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Abstract | i

Abstract

Music is created by composers to arouse different emotions and feelings in the
listener, and in the case of soundtracks, to support the storytelling of scenes.
The goal of this project is to seek the best method to evaluate the emotional
content of soundtracks. This emotional content can be measured quantitatively
thanks to Russell’s model of valence, arousal and dominance which converts
moods labels into numbers. To conduct the analysis, MFCCs and VGGish
features were extracted from the soundtracks and used as inputs to a CNN and
an LSTM model, in order to study which one achieved a better prediction. A
database of 6757 number of soundtracks with their correspondent VAD values
was created to perform the mentioned analysis.

As an ultimate purpose, the results of the experiments will contribute to the
start-up Vionlabs to understand better the content of the movies and, therefore,
make a more accurate recommendation on what users want to consume on
Video on Demand platforms according to their emotions or moods.

Keywords

Music emotion recognition, Deep learning, Feature extraction, VGGish, Mel-
frequency Cepstral Coefficients.
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Abstract

Musik skapas av kompositörer för att väcka olika känslor och känslor hos
lyssnaren, och när det gäller ljudspår, för att stödja berättandet av scener.
Målet med detta projekt är att söka den bästa metoden för att utvärdera det
emotionella innehållet i ljudspår. Detta känslomässiga innehåll kan mätas
kvantitativt tack vare Russells modell av valens, upphetsning och dominans
som omvandlar stämningsetiketter till siffror. För att genomföra analysen
extraherades MFCC: er och VGGish-funktioner från ljudspåren och användes
som ingångar till en CNN- och en LSTM-modell för att studera vilken som
uppnådde en bättre förutsägelse. En databas med totalt 6757 ljudspår med
deras korrespondent acrshort VAD -värden skapades för att utföra den nämnda
analysen.

Som ett yttersta syfte kommer resultaten av experimenten att bidra till att
starta upp Vionlabs för att bättre förstå innehållet i filmerna och därför ge
mer exakta rekommendationer på Video on Demand-plattformar baserat på
användarnas känslor eller stämningar.

Nyckelord

Music emotion recognition, Deep learning, Särdragsextraktion, VGGish, Mel-
frequency Cepstral Coefficients
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Chapter 1

Introduction

1.1 Background

Music has been in society since the beginning of time as it has the ability to
stimulate emotions and feelings. Composers and creators employ numerous
techniques and devices to arouse emotions and feelings in the listener, and in
some contexts to support storytelling.

Nowadays, most film spectators use Video on Demand (VoD) platforms
to watch movies. The competition in this sector is constantly increasing and
therefore, companies have to reinvent themselves to keep their users loyal.
What differentiates one service from another is the diverse content and good
recommendation algorithms. In the end, if they are capable of suggesting
correctly what the user wants to consume according to his current mood or
personality. Therefore, understanding the overall emotional content of a movie
contributes to a more accurate recommendation system for VoD platforms and
a customized experience for users. Indeed they will spend less time searching
for what content they prefer to consume [3]. This project aims to extract
the emotions generated by movies soundtracks for this ultimate purpose of
understanding better the content.
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1.2 Problem

Music Emotion Recognition (MER) is the area of Music Information Retrieval
(MIR)1 that aims to identify perceived emotions in music by extracting
and analyzing different audio features [5] or lyrics [6]. MER has multiple
applications such as therapy or research, but above all, it is widely applied in
automatic audio recommendation systems like Spotify [7].

Despite this, researchers find it challenging to develop algorithms with
good performance due to three main reasons. Firstly, because of the subjectivity
of emotions. Even though the composer intended to arouse a certain emotion
in the listener, the perceived emotion can vary considerably from one user to
another. The second reason is the lack of suitable datasets because labelling or
gathering audio files is a demanding task. Lastly, developing robust algorithms
which analyze sequential input data, such as audio files, is a challenging task
because the input has a temporal relationship that should be taken into account,
not just temporal relation with the past, but sometimes with the future as well
[8][9].

Among the available music emotion datasets, there are two main approaches
to classify emotions, the categorical and the dimensional [10]. The categorical
one represents the emotion with discrete tags such as ’happy’, ’sad’, ’anger’
or ’relaxed’, i.e. measures them qualitatively [11]. With this approach, MER
problem turns into a classification one. On the other hand, the dimensional
model measures quantitatively the emotions, and so it becomes a regression
problem [6][12]. A wider range of emotions can be represented using this
model. The most popular dimensional model used across the literature is
Russell’s model [13]. It consists of a three-dimensional space defined by
Valence, Arousal and Dominance, explained more in detail in Section 2.1.

1.3 Purpose

The purpose of this project is to analyze a dataset of soundtracks, extract their
features and estimate the VAD values. Ultimately, the understanding of the
emotional content of the soundtracks will contribute to analyse the overall
emotional content of the movie.
1 "Interdisciplinary science aimed to studying the processes, systems and knowledge
representations required for retrieving information from music." Definition taken from [4].
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1.4 Goals

The main goal of this project was the training a model to predict the VAD
values of a given soundtrack. For this goal, a comparison between two
different audio features explained in Section 2 was performed, in order to see
which one carries more relevant information to predict the correct VAD labels.
The result of this comparison was measured mainly in terms of loss, more
detailed explained in Chapter 2.

1.5 Research Methodology

The Methodology followed was: do some research to find a suitable dataset
and then, extract the audio features -MFCC and VGGish- explained in Chapter
2. Afterwards, two types of networks were used, a Long Short Term
Memory (LSTM) and a Convolutional Neural Network (CNN) developed with
TensorFlow [14], to perform the following experiments:

1. Compare the performance of VGGish versus MFCC on a Convolutional
Neural Network (CNN).

2. Compare the performance of VGGish versus MFCC on a Long Short
Term Memory (LSTM).

These experiments have been chosen in order to test the effectiveness of
the audio features VGGish, i.e. evaluate if they carry enough information to
predict VAD values. MFCCs are used for the comparison as they have widely
been used across the literature with promising results.

Another method commonly used is extracting the spectrograms from the
audio and used them to train a CNN. The problem with this approach is that
the audio inputs are treated as images, losing their temporal relationship. It is
explained more in detail in Chapter 2.

It was assumed that the best experiment would be training the VGGish
features on a LSTM network, as these features carry more relevant audio
information than the others since they have been trained on a larger dataset.
Also, that the LSTM performs better with the temporal relationship relevant
when dealing with audio.
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1.6 Delimitations

To compare the emotional added value of the soundtrack to the overall of the
movie is out of the scope of this project, since it would be needed a very
complex dataset where the soundtracks are matched with their movies. The
focus of this project is to evaluate which of the two features earlier mentioned
performs better in predicting the VAD values. The performance of these
features will be measured with two different models -LSTM and CNN-.

1.7 Outline

The project is structured as follows. In Chapter 2, the emotional model
employed and why it was chosen is explained, as well as the theoretical
background of the two network models and the two features used to perform
the experiments. The chapter ends with a summary of the previous relevant
related work. The description of the database acquisition and its validity is
described in Chapter 3 and, in Chapter 4, the process of how the model was
developed. To finalize, in Chapter 5 the results are exposed and discussed and,
in Chapter 6, the conclusions and some of the future lines of research.
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Chapter 2

Background

This chapter provides basic information and background of what has been
previously done in the area of MER and, also with some concepts to fully
understand the development of the project.

Machine Learning and Deep Learning approaches are the ones that perform
the best when extracting emotions from music. Firstly, there is a brief
introduction about the emotional model employed, followed by the explanation
of the two network models utilized. Then, the audio features and the metrics
utilized measure the results are described.

2.1 Emotional model

Traditionally, the most common way of defining emotions has been with mood
labels. The first six emotions defined by Paul Ekman [15] were sadness,
happiness, disgust, anger, fear and surprise, then they were enlarged across
the years by different researches. This is defined as a categorical approach.
Datasets such as the 4Q audio emotion dataset [16] or the MER500 [17] use
this kind of labelling. The problem with this approach is the limited number
of mood labels that can be employed.

Therefore, Russell in [13] proposed a dimensional model where emotions
could be quantified in terms of valence and arousal. Later on, another
dimension was added, the dominance. In Figure 2.1 some common emotions
are represented using these labels. They are defined as:
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• Valence expresses if an emotion is positive or negative, i.e. the pleasure
the emotion transmits.

• Arousal refers to its affective activation, i.e. the intensity or activity.

• Dominance reflects the level of control of the emotion, i.e. the potency.

Figure 2.1: VAD values for some emotions taken from the NRC dataset.

Most of the databases of songs across the literature are labelled just with
valence and arousal. The problem is that, without the dominance label,
relevant emotional information is lost. For instance, strong crying or fury
could not be differentiated without dominance. A couple of examples of these
datasets are PMEmo [18] and AMG1608 [19].

After some research, two suitable datasets with VAD values were found,
one with 470 clips of soundtracks [20] and another one with 61902 general
songs, Music Sentiment Dataset (MuSe) [21]. For the project, a customized
version of the last one was created, explained more deeply in Chapter 3.
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Figure 2.2: Comparison of how MuSe is labeled with respect to other more
traditional datasets.

The hypothesis taken into account when using the customized MuSe
dataset is that the VAD values are generated from the mood labels corresponding
to each song, not actually from the users when listening to a specific song. The
authors of this dataset utilised a another dataset that has VAD values for the
majority of English words, the ANEW dataset [22], so in MuSe each song has
the VAD values that come from the average of the VADs of all the mood labels
that are associated with it. The process is illustrated in Figure 2.2 for its better
understanding.

For this project, a more modern version from 2018 of the English words
dataset is employed, the NRC dataset [2]. It has a total of 20,000 words with
their corresponding VAD labels and it was generated in a more accurate way
than its older version, ANEW.

In Table 2.1 there are some examples of mood labels with their VAD values
retrieved from NRC dataset.

Table 2.1: Mood labels with their VAD values from NRC dataset [2].

Word V A D

Sad 0.225 0.333 0.149
Happy 1 0.735 0.772

Disgusted 0.051 0.773 0.274
Angry 0.122 0.83 0.604
Fear 0.073 0.84 0.293

Surprised 0.784 0.855 0.539
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2.2 Network models

In this section is explained the theoretical framework of the network models
employed in the experiments, the CNN and the LSTM.

2.2.1 Convolutional Neural Network (CNN)

CNNs are the type of neural networks designed to outperform on image
processing or classification [23]. They have the ability to deal with a bi-
dimensional input, such as an image, instead of transforming it to a uni-
dimensional vector thanks to the convolution operation with filters performed
on each neuron. In addition, the spatial relation between pixels is understood
when extracting different features, usually borders on the first layers and details
on the deeper ones.

Another type of networks are Dense Neural Networks (DNNs) which are
composed of several layers with a different number of neurons on each one.
All neurons from one layer connect to all the neurons from the next layer,
reason why they are also called fully connected. Data passes from the first
input layer to the rest, the hidden layers, until it arrives to the output layer,
procedure named feed-forward. On each neuron, the weights are updated and
optimized, applying an activation function to introduce non-linearity.

In the beginning, only a DNN was going to be employed in the project,
but after extracting the features, the number of data points to train was more
complex than expected. Therefore a CNN was chosen becuase it reduces the
number of parameters.

2.2.2 Long Short Term Memory (LSTM)

CNNs struggle to deal with the temporal relationship of the input data when
performing the training. Recurrent Neural Networks (RNNs) [24] try to solve
this problem by adding another input of each neuron, which is the output
of the previous one. Basically, it provides the network with memory. The
disadvantage is they do not handle correctly long-term dependency because
the new information entering the network acquires more weight than the
gathered memory. This problem is called vanishing gradient problem [25].
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Hochreiter et al. [26] introduced LSTM to solve it. The main task of these
networks is solving the long-term dependency problem. They also keep the
information from previous neurons, similar to RNN, but with the difference
that each neuron has three gates; the input gate, the forget gate, and the output
gate. Thanks to them, the neuron can decide how much relevance it gives to
the input information and how much previously gathered information it wants
to remove [27].

2.3 Audio features

Extracting audio features, rather than introducing directly the audio raw signal
to the networks, is a more convenient method in terms of simplicity and
good performance according to previous works. MFCC are widely studied
across the literature and, therefore, they are a secure approach to perform a
comparison with VGGish features, novel in the area of MER.

2.3.1 Mel-frequency Cepstral Coefficients

These coefficients are widely used in audio processing, both in speech or music
recognition. Briefly, MFCCs are an alternative representation of the spectrum
of an audio signal.

Cepstrum represents the rate change in spectral bands. In normal spectrum
analysis, a periodic signal in the time domain is represented with a peak in
the frequency domain. Afterwards, when calculating the spectrum of the
log of this original spectrum of the audio input, it can be observed a peak
wherever there is a periodic element in the original time domain. They
named this resulting spectrogram Cepstrum because it belongs to a completely
different domain, neither frequency neither time, this new domain was named
quefrency.

The next important concept to clarify is the Mel scale. It is a way of
relating the frequency of the signal with how humans perceived the sound
it generates. The Mel scale was defined in order to emphasize small changes
at lower frequencies as they are better heard by humans.

The final reason for this process is that any human sound is determined by
the shape of their vocal, and therefore knowing this shape any sound can be
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accurately reproduced, which is the ultimate purpose of the MFCCs.

The process to extract these coefficients, Figure 2.3, is the following:

1. The signal is split into short frames according to the window size
specified. In this project it has been used a window of 2048 frames,
which sampled at a sample rate of 22050 Hz corresponds approximately
to 93 ms per window. These frames are normally overlapped, defined
by the parameter hop length which is the space between windows.

2. For each frame the Discrete Fourier Transform is calculated, generally
with 512 FFT points.

3. The Mel-spaced filter bank is computed, a set of typically 26 filters that
are applied to the DFT calculated in the previous step. There are more
filters for lower frequencies to emphasise them as has been explained
previously.

4. The log of the output of the computation of the bank of filters with the
DFT from step 2 is computed.

5. Then, the DCT of the log filterbank energies, which are the output from
the previous step.

6. Normally only the first 13 coefficients from the 26 generated with the
filter banks are kept. The rest are values close to zero due to the DFT
from step 2, which concentrates the information in the first coefficients.

Figure 2.3: Chart explaining how MFCC features are obtained.

2.3.2 VGGish

VGGish is a variant of the VGG model [28] to enable it to receive long Mel
spectrograms audio inputs. The Mel spectrograms are representations in the
frequency domain of the audio signal converted into the Mel Scale. This scale,
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as mentioned in the explanation of MFCCs, is a non-linear transformation of
the frequency scale to adapt it to how humans perceive sounds. The idea
is that the distance in pitch -how frequency is named in speech and music
processing- sounds equal to the listener, despite the frequency. As humans are
more sensitive to lower frequencies, the changes are less abrupt on lower than
on higher frequencies, see Figure 2.4.

Figure 2.4: Mel Scale taken from [1].

The VGGish model has been trained on the YouTube-8M dataset [29]
and generates 128-D dimensional embeddings for approximately 1 second of
each audio input. There are two ways of using this model, first as part of
a larger model, normally employed for training larger or more complicated
audio datasets, and secondly, as a feature extractor. The audio input is framed
in windows of 0.96 seconds and for each one, a high-level 128-D feature is
extracted resulting in a 2D tensor of size [N, 128], with N the approximate
number of seconds of the audio input. These features seem promising as
they have more semantic information than raw audio features. The model
is available in TensorFlow Hub. The limitation is that it has been trained on
millions of YouTube videos, and therefore, if the audio inputs, the soundtracks,
are very different from those, the result would not be as promising as expected.
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2.4 Metrics

A regression algorithm has to be evaluated with specific measures for it,
explained in detail in this section. Mean Square Error (MSE) and Mean
Absolute Error (MAE) correspond to the negative measure that evaluates the
loss, the lower the better.

2.4.1 Mean Square Error

The MSE is the standard deviation of the prediction errors. It measures how
far are predictions from the true measure, i.e. the Euclidean distance between
prediction and ground truth. The formula is defined as follows:

MSE =
1

N

N∑
i=1

(
yi − ŷi

)2
N corresponds to the number of data points, yi to the true value and ŷi

to the predicted value in i. This metric is useful when big errors need to be
punished. It focuses more on them thanks the squared difference.

2.4.2 Mean Absolute Error

MAE is defined as the sum of the absolute of the difference between the real
value and the predicted one divided by the total number of predictionsN . This
metric is widely used in regression models. In comparison with MSE, it has a
linear behaviour. The formula is defined as follows:

MAE =
1

N

N∑
i=1

|yi − ŷi|
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2.5 Related work area

In the past years, many researchers have developed different algorithms to
solve the problem of extracting emotions from music. These works can
be classified according to different characteristics such as the audio features
used as inputs, the classification algorithm employed or the output labels. In
this project, the literature is divided according to the classification algorithm
applied.

Support Vector Machine (SVM) is employed as a classifier in several
works, for instance in [30], in order to determine to which emotion a particular
song belongs within a given dataset. They used Russell’s model to then
convert the VAD values into four emotional categories. This project achieves
a high accuracy but the labels are not detailed enough to consider it a good
result. Panda et al. [16] also applied SVM to classify emotions into four
quadrants after a high preprocessing of the audio features, similarly done in
[31]. Chapeneri et al. [32] applied a deep Gaussian regression model on
a dataset labelled with valence and arousal as well and they used Bayesian
acoustic features as inputs. Delbouys et al. [6], instead of analyzing the audio
features to extract emotions, focused on the lyrics, embedding words to be
the input of the classifier. The best performance is achieved when merging
audio and lyrics features, employing SVM as well as other classical model for
classification.

Machine learning algorithms are widely used in this area, as well as in
many others. For instance, in [33] a non-invasive brain-machine technique,
electroencephalography, is used to evaluate the brain reactions when listening
to music. Then, they classify the emotions extracted applying a DNN. DNN
are a basic neural network that has been widely applied in works such as [34]
were they also use the valence and arousal model. They compare the behaviour
of SVM and DNN, obtaining better results with this last one. In [35] several
types of DNN are compared, arriving to the conclusion that ResNet50 [36]
performs outstandingly compared to the rest of DNN models.

Good results are achieved with this approach but with the disadvantage of
high preprocessing data. Therefore, a large number of studies have focused
on evaluating CNN, due to its effective performance on images. The most
popular approach is to extract the spectrograms from the audio, and use them
as the input for the CNN [5][37]. The disadvantage of these networks is they
do not exploit the temporal relation of the audio. They just focus on the spatial
relationship between the input pixels, reason why they perform so well on
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images.

To deal with this problem Begio et al. [24] introduced the RNN. They
achieved a better performance on audio files, specially the LSTM networks
[26], a type of RNN. Different audio features can be used as inputs, from
raw audio [10], passing through low-level acoustic descriptors -loudness,
sharpness, harmonicity, energy, etc.- to MFCC [27].

More recently, comparisons between deep audio embedding methods have
been performed in order to analyze which one carries more emotional semantic
information. In [38] they compare L3-Net embeddings with VGGish, with the
result that the first one contains more useful information for the purpose of
predicting the MER.
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Chapter 3

Methodology

This chapter describes how the database was created, its reliability and validity
and why it was chosen this approach.

3.1 Database creation

The database created for this project followed the same procedure as the
authors of [21] did for the creation of the MuSe (Music Sentiment) database,
but retrieving only soundtracks. The procedure has been the following:

1. Collection of soundtracks: All songs from Last.fm with the tag
Soundtrack were retrieved from the API1, in total 9550 soundtracks.

2. VAD for English words dataset: In the MuSe database the authors
used the ANEW database [22] which contains 13,915 lemmas with
their correspondent VAD value to calculate the VAD labels. In this
project a newer version of this database with more than 20,000 words
was employed, the NRC-VAD dataset [2]. The score of the VAD labels
ranges from 0 to 1 and they were acquired in a more reliable way. More
details about it can be found on the provided link 2.

3. Retrieval of all tags from the soundtracks: Again with the use of
1 https://www.last.fm/api/show/tag.getTopTracks2 https://saifmohammad.com/WebPages/nrc-
vad.html
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Last.fm API1, all the tags with their correspondent weights for each
soundtrack were retrieved.

4. Filter the genre tags: From the retrieved tags, the ones corresponding
to genres did not contribute to the emotional information. Therefore,
they were filtered before calculating the final VAD values of the soundtracks.
Some examples of these tags were: soundtrack, movie, electronic, indie,
rock, pop, country, film, composer, intro, musical, cover, etc.

5. Calculate VAD for each soundtrack: As it has been done for the MuSe
database, for each mood tag its VAD values were taken from the ANEW
dataset. In this case from NRC database, and later the mean average
was calculated by multiplying with their correspondent weight. Some
tags were not in the NRC dataset resulting in 7413 songs with VAD
annotations. An example of how it was calculated the mean average is
shown in Figure 3.1.

Figure 3.1: Mean average VAD values from Simple as This by Jake Bugg.

6. Get their Spotify ID: With Spotify API2 the Spotify ID for each
soundtrack was added to the dataset, together with the duration of the
song. Some of the songs were not available on Spotify and therefore the
number was reduced to 6826 soundtracks, but still, a very significant
number to train correctly a network. Table 3.1 presents a summary of
the final output of the dataset.

1 https://www.last.fm/api/show/track.getTopTags2 https://developer.spotify.com/console/get-
search-item/
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Table 3.1: Final structure of the dataset created, the columns are: id, track,
artist, duration, weights, spotify_id, valence, arousal and dominance.

track artist ... V A D

Only hope Mandy Moore ... 0.833 0.462 0.551
The End Of The World Skeeter Davis ... 0.555 0.446 0.423

Lovefool The Cardigans ... 0.644 0.410 0.522
Nobody Does It Better Carly Simon ... 0.818 0.461 0.552

Blow Me Away Breaking Benjamin ... 0.673 0.610 0.658

7. Get the audio using Savify1: With the Spotify ID and the use of
Savify, the audio was downloaded to later extract the features, MFCC
and VGGish.

In Figure 3.2 all the VAD labels from the final database are plotted in a 3D
space to visualize their distribution. Some parts of the space have no value
because there are some VAD combinations that do not correspond to any real
emotion.

Figure 3.2: VAD labels from the whole database.
1 https://github.com/LaurenceRawlings/savify
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The number of available soundtracks was reduced from 6826 to 6757 for
a couple of reasons. Some of their names started with punctuation marks so
they could not be searched in Spotify and songs larger than 28MB had to be
removed as they were very heavy for the program to be able to extract the
features correctly.

In Figure 3.3 all the available fields of song number 11, Simple as This by
Jake Bugg, can be observed.

Figure 3.3: Simple as This by Jake Bugg saved in dataframe format.

3.1.1 Hardware/Software used

The hardware used in the project was the laptop of the student, a Dell New
Inspiron 13 5391 with 8GB of RAM and 512GB of memory and a Linux
operating system, Ubuntu 20.04. Both the acquisition of the dataset and the
extraction of the features were done locally, but the training of the models
was done in Google Cloud Platform (GCP) with credentials provided by the
company. From the resources available in GCP, a Machine type named n1-
standard-8 was selected, with 8 CPUs and 30GB of memory, in addition to
a GPU, NVIDIA_TESLA_T4, when the models were trained with the whole
dataset.

About the software, all the code was written in Python, the generation of
the dataset, underlining the use of the library pandas to treat with data frames,
and the architecture of the models using Tensorflow 2.4 [14]. The Integrated
Development Environment (IDE) employed for developing the project was
Visual Studio Code for Ubuntu.
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3.2 Reliability and validity

The goal of this section is to justify the validity and reliability of the database
created in first place, and of the training procedure in second place.

3.2.1 Database created

During the creation of the database, there were two steps where the labelling
relied on users opinions and feelings: the weighted moods retrieved from
Last.fm and the VAD labels assigned to each word.

Firstly, the songs were retrieved from Last.fm with their respective social-
based tags. Those public tags correspond to the most voted ones by the users
of the platform. They labelled them with the emotions felt after listening to the
whole song. The drawback encountered here is they did not only tag the songs
with the emotions felt but also with genres and other words that can describe
music such as alternative, blue, retro or contemporary. For that reason, these
tags had to be filtered before calculating the average VAD labels.

Afterwards, when translating the mood labels into VAD labels with the
NRC database, the question that arised here was how these VAD labels were
assigned by the users. According to the creators of this database, there are
mainly four problems with rating scales: the fixed granularity, the difficulty
for annotators to be consistent with themselves and with the rest, and the scale
region influence. To deal with these problems they made use of the best-worst
scaling [39] which leads to more reliable annotations according to several
sources. Moreover, half of the annotations were compared to the other half to
prove their mutual consistency, a process called ’Average split-half reliability
(SHR)’ [40]. It resulted in a higher similarity between both halves than the
one achieved with the ANEW dataset [2].

In Figure 3.4 is displayed the final distribution of the calculated VAD
labels.
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Figure 3.4: Histogram of Valence, Arousal and Dominance values from the
database created.

It can be observed on the plots that the valence is slightly biased to the
positive values,which it will impact on the results of the training.

3.2.2 Training configuration

The three VAD labels were trained separately even though they are not
independent. According to [2], valence and dominance have a significant
correlation (0.488), but for the remaining combinations, arousal-dominance
(0.302) and valence-arousal (0.268) are quite low. They normally are assumed
to be independent because is easier for the networks to converge.

As it is explained in the next chapter, the songs were split into frames of
15 and 30 seconds as input to the networks. All the frames belonging to the
same song have the same VAD labels even though the beginning of the song
could transmit different emotions compared to the middle part. The hypothesis
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posed in this sense is that songs with an average relax feeling, for example, will
contribute with a larger number of frames with the appropriate VAD values,
compensating the intro frame of a heavy song that could be more relaxing and
has VAD labels for a heavier and harder feeling. Therefore, when performing
the test, even though all the frames from each song should be predicted with
the same ground truth, each predicted VAD for each frame will approximate
more to measure the emotion felt in those seconds, but in average they will
tend to the ground truth.

3.2.3 Metrics

Both metrics, MSE and MAE were calculated for all the experiments. As
mentioned previously, MSE punished bigger errors, unlike MAE that works
better on a database with outliers. In this case, the outliers are important as
they will be the songs with the most defined emotions, and therefore the MAE
metric is more accurate when measuring the loss.



22 | Methodology



Developing the model | 23

Chapter 4

Developing the model

This chapter describes how the model was developed to achieve the results
that are presented in Chapter 5. Firstly, how the features were extracted is
explained, which is followed by the description of how the architectures of the
models were tuned.

4.1 Features extraction

The theoretical explanation of the features employed in the project has already
been described in Section 2.3. This section presents how the MFCCs and the
VGGish were concretely extracted for this project.

4.1.1 MFCCs

A popular Python package used in the state-of-the-art for music and audio
analysis is Librosa [41]. It is very convenient because the MFCCs can be
extracted just by applying the following function.

mfcc = librosa.feature.mfcc(x, sr=sr)

The song of Figure 4.1 is utilised as an example to explain the output
dimension from the MFCCs, important for later understand the input dimension
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to both models.

Figure 4.1: Passage of Time by Rachel Portman, song number 8857 from the
dataset with a duration of 153 ms.

Firstly, when loading the audio with Librosa, it samples it at the default
sample rate of 22050 Hz. Therefore, the number of frames in this song is:

#Frames = duration[seconds]∗sr
[
frames

seconds

]
= 152, 137∗22050 = 3354620, 85

Afterwards when applying the MFCCs, the sampled audio is divided into
windows, with a window size of 2048 and a hop length of 1024. It represents
the space between windows so they are overlapped, graphically explained in
Figure 4.2.

Figure 4.2: Representation of how the MFCCs windows are divided.

Therefore, by dividing the total number of frames of the song by the hop
length, the result is the number of windows generated.
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#FramesMFCCs =
duration[sec] ∗ sr

[
frames
seconds

]
hop length[frames]

=
152, 137 ∗ 22050

1024
= 3276

From each of these windows, 13 MFCCs are generated following the steps
defined in the theoretical part in Section 2.3. As a result, the final output size
is for the song treated in this case is (13, 3276). Figure 4.3 shows the resulting
spectrogram. The horizontal axe refers to the time length which is half of the
total audio length due to the hop length selected of 1024, and the vertical the
MFCCs coefficients.

Figure 4.3: MFCCs coefficients of the song 8857.

Treating different audio length as input for the networks is out of the scope
of this project, reason why the experiments were defined to employ audio
inputs of 15 and 30 seconds. The MFCCs output was split in (13, 323) for
15 seconds and (13, 646) for 30 seconds. These numbers were computed
following the same formula as before but changing the audio duration:

#Frames 15s =
duration[sec] ∗ sr

[
frames
seconds

]
hop length[frames]

=
15 ∗ 22050

1024
= 323
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#Frames 30s =
duration[sec] ∗ sr

[
frames
seconds

]
hop length[frames]

=
30 ∗ 22050

1024
= 646

After processing the MFCCs for all the songs, they were converted into
tfrecords for an efficient training in Google Cloud Platform.

4.1.2 VGGish

The approach followed to extract these features was simpler compared to the
MFCCs as the model is saved in Tensorflow Hub and it only had to be loaded
and applied to all the songs from the database. However, as pointed out in
the documentation of the model, the audio was trained with a sample rate of
16k Hz, and therefore, when loading the audio files with Librosa to extract the
VGGish, it had to be specified this new sample rate so it did not employ the
default one, 22050 Hz.

For the song of Figure 4.1, the output size of the VGGish is (158, 128).
In Figure 4.4 is represented the output. These features had to be sliced as
well to take 15 and 30 seconds. In this case, with a direct computation as the
first dimension of the output of VGGish is approximately one second (0.96
seconds). Hence the slices chosen were (15, 128) for 15 and (30, 128) for 30
seconds.
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Figure 4.4: VGGish from song 8857.

4.2 Architecture experimentation

This section describes how the final architecture of both models, CNN and
LSTM, was developed. Several configurations were analysed applying the
MFCCs features, with the final goal of finding the architecture that achieves
the best result, for later test the VGGish on that same one. The hypothesis,
stated before, is that the VGGish will perform better than the MFCCs.

4.2.1 CNN

Initially, the approach was to use a DNN instead of a CNN. The reason behind
it was that the features have already extracted the relevant information from
the audio and therefore, the model architecture was not required to be very
complex for it to converge. This approach was soon discarded after finishing
with the features extraction and understanding their shapes. Because they
generated a high number of parameters in comparison to the available data
inputs. Replacing the first layers with convolutional ones reduced the number
of trainable parameters and, consequently, the relation between them and the
number of data points was more reasonable and augured better results. More
details about the number of parameters and the data input points are given in
Section 4.2.3.
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The final CNN architecture is the result of several experiments changing
the number of convolutional, dense layers and their correspondent neurons.
Firstly, the model had three convolutional layers followed by four dense, but it
collapsed to one single value even though the loss was decreasing. The reason
was the high complexity of the model for the concrete scenario.

Consequently, the following approach was to reduce the number of layers
to 2 convolutional and 2 or 3 dense layers with few neurons, between 32, 64, or
128. When the model was too simple, with only 2 dense layers, it was not able
to learn the VAD labels. Some trials with Dropout and Batch normalization
were executed as well but with no improvement in the results.

The trade-off between collapsing and not learning enough was found in
a model with 2 convolutional layers and three dense with 128, 128 and 64
neurons respectively. The final architecture is shown in Figure 4.5.
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Figure 4.5: Final architecture of the CNN model.

4.2.2 LSTM

For the LSTM model, the experiments were made changing the number of
LSTM neurons and followed by the same three layers used in the CNN, with
128, 128 and 64 neurons respectively. First, high numbers of LSTM neurons,
such as 100, were tested but with no success as the number of trainable
parameters was very high compared to the amount of data inputs. Instead,
with a low number such as 10, the model could not converge. The trade-off
was found in 512 neurons. In Figure 4.6 the final architecture is represented.
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Figure 4.6: Final architecture of the LSTM model.

4.2.3 Number of parameters clarification

The purpose of this explanation is to prove that the number of input data points
is higher than the number of parameters but keeping a reasonable relation. A
rule of thumb is that the ratio between both should not be larger than 100. If
the number of parameters is higher than the data inputs the model will overfit.

To calculate approximately the number of data inputs, first, the mean
duration of the songs from the training set -4000 songs- was computed,
resulting in 225 seconds. Dividing it by frames of 15 seconds resulted in
15 frames on average for each song. As follows is explained how they were
calculated for each type of feature.

• For the MFCCs: As the input size for each frame is (323, 13) with 15
frames per song and 4000 songs for the training, the data inputs resulted
in

4000 songs ∗ 15 frames ∗ 323 ∗ 13 = 251940000 data inputs

– CNN: # parameters 3,958,344. Relation with data inputs ≈ 63.
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– LSTM: # parameters 1,167,745. Relation with data inputs ≈ 215.

• For the VGGish: The input for each frame is (15, 128), also with 15
frames per song and 4000 songs for the training. Therefore,

4000 songs ∗ 15 frames ∗ 128 ∗ 15 = 115200000 data inputs

– CNN: # parameters 1,599,048. Relation with data inputs ≈ 72.
– LSTM: # parameters 1,403,265. Relation with data inputs ≈ 82.
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Chapter 5

Results and Analysis

This chapter contains the results of the experiments conducted with the
purpose of finding out which of both features presented and which model is
able to predict the VAD labels with lower loss. It is divided into two sections
according to both features.

As mentioned previously, even though they are correlated, the three labels
are trained separately since it is easier for the network to converge.

5.1 Experiments with MFCCs

After reaching the final architecture of both networks, the following task was
to find the most appropriate way to input the audio features. For this purpose
two parameters were chosen:

1. Frame length: It was chosen according to three facts. First, it had
to be long enough for the emotion to be recognizable by the listeners.
Secondly, the log Mel spectrum should be computed on a long frame, if
not relevant information could be lost. And lastly, as the dataset VAD
labels are labelled for the whole songs, the longer the frame the more the
predicted value resembled the ground truth. The trade-off values found
satisfying these requirements were 15 and 30 seconds.

2. Remove offset: When calculating the DCT of the MFCCs, an offset



34 | Results and Analysis

with no information is generated, so according to previous literature,
removing it will result in a more accurate prediction.

Four experiments were executed according to these two parameters on the
LSTM model, to discover which parameter combination outputs the lowest
loss. Afterwards, the same configuration was employed on the CNN. The
results are shown in Table 5.1. The lowest loss is achieved with a frame of
15 seconds and without removing the offset. The rest of the experiments were
carried out under this configuration.

Table 5.1: Results of MFCC trained on the LSTM.

Frame Offset Label MSE MAE

15s True val 0.0153486 0.0965546
30s True val 0.0154745 0.0970154
15s False val 0.0154395 0.0965895
30s False val 0.0156131 0.0974047

The following graphs show the Tensorboard for valence, arousal and
dominance. First trained on the CNN, Figure 5.1, and then on the LSTM,
Figure 5.2. The plot underneath the epoc_loss graphs compares the predicted
value -vertical axis-, with the true value -horizontal axis-, when running it on
the validation set. For a perfect prediction, the values should be distributed
across the plot’s diagonal.

On Figure 5.1 by observing the bottom graphs it can be deduced that the
CNN does not learn properly the data as it tends to predict the average value.
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Figure 5.1: VAD results on CNN with MFCCs, with frame of 15 seconds and
without removing the offset.

Figure 5.2: VAD results on LSTM with MFCCs, with frame of 15 seconds
and without removing the offset.
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The results on the LSTM were not as expected since they achieved a higher
loss than on the CNN when training the three labels. However, it can be
observed in the bottom graphs of Figure 5.2 that the data is more spread out
compared to the plots of Figure 5.1 of the CNN, but still far from approaching
the diagonal.

The emotion that achieves the best result is the dominance, both on
the LSTM and the CNN. One reason for this is that it has the narrowest
distribution, as can be observed in Figure 3.4. The predicted distribution for
the three labels displayed on the bottom plots resembles the range of each
emotion label, for more details about these ranges refer as well to Figure 3.4.

5.2 Experiments with VGGish

The VGGish features were introduced in the networks directly with frame of
15 seconds to perform a proper comparison with the MFCCs. The results
for valence, arousal and dominance executed on the CNN with this feature
configuration are displayed on Figure 5.3, and the ones ran on the LSTM in
Figure 5.4.

Figure 5.3: VAD results on CNN with VGGish.
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Figure 5.4: VAD results on LSTM with VGGish.

In this scenario, the LSTM achieves a lower loss than the CNN as it
was posed initially. Furthermore, empirically observing the bottom plots that
compare the predicted with the true value, it can deduced that more values
are placed across the desired diagonal. Additionally, they present a higher
variance and values further away from the average value as it occurred with
the CNN.

Equal to the MFCCs features, the one that achieves the lowest loss of the
three labels is the dominance which supports the previous interpretation of this
happening because it is the one with the narrowest value distribution.

To conclude this section, the following plots show the performance of the
training of the two models with the VGGish and MFCCs with the dominance,
chosen for its lowest loss. The training plots anticipate the previous results.
About the MFCCs, Figure 5.5, the CNN plot tends to the average value of 0.5
and the LSTM appears to collapse to one value close to 0.4, another reason
why it is achieving a worse result.

On the other hand, Figure 5.6 shows the behaviour of the VGGish training
where the LSTM is capable of learning the values across the diagonal considerable
better than the CNN.
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(a) CNN (b) LSTM

Figure 5.5: Training plots of the MFCC with dominance.

(a) CNN (b) LSTM

Figure 5.6: Training plots of the VGGish with dominance.

5.3 Summary of Results and Discussion

This summary aims to present the results for each emotion label comparing
both networks and both features in a more synthesized way, together with a
discussion about them.
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Table 5.2: Results on Valence.

Network Feature Emotion MSE MAE

CNN MFCC val 0.0153104 0.0976583
LSTM MFCC val 0.0153486 0.0965546
CNN VGGish val 0.0142859 0.0918656
LSTM VGGish val 0.0141277 0.0919397

Table 5.3: Results on Arousal.

Network Feature Emotion MSE MAE

CNN MFCC aro 0.0095351 0.0761291
LSTM MFCC aro 0.0098482 0.0773439
CNN VGGish aro 0.0090731 0.0738040
LSTM VGGish aro 0.0089451 0.0733317

Table 5.4: Results on Dominance.

Network Feature Emotion MSE MAE

CNN MFCC dom 0.0084275 0.0693948
LSTM MFCC dom 0.0084411 0.0773439
CNN VGGish dom 0.0078996 0.0668653
LSTM VGGish dom 0.0076934 0.0662203

Regarding the results on the MFCCs, the MSE is lower when employing
the CNN with the three emotion labels. The interpretation given is that, since
the MFCCs demand a high pre-processing, the initial temporal information
that the audio posses can be lost, provoking a poor performance on the LSTM.
These features are evenly spaced to respect perception which resemble more
the image concept and therefore contributes to the CNN to achieve a lower
loss.

On the other hand, the pre-processing executed on the VGGish is not as
complex as the MFCCs one, but as they belong to a pre-trained model on a
large dataset of audio -the Youtube-8M Dataset-, their temporal relationship
was not lost but rather enhanced, resulting in a better performance on LSTM.
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The previous analysis was carried out with the MSE results. However,
when concerning the MAE, it measures more accurately the valence as its
distribution occupies a larger range in the space, providing the data with more
outliers. As explained previously, with this type of data distribution the MAE
performs a more accurate measure, and with more dense distributions, like
the arousal and dominance one, the MSE performs better because the square
difference punishes the outliers.

Based on these results and interpretations, the selected configuration to
perform the final test is the VGGish features and the LSTM network.

The plots of Figure 5.7 show the results performed on the test set, 1600
songs. As mentioned before, the closer the points are to the red diagonal, the
more accurate the prediction is. On the test set, they tend to the average value,
which could be solved by increasing the number of data inputs or refining the
architecture model.

Figure 5.7: Plots ran on the test set, 1600 songs, with the configuration with
the lowest loss, 15 seconds of VGGish frames on LSTM.

Below, some examples of the predicted VAD are represented in time series
with their respective wave plot of the audio. A link to the song on YouTube
is provided when clicking on the title of each song, together with the ground
truth of the VAD labels.

It can be observed that abrupt changes in the wave plot, which correspond
to changes in the listening experience, are predicted as peaks in the VAD space
for each song. Additionally, it can appreciate the valence bias of the dataset
towards positive values on these test songs.
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(a) VAD real values: 0.637, 0.559, 0.587 (b) VAD real values: 0.841, 0.731, 0.784

Figure 5.8: (a) Memorial - Michael Nyman, (b) The Tower That Ate People -
Peter Gabriel.

(a) VAD real values: 0.762, 0.309, 0.464 (b) VAD real values: 0.659, 0.429, 0.494

Figure 5.9: (a) Poisoned Chalice - Hans Zimmer, (b) Taxi (Ave Maria) - John
Murphy.

https://www.youtube.com/watch?v=-FWLwH4Sdqs
https://www.youtube.com/watch?v=h7SdYvN__vs&ab_channel=TheFixx-TemaTheFixx-Tema
https://www.youtube.com/watch?v=h7SdYvN__vs&ab_channel=TheFixx-TemaTheFixx-Tema
https://www.youtube.com/watch?v=97GEFrrpTtQ&ab_channel=stsnutstsnut
https://www.youtube.com/watch?v=eNPZMcFfSnc&ab_channel=JohnMurphy-TemaJohnMurphy-Tema
https://www.youtube.com/watch?v=eNPZMcFfSnc&ab_channel=JohnMurphy-TemaJohnMurphy-Tema
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(a) VAD real values: 0.531, 0.583, 0.519 (b) VAD real values: 0.560, 0.502, 0.532

Figure 5.10: (a) Just Another Victim - Helmet House Of Pain, (b) Wunschkind
- Oomph!

In Appendix A, the same results are plotted with a fixed range of [-1, 1]
to better appreciate the bias of the valence towards the positive values, and to
compare the six examples with fixed axes values.

https://www.youtube.com/watch?v=M0TVU6mI12I&ab_channel=Helmut-TemaHelmut-Tema
https://www.youtube.com/watch?v=zw0Fdo58dZ4&ab_channel=OOMPH%21OOMPH%21
https://www.youtube.com/watch?v=zw0Fdo58dZ4&ab_channel=OOMPH%21OOMPH%21
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Chapter 6

Conclusion and Future work

6.1 Conclusion

The goal of this project was to address the stated research question of
understanding the amount of emotional information the soundtracks of the
movies carry. For that purpose a database of 6757 soundtracks with their
correspondent valence, arousal and dominance was created in order to train
a model which could learn to predict these labels.

For that aim, two different models, CNN and LSTM, were tested with two
different features, MFCCs and VGGish, to understand which configuration
achieved a lower loss when predicting the VAD labels.

After performing several experiments, the conclusion obtained was that
the VGGish features trained on an LSTM outperformed compared to the other
four combinations, proving the initial hypothesis.

The gained insights are that time dependency matters when analyzing
audio. The relation between the number of trainable parameters of the model
and the number of data inputs is crucial to achieve the lowest possible loss.
And features perform better when they are trained on more data -VGGish-
rather than subjecting them to a high preprocessing -MFCCs-.
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6.2 Future work

In this section, some of the possible lines that could be addressed in the future
are presented.

Firstly, according to the dataset created, a good approach will be to filter
the mood weights retrieved from Last.fm to keep the ones that transmit more
precise emotions. It could be done by filtering them with the WordNet-Affect
dataset, a set of words that refer just to emotions.

Additionally, finding a way of matching each soundtrack with its movie
would be a very interesting future line. A database of those characteristics will
contribute to understanding the emotional overall impact of the soundtrack in
the whole movie, which is the ultimate purpose of this project.

Regarding the network model, it will be interesting to experiment with
other architecture such as BiLSTM or Transformers, after proving that the
LSTM performs way better than the CNN, and therefore, that the time
dependency is relevant.

Lastly, different audio features could be tested as inputs. For example,
another pre-trained model, openl3 [42], from which audio embeddings can
also be extracted and compared with the VGGish to analyze which one extracts
more relevant information to later predict the VAD labels.
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Appendix A

Results in more detail

Figure A.1: VAD true labels: [0.274, 0.117, 0.175].
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Figure A.2: VAD true labels: [0.682, 0.461, 0.567].

Figure A.3: VAD true labels: [0.524, -0.381, -0.072].
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Figure A.4: VAD true labels: [0.318, -0.142, -0.011].

Figure A.5: VAD true labels: [0.063, 0.165, 0.037].
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Figure A.6: VAD true labels: [0.120, 0.005, 0.065].
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