this is a large test case. It is however small
considering computing platform capabilities and is thus a limiting factor
for scalability.

Results are given in Figure 15.21. The SkePU implementation degrades
performance by nearly a factor three. Data locality of the generated imple-
mentation cannot yet compete with the original optimized version. How-
ever, in terms of programming effort, the compute intensive part of the ap-
plication (2000 LOC in total) was successfully ported to SkePU in about two
weeks. The SkePU version (450 kernel LOC) is much simpler and slightly
shorter as it is very close to a serial implementation.

207

15. EVALUATION RESULTS

37.87 58.95

o
S

o
o

Intel Haswell
E5-2660 v3 NVidia P100
(12 cores @ 2.6 Ghz)

Intel Haswell
254 E5-2660 v3
(12 cores @ 2.6 Ghz)

Maxeler
Max5C

19.69

IS
S

Performance per Watt
S 8

-
o

o

0- _— - —
Original Native SkePU Original

Original Original
MPI StarPU OpenAcc MPI OpenAcc

MaxJ Max]J

—— Ideal

307 —— wpi

—— MPI+StarPU
257 —— SkePU-cluster

10! —— MPI
—— MPI+StarPU
—— SkePU-cluster

Time (s) per iteration

12 4 8 16 32 1 2 4 8 16 32
nodes # nodes
Figure 15.21: Comparison of software technologies on Metalwalls in terms
of execution time (top left), performance per Watt (top right), multi-node
speedup (bottom left) and multi-node time to solution on Piz Daint. [122]

15.6.7 Conjugate gradient

To gain insight into the performance potential of the SkePU-BLAS interface
part of the standard library (see Section 6.3), we evaluated the conjugate
gradient solver (slightly modified from the code in Listing D.4) implemented
using the BLAS API. The program was run on a 12-core Xeon server (two six-
core Xeon E5-2630L CPUs with two-way hardware multi-threading, thus 24
hyper-threads) with a Nvidia K20c GPU and 64 GiB main memory. The pa-
rameters were set to a problem size of N=25000 and a maximum number of
100 iterations, executed on sequential CPU, OpenMP backend with various
thread counts, and OpenCL and CUDA backends for GPU. The system ran
Ubuntu 18.04.5 LTS; GCC 10.3.0 was used as CPU backend compiler with -03
optimization level. The diagram in Figure 15.22 shows the median times of
5 runs. We observe a speedup of about 8x if using all CPU hardware threads;
execution on GPU is only a little faster.

208

15.7. Experimental evaluation of deterministic PRNG

OPU Oap, O/Vp,fg Cap, , zps,, P Of]fg{[Of‘fpklg Mp@

180

135

Time, seconds
Nel
o

0

De,z OL

Figure 15.22: Performance evaluation of conjugate gradient solver imple-
mented in SkePU using the BLAS APL

1x107+01
1x107+00
g |
o
5 |
2 1x107-02 ‘
1]
o)
E 1x107-04
¥¢ | Sequential
¢ |OpenMP
¢ |OpenCL
1000 100000 10000000 1000000000

Sample count

Figure 15.23: Monte-Carlo Pi calculation with varying sample count on dif-
ferent backends.

15.7 Experimental evaluation of deterministic PRNG

The results in this section were first presented in the paper A Deterministic
Portable Parallel Pseudo-Random Number Generator for Pattern-Based Program-
ming of Heterogeneous Parallel Systems [63].

For the performance evaluations in this section, we use the same server
as in Section 15.6.7. Results are presented as the median of several measure-
ment runs (varying between the programs).

15.7.1 Monte-Carlo Pi approximation

We begin with the probabilistic Pi calculation from Section 13.4.1. SkePU
code using the new skepu: :Random API is shown in Listing 13.6.

Figure 15.23 contains the performance results from executing the
SkePUized program on various backends. The Monte-Carlo Pi calculation

209

15. EVALUATION RESULTS

300
M =16 Manual

(2] L=16 skepu::Random
e 2% L=24 Manual
8] L=24 skepu::Random
3 150
3
e 75

c Il B I W B e e Wi w W W
1 2 4 6 8 10 12 14 16 18 20 22 24
Thread count

Figure 15.24: Time (seconds) for 10 iterations of LQCD with lattice sizes

L =16 and L = 24 for varying number of hardware threads in the OpenMP
backend.

algorithm is an interesting stress test due to the random number gener-
ation dominating the total work. The application scales well on the GPU
using the OpenCL backend (up to 180x speedup compared to sequential in
the presented results), even though the work done in the user function is
very lightweight.

15.7.2 LQCD Mini-Application

For the LQCD mini-application introduced in Section 13.4.2, SkePU code us-
ing the new PRNG API is shown in Listing 15.3.

Figure 15.24 shows the times of 10 iterations of LQCD with the OpenMP
backend, comparing the manual workaround of Listing 13.4 to the new ver-
sion using skepu: :Random of Listing 15.3. We can see that no new over-
heads are introduced while code complexity decreases (see Sect. 15.7.5).

15.7.3 Miller-Rabin primality testing

The Miller-Rabin primality test [132] is a probabilistic algorithm to de-
termine for a given number if it is likely prime or not. The actual test gets
two inputs: n, the number to be tested for primality, and a value a in the
range {2...n - 2}. The test performs a computation on a and n, and depend-
ing on the result it outputs “n is prime” or “n is composite”. While the latter
answer is always true, there is a certain probability that the former answer
is wrong, and this probability can be reduced by doing the computation re-
peatedly with randomly chosen a, see Listing 15.4. This can be easily par-
allelized, as the t iterations are independent (except for calls to the PRNG),
but for comparability it is helpful that the random choices are similar to the
sequential version.

210

10

15

20

25

30

10

15.7. Experimental evaluation of deterministic PRNG

Listing 15.3: Markov-chain-based LQCD application with new SkePU PRNG
API

// Data management:
struct localGauge; // 36 double-precision complex numbers
skepu: :Tensor4<localGauge> gaugeField(L, L, L, L);
// Gauge randomization:
localGauge randomizelocalGauge(skepu::Random<> *prng)
£
localGauge gaugeNew;
for (int idx = 0; idx < 36; idx++) §
gaugeNew.at(idx).re = prng->getNormalized();
gaugeNew.at(idx).im = prng->getNormalized();
3
return gaugeNew;
3
// Metropolis step:
localGauge localUpdate(skepu::Random<73>& prng,
skepu: :Region4D<localGauge> stencil)
£
localGaugeAndPRNG update = randomizelocalGauge(prng);
double limen = someMatrixArithmetic(stencil, update);
if (prng.getNormalized() >= limen) §{
stencil(0,0,0,0) = update;
3
return stencil(0,0,0,0);
3
skepu: :PRNG prng;
auto metropolisUpdate = skepu::MapOverlap(localUpdate);
metropolisUpdate.setPRNG(prng);
for (int iter = 0; iter < Niter; iter++) §
metropolisUpdate(gaugeField, gaugeField);
3
Listing 15.4: Pseudocode of Miller-Rabin probabilistic primality testing
int test(int n)
£
result = true;
for (int 1 = 1; 1 <= t; i++) §
int a = rand();
result = result & millerrabin(n, a);
// if (result == false) break;
3
return result;
3

211

15. EVALUATION RESULTS

1x107+01
1x107+00

1x107-02

1x107-04

Time, seconds

Sequential
OpenMP
OpenCL

10 100 1000 10000 100000 1000000 10000000

Problem size

Figure 15.25: Miller-Rabin primality test with varying sample count on dif-
ferent backends.

Our SkePU implementation of the Miller-Rabin algorithm is largely
based on an open-source implementation in C++ by Larsen” where the main
Monte-Carlo parallelism is expressed by aMapReduce<0> skeleton instance.

Parallel performance of the SkePUized Miller-Rabin application can be
seen in Figure 15.25. Instruction flow is highly divergent throughout the
algorithm due to data-dependent control flow, which is challenging for the
GPU backend: it is just barely faster than multi-core CPU computation. This
property distinguishes the program from the Monte-Carlo sampling algo-
rithm wherein the PRNG values have no effect on control flow. For the
multi-core OpenMP backend we observe speedup up to 13x.

15.7.4 Natural noise generation

The PRNG construct now built-in to SkePU generates uniformly distributed
real or integer values (“white” noise; Figure 15.26a). When other distribu-
tions are desired, post-processing of the generated data in application space
can be a solution. One such scenario is for the generation of natural-looking
noise patterns where the value distribution is dependent on factors such as
signal frequency®. One way of generating such “colored” noise is with a
gradient noise algorithm, also known as Perlin noise [127]. The algorithm
(Listing 15.5) first generates n-dimensional grids of uniformly distributed
values at different grid densities. The values are interpreted as gradients
for the resulting n-dimensional noise pattern, and for each sample point,
the neighbor gradients are interpolated to produce a noise value. The sam-
pling process is repeated for each grid density (frequency) level, taking a

7C.S. Larsen: The Miller-Rabin primality test in C++, https://github.com/cslarsen/
miller-rabin

8Used for example in computer-generated image production or as initial values in simula-
tions.

212

10

15.7. Experimental evaluation of deterministic PRNG

S

(a) Uniformly distributed noise. (b) Colored (approximately Perlin)
noise.

Figure 15.26: Two-dimensional noise variants generated by a SkePU appli-
cation.

Listing 15.5: Skeleton call site in the 3D natural noise generator program.

skepu: :Tensor3<float> noise(outDepth, outHeight, outWidth, 0);
auto grid_gen = skepu::Map(generate_grid_point_value); // uses PRNG
auto noise_gen = skepu::Map(render_value_noise_3d);
for (int i = 0; i < octaves; ++i)
£
// «.. (computation of grid sizes and amplitude omitted)
skepu: :Tensor3<float> grid(gridwWidth, gridHeight, gridDepth);
grid_gen(grid); // consumes PRNG values
noise_gen(noise, noise, grid, amplitude, outDepth, outHeight, outWidth);

3

weighted sum of the individual samples as the resulting output value. A
typical output is found in Figure 15.26b.

Performance evaluation of the noise generator is done on a 3D domain.
It produces 256 time-linked textures, with the spatial domain as a square
with side length sampled at powers of two. The program generates the en-
tire 3D domain in one sweep with the SkePU tensor container, with 10 su-
perimposed octaves of noise. The results in Figure 15.27 indicate very good
scalability with just over 15x speedup on OpenMP and 43x on OpencCL.

15.7.5 Programmability evaluation

In all® of Pi calculation, Lattice QCD and Miller-Rabin primality test, the
implementations see a reduction in lines-of-code count after applying the
SkePU PRNG API. This effect primarily comes from abstracting the imple-

9The natural noise generator was written without a prior reference implementation.

213

15. EVALUATION RESULTS

100
2 # Sequential
5 OpenMP
(]
g 10 OpenCL
[0}
=
'_

1
0,1
0 275 550 825 1100

Spatial size

Figure 15.27: 3D natural noise generation results, varying the two spatial
dimension side lengths. Vertical time axis is in logarithmic scale.

mentation details of the PRNG engine itself. The entire code base of the
SkePUized LQCD application is reported by sloccount to be 1,212 lines of
code before applying the new skepu: :Random API, and 1,137 afterwards.
This amounts to a reduction by 6.2%. In addition, the change simplifies the
data structure hierarchy, and fewer skeleton calls and user function decla-
rations are necessary.

15.8 SkePU-GPI cluster backend

The results in this section are selected from the master’s thesis project of
Joel Almgqvist [3].

Experimental evaluation of the SkePU-GPI prototype (Section 9.3) was
conducted on the Tetralith cluster. Here, matrix-vector multiplication (Fig-
ure 15.28a), matrix-matrix multiplication (Figure 15.28b), and N-body simu-
lation (Figure 15.28c) are presented. The GPI backend was compared against
the StarPI-MPI backend (Section 9.2), as they both target the same type of
platforms: large-scale cluster systems.

At this point, the results are inconclusive. Both cluster backends demon-
strate performance overhead for small node counts, but not always for the
same problems. The general trend of the GPI backend is that it shows very
good scaling behavior when the node count is increased, but as the sequen-
tial execution times are high, it needs a relatively large number of nodes
to reach competitive performance. For one of the problems, N-body sim-
ulation, the GPI prototype notably outperforms the StarPU-MPI backend
significantly.

214

15.9. Microbenchmarks of SkePU 3

GPI o StarPU-MPI
6000 2500 2500
5000 2000 2000 42
4000
2 1500 1500
§ 3000
& 1000 1000
- M&—‘_‘}
1000 500 500
(@ (b) (©
0o —MM 0 0
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Nodes

Figure 15.28: Performance of the GPI backend prototype compared to the
StarPU-MPI backend.

a) Matrix-vector multiplication program of size 50000 for 10* iterations.

b) Matrix-matrix multiplication program of size 18000 x 18000.

¢) N-body program with 2 x 10° particles running for 20 iterations.

CPU M OMP Static [l OMP Dynamic
B OMP Guided [l OpenCL
2,25
1,5
0,75
0

Mandelbrot Lex. reduction Primecount

Figure 15.29: Execution time (normalized to the sequential CPU backend
time) for three irregular-load benchmarks.

15.9 Microbenchmarks of SkePU 3

The results in this section are first published in SkePU 3: Portable High-Level
Programming of Heterogeneous Systems and HPC Clusters [59].

15.9.1 OpenMP scheduling modes

For the same machine, Figure 15.29 shows the positive performance effect
of using dynamic scheduling in three data-parallel benchmarks with irreg-
ular workload, in spite of the runtime overhead of dynamic scheduling: (1)

215

15. EVALUATION RESULTS

Table 15.3: Microbenchmark results of vector initialization, seconds.

] | With GPU backends | No GPU backends |

Seq. consistency v[i] 0.899 0.308
Weak consistency v (i) 0.313 0.310

Generating a 1024x1024 Mandelbrot image using the SkePU 3 Map OpenMP
backend with different scheduling modes. Dynamic scheduling (chunksize
16) outperforms the static default mode. (2) Lexicographic reduction find-
ing the maximum among 10® date/time tuples. Guided dynamic scheduling
(chunksize 8) outperforms the static default mode. (3) Counting prime num-
bers using MapReduce where dynamic scheduling performs best. Results for
the sequential CPU and OpenCL backends are provided as reference.

15.9.2 SkePU memory consistency model

To illustrate the motivation behind the change of consistency model for
SkePU smart containers (Section 5.3), we have measured the execution time
through a microbenchmark. Allocating and initializing the elements of a
SkePU vector using a simple for-loop results in the numbers in Table 15.3. If
the SkePU application is compiled without either GPU or CUDA backends
there is no appreciable overhead, but as soon as those device copies are
present it is approximately 3x faster to use non-managed access operators.

15.10 Variadic tuner prototype

The results in this section are selected from the master’s thesis project of
Basel Nsralla [116].

Figure 15.30 shows the prototype variadic auto-tuner (Chapter 14) ap-
plied to a Mandelbrot fractal generation program for an initial performance
evaluation. There are outlier data points for small problem sizes, suggesting
that a more thorough experimental setup is required, but overall for large
problems the tuner finds the fastest backend.

15.11 High-level skeleton fusion

The impact of skeleton fusion in SkePU (covered in Chapter 11) is evaluated
by utilizing the image filtering component of SkePU’s standard library, in-
troduced in Section 6.4. The experimental setup uses a filter pipeline with
eight stages, each modeled by a Map skeleton instance. This particular filter
performs one lighten operation followed by a saturation adjustment; fur-

216

15.11. High-level skeleton fusion

100000 Tuned 4 OpenCL 1} OpenMP ¥ CPU <> Hybrid

10000
1000

2
E 100
(9]
g 10
8 1
T 01
0,01 V
0,001

10 512x512 4096x4096 1076x1076

Problem size

Figure 15.30: Log-scale plot of Mandelbrot execution times on different sizes
and backends, and when using the variadic tuner prototype.

8 0,16
= . Non-fused 012
§ B rused ’
2 4 0,08
L
£ 2 0,04
F

OpenMP -00 OpenMP -03 OpenCL, partial transfer ~OpenCL, full transfer

0

Figure 15.31: Execution time of an image filter pipeline, as separate skeleton
instances and as a single fused instance (partial transfer includes only input
and output data containers; full transfer includes also intermediate data
containers).

ther stages are for operations such as color space conversions. The entire
filter pipeline is visualized in Figure 15.32.

In the measurements we use a 16 megapixel input image and only the
filter pipeline execution time is measured for OpenMP. For OpenCL we also
include data transfer times to and from the GPU. The results are presented
in Figure 15.31. We observe that high-level skeleton fusion has significant
impact on GPU execution times; notably, elimination of the smart data-
containers necessary for storing intermediate values in the non-fused vari-
ant is a big part of the gain, but not the only benefit. For OpenMP execution,
we can determine that skeleton fusion acts as an optimization pass, with
the impact being significantly more noticeable if the backend compiler op-
timizations are disabled. With optimizations on, the fused variant is only
marginally faster. It is possible that fusion can make user functions overly
large, preventing inlining optimizations in the backend compiler, partly
nullifying the gains from data locality improvements.

217

15. EVALUATION RESULTS

skepu::external
. skepu::external L
Read file Write file

R | char R | char
G | char G | char
B | char B | char
Precision Precision
extension reduction
R | float R | float
G | float G | float
B | float B | float
expansion compression
R | float R | float
G | float G | float
B | float B | float
Color space Color space
conversion conversion
H | float H | float
S | float S | float
Lightness v | float V| float Saturation
adjustment adjustment
H | float
S | float
V | float

Figure 15.32: Image filter pipeline using SkePU components, including from
the standard library.

218

Limitations and
future work

Naturally, the contributions detailed in this thesis generally tend to be re-
sults of successful research and development efforts. However, the problem
formulation given in the introduction is very broad, and one would be naive
to think that the high-level data-parallel pattern approach explored in this
body of work is a completely general solution to all scenarios of accessible
high-performance computing. This chapter aims to give the reader an idea
of some important limitations of the work (in Section 16.1), as well as ex-
ploring directions of future work (in Section 16.2).

Most of the limitations and directions of future work discussed in this
chapter come from experiences from working with this research and receiv-
ing feedback from various sources, not the least peer reviews and discus-
sions in connection with conferences, workshops, collaborations or other
such venues. While the topics brought up in this chapter focus on the SkePU
framework first and foremost, the underlying problems and opportunities
can apply to other projects.

16.1 Limitations

This section discusses areas where we know either SkePU, its programming
model, or implementation choices have limitations when it comes to prac-
tical usage.

219

16. LIMITATIONS AND FUTURE WORK

16.1.1 Applicability of data-parallel patterns

Focusing solely on data-parallel patterns, even when—as in the case of
SkePU—the interface provides a significant amount of flexibility, limits
what types of applications can be modeled in the language. The research
documented in this thesis does for example not include task-based or stream-
based parallelism, which both can be described by using parallel pattern
constructs. Tasks and streams are useful for applications where the problem
is determined to a smaller degree statically, and provides means to dynam-
ically adapt to variations in computation or in data flow. In a data-parallel
SkePU program, the call graph of parallel component invocations is largely
determined at program design time (with some variations allowed by purely
sequential control logic, such as determining the number of iterations in a
heat diffusion simulation). This is not true for task parallelism, where the
task graph can and often will depend on e.g. input values. Similarly, the size
of input and output data sets are always known when a pattern construct is
invoked, so the parallel work is finite and fixed between the sequential con-
trol points. A stream pattern, on the other hand, is designed to continue
processing data in parallel as long as there is data to consume on ingoing
links, as required by application archetypes such as audio or video process-
ing or network packet handling.

16.1.2 Dynamic data structures

The data structures offered by SkePU and covered in this thesis have quite
strict restrictions. The vectors, matrices, and tensors are all contiguous ar-
ray objects, e.g. they must be represented by a compact region of memory
which cannot change size. This design goes hand-in-hand with the data-
parallel patterns, but it is conceptually equally possible to apply a pattern
such as map on a linked data structure such as a list. Linked structures
have advantages in that they are dynamic, being able to grow and shrink
at will and at arbitrary positions. However, linked data often has poor per-
formance properties and traversing them in parallel is either wasteful or
requires a sophisticated implementation to avoid sequentialization. Thus,
in practice the bigger restriction on SkePU containers is the fact that each
element of a smart data-container is also of fixed size. Pointers can never be
present in the user types of a smart data-container.

16.1.3 Limitations of language embedding

Any framework which, like SkePU, is architectured around a custom com-
piler stack faces several challenges. Keeping up with new language versions,
integrating into complex build systems of target applications, and perhaps
most of all, providing a robust compilation phase able to handle the most

220

16.2. Future work

obscure edge-cases of complex languages (especially when the host lan-
guage is C++). SkePU is for example not well suited for code bases reliant
on macro expansions. The embedding choice does bring many benefits, es-
pecially for deployment, but sometimes otherwise promising research ideas
are hindered by the baggage of a host language.

16.2 Future work

The need for parallelism shows no sign to reverse. In fact, the trends are
suggesting a continued increase in parallelism on all levels and parallel ar-
chitectures are spreading to more and more application domains.

We can identify some core areas of future work that apply to most
pattern-based parallel programming environments. These are about diver-
sification of the feature set of a framework, and we will cover three such
areas with the general motivation as well as a concrete example applying
to SkePU. These are adding new backend targets (Section 16.2.1) and additional
parallel patterns (Section 16.2.2).

Furthermore, the programmability aspects of skeleton programming
frameworks, while strong compared to manual hand-optimized program-
ming on multiple low-level backend targets, still leave some things to be de-
sired. Testing, debugging, and visualization facilities (Section 16.2.3) and higher-
level dynamic langauge interfaces (Section 16.2.4) are therefore interesting ar-
eas of further research and implementation work.

16.2.1 Further backend targets: reconfigurable accelerators

During the EXA2PRO project, one of the options considered was to provide
a skeleton programming backend for reconfigurable devices. Maxeler’s
dataflow engine (DFE) hardware was considered, with applications in areas
such as computational finance [12], but in the end the proposed solution
(ad-hoc integration through the Cal1 skeleton) is far from satisfactory from
a programmability perspective. Maxeler’s programming environment MaxJ
is Java-based, making automated integration with SkePU and its collection
of C-family backends difficult. Extending SkePU’s flexible skeleton interface
for FPGA backends remain a topic of great interest for future work, however.
SkePU would be better suited to integrate with one of the OpenCL-based
FPGA interfaces now available [40, 41].

Thttps://www.maxeler.com

221

16. LIMITATIONS AND FUTURE WORK

16.2.2 Extending the parallel pattern set: stream
parallelization

The skeleton set in SkePU is constantly being reevaluated. Occasionally,
progress allows skeletons to be removed, as they are absorbed into others.
This happened with Generate and MapArray from SkePU 2, being absorbed
into a generalized Map. Conceptually, MapOverlap is a prime target for
merging with Map, where the region objects could be grouped with the other
container proxy arguments, with possible advantages being implementa-
tion of patterned applications which need region access into multiple input
containers simultaneously.

However, most interest lies in adding all-new patterns to SkePU through
additional skeletons. SkePU focuses on data parallelism, which makes it
a less than ideal fit for several common applications, e.g. from popular
benchmark suites. Extending SkePU for stream parallelism at this point ap-
pears the most interesting direction, as recent SkePU contributions includ-
ing lineage-backed lazy evaluation [60] are based on related ideas. Devel-
oping SkePU for stream parallelism would extend its target use-cases to
streaming workloads on embedded systems, which are following the gen-
eral trend of increasing heterogeneity [136].

New smart data-containers used in conjunction with existing skeletons
can also enable new application areas. An example of potential new smart
data-container formats are graph structures.

16.2.3 Testing, debugging, and visualization

High-level parallel programming frameworks face many challenges, and
most choose to focus on either performance or programmability aspects.
Perhaps not enough efforts are spent on investigating correctness, through
work on testing infrastructure and debugging facilities. Programmer pro-
ductivity is not only decided by how few lines of code is required for a cer-
tain application, but also the path to get there. Debugging facilities for cor-
rectness and performance will be important areas for future work on SkePU
and for high-level parallel frameworks in general.

16.2.4 Higher-level language interface

While C++ is undoubtedly a relatively high-level programming language
compared to C or Fortran, it is also extremely large and complex. This can
be a detriment to users of the language, where the sheer complexity of C++
turns away especially newer users. Industry trends also see a strong interest
in programming interfaces tied to even more high-level languages and run-
times, often interpreted or just-in-time-compiled. The compiled nature of
C++adds another barrier for accessibility and ease-of-use. There is of course

222

16.2. Future work

a downside to the use of high-level dynamic languages: any computation
expressed completely in, e.g., Python will be up to several orders of mag-
nitude slower than equivalent C++ code. Therefore, a common practice is
to offer high-level interfaces as thin wrappers over optimized components
often implemented in C or C++. An interesting direction of future work for
SkePU and other C++-based skeleton programming environments is there-
fore to offer integrated high-level interfaces to increase accessibility while
as far as possible preserving the performance characteristics.

223

Conclusions

We are currently in the middle of a gradual process of ever-increasing lev-
els of parallelism and heterogeneity in computer hardware, without any
signals of when or if it will stop. The changes are placing pressure on pro-
gramming models to adapt at a similar pace, or else we will have no efficient
means to utilize the resources at hand.

The solution proposed in this work is high-level parallel programming
models. Parallel patterns are especially suitable for programmers without
expert knowledge about parallel systems design, and specifically the data-
parallel algorithmic skeletons and their implementation in SkePU have
been presented in this thesis. Skeleton programming frameworks such as
SkePU provide a way for the user to focus on the application and algorithms
at hand without having to consider subtle details of communication, syn-
chronization, load balancing, and other hardware-specific issues. There-
fore, the resulting applications can attain performance-portability across
the ever-widening landscape of parallel hardware configurations—from
low-power embedded systems to large-scale clusters, with the entire spec-
trum possibly utilizing complex heterogeneous architectures—with mini-
mal or no guidance from the programmer.

The work presented in this thesis has specifically demonstrated how
skeleton programming frameworks can be extended and improve as foun-
dational languages such as C++ evolve to become more expressive and pow-
erful (RQ1). Our approach is based on source-to-source compilation of
C++ programs (RQ2) where variadic template metaprogramming constructs

225

17. CONCLUSIONS

for skeletons and smart data-containers are compiler-known types. To-
gether with the multi-backend runtime library, the source-to-source com-
piler forms the SkePU framework.

Building on these foundations, we have introduced contributions pub-
lished in peer-reviewed journals and conferences. Among these, we have
means to improve hardware utilization through run-time optimizations of
computational task graphs (RQ4), improved portability to hybrid CPU-GPU
systems (RQ5) and large-scale cluster systems (RQ6), as well as allowing ex-
pert programmers to get the most out of the framework with multi-variant
user functions in skeletons (RQ7). We have presented a deterministic par-
allel pseudo-random generator (RQ8) and other library functionality inte-
grating with the skeleton constructs. The contributions are evaluated in a
series of experiments ranging from microbenchmarks to full-scale scientific
applications; including carbon dioxide capture, supercapacitor, and lattice
quantum chromodynamics simulations as part of application-framework
co-design efforts in the EU project EXA2PRO (RQ3).

The foundational improvements to SkePU presented in the thesis
opened up a large field of potential new development directions and possi-
ble features. We have also described ongoing work, such as an alternate
approach to cluster execution, a modernized variadic tuner, and a high-
level skeleton fusion system (RQ9), contributions which are not yet pub-
lished elsewhere. The SkePU programming framework is actively used as a
research tool and for teaching, with several new projects just about to start.

226

Bibliography

Ahmad Abdelfattah, Hartwig Anzt, Aurelien Bouteiller, Anthony
Danalis, Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Pi-
otr Luszczek, Stanimire Tomov, Stephen Wood, Panruo Wu, Ichitaro
Yamazaki, and Asim YarKhan. Roadmap for the Development of a Linear
Algebra Library for Exascale Computing: SLATE: Software for Linear Alge-
bra Targeting Exascale. SLATE Working Notes 01, ICL-UT-17-02. 2017-
06 2017.

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Mas-
simo Torquati. “Fastflow: High-Level and Efficient Streaming on
Multicore.” In: Programming multi-core and many-core computing sys-
tems. John Wiley & Sons, Ltd, 2017. Chap. 13, pp. 261-280. ISBN:
9781119332015. DOI: 10.1002/9781119332015.ch13.

Joel Almqvist. “Integrating SkePU’s algorithmic skeletons with GPI
on a cluster” LIU-IDA/LITH-EX-A-22/002-SE. MA thesis. Depart-
ment of Computer and Information Science, 2022.

Vasco Amaral, Beatriz Norberto, Miguel Gouldo, Marco Aldinucci,
Siegfried Benkner, Andrea Bracciali, Paulo Carreira, Edgars Celms,
Lufs Correia, Clemens Grelck, Helen Karatza, Christoph Kessler, Peter
Kilpatrick, Hugo Martiniano, Ilias Mavridis, Sabri Pllana, Ana Respi-
cio, José Simdo, Luis Veiga, and Ari Visa. “Programming languages
for data-Intensive HPC applications: A systematic mapping study.”
In: Parallel Computing 91 (2020), p. 102584. ISSN: 0167-8191. DOI: 10.
1016/j.parco.2019.102584.

227

BIBLIOGRAPHY

(5]

[10]

[11]

228

Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe. “PetaBricks: A Language
and Compiler for Algorithmic Choice.” In: Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion. PLDI ’09. Dublin, Ireland: ACM, 2009, pp. 38-49. ISBN: 978-1-
60558-392-1. DOI: 10.1145/1542476.1542481.

Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Nikolaos Niko-
laidis, Aggeliki-Agathi Tzintzira, Areti Ampatzoglou, and Alexander
Chatzigeorgiou. “Investigating Trade-offs between Portability, Per-
formance and Maintainability in Exascale Systems.” In: 2020 46th Eu-
romicro Conference on Software Engineering and Advanced Applications
(SEAA). 2020, pp. 59-63. DOI: 10.1109/SEAA51224.2020.00020.

Cédric Augonnet, Olivier Aumage, Nathalie Furmento, Raymond
Namyst, and Samuel Thibault. “StarPU-MPI: Task Programming over
Clusters of Machines Enhanced with Accelerators.” In: Recent Ad-
vances in the Message Passing Interface. Ed. by Jesper Larsson Traff,
Siegfried Benkner, and Jack J. Dongarra. Vol. 7490. LNCS. Springer,
2012, pp. 298-299. 1SBN: 978-3-642-33518-1. DOI: 10.1007/978-3-
642-33518-1_40.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. “StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures.” In: Concurrency and Compu-
tation: Practice and Experience 23.2 (2011), pp. 187-198. DOI: 10.1002/
cpe.1631.

Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Sea-
man. “Managing Technical Debt in Software Engineering (Dagstuhl
Seminar 16162).” In: Dagstuhl Reports 6.4 (2016). Ed. by Paris Avgeriou,
Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman, pp. 110-138.
ISSN: 2192-5283. DOI: 10.4230/DagRep .6.4.110.

Jairo Balart, Alejandro Duran, Marc Gonzalez, Xavier Martorell, Ed-
uard Ayguadé, and Jesds Labarta. “Nanos Mercurium: A Research
Compiler for OpenMP.” In: Proceedings of the European Workshop on
OpenMP. Vol. 8. 2004, p. 56.

Boaz Barak and Shai Halevi. “A Model and Architecture for Pseudo-
Random Generation with Applications to /dev/random.” In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications
Security. CCS ’05. Alexandria, VA, USA: Association for Computing
Machinery, 2005, pp. 203-212. ISBN: 1595932267. DOI: 10 . 1145/
1102120.1102148.

Bibliography

[12]

[13]

[14]

[15]

[18]

[19]

[20]

Tobias Becker, Oskar Mencer, Stephen Weston, and Georgi Gaydad-
jiev. “Maxeler Data-Flow in Computational Finance.” In: FPGA Based
Accelerators for Financial Applications. Ed. by Christian De Schryver.
Cham: Springer International Publishing, 2015, pp. 243-266. ISBN:
978-3-319-15407-7. DOI: 10.1007/978-3-319-15407-7_11.

Nathan Bell and Jared Hoberock. “Thrust: A Productivity-Oriented
Library for CUDA.” In: GPU Computing Gems, Jade Edition (2011).

L.T. Biegler. Nonlinear Programming: Concepts, Algorithms, and Applica-
tions to Chemical Processes. MOS-SIAM Series on Optimization. Society
for Industrial and Applied Mathematics, 2010. 1ISBN: 9780898717020.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
“The PARSEC Benchmark Suite: Characterization and Architectural
Implications.” In: Proceedings of the 17th International Conference on Par-
allel Architectures and Compilation Techniques. PACT ’08. Toronto, On-
tario, Canada: Association for Computing Machinery, 2008, pp. 72-
81.ISBN: 9781605582825. DOI: 10.1145/1454115.1454128.

David Broman, Peter Fritzson, Gorel Hedin, and Johan Akesson. “A
Comparison of Two Metacompilation Approaches to Implementing
a Complex Domain-Specific Language.” In: Proceedings of the 27th An-
nual ACM Symposium on Applied Computing. SAC ’12. Trento, Italy:
Association for Computing Machinery, 2012, pp. 1919-1921. ISBN:
9781450308571. DOI: 10.1145/2245276.2232092.

Denis Caromel, Ludovic Henrio, and Mario Leyton. “Type Safe Algo-
rithmic Skeletons.” In: 16th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP 2008). 2008, pp. 45-53. DOI: 10 .
1109/PDP.2008.29.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland.
“Kokkos: Enabling manycore performance portability through poly-
morphic memory access patterns.” In: Journal of Parallel and Dis-
tributed Computing 74.12 (2014). Domain-Specific Languages and
High-Level Frameworks for High-Performance Computing, pp. 3202-
3216. ISSN: 0743-7315. DOL: 10.1016/7 . jpdc.2014.07.003.

William Celmaster and K.J.M Moriarty. “A method for vectorized
random number generators.” In: Journal of Computational Physics 64.1
(1986), pp. 271-275.1SSN: 0021-9991. DOI: 10.1016/0021-9991(86)
90032-X.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. “Rodinia: A benchmark
suite for heterogeneous computing.” In: 2009 IEEE International Sym-
posium on Workload Characterization (IISWC). 2009, pp. 44-54. DOI: 10.
1109/IISWC.2009.5306797.

229

BIBLIOGRAPHY

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

230

Federico Ciccozzi, Lorenzo Addazi, Sara Abbaspour Asadollah, Bjérn
Lisper, Abu Naser Masud, and Saad Mubeen. “A Comprehensive Ex-
ploration of Languages for Parallel Computing.” In: ACM Comput. Surv.
55.2 (Jan. 2022). ISSN: 0360-0300. DOI: 10.1145/3485008.

Philipp Ciechanowicz, Michael Poldner, and Herbert Kuchen. The
Miinster Skeleton Library Muesli - A Comprehensive Overview. ERCIS
Working Paper No. 7. 2009.

Tadej Ciglari¢, Erik Strumbelj, et al. “An OpenCL library for parallel
random number generators.” In: The Journal of Supercomputing 75.7
(2019), pp. 3866-3881. DOI: 10.1007/s11227-019-02756-2.

Murray Cole. “Bringing skeletons out of the closet: a pragmatic man-
ifesto for skeletal parallel programming.” In: Parallel Computing 30.3
(2004), pp- 389-406.1SSN: 0167-8191. DOI: 10.1016/j .parco.2003.
12.002.

Murray 1. Cole. Algorithmic skeletons: Structured management of parallel
computation. Pitman and MIT Press, Cambridge, Mass., 1989.

EXA2PRO Consortium: Dionysios Kehagias, Dimitrios Tsoukalas,
Maria Mathioudaki, Olivier Aumage, Christoph Kessler, August Ern-
stsson, Johan Ahlqvist, Alexander Chatzigeorgiou, Apostolos Ampat-
zoglou, and Nikolaos Nikolaidis. D5.3 - Initial report on the development
of front-end tools. Tech. rep. Ares(2020)2324772. 2020.

EXA2PRO Consortium: Christoph Kessler, August Ernstsson, Johan
Ahlqvist, Stavroula Zouzoula, Tomas Ohberg, Lazaros Papadopou-
los, Sotirios Panagitiou, Nicolas Vandenbergen, Sakis Papadopou-
los, Mathieu Haefele, and Samuel Thibault. D2.1 - Final prototype im-
plementation of EXA2PRO high-level programming interface. Tech. rep.
Ares(2020)6195810. 2020.

EXA2PRO Consortium: Christoph Kessler, August Ernstsson, Suejb
Mehmeti, Lazaros Papadopoulos, Samuel Thibault, and Alexander
Chatzigeorgiou. D3.1 - Early specification of a modular composition frame-
work architecture. Tech. rep. Ares(2019)569103. 2020.

EXA2PRO Consortium: Christoph Kessler, August Ernstsson, and
Samuel Thibault. D2.1 - Initial specification of EXA2PRO high-level pro-
gramming interface. Tech. rep. Ares(2018)5582990. 2018.

EXA2PRO Consortium: Christoph Kessler, Stavroula Zouzoula, Jo-
han Ahlqvist, August Ernstsson, Suejb Mehmeti, Oleg Sysoev, To-
bias Becker, Alexander Cramb, and Nils Voss. D3.6 - Final ver-
sion of composition and performance modelling framework. Tech. rep.
Ares(2020)8012131. 2020.

Bibliography

[31]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

EXA2PRO Consortium: Suejb Mehmeti, Christoph Kessler, Au-
gust Ernstsson, Johan Ahlqvist, Mahder Gebremedhin, Lazaros
Papadopoulos, Samuel Thibault, and Alexander Chatzigeor-
giou. D3.2 - First version of the composition framework. Tech. rep.
Ares(2019)6780466. 2019.

EXA2PRO Consortium: Suejb Memeti, Christoph Kessler, August
Ernstsson, Samuel Thibault, and Henrik Henriksson. D2.2 - Final
specification of EXA2PRO high-level programming interface. Tech. rep.
Ares(2019)6780458. 2018.

EXA2PRO Consortium: Lazaros Papadopoulos, et al. D8.6 - Final report.
Tech. rep. 2021.

EXA2PRO Consortium: Athanasios Salamanis, et al. D5.4 - Initial re-
port on verification and testing of the EXA2PRO framework. Tech. rep.
Ares(2020)4059106. 2020.

EXA2PRO Consortium: Athanasios Salamanis, et al. D56 - Fi-
nal report on the integration of the EXA2PRO framework. Tech. rep.
Ares(2021)6027979. 2020.

EXA2PRO Consortium: Athanasios Salamanis, et al. D5.8 - Final report
on verification and testing of the EXA2PRO framework. Tech. rep. 2021.

EXA2PRO Consortium: Athanasios Salamanis, Christoph Kessler, Au-
gust Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and Samuel
Thibault. D5.2 - Initial report on the integration of the EXA2PRO frame-
work. Tech. rep. Ares(2020)2324766. 2020.

EXA2PRO Consortium: Dimitris Tsoukalas, Angeliki Tsintzira,
Alexandros Chatziantoniou, Adamantios Stavridis, Christoph
Kessler, August Ernstsson, and Suejb Mehmeti. D5.1 - Verification
and testing strategy. Tech. rep. Ares(2019)2912482. 2019.

Jean Marie Couteyen Carpaye, Jean Roman, and Pierre Brenner. “De-
sign and analysis of a task-based parallelization over a runtime sys-
tem of an explicit finite-volume CFD code with adaptive time step-
ping.” In: Journal of Computational Science 28 (2018), pp. 439-454. ISSN:
1877-7503. DOI: 10.1016/j.jocs.2017.03.008.

Tomasz S. Czajkowski, Utku Aydonat, Dmitry Denisenko, John Free-
man, Michael Kinsner, David Neto, Jason Wong, Peter Yiannacouras,
and Deshanand P. Singh. “From OpenCL to high-performance hard-
ware on FPGAS.” In: 22nd International Conference on Field Programmable
Logic and Applications (FPL). 2012, pp. 531-534. DOI: 10.1109 /FPL .
2012.6339272.

Erik H D’Hollander. “Empowering Parallel Computing with Field Pro-
grammable Gate Arrays.” In: Parallel Computing: Technology Trends 36
(2020). Ed. by I et al. Foster, p. 16. DOI: 10.3233/APC200020.

231

BIBLIOGRAPHY

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

232

Theodoros Damartzis, Athanasios I. Papadopoulos, and Panos Se-
ferlis. “Optimum synthesis of solvent-based post-combustion CO2
capture flowsheets through a generalized modeling framework.” In:
Clean Technologies and Environmental Policy 16.7 (2014), pp. 1363-1380.
DOI: 10.1007/s10098-014-0747-2.

Marco Danelutto, Tiziano De Matteis, Gabriele Mencagli, and Mas-
simo Torquati. “Parallelizing High-Frequency Trading Applications
by Using C++11 Attributes.” In: 2015 IEEE Trustcom/BigDataSE/ISPA.
Vol. 3. 2015, pp. 140-147. DOL: 10.1109/Trustcom. 2015.623,

Marco Danelutto, Gabriele Mencagli, Massimo Torquati, Horacio
Gonzalez-Vélez, and Peter Kilpatrick. “Algorithmic Skeletons and
Parallel Design Patterns in Mainstream Parallel Programming.” In:
International Journal of Parallel Programming 49.2 (2021), pp. 177-198.
DOI: 10.1007/s10766-020-00684-w.

Marco Danelutto and Massimo Torquati. “Structured Parallel Pro-
gramming with ”core” FastFlow.” In: Central European Functional Pro-
gramming School. Vol. 8606. LNCS. Springer, 2015, pp. 29-75. DOI: 10.
1007/978-3-319-15940-9_2.

Usman Dastgeer, Johan Enmyren, and Christoph W. Kessler. “Auto-
Tuning SkePU: A Multi-Backend Skeleton Programming Frame-
work for Multi-GPU Systems.” In: IWMSE ’11. Waikiki, Honolulu, HI,
USA: Association for Computing Machinery, 2011, pp. 25-32. ISBN:
9781450305778. DOI: 10.1145/1984693.1984697.

Usman Dastgeer and Christoph Kessler. “Smart Containers and
Skeleton Programming for GPU-Based Systems.” In: International
Journal of Parallel Programming 44.3 (2016), pp. 506-530. ISSN: 1573-
7640.DOI: 10.1007/s10766-015-0357-6.

Usman Dastgeer, Lu Li, and Christoph Kessler. “Adaptive Implemen-
tation Selection in the SkePU Skeleton Programming Library.” In:
Revised Selected Papers of the 10th International Symposium on Advanced
Parallel Processing Technologies - Volume 8299. APPT 2013. Stockholm,
Sweden: Springer-Verlag, 2013, pp. 170-183. ISBN: 9783642452925.
DOI: 10.1007/978-3-642-45293-2_13.

Usman Dastgeer, Lu Li, and Christoph Kessler. “The PEPPHER Com-
position Tool: Performance-Aware Composition for GPU-Based Sys-
tems.” In: Computing 96.12 (Dec. 2014), pp. 1195-1211. ISSN: 0010-
485X.DOI: 10.1007/s00607-013-0371-8.

Daniele De Sensi, Tiziano De Matteis, Massimo Torquati, Gabriele
Mencagli, and Marco Danelutto. “Bringing Parallel Patterns Out of
the Corner: The P3ARSEC Benchmark Suite.” In: ACM Trans. Archit.
Code Optim. 14.4 (Oct. 2017).1SSN: 1544-3566. DOI: 10.1145/3132710.

Bibliography

[54]

[57]

[58]

[59]

Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters.” In: Commun. ACM 51.1 (Jan. 2008),
pp. 107-113. 1SSN: 0001-0782. DOI: 10.1145/1327452.1327492.

Peter J. Denning. “The Locality Principle.” In: Commun. ACM 48.7 (July
2005), pp. 19-24. 1SSN: 0001-0782. DOI: 10.1145/1070838.1070856.

Horst Eissfeller and Silvia Melitta Miiller. “The Triangle Method for
Saving Startup Time in Parallel Computers.” In: Proceedings of the Fifth
Distributed Memory Computing Conference. The Fifth Distributed Mem-
ory Computing Conference. Apr. 1990, pp. 568-572. DOI: 10 .1109/
DMCC.1990.555436.

Kento Emoto and Kiminori Matsuzaki. “An automatic fusion mecha-
nism for variable-length list skeletons in sketo.” In: International Jour-
nal of Parallel Programming 42.4 (2014), pp. 546-563. DOI: 10 . 1007 /
s10766-013-0263-8.

Johan Enmyren and Christoph W. Kessler. “SkePU: A Multi-Backend
Skeleton Programming Library for Multi-GPU Systems.” In: Proceed-
ings of the Fourth International Workshop on High-Level Parallel Program-
ming and Applications. HLPP "10. Baltimore, Maryland, USA: Associa-
tion for Computing Machinery, 2010, pp. 5-14. ISBN: 9781450302548.
DOI: 10.1145/1863482.1863487.

Steffen Ernsting and Herbert Kuchen. “Algorithmic Skeletons for
Multi-Core, Multi-GPU Systems and Clusters.” In: International Journal
of High Performance Computing and Networking 7.2 (Apr. 2012), pp. 129-
138. ISSN: 1740-0562. DOI: 10.1504/IJHPCN.2012.046370.

August Ernstsson. “Designing a Modern Skeleton Programming
Framework for Parallel and Heterogeneous Systems.” Licentiate
Thesis. 2020. ISBN: 978-91-7929-772-5.

August Ernstsson. “SkePU 2: Language Embedding and Compiler
Support for Flexible and Type-Safe Skeleton Programming.” LIU-
IDA/LITH-EX-A-16/026-SE. MA thesis. Linkdping, Sweden: Depart-
ment of Computer and Information Science, 2016.

August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and
Christoph Kessler. “SkePU 3: Portable High-Level Programming of
Heterogeneous Systems and HPC Clusters.” In: International Journal of
Parallel Programming 49 (2021), pp. 846-866. DOI: 10.1007 /510766~
021-00704-3.

August Ernstsson and Christoph Kessler. “Extending smart contain-
ers for data locality-aware skeleton programming.” In: Concurrency
and Computation: Practice and Experience 31.5 (2019), €5003. DOIL: 10 .
1002/cpe.5003.

233

BIBLIOGRAPHY

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

234

August Ernstsson and Christoph Kessler. “Multi-variant User Func-
tions for Platform-aware Skeleton Programming.” In: Proc. of ParCo-
2019 conference, Prague, Sep. 2019, in: I. Foster et al. (Eds.), Parallel Comput-
ing: Technology Trends, series: Advances in Parallel Computing, vol. 36, 10S
press. Mar. 2020, pp. 475-484. DOI: 10.3233/APC200074.

August Ernstsson, Lu Li, and Christoph Kessler. “SkePU 2: Flexible
and Type-Safe Skeleton Programming for Heterogeneous Parallel
Systems.” In: International Journal of Parallel Programming 46 (2017),
pp. 62-80. ISSN: 1573-7640. DOI: 10.1007/s10766-017-0490-5.

August Ernstsson, Nicolas Vandenbergen, Jorg Keller, and Christoph
Kessler. “A Deterministic Portable Parallel Pseudo-Random Number
Generator for Pattern-Based Programming of Heterogeneous Paral-
lel Systems.” In: International Journal of Parallel Programming (). To ap-
pear.

Diego Fabregat-Traver and Paolo Bientinesi. “Automatic Generation
of Loop-Invariants for Matrix Operations.” In: 2011 International Con-
ference on Computational Science and Its Applications. June 2011, pp. 82—
92.DOI: 10.1109/ICCSA.2011.41.

Roger Ferrer, Sara Royuela, Diego Caballero, Alejandro Duran, Xavier
Martorell, and Eduard Ayguadé. “Mercurium: Design decisions for a
S2S compiler.” In: Cetus Users and Compiler Infastructure Workshop in
conjunction with PACT. Vol. 2011. 2011.

Jif{ Filipovi¢, Matd§ Madzin, Jan Fousek, and Ludék Matyska. “Op-
timizing CUDA code by kernel fusion: application on BLAS.” In: The
Journal of Supercomputing 71.10 (2015), pp. 3934-3957. DOI: 10.1007/
s11227-015-1483-z.

Philippe Flajolet and Andrew M. Odlyzko. “Random Mapping Statis-
tics.” In: Advances in Cryptology - Proc. EUROCRYPT '89 Workshop on the
Theory and Application of Cryptographic Techniques, Houthalen, Belgium.
Ed. by Jean-Jacques Quisquater and Joos Vandewalle. Vol. 434, LNCS.
Springer, 1989, pp. 329-354. DOIL: 10.1007/3-540-46885-4_34.

Agner Fog. “Pseudo-Random Number Generators for Vector Proces-
sors and Multicore Processors.” In: Journal of Modern Applied Statis-
tical Methods 14 (Dec. 2015), pp. 308-334. DOL: 10 . 22237 / jmasm/
1430454120.

Paul Frederickson, Robert Hiromoto, Thomas L. Jordan, Burton
Smith, and Tony Warnock. “Pseudo-Random Trees in Monte Carlo.”
In: Parallel Comput. 1.2 (Dec. 1984), pp. 175-180. ISSN: 0167-8191. DOT:
10.1016/S0167-8191(84)90072-3.

Bibliography

[70]

[72]

[75]

[76]

[77]

Shuang Gao and Gregory D. Peterson. “GASPRNG: GPU accelerated
scalable parallel random number generator library.” In: Computer
Physics Comm. 184.4 (2013), Pp. 1241-1249. 1SSN: 0010-4655. DOI: 10.
1016/ .cpc.2012.12.001.

Mark Gates, Piotr Luszczek, Ahmad Abdelfattah, Jakub Kurzak, Jack
Dongarra, Konstantin Arturov, Cris Cecka, and Chip Freitag. C++ API
for BLAS and LAPACK. Tech. rep. 02, ICL-UT-17-03. Revision 02-21-
2018. 2017-06 2017.

Bugra Gedik, Rajesh R. Bordawekar, and Philip S. Yu. “CellSort: High
Performance Sorting on the Cell Processor.” In: Proceedings of the 33rd
International Conference on Very Large Data Bases. VLDB ’07. Vienna,
Austria: VLDB Endowment, 2007, pp. 1286-1297. ISBN: 978-1-59593-
649-3.

David Goldberg. “What Every Computer Scientist Should Know about
Floating-Point Arithmetic.” In: ACM Comput. Surv. 23.1 (Mar. 1991),
pp. 5-48. ISSN: 0360-0300. DOI: 10.1145/103162.103163.

Horacio Gonzélez-Vélez and Mario Leyton. “A survey of algorithmic
skeleton frameworks: high-level structured parallel programming
enablers.” In: Software: Practice and Experience 40.12 (2010), pp. 1135-
1160.DOI: 10.1002/spe.1026.

Dominik Grewe and Michael O’Boyle. “A static task partitioning ap-
proach for heterogeneous systems using OpenCL.” In: Compiler Con-
struction. Berlin, Heidelberg: Springer, 2011, pp. 286-305. ISBN: 978-
3-642-19861-8. DOI: 10.1007/978-3-642-19861-8_16.

Daniel Griinewald. “BQCD with GPI: A case study.” In: 2012 Interna-
tional Conference on High Performance Computing & Simulation (HPCS).
2012, pp. 388-394. DOI: 10.1109/HPCSim.2012.6266942.

Daniel Griinewald and Christian Simmendinger. “The GASPI API
specification and its implementation GP1 2.0.” English. In: 7th Interna-
tional Conference on PGAS Programming Models. Ed. by Michele Weiland,
Adrian Jackson, and Nicholas Johnson. United Kingdom: University
of Edinburgh, Oct. 2013, pp. 243-248. ISBN: 978-0-9926615-0-2.
Michael Haidl and Sergei Gorlatch. “PACXX: Towards a Unified Pro-
gramming Model for Programming Accelerators Using C++14.” In:
Proceedings of the 2014 LLVM Compiler Infrastructure in HPC. LLVM-HPC
"14. New Orleans, Louisiana: IEEE Press, 2014, pp. 1-11. ISBN: 978-1-
4799-7023-0.

235

BIBLIOGRAPHY

[79]

[80]

[81]

[82]

(83]

[84]

[85]

[86]
[87]

[88]

236

Per Hammarlund and Bj6rn Lisper. “On the Relation between Func-
tional and Data Parallel Programming Languages.” In: Proceedings of
the Conference on Functional Programming Languages and Computer Ar-
chitecture. FPCA "93. Copenhagen, Denmark: Association for Comput-
ing Machinery, 1993, pp. 210-219. ISBN: 089791595X. DOI: 10.1145/
165180.165211.

Masanori Hanada. Markov Chain Monte Carlo for Dummies. arXiv
1808.08490. 2018. arXiv: 1808.08490 [hep-th].

Gorel Hedin and Eva Magnusson. “JastAdd—an aspect-oriented com-
piler construction system.” In: Science of Computer Programming 47.1
(2003). Special Issue on Language Descriptions, Tools and Applica-
tions (L DTA'01), pp. 37-58. ISSN: 0167-6423. DOI: 10.1016/S0167-
6423(02)00109-0.

Nina Herrmann, Herbert Kuchen, and Breno A. de Melo Menezes.
“Stencil Calculations with Algorithmic Skeletons for Heterogeneous
Computing Environments.” In: Presented at HLPP 2021. Virtual, Ro-
mania.

Vladimir Janjic, Christopher Brown, and Kevin Hammond. “Lapedo:
hybrid skeletons for programming heterogeneous multicore ma-
chines in Erlang” In: Parallel Computing: On the Road to Exascale 27
(2016), p- 185.DOI: 10.3233/978-1-61499-621-7-185.

Ken Kennedy and Kathryn S. McKinley. “Maximizing loop paral-
lelism and improving data locality via loop fusion and distribution.”
In: Languages and Compilers for Parallel Computing. Ed. by Utpal Baner-
jee, David Gelernter, Alex Nicolau, and David Padua. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1994, pp. 301-320. ISBN: 978-3-540-
48308-3.DOI: 10.1007/3-540-57659-2_18.

Christoph Kessler, Lu Li, Aras Atalar, and Alin Dobre. “XPDL: Extensi-
ble Platform Description Language to Support Energy Modeling and
Optimization.” In: Proc. 44th International Conference on Parallel Process-
ing Workshops, ICPP-EMS Embedded Multicore Systems, in conjunction with
ICPP-2015. Beijing, 2015. DOI: 10.1109/ICPPW.2015.17.

Ronald T. Kneusel. Random Numbers and Computers. Cham (CH):
Springer, 2018.

Donald E. Knuth. The Art of Computer Programming Volume 2: Seminu-
merical Algorithms. 3rd. Boston, MA: Addison-Wesley Longman, 1997.

Matthias Korch and Thomas Rauber. “Optimizing locality and scala-
bility of embedded Runge-Kutta solvers using block-based pipelin-
ing.” In: J. Parallel Distributed Comput. 66.3 (2006), pp. 444-468. DOIL:
10.1016/5.jpdc.2005.09.003.

Bibliography

[94]

[96]

Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe
Dubach. “High-Level Synthesis of Functional Patterns with Lift.” In:
Proceedings of the 6th ACM SIGPLAN International Workshop on Libraries,
Languages and Compilers for Array Programming. ARRAY 2019. Phoenix,
AZ, USA: Association for Computing Machinery, 2019, pp. 35-45.
ISBN: 9781450367172. DOI: 10.1145/3315454.3329957.

Pierre L'Ecuyer, David Munger, Boris N. Oreshkin, and Richard J.
Simard. “Random numbers for parallel computers: Requirements
and methods, with emphasis on GPUs.” In: Math. Comput. Simul. 135
(2017), pp. 3-17. DOI: 10.1016/j .matcom.2016.05.005.

Richard E. Ladner and Michael J. Fischer. “Parallel Prefix Computa-
tion.” In: J. ACM 27.4 (Oct. 1980), pp. 831-838. ISSN: 0004-5411. DOI:
10.1145/322217.322232.

Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. “The Cache
Performance and Optimizations of Blocked Algorithms.” In: Proceed-
ings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS IV. Santa Clara,
California, USA: ACM, 1991, pp. 63-74. ISBN: 0-89791-380-9. DOI: 10.
1145/106972.106981.

Per Larsen, Razya Ladelsky, Jacob Lidman, Sally A. McKee, Sven
Karlsson, and Ayal Zaks. “Parallelizing more Loops with Compiler
Guided Refactoring.” In: 2012 41st International Conference on Parallel
Processing. Sept. 2012, pp. 410-419. DOI: 10.1109/ICPP.2012.48.

Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation.” In: Proceedings of
the 2004 International Symposium on Code Generation and Optimization
(CGO’04). Palo Alto, California, Mar. 2004, pp. 75-86. DOIL: 10. 1109/
CG0.2004.1281665.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. “MLIR: Scaling Compiler Infras-
tructure for Domain Specific Computation.” In: 2021 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO). 2021,
pp. 2-14.DOI: 10.1109/CG051591.2021.9370308.

Charles E. Leiserson, Tao B. Schardl, and Jim Sukha. “Deterministic
Parallel Random-Number Generation for Dynamic-Multithreading
Platforms.” In: Proc. 17th Symposium on Principles and Practice of Parallel
Programming. New Orleans, Louisiana, USA: ACM, 2012, pp. 193-204.
ISBN: 9781450311601. DOI: 10.1145/2145816.2145841.

Vasco Leitdo and Jodo L. Sobral. “SKLP: Flexible Skeletons with Plug-
gable Adapters.” In: Presented at HLPP 2021. Virtual, Romania.

237

BIBLIOGRAPHY

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

238

David Levine, David Callahan, and Jack Dongarra. “A comparative
study of automatic vectorizing compilers.” In: Parallel Computing
17.10 (1991), pp. 1223-1244. 1SSN: 0167-8191. DOI: 10.1016/S0167-
8191(05)8060035-3.

Lu Li, Usman Dastgeer, and Christoph Kessler. “Pruning Strategies
in Adaptive Off-Line Tuning for Optimized Composition of Compo-
nents on Heterogeneous Systems.” In: 2014 43rd International Confer-
ence on Parallel Processing Workshops. 2014, pp. 255-264.DOIL: 10.1109/
ICPPW.2014.42.

Lu Li and Christoph Kessler. “MeterPU: A generic measurement
abstraction APL” In: The Journal of Supercomputing 74.11 (2018),
pp. 5643-5658. DOI: 10.1007/s11227-016-1792-X.

Li Lu and Michael L. Scott. “Toward a Formal Semantic Framework
for Deterministic Parallel Programming.” In: Distributed Computing.
Ed. by David Peleg. Vol. 6950. LNCS. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 460-474. ISBN: 978-3-642-24100-0. DOI:
10.1007/978-3-642-24100-0_43.

Martin Liicke, Michel Steuwer, and Aaron Smith. “Integrating a
Functional Pattern-Based IR into MLIR.” In: Proceedings of the 30th ACM
SIGPLAN International Conference on Compiler Construction. CC 2021. Vir-
tual, Republic of Korea: Association for Computing Machinery, 2021,
pp. 12-22. 1SBN: 9781450383257. DOI: 10.1145/3446804.3446844.

Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. “Qilin: exploiting
parallelism on heterogeneous multiprocessors with adaptive map-
ping.” In: Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture. ACM. 2009, pp. 45-55.

Saeed Maleki, Yaoqing Gao, Maria J. Garzar'n, Tommy Wong, and
David A. Padua. “An Evaluation of Vectorizing Compilers.” In: 2011
International Conference on Parallel Architectures and Compilation Tech-
niques. Oct. 2011, pp. 372-382. DOI: 10.1109/PACT.2011.68.

Abel Marin-Lafléche, Matthieu Haefele, Laura Scalfi, Alessandro
Coretti, Thomas Dufils, Guillaume Jeanmairet, Stewart K. Reed, Serva
Alessandra, Roxanne Berthin, Camille Bacon, Sara Bonella, Benjamin
Rotenberg, Paul A Madden, and Mathieu Salanne. “Metalwalls: A
classical molecular dynamics software dedicated to the simulation
of electrochemical systems.” In: Journal of Open Source Software 5.53
(Sept. 2020), p. 2373. DOL: 10.21105/j0ss.02373.

Ricardo Marques, Hervé Paulino, Fernando Alexandre, and Pedro D.
Medeiros. “Algorithmic Skeleton Framework for the Orchestration
of GPU Computations.” In: Euro-Par 2013 Parallel Processing. Ed. by Fe-
lix Wolf, Bernd Mohr, and Dieter an Mey. Vol. 8097. LNCS. Berlin,

Bibliography

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 874-885. DOIL: 10.
1007,/978-3-642-40047-6_86.

Gabriel Martinez, Mark Gardner, and Wu-chun Feng. “CU2CL: A
CUDA-to-OpenCL Translator for Multi- and Many-Core Architec-
tures.” In: 2011 IEEE 17th International Conference on Parallel and Dis-
tributed Systems. 2011, pp. 300-307. DOI: 10.1109/ICPADS.2011.48.

Victor Martinez, David Michéa, Fabrice Dupros, Olivier Aumage,
Samuel Thibault, Hideo Aochi, and Philippe 0.A. Navaux. “Towards
Seismic Wave Modeling on Heterogeneous Many-Core Architectures
Using Task-Based Runtime System.” In: 2015 27th International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-
PAD). 2015, pp. 1-8.DOI: 10.1109/SBAC-PAD.2015.33.

Michael Mascagni and Ashok Srinivasan. “Algorithm 806: SPRNG: A
Scalable Library for Pseudorandom Number Generation.” In: ACM
Trans. Math. Softw. 26.3 (Sept. 2000), pp. 436-461. 1SSN: 0098-3500. DOT:
10.1145/358407.358427.

Jens Maurer and Michael Wong. Towards support for attributes in C++
(Revision 6). Tech. rep. N2761. ISO/IEC JTC1/SC22/WG21, 2008.

Simon McIntosh-Smith, Michael Boulton, Dan Curran, and James
Price. “On the Performance Portability of Structured Grid Codes on
Many-Core Computer Architectures.” In: Supercomputing. Ed. by Ju-
lian Martin Kunkel, Thomas Ludwig, and Hans Werner Meuer. Cham:
Springer International Publishing, 2014, pp. 53-75. ISBN: 978-3-319-
07518-1.DOI: 10.1007/978-3-319-07518-1_4.

Trinidad Méndez-Morales, Nidhal Ganfoud, Zhujie Li, Matthieu
Haefele, Benjamin Rotenberg, and Mathieu Salanne. “Performance
of microporous carbon electrodes for supercapacitors: Comparing
graphene with disordered materials.” In: Energy Storage Materials 17
(2019), pp. 88-92. 1SSN: 2405-8297. DOI: 10.1016/j .ensm.2018.11.
022.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh,
Matei Zaharia, and Ameet Talwalkar. “MLlib: Machine Learning in
Apache Spark.” In: J. Mach. Learn. Res. 17.1 (Jan. 2016), pp. 1235-1241.
ISSN: 1532-4435.

Claudia Misale, Maurizio Drocco, Marco Aldinucci, and Guy Trem-
blay. “A Comparison of Big Data Frameworks on a Layered Dataflow
Model.” In: Parallel Processing Letters 27.01 (2017), p. 1740003. DOI: 10.
1142/S0129626417400035.

239

BIBLIOGRAPHY

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

240

Angeles Navarro, Francisco Corbera, Andres Rodriguez, Antonio
Vilches, and Rafael Asenjo. “Heterogeneous parallel_for template for
CPU-GPU chips.” In: International Journal of Parallel Programming 47.2
(2019), pp. 213-233. DOI: 10.1007/s10766-018-0555-0.

Basel Nsralla. “Modernizing and Evaluating the Auto-Tuning Frame-
work of SkePU 3.” Bachelor’s Thesis. Department of Computer and
Information Science, 2022.

Cedric Nugteren and Henk Corporaal. “Introducing 'Bones’: A Par-
allelizing Source-to-source Compiler Based on Algorithmic Skele-
tons.” In: Proceedings of the 5th Annual Workshop on General Purpose Pro-
cessing with Graphics Processing Units. GPGPU-5. London, United King-
dom: ACM, 2012, pp. 1-10. ISBN: 978-1-4503-1233-2. DOI: 10.1145/
2159430.2159431.

Tomas Ohberg. “Auto-tuning Hybrid CPU-GPU Execution of Algo-
rithmic Skeletons in SkePU.” MA thesis. Department of Computer
and Information Science, 2018.

Tomas Ohberg, August Ernstsson, and Christoph Kessler. “Hybrid
CPU-GPU execution support in the skeleton programming frame-
work SkePU.” In: The Journal of Supercomputing (Mar. 2019). 1SSN: 1573-
0484.DOI: 10.1007/s11227-019-02824-7.

Matthew Felice Pace. “BSP vs MapReduce.” In: Procedia Computer Sci-
ence 9 (2012). Proceedings of the International Conference on Com-
putational Science, ICCS 2012, pp. 246-255. ISSN: 1877-0509. DOI: 10.
1016/j.procs.2012.04.026.

Sotirios Panagiotou, August Ernstsson, Johan Ahlqvist, Lazaros Pa-
padopoulos, Christoph Kessler, and Dimitrios Soudris. “Portable Ex-
ploitation of Parallel and Heterogeneous HPC Architectures in Neu-
ral Simulation Using SkePU.” In: Proceedings of the 23th International
Workshop on Software and Compilers for Embedded Systems. SCOPES ’20.
St. Goar, Germany: Association for Computing Machinery, 2020,
pp. 74-77.1SBN: 9781450371315. DOI: 10.1145/3378678.3391889.

Lazaros Papadopoulos, Dimitrios Soudris, Christoph Kessler, August
Ernstsson, Johan Ahlqvist, Nikos Vasilas, Athanasios I. Papadopoulos,
Panos Seferlis, Charles Prouveur, Matthieu Haefele, Samuel Thibault,
Athanasios Salamanis, Theodoros Ioakimidis, and Dionysios Keha-
gias. “EXA2PRO: A Framework for High Development Productivity
on Heterogeneous Computing Systems.” In: IEEE Transactions on Par-
allel and Distributed Systems 33.4 (2022), pp. 792-804. DOIL: 10.1109/
TPDS.2021.3104257.

Bibliography

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Jonathan Passerat-Palmbach, Claude Mazel, and David R.C. Hill.
“Pseudo-Random Number Generation on GP-GPU.” In: Proc.
IEEE/ACM/SCS Workshop on Principles of Advanced and Distributed Simu-
lation.]une 2011, pp. 146-153.DOI: 10.1109/PADS.2011.5936751.

Biagio Peccerillo and Sandro Bartolini. “PHAST - A Portable High-
Level Modern C++ Programming Library for GPUs and Multi-Cores.”
In: IEEE Transactions on Parallel and Distributed Systems 30.1 (2019),
pp. 174-189. DOI: 10.1109/TPDS.2018.2855182.

S.J. Pennycook,].D. Sewall, and V.W. Lee. “Implications of a metric
for performance portability.” In: Future Generation Computer Systems
92 (2019), pp. 947-958. ISSN: 0167-739X. DOL: 10.1016/3 . future.
2017.08.007.

Alyson Pereira, LuizRamos, and Luis Gdes. “PSkel: A stencil program-
ming framework for CPU-GPU systems.” In: Concurrency and Compu-
tation Practice and Experience 27 (Apr. 2015), pp. 4938-4953. DOI: 10.
1002/cpe. 3479.

Ken Perlin. “Improving Noise.” In: Proceedings of the 29th Annual Con-
ference on Computer Graphics and Interactive Techniques. SIGGRAPH "02.
San Antonio, Texas: Association for Computing Machinery, 2002,
pp. 681-682. ISBN: 1581135211. DOI: 10.1145 /566570 .566636.

Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-
Kelley, and Saman Amarasinghe. “Portable Performance on Hetero-
geneous Architectures.” In: Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Op-
erating Systems. ASPLOS "13. Houston, Texas, USA: ACM, 2013, pp. 431-
444, 1SBN: 978-1-4503-1870-9. DOI: 10.1145/2451116.2451162.

Ralph Potter, Paul Keir, Russell J. Bradford, and Alastair Murray.
“Kernel Composition in SYCL.” In: Proceedings of the 3rd International
Workshop on OpenCL.IWOCL "15. Palo Alto, California: ACM, 2015, 11:1-
11:7.ISBN: 978-1-4503-3484-6. DOI: 10.1145/2791321.2791332.

Dan Quinlan. “ROSE: Compiler support for object-oriented frame-
works.” In: Parallel Processing Letters 10.02n03 (2000), pp. 215-226. DOI:
10.1142/S0129626400000214.

Fethi A. Rabhi and Sergei Gorlatch. Patterns and skeletons for parallel
and distributed computing. Springer-Verlag, London, UK, 2003. ISBN:
1-85233-506-8.

Michael O Rabin. “Probabilistic algorithm for testing primality.” In:
Journal of Number Theory 12.1 (1980), pp. 128-138. ISSN: 0022-314X.
DOI: 10.1016/0022-314X(80)90084-0.

241

BIBLIOGRAPHY

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

242

Werner C. Rheinboldt and John V. Burkardt. “A Locally Parameter-
ized Continuation Process.” In: ACM Trans. Math. Software 9.2 (1983).
DOI: 10.1145/357456.357460.

Christoph Rieger, Fabian Wrede, and Herbert Kuchen. “Musket:
A Domain-Specific Language for High-Level Parallel Programming
with Algorithmic Skeletons.” In: Proceedings of the 34th ACM/SI-
GAPP Symposium on Applied Computing. SAC ’19. Limassol, Cyprus:
Association for Computing Machinery, 2019, pp. 1534-1543. ISBN:
9781450359337. DOI: 10.1145/3297280.3297434.

David del Rio Astorga, Manuel F. Dolz, Javier Ferndndez, and J. Daniel
Garcfa. “A generic parallel pattern interface for stream and data pro-
cessing.” In: Concurrency and Computation: Practice and Experience 29.24
(2017), e4175. DOI: 10.1002/cpe . 4175.

Kathrin Rosvall and Ingo Sander. “Flexible and Tradeoff-Aware
Constraint-Based Design Space Exploration for Streaming Applica-
tions on Heterogeneous Platforms.” In: ACM Trans. Des. Autom. Elec-
tron. Syst. 23.2 (Nov. 2017). 1sSN: 1084-4309. DOI: 10.1145/3133210.

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw.
“Parallel Random Numbers: As Easy As 1, 2, 3. In: Proc. Int. Conf. for
High Performance Computing, Networking, Storage and Analysis. SC "11.
Seattle, Washington: ACM, 2011, 16:1-16:12. ISBN: 978-1-4503-0771-
0.DO0I: 10.1145/2063384.2063405.

Shigeyuki Sato and Hideya Iwasaki. “A Skeletal Parallel Framework
with Fusion Optimizer for GPGPU Programming.” In: Programming
Languages and Systems: 7th Asian Symposium, APLAS 2009, Seoul, Koreaq,
December 14-16, 2009. Proceedings. Ed. by Zhenjiang Hu. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2009, pp. 79-94. ISBN: 978-3-642-
10672-9. DOI: 10.1007/978-3-642-10672-9_8.

Panos Seferlis and Johan Grievink. “Process design and control struc-
ture screening based on economic and state controllability criteria.”
In: Computers & Chemical Engineering 25 (Jan. 2001), pp. 177-188. DO
10.1016/S0098-1354 (00)00641-4.

Faisal Shahzad, Markus Wittmann, Moritz Kreutzer, Thomas Zeiser,
Georg Hager, and Gerhard Wellein. “PGAS implementation of Sp-
MVM and LBM using GP1.” English. In: 7th International Conference on
PGAS Programming Models. Ed. by Michele Weiland, Adrian Jackson,
and Nicholas Johnson. United Kingdom: University of Edinburgh,
Oct. 2013, pp. 172-184. ISBN: 978-0-9926615-0-2.

Bibliography

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Jie Shen, Ana Lucia Varbanescu, Yutong Lu, Peng Zou, and Henk
Sips. “Workload Partitioning for Accelerating Applications on Het-
erogeneous Platforms.” In: IEEE Transactions on Parallel and Distributed
Systems 27.9 (2016), pp. 2766-2780. DOI: 10 . 1109 / TPDS . 2015 .
2509972.

Oskar Sjostrom, Soon-Heum Ko, Usman Dastgeer, Lu Li, and
Christoph Kessler. “Portable Parallelization of the EDGE CFD Ap-
plication for GPU-based Systems using the SkePU Skeleton Pro-
gramming Library” In: Advances in Parallel Computing, Volume 27:
Parallel Computing: On the Road to Exascale. Proc. of ParCo-2015 confer-
ence, Edinburgh, UK, Sep. 2015. Ed. by Gerhard R. Joubert, Hugh Leather,
Mark Parsons, Frans Peters, and Mark Sawyer. 10S Press, Apr. 2016,
pp. 135-144. DOI: 10.3233/978-1-61499-621-7-135.

F4bio Soldado, Fernando Alexandre, and Hervé Paulino. “Execu-
tion of compound multi-kernel OpenCL computations in multi-
CPU/multi-GPU environments.” In: Concurrency and Computation:
Practice and Experience 28.3 (2016), pp. 768-787. DOIL: 10.1002 /cpe .
3612.

Daniele G. Spampinato, Diego Fabregat-Traver, Paolo Bientinesi, and
Markus Piischel. “Program Generation for Small-scale Linear Alge-
bra Applications.” In: Proceedings of the 2018 International Symposium
on Code Generation and Optimization. CGO 2018. Vienna, Austria: ACM,
2018, pp. 327-339. ISBN: 978-1-4503-5617-6. DOI: 10.1145/3168812.

Michel Steuwer, Malte Friese, Sebastian Albers, and Sergei Gorlatch.
“Introducing and Implementing the AllPairs Skeleton for Program-
ming Multi-GPU Systems.” In: International Journal of Parallel Program-
ming 42.4 (2013), pp. 601-618. DOI: 10.1007/s10766-013-0265-6.

Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. “SkelCL - A
Portable Skeleton Library for High-Level GPU Programming.” In: 2011
IEEE International Symposium on Parallel and Distributed Processing Work-
shops and Phd Forum. 2011, pp. 1176-1182. DOL: 10 . 1109 / IPDPS .
2011.269.

Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “Lift: A
Functional Data-Parallel IR for High-Performance GPU Code Gener-
ation.” In: Proc. CGO 2017, Austin, USA. IEEE, 2017. DOI: 10.1109/CGO.
2017.7863730.

Larisa Stoltzfus, Bastian Hagedorn, Michel Steuwer, Sergei Gorlatch,
and Christophe Dubach. “Tiling Optimizations for Stencil Computa-
tions Using Rewrite Rules in Lift.” In: ACM Trans. Archit. Code Optim.
16.4 (Dec. 2019). ISSN: 1544-3566. DOI: 10.1145/3368858.

243

BIBLIOGRAPHY

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

244

Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas
Fahringer. “Celerity: High-Level C++ for Accelerator Clusters.” In:
Euro-Par 2019: Parallel Processing. Ed. by Ramin Yahyapour. Vol. 11725.
LNCS. Cham: Springer International Publishing, 2019, pp. 291-303.
ISBN: 978-3-030-29400-7. DOIL: 10.1007/978-3-030-29400-7_21.

Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko,
Vinh Dang, Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey,
Daisy S. Hollman, Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff
Miles, David Poliakoff, Amy Powell, Sivasankaran Rajamanickam,
Mikael Simberg, Dan Sunderland, Bruno Turcksin, and Jeremiah
Wilke. “Kokkos 3: Programming Model Extensions for the Exascale
Era.” In: IEEE Transactions on Parallel and Distributed Systems 33.4 (2022),
pp- 805-817.DOI: 10.11609/TPDS.2021.3097283.

Georgios Tzanos, Vineet Soni, Charles Prouveur, Matthieu Haefele,
Stavroula Zouzoula, Lazaros Papadopoulos, Samuel Thibault, Nico-
las Vandenbergen, Dirk Pleiter, and Dimitrios Soudris. “Applying
StarPU runtime system to scientific applications: Experiences and
lessons learned.” In: POMCO 2020-2nd International Workshop on Paral-
lel Optimization using/for Multi-and Many-core High Performance Comput-
ing. HAL 1d: hal-02985721. 2020.

Leslie G. Valiant. “A Bridging Model for Parallel Computation.” In:
Commun. ACM 33.8 (Aug. 1990), pp. 103-111. ISSN: 0001-0782. DOI: 10.
1145/79173.79181.

Nils Voss, Tobias Becker, Oskar Mencer, and Georgi Gaydadjiev.
“Rapid Development of Gzip with Max].” In: Applied Reconfigurable
Computing. Ed. by Stephan Wong, Antonio Carlos Beck, Koen Ber-
tels, and Luigi Carro. Cham: Springer International Publishing, 2017,
pp. 60-71. ISBN: 978-3-319-56258-2. DOI: 10 . 1007 /978 -3 -319 -
56258-2_6.

Andreas Wichter and Lorenz Biegler. “On the Implementation of
an Interior-Point Filter Line-Search Algorithm for Large-Scale Non-
linear Programming.” In: Mathematical programming 106 (Mar. 2006),
pp. 25-57. DOI: 10.1007/s10107-004-0559-y.

M Mitchell Waldrop. “The chips are down for Moore’s law.” In: Nature
News 530.7589 (2016), pp. 144-147. DOI: 10.1038/530144a.

Fabian Wrede and Steffen Ernsting. “Simultaneous CPU-GPU execu-
tion of data parallel algorithmic skeletons.” In: International Journal of
Parallel Programming 46.1 (2018), pp. 42-61. DOL: 10.1007 /s10766-
016-0483-9.

Bibliography

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

Fabian Wrede and Herbert Kuchen. “Towards High-Performance
Code Generation for Multi-GPU Clusters Based on a Domain-Specific
Language for Algorithmic Skeletons.” In: International Journal of Paral-
lel Programming 48 (2020), pp. 713-728. DOI: 10.1007 /s10766-020-
00659-x.

Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall: Impli-
cations of the Obvious.” In: SIGARCH Comput. Archit. News 23.1 (Mar.
1995), pPp. 20-24. 1SSN: 0163-5964. DOI: 10.1145/216585.216588.

Yasuhito Ogata, Toshio Endo, Naoya Maruyama, and Satoshi Mat-
suoka. “An efficient, model-based CPU-GPU heterogeneous FFT li-
brary.” In: 2008 IEEE International Symposium on Parallel and Distributed
Processing. Apr. 2008, pp. 1-10. DOI: 10 . 1109 / IPDPS . 2008 .
4536163.

Tomofumi Yuki and Louis-Noél Pouchet. Polybench 4.0. 2015. URL:
https://web.cse.ohio-state.edu/~pouchet.2/software/
polybench/.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and lon Stoica. “Spark: Cluster Computing with Working
Sets.” In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing. HotCloud’10. Boston, MA: USENIX Association, 2010, p. 10.

Da Zheng, Disa Mhembere, Joshua T. Vogelstein, Carey E. Priebe, and
Randal Burns. “FlashR: Parallelize and Scale R for Machine Learn-
ing Using SSDs.” In: Proceedings of the 23rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. PPoPP "18. Vienna, Aus-
tria: ACM, 2018, pp. 183-194. I1SBN: 978-1-4503-4982-6. DOI: 10.1145/
3178487.3178501.

Xiong Zheng and Vijay Garg. “An Optimal Vector Clock Algorithm for
Multithreaded Systems.” In: 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). 2019, pp. 2188-2194. DOI: 10.
1109/ICDCS.2019.00215.

Judicael A. Zounmevo, Xin Zhao, Pavan Balaji, William Gropp, and
Ahmad Afsahi. “Nonblocking Epochs in MPI One-Sided Communica-
tion.” In: SC "14: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. 2014, pp. 475-
486.DOI: 10.1109/SC.2014.44.

245

Additions and changes
from the licentiate thesis

The author’s licentiate thesis [57] was published about one year before this
dissertation was finalized. In the Swedish postgraduate education system, a
licentiate degree comprises 120 ECTS credits or two years of full-time stud-
ies, half of the 240 ECTS credits of a doctor’s degree. This doctor’s disserta-
tion is written as a direct iteration upon the earlier licentiate thesis. Thus,
a reader will notice significant overlap in the contents of these two books.
This appendix summarizes the most important additions and changes.

A.1 New contributions

In the concluding remarks of the licentiate thesis, five possible directions
of future work were discussed, in no particular order:

« SkePU standard library

« Evaluating SkePU in further application domains
* Modernize the SkePU tuner

« Skeleton fusion

« Extended programmability survey

All of these five items have been investigated to at least some degree,
but most are still ongoing work.

247

A. ADDITIONS AND CHANGES FROM THE LICENTIATE THESIS

Design and implementation of a standard library for SkePU has been a ma-
jor focus area in the intervening year and resulted in one publication [63],
about deterministic parallel pseudo-random number generators (Chapter 13) and
further concrete contributions to the EXA2PRO project, including SkePU-
BLAS (Section 6.3 and Appendix C). The standard library and its components
are covered in detail as the topic of Chapter 6.

SkePU has seen further evaluation, including real-world application do-
mains as part of the EXA2PRO project. Chapter 15 has been extended with
several sections, including the EXA2PRO results and other experiments.
However, there is always more work to do here, and this topic remains
highly relevant future work even after the publication of this dissertation.

The tuning infrastructure of modern SkePU has been the topic of a Bache-
lor’s thesis project by Basel Nsralla [116], supervised by August. The imple-
mentation is presented in Chapter 14.

Skeleton fusion opportunities within the design constraints of SkePU
have been investigated and partially implemented and evaluated. The
progress is documented in Chapter 11.

Finally, a master’s thesis project by Erik Tedhamre is currently ongoing,
investigating SkePU 3 in terms of performance and programmability as-
pects. While the full results were not ready to cover in this dissertation,
a preview of a comparison study of understandability of SkePU, CUDA, and
OpenMP programs is included in Chapter 15.

Work has continued on the cluster backend of SkePU. The StarPU-
MPI backend has been extended and a new prototype backend using GPI
separately developed in collaboration with master’s thesis student Joel
Almgqyist. This topic is greatly expanded and dedicated its own chapter (9).

A.2 Other changes
Compared to the licentiate thesis, the structure of chapters is changed.

Chapters covering the interface of SkePU have been updated with new ad-
ditions and changes to the APL

248

E Definitions

B.1 Abbreviations

API
ASIC
AST
DFE
DSEL
EU FP7
EXA2PRO
EXCESS
FPGA
GCC
GPGPU
HLPP

HPC
ICPC
IDE
IEC
IR
ISO
LLVM

Application programming interface
Application-specific integrated circuit

Abstract syntax tree

Dataflow engine (Maxeler FPGA)

Domain-specfic embedded language (also EDSL)
European Union Seventh Framework Programme
European Union Horizon 2020 project 801015
European Union FP7 project 611183
Field-programmable gate array

GNU Compiler Collection

General-purpose graphics processing unit
International Symposium on

High-Level Parallel Programming and Applications
High-performance computing

Intel C++ compiler

Integrated development environment
International Electrotechnical Commission
Intermediate representation

International Organization for Standardization
The LLVM Compiler Infrastructure

249

B. DEFINITIONS

McCC Nordic Workshop on Multi-Core Computing

MIMD Multiple instruction streams, multiple data streams
(Flynn's taxonomy)

MPI Message passing interface (standard API)

MSI Modified-shared-invalid (cache coherence protocol)

NVCC Nvidia’s CUDA compiler

PGAS Partitioned global address space

PRNG Pseudo-random number generator

SIMD Single instruction stream, multiple data streams
(Flynn’s taxonomy)

SPMD Single program, multiple data

STL C++ Standard Template Library

TBB Intel Threading Building Blocks

B.2 Domain-specific terminology

Accelerator
Broad term, referring to a processing unit more specialized than a gen-
eral CPU. Examples: GPU, FPGA, ASIC, DSP.

Heterogeneous (system or architecture)
Containing processing units of different types, such as CPUs with ef-
ficiency cores and performance cores, or systems with one or more
CPUs and one or more accelerators.

Performance-portable (parallel program)
Program which can be executed on different parallel and heteroge-
neous architectures with reasonable performance and without signif-
icant code reengineering effort.

Precompiler
See "source-to-source compiler”.

(Algorithmic) skeleton
Parameterizable generic component with well defined semantics, for
which (sometimes multiple) parallel or accelerator-specific imple-
mentations exist.

Superscalar (computer architecture)
Processor core utilizing instruction-level parallelism by duplicating
execution units, thereby executing multiple instructions per clock cy-
cle.

Source-to-source compiler
Compiler tool which does transform input source code to output
source code on a similar abstraction level, such as C++ code to C or

250

B.3. SkePU-specific terminology

C++ code. Compare with a typical C++ compiler producing assembly
code or an executable binary.

B.3 SkePU-specific terminology

Backend
See Section 3.2. A type of programmable computation unit targeted
for parallelization by SkePU.

Container proxy (also proxy container)
Lightweight backend wrapper for smart data-containers. See Sec-
tion 5.2.

Elwise parameter
See Section 4.2.2.

Lineage
See Chapter 10.

Multi-variant (user function)
See Chapter 12.

Random-access parameter
See Section 4.2.1.

Smart (data-)container
See Section 5.1. A C++ object of a type such as skepu: :Vector, hold-
ing a collection of values of some templated type. SkePU intelligently
manages the memory of the container, including distribution over
clusters and copies on external devices, transparently to the program-
mer.

Skeleton
See Section 4.1. A computational pattern encoded in the SkePU frame-
work as compiler-known C++ classes. Example: skepu: :Map.

Skeleton instance
See Section 4.1. Callable objects created in a SkePU program by instan-
tiating a skeleton class.

Skeleton invocation
See Section 4.1. When a skeleton instance is applied one or more
smart data-containers. The invocation may be synchronous or asyn-
chronous.

251

B. DEFINITIONS

User function
See Section 4.10. C++ function acting as an operator used when instan-
tiating a skeleton. Applied to container elements as part of a skeleton
invocation.

252

SkePU-BLAS API

This appendix documents the SkePU-BLAS coverage and API interface as of
the publication of this thesis. Details are subject to change in the future;
please refer to the SkePU user guide and related documentation for up-to-
date information.

Currently, the SkePU-BLAS coverage is limited to level-1 BLAS and dense
operations from level 2 and 3. Unsupported level-2 and level-3 BLAS func-
tions are omitted below for brevity.

CBLAS function SkePU-BLAS signature
SROTG
DROTG

CROTG template<typename T>
ZROTG void rotg (T *a, T *b, T *c, T *s)

Setup Givens
rotation

253

C. SKEPU-BLAS API

SROT

template<typename TX, typename TY,

typename TS = scalar_type<TX, TY>>

Givens rotation

void rot (
DROT size_type N
CSROT Vector<TX> & "
stride_type Xex,
ZDRO Vector<TY> & "
Apply Givens stride_type incy,
4 :t :
rotation s :
)
SROTMG
DROTMG '
Setup modified Not available
Givens rotation
SROTM
DROTM .
Apply modified Not available

template<typename TX, typename TY>

SSWAP void swap (
DSWAP size_type n,
Vector<TX> & X

CSWAP stride_type ir’u:x,
ZSWAP Vector<TY> & v,
Swap X andy , stride_type incy
SSCAL template<typename TX, typename TS>

void scal (
DSCAL size_type n,
CSSCAL Ts alpha,
CSCAL Vec‘!:or<TX> & >'<,
X=a % X , stride_type incx

254

template<typename TX, typename TY>

SCOPY void copy (
DCOPY size_type n,
Vector<TX> BLAS_CONST& X,
CCOPY stride_type incx,
ZCOPY Vector<TY> & v,
y =X stride_type incy
)
template<typename TX, typename TY,
typename TS = scalar_type<TX, TY>>
SAXPY void axpy (
CAXPY size_type n,
TS alpha,
DAXPY Vector<TX> BLAS_CONST& X,
ZAXPY stride_type incx,
y = a*x+y Vector<TY> & v,
stride_type incy
)
template<typename TX, typename TY>
SDOT scalar_type<TX, TY> dot (
DDOT size_type n,
Vector<TX> BLAS_CONST& X,
CDOTC stride_type incx,
ZDOTC Vector<TY> BLAS_CONST& v,
Dot product stride_type incy
)
DSDOT
SDSDOT
Dot product with Not available
extended precision
accumulation
template<typename TX, typename TY>
scalar_type<TX, TY> dotu (
CDOTU size_type n,
Vector<TX> BLAS_CONST& X,
ZDOTU stride_type incx,
Dot product Vector<TY> BLAS_CONST& v,
stride_type incy
)

255

C. SKEPU-BLAS API

emplate<typename T>
SNRM2 template<t T
DNRM2 rea}_ty$e<T> nrm2 (
size_type n,
SCNRM2 Vector<T> BLAS_CONST& X,
DZNRM?2 stride_type inex
Euclidian norm)
SASUM t late<t ™
emplate<typename
DASUM T asum (
SCASUM size_type n,
DZASUM Vic‘!:gl“<l’> BLAS_CONST&)'<,
stride e inex
Sum of absolute) -Hvp
values
ISAMAX templatect T
emplate<typename T>
IDAMAX size_type iamax (
ICAMAX size_type n,
IZAMAX VEC‘FOI"<T> BLAS_CONST&)-(,
stride_type incx

Index of max
absolute value

)

SGEMV
DGEMV
CGEMV
ZGEMV
Matrix-vector
multiply

template<typename TA, typename TX, typename TY,
typename TS = scalar_type<TA, TX, TY>>

void gemv(
blas::0p
size_type
size_type
TS
Matrix<TA> BLAS_CONST&
size_type
Vector<TX> BLAS_CONST&
stride_type
TS
Vector<TY> &
stride_type

m,

n,
alpha,
A,
1lda,
Xy
incx,
beta,
%
incy

256

SGER

DGER

CGERC

ZGERC

Rank-1 update

template<typename TX, typename TY, typename TA,
typename TS = scalar_type<TA, TX, TY>>

void ger (
size_type
size_type
TS
Vector<TX> BLAS_CONST&
stride_type
Vector<TY> BLAS_CONST&
stride_type
Matrix<TA> &
stride_type

ml

nl
alpha,
Xy
incx,
Vi
incy,
A,

1lda

GCERU
ZGERU
Rank-1 update

template<typename TX, typename TY, typename TA,
typename TS = scalar_type<TA, TX, TY>>

void geru (
size_type
size_type
TS
Vector<TX> BLAS_CONST&
stride_type
Vector<TY> BLAS_CONST&
stride_type
Matrix<TA> &
stride_type

ml

n,
alpha,
Xy
incx,
%
incy,
A,

lda

SGEMM
DGEMM
CGEMM
ZGEMM
Matrix-matrix
multiply

template<typename TA, typename TB,

void gemm (
blas::0p
blas::0p
size_type
size_type
size_type

scalar_type<TA, TB, TC>

Matrix<TA> BLAS_CONST&
size_type
Matrix<TB> BLAS_CONST&
size_type

scalar_type<TA, TB, TC>

Matrix<TC>&
size_type

typename TC>

transA,
transB,
m,

n,

k,
alpha,
A,

1lda,

B,

1ldb,
beta,
C,

ldc

257

10

15

20

25

Application source code
samples

D.1 N-body simulation

Listing D.1: N-body simulation code using Map.

// Particle data structure that is used as an element type.
struct Particle

£
float x, y, z;
float vx, vy, vz;
float m;

3

constexpr float G [[skepu::userconstant]] = 1;
constexpr float delta_t [[skepu::userconstant]] = 0.1;

/%
* Array user-function that is used for applying nbody computation,
* All elements from parr and a single element (named 'pi') are accessible
* to produce one output element of the same type.
*/
Particle move(skepu::Index1D index, Particle pi,
const skepu::Vec<Particle> parr)

£

size_t i = index.i;

float ax = 0.0, ay = 0.0, az = 0.0;
size_t np = parr.size;

for (size_t j = 0; j < np; ++3)

259

30

35

40

45

50

55

60

65

70

75

D. APPLICATION SOURCE CODE SAMPLES

£
if (4 !'=3J)
£
Particle pj = parr[j];
float rij = sqrt((pi.x - pj.x) * (pi.x - pj.x)
+ (pi.y - pj.y) * (pi.y - pj.y)
+ (pi.z - pj.z) * (pi.z - pj.2));
float dum = G * pi.m * pj.m / pow(rij, 3);
ax += dum * (pi.x - pj.x);
ay += dum * (pi.y - pj.y);
az += dum * (pi.z - pj.z);
3
3
Particle newp;
newp.m = pi.m;
newp.x = pi.x + delta_t * pi.vx + delta_t * delta_t / 2 * ax;
newp.y = pi.y + delta_t * pi.vy + delta_t * delta_t / 2 * ay;
newp.z = pi.z + delta_t * pi.vz + delta_t * delta_t / 2 * az;
newp.vx = pi.vx + delta_t * ax;
newp.vy = pi.vy + delta_t * ay;
newp.vz = pi.vz + delta_t * az;
return newp;
3
Particle init(skepu::Index1D index, size_t np)
£
// Initialize positions and accelerations
3

auto nbody_init = skepu::Map<@>(init);
auto nbody_simulate_step = skepu::Map<l>(move);

void nbody(skepu::Vector<Particle> &particles, size_t iterations)

£
size_t np = particles.size();
skepu: :Vector<Particle> doublebuffer(particles.size());

nbody_init(particles, np);

for (size_t i = 0; 1 < iterations; 1 += 2)
£
nbody_simulate_step(doublebuffer, particles, particles);
nbody_simulate_step(particles, doublebuffer, doublebuffer);
3
3

260

10

15

20

25

30

35

40

45

50

55

D.1. N-body simulation

Listing D.2: N-body simulation code using MapPairsReduce in SkePU 3.

// Particle data structure that is used as an element type.
struct Particle

£
float x, y, z;
float vx, vy, vz;
float m;

3

constexpr float G [[skepu::userconstant]] = 1;
constexpr float delta_t [[skepu::userconstant]] = 0.1;

struct Acceleration

£
float x, vy, z;

3

Acceleration influence(skepu::Index2D index, Particle pi, Particle pj)

£

Acceleration acc;

if (index.row != index.col)
£
float rij = sgqrt((pi.x - pj.x) * (pi.x - pj.x)
+ (pi.y - pj.y) * (pi.y - pj.y)
+ (pi.z - pj.z) * (pi.z - pj.2));
float dum = G * pi.m * pj.m / pow(rij, 3);

acc.x = dum * (pi.x - pj.x);
acc.y = dum * (pi.y - pj.y);
acc.z = dum * (pi.z - pj.z);

3
else
£
acc.x = 0;
acc.y = 0;
acc.z = 0;
3
return acc;
3
Acceleration sum(Acceleration lhs, Acceleration rhs)
£
Acceleration res = lhs;
res.Xx += rhs.x;
res.y += rhs.y;
res.z += rhs.z;
return res;
3

Particle update(Particle p, Acceleration a)

£

Particle res = pj;
res.x += delta_t * p.vx + delta_t * delta_t / 2 * a.x;

res.y += delta_t * p.vy + delta_t * delta_t / 2 * a.y;
res.z += delta_t * p.vz + delta_t * delta_t / 2 * a.z;

261

60

65

70

75

80

85

D. APPLICATION SOURCE CODE SAMPLES

res.vx += delta_t * a.x;
res.vy += delta_t * a.y;

res.vz += delta_t * a.z;
return res;
3
Particle init(skepu::Index1D index, size_t np)
: // Initialize positions and accelerations
3

auto nbody_init = skepu::Map<@>(init);
auto nbody_influence = skepu::MapPairsReduce<l, 1>(influence, sum);
auto nbody_update = skepu::Map<2>(update);

void nbody(skepu::Vector<Particle> &particles, size_t iterations)
£

size_t np = particles.size();

skepu: :Vector<Acceleration> accel(np);

nbody_init(particles, np);

for (size_t i = 0; 1 < iterations; ++i)
£
nbody_influence(accel, particles, particles);
nbody_update(particles, particles, accel);
3
3

262

10

15

20

25

30

35

40

45

50

D.2. Game of life

D.2 Game of life

Listing D.3: Conway’s game of life implemented with MapOverlap in
SkePU 3.

#include <skepu>
#include <skepu-lib/io.hpp>

// Default population generator user-function
char initializer(skepu::Random<1> &prng)
£
return (prng.get() % 100) < 10;
3

// Population update user-function
char updater(skepu::Region2D<char> r)

£
char neighbors = 0;
neighbors += r(-1, -1) + r(-1, 0) + r(-1, +1);
neighbors += r(0, -1) + r(0, +1);
neighbors += r(+1, -1) + r(+1, 0) + r(+1, +1);
bool activate = !r(0, 0) && (neighbors == 3);
bool stay = r(0, 0) && ((neighbors == 2) || (neighbors == 3));
return (activate || stay) ? 1 : 0;
3

int main(int argc, char *argv[])
£
// Command line inputs
if (argc < 5)
£
skepu::io::cout << "Usage: "
<< argv[0] << " height width iterations backend\n";
exit(1);
3
const float height = atof(argv[1]);
const float width = atof(argv[2]);
const float iters = atof(argv[3]);
auto spec = skepu::BackendSpecfargv[4]13%;
skepu: :setGlobalBackendSpec(spec);

// Skeletons

auto init = skepu::Map(initializer);

auto update = skepu::MapOverlap(updater);
update.setOverlap(1l, 1);
update.setEdgeMode(skepu: :Edge: :Cyclic);

// Data containers
skepu: :Matrix<char> current(height, width), next(height, width);

// Default population
init(current);

// Simulate evolution
for (size_t 1 = 0; i < iters; ++i)

263

D. APPLICATION SOURCE CODE SAMPLES

£
WritePngFileBinaryMatrix(current, i); // Note: not given here
55 update(next, current);
current.swap(next);
3
3

264

10

15

20

25

30

35

40

45

50

D.3. Conjugate gradient

D.3 Conjugate gradient

Listing D.4: Conjugate gradient computation implemented with SkePU-
BLAS.

#include <skepu>
#include <skepu-lib/io.hpp>
#include <skepu-lib/blas.hpp>

template<typename T>

void conjugate_gradient(
skepu: :Matrix<T> BLAS_CONST& A,
skepu: :Vector<T> BLAS_CONST& b,
skepu: :Vector<T> &x)

£
size_t N = b.size();
assert(A.size_i() == N && A.size_j() == N && x.size() == N);
skepu::Vector<T> p(N), r(N), Ap(N);
// Set up initial r and p
skepu::blas::copy(N, b, 1, r, 1);
skepu::blas::gemv(skepu::blas::0p::NoTrans,
N, N, -1.f, A, N, x, 1, 1.f, r, 1);
skepu::blas::copy(N, r, 1, p, 1); // p :=1r
float rTr = skepu::blas::dot(N, r, 1, r, 1); // rTr =r * r
for (size_t k = 0; k < N; ++k)
£
// Compute alpha
skepu: :blas: :gemv(skepu::blas::0p::NoTrans,
N, N, 1.f, A, N, p, 1, O.F, Ap, 1); // Ap := A * p
float tmp = skepu::blas::dot(N, p, 1, Ap, 1); // tmp :=p * Ap
float alpha = rTr / tmp;
// Update x
skepu::blas::axpy(N, alpha, p, 1, x, 1); // x := x + alpha * p
// Update r
skepu::blas::axpy(N, -alpha, Ap, 1, r, 1); // r :=r - alpha * Ap
// Compute beta
float rTr_new = skepu::blas::dot(N, r, 1, r, 1); // rTr_new := r#¥pr
float beta = rTr_new / rTr;
// Early exit condition
if (sqrt(rTr_new) < le-10f)
return;
// Update p
skepu::blas::scal(N, beta, p, 1); // p := beta * p
skepu::blas::axpy(N, 1.f, r, 1, p, 1); // p :=1r +p
rTr = rTr_new;
3
3

265

55

60

65

70

75

D. APPLICATION SOURCE CODE SAMPLES

int main(int argc, char *argv[])

£
if (argc < 3)
£

skepu::external ([&]§f std::cout << "Usage:

<< argv[0] << " size backend\n"; 3);
exit(1);
3
const size_t n = atoi(argv[1l]);
auto spec = skepu::BackendSpecfargv[2]3%;
skepu: :setGlobalBackendSpec(spec);

using T = float;
const size_t N = nj;

skepu: :Vector<T> b(N);
skepu: :Matrix<T> A(N, N);
skepu::Vector<T> x(N, 0);

conjugate_gradient(A, b, x);

return 0;

266

10

15

20

25

30

35

40

D.4. CO; capture

D.4 CO; capture

Listing D.5: CO, capture application kernel in SkePU. [122]

#include <skepu>

Modules co2_model_skepu(// definition of user function

skepu: :Index1D index,

const skepu::Vec<int> jvar,
const skepu::Vec<Feed> jfeed,
const skepu::Vec<Vars> vars)

Modules m;
Feed feed_ = jfeed(index.i);
const Vars vars_ = vars(index.i);

// Declaration of variables v, e, pr, coef, hv

3

int jvar_ = jvar(ABS_TOP);

int *jfeed_ = &feed_.abs_top[0];

// Core operations of C02 capture model
get_variables(jvar_, jfeed_, vars_.x, &v);
get_enthalpy(&v, &e);

lagrange(v.leng, v.presbot, &coef, &pr);
get_helper_variables(&v, pr.prescp, &hv);
ev_f(&v, &e, &pr, &coef, &hv, &m.f_abs_top[0]);

... // For other modules in the process
return m;

extern "C" void x2p_skepu(

3

const int n, const double x[],
const int m, double f[])

skepu: :Vector<Modules> vector(MODEL_SIZE);
// instantiate Map skeleton to build a "function"
auto calculate = skepu::Map<0>(co2_model_skepu);

// call the skeleton instance
calculate(vector, jvar_skepu_vec(),
jfeed_skepu_vec(), vars_skepu_vec(n, x));

vector.flush();
copy_skepu_vector_to_fortran(vector, f);

267

Department of Computer and Information Science

Linkdpings universitet

Dissertations

Linkdping Studies in Science and Technology
Linkdping Studies in Arts and Sciences
Linkdping Studies in Statistics
Linkdping Studies in Information Science

Linképing Studies in Science and Technology

No 14

No 17

No 18

No 22

No 33

No 51

No 54

No 55

No 58

No 69

No 71

No 77

No 94

No 97

No 109

No 111

No 155

No 165

No 170

No 174

Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN 91-
7372-144-1.

Bengt Magnhagen: Probability Based Verification of
Time Margins in Digital Designs, 1977, ISBN 91-7372-
157-3.

Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt sprak, 1977, ISBN 91- 7372-
168-9.

Jaak Urmi: A Machine Independent LISP Compiler
and its Implications for Ideal Hardware, 1978, ISBN
91-7372-188-3.

Tore Risch: Compilation of Multiple File Queries in
a Meta-Database System, 1978, ISBN 91- 7372-232-4.
Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

Sture Higglund: Contributions to the Development
of Methods and Tools for Interactive Design of
Applications Software, 1980, ISBN 91-7372-404-1.

Pir Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

H. Jan Komorowski: A Specification of an Abstract
Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-7372-
489-0.

Osten Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91- 7372-527-7.
Hans Lunell: Code Generator Writing Systems, 1983,
ISBN 91-7372-652-4.

Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

Peter Fritzson: Towards a Distributed Programming
Environment based on Incremental Compilation,
1984, ISBN 91-7372-801-2.

Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372- 805-5.
Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

James W. Goodwin: A Theory and System for Non-
Monotonic Reasoning, 1987, ISBN 91-7870-183-X.
Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.
Johan Fagerstrom: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-7870-
301-8.

No 192

No 213

No 214

No 221

No 239

No 244

No 252

No 258

No 260

No 264

No 265

No 270

No 273

No 276

No 277

No 281

No 292

No 297

No 302

No 312

No 338

Dimiter Driankov: Towards a Many Valued Logic of
Quantified Belief, 1988, ISBN 91-7870-374-3.

Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.
Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

Jonas Lowgren: Knowledge-Based Design Support
and Discourse Management in User Interface
Management Systems, 1991, ISBN 91-7870-720-X.
Henrik Eriksson: Meta-Tool Support for Knowledge
Acquisition, 1991, ISBN 91-7870-746-3.

Peter Eklund: An Epistemic Approach to Interactive
Design in Multiple Inheritance Hierarchies, 1991,
ISBN 91-7870-784-6.

Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

Nahid Shahmehri: Generalized
Debugging, 1991, ISBN 91-7870-828-1.
Nils Dahlbick: Representation of Discourse-
Cognitive and Computational Aspects, 1992, ISBN
91-7870-850-8.

Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

Ralph Rénnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-873-7.
Bjorn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

Kristian Sandahl: Developing Knowledge Manage-
ment Systems with an Active Expert Methodology,
1992, ISBN 91-7870-897-4.

Christer Bickstrom: Computational Complexity of
Reasoning about Plans, 1992, ISBN 91-7870-979-2.
Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.
Mariam Kamkar: Interprocedural Dynamic Slicing
with Applications to Debugging and Testing, 1993,
ISBN 91-7871-065-0.

Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-078-
2.

Arne Jonsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach, 1993,
ISBN 91-7871-110-X.

Simin Nadjm-Tehrani: Reactive Systems in Physical
Environments: Compositional Modelling and Frame-
work for Verification, 1994, ISBN 91-7871-237-8.

Algorithmic

No 371

No 375

No 383

No 396

No 413

No 414

No 416

No 429

No 431

No 437

No 439

No 448

No 452

No 459

No 461

No 462

No 475

No 480

No 485

No 494

No 495

No 498

No 502

Bengt Savén: Business Models for Decision Support
and Learning. A Study of Discrete-Event
Manufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

Ulf Soéderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-516-
4.

Andreas Kagedal: Exploiting Groundness in Logic
Programs, 1995, ISBN 91-7871-538-5.

George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic
Control Situations, 1995, ISBN 91-7871-603-9.

Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996, ISBN
91-7871-654-3.

Hua Shu: Distributed Default Reasoning, 1996, ISBN
91-7871-665-9.

Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning
Perspective - Development and Evaluation of the
SSIT Method, 1996, ISBN 91-7871-700-0.

Peter Jonsson: Studies in Action Planning:
Algorithms and Complexity, 1996, ISBN 91-7871-704-
3.

Johan Boye: Directional Types in
Programming, 1996, ISBN 91-7871-725-6.
Cecilia Sjoberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-7871-
728-0.

Patrick Lambrix: Part-Whole Reasoning in
Description Logics, 1996, ISBN 91-7871-820-1.

Kjell Orsborn: On Extensible and Object-Relational
Database Technology for Finite Element Analysis
Applications, 1996, ISBN 91-7871-827-9.

Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-855-4.
Lena Strombick: User-Defined Constructions in
Unification-Based Formalisms, 1997, ISBN 91-7871-
857-0.

Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och anvinds efter foretagsforvirv, 1997, ISBN 91-
7871-914-3.

Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

Goran Forslund: Opinion-Based Systems: The Coop-
erative Perspective on Knowledge-Based Decision
Support, 1997, ISBN 91-7871-938-0.

Martin Skold: Active Database Management
Systems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN 91-
7219-019-1.

Jakob Axelsson: Analysis and Synthesis of Heteroge-
neous Real-Time Systems, 1997, ISBN 91-7219-035-3.

Logic

No 503

No 512

No 520

No 522

No 526

No 530

No 555

No 561

No 563

No 567

No 582

No 589

No 592

No 593

No 594

No 595

No 596

No 597

No 598

No 607

No 611

No 613

Johan Ringstrom: Compiler Generation for Data-
Parallel Programming Languages from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-045-0.
Anna Moberg: Nirhet och distans - Studier av kom-
munikationsmonster i satellitkontor och flexibla
kontor, 1997, ISBN 91-7219-119-8.

Mikael Ronstrom: Design and Modelling of a
Parallel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

Niclas Ohlsson: Towards Effective Fault Prevention
- An Empirical Study in Software Engineering, 1998,
ISBN 91-7219-176-7.

Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-X.
Jonas Hallberg: Timing Issues in High-Level Synthe-
sis, 1998, ISBN 91-7219-369-7.

Ling Lin: Management of 1-D Sequence Data - From
Discrete to Continuous, 1999, ISBN 91-7219-402-2.
Eva L Ragnemalm: Student Modelling based on Col-
laborative Dialogue with a Learning Companion,
1999, ISBN 91-7219-412-X.

Jorgen Lindstrom: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN 91-
7219-439-1.

Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

Rita Kovordanyi: Modeling and Simulating
Inhibitory ~ Mechanisms in Mental Image
Reinterpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

Lars Karlsson: Actions, Interactions and Narratives,
1999, ISBN 91-7219-534-7.

C. G. Mikael Johansson: Social and Organizational
Aspects of Requirements Engineering Methods - A
practice-oriented approach, 1999, ISBN 91-7219-541-
X.

Jorgen Hansson: Value-Driven Multi-Class Overload
Management in Real-Time Database Systems, 1999,
ISBN 91-7219-542-8.

Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN 91-
7219-543-6.

Vivian Vimarlund: An Economic Perspective on the
Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.
Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-7219-
547-9.

Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN 91-
7219-614-9.

Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618

No 627

No 637

No 639

No 660

No 688

No 689

No 720

No 724

No 725

No 726

No 732

No 745

No 746

No 757

No 747

No 749

No 765

No 771

No 772

No 758

No 774

No 779

Jimmy Tjader: Systemimplementering i praktiken -
En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-7219-
709-9.

Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

Per-Arne Persson: Bringing Power and Knowledge
Together: Information Systems Design for Autonomy
and Control in Command Work, 2000, ISBN 91-7219-
796-X.

Erik Larsson: An Integrated System-Level Design for
Testability Methodology, 2000, ISBN 91-7219-890-7.
Marcus Bjdreland: Model-based
Monitoring, 2001, ISBN 91-7373-016-5.
Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

Carl-Johan Petri: Organizational Information Provi-
sion - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN 91-7373-126-
9.

Paul Scerri: Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91-7373-207-9.

Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN 91-
7373-208-7.

Pir Carlshamre: A Usability Perspective on Require-
ments Engineering - From Methodology to Product
Development, 2001, ISBN 91-7373-212-5.

Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN 91-
7373-258-3.

Johan Aberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems, 2002,
ISBN 91-7373-311-3.

Rego Granlund: Monitoring Distributed Teamwork
Training, 2002, ISBN 91-7373-312-1.

Henrik André-Jonsson: Indexing Strategies for Time
Series Data, 2002, ISBN 917373-346-6.

Anneli Hagdahl: Development of IT-supported
Interorganisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-314-8.
Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory Design
of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-318-0.

Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

Magnus Morin: Multimedia Representations of Dis-
tributed Tactical Operations, 2002, ISBN 91-7373-421-
7.

Pawel Pietrzak: A Type-Based Framework for Locat-
ing Errors in Constraint Logic Programs, 2002, ISBN
91-7373-422-5.

Erik Berglund: Library Communication Among Pro-
grammers Worldwide, 2002, ISBN 91-7373-349-0.
Choong-ho Yi: Modelling Object-Oriented Dynamic
Systems Using a Logic-Based Framework, 2002, ISBN
91-7373-424-1.

Mathias Broxvall: A Study in the Computational
Complexity of Temporal Reasoning, 2002, ISBN 91-
7373-440-3.

Execution

No 793

No 785

No 800

No 808

No 821

No 823

No 828

No 833

No 852

No 867

No 872

No 869

No 870

No 874

No 873

No 876

No 883

No 882

No 887

No 889

No 893

No 910

Asmus Pandikow: A Generic Principle for Enabling
Interoperability of Structured and Object-Oriented
Analysis and Design Tools, 2002, ISBN 91-7373-479-9.
Lars Hult: Publika Informationstjanster. En studie av
den Internetbaserade encyklopedins bruksegenska-
per, 2003, ISBN 91-7373-461-6.

Lars Taxén: A Framework for the Coordination of
Complex Systems” Development, 2003, ISBN 91-
7373-604-X.

Klas Gire: Tre perspektiv pa forviantningar och
forandringar i samband med inférande av
informationssystem, 2003, ISBN 91-7373-618-X.
Mikael Kindborg: Concurrent Comics -
programming of social agents by children, 2003,
ISBN 91-7373-651-1.

Christina Olvingson: On Development of
Information Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-656-2.
Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time
Systems, 2003, ISBN 91-7373-683-X.

Johan Moe: Observing the Dynamic Behaviour of
Large Distributed Systems to Improve Development
and Testing - An Empirical Study in Software
Engineering, 2003, ISBN 91-7373-779-8.

Erik Herzog: An Approach to Systems Engineering
Tool Data Representation and Exchange, 2004, ISBN
91-7373-929-4.

Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

Jo Skéamedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-935-9.
Linda Askenids: The Roles of IT - Studies of
Organising when Implementing and Using
Enterprise Systems, 2004, ISBN 91-7373-936-7.
Annika Flycht-Eriksson: Design and Use of Ontolo-
gies in Information-Providing Dialogue Systems,
2004, ISBN 91-7373-947-2.

Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.
Magnus Bang: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Healthcare
Professionals, 2004, ISBN 91-7373-971-5.

Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004, ISBN 91-7373-966-9.

Anders Lindstrom: English and other Foreign
Linguistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using
Finite-State Tools, 2004, ISBN 91-7373-981-2.

Zhiping Wang: Capacity-Constrained Production-in-
ventory systems - Modelling and Analysis in both a
traditional and an e-business context, 2004, ISBN 91-
85295-08-6.

Pernilla Qvarfordt: Eyes on Multimodal Interaction,
2004, ISBN 91-85295-30-2.

Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-5.

No 918

No 900

No 920

No 929

No 933

No 937

No 938

No 945

No 946

No 947

No 963

No 972

No 974

No 979

No 983

No 986

No 1004

No 1005

No 1008

No 1009

No 1013

No 1016

No 1017

Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

Luis Alejandro Cortés: Verification and Scheduling
Techniques for Real-Time Embedded Systems, 2004,
ISBN 91-85297-21-6.

Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.
Mikael Ciker: Management Accounting as
Constructing and Opposing Customer Focus: Three
Case Studies on Management Accounting and
Customer Relations, 2005, ISBN 91-85297-64-X.

Jonas Kvarnstrom: TALplanner and Other
Extensions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN 91-85297-97-6.

Anders Arpteg: Intelligent Semi-Structured Informa-
tion Extraction, 2005, ISBN 91-85297-98-4.

Ola Angelsmark: Constructing Algorithms for Con-
straint Satisfaction and Related Problems - Methods
and Applications, 2005, ISBN 91-85297-99-2.

Calin Curescu: Utility-based Optimisation of
Resource Allocation for Wireless Networks, 2005,
ISBN 91-85457-07-8.

Bjorn Johansson: Joint Control
Situations, 2005, ISBN 91-85457-31-0.
Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-85457-
54-X.

Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour, 2005,
ISBN 91-85457-60-4.

Yuxiao Zhao: Standards-Based Application
Integration for Business-to-Business
Communications, 2005, ISBN 91-85457-66-3.

Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-28-2.
Aleksandra Tesanovic: Developing Reusable and
Reconfigurable Real-Time Software using Aspects
and Components, 2006, ISBN 91-85497-29-0.

David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

Takov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with Detailed
Contact Analysis, 2006, ISBN 91-85497-43-X.
Wilhelm Dahllof: Exact Algorithms for Exact
Satisfiability Problems, 2006, ISBN 91-85523-97-6.
Levon Saldamli: PDEModelica - A High-Level Lan-
guage for Modeling with Partial Differential Equa-
tions, 2006, ISBN 91-85523-84-4.

Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-79-8

in Dynamic

No 1018

No 1019

No 1021

No 1022

No 1030

No 1034

No 1035

No 1045

No 1051

No 1054

No 1061

No 1073

No 1075

No 1079

No 1083

No 1086

No 1089

No 1091

No 1106

No 1110

No 1112

No 1113

No 1120

Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN 91-
85523-77-1.

Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Cooperation,
2006, ISBN 91-85523-71-2.

Andrzej Bednarski: Integrated Optimal Code Gener-
ation for Digital Signal Processors, 2006, ISBN 91-
85523-69-0.

Peter Aronsson: Automatic Parallelization of Equa-
tion-Based Simulation Programs, 2006, ISBN 91-
85523-68-2.

Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and
Specifications, 2006, ISBN 91-85523-31-3.

Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

Genevieve Gorrell: ~ Generalized ~ Hebbian
Algorithms for Dimensionality Reduction in Natural
Language Processing, 2006, ISBN 91-85643-88-2.
Yu-Hsing Huang: Having a New Pair of Glasses -
Applying Systemic Accident Models on Road Safety,
2006, ISBN 91-85643-64-5.

Asa Hedenskog: Perceive those things which cannot
be seen - A Cognitive Systems Engineering
perspective on requirements management, 2006,
ISBN 91-85643-57-2.

Cécile Aberg: An Evaluation Platform for Semantic
Web Technology, 2007, ISBN 91-85643-31-9.

Mats Grindal: Handling Combinatorial Explosion in
Software Testing, 2007, ISBN 978-91-85715-74-9.
Almut Herzog: Usable Security Policies for Runtime
Environments, 2007, ISBN 978-91-85715-65-7.
Magnus Wahlstrom: Algorithms, measures, and
upper bounds for Satisfiability and related problems,
2007, ISBN 978-91-85715-55-8.

Jesper Andersson: Dynamic Software Architectures,
2007, ISBN 978-91-85715-46-6.

Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3.

Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogeneous
Scheduling Policies, 2007, ISBN 978-91-85715-27-5.
Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

Per Ola Kristensson: Discrete and Continuous Shape
Writing for Text Entry and Control, 2007, ISBN 978-
91-85831-77-7.

He Tan: Aligning Biomedical Ontologies, 2007, ISBN
978-91-85831-56-2.

Jessica Lindblom: Minding the body - Interacting so-
cially through embodied action, 2007, ISBN 978-91-
85831-48-7.

Pontus Wirnestal: Dialogue Behavior Management
in Conversational Recommender Systems, 2007,
ISBN 978-91-85831-47-0.

Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in
Embedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127

No 1139

No 1143

No 1150

No 1155

No 1156

No 1183

No 1185

No 1187

No 1204

No 1222

No 1238

No 1240

No 1241

No 1244

No 1249

No 1260

No 1262

No 1266

No 1268

No 1274

No 1281

Alexandru Andrei: Energy Efficient and Predictable
Design of Real-time Embedded Systems, 2007, ISBN
978-91-85831-06-7.

Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.
Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN 978-
91-85895-49-6.

Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008, ISBN
978-91-85895-11-3.

Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

Adrian Pop: Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages, 2008, ISBN 978-91-7393-895-2.

Jorgen Skdageby: Gifting Technologies -
Ethnographic Studies of End-users and Social Media
Sharing, 2008, ISBN 978-91-7393-892-1.

Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

H. Joe Steinhauer: A Representation Scheme for De-
scription and ~ Reconstruction of Object
Configurations Based on Qualitative Relations, 2008,
ISBN 978-91-7393-823-5.

Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.
Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems, 2009,
ISBN 978-91-7393-700-9.

Fredrik Heintz: DyKnow: A Stream-Based Know-
ledge Processing Middleware Framework, 2009,
ISBN 978-91-7393-696-5.

Birgitta Lindstrom: Testability of Dynamic Real-
Time Systems, 2009, ISBN 978-91-7393-695-8.

Eva Blomgqvist: Semi-automatic Ontology Construc-
tion based on Patterns, 2009, ISBN 978-91-7393-683-5.
Rogier Woltjer: Functional Modeling of Constraint
Management in Aviation Safety and Command and
Control, 2009, ISBN 978-91-7393-659-0.

Gianpaolo Conte: Vision-Based Localization and
Guidance for Unmanned Aerial Vehicles, 2009, ISBN
978-91-7393-603-3.

AnnMarie Ericsson: Enabling Tool Support for For-
mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-
598-2.

Jiri Trnka: Exploring Tactical Command and
Control: A Role-Playing Simulation Approach, 2009,
ISBN 978-91-7393-571-5.

Bahlol Rahimi: Supporting Collaborative Work
through ICT - How End-users Think of and Adopt
Integrated Health Information Systems, 2009, ISBN
978-91-7393-550-0.

Fredrik Kuivinen: Algorithms and Hardness Results
for Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.
Gunnar Mathiason: Virtual Full Replication for
Scalable Distributed Real-Time Databases, 2009,
ISBN 978-91-7393-503-6.

No 1290

No 1294

No 1306

No 1313

No 1321

No 1333

No 1337

No 1354

No 1359

No 1373

No 1374

No 1375

No 1381

No 1386

No 1419

No 1451

No 1455

No 1465

No 1490

No 1481

No 1496

Viacheslav Izosimov: Scheduling and Optimization
of Fault-Tolerant Distributed Embedded Systems,
2009, ISBN 978-91-7393-482-4.

Johan Thapper: Aspects of a Constraint
Optimisation Problem, 2010, ISBN 978-91-7393-464-0.
Susanna Nilsson: Augmentation in the Wild: User
Centered Development and Evaluation of
Augmented Reality Applications, 2010, ISBN 978-91-
7393-416-9.

Christer Thorn: On the Quality of Feature Models,
2010, ISBN 978-91-7393-394-0.

Zhiyuan He: Temperature Aware and Defect-
Probability Driven Test Scheduling for System-on-
Chip, 2010, ISBN 978-91-7393-378-0.

David Broman: Meta-Languages and Semantics for
Equation-Based Modeling and Simulation, 2010,
ISBN 978-91-7393-335-3.

Alexander Siemers: Contributions to Modelling and
Visualisation of Multibody Systems Simulations with
Detailed Contact Analysis, 2010, ISBN 978-91-7393-
317-9.

Mikael Asplund: Disconnected Discoveries:
Availability Studies in Partitioned Networks, 2010,
ISBN 978-91-7393-278-3.

Jana Rambusch: Mind Games Extended:
Understanding Gameplay as Situated Activity, 2010,
ISBN 978-91-7393-252-3.

Sonia Sangari: Head Movement Correlates to Focus
Assignment in Swedish, 2011, ISBN 978-91-7393-154-
0.

Jan-Erik Killhammer: Using False Alarms when
Developing Automotive Active Safety Systems, 2011,
ISBN 978-91-7393-153-3.

Mattias Eriksson: Integrated Code Generation, 2011,
ISBN 978-91-7393-147-2.

Ola Leifler: Affordances and Constraints of
Intelligent Decision Support for Military Command
and Control - Three Case Studies of Support
Systems, 2011, ISBN 978-91-7393-133-5.

Soheil Samii: Quality-Driven Synthesis and
Optimization of Embedded Control Systems, 2011,
ISBN 978-91-7393-102-1.

Erik Kuiper: Geographic Routing in Intermittently-
connected Mobile Ad Hoc Networks: Algorithms
and Performance Models, 2012, ISBN 978-91-7519-
981-8.

Sara Stymne: Text Harmonization Strategies for
Phrase-Based Statistical Machine Translation, 2012,
ISBN 978-91-7519-887-3.

Alberto Montebelli: Modeling the Role of Energy
Management in Embodied Cognition, 2012, ISBN
978-91-7519-882-8.

Mohammad Saifullah: Biologically-Based Interactive
Neural Network Models for Visual Attention and
Object Recognition, 2012, ISBN 978-91-7519-838-5.
Tomas Bengtsson: Testing and Logic Optimization
Techniques for Systems on Chip, 2012, ISBN 978-91-
7519-742-5.

David Byers: Improving Software Security by
Preventing Known Vulnerabilities, 2012, ISBN 978-
91-7519-784-5.

Tommy Firnqvist: Exploiting Structure in CSP-
related Problems, 2013, ISBN 978-91-7519-711-1.

No 1503

No 1506

No 1547

No 1551

No 1559

No 1581

No 1602

No 1652

No 1663

No 1664

No 1666

No 1680

No 1685

No 1691

No 1702

No 1715

No 1729

No 1733

No 1734

No 1746

No 1747

John Wilander: Contributions to Specification,
Implementation, and Execution of Secure Software,
2013, ISBN 978-91-7519-681-7.

Magnus Ingmarsson: Creating and Enabling the
Useful Service Discovery Experience, 2013, ISBN 978-
91-7519-662-6.

Wiladimir Schamai: Model-Based Verification of
Dynamic System Behavior against Requirements:
Method, Language, and Tool, 2013, ISBN 978-91-
7519-505-6.

Henrik Svensson: Simulations, 2013, ISBN 978-91-
7519-491-2.

Sergiu Rafiliu: Stability of Adaptive Distributed
Real-Time Systems with Dynamic Resource
Management, 2013, ISBN 978-91-7519-471-4.

Usman Dastgeer: Performance-aware Component
Composition for GPU-based Systems, 2014, ISBN
978-91-7519-383-0.

Cai Li: Reinforcement Learning of Locomotion based
on Central Pattern Generators, 2014, ISBN 978-91-
7519-313-7.

Roland Samlaus: An Integrated Development
Environment with Enhanced Domain-Specific
Interactive Model Validation, 2015, ISBN 978-91-
7519-090-7.

Hannes Uppman: On Some Combinatorial
Optimization Problems: Algorithms and Complexity,
2015, ISBN 978-91-7519-072-3.

Martin Sjélund: Tools and Methods for Analysis,
Debugging, and Performance Improvement of
Equation-Based Models, 2015, ISBN 978-91-7519-071-6.
Kristian Stavaker: Contributions to Simulation of
Modelica Models on Data-Parallel Multi-Core
Architectures, 2015, ISBN 978-91-7519-068-6.

Adrian Lifa: Hardware/Software Codesign of
Embedded Systems with Reconfigurable and
Heterogeneous Platforms, 2015, ISBN 978-91-7519-040-
2.

Bogdan Tanasa: Timing Analysis of Distributed
Embedded Systems with Stochastic Workload and
Reliability Constraints, 2015, ISBN 978-91-7519-022-8.

Hakan Warnquist: Troubleshooting Trucks -
Automated Planning and Diagnosis, 2015, ISBN 978-
91-7685-993-3.

Nima Aghaee: Thermal Issues in Testing of
Advanced Systems on Chip, 2015, ISBN 978-91-7685-
949-0.

Maria Vasilevskaya: Security in Embedded Systems:
A Model-Based Approach with Risk Metrics, 2015,
ISBN 978-91-7685-917-9.

Ke Jiang: Security-Driven Design of Real-Time
Embedded System, 2016, ISBN 978-91-7685-884-4.
Victor Lagerkvist: Strong Partial Clones and the
Complexity of Constraint Satisfaction Problems:
Limitations and Applications, 2016, ISBN 978-91-7685-
856-1.

Chandan Roy: An Informed System Development
Approach to Tropical Cyclone Track and Intensity
Forecasting, 2016, ISBN 978-91-7685-854-7.

Amir Aminifar: Analysis, Design, and Optimization
of Embedded Control Systems, 2016, ISBN 978-91-
7685-826-4.

Ekhiotz Vergara: Energy Modelling and Fairness for
Efficient Mobile Communication, 2016, ISBN 978-91-
7685-822-6.

No 1748

No 1768

No 1778

No 1798

No 1813

No 1823

No 1831

No 1851

No 1852

No 1854

No 1863

No 1879

No 1887

No 1891

No 1902

No 1903

No 1913

No 1936

No 1964

No 1967

No 1984

No 1993

Dag Sonntag: Chain Graphs - Interpretations,
Expressiveness and Learning Algorithms, 2016, ISBN
978-91-7685-818-9.

Anna Vapen: Web Authentication using Third-
Parties in Untrusted Environments, 2016, ISBN 978-
91-7685-753-3.

Magnus Jandinger: On a Need to Know Basis: A
Conceptual and Methodological Framework for
Modelling and Analysis of Information Demand in
an Enterprise Context, 2016, ISBN 978-91-7685-713-7.
Rahul Hiran: Collaborative Network Security:
Targeting Wide-area Routing and Edge-network
Attacks, 2016, ISBN 978-91-7685-662-8.

Nicolas Melot: Algorithms and Framework for
Energy Efficient Parallel Stream Computing on
Many-Core Architectures, 2016, ISBN 978-91-7685-
623-9.

Amy Rankin: Making Sense of Adaptations:
Resilience in High-Risk Work, 2017, ISBN 978-91-
7685-596-6.

Lisa Malmberg: Building Design Capability in the
Public Sector: Expanding the Horizons of
Development, 2017, ISBN 978-91-7685-585-0.

Marcus Bendtsen: Gated Bayesian Networks, 2017,
ISBN 978-91-7685-525-6.

Zlatan Dragisic: Completion of Ontologies and
Ontology Networks, 2017, ISBN 978-91-7685-522-5.
Meysam Aghighi: Computational Complexity of
some Optimization Problems in Planning, 2017, ISBN
978-91-7685-519-5.

Simon Stahlberg: Methods for Detecting Unsolvable
Planning Instances using Variable Projection, 2017,
ISBN 978-91-7685-498-3.

Karl Hammar: Content Ontology Design Patterns:
Qualities, Methods, and Tools, 2017, ISBN 978-91-
7685-454-9.

Ivan Ukhov: System-Level Analysis and Design
under Uncertainty, 2017, ISBN 978-91-7685-426-6.
Valentina Ivanova: Fostering User Involvement in
Ontology Alignment and Alignment Evaluation,
2017, ISBN 978-91-7685-403-7.

Vengatanathan Krishnamoorthi: Efficient HTTP-
based Adaptive Streaming of Linear and Interactive
Videos, 2018, ISBN 978-91-7685-371-9.

Lu Li: Programming Abstractions and Optimization
Techniques for GPU-based Heterogeneous Systems,
2018, ISBN 978-91-7685-370-2.

Jonas Rybing: Studying Simulations with
Distributed Cognition, 2018, ISBN 978-91-7685-348-1.
Leif Jonsson: Machine Learning-Based Bug
Handling in Large-Scale Software Development,
2018, ISBN 978-91-7685-306-1.

Arian Maghazeh: System-Level Design of GPU-
Based Embedded Systems, 2018, ISBN 978-91-7685-
175-3.

Mahder Gebremedhin: Automatic and Explicit
Parallelization Approaches for Equation Based
Mathematical Modeling and Simulation, 2019, ISBN
978-91-7685-163-0.

Anders Andersson: Distributed Moving Base
Driving Simulators - Technology, Performance, and
Requirements, 2019, ISBN 978-91-7685-090-9.

Ulf Kargén: Scalable Dynamic Analysis of Binary
Code, 2019, ISBN 978-91-7685-049-7.

No 2001

No 2006

No 2048

No 2051

No 2065

No 2082

No 2108

No 2125

No 2153

No 2168

No 2205

Tim Overkamp: How Service Ideas Are
Implemented: Ways of Framing and Addressing
Service Transformation, 2019, ISBN 978-91-7685-025-1.
Daniel de Leng: Robust Stream Reasoning Under
Uncertainty, 2019, ISBN 978-91-7685-013-8.

Biman Roy: Applications of Partial Polymorphisms
in (Fine-Grained) Complexity of Constraint
Satisfaction Problems, 2020, ISBN 978-91-7929-898-2.
Olov Andersson: Learning to Make Safe Real-Time
Decisions Under Uncertainty for Autonomous
Robots, 2020, ISBN 978-91-7929-889-0.

Vanessa Rodrigues: Designing for Resilience:
Navigating Change in Service Systems, 2020, ISBN
978-91-7929-867-8.

Robin Kurtz: Contributions to Semantic Dependency
Parsing: Search, Learning, and Application, 2020,
ISBN 978-91-7929-822-7.

Shanai Ardi: Vulnerability and Risk Analysis
Methods and Application in Large Scale
Development of Secure Systems, 2021, ISBN 978-91-
7929-744-2.

Zeinab Ganjei: Parameterized Verification of
Synchronized Concurrent Programs, 2021, ISBN 978-
91-7929-697-1.

Robin Keskisirkki: Complex Event Processing
under Uncertainty in RDF Stream Processing, 2021,
ISBN 978-91-7929-621-6.

Rouhollah Mahfouzi: Security-Aware Design of
Cyber-Physical Systems for Control Applications,
2021, ISBN 978-91-7929-021-4.

August Ernstsson: Pattern-based Programming
Abstractions for Heterogeneous Parallel Computing,
2022, ISBN 978-91-7929-195-2.

Linkoping Studies in Arts and Sciences

No 504

No 586

No 618

No 620

No 677

No 695

No 787

No 811

Ing-Marie Jonsson: Social and Emotional
Characteristics ~ of Speech-based In-Vehicle
Information Systems: Impact on Attitude and
Driving Behaviour, 2009, ISBN 978-91-7393-478-7.

Fabian Segelstrom: Stakeholder Engagement for
Service Design: How service designers identify and
communicate insights, 2013, ISBN 978-91-7519-554-4.

Johan Blomkvist: Representing Future Situations of
Service: Prototyping in Service Design, 2014, ISBN
978-91-7519-343-4.

Marcus Mast: Human-Robot Interaction for Semi-
Autonomous Assistive Robots, 2014, ISBN 978-91-
7519-319-9.

Peter Berggren: Assessing Shared Strategic
Understanding, 2016, ISBN 978-91-7685-786-1.
Mattias Forsblad: Distributed cognition in home
environments: The prospective memory and
cognitive practices of older adults, 2016, ISBN 978-
91-7685-686-4.

Sara Nygardhs: Adaptive behaviour in traffic: An
individual road user perspective, 2020, ISBN 978-91-
7929-857-9.

Sam Thellman: Social Robots as Intentional Agents,
2021, ISBN 978-91-7929-008-5.

Linkoping Studies in Statistics

No9

Davood Shahsavani: Computer Experiments De-
signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

No 10

No 11

No 13

No 14

No 15

Karl Wahlin: Roadmap for Trend Detection and As-
sessment of Data Quality, 2008, ISBN 978-91-7393-
792-4.

Oleg Sysoev: Monotonic regression for large
multivariate datasets, 2010, ISBN 978-91-7393-412-1.
Agné Burauskaite-Harju: Characterizing Temporal
Change and Inter-Site Correlations in Daily and Sub-
daily Precipitation Extremes, 2011, ISBN 978-91-7393-
110-6.

Mians Magnusson: Scalable and Efficient
Probabilistic Topic Model Inference for Textual Data,
2018, ISBN 978-91-7685-288-0.

Per Sidén: Scalable Bayesian spatial analysis with
Gaussian Markov random fields, 2020, 978-91-7929-
818-0.

Linképing Studies in Information Science

No1l

No 10

No 11

No 12

No 13

No 14

Karin Axelsson: Metodisk systemstrukturering- att
skapa samstimmighet mellan informationssystem-
arkitektur och verksamhet, 1998. ISBN 9172-19-296-8.
Stefan Cronholm: Metodverktyg och anvindbarhet -
en studie av datorstodd metodbaserad
systemutveckling, 1998, ISBN 9172-19-299-2.

Anders Avdic: Anvindare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN 91-7219-
606-8.

Owen Eriksson: Kommunikationskvalitet hos infor-
mationssystem och affdrsprocesser, 2000, ISBN 91-
7219-811-7.

Mikael Lind: Fran system till process - kriterier fér
processbestimning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X.

Ulf Melin: Koordination och informationssystem i
foretag och nitverk, 2002, ISBN 91-7373-278-8.

Par J. Agerfalk: Information Systems Actability - Un-
derstanding Information Technology as a Tool for
Business Action and Communication, 2003, ISBN 91-
7373-628-7.

Ulf Seigerroth: Att forsta och forindra system-
utvecklingsverksamheter - en taxonomi for
metautveckling, 2003, ISBN 91-7373-736-4.

Karin Hedstrom: Spar av datoriseringens virden -
Effekter av IT i dldreomsorg, 2004, ISBN 91-7373-963-
4.

Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

Fredrik Karlsson: Method Configuration method
and computerized tool support, 2005, ISBN 91-85297-
48-8.

Malin Nordstrom: Styrbar systemférvaltning - Att
organisera systemforvaltningsverksamhet med hjilp
av effektiva forvaltningsobjekt, 2005, ISBN 91-85297-
60-7.

Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra forutsattningar for
polisarbete, 2005, ISBN 91-85299-43-X.

Benneth Christiansson, Marie-Therese
Christiansson: Motet mellan process och komponent
- mot ett ramverk for en verksamhetsnira
kravspecifikation vid anskaffning av komponent-
baserade informationssystem, 2006, ISBN 91-85643-
22-X.

FACULTY OF SCIENCE AND ENGINEERING

Linkoping Studies in Science and Technology, Dissertation No. 2205, 2022
Department of Computer and Information Science

Linkdping University
SE-581 83 Linkdping, Sweden

www.liu.se

LINKOPING
UNIVERSITY

	Populärvetenskaplig sammanfattning
	Abstract
	Acknowledgments
	Contents
	Introduction
	Aims and research questions
	Published work behind this thesis
	Other work behind this thesis
	Structure

	Background and related work
	Motivation
	High-level parallel programming
	Skeleton programming
	Related work
	GrPPI
	Musket
	Kokkos
	SYCL
	MLIR
	StarPU
	C++ AMP, and other industry efforts
	Other related frameworks, libraries, and toolchains

	Independent surveys
	Earlier related work on SkePU

	SkePU overview
	Basic constructs
	Backend architecture
	History
	SkePU 2 design principles
	SkePU 3 design principles

	Skeleton set
	Skeleton set
	Map skeleton
	Freely accessible containers inside user functions
	Variadic type signatures
	Multi-valued return
	Index-dependent computations

	MapPairs skeleton
	MapOverlap skeleton
	Edge handling modes
	Update modes

	Reduce skeleton
	One-dimensional reductions
	Two-dimensional reductions

	Scan skeleton
	MapReduce skeleton
	MapPairsReduce skeleton
	Call skeleton
	User functions
	User functions as lambda expressions

	User types
	User constants
	Strided skeletons
	Strides Map, MapPairs, and their reduce variants
	Strides in MapOverlap

	Data representation with smart data-containers
	Smart data-containers
	Container indexing

	Container proxies
	MatRow proxy
	MatCol proxy
	Region proxy

	Memory consistency model
	External scope

	Standard library
	Deterministic random number generation
	Complex numbers
	Linear algebra
	Image filtering and visualization
	Benchmark utilities
	High-level consistent input and output
	General utilities

	Implementation
	Implementation overview
	Language embedding and type safety
	Improved type safety from SkePU 1

	Source-to-source compiler
	Backends
	Sequential CPU backend
	Multi-core CPU backend: OpenMP
	GPU backends: OpenCL and CUDA

	C and Fortran language bindings
	Continuous integration and testing
	Dependencies
	Availability

	Hybrid CPU-GPU skeleton execution
	Introduction
	Workload partitioning and implementation
	StarPU backend implementation

	Auto-tuning

	Skeleton programming on large-scale cluster systems
	Background
	StarPU-MPI backend
	GPI backend
	GASPI and GPI
	Implementation
	Design
	Synchonization and state tracking
	Consistency model and double buffering
	Communication pattern
	Data representation
	Data transfers and caching

	Conclusions

	Extending smart data-containers for data locality awareness
	Introduction
	Large-scale data processing with MapReduce and Spark
	MapReduce
	Spark

	Lazily evaluated skeletons with tiling
	Basic approach and benefits
	Backend selection
	Loop optimization
	Evaluation points
	Further application areas
	Implementation
	Lazy tiling for stencil computations

	Applications and comparison to kernel fusion
	Polynomial evaluation using Horner's method
	Exponentiation by repeated squaring
	Heat propagation

	Related work

	High-level skeleton fusion
	Comparison to lineages
	Kernel fusion
	Types of fusions
	Example: N-body simulation
	Future work

	Multi-variant user functions
	Introduction
	Idea and implementation
	Use cases
	Vectorization example
	Generalized multi-variant components with the Call skeleton
	Other use cases

	Related work

	A deterministic portable parallel pseudo-random number generator
	Introduction
	Determinism in heterogeneous parallel computing
	Parallel pseudo-random number generation
	Previous manual parallelization of PRNG in SkePU programs
	Monte Carlo pi calculation—index-based scrambling
	Markov Chain Monte Carlo methods in LQCD—PRNG with explicit state

	Designing a deterministic PRNG for SkePU
	Global synchronization
	Stream splitting
	State forwarding
	Optimizing long or iterated skeleton chains by pre-forwarding
	API extension design

	Related work

	Towards a modernized auto-tuner
	Background
	SkePU variadic tuner design
	Implementation
	Multi-dimensional argument sequences
	Sampler
	Execution plan and persistence

	Future work

	Evaluation results
	SkePU usability evaluation
	SkePU 2 prototype survey
	SkePU 3 survey

	Initial SkePU 2 performance evaluation
	Performance evaluation of lineages
	Sequences of Maps
	Heat propagation

	Hybrid backend
	Single skeleton evaluation
	Generic application evaluation
	Comparison to dynamic hybrid scheduling using StarPU

	Evaluation of multi-variant user functions
	Vectorization
	Median filtering

	Application benchmarks of SkePU 3
	Libsolve ODE solver
	N-body
	Blackscholes and Streamcluster
	Brain simulation
	CO2 capture
	Supercapacitor simulation
	Conjugate gradient

	Experimental evaluation of deterministic PRNG
	Monte-Carlo Pi approximation
	LQCD Mini-Application
	Miller-Rabin primality testing
	Natural noise generation
	Programmability evaluation

	SkePU-GPI cluster backend
	Microbenchmarks of SkePU 3
	OpenMP scheduling modes
	SkePU memory consistency model

	Variadic tuner prototype
	High-level skeleton fusion

	Limitations and future work
	Limitations
	Applicability of data-parallel patterns
	Dynamic data structures
	Limitations of language embedding

	Future work
	Further backend targets: reconfigurable accelerators
	Extending the parallel pattern set: stream parallelization
	Testing, debugging, and visualization
	Higher-level language interface

	Conclusions
	Bibliography
	Additions and changes from the licentiate thesis
	New contributions
	Other changes

	Definitions
	Abbreviations
	Domain-specific terminology
	SkePU-specific terminology

	SkePU-BLAS API
	Application source code samples
	N-body simulation
	Game of life
	Conjugate gradient
	CO2 capture

	Dr-sammanst

