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Abstract

The field of medicine is always evolving and one step in this evolution is the use of decision
support systems like artificial intelligence. These systems open the possibility to minimize
human error in diagnostics as practitioners can use objective measurements and analysis to
assist with the diagnosis. In this study the focus has been to explore the possibility of using
deep learning models to classify stroke, vestibular neuritis and control groups based on data
from a video head impulse test (vHIT). This was done by pre-processing data from vHIT into
features that could be used as input to an artificial neural network. Three different models
were designed, where the first two used mean motion data describing the motion of the head
and eyes and their standard deviations, and the last model used extracted parameters. The
models were trained from vHIT-data from 76 control cases, 37 vestibular neuritis cases and
46 stroke cases. To get a better grasp of the differences between the groups, a comparison
was made between the parameters and the mean curves. The resulting models performed
to a varying degree with the first model correctly classified 77.8 % of the control cases,
55.6 % of the stroke cases and 80 % of the vestibular neuritis cases. The second model
correctly classified 100 % of the control cases, 11.1 % of the stroke cases and 80.0 % of the
vestibular neuritis cases. Lastly the third model correctly classified 77.8 % of the control
cases, 22.2 % of the stroke cases and 100 % of the vestibular neuritis cases. The results are
still insufficient when it comes to clinical use, as the stroke classification requires a higher
sensitivity. This means that the cases are correctly classified and gets the urgent care they
need. However, with more data and research, these methods could improve further and then
provide a valuable service as decision support systems.
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1 Introduction
In the field of medicine today technology acts as a tool for doctors and nurses to diagnose
patients. This can be a magnetic resonance imaging-scan (MRI-scan) that shows an apparent
stroke lesion which otherwise would have been impossible to notice. Technology continues to
improve, and as consequence, new ways for it to provide a diagnosis. One of these new ways
is AI decision support for diagnosis. There have been multiple studies applying AI-models
to try to diagnose different conditions, such as depression detection, and vestibular neuritis
(VN) diagnosis using head impulse test data. [1, 2, 3]. The VN studies handles classification
between VN and control, but another diagnosis that can have similar symptoms is stroke.
This gives a need for models that could differentiate between these groups.

1.1 Acute Vestibular syndrome – causes and current treatment and
diagnosis

Vestibular syndromes can have different causes and different severities. Harmless and treat-
able dizziness can be caused by inflammations in the ear canal (VN) as compared to brain
damage caused by inadequate blood flow to brain cells (stroke) can cause more diffuse
vestibular symptoms and needs acute care to avoid severe brain damage. In a study per-
formed by Ljunggren et. al. from 2017, reviewing records from the emergency department at
the University Hospital of Umeå, showed that 2.1 % of patients had dizziness symptoms [4].
Also this study showed that around 4.8 % of these were due to cerebrovascular causes, where
2.8 % percent had specifically a stroke. Some of these cases of dizziness can be summarized
under the generic term Acute Vestibular Syndromes which is characterized by acute vertigo
and dizziness that lasts for more than 24 hours [5]. Two common underlying causes for this
are VN and stroke, which means that there is a need for accurate methods that differentiate
between these two, as they require drastically different treatments. This is usually done with
clinical tests such as the Caloric reflex test, MRI-scan, and the HINTS-test (head impulse,
nystagmus, and test of skew) [5]. These methods have a high sensitivity when it comes
to detecting both VN and strokes with HINTS-test and MRI-scan having around 80-90 %
sensitivity regarding VN and PCS(posterior circulation stroke) [5, 6]. These methods are
not perfect as the MRI-scans can be costly and HINTS-test need an experienced examiner.
Both MRI-scans and Caloric reflex test are basic diagnostic tests for strokes and VN [7, 8].

There is another method used today, the video head impulse test (vHIT), which is a modified
version of the head impulse test (HIT). Each test works by delivering fast unpredictable head
rotations in the direction of the 3 vestibular canals on each side of the head, at the same
time as the patient keeps its gaze at a fixed point. This in turn activates the vestibular
ocular reflex which counteract the fast head movement with an opposite movement of the
eyes. This movement is tracked by an examiner in the case of the HIT, but in the vHIT case
the movement is tracked by video and further analysis can be done after the patient visit.
A visualization of the vestibular canals can be seen in Figure 1.
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Figure 1 – An illustration of the vestibular canals in the inner ear [9]. This work
by Cenveo is licensed under a Creative Commons Attribution 3.0 United States (http:
//creativecommons.org/licenses/by/3.0/us/)

The biggest part of the data-analysis is calculating the gain of the different vestibular canals,
which is a parameter that compares the head movement to the eye movement. These values
are then indicative if the patient has normal function in their separate vestibular canals and
are labelled as the vestibulo-ocular reflex gain (VOR-gain). Regarding VN and stroke, it has
been shown that the gain can be very indicative if a patient has VN as shown by Guler et.
al. [6]. For stroke it is more complex as their gain can be quite like a person with normal
vestibular function, but by considering gain asymmetry some distinction can be made as
stated in Guler et. al. To further improve the results, Guler et. al [6]. suggest including
saccade analysis to capture the more complex patterns that might occur in both VN and
strokes.

1.2 Artificial intelligence for medical applications
With the advancement of artificial intelligence methods, such as machine learning and deep
learning, the search for applications has increased drastically. In the field of medicine studies
have been performed to test if these methods can be used to help with data analysis and
with diagnosis. This has been done from typical clinical parameters from already established
tests as well as using data such as head and eye movement.

One of these studies were performed by Kacem et. al. in 2018 and it studied the use of head
movements to detect if a patient suffered from depression [3]. It used encoded facial and
head movement to classify severity of depression into three different levels, remitted, mildly
depressed and severely depressed. It managed to reach and average accuracy of 71 % when
using both facial and head movement, and even 84 % accuracy when differentiating between
mild and severe depression. The study shows how using an already know fact, such as that
expressiveness correlates with depression, can be applied to a machine learning models, in
this case a support vector machine model, to extract information that would require further
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testing.

Another study done by Landry et. al. focused on concussion and the relation between eye
movement and the diagnosis [10]. They based their method around saccade parameters and
chose the ones who were significantly different between the control group and the concussion
and post-concussion syndrome (PCS) groups and applied these parameters to an artificial
neural network (ANN) for classification. With these parameters they reached 67 % accuracy
between the control group and the concussion and 72 % accuracy between the control and
the PCS group. They did not manage do differentiate between the concussion group and
the PCS group, which shows that similar cases can be hard to differentiate between similar
cases.

Finally, Nguyen et. al. have done two studies regarding using vHIT-data to build clinical
decision support systems [1, 2]. The initial system used covert catch-up saccade data and the
positional gain data for the decision support application and the second study also considered
artifacts present in the data. These studies showed a very practical application which tried
to match a clinician’s reasoning while performing the analysis.
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1.3 Aim
As previous studies have shown there has been multiple ideas with either facial and head
movement or eye movement. The aim of this study was to further analyze the ability to
differentiate between VN, stroke and healthy controls based on head- and eye position data
collected during a vHIT, including all six vertebral canals. This study will be done by
performing data analysis on the extracted data looking at VOR-gain, saccades, and other
parameters of interest. It will be further done by creating a deep learning model based on
the data from the extracted data to be able to predict a diagnosis for an unknown test
person. Our goal was to try out three different AI models, a model based on time series data
from all six canals, one based on time series data from lateral canals and finally one based
on parameters describing the head and eye movement. The hypothesis was that the models
could reach a specificity and sensitivity of 80 %, similar level to the results in the studies
performed by Calic and Guler [5, 6].
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2 Theory
2.1 Artificial Neural Networks
2.1.1 Architecture
An artificial neural network (ANN) is a way to emulate the power of the brain using a
computer. This is done using artificial neurons which act similarly fashion as our own
neurons by taking input and transforming it to a specific output. These neurons are built
up in layers where there is an input and output layer, and then hidden layers in between
these, as illustrated in an example in Figure 2.

Input Layer � �� Hidden Layer � �³ Hidden Layer � �� Output Layer � �²

Figure 2 – An example of an architecture of an artificial neural network with 2 hidden layers.

What connects the different layers are the numerical weights that indicate the importance
of each node and they in turn work in combination with a possible bias as the input for the
activation function of a node. These activation functions will be the final output of the node
which can then be combined with weights for the next layer. This calculation is visualized
in Figure 3.

Figure 3 – An example of the operations performed by each node in each layer, where xi is
the input from each node, ωi is the weights assigned to each node, b is the possible bias and
Φ is the activation function which in turn gives the output y.

The activation functions will act as the nonlinear part of the network giving it the capability
to handle nonlinear problems.
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2.1.2 Activation functions
Throughout the evolution of neural networks, different types of activation functions have
been used. The three most popular ones have been the Sigmoid function, the tanh function
and the ReLU function [11]. The Sigmoid function is defined as

f(x) =
1

1 + e−x
,

and was widely used in the early 1990’s as an activation function that maps input in the range
0 to 1 and didn’t get replaced until the hyperbolic tangent function came into popularity.
The tanh function turned out to make models easier to train and gave better predictive
performances and it maps values within the range of -1 to 1. These functions are shown in
Figure 4.
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Figure 4 – The activation functions Sigmoid and tanh.

Both these functions have their limitations as they saturate, which means that large values
will output 1 and small values either output 0 or -1 depending on the function. Both
functions are sensitive close to their midpoint of their input and outside of that area the
sensitivity lessens quickly. Both this saturation and lack of sensitivity made it hard for
learning algorithms to change the weights to improve the performance of the trained neural
network. A result of hardware improvements allowed for deeper networks. This showed
limitations in sigmoid and tanh such as not being able to train the deeper networks. This
is due to a problem known as the vanishing gradient problem and was related to the use of
these non-linear activation functions [11].

These issues continue into the 2000’s, as the need for non-linearity for complex problem
was counteracted by the difficulty for deep models to learn with the non-linear activation
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functions. This was only solved in the early 2010’s with the use of the Rectified linear unit
(ReLU) activation function which is defined as

f(x) = max(0, x).

This piecewise linear function has become the standard for ANNs as it handles the saturation
and sensitivity issues from both the Sigmoid and tanh functions, as well as dealing with the
vanishing gradient problem. In Figure 5 the ReLU function is shown.
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Figure 5 – The activation function rectified linear unit.

The ReLU activation function to this day keeps being the standard for ANN’s as it handles
the above problems and simplifies operations as it only requires a comparison.

For classification problems, the last layer’s activation function is often chosen to be the
softmax function. This is due to the output can be interpreted as probability distribution
and such give an indication of how certain the neural network is with the classification [12].

2.1.3 Loss function and optimizing
With the network defined with its weights, activation functions and biases it still need to
be trained to solve different problems. This training is an optimization problem where the
network works as a function f(x), which takes input x and then outputs y, which then can
be compared against already derived outputs y. These comparisons are done in different
way, but it is defined as a loss function which is minimized during training.

In regression problems the mean square error is a possible loss function, but in more complex
problems like categorical labelling more complex methods are needed. One way of doing this
is by using cross-entropy. Cross-entropy comes from the field of information theory and is
used to estimate the difference between an estimated and predicted possibility distribution.
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This can then be used as a loss function as the difference between the predicted possibility
distribution and the training dataset’s possibility distribution can be minimized [11].

With the loss function defined, the training of the neural network becomes an optimization
problem and therefore requires an optimizer. One optimizer strategy is using the stochastic
gradient descent algorithm. The algorithm estimates the error gradient for the current state
of the neural network using the training dataset. It then uses an error backpropagation
algorithm to update the weights in the model in accordance with the step size, or as it is
known in ANN, the learning rate. There are more complex versions of the stochastic gradient
descent algorithm that can adapt the learning rate and one of these is the Adam algorithm
[11, 13].

2.2 Evaluation metrics
To evaluate neural network models, multiple metrics are used to capture different features
of the network. These metrics are based on the prediction made by the model compared
against the actual classification of the data. In a multiclass classification problem, each of
these comparisons are made for each class, which divides the predictions into four cases.

• True Positive (TP):

The number of correct predictions of the specific class.

• False Positive (FP):

The number of predictions that incorrectly classifies as the specific class.

• False Negative (FN):

The number of predictions that classifies the specific class into another class.

• True Negative (TN):

The number of predictions that correctly classifies another class into another class.

From these four cases the metrics precision, sensitivity, specificity, accuracy and the F-score.
The precision is calculated as following for each of the classes,

Precision =
TP

TP + FP
.

The sensitivity is calculated as follows,

Sensitivity =
TP

TP + FN
.

The specificity is calculated as follows,

Specificity =
TN

TN + FP

In multiclass classification problems the accuracy can be somewhat misleading, but it can
give a measurement of how likely the network model places an individual correctly without
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considering the difference between the classes. The accuracy can be calculated as follows,

Accuracy =

∑
i TPi∑

i TPi +
∑

i TNi +
∑

i FPi +
∑

i FNi

.

The last evaluation metric is the F-score, also called the F1 − score, which balances the
Sensitivity and the Precision metrics to give a more representative score for the overall
performance of the network model

F − score = 2 · Sensitivity · Precision
Sensitivity + Precision

.
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3 Method
3.1 Overview
With the goal being to both produce a functional neural network based around vHIT and
analyzing the data, the project was split into 2 separate parts. The first part focused on
understanding the data and processing it so it could be used as an input dataset to the
neural networks in the second part of the project that focus on training and optimization of
three different types of neural networks to the stated problem.

3.2 Participants
The participants that took part of this study were part of a larger project at University
Hospital of Umeå. The VN group were recruited in the emergency room for an earlier acute
vestibular syndrome study and their vHIT-results and recordings were saved for research
purposes. The VN diagnosis was confirmed with caloric reflex test. The stroke patients
were recruited at the stroke ward and emergency room at Umeå University Hospital and
their vHIT-results were saved for future research. The control group were recruited from
the hospital staff and relatives to inpatients and their vHIT-results were saved for future
research. Informed consent was attained from all participants. The ethical Review Board of
the Umeå University approved the study (2014/284-31M (2019-02881)), and it was performed
in accordance with guidelines of the Declaration of Helsinki. The demographic data for the
participants are presented in Table 1

Table 1 – A table summarizing the participants in the study with total amount, sex, and
mean age with standard deviation.

Control Stroke VN
Number of participants 91 73 54

Women/Men 44/47 29/44 25/29
Age 55(18) 72 (14) 68(12)

3.3 Data pre-processing
The vHIT-data was acquired from University Hospital of Umeå using the VHIT Ulmer
(SYNAPSYS SA, France). The dataset consisted of xml-files containing the raw data from
the vHIT for each of the participants. It consisted of the positional time series for each of
the eyes and the head, as well as parameters of interest for the impulses performed in the
head impulse test. The parameters extracted for further analysis were the VOR-gain and the
Early Saccade Index (ESI), where the ESI is an index indicating how much of the impulse
was affected by a saccade.

3.3.1 Filtering
Each of the individual’s data was extracted from the VHIT Ulmer before the pre-processing
was performed in Python 3.8.5. As an initial filter for the dataset, all the individuals with
missing data for one of the vertebral canals were removed. This was done to create a
more homogeneous dataset for the neural networks and to simplify the process. From these
remaining individuals further filtering was done by checking that the positional time series
was within expected limits. The positional series have the unit degrees, and the filter was
set to filter out any impulses that had time series containing values larger than 500 as they

Hugo Johansson (hujo0004@student.umu.se) 10 November 19, 2021



Assessment of acute vestibular syndrome using deep learning 3 Method

are just errors. The last filtering step were to discard the impulse if the head moved less
than 2 degrees. With the filtering process completed this left the dataset with 37 VN cases,
46 stroke cases and 76 control cases. This meant that 17 VN cases, 27 stroke cases and 15
control cases were discarded in the filtering process.

With the filtering of individuals and impulses done comes the data processing, which con-
sisted of averaging the positional series for all the vestibular canals and as well averaging the
parameters of interest. For the positional series this was done for the head by averaging all
the impulses for a specific channel and for the eyes an initial average of the right and the left
eye was done before taking the average for impulses. As there are 6 vertebral canals this in
turn results in 12 averaged positional series where 6 represent the head and 6 represent the
eyes. During the averaging process there is a loss of variation for the time series. To capture
the variations that occur during singular impulses, a standard deviation was calculated for
the averaged series. This resulted in 12 standard deviation series.

The same averaging process was done for the parameters VOR-gain, but for the EIS param-
eter some extra operations were needed. When the no saccade was noticed by the software
it sets the value to N/A, which meant that just averaging would cause problems. To handle
this, it was decided to replace each N/A with 0 in the dataset, to indicate that no saccade
was present and such decreasing the average. With these parameters averaged and extracted
from the software, an attempt to capture variations in eye positional time series in a param-
eter was done. It was done by taking an average of the standard deviation series for the eye
movement, and such having a third parameter to analyze for each vertebral canal. This last
parameter was labelled VAR, as it correlates to the variance and to have a similar label as
the other parameters.

3.3.2 Group comparison
For further analysis of the network’s ability to classify the different participants, MATLAB
R2021b (MathWorks,USA) was used for group comparison. Firstly, the group means of the
parameters were compared, to see if any significant differences could be observed between
the VN group, stroke group and control group. This was done by performing a one-way
ANOVA test, with α = 0.05, on each of the parameters in each channel, followed by a
pairwise posthoc using the Tukey’s honestly significant difference criterion.

To get a more visual comparison of the position vectors for both the eyes and the head, an
average was taken between all participants for each of the groups resulting in 6 mean curves
for the head and 6 mean curves for the eyes. For each of the vestibular canals a plot was
produced containing the mean curves for head and eye movement for all the groups. In these
plots the standard deviation was added as a shaded area for each of the groups.

3.3.3 Normalization
In the vHIT the head’s movement will for most cases be larger than the eyes movement
which caused a small issue when using these position vectors as input for a neural network.
This was due to when the weights in the networks were defined, some feature with a larger
scale might get values higher than others without any specific reason. To counter this, each
vector was normalized based on the largest value in each channel for all participants which
resulted in values being within the range of -1 to 1.
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3.4 Parameter optimization using Tensorflow
For the construction of the neural networks in this project Tensorflow 2.6.0 (Google Brain
Team, USA) was used and specifically the sequential Keras model [12, 14]. Tensorflow is
an open-source framework developed by Google researchers to run machine learning, deep
learning and more. It is used in wide range of fields, such as healthcare, language filters,
fraud detection and many more [15]. One other reason for using this was that the official
documentation is thorough with a lot of examples making the implementation easier. There
is also a lot of unofficial tutorials online which give further examples.

Tensorflow allowed to use a hypertuner which makes it simpler to test the effect of different
hyperparameters such as number of hidden layers, learning rate, and number of nodes in
each layer [16]. It also has an interaction with CUDA and cuDNN which allowed the use of
a graphic card for the training process, which should decrease the training time compared
to running on a CPU.
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4 Implementation
4.1 Networks
Networks with three different complexities were created for the project. The first network
was set up to maximize the amount of data and therefore used the movement data from the
vHIT, including all the different vertebral canals, and their standard deviations vectors. The
second network was simplified by focusing on lateral channels in hope to make it easier for
the network to learn, while still capturing the differences that might occur on the left and
right side. The input was as in the first network the movement data from the vHIT, but
it only uses the lateral channels movement data and its standard deviations vectors. The
third and last network was even simpler by using the parameters VOR-gain, ESI and VAR
as input for the different vestibular canals. For the rest of the report the first network will be
labelled as the complex design-all network, the second network as the complex design-lateral
network and the last network as the parameter design network.

4.1.1 Data pre-processing
All networks use a similar structure for the input, and it only differs in the type of data stored
in it. The different data used were restructured into a 3d matrix, where one of the dimensions
represent the participant, the second dimension either specifies the vertebral canal for the
parameter network or the specific feature in the movement data networks. These features in
the more complex networks were either a head movement vector, an eye movement vector,
or a standard deviation vector for either of the movements.

For the complex design-all network there were 24 features, the head movements for the
6 channels, the eye movement for the 6 channel and then the 12 vectors representing the
standard deviation for each of the movement vectors. An illustration of the input can be
seen in Figure 6.

Figure 6 – An example of the input to the complex design-all.

The complex design-lateral network has 8 features, the head movements of the 2 lateral
channels, the eye movement for the 2 lateral channels and lastly the 4 vectors representing
the standard deviation for each of the movement vectors. An illustration of the input can
be seen in Figure 7.
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Figure 7 – An example of the input to the complex design-lateral network.

The parameter design network has in the 3d matrix one dimension that represent the specific
channel and then for each channel the 3 parameters, VOR-gain, ESI and VAR. An illustration
of the input can be seen in Figure 8.

Figure 8 – An example of the input to the parameter design network.

With this done the different groups were combined into one matrix and a label vector was
produced containing the label for each participant in the main matrix. From these matrices
80% of the values were taken as training data and the rest was reserved as a test dataset for
after the training. The labelling was done with one hot encoding which in turn means that
the output of the network is a vector in R3 where the first node correlates to the control
group, the second node to the stroke group and the last node correlates to the VN group.

4.1.2 Architecture
The networks defined above were built using a Keras sequential model, it is built layer by
layer and has multiple different choices of layers. Fortunately, with the hypertuner these
different combinations can easily be tested both when it comes to layer specific parameters
and to the number of layers and type. The main layer that is the focus on in these networks
were the Dense layer type which works as described in the 2.1.1 and the activation function
was chosen to be ReLU due to the reasons discussed in 2.1.3. The initial layer takes in the
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input in its 2d format and then is followed by a flatten functions that transforms the matrix
to a 1d vector. The Hidden layers consists of multiple dense layers and the number of nodes
for each of these and the input layer were optimized using the hypertuner. The output layer
was set to three nodes to capture the three class classification problem and used the softmax
activation function to give a probability distribution as its output.

For the tuning process the number of layers was limited to be between 2 to 5 layers to
not create a too complex network for our limited dataset. The number of nodes for the
hidden layers and the input layers were limited to the range 5-19 during the tuning process.
In the range the step size was set to 2, which meant that only half of the values in the
range was. In a similar fashion the learning rate was limited to be between 1e-3 and 1e-4.
To simplify the tuning the optimizer was locked to the popular Adam optimizer and finally
the loss function was set to be categorical cross entropy. The resulting network from the
hypertuning was then trained using the training data and tested against the test data.
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5 Results
The results are split up into five sections, the first illustrating examples of time series data
for the different groups, the second being a group comparison, and the last three containing
the performance results of the networks.

5.1 Data example
An example of the positional series for the eyes and the head for one participant from each
of the groups can be seen in Figure 9a, 9b and 9c.
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(a) An example of motion data for one VN par-
ticipant and with the VOR-gain 0.22.
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(b) An example of motion data for one stroke
participant and with the VOR-gain 0.82.
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(c) An example of motion data for one control
participant and with the VOR-gain 0.66.

Figure 9 – Examples of motion data for a VN participant (upper left), a stroke participant
(upper right) and a control participant (bottom).

Further an example of standard deviation data for one participant from each of the groups
can be seen in the Figures 10a, 10b and 10c.

Hugo Johansson (hujo0004@student.umu.se) 16 November 19, 2021



Assessment of acute vestibular syndrome using deep learning 5 Results

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

t [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
e
g
re

e
s
 [
°]

head-vn

eye-vn

(a) An example of standard deviation data for
one VN subject and with the VOR-gain 0.22.
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(b) An example of standard deviation data for
one stroke subject and with the VOR-gain 0.82.
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(c) An example of standard deviation data for
one control subject and with the VOR-gain 0.66.

Figure 10 – Examples of standard deviation data for a VN participant (upper left), a stroke
participant (upper right) and a control participant (bottom).

5.2 Group comparison
This section is divided into two parts. The first part is a comparison between the parameters,
and the second part is a comparison of the eye movement between the different canals

5.2.1 Group differences in gain and saccade parameters
The parameter comparison in Table 2 illustrates the mean of the different parameters for the
left vertebral canals. For the left posterior canal, the VOR-gain was significantly different for
the control group compared to both stroke and VN, while no differences were found between
the Stroke and VN. For both the ESI and the VAR (for the same canal) no difference could
be found, even though the ANOVA implied that there might be for the VAR parameter. This
is due to the Tukey-Kramer pairwise comparison couldn’t show any significant difference.

For the left anterior vertebral canal, the VOR-gain for the VN group was significantly differ-
ent from both the control group and the stroke group. No difference could be found between
stroke and control. For the ESI parameter, the VN group was significantly different from the
two other groups but there was no difference between the control and stroke groups. Lastly,
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the VAR parameter was significantly different for the VN group compared to the other two,
while no difference could be found between the control and stroke groups.

For the left lateral vertebral canal, there was a significant difference in the VOR-gain between
all groups, with the difference between the control group and the stroke group having a p-
value close to being insignificant. For the ESI parameter, the VN group was significantly
different from the two other groups and no difference could be found between the control
and stroke groups. Lastly, the VAR parameter was significantly different for the VN group
compared to the other two, while no difference could be found between the control and stroke
groups.

Table 2 – The parameters VOR-gain, Early Saccade Index (ESI) and the Variance mean
parameter (VAR) for the left vertebral canals for the groups Control (Ctrl), Stroke (Strk),
and Vestibular Neuritis (VN ). The ANOVA column shows the p value for the parameter test
and the Tukey-Kramer column shows any significant differences that might occur.

Ctrl Strk VN ANOVA
(p value)

Tukey-Kramer
(p value)

Left
Posterior

VOR-gain 0.74(15) 0.65(18) 0.62(17) 0.0004 Ctrl 6= V N(0.0001)
Ctrl 6= Strk(0.0089)

ESI 1.10(3.21) 1.62(3.49) 1.56(4.06) 0.6531
VAR 0.50(34) 0.65(37) 0.64(23) 0.0297

Left
Anterior

VOR-gain 0.81(16) 0.80(17) 0.38(20) 0.0000 Ctrl 6= V N(0.0000)
Strk 6= V N(0.0000)

ESI 0.60(2.40) 0.41(1.33) 5.42(4.27) 0.0000 Ctrl 6= V N(0.0000)
Strk 6= V N(0.0000)

VAR 0.45(21) 0.50(26) 0.80(36) 0.0000 Ctrl 6= V N(0.0000)
Strk 6= V N(0.0000)

Left
Lateral

VOR-gain 0.80(13) 0.68(22) 0.25(36) 0.0000
Ctrl 6= V N(0.0000)
Strk 6= V N(0.0000)
Ctrl 6= Strk(0.0150)

ESI 0.62(1.97) 0.93(2.58) 6.78(5.26) 0.0000 Ctrl 6= V N(0.0000)
Strk 6= V N(0.0000)

VAR 0.41(27) 0.59(38) 1.27(69) 0.0000 Ctrl 6= V N(0.0000)
Strk 6= V N(0.0000)

The parameter comparison in Table 3 illustrates the means of the different parameters for
the right vertebral canals. For the right posterior vertebral canal, the VOR-gain for the
VN group was significantly different from the other groups and that no difference could be
found between the control and stroke groups. For the ESI, the stroke and VN group was
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significantly different from each other, while no difference could be seen between control and
the other groups. For the VAR, both stroke and control were significantly different from
VN, but no difference could be found between stroke and control.

For the right anterior vertebral canal, the VOR-gain for the VN group was significantly
different between from both the stroke and control group, while no difference was found
between stroke and control. For the ESI, VN was significantly different from the other
groups and no difference could be found between the control and stroke groups. For the
VAR a significant difference was found between control and stroke group, while no difference
could be found between VN and the other groups.

Lastly, the right lateral vertebral canal showed that the VOR-gain was significantly different
for the VN group compared to the other groups. There was no significant difference between
the control and stroke group. The ESI was found to be significantly different between VN
and the other groups, while no difference could be found between control and stroke. The
VAR was found to be significantly different for VN and stroke, but no difference could be
found between stroke and the others.

Table 3 – The parameters VOR-gain, Early Saccade Index (ESI) and the Variance mean
parameter (VAR) for the right vertebral canals for the groups Control (Ctrl), Stroke (Strk),
and Vestibular Neuritis (VN ). The ANOVA column shows the p value for the parameter test
and the Tukey-Kramer column shows any significant differences that might occur.

Ctrl Strk VN ANOVA
(p value)

Tukey-Kramer
(p value)

Right
Posterior

VOR-gain 0.75(13) 0.66(15) 0.60(17) 0.0000 Ctrl 6= V N(0.0000)
Strk 6= V N(0.0022)

ESI 0.94(2.96) 1.29(2.80) 2.91(3.87) 0.0075 Strk 6= V N(0.0049)

VAR 0.49(23) 0.52(22) 0.66(30) 0.0019 Ctrl 6= V N(0.0260)
Strk 6= V N(0.0010)

Right
Anterior

VOR-gain 0.82(16) 0.77(20) 0.50(20) 0.0000 Ctrl 6= V N(0.0000)
Strk 6= V N(0.0000)

ESI 0.66(1.67) 0.79(2.15) 4.04(4.23) 0.0000 Ctrl 6= V N(0.0000)
Strk 6= V N(0.0000)

VAR 0.48(29) 0.63(47) 0.60(17) 0.0331 Ctrl 6= Strk(0.0395)
Right
Lateral

VOR-gain 0.79(14) 0.72(22) 0.43(28) 0.0000 Ctrl 6= V N(0.0000)
Strk 6= V N(0.0000)

ESI 0.29(1.28) 1.25(3.76) 3.11(4.90) 0.0001 Ctrl 6= V N(0.0245)
Strk 6= V N(0.0000)

VAR 0.48(48) 0.71(61) 0.97(61) 0.0001 Ctrl 6= V N(0.0000)
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5.2.2 Eye movement
In Figure 11 the mean curves for the eye´s motion are illustrated for each of the groups for
the left canals, as well as a shaded area that represents the standard deviation for the mean
curves. In Figure 11a the control and stroke group are closely related for the eye motion,
while the eye motion for VN clearly differs for the left posterior canal. A similar pattern
can be seen in Figure 11b, but here VN only differs slightly from the others on eye motion
for the left anterior canal. Finally in Figure 11c, the eye motion mean curves for VN differ
greatly from the other groups.

(a) (b)

(c)

Figure 11 – Eye motion during the vHIT: The figures illustrate the mean eye motion
for the different groups as well as the standard deviation for each of the groups as shaded
areas. The red circle dotted lines and shaded area illustrate the stroke group, the blue triangle
dotted lines and shaded area illustrate the VN group, and the green square dotted lines and
shaded area illustrate the control group. Figure 11a illustrates the left posterior vertebral
canal, Figure 11b illustrates the left anterior vertebral canal and Figure 11c illustrates the
left lateral vertebral canal.
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In Figure 12, the mean curves for the eye´s motion are illustrated for each of the groups for
the right canals, as well as a shaded area that represents the standard deviation for the mean
curves. In Figure 12a the control and stroke group are closely related for the eye motion,
while the eye motion for VN slightly differs for the right posterior canal. A similar pattern
can be seen in Figure 12b, but here VN only differs slightly from the others on eye motion
for the right anterior canal. Finally in Figure 12c the eye motion mean curves for VN differ
from the other groups.

(a) (b)

(c)

Figure 12 – Eye motion during the vHIT: The figures illustrate the mean eye motion
for the different groups as well as the standard deviation for each of the groups as shaded
areas. The red circle dotted lines and shaded area illustrate the stroke group, the blue triangle
dotted lines and shaded area illustrate the VN group, and the green square dotted lines and
shaded area illustrate the control group. Figure 12a illustrates the right posterior vertebral
canal, Figure 12b illustrates the right anterior vertebral canal and Figure 12c illustrates the
right lateral vertebral canal.
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5.3 Network 1
The hypertuning process resulted in the network that follows the structure as described in
Table 4.

Table 4

Layers:
Nodes Activation function

Input Layer: Dense 17 ReLU
Flatten Layer:

Hidden Layer 1: Dense 19 ReLU
Hidden Layer 2: Dense 19 ReLU
Output Layer: Dense 3 softmax

Compiling
Learning rate: 5.9 e-3
Loss function: Categorical cross entropy
Optimizer: Adam

This neural network model was tested on the test dataset and this resulted in the confusion
chart illustrated in Figure 13. The network performs with 77.8 % accuracy for Control group,
55.6 % accuracy for the stroke groups and 80.0 % accuracy for VN group.
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Figure 13 – The left illustration shows Confusion chart for the complex design-all network.
The right illustration shows the sensitivity for the different classes in the left column and the
right column gives a percentage of misclassification for those classes.
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From this confusion chart evaluation metrics were calculated which can be seen in Table 5.

Table 5 – All channels Network performance table.

Attributes Control Stroke VN
True Positive 14 5 4
False Positive 5 4 0
False Negative 4 4 1
True Negative 9 19 27

Precision 0.74 0.56 1.00
Sensitivity 0.78 0.56 0.80
Specificity 0.64 0.83 1.00
Accuracy 0.72 0.72 0.72
F-measure 0.76 0.56 0.89

In Figure 14 the output nodes activation is illustrated compared to the correct classification.
With the information from Figure 13 and the node information, the network classified the
control group correctly with a few exceptions. For the stroke classification it mostly confused
the correct classification with control and not so much with VN. Lastly, the VN node was
clearly distinct between the groups with only one case where a VN was classified as control.
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Figure 14 – The node activation for each true classification for the complex design-all
network using MATLAB’s boxplot function. The left upper figure represent control node,
the right upper figure represent stroke node and bottom figure represent the VN node

Hugo Johansson (hujo0004@student.umu.se) 23 November 19, 2021



Assessment of acute vestibular syndrome using deep learning 5 Results

5.4 Network 2
The hypertuning process resulted in the network that follows the structure as described in
Table 6.

Table 6

Layers:
Nodes Activation function

Input Layer: Dense 7 ReLU
Flatten Layer:

Hidden Layer 1: Dense 7 ReLU
Hidden Layer 2: Dense 19 ReLU
Hidden Layer 3: Dense 13 ReLU
Hidden Layer 4: Dense 17 ReLU
Output Layer: Dense 3 softmax

Compiling
Learning rate: 8.0 e-3
Loss function: Categorical cross entropy
Optimizer: Adam

This neural network model was tested on the test dataset and this resulted in the confusion
chart illustrated in Figure 15. The network performs with 100.0 % accuracy for Control
group, 11.1 % accuracy for the stroke groups and 80.0 % accuracy for VN group.
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Figure 15 – The left illustration shows Confusion chart for the complex design-lateral net-
work. The right illustration shows the sensitivity for the different classes in the left column
and the right column gives a percentage of misclassification for those classes.

From this confusion chart evaluation metrics were calculated which can be seen in Table 7.

Table 7 – Lateral channels Network performance table.

Attributes Control Stroke VN
True Positive 18 1 4
False Positive 8 0 1
False Negative 0 8 1
True Negative 6 23 26

Precision 0.69 1.00 0.80
Sensitivity 1.00 0.11 0.80
Specificity 0.43 0.74 0.80
Accuracy 0.72 0.72 0.72
F-measure 0.82 0.20 0.80

In Figure 16 the output nodes activation is illustrated compared to the correct classification.
With the information from Figure 15 and the node information, the network classifies the
control group correctly with a few exceptions. For the stroke classification it clearly classifies
a most of the stroke group as control instead of stroke. Finally, it shows only one VN case
was incorrectly classified as a control case.
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Figure 16 – The node activation for each true classification for the complex design-lateral
network using MATLAB’s boxplot function. The left upper figure represent control node,
the right upper figure represent stroke node and bottom figure represent the VN node
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5.5 Network 3
The hypertuning process resulted in the network that follows the structure as described in
Table 8.

Table 8

Layers:
Nodes Activation function

Input Layer: Dense 19 ReLU
Flatten Layer:

Hidden Layer 1: Dense 19 ReLU
Hidden Layer 2: Dense 17 ReLU
Output Layer: Dense 3 softmax

Compiling
Learning rate: 7.7 e-3
Loss function: Categorical cross entropy
Optimizer: Adam

This neural network model was tested on the test dataset and this resulted in the confusion
chart illustrated in Figure 17. The network performs with 88.9 % accuracy for Control group,
44.4 % accuracy for the stroke groups and 100 % accuracy for VN group.
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Figure 17 – The left illustration shows Confusion chart for the parameter design network.
The right illustration shows the sensitivity for the different classes in the left column and the
right column gives a percentage of misclassification for those classes.
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From this confusion chart evaluation metrics were calculated which can be seen in Table 9.

Table 9 – Parameter Network performance table.

Attributes Control Stroke VN
True Positive 14 2 5
False Positive 6 3 2
False Negative 4 7 0
True Negative 8 20 25

Precision 0.70 0.40 0.71
Sensitivity 0.78 0.22 1.00
Specificity 0.57 0.87 0.93
Accuracy 0.66 0.66 0.66
F-measure 0.74 0.29 0.83

In Figure 18 the output nodes activation is illustrated compared to the correct classification.
With the information from Figure 15 and the node information the network doesn’t clearly
distinct between stroke and control. For the stroke classification the network can’t distinct
between stroke and control and it even classifies most stroke cases as control. Finally, that
all VN cases was distinctly classified correctly.
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Figure 18 – The node activation for each true classification for the complex parameter design
network using MATLAB’s boxplot function. The left upper figure represent control node,
the right upper figure represent stroke node and bottom figure represent the VN node
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6 Discussion
6.1 Dataset
The SYNAPSYS hardware and software records the motion of the eyes and the head move-
ment, and the parameters were all based on these measurements. All the data used in this
project was collected using the same hardware setup. The groups differed from patients
at the hospital to the control group which consisted of recruits from the hospital staff and
inpatient relatives. The control group was the largest group before filtering (as seen in Table
1) as participants in the control group were easier to collect, and had less issues with the
test itself. The filtering process also removed some of the persons in the stroke and the
VN group as they might have problems handling the full test and therefore only producing
motion data for some canals. This created a difference in the sample sizes for the different
groups which could have affected the performance of the selected neural networks. There
was also a difference in age between the different groups as the control group was notably
younger compared to the other two. This is something to consider as a possible limitation
of this analysis, especially in of the research by Hansson and Salzer that small decreases of
the vestibular ocular reflex gain might occur as individuals gets older [17].

As seen in Figures 9 and 10 it is clear that the differences between individuals in the different
groups can be quite distinct, while analyzing individual time series.

The parameters extracted from Table 2 and Table 3 show that the VOR-gain significantly
differs for the VN group compared to the others for most of the canals. The stroke group’s
parameters often overlap with the control group, but there were two canals in the dataset
where there was a significant difference between the two. This significant difference was
unfortunately not enough as these canals overlapped with VN, which limits the ability to
discern between stroke and VN. This seems to agree with what Calic and Guler have found
as they both added additional criteria to discern between stroke and VN [6, 5].

Most of the values for the ESI were around zero due to how most cases do not get an ESI
value and therefore are set to zero, as previously discussed in the method. The impulses that
have a value were often clearly larger than 0 and this leads to a large standard deviation.
The group that most often had a nonzero ESI was the VN group and it was significantly
different from the others in all canals except the left posterior vertebral canal.

Lastly, the parameter VAR, which I calculated myself from the eye motion data to try to
capture the variances that might be lost during the averaging process in the pre-processing.
This behaves similarly as the ESI parameter where a significant difference was found mostly
between the VN group and the other groups with only a few exceptions.

From Figure 11 and Figure 12 the differences between specifically VN and the other groups
were very distinct at least by visual comparison. This was expected as VN often has drastic
deficiencies in functionality on either the left or right vestibular canals. This in turn will
affect the vestibular ocular reflex which causes the eye to follow the motion of the head during
the vHIT procedure. Between the stroke group and the control group the difference were not
as distinct. This was one of the reasons to attempt using neural networks to differentiate
between them.
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6.2 Networks
In the following section I will discuss the results of the different networks. Firstly, the
complex design-all network performed the best when compared to the other networks. From
the confusion chart in Figure 13 it shows that the network could handle both the VN and
control cases quite well. No cases were incorrectly classified as VN, while multiple cases
of stroke and one of VN were classified as control. The stroke classification had a worse
performance since a lot of stroke cases were classified as control. For the stroke cases it was
important to have a high sensitivity and (as seen in Table 5) it only reached approximately
56 % which would cause misclassification of multiple stroke cases. For the control group it
was instead important to have a higher specificity as that means less cases being sent for
further unnecessary examinations. For VN a high sensitivity is wanted to correctly classify
each VN case and from Table 13 it is shown to reach a high sensitivity. In Figure 14 its shown
how the output layer has been activated for each of the groups. It illustrates clearly that the
networks can distinct between the VN and control group quite well as the nodes activation
does not overlap for most cases. As the last layer uses softmax activation function it means
that it gives out a probability of classification. This means that the network is certain in
the classification for both control and VN. For stroke instead, there is a big overlap with
the control group and such it was not as certain with its classification. This overlaps with
the information from the confusion chart as most incorrectly stroke cases are classified as a
control case.

Secondly, the complex design-lateral network performs worse than the first network. From
the confusion chart in Figure 15 it shows that the network correctly classified all the control
cases, but it incorrectly classified almost all the stroke cases into the control group. It handles
the VN group in a similar fashion as the first network, with the only difference being that
it classifies one stroke case as a VN case. In summary, this network only performs better
than the first network in classifying control group cases correctly, but it also gave more
false positives and therefore misses critical diagnosis. One interesting point was that it does
performed well with diagnosing VN cases which means that just using one canal from each
side gives enough data for the network to distinct them from the other cases. As VN affects
the vestibulocochlear nerve on one side of the head, using only one canal from each side,
highlights the decreased function enough for the classification to work. For the stroke cases
instead the opposite occurs as a stroke can happen in different places in the brain. This
means that removing the information from the other canals gives a less complete picture of
the VOR functionality which may be affected by the stroke. In Figure 16 it shows how the
output layer has been activated for each of the groups and in this case, the same distinction
is clear between VN and control while the stroke group overlaps with both the control group
and VN giving less secure classifications. Comparing this figure with the confusion chart
makes it clear that the network mostly confused the stroke group with the control group.

The last network performs better than the more complex design-lateral network but handles
stroke cases worse than the complex design-all network. From the confusion chart in Figure
17 it shows that it correctly classifies the same percentage of control cases as the first network
and outperforms the first network while classifying the VN cases. For the stroke cases it
instead performed just slightly better than the complex design-lateral network and classified
most stroke cases into the control group. This seemed to correlate with the information
from the parameter comparison as no significant difference could be found for most of the
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parameters between stroke and control while VN often differed from both groups. In Figure
18 it shows how the output layer has been activated for each of the groups and that the
network is confident in its classification for VN while the other two nodes have larger overlaps.
Comparing this with the confusion chart shows how it clearly confuses stroke and control
and that this mostly happens towards control.

In summary, the networks all differ greatly when it comes to the classification of the stroke
cases, with the first network correctly classifying with the most cases while both the second
and the third network both incorrectly classified most of the stroke cases. The parameter
design network performed better than the complex design-lateral network, so it showed how
a simpler setup have the possibility of outperforming a more complex network as can be
seen from the Figures 15 and 17. All the networks also followed a very simple structure with
dense layers and only a few hidden layers, so the biggest difference was the input provided to
the networks. The parameter excelled on VN classification because of its great dependence
on the VOR-gain while the complex design-all network handles the stroke cases better as
it had an input which gave a broader description of an individual’s VOR compared to the
lateral canal network.

6.3 Clinical Application
With the technical discussion done I want to bring it back to medical application. The goal
for this project was to research the possibility to use deep learning to correctly classify a
patient from the results of a vHIT and for this to be used as a diagnostic tool in for example
an emergency room. As the results stands now, the sensitivity is too low for the detection
of a stroke for a patient, but these networks do show promising tendencies for these kind
of solutions in the future. The sample size for these networks were both unbalanced and
quite small for the realm of deep learning and even with that they reached a decently high
classification for both control and VN. The complex design-lateral network performed the
best on average of the three networks, with correctly classifying around 80 % of both VN
and control and by classifying around 60 % of the stroke cases. With further collection of
data from the different groups and by further improving the network themselves, a higher
performance could be reached. It is also possible to not have to limit the data collection to
specifically SYNAPSYS AB hardware as the only requirement is to be able to record the
positional data in a similar structure.

If this was done, it could be used widely in emergency rooms as the process would be simple
and non-intrusive. The vHIT would be performed and recorded and the neural network
would give out a diagnosis with the probability estimate on how sure it is.

6.4 Future work
This project has had a limited scope both due to time constraints and amount of data, but
there are many improvements that can be done both to the networks and data itself.

Firstly, the dataset is unbalanced and quite small compared to dataset used in neural net-
works to train a model. The unbalanced nature in the data makes it so that it has very few
cases to use as test data for the stroke and VN group and that limits the training. This
is unfortunately also due to the procedure itself sometimes makes it so that subject in the
stroke and VN group cannot produce complete result, due to things like a stiff neck or other
limitations. This meant that the pre-processing filters out quite a few which further decreases
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the dataset. This means that creating a balanced dataset is quite limiting, giving just above
100 total individuals when using the smallest group’s sample size. Instead, I believe that
gathering more data would benefit the performance the most, as then balancing the groups
will not limit the network training process to a small dataset. The hardware used for the
data collection exists in multiple hospitals and data collection should be able to be uniform
thus creating the possibility to collect data from multiple sources and then combining them
to a larger dataset.

For the networks there is a large potential for improvement with more time and experiment-
ing. The networks in the present study are based around simple dense layers which receives
input from all nodes of the previous layer. One other common layer that could be further
tested with more time would be the convolution layer, which is commonly used to detect
patterns in for example pictures. It uses filters to affect part of the input and therefore
picking out specific features. This might be useful for our motion curves, detecting things
like saccades or other discrepancies. This is often combined with pooling layers that is used
to reduce dimensions of the feature map produced by the convolution layers. Networks using
these layers combined with dense layers can have great performances, but it does create a
more complex tuning process. With more time the current dataset might still be able to be
used to create a model that performs better than the current versions.

The parameter network right now uses the VOR-gain which is the most common parameter
from a vHIT, the ESI from the SYNAPSYS software and the VAR which is an average
created from the standard deviation for the eye motion. From the comparison between
the different groups, no clear distinction between the stroke and control groups could be
statistically confirmed, which does not help the parameter network. If some other parameter
could be produced either based on the saccades or some other feature, then this might make
it possible to get a greater performance out of the parameter network as it already handles
the VN case well.
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7 Conclusion
In conclusion, this project has been a good first step in the possibility of using deep learning
for diagnosing patients, using the non-invasive vHIT. It shows potential for further improve-
ment as the motion data manages to produce effective classifications for VN and control cases
with a small dataset. It is still lacking on the stroke cases, but with more data and further
research this could be a first step on a road to diagnostic assistance using deep learning.

These models have shown promise for future application as decision support systems and
especially the complex design-all network. If these networks are improved then it could
hopefully not only save resources in the medical field as it is a simple method, but also catch
time crucial diagnosis early which can then be giving the treatment they need.
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