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Abstract
Proofs and proving are difficult to learn and difficult to teach. A common problem is that many students 
use specific examples as evidence for general statements. Difficulties with proofs are also part of the 
transition problems that exist between secondary and tertiary schooling in mathematics. As mathematics 
teaching often follows a textbook, the design of textbooks has been pointed out as one possible cause 
of the problems, and international textbook research suggests that proofs often have only a marginal 
place in textbooks.

This thesis focuses on proofs and proving in upper secondary mathematics textbooks. It also addresses 
theoretical and methodological questions about what marks an opportunity to develop proving 
competence, and which properties of such opportunities are relevant to investigate and characterize. 
The thesis is based on data from four Swedish and Finnish textbook series for upper secondary school, 
and focuses on sections on logarithms, primitive functions, definite integrals, and combinatorics. It 
examines how addressed mathematical principles are justified, and whether the textbooks’ exercises 
offer opportunities to develop proof-related skills such as formulating and investigating hypotheses, 
developing and evaluating arguments, identifying and correcting errors, and finding counterexamples.

The results show that just over half of the mathematical principles addressed in the analyzed textbook 
material are justified, and that only half of the justifications are general proofs. Few exercises are proof-
related (10%), and those that include reasoning about general cases even fewer. General proofs are more 
common in the Finnish books, but proof-related tasks are more common and of a more varied nature 
in the Swedish ones. The most common form of proofs are direct derivations of calculation formulas, 
while reasoning about existence and uniqueness is unusual, as are contrapositive proofs and proofs by 
contradiction.

Based on the results, explicit suggestions are offered as to what teaching can pay more attention to. 
For the analysis and design of proof-related activities, a framework consisting of four main categories 
is proposed: develop a statement, investigate a statement, develop an argument, and investigate an 
argument. Several properties that such activities may have, regardless of which category they belong to, 
are discussed. Finally, three areas for future research are suggested: how worked examples can support 
students’ learning of proof, how textbooks can be designed to stimulate formulation as well as the 
formal proving of hypotheses, and mapping of differences regarding proof between upper secondary 
and university textbooks.
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Nothing pertaining to humanity becomes 
us so well as mathematics. There, and 
only there, do we touch the human 
mind at its peak. 

 
Isaac Asimov 

 
From Isaac Asimov’s foreword in C. B. Boyer & U. C. 
Merzbach’s A history of mathematics, 1991.  

 
 

 
I may never find all the answers, 
I may never understand why, 
I may never prove what I know to be true, 
but I know that I still have to try. 

 
John Petrucci 

 
From the song The spirit carries on, on Dream Theater’s 
album Metropolis pt 2: Scenes from a memory, 1999. 
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Abstract 

Proofs and proving are difficult to learn and difficult to teach. A common 
problem is that many students use specific examples as evidence for general 
statements. Difficulties with proofs are also part of the transition problems that 
exist between secondary and tertiary schooling in mathematics. As mathemat-
ics teaching often follows a textbook, the design of textbooks has been pointed 
out as one possible cause of the problems, and international textbook research 
suggests that proofs often have only a marginal place in textbooks. 

This thesis focuses on proofs and proving in upper secondary mathematics 
textbooks. It also addresses theoretical and methodological questions about 
what marks an opportunity to develop proving competence, and which prop-
erties of such opportunities are relevant to investigate and characterize. The 
thesis is based on data from four Swedish and Finnish textbook series for up-
per secondary school, and focuses on sections on logarithms, primitive func-
tions, definite integrals, and combinatorics. It examines how addressed math-
ematical principles are justified, and whether the textbooks’ exercises offer 
opportunities to develop proof-related skills such as formulating and investi-
gating hypotheses, developing and evaluating arguments, identifying and cor-
recting errors, and finding counterexamples. 

The results show that just over half of the mathematical principles ad-
dressed in the analyzed textbook material are justified, and that only half of 
the justifications are general proofs. Few exercises are proof-related (10%), 
and those that include reasoning about general cases even fewer. General 
proofs are more common in the Finnish books, but proof-related tasks are 
more common and of a more varied nature in the Swedish ones. The most 
common form of proofs are direct derivations of calculation formulas, while 
reasoning about existence and uniqueness is unusual, as are contrapositive 
proofs and proofs by contradiction. 

Based on the results, explicit suggestions are offered as to what teaching 
can pay more attention to. For the analysis and design of proof-related activi-
ties, a framework consisting of four main categories is proposed: develop a 
statement, investigate a statement, develop an argument, and investigate an 
argument. Several properties that such activities may have, regardless of 
which category they belong to, are discussed. Finally, three areas for future 
research are suggested: how worked examples can support students’ learning 
of proof, how textbooks can be designed to stimulate formulation as well as 
the formal proving of hypotheses, and mapping of differences regarding proof 
between upper secondary and university textbooks. 
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Sammanfattning 

Matematisk bevisföring är svårt att lära sig och svårt att undervisa. En vanlig 
problematik är att många elever och studenter ser enstaka exempel som till-
räckliga argument för generella påståenden. Svårigheter med bevisföring är 
också en del av den övergångsproblematik som finns mellan gymnasie- och 
universitetsstudier i matematik. Eftersom undervisningen ofta följer en läro-
bok så har böckernas utformning pekats ut som en möjlig orsak till problemen. 
Internationell läromedelsforskning antyder också att bevis ofta har en undan-
skymd plats i böckerna. 

Den här avhandlingen bidrar med kunskaper om hur bevis hanteras i gym-
nasieböcker i matematik. Den tar också upp teoretiska och metodologiska frå-
gor om vad som avses med att en bok erbjuder möjligheter att utveckla kom-
petens inom bevisområdet, och vilka egenskaper hos sådana möjligheter som 
är relevanta att undersöka och karaktärisera. Avhandlingen bygger på studier 
av fyra svenska och finska läromedelsserier för gymnasieskolans teoretiska 
program och fokuserar på avsnitt om logaritmer, primitiva funktioner, be-
stämda integraler och kombinatorik. Dels undersöks hur de matematiska prin-
ciper som tas upp motiveras, dels om böckernas övningsuppgifter ger eleverna 
möjligheter att utveckla bevisrelaterade färdigheter såsom att formulera och 
undersöka hypoteser, argumentera för påståenden, undersöka giltigheten i pre-
senterade argument, identifiera och korrigera felaktigheter i resonemang och 
konstruera motexempel. 

Resultaten visar att drygt hälften av de matematiska principer som behand-
las i det analyserade materialet motiveras, men att bara hälften av motivering-
arna är generella bevis. Få uppgifter är bevisrelaterade (10 %) och de som 
inbegriper generella resonemang ännu färre. Generella bevis och resonemang 
är vanligare i de finska böckerna, men bevisrelaterade uppgifter är vanligare 
och av mer varierad karaktär i de svenska. Den vanligaste formen av bevis är 
direkta härledningar av beräkningsformler medan resonemang om existens 
och entydighet är ovanliga, liksom indirekta bevis och motsägelsebevis.  

Med resultaten som grund ges konkreta förslag på vad undervisning kan 
ägna mer uppmärksamhet åt. För analys och utveckling av bevisrelaterade ak-
tiviteter föreslås ett ramverk bestående av fyra huvudkategorier: utforma på-
ståenden, undersöka påståenden, utforma argument och undersöka argument. 
En rad egenskaper som aktiviteterna kan ha oavsett vilken kategori de tillhör 
diskuteras. Avslutningsvis ges förslag på vidare forskning inom tre områden: 
hur lösta exempel kan stötta elevers lärande av bevis, hur läroböcker kan ut-
formas för att stimulera till att formulera såväl som att bevisa hypoteser, samt 
kartläggning av hur gymnasie- och universitetsböcker skiljer sig åt i hante-
ringen av bevis. 
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1 Introduction 

The research presented in this thesis lies at the intersection of two important 
fields of educational research in mathematics: the teaching and learning of 
proof and mathematics textbooks.  

Proofs are central in mathematics: “The possibility of proof is what makes 
mathematics what it is, what distinguishes it from other varieties of human 
thought” (Hersh, 2009). There is also a wide consensus among scholars that 
proofs are important in learning mathematics: “Students cannot be said to have 
learned mathematics, or even about mathematics, unless they have learned 
what a proof is” (Hanna, 2000). However, just as central as proofs are to math-
ematics, students’ difficulty understanding and producing them as well as 
teachers’ challenges in teaching them are well-documented (e.g., Harel & 
Sowder, 2007). Among other problematic perceptions, students tend to justify 
general statements with specific cases, view counterexamples as exceptions, 
and believe conditional statements to be equivalent to their inverses and con-
verses (e.g., Stylianides et al., 2017).  

Research has also shown that proofs and proving have a marginal place in 
many classrooms, and mathematics textbooks have been pointed out as one 
possible reason for this (Stylianides et al., 2017). The extensive use of math-
ematics textbooks in classrooms around the world is well-known (e.g., Stein 
et al., 2007). Teachers rely on them in planning and conducting their teaching, 
and students spend a great deal of lesson time working with textbook material. 
It has been said that the textbook is “the only variable that on the one hand we 
can manipulate and on the other hand does affect student learning” (Begle, 
1973).  

Historically, textbook research focusing on proof has been rare (Hanna & 
de Bruyn, 1999). This branch of educational research is still small, but grow-
ing. The overall impression is that opportunities to learn proofs and proving 
from mathematics textbooks are small, especially in topics other than geome-
try (e.g., Otten, Gilbertson, et al., 2014; Thompson et al., 2012). However, 
these learning opportunities in a topic such as calculus, which dominates up-
per secondary school in most parts of Europe, have seldom been studied.    

Textbook studies of opportunities for proof-related reasoning also actualize 
questions of how proof and proof-related reasoning can be conceptualized and 
operationalized for textbook analysis, how observed similarities and differ-
ences between different textbook materials can be understood and explained, 
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and what the consequences for student learning and teaching practice might 
be. 

1.1 Aim of the thesis 
This thesis aims to contribute to an informed discussion about opportunities 
to learn proof-related reasoning offered in mathematics textbooks. The papers 
in the thesis have their separate research questions, but brought together they 
can be summarized as follows: 

1. What characterizes opportunities to learn proof-related reasoning 
offered by Swedish and Finnish upper secondary mathematics text-
books? 

2. What topic-specific characteristics of opportunities to learn proof-
related reasoning are found in upper secondary mathematics text-
books? 

3. How can opportunities to learn proof-related reasoning be concep-
tualized and analyzed? 

The questions are interrelated. To answer them, four textbook series for Swe-
dish and Finnish upper secondary school have been studied. The data includes 
expository sections and student exercises on logarithms, primitive functions, 
definite integrals, and combinatorics. 

1.2 How to read the thesis 
1.2.1 Connections between the papers 
The thesis consists of five papers. Papers I and IV are published journal arti-
cles, while Papers II and III are conference papers. Paper V is a manuscript 
intended for publication as a journal article. 

Paper I is foremost a comparative study of Swedish and Finnish textbooks. 
Opportunities for proof-related reasoning are studied in relation to two topics: 
primitive functions and definite integrals. The analyzed material includes ex-
pository sections and student exercises. The other papers are related to ques-
tions that arose during the work with Paper I. Two of them have a theoretical-
analytical nature, while the other two are related to how the findings of Paper 
I can be generalized and understood. 

Paper II explores how the “degree of generality” in student exercises can 
be conceptualized and analyzed in a more precise way, while Paper III ex-
plores how the “embedding” of justifications in expository sections can be 
analyzed to give more accurate descriptions of opportunities to learn proof-

 16 

and what the consequences for student learning and teaching practice might 
be. 

1.1 Aim of the thesis 
This thesis aims to contribute to an informed discussion about opportunities 
to learn proof-related reasoning offered in mathematics textbooks. The papers 
in the thesis have their separate research questions, but brought together they 
can be summarized as follows: 

1. What characterizes opportunities to learn proof-related reasoning 
offered by Swedish and Finnish upper secondary mathematics text-
books? 

2. What topic-specific characteristics of opportunities to learn proof-
related reasoning are found in upper secondary mathematics text-
books? 

3. How can opportunities to learn proof-related reasoning be concep-
tualized and analyzed? 

The questions are interrelated. To answer them, four textbook series for Swe-
dish and Finnish upper secondary school have been studied. The data includes 
expository sections and student exercises on logarithms, primitive functions, 
definite integrals, and combinatorics. 

1.2 How to read the thesis 
1.2.1 Connections between the papers 
The thesis consists of five papers. Papers I and IV are published journal arti-
cles, while Papers II and III are conference papers. Paper V is a manuscript 
intended for publication as a journal article. 

Paper I is foremost a comparative study of Swedish and Finnish textbooks. 
Opportunities for proof-related reasoning are studied in relation to two topics: 
primitive functions and definite integrals. The analyzed material includes ex-
pository sections and student exercises. The other papers are related to ques-
tions that arose during the work with Paper I. Two of them have a theoretical-
analytical nature, while the other two are related to how the findings of Paper 
I can be generalized and understood. 

Paper II explores how the “degree of generality” in student exercises can 
be conceptualized and analyzed in a more precise way, while Paper III ex-
plores how the “embedding” of justifications in expository sections can be 
analyzed to give more accurate descriptions of opportunities to learn proof-

18



 17 

related reasoning. Paper IV is an extension of Paper I, and concerns the gen-
eralizability of the results reported in Paper I. For this purpose, Paper IV in-
cludes two new topics in the analysis: logarithms and combinatorics. Finally,  
Paper V builds on the same data as Papers I and IV, but focuses on differences 
between topics (instead of between Swedish and Finnish textbooks) and how 
these can be understood. The connections between the papers are illustrated 
in Figure 1. 
 
 

 

Figure 1. Connections between the papers. 

1.2.2 Structure of the thesis 
Chapter 2 (Literature review) gives an overview of relevant research on the 
teaching and learning of proof and textbooks. It concludes with some general 
findings about Swedish and Finnish mathematics education. 

Chapter 3 (Analytical concepts and frameworks) first clarifies how oppor-
tunity to learn is interpreted in relation to proof-related reasoning in textbooks. 
Then follows a description of the frameworks for the type and nature of rea-
soning that are used in each of Papers I, IV, and V. A separate section is de-
voted to the specific frameworks and tools that are used only in Papers II, III, 
and V. 

Chapter 4 (Methodology) has a shared focus between three different areas. 
The first is the organization of and steering documents for Swedish and Finn-
ish upper secondary school. The second is the data set and reasons for the 
choice of textbook series and mathematics topics. Finally, the analytical pro-
cedures are described. 

The papers are summarized in Chapter 5 (Summary of papers). While the 
focus is on their results, motives and research questions are also included. 

Finally, the results of the five papers are discussed in combination in Chap-
ter 6 (Discussion). The empirical findings are organized in three themes: gen-
eral findings and context-specific findings relate to the first research question, 
while topic-specific findings relate to the second. A separate section is devoted 
to the development of the analytical frameworks and the conceptualization of 
proof-related reasoning, which relates to the third research question. With this 
as a basis, implications and suggestions for teaching practice and future re-
search are discussed, as is the thesis’s methodology. 

 Paper I Paper IV Paper V 

Paper II Paper III 
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2 Literature review 

This chapter includes theoretical material with a focus on what a proof is, what 
the role of proof is in mathematics, and how proof and proof-related reasoning 
are conceptualized in the mathematics education literature. It also includes 
empirical findings on the teaching and learning of proof and from textbook 
research. Finally, some findings from comparative studies of mathematics ed-
ucation in Sweden and Finland are included. 

 
2.1 Proofs in mathematics 
Deductive arguments have a long history in mathematics and are at the core 
of what mathematics is. According to tradition, deductive elements were first 
introduced in mathematics by Thales of Miletus (ca. 624–548 B.C.), earning 
him the title “the first mathematician”. Ancient sources tell that he provided a 
demonstration of the theorem now called the Thales theorem. However, there 
are no records of this demonstration, and it has been argued that Greek math-
ematics at the time were too primitive for such a contribution (Boyer & 
Merzbach, 1991). Nevertheless, the Greeks are considered to be those who 
brought to the Western world the notion that mathematical facts must be es-
tablished deductively. This radically transformed the empirical mathematics 
of the Babylonians and Egyptians (Stylianou et al., 2009).  

The earliest major Greek mathematical work to come down to us is Euclid’s 
Elements. Composed about 300 B.C., it is the most influential textbook of all 
times with its 465 propositions on geometry, number theory, and (in a sense) 
algebra, all set up as a deductive system. It has set the standard for mathemat-
ical rigor that we observe to this day. A mathematics proposition is not ac-
cepted as a theorem unless someone can present a valid and convincing 
demonstration of how it follows from axioms, assumptions, and other proven 
propositions. Such a demonstration is a proof.  

In mathematical logic, a proof is “a sequence of transformations of formal 
sentences, carried out according to the rules of the predicate logic”, while for 
the common practicing mathematician it is “an argument that convinces qual-
ified judges” (Hersh, 1993, p. 389). A more precise definition of proof upon 
which the mathematics community can agree is difficult to formulate. So are 
clear criteria for what should be accepted as “convincing”. What counts as a 
proof may vary over time, between groups of mathematicians and between 
different fields of mathematics. The required level of formalism, rigor, and 
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detail also depends on the knowledge and experience of the author as well as 
the reader of the proof, and on the purpose of the proof.  

Conviction is an important purpose of proof, and the process of finding a 
proof is popularly described as “convince yourself, convince a friend, con-
vince an enemy” (Stacey et al., 1982, p. 95). The existence of a proof is often 
described as a prerequisite for a mathematician to be convinced of the truth of 
a hypothesis. But many mathematicians have testified to an almost opposite 
relation: “When you have satisfied yourself that the theorem is true, you start 
proving it” (Pólya, 1954). Neither is it true that a formal proof alone is what 
is required for the mathematics community to accept a new theorem as true. 
This acceptance is rather related to a combination of an understanding of the 
theorem’s concepts, logical antecedents and implications, its significance in 
terms of implications for other branches of mathematics, its apparent con-
sistency with other accepted results, the author’s reputation as an expert in the 
field, and (of course) the existence of a convincing argument (Hanna, 1989).  
Thus, citing the verification of truth as the only function of proof, and proof 
as the main source for conviction, is misleading.  

The mathematical meaning of proof carries three senses: verification or 
justification, illumination, and systematization (Bell, 1976). de Villiers (1990) 
adds another two, listing five functions of proof: verification, explanation 
(which corresponds to illumination), systematization, discovery, and commu-
nication. The distinction between proof as a means for conviction (or verifi-
cation or justification) and as a means for explanation (or illumination) is that 
the former is only concerned with truth while the latter relates to understand-
ing. Whether or not a proof explains does not affect its validity, but rather 
whether it is aesthetically pleasing. If it provides insight into why a statement 
holds, it explains the cause of the statement. Overly formal proofs, contrapos-
itive proofs, and proof by contradiction have been criticized for not having 
this explanatory power, as have overly lengthy proofs and computer proofs. 
To fulfill its function of conviction, a proof need only give the logical reasons 
for a theorem; that is, guarantee that the theorem is true, not why. It verifies, 
while an explanatory proof clarifies (cf. Hanna, 1990). Of course, a proof can 
convince and explain at the same time. Regarding the other three purposes, 
systematization refers to the fact that proofs connect axioms, definitions, and 
statements and organize them into a deductive system. From a mathematical 
point of view this might well be their primarily function. Proofs also pave the 
wave for new discoveries by use of similar methods and premises and are, of 
course, a means for the communication of mathematical knowledge. Profes-
sional mathematicians likely agree on a sixth function of proof and proving: 
intellectual challenge (de Villiers, 1999). 
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2.2 Proofs in mathematics education 
2.2.1 Definitions of proof 
Numerous definitions and descriptions of proof are used by scholars in math-
ematics education. In addition, concepts like proof, argument, and justifica-
tion are used as synonyms by some but with different meanings by others 
(Staples et al., 2016). The activity of proving (or arguing or justifying) can 
refer to the presentation of a proof, but also to the long process of finding, 
evaluating, and revising the proof and the statement it is meant to prove (e.g., 
Lakatos, 1976). In this broader meaning, proving can include activities such 
as conjecturing and making generalizations (Stylianides et al., 2017). Con-
cepts like reasoning-and-proving (Stylianides, 2007) and proof-related rea-
soning (Thompson et al., 2012) are also used to emphasize the inclusion of 
learning activities with elements central to developing a proving competence, 
such as making and investigating conjectures, developing and evaluating ar-
guments, etc. In this thesis, the word “proving” and the phrase “reasoning-
and-proving” (with or without hyphens) should be interpreted in this broad 
sense. 

In general, a proof is thought of as a specific form of argument, with no 
further specification of what an argument is. NCTM (2000, p. 55) describes 
proofs as “arguments consisting of logically rigorous deductions of conclu-
sions from hypotheses”, which aligns with the verification function of proof. 
So does the definition of justification by Staples et al. (2012, p. 448): “an ar-
gument that demonstrates (or refutes) the truth of a claim that uses accepted 
statements and mathematical forms of reasoning”. The emphasis on “ac-
cepted” statements and forms of reasoning is further strengthened in the fol-
lowing definition, which also points to the sequential, step-by-step form of 
proof (Stylianides, 2007, p. 291): 

Proof is a mathematical argument, a connected sequence of assertions for or 
against a mathematical claim, with the following characteristics: 1. It uses 
statements accepted by the classroom community (set of accepted statements) 
that are true and available without further justification; 2. It employs forms of 
reasoning (modes of argumentation) that are valid and known to, or within the 
conceptual reach of, the classroom community; and 3. It is communicated with 
forms of expression (modes of argument representation) that are appropriate 
and known to, or within the conceptual reach of, the classroom community. 

 
This definition makes proof a meaningful concept for educational contexts, 
independent of educational level or student age, and highlights the social and 
contextual aspect of proof. With the addition that a proof should also live up 
to today’s standards of the community of mathematicians, the definition of 
proof can be expressed as two criteria (Stylianides et al., 2016, p. 317): 
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Criterion 1: An argument qualifying as a proof should use true statements, 
valid modes of reasoning, and appropriate modes of representation, where the 
terms “true,” “valid,” and “appropriate” are meant to be understood with ref-
erence to what is typically agreed upon nowadays in the field of mathematics, 
in the context of specific mathematical theories. 

Criterion 2: An argument qualifying as a proof should use statements, modes 
of reasoning, and modes of representation that are accepted by, known to, or 
within the conceptual reach of students in a given classroom community. 

 
It is reasonable to assume that most arguments presented to students on an 
upper secondary level satisfying Criterion 2 also satisfy Criterion 1. Hence, in 
such a context, “proof” refers to “what any mathematician and mathematics 
teacher would likely call a proof” (Thompson et al., 2012, p. 259).  

The social component of proof is emphasized in the following description 
of argumentation, which also includes the element of convincing: “discursive 
exchange among participants for the purpose of convincing others through the 
use of certain modes of thought” (Wood, 1999, p. 172). This definition in-
cludes no requirement that the argument be correct. Neither do the definitions 
of proofs, proving, and proof schemes by Harel and Sowder (2007). In their 
terminology, “proving is the process employed by an individual (or a commu-
nity) to remove doubts about the truth of an assertion”; that is, the proof is 
what turns a conjecture into a fact. The process of proving consists of two 
subprocesses: ascertaining (convincing yourself) and persuading (convincing 
someone else). A proof scheme consists of what constitutes ascertaining and 
persuading for a person (or a community).  

Harel and Sowder’s definition of a proof scheme is subjective, with an in-
dividual as well as a social dimension. It assumes a kind of common under-
standing and agreement within the mathematics community as to what consti-
tutes a valid proof; that is, one can (in principle) say that professional mathe-
maticians have the same proof scheme. This proof scheme is what determines 
the meaning of “true”, “valid”, and “appropriate” in Criterion 1. Education 
aims to socialize students into this way of thinking: “[The notion of proof] 
evolves and develops up to the upper-level undergraduate and graduate school 
levels, where it merges with the notion as understood by researchers and other 
professional mathematicians” (Hersh, 2009, p. 17).  

While all the definitions above emphasize the conviction/verification/jus-
tification function of proof and proving, this does not mean that educational 
researchers do not acknowledge other functions of proof. On the contrary, for 
the mathematics classroom, it has been advocated that the most important 
function of proof is to provide insights and understanding (e.g., Hanna, 1995; 
Hersh, 1993). 
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2.2.2 Proof-like arguments 
The concept of proof scheme shifts the focus from what features an argument 
should have in order to be called a proof to what features it should have in 
order to be convincing for individuals and communities. Based on empirical 
data on students’ (and teachers’) reasoning, Harel and Sowder (1998) identify 
three main categories of proof schemes. External proof schemes refer to 
modes of reasoning based on properties external to the mathematics at hand. 
This could be by reference to authorities (a teacher), or through symbolic ma-
nipulation without reflection/connection to the situation at hand. Empirical 
proof schemes refer to modes of reasoning based on specific cases or visual 
(or other) impressions. Finally, deductive proof schemes include the modes of 
reasoning employed by mathematicians. All three categories have several sub-
categories (Harel & Sowder, 1998). 

Similar categories of reasoning have been described by other scholars. 
Harel and Sowder’s empirical and deductive proof schemes align well with 
Bell’s (1976) empirical response and deductive response, respectively. 
Balacheff (1988a) distinguishes between pragmatic proofs and conceptual 
proofs, which essentially include the same distinction. Balacheff identifies 
several subclasses. Within the class of pragmatic proofs, he places generic 
examples. These are examples in which, typically, all one needs to do to obtain 
a general proof is to replace a specific number with a variable. This means that 
“one can see the general proof through it” (Movshovitz-Hadar, 1988, p. 19), 
because nothing specific to the example enters the proof. Harel and Sowder 
(2007) have generic examples as a subclass of deductive proof schemes. 

Stylianides (2008) suggests an analytical framework for reasoning-and-
proving, distinguishing between “providing non-proof arguments” and 
“providing proof arguments.” Generic examples are placed in the “proof ar-
gument” category and empirical arguments in the “non-proof argument” cat-
egory. Together, they form a mathematical component that he refers to as 
“providing support to mathematical claims”. So far, his categorization of ar-
guments is similar to Harel and Sowder’s empirical and deductive proof 
schemes. Stylianides (2008) also broadens the idea of proving to include an-
other mathematical component: “making mathematical generalizations”. This 
component includes “identifying a pattern” and “making a conjecture”. Styl-
ianides’s framework also includes a psychological and a pedagogical compo-
nent. The psychological component focuses on the student’s perception of the 
mathematical nature of the mathematical components, while the pedagogical 
component focuses on how the student’s perceptions compare with the (true) 
mathematical nature and how this nature can be made transparent to the stu-
dent. 

Independent of Stylianides (2008), Thompson et al. (2012) suggest a simi-
lar framing of proof-related reasoning, categorizing reasoning activities along 
two dimensions: type and nature of reasoning. Type of reasoning captures the 
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difference between proof and non-proof arguments and between empirical and 
deductive proof schemes, while nature of reasoning includes conjecturing, 
providing support to mathematical claims, and other elements of proof-related 
activities such as investigating conjectures, correcting arguments, and finding 
counterexamples. This framework will be described in detail in Section 3.2.  

The idea that conjecturing and proving are closely related has been put for-
ward by others. The term cognitive unity of a theorem has been introduced to 
refer to when arguments used during the formulation of a conjecture are reused 
in a subsequent formal proving stage (Garuti et al., 1998). The iterative pro-
cess of reformulations of a statement and the continued efforts to find proofs 
for it is described in Lakatos (1976). 

2.2.3 Proof as a field of educational research 
In their review of recent decades’ research on the teaching and learning of 
proof, Stylianides et al. (2017) identify three broad research perspectives on 
proving: proving as problem-solving, proving as convincing, and proving as 
a socially embedded activity. Here follow short descriptions of these perspec-
tives and an overview of how recent decades’ research on proof is distributed 
over the three perspectives, over different stages of school education, and over 
different mathematics topics. Key findings within the three perspectives that 
are relevant to this thesis are summarized in the next subsection.   

Proving as problem-solving refers to research with a cognitive psycholog-
ical perspective that aims to understand the skills and competencies students 
have or need in proof-related activities. Within this perspective, the goal of 
instruction is for students to be able to write arguments that researchers would 
consider proofs. The focus tends to be on the process of proving: can students 
answer proof-related questions correctly, are they able to produce correct 
proofs, can they determine whether arguments are valid proofs, etc. Theoreti-
cal constructs used within this perspective often distinguish between different 
parts of the proving process such as the formal-rhetorical part and the prob-
lem-centered part (Selden & Selden, 2013), or between proving processes 
based on different kinds of representations such as syntactic and semantic 
proof production (Weber & Alcock, 2004, 2009). The concept of cognitive 
unity of a theorem (Garuti et al., 1998) is also a construct within this perspec-
tive.  

Proving as convincing takes a constructivist perspective and focuses on 
what arguments students (and teachers) find convincing, and how these argu-
ments relate to standards of argumentation in the mathematics discipline. 
Within this perspective, the goal of instruction is for students to be convinced 
by the same types of arguments that convince mathematicians. It is within this 
perspective that the theoretical constructs by Bell (1976), Balacheff (1988a), 
and Harel and Sowder (1998) are used. The frameworks by Stylianides (2008) 
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and Thompson et al. (2012) capture aspects of proving as convincing as well 
as aspects of proving as problem-solving. 

Proving as a socially embedded activity is a perspective with a focus on 
how proof is practiced among mathematicians and in mathematics classrooms. 
This perspective includes mathematicians’ and students’ reasons for engaging 
in proving, what purposes proof and proving have for them, and how the role 
of proof is negotiated in the classroom community. 

In a review of empirical research on proof and argumentation in K–12 
mathematics, Campbell et al. (2020) use the three perspectives described 
above as an analytical framework for categorizing recent research. Dividing 
Grades K–12 into four bands (K–2, 3–5, 6–8, and 9–12), they found that proof 
as problem-solving was the dominant research perspective in all bands but 
Grades 3–5. 71% of the research studies with participants in Grades 9–12 had 
this perspective while 21% were categorized as proof as convincing, and only 
7% had a focus that could be conceptualized as proof as a socially embedded 
practice. 

Campbell et al. (2020) also mapped which mathematics topics were used 
to elicit argumentation, and what kind of argumentation was required of the 
students. Half of the studies used geometry tasks. In Grades K–5 arithmetic 
tasks were the most common, but researchers relied on geometry tasks in 64% 
of studies with participants in Grades 9–12. At this level, algebra was also 
well-represented (24%). However, no publications utilized calculus tasks. Of 
the tasks used in the research with Grades 9–12 students, 93% required general 
arguments (and not just arguments about a single or multiple cases). 

Research on the teaching and learning of proof is most frequently focused 
on the secondary and tertiary levels. For example, of the 76 journal articles 
that satisfied the search criteria in Campbell et al. (2020), only five included 
participants from Grades K–2 and 14 from Grades 4–6, while 34 studies had 
participants from Grades 6–8 and 42 from Grades 9–12. 

2.2.4 Findings on students’ difficulties and misconceptions 
Research has shown very clearly that students have various difficulties and 
misunderstandings related to proofs, and that teachers often have the same 
difficulties as their students (e.g., Harel & Sowder, 2007; Stylianides et al., 
2016; Stylianides & Stylianides, 2017; Stylianides et al., 2017). As difficulties 
are especially well-documented on the secondary and tertiary levels, they are 
common even at university level (e.g., Hemmi, 2008; Weber, 2001). Many 
students experience difficulty in the transition to university mathematics, es-
pecially in relation to proof (Alcock & Simpson, 2002; Clark & Lovric, 2009; 
Gueudet, 2008; Hemmi, 2008; Hillel, 2001; Hong et al., 2009; Leviatan, 2008; 
Luk, 2005; Moore, 1994; Oikkonen, 2008, 2009; Selden, 2005; Selden & Sel-
den, 2003; Thomas et al., 2012; Thomas & Klymchuk, 2012) and particularly 
in calculus (Alcock & Simpson, 2002; Alcock & Weber, 2005). Students also 
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experience that proof is something that has never been discussed and that im-
portant features of proof have been invisible (Hemmi, 2008).  

In their review, Stylianides et al. (2017) summarize 14 key findings in re-
search on the teaching and learning of proof  (shown below). While the find-
ings that are the most relevant to this thesis are elaborated on, the references 
are only examples. For further detail, see Stylianides et al. (2017) and Harel 
and Sowder (2007). 

The first five key findings are within the proving as problem-solving per-
spective: 

1. Students from lower secondary school to the university level often 
have difficulty writing proof. 

2. Students often lack many of the competencies needed for writing 
proof. 

3. The consideration of diagrams and examples is potentially benefi-
cial for students who are writing proofs. 

4. Students often have difficulty translating informal arguments into 
proofs. 

5. Students and teachers are often unable to distinguish between 
proofs and invalid arguments. 

Several large-scale studies have found poor success rates when students are 
asked to prove things, even if only a single deduction beyond the hypothesis 
is required (e.g., Senk, 1985, 1989). Among common difficulties are those 
involving choosing a legitimate proof framework (Selden & Selden, 1995), a 
lack of understanding of the proof methods they use (Stylianides et al., 2007), 
counterexamples in proof (Ko & Knuth, 2013), implications (Durand-
Guerrier, 2003), and negations (Antonini & Mariotti, 2008). Students also 
have difficulty distinguishing between axioms, definitions, and theorems 
(Vinner, 1977), and in understanding statements with complex logical struc-
tures (Zandieh et al., 2014). They frequently misuse quantifiers. In multiply 
quantified statements such as “for all …, there is …”, students are not aware 
that the existential variable can change when the universal variable changes 
(e.g., Durand-Guerrier & Arsac, 2005). Students typically have greater diffi-
culty with statements beginning with the existence quantifier (i.e., “there is … 
such that for all …”) than with statements involving the reverse order between 
the quantifiers (Dubinsky & Yiparaki, 2000). 

Minor studies and case studies report that using diagrams and examples can 
be beneficial for students’ proof writing (e.g., Alcock & Weber, 2010), but the 
findings are inconclusive. There are also examples of the opposite, when dia-
grams provide students with false confidence in conjectures or confuse them 
regarding what can be assumed and what needs to be proven (e.g., Alcock & 
Simpson, 2004). Students have trouble producing a proof if the structural dis-
tance between the warrants in an informal argument, and those in a formal 
proof, is too wide (Pedemonte, 2007).  
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Several small-scale studies also show that students have difficulty distin-
guishing proofs from invalid arguments (e.g., Selden & Selden, 2003). For 
instance, even mathematics majors often accept proof of the converse of a 
conditional statement as proof of the original statement (Inglis & Alcock, 
2012).  

As the examples above indicate, research findings tend to focus on what 
students cannot do. Less is known about what kind of (basic) proofs they ac-
tually can produce (Stylianides et al., 2017). 

Within the proving as convincing perspective, four key findings are de-
scribed: 

6. Students and teachers are often convinced by empirical arguments 
as proofs of generalizations. 

7. Students and teachers are often unconvinced of the power of proof 
to prove. 

8. Students and teachers are often convinced that a conditional state-
ment is equivalent to its converse or inverse, and unconvinced that 
it is equivalent to its contrapositive. 

9. Students and teachers are often convinced by superficial features of 
proof by mathematical induction. 

One of the most well-documented features of students’ proving is that they 
provide empirical arguments when asked for proof of a general statement, or 
evaluate empirical arguments as general proof (Almeida, 2001; Healy & 
Hoyles, 2000; Knuth et al., 2002; Martin & Harel, 1989; Morris, 2002; 
Sevimli, 2018; Sowder & Harel, 2003; Thompson, 1991). Counterexamples 
are not seen as sufficient for refuting a theorem, but are instead viewed as 
exceptions (Balacheff, 1988b; Galbraith, 1981). If students accept an argu-
ment as a valid proof, they might still feel a need to check specific cases 
(Porteous, 1990). It thus seems that, for some students, examples are powerful 
enough to justify a statement but not to refute it. However, there are also stud-
ies that indicate that students are aware that verification with specific exam-
ples does not qualify as proof (e.g., Healy & Hoyles, 2000; Hemmi, 2006) 
even though they find this more convincing. It could also be that students pro-
duce specific arguments when they are unable to write down a general proof. 
This means that there might be two different difficulties/misconceptions in-
volved. One is that they do not know how to make use of examples in sup-
porting or refuting mathematical claims, while the other is that the convincing 
power (from the student’s point of view) of examples and general arguments 
does not match what the mathematics community requires of a convincing 
argument. 

Regarding conditional statements, 𝑃𝑃 ⇒ 𝑄𝑄, several studies show that stu-
dents are convinced of their validity based on proofs of their converses, 𝑄𝑄 ⇒
𝑃𝑃 (Hoyles & Küchemann, 2002), but might reject arguments that are correct 
proofs of their contrapositives, ¬𝑄𝑄 ⇒ ¬𝑃𝑃 (Stylianides et al., 2004). 
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Finally, Stylianides et al. (2017) present five key findings within the prov-
ing as socially embedded activity perspective: 

10. Students’ perceptions are largely shaped by regularities they ob-
serve in their classrooms. 

11. The format in which proofs are written can constrain the types of 
reasoning that take place in mathematics classrooms. 

12. Mathematicians usually do not read proofs to gain certainty in the-
orems but to advance their mathematical agenda. 

13. Students and secondary mathematics teachers often do not see 
proofs as providing explanation, and have difficulty understanding 
proofs. 

14. Negotiating productive classroom norms can highlight students’ re-
sponsibilities with respect to proof and thereby create learning op-
portunities. 

Students’ judgement of what counts as a valid proof is influenced by how 
similar an argument is to what they have seen in class (Hemmi, 2006). For 
instance, students can reject an argument including graphical representations 
simply because they have not seen such proofs in class even if they find them 
convincing (Weber, 2010), or choose a less convincing but algebraic argument 
when asked to select the argument they believe would score highest on a test 
(Healy & Hoyles, 1998). Other findings are that students do not see the pur-
pose or need for proof (Coe & Ruthven, 1994; Tinto, 1990), and do not see it 
as a tool for explanation or communication (Healy & Hoyles, 2000). 

2.3 Proofs in mathematics textbooks 
Curriculum programs (that is, textbooks, teacher guides, and other related ma-
terials supplemented by textbook authors and publishers) are widely used in 
classrooms all over the world (e.g., Grouws et al., 2000; Mullis et al., 2012; 
Pepin & Haggarty, 2001). Internationally, approximately 75% of all Grades 4 
and 8 students are taught mathematics with the aid of a textbook (Mullis et al., 
2012), which makes textbooks the most commonly used curriculum resource. 
Not surprisingly, textbooks are regarded as crucial links between national cur-
ricula, teaching practice, and student learning (e.g., Cai et al., 2011; Pepin et 
al., 2013; Stein et al., 2007; Valverde et al., 2002).  

Paper VII includes a systematics review of research on curriculum pro-
grams in mathematics published during the period 2008–2014. Four areas are 
in focus: studies that (1) describe design principles of educative curriculum 
programs and teachers’ response to them; (2) describe how teachers prepare 
for teaching; (3) relate influencing factors that explain transformations be-
tween written, intended, and enacted curriculum, and student learning; and (4) 
describe the effectiveness of curriculum programs. These areas were selected 
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based on future research recommendations by Stein et al. (2007) in their ex-
tensive review of curriculum research. One important conclusion in Stein et 
al. (2007) is that no curriculum is self-enacting. The findings reported in Paper 
VII give further detail on this. For instance, teacher resources and curriculum 
resources can uniquely and jointly contribute to the quality of instruction (Hill 
& Charalambous, 2012), but to make productive changes to the curriculum, 
teachers’ goals need to be aligned with the curriculum’s goals (Davis et al., 
2011). Students working with new, ambitious, standards-based curriculum 
programs do not fare worse on traditional tests, but perform better on tests 
aligned with the ambitious philosophy (Gavin et al., 2013). However, in order 
to positively impact student performance, the learning environment needs to 
be in line with the curriculum program’s philosophy. Otherwise, the use of 
such a curriculum program can result in lower student achievement (Tarr et 
al., 2008). Irrespective of curriculum program, teachers likely need extra sup-
port from it in implementing its more challenging tasks (Choppin, 2011). 

Research shows that proofs have a marginal place in many classrooms. 
Textbooks have been highlighted as one possible factor behind this 
(Stylianides et al., 2017). A few decades ago, Hanna and de Bruyn (1999) 
pointed out that textbook research with an explicit focus on proving was rare. 
Since then, there has been increased interest in conducting and publishing this 
kind of research. However, the field is still young, and even if the body of 
research is growing it remains limited. While the goal is to come up with well-
founded prescriptions for textbook design, much research remains in the stage 
of describing the current state of the art for proving in textbooks. Typically, 
textbook studies are empirical and compare textbooks (or textbook series) 
from different publishers or countries (Stylianides et al., 2016). 

A search in Web of Science’s core collections shows that textbook studies 
of proof remain a small subfield in educational research1. The search resulted 
in 23 articles with titles including “textbook” and at least one word related to 
proving, such as “prove”, “proof”, “justify”, “argue”, “explain”, etc. Through 
a screening of titles and abstracts, 15 of them were found to be journal articles 
reporting findings from textbook analyses of proving (in a broad sense) from 
an educational perspective. Papers I and IV in this thesis are two of them. 
There is of course research published elsewhere (in journals not indexed in 
Web of Science, conference proceedings, edited books, etc.). Still, these 13 
journal articles offer an indication of the characteristics of this field of re-
search. The next three paragraphs give a brief overview based on them. 

All 13 articles are published after 2009, and include analyses of textbooks 
from all parts of the world. While the United States dominates (Bieda et al., 

 
1 The search was done on March 12, 2021, using the following search string: TOPIC:(math*) 
AND TITLE:(textbook*) AND TITLE:( proof* OR prove* OR proving* OR reason* OR argu* 
OR justif* OR demonstrat* OR motiv* OR explain* OR explanation*). Document type was 
restricted to article. 
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2014; McCrory & Stylianides, 2014; Otten, Gilbertson, et al., 2014; Otten, 
Males, et al., 2014; Stylianides, 2009; Thompson et al., 2012), there are also 
studies from Australia (Stacey & Vincent, 2009), Chile (Ortiz & Pastells, 
2017), Malawi (Mwadzaangati, 2019), China (Zhang & Qi, 2019), Japan 
(Fujita & Jones, 2014), Israel (Dolev & Even, 2015), and Denmark (Jankvist 
& Misfeldt, 2019). Although none of these 13 studies compare textbooks from 
different countries, a number of them analyze and compare several textbooks 
(or textbook series) from the same country. For instance, the study by 
Thompson et al. (2012) includes 20 United States textbooks (reform-oriented 
as well as traditional), Stacey and Vincent (2009) analyze nine Australian text-
books, and 33 Danish books were read for the article by Jankvist and Misfeldt 
(2019). Only one study combines the textbook analysis with a study of how 
the textbook tasks are enacted in a classroom context (Mwadzaangati, 2019).   

The analyzed textbooks cover all levels of schooling. While lower second-
ary school textbooks dominate (Dolev & Even, 2015; Fujita & Jones, 2014; 
Otten, Gilbertson, et al., 2014; Otten, Males, et al., 2014; Stacey & Vincent, 
2009; Stylianides, 2009; Zhang & Qi, 2019), there are also studies of primary 
school textbooks (Bieda et al., 2014; Ortiz & Pastells, 2017), upper secondary 
school textbooks (Jankvist & Misfeldt, 2019; Mwadzaangati, 2019; 
Thompson et al., 2012), and textbooks for the education of elementary school 
teachers (McCrory & Stylianides, 2014).  

Some studies include the analysis of complete textbooks for a whole school 
year, in which case several mathematics subtopics are included, while others 
select and analyze material related to specific topics. When topics are selected, 
geometry is the most frequent choice (Fujita & Jones, 2014; Mwadzaangati, 
2019; Otten, Gilbertson, et al., 2014; Otten, Males, et al., 2014), sometimes in 
combination with algebra or number theory (Dolev & Even, 2015; Stacey & 
Vincent, 2009). There is also one study focusing on probability (Ortiz & 
Pastells, 2017) and one on exponents, logarithms, and polynomials 
(Thompson et al., 2012). When several topics are analyzed, the findings are 
presented so that comparisons are possible. However, comparing topics is not 
the primary focus in any of the studies. 

Next, we turn to some typical research findings (not restricted to the 13 
articles discussed above) on proof and proving in textbooks. On the one hand, 
textbooks can have a significant influence on classroom practice and students’ 
opportunities to learn proof. On the other, analyses of mathematics textbooks 
indicate that proof has a limited place in textbooks, that common misconcep-
tions are not sufficiently addressed, and that the sequencing and distribution 
of proving tasks within and across grade levels are inadequate (e.g., 
Stylianides et al., 2017). There is also limited support from the teacher guides 
and textbooks used in mathematics teacher education. 

Textbook analyses typically indicate that textbooks offer few opportunities 
to learn proof. For example, argumentation and reasoning activities were not 
present at all in Croatian mathematics textbooks for Grades 6–8 (Glasnovic 
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textbooks can have a significant influence on classroom practice and students’ 
opportunities to learn proof. On the other, analyses of mathematics textbooks 
indicate that proof has a limited place in textbooks, that common misconcep-
tions are not sufficiently addressed, and that the sequencing and distribution 
of proving tasks within and across grade levels are inadequate (e.g., 
Stylianides et al., 2017). There is also limited support from the teacher guides 
and textbooks used in mathematics teacher education. 

Textbook analyses typically indicate that textbooks offer few opportunities 
to learn proof. For example, argumentation and reasoning activities were not 
present at all in Croatian mathematics textbooks for Grades 6–8 (Glasnovic 
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Gracin, 2018), except in chapters on triangle similarity. In Australia, only 17% 
of Grade 8 textbooks offered deductive explanations for how to divide frac-
tions, while all textbooks had deductive explanations on the area of a trape-
zium (Stacey & Vincent, 2009). In United States upper secondary textbooks 
on algebra and precalculus, approximately half of the addressed mathematical 
properties were presented without justifications, and when justifications were 
provided only half of them were general proof (Thompson et al., 2012).The 
figures were slightly higher in geometry, with 75% of the properties justified 
and 35% of them with general proofs (Otten, Gilbertson, et al., 2014). Among 
textbook tasks on geometry, 25% were proof-related in a wide sense (Otten, 
Gilbertson, et al., 2014). In algebra and precalculus only 6% of the tasks were 
proof-related and only half of them included arguments about general cases, 
but there was a tendency that proof-related tasks, tasks requiring reasoning 
about a general case, and tasks involving developing and evaluating argu-
ments increased as students progressed through the curriculum (Thompson et 
al., 2012). Individual textbooks score higher, and there are examples of re-
form-oriented United States middle-school textbooks in which 40% of the 
tasks include reasoning-and-proving (Stylianides, 2009). However, few stud-
ies report such high measures. 

2.4 Swedish and Finnish mathematics education 
Sweden and Finland are neighboring countries with a common history, many 
close collaborations, and similar school systems. Textbooks are extensively 
used in mathematics classrooms in both countries, with large amounts of class 
time spent on textbook tasks (Boesen et al., 2014; Joutsenlahti & Vainionpää, 
2010). In TIMSS 2011, 97% of the participating Swedish Grade 8 students 
had teachers who considered textbooks a main source for their teaching 
(Skolverket, 2012). Other studies have shown that students in Grades 7–9 
spend almost half their lesson time working with textbook tasks 
(Skolinspektionen, 2009), and textbooks are assumed to be equally important 
in upper secondary school.  

Finland has gained international interest for its students’ performance on 
international evaluations such as TIMSS and PISA. Such tests often place East 
Asian and East European countries well above the United States and Western 
Europe. Finland is an exception to this, however, performing well (especially 
on PISA) and clearly outperforming Sweden.  

Several of the papers in this thesis are related to research projects compar-
ing different aspects of mathematics education in Sweden and Finland. The 
findings from these projects indicate substantial differences involving class-
room teaching (Hemmi & Ryve, 2015a), conceptualizations and discourses in 
and about teacher education (Hemmi & Ryve, 2015b; Knutsson et al., 2013; 
Ryve et al., 2011), and the use of curriculum materials (Hemmi, Koljonen, et 
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al., 2013; Hemmi et al., 2019). There are also indications that the character of 
school mathematics differs with respect to the status of proof and proof-related 
items. In elementary and lower secondary school, such items tend to be em-
phasized more in the Finnish than the Swedish context, while it is the other 
way around in upper secondary school (Hemmi, Lepik, et al., 2013). 
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3 Analytical concepts and frameworks 

This chapter describes the analytical frameworks used in the five papers of the 
thesis, and defines relevant concepts. Opportunity to learn is discussed in Sec-
tion 3.1 with a focus on proof-related reasoning in mathematics textbooks. For 
the analysis of opportunities to learn proof, all papers, and especially Papers I 
and IV, make extensive use of two analytical constructs adopted from 
Thompson et al. (2012): type of reasoning and nature of reasoning. Section 
3.2 is devoted to a detailed presentation of their adaptation for the studies in 
this thesis. Section 3.3 includes the refined frameworks, approaches, and tools 
that are used only in Papers II, III, and V, respectively. 

3.1 Textbooks and opportunities to learn 
The research questions in this thesis concern opportunities to learn proof. Op-
portunity to learn is widely accepted as one of the most important predictors 
of student achievement (e.g., Hiebert & Grouws, 2007). The United States’ 
National Research Council defines opportunity to learn as “circumstances that 
allow students to engage in and spend time on academic tasks” (National 
Research Council, 2001, p. 333). This should not be confused with “being 
taught” or “exposed to”. Opportunities to learn are the results of, and shaped 
by, students’ pre-knowledge, learning goals, the design and enactment of 
learning activities, etc. A learning opportunity can only occur when an activity 
is aptly scaffolded and placed within the learner’s proximal zone of develop-
ment (Vygotsky, 1980) so that learning is possible. With this definition, it is 
impossible to investigate opportunities to learn proof solely by analyzing 
mathematics textbooks. The textbook neither defines the curriculum nor de-
termines student learning; it is an artefact that mediates learning.  

Curriculum can be conceptualized as existing in – and undergoing trans-
formations between – a series of temporal phases: the written curriculum, the 
intended curriculum, the enacted curriculum, and finally, student learning 
(Stein et al., 2007). The written curriculum includes national steering docu-
ments, policies, syllabi, etc. that describe, prescribe, or give recommendations 
on subject content, learning goals, teaching organization, and so on. Text-
books and teacher guides are part of the written curriculum, even though they 
are also textbook authors’ interpretations of (for instance) national steering 
documents. 
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The intended curriculum refers to the teacher’s plans and intentions. The 
teacher interprets the written curriculum and adapts it for instruction. This 
process is colored by the teacher’s knowledge (subject matter as well as ped-
agogical), perceptions, and beliefs about mathematics teaching and learning, 
etc. The next temporal phase, the enacted curriculum, refers to the teaching 
that takes place. Whatever the teacher’s intentions are, and how well-planned 
a lesson is, there are many factors that can affect how the teaching activities 
play out in the classroom and what the student learns from them. It is the en-
acted curriculum and the interplay between students, teacher, and peers, that 
give rise to learning opportunities.  

In light of the above, the textbook is just one factor that can influence the 
enacted curriculum and the opportunities to learn. The textbook is therefore 
seen as offering potential opportunities to learn. To be able to assess such op-
portunities, the analyses presented in this thesis are based on the assumption 
that what is written in the book is a good description of how the curriculum 
has been enacted. This means that the textbook is interpreted as a correct ac-
count of the content and chronology of classroom instruction and student ac-
tivities. 

Textbook material intended for use by the student can be divided into two 
categories: expository sections and student tasks. Expository sections refer to 
the parts where the textbook plays a lecturing role. Here, the textbook authors 
present new concepts and terminology, formulate and justify mathematical 
statements, describe methods and algorithms, make connections to applica-
tions, give historical notes, etc. Also, the authors can exemplify and demon-
strate solution techniques in worked examples.  

Expository material is usually mixed with student tasks. Typically, expos-
itory sections end with exercise sets; that is, lists of tasks or activities of var-
ying kinds meant for the student to complete on his/her own or together with 
peers. Chapters and sections can also start with introductory tasks, and at the 
end of chapters (or at the end of the book) there can be additional sets of mixed 
problems meant for enrichment and rehearsal. Wherever they appear and 
whatever their character is, they will be referred to as tasks or exercises, even 
if textbook authors also use labels such as problems, activities, or questions.  

Textbook analysists have argued that an analysis of both kinds of textbook 
data is necessary to obtain a coherent picture of opportunities to learn proof-
related reasoning (e.g., Li, 2000; Otten, Gilbertson, et al., 2014; Thompson et 
al., 2012). Papers I, IV, and V use both kinds of data. Expository sections are 
considered to offer opportunities to learn proof-related reasoning when they 
include a presentation and discussion of justifications of mathematics results. 
Student tasks are considered to offer opportunities to learn proof-related rea-
soning when they ask the student to make or investigate conjectures, develop 
or evaluate arguments, identify or correct mistakes, provide counterexamples, 
etc. The next sections include the relevant definitions and detailed information 
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about the analytical frameworks that have been used. Procedural details are 
described in Section 4.3. 

3.2 Frameworks for proof-related reasoning 
Opportunities to learn offered in expository sections and in student tasks differ 
in at least one respect: In justifications in expository sections the textbook au-
thors do the reasoning, while in tasks the student is expected to do it. This 
influences the analytical approach to the two kinds of textbook data.  

3.2.1 Type of reasoning in textbook justifications 
In expository sections, the focus is on the opportunities students are offered to 
learn the role of proof in mathematics and what makes a justification a valid 
proof. For this purpose, mathematics results addressed in expository sections 
are classified according to whether they are justified, and whether or not the 
justifications are proofs. Other aspects of proof that have been investigated are 
discussed in the methodology, as is the identification of the addressed mathe-
matics results. 

A mathematical statement is either true or false. In this thesis, no distinction 
is made between true and provable statements. True statements are those for 
which proofs have been presented that the mathematics community has ac-
cepted as valid. In mathematics, true statements are called theorems, proposi-
tions, lemmas, corollaries, laws, principles, etc., depending on their im-
portance, content, look, and relation to other statements. In this thesis, they 
are called mathematics results (except in Paper I, where they are referred to 
as mathematics statements). Thompson et al. (2012) call them properties, but 
as mathematical objects have certain properties by definition and others by 
consequence, properties is a less suitable term. 

A justification provides reasons for why a statement might be true; it expli-
cates grounds and warrants for a claim. This means that a justification is an 
argument in the sense of Toulmin (2003). Therefore, the terms justification 
and argument are used interchangeably. The focus on truth means a focus on 
the verification role regardless of whether the justification also fulfills other 
roles, e.g. explanation (de Villiers, 1990). A textbook justification is a justifi-
cation provided by the textbook authors. 

Textbook justifications are classified as justification by general proof or by 
specific case. This classification is referred to as type of reasoning (Thompson 
et al., 2012). A general proof is a justification that lives up to the mathematics 
community’s standards of proof, but with the necessary adjustments to make 
it understandable or within reach for the intended students. For instance, a 
proof in an upper secondary textbook cannot be expected to have the same 
level of formalism as a proof in a journal article. This means that proof is 
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interpreted in the sense of Stylianides (2007). At this level of schooling, a 
reasonable interpretation is that a proof is “what any mathematician and math-
ematics teacher would likely call a proof” (Thompson et al., 2012, p. 259).  

Mathematics results are often universal, stating something for an infinite 
class of objects. A proof must contain reasons for why the statement holds for 
all of them; that is, it must be valid for an arbitrary object in the class. To 
emphasize this aspect of proof, they are called general proof. However, not all 
proofs involve reasoning about general cases. A statement about a specific 
case need only provide a proof for that specific case. An existence result can 
be general in its formulation, but a proof only needs to provide one specific 
example to ensure the existence. In this thesis, such proofs are also placed in 
the general proof category. This means that a general proof is not the same 
thing as an argument about a general case. In addition, an argument about a 
general case need not be general enough to classify as a general proof. For 
example, the derivation 

 
ln 𝑎𝑎 ∙ 𝑏𝑏 = ln 𝑒𝑒ln𝑎𝑎 ∙ 𝑒𝑒ln 𝑏𝑏 = ln 𝑒𝑒ln𝑎𝑎+ln𝑏𝑏 = ln𝑎𝑎 + ln 𝑏𝑏 

 
is valid for arbitrary positive 𝑎𝑎 and 𝑏𝑏. Thus, it is a general proof of the state-
ment ln 𝑎𝑎 ∙ 𝑏𝑏 = ln 𝑎𝑎 + ln 𝑏𝑏, but not for the statement log𝑐𝑐 𝑎𝑎 ∙ 𝑏𝑏 = log𝑐𝑐 𝑎𝑎 +
log𝑐𝑐 𝑏𝑏. 

A typical non-proof argument is a justification of a universal statement by 
use of a specific example. This kind of justification is what Harel and Sowder 
(2007) include in empirical proof schemes, and what Bell (1976) calls an em-
pirical response and Balacheff (1988a) a pragmatic proof. Harel and Sowder 
(2007) and Stylianides (2008) make exceptions for generic cases, which they 
include in the deductive proof scheme and count as a proof argument, respec-
tively. In this thesis, though, such cases are not viewed as general proofs. 
There are also other ways in which a justification can fail to be a proof; it may 
be too informal, be incomplete, have logical flaws, etc. All justifications that 
are not valid proofs – for whatever reason – are included in the specific case 
category of justifications. 

Summing up, a mathematics result can be presented in a mathematics text-
book with or without a justification. A justification is either a (general) proof 
or not, in which case it is classified as a justification by specific case. For 
excluded justifications, there is another alternative: the authors can ask the 
student to complete the proof. This gives a total of four alternatives, summa-
rized in Table 1. The descriptions, from Paper IV, differ slightly from those in 
Thompson et al. (2012): “property” has been replaced with “statement”, and 
the subordinate clause in the description of the S category has been added. The 
exact formulations also differ between Papers I, IV, and V, but the categories 
have always been used in accordance with the formulations in Table 1. 
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Table 1. Framework for type of reasoning in expository sections 

Code Type of justification Description 
G General proof The statement is justified with a proof. 
S Specific case or other non-

proof justification 
The statement is justified using a deductive argument 
based on a specific case, or that has other flaws that 
make it a non-proof justification. 

L Left to the student A justification of the statement is left to the student to 
complete, typically with a problem in the exercises for 
which a justification of some type is required. 

N No justification No justification is provided, and no explicit mention is 
made of leaving the justification to the student. 

 

3.2.2 Type of reasoning in textbook tasks 
A textbook task can offer students opportunities to engage in proof-related 

reasoning activities. In such cases, the type of reasoning must be inferred from 
the formulation of the task as there is no explicit justification to assess. Type 
of reasoning therefore refers to the reasoning required for a correct solution of 
the task. If it requires argumentation about a general case the task is classified 
as general, but if it suffices to reason about a specific case, it is classified as 
specific. The framework is summarized in Table 2. Should a task ask the stu-
dent to verify the validity of a general statement by use of a specific case, this 
task will be considered to be of type S, as the student has been asked to reason 
about a specific case. It is worth noting that when Otten, Gilbertson, et al. 
(2014) adapted the same framework from Thompson et al. (2012), they intro-
duced a separate category for this particular situation. 

Table 2. Framework for type of reasoning in textbook tasks 

Code Type of reasoning Task with proof-related reasoning about 

S Specific A specific case/specific cases 
G General A general case 

 
The distinction between a specific and a general case can be problematic. 

On the one hand, the logarithm law above, ln𝑎𝑎 ∙ 𝑏𝑏 = ln 𝑎𝑎 + ln 𝑏𝑏, is general in 
the sense that it is valid for all positive real numbers 𝑎𝑎 and 𝑏𝑏. On the other 
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Table 1. Framework for type of reasoning in expository sections 
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occur as functions. A task asking a student to prove that ln 𝑥𝑥 is a primitive 
function to 1 𝑥𝑥⁄  would therefore be classified as specific. The general princi-
ple at play here is that a task involving functions can only be classified as type 
G if there is some variable, parameter, or degree of freedom beyond the inde-
pendent variable. For instance, if the student is asked to prove that ln 𝑎𝑎𝑎𝑎 is a 
primitive function to 1 𝑥𝑥⁄  for all 𝑎𝑎 ≠ 0, then this would have been a task of 
type G. Issues like this are discussed more thoroughly in Subsection 3.3.1. 

3.2.3 Nature of reasoning in textbook tasks 
An essential part of the work of a mathematician is establishing new mathe-
matical knowledge, and finding a formal proof can be the final step in this 
process. It also includes investigating specific cases, formulating and testing 
hypotheses and conjectures, evaluating and refining arguments, correcting er-
rors, constructing counterexamples, outlining as well as filling in details in an 
argument, etc. All these activities have their own characteristics and are part 
of “proving” in a broad sense. Thompson et al. (2012) introduce a framework 
with seven such activities, referring to them as natures of reasoning: (1) make 
and (2) investigate a conjecture, (3) develop and (4) evaluate an argument, (5) 
correct or identify a mistake, (6) find a counterexample, and (7) outline an 
argument. Together, these constitute proof-related reasoning (abbreviated 
PR). With minor revisions, this framework has been adapted for the analysis 
of student tasks and worked examples in expository sections. 

Table 3. Framework for nature of reasoning in student tasks and worked examples 
Code Nature of reasoning Task in which student is asked to 

M Make a conjecture Make a conjecture, formulate a true mathematical 
statement, or find the precise conditions for a certain 
statement to be true 

I Investigate a conjecture Investigate whether a given conjecture or state-
ment is true or false 

D Develop an argument Justify or explain why a certain statement holds 
E Evaluate an argument Evaluate whether a certain justification or solu-

tion is correct 
C Correct or identify a 

mistake 
Find and/or correct an error in an argument or 
solution 

X Counterexample Find a counterexample to of a false mathemati-
cal statement 

P Outline a proof Outline an argument without the details of a full 
proof 

O Other Use some other element of proof-related rea-
soning 

N Not proof-related Do something else 

 
Table 3 presents the framework as it is described in Paper IV. In the original 

framework the P category is called “Principles of proof”, but otherwise the 
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names are the same. The exact descriptions vary slightly between Papers I, IV, 
and V. The second half of the description of the M category was added during 
the analysis for Paper IV when such tasks were encountered in the textbooks. 
The O category was also introduced during the work with Paper IV, when 
proof-related tasks that did not fit in the other categories were found. In Paper 
V the X category was renamed “Example” to include tasks in which the stu-
dent is asked to supply supportive examples. However, no such tasks were 
found in the analyzed textbook data.  

The purpose of the different natures of reasoning is not to distinguish proof-
related from not proof-related reasoning, but to identify and characterize es-
sential activities connected to proving and to do this in a way that is useful in 
the analysis of opportunities to learn proof. The list of natures is not neces-
sarily exhaustive. Nevertheless, tasks in which the student is asked to do other 
things, such as just calculate something or solve an equation, will be referred 
to as not proof-related.  

Paper IV includes 18 examples with authentic textbook tasks on logarithms 
and combinatorics and how they have been classified according to type and 
nature of reasoning. Here follows a short description of some general distinc-
tions between the different natures of reasoning. 

The difference between M and I tasks is that in M tasks the student must 
formulate a mathematical statement, typically after studying specific cases, 
while in I tasks the statement is given. The difference between the I and D 
tasks is that in I tasks it is not given whether the statement is true or false, but 
in D tasks the statement is always true. Hence, in I tasks the student does not 
know whether to prove or disprove the statement. In E tasks, the student is 
faced with an argument. Here, it is not a matter of deciding whether a state-
ment is true or false but instead whether or not the argument is a valid proof 
for the statement. E tasks also include tasks in which the student is asked to 
evaluate a solution, but not tasks in which the student is only asked to evaluate 
an answer. C tasks differ from E tasks in that it is given that there is a flaw in 
the argument/solution and the student is asked to find it. 

In X tasks it is given that a statement is false, and that it should be refuted 
by finding a counterexample. An I task might well include a false conjecture 
that can be refuted by finding a counterexample, but in such cases this infor-
mation is not included in the formulation of the task. Similarly, there could be 
a D task that can be solved by providing a counterexample, but a D task does 
not include explicit prompts to approach the task in such a way. 

Finally, a P task is similar to D, but instead of asking for a complete and 
detailed proof, the student only has to provide a proof outline or a sketch of 
the main steps. 
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3.3 Extensions and refinements 
Papers II and III elaborate on analytical difficulties encountered during the 
work on Paper I. Paper II focuses on the distinction between specific and gen-
eral tasks and pilots a refined framework for this, presented in Subsection 
3.3.1. Paper III focuses on the analysis of expository sections, and problems 
caused by using textbook justifications as a unit of analysis. The approach of 
Paper III is described in Subsection 3.3.2. Finally, Paper V combines results 
from Papers I and IV to obtain descriptions of topic-specific characteristics 
for proof-related reasoning. The tools used for this are presented in Subsection 
3.3.3. 

3.3.1 Levels of generality 
As discussed at the end of Subsection 3.2.2, the distinction between specific 
and general tasks can be problematic, especially in tasks involving functions. 
Consider tasks that ask for proofs of the following statements: 

 
1. � √𝑥𝑥𝑑𝑑𝑑𝑑

4

1
= 14

3  

2. ∫ 1
𝑥𝑥2
𝑑𝑑𝑑𝑑

𝑎𝑎
1  never exceeds 𝜋𝜋 

3. 𝐹𝐹(𝑥𝑥) = 𝑎𝑎𝑥𝑥

ln𝑎𝑎 is a primitive to 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥  

4. ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑎𝑎
−𝑎𝑎 = 2∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑎𝑎

0  if 𝑓𝑓(𝑥𝑥) is even  

The first identity is not universal, and its proof only requires a direct calcu-
lation and use of the second fundamental theorem of calculus (see Appendix). 
The calculation involves algebraic manipulations of expressions with one real 
variable 𝑥𝑥, but all identities are between numbers. In the context of calculus, 
this is a task involving reasoning about one specific function, 𝑥𝑥 ↦  √𝑥𝑥, and 
there is no other “generality” involved. 

 A proof of the second statement is also restricted to reasoning about a spe-
cific function, 𝑥𝑥 ↦ 1 𝑥𝑥2⁄ . However, the statement is universal in the sense that 
it is valid for all 𝑎𝑎 > 0. In this sense, the proof involves reasoning about a 
general case. 

The third statement is also valid for all 𝑎𝑎 > 0. Here, though, a proof will 
involve reasoning with an infinite, one-parameter family of functions. Hence, 
the generality represented by the parameter 𝑎𝑎 affects this task differently. 

The fourth statement includes two different kinds of generalities as it is true 
for all 𝑎𝑎 ∈ ℝ and all even (integrable) functions 𝑓𝑓. Hence, it combines the 
kinds of generalities of the second and third statements. In addition, the class 
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of even functions is much “bigger” than the one-parameter class of functions 
in the third example. Even, integrable functions form an infinite dimensional 
subspace of all integrable functions. So, although “evenness” is easily ex-
pressed algebraically as 𝑓𝑓(−𝑥𝑥) = 𝑓𝑓(𝑥𝑥), there is no simple closed formula for 
representing all even functions at once. 

According to the general principle applied in Papers I and IV, the first task 
would be classified as specific and the other three as general. But only the 
third and fourth examples offer opportunities for reasoning about an infinite 
class of functions, and the functions involved in the fourth are more “arbi-
trary” than those in the third. With inspiration from how the concept of dimen-
sion is used in connection to vector spaces and manifolds, a three-level frame-
work for generality is tested in Paper II: Reasoning about a finite number of 
specific functions (as in the second task) is called non-general. Reasoning 
about parameter families of functions (as in the third task), with a finite num-
ber of parameters, is called finitely general. Within this category, the number 
of parameters can be used to measure how “general” the reasoning is. Reason-
ing about “arbitrary” sets of functions (as in the fourth task), where the whole 
class cannot be represented by a finite, closed formula, is called infinitely gen-
eral. As this classification only applies to reasoning about functions, the 
framework is called the function generality framework; this is summarized in 
Table 4. Note that (as in the second task above) a task that offers reasoning 
about a general case can be classified as non-general according to the function 
generality framework. 

Table 4. The function generality framework 

Generality level Task that includes reasoning about 

Non-general Specific function(s) 
Finitely general Parameter families of functions 
Infinitely general Classes of functions that cannot be repre-

sented by a closed, finite formula 
 
From an “opportunity to learn” perspective, the difference between non-

general and finitely general tasks is that in the latter case the student is offered 
opportunities for learning to distinguish independent variables from other var-
iables and parameters, and to handle parameters when manipulating function 
expressions. However, there are algebraic expressions available for manipu-
lation in both cases. In the case of infinitely general tasks, the student has to 
find and use suitable representations of the relevant properties (like “even-
ness” in the example above). Thus, the three levels of generality correspond 
to different learning opportunities. 

Similar ideas have been used by others, but for splitting the class of specific 
tasks into two subcategories. For instance, Stylianides and Ball (2008) distin-
guish between reasoning about a single case, a finite number of cases, and an 
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infinite number of cases. Similarly, Bass (2011) discusses the distinction be-
tween three levels of cardinality of a set of objects about which a claim is 
made: one, finitely many, or infinitely many. In this thesis, however, tasks that 
only include reasoning about a finite number of specific cases will always be 
classified as specific. 

3.3.2 Embeddings of justifications 
When justifications are classified according to type of reasoning (Table 1), the 
formulation of the statement that is justified must be considered. The unit of 
analysis, therefore, is the statement and its justification(s). For the analysis of 
visibility aspects of proof, Papers I and IV also include an analysis of the la-
beling of addressed mathematics results and justifications, and whether the 
justification is placed before or after the statement. Textbooks can also include 
worked examples and student activities in the presentation of results and jus-
tifications, provide several different types of justifications, use a variety of 
representations, etc. They can be more or less formal in their expositions, 
make more or less clear connections to other parts of the mathematics content, 
and be more or less clear on structural and logical aspects of mathematics re-
sults and proofs. The list can be made longer. This widened perspective on 
how mathematics results are addressed and justified in textbooks is referred 
to in Paper III as the embedding of justifications in expository sections. Its 
details require a more thorough investigation than simply checking the label-
ing and placement of justifications and whether or not they are general. More-
over, an overly simplified quantitative analysis risks missing important infor-
mation about opportunities for proof-related reasoning and can give mislead-
ing results.  

To cast light on the limitations of approaches like those of Papers I and IV, 
and to get data for developing a more refined analysis, the following approach 
is tested in Paper III. Condensed descriptions of how textbooks address a spe-
cific mathematics result are established. Each description follows the chronol-
ogy of the textbook and includes the statement of the addressed mathematics 
result, all provided justifications of the result, and definitions of relevant math-
ematics concepts. It also includes material placed immediately before, after, 
and between definitions, statement, and justifications. The description in-
cludes all the details needed to make an analysis of the type and nature of the 
reasoning (according to the descriptions in Section 3.2), describe analytical 
difficulties related to this classification, and capture other issues of relevance 
for drawing conclusions about opportunities to engage in proof-related rea-
soning. The descriptions are then used as a basis for conducting and presenting 
the analysis of the types of reasoning, the description of analytical difficulties, 
and the discussion of other issues of relevance. Finally, a short summary point-
ing out aspects of proof-related reasoning that could be better incorporated in 
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the analytical framework is established. The italicized words are rubrics in the 
description, and in this sense are used as a kind of analytical framework.  

This approach is subjective in the sense that it highlights analytical diffi-
culties as experienced by the individual researcher. On the other hand, analyt-
ical difficulties are indications of a need to develop or refine the analytical 
frameworks and procedures, and to make clearer analytical distinctions. In ad-
dition, when results from analyses of different textbooks are compared and 
found to be incomplete in some respect, it is reasonable to use this as a starting 
point for a discussion on how to further improve the validity of the frame-
works and the reliability of the analytical procedures. 

3.3.3 Characterizing topics 
To measure whether a textbook offers opportunities for learning that mathe-
matical statements can be justified through logical arguments, and that these 
are an essential part of mathematics, the relative proportion of addressed math-
ematics results that are justified can be used. To measure whether a textbook 
offers opportunities to learn what a general proof is and what makes it differ 
from other types of justifications, the relative proportion of justifications that 
are also general proofs can be used. The findings reported in Papers I and IV 
show that a textbook section can score high on one, both, or neither of these 
measures. To illustrate this, and to identify patterns across textbook series, the 
two-dimensional diagram in Figure 2 is used as an analytical tool in Paper V. 
The upper rightmost corner represents textbook material in which most ad-
dressed mathematics results are justified, and the justifications are general 
proofs. The lower leftmost corner represents the opposite: textbook material 
in which few addressed mathematics results are justified and the provided jus-
tifications are not general proofs. 

A similar scheme is used for summarizing results concerning textbook 
tasks. In this case, the relative proportion of tasks that are proof-related is 
measured on the horizontal axis, and the relative proportion of proof-related 
tasks that include reasoning about a general case is measured on the vertical 
axis. 
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4 Method 

All the papers in this thesis include analyses of Swedish and Finnish upper 
secondary mathematics textbooks. This chapter focuses on the educational 
contexts of Swedish and Finnish upper secondary education, the selection of 
topics and textbook material, and the analytical procedures. 

4.1 The Swedish and Finnish upper secondary school 
systems 

Swedish and Finnish upper secondary schools are course-based, with different 
sets of courses for different programs. National steering documents prescribe 
content and learning outcomes in general terms. In this thesis, all descriptions 
of Sweden’s upper secondary mathematics education are according to their 
national curriculum from 2011 (Skolverket, 2011). Since then, there have only 
been minor revisions to the mathematics curriculum. All descriptions of Fin-
land’s upper secondary mathematics education are according to their national 
curriculum from 2005 (Finnish National Board of Education, 2004). In Fin-
land, some recent changes have affected the chronology between the mathe-
matics content areas. However, these revisions had not been fully imple-
mented, and revised textbooks were not available, when this thesis’s textbook 
analyses were conducted. 

4.1.1 Mathematics courses for science and technology students  
As students preparing for higher studies in mathematics, science, and technol-
ogy are the most likely to (and have the most need to) have opportunities for 
learning proof, the investigations in this thesis focus on textbooks for this 
group. In Sweden, upper secondary students studying science and technology 
are offered five mathematics courses and an optional sixth course with content 
the schools determine themselves. The first three courses exist in different 
versions for different programs, while the others are for science and technol-
ogy students only. The courses are called 1c, 2c, 3c, 4, and 5. The typical 
prerequisites for higher education in science and technology are Courses 1c–
4. In Finland, students preparing for higher studies in science and technology 
follow the advanced syllabus in mathematics, also called the “long course”, 
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which includes 13 parts. Parts 1–10 are mandatory, while 11–13 are speciali-
zation courses. For easier reference, the Finnish courses are referred to as 
parts. 

4.1.2 Course content 
All Swedish courses cover a range of different mathematics topics, while the 
Finnish parts focus on one or a couple of closely related topics. The parts are 
named after their content. This thesis focuses on logarithms, primitive func-
tions, definite integrals, and combinatorics (see Subsection 4.2.1). In the Swe-
dish setting, logarithms are introduced in Course 2c, which also treats topics 
such as linear equations, polynomials, exponential functions, geometry, and 
statistical methods. Logarithm functions and their derivatives are not treated 
until Course 4. In Finland, logarithms are covered in Part 8, which is titled 
Radical and Logarithm Functions. This part also includes general concepts 
such as composite and inverse functions, power and exponential functions, 
and derivatives of power, root, exponential, and logarithm functions. 

Differential and integral calculus is introduced in Course 3c in Sweden; 
here, students encounter primitive functions and definite integrals for the first 
time. These topics are further developed in Course 4. Course 3c also includes 
algebraic equations and trigonometry. Trigonometry is also part of Course 4, 
which also treats complex numbers. In Finland, Part 10 is called Integral Cal-
culus and is devoted to this topic only. The non-mandatory Part 13 is a con-
tinuation course in differential and integral calculus. Derivatives have their 
own course: Part 7, The Derivative. 

Swedish Course 5 focuses on differential equations and discrete mathemat-
ics, which includes combinatorics. In the Finnish setting, combinatorics is 
treated in connection to probability theory in Part 6, Probability and Statistics. 

4.1.3 Objectives related to reasoning and proof 
On a general level, the two countries have similar objectives related to reason-
ing and proving. In the Swedish curriculum, the general objectives express 
that students should be given opportunities to develop their abilities to follow, 
conduct, and assess mathematical reasoning. Meanwhile, the overall objects 
of instruction in the Finnish steering documents are slightly more detailed. 
They include that students should “learn to appreciate precision of presenta-
tion and clarity of argumentation”, “learn to perceive mathematical knowledge 
as a logical system”, and “become accustomed to making assumptions, exam-
ining their validity, justifying their reasoning and assessing the validity of their 
arguments and the generalizability of the results” (Finnish National Board of 
Education, 2004). However, proofs as core content are emphasized more in 
the regulations of the Swedish courses.  
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In the Swedish setting, proof is explicit content in Courses 1c, 3c, 4, and 5 
(see Skolverket, 2011): 

• Course 1c includes “mathematical argumentation with elementary 
logic, including implication and equivalence” and “illustration of 
the concepts of definition, theorem and proof, for instance with the 
Pythagorean theorem”. 

• Course 3c includes “proofs and application of the cosine, sine, and 
area theorems for arbitrary triangles”. 

• Course 4 includes “application and proof of de Moivre’s formula” 
and “different proving methods in mathematics with examples from 
arithmetic, algebra, or geometry”, as well as “derivation and appli-
cation of differentiation rules for trigonometric, logarithmic, expo-
nential, and composite functions, and for products and quotients of 
functions”. 

• Course 5 includes “proof by induction with concrete examples 
from, for instance, number theory”. 
 

In Finland, the only instance in which proof is explicitly mentioned as core 
content is in Part 11, Number Theory and Logic. This course includes “for-
malization of statements; truth values of statements; open statements; quanti-
fiers; direct, contrapositive and indirect proofs”.  

It is worth noting that there are no explicit writings about proof in connec-
tion to logarithms, primitive functions, definite integrals, or combinatorics in 
either Sweden or Finland.  

A detailed analysis of proof in Swedish and Finnish (and Estonian) steering 
documents for elementary and secondary school is found in Hemmi, Lepik, et 
al. (2013). One observation the authors make is that in Finland, the compul-
sory school curriculum discusses a number of proof-related topics, whereas 
(as described above) the upper secondary school curriculum mentions proof 
and proving only in an optional course in number theory and logic. The Swe-
dish steering documents reflect the opposite, suggesting an attempt to elevate 
the status of proof in upper secondary schooling. 

4.2 Data sample 
The choice of textbook material for the analyses in the papers of this thesis is 
the result of three major considerations: mathematics topics, textbook series, 
and the selection of material within these topics and textbook series. This 
means that the data sample has been chosen to represent different countries, 
different textbook series (or publishers/authors), and different mathematics 
topics, but also different stages of upper secondary schooling. 
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4.2.1 Mathematics topics 
At secondary level, explicit attention to proof has often been confined to 
courses in Euclidean geometry. When researchers choose topics for empirical 
research on the teaching and learning of proof, geometry is also the most fre-
quent choice (Campbell et al., 2020). Consequently, other topics are less in-
vestigated. As there is broad consensus in the field that reasoning and proving 
should be emphasized in all areas of school mathematics (e.g. Stylianides et 
al., 2017), there is good reason to choose topics other than geometry for em-
pirical research on reasoning and proof. This argument was used by Thompson 
et al. (2012), and also explains why the investigations in this thesis have fo-
cused on other topics. 

The first mathematics topics chosen for this thesis were primitive functions 
and definite integrals. Together, they will be referred to as integral calculus. 
There were at least four different reasons for this choice of topics. First, cal-
culus (with its two main branches, differential and integral calculus) has a 
strong position in the upper secondary mathematics curricula of many Euro-
pean countries. In the early twentieth century it was typically incorporated in 
school curricula to bridge the gap between school and university mathematics. 
Except during the “new math” era the approach has been informal, with a fo-
cus on applications and procedural skills (Törner et al., 2014). Second, calcu-
lus is a major part of introductory university courses in mathematics, and 
many university students have difficulty with this topic. Experts have raised 
concerns about the increasing gap between secondary and tertiary calculus 
teaching when it comes to formalism and focus on proof (e.g. Job & 
Schneider, 2014; Moreno-Armella, 2014; Roh, 2008). Third, a formal presen-
tation of the theory of definite integrals requires the 𝜖𝜖 − 𝛿𝛿 formalism of math-
ematical analysis, which is far beyond the scope of most upper secondary cur-
ricula. Thus, it is interesting to see how textbook authors have dealt with the-
oretical issues on upper secondary level. Finally, textbook studies focusing on 
proof rarely concentrate on calculus, especially not integral calculus; nor does 
empirical research. In the review by Campbell et al. (2020), no publications 
utilized calculus tasks. 

Papers I–III are based on textbook material on integral calculus only, and 
for Papers IV and V, material on logarithms and combinatorics were added. 
The topics were chosen to broaden the scope, and to provide data and results 
on as diverse a set of topics as possible. Logarithms and combinatorics com-
plement primitive functions and definite integrals in many ways. While inte-
grals are a calculus-oriented topic, logarithms and combinatorics are algebra-
oriented (even though logarithmic functions are studied in calculus as well). 
Students typically encounter logarithms earlier on in upper secondary school-
ing than they do integral calculus, which means that logarithms represent an 
earlier stage of upper secondary school. The same cannot be said about com-
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binatorics. In Sweden combinatorics is studied after integral calculus, in Fin-
land before. On the other hand, this offers an opportunity to study differences 
in how the topic is treated depending on its chronological place in the curric-
ulum. Compared to definite integrals, logarithms and combinatorics are also 
theoretically less advanced topics, even though logarithms are known to be 
difficult for many students.  

There are also reasons for choosing logarithms and combinatorics that are 
specific to one or the other. One of the most important reasons for choosing 
logarithms is that it is one of the topics investigated in Thompson et al. (2012). 
Hence, including logarithms in the investigation offers better possibilities to 
compare results involving Swedish and Finnish textbooks with similar results 
for United States textbooks. The other topics in Thompson et al. (2012) are 
exponents and polynomials. Compared to exponents, logarithms are more 
problematic for students. Also, there is a certain similarity between how log-
arithms relate to exponents, and primitive functions to derivatives, through an 
inverse operation: 𝑏𝑏 = ln 𝑎𝑎 if 𝑒𝑒𝑏𝑏 = 𝑎𝑎, 𝐹𝐹(𝑥𝑥) = ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 if 𝐹𝐹’ = 𝑓𝑓. This struc-
tural similarity might lead to similarities regarding opportunities for proof-
related reasoning worth studying. Finally, regarding combinatorics, this topic 
is perhaps the least theoretically advanced of all four. It requires no pre-
knowledge except about the addition and multiplication of numbers. The the-
ory is built on two simple principles only: the addition principle and the mul-
tiplication principle. It is also a topic within discrete mathematics and the most 
likely of the four to include proof by induction. Finally, combinatorics is more 
easily related to everyday situations than logarithms and integrals are. 

As shown in the descriptions above, topics have not been chosen based on 
an idea about where opportunities for learning proof are the most common, or 
the most rare; rather, it has been a question of diversity and variation. The four 
chosen topics differ in several ways, and therefore provide a variety of cases. 

4.2.2 Textbook series 
Swedish and Finnish textbook publishers usually provide one textbook per 
course. In the Swedish case this means five textbooks to cover Courses 1c, 2c, 
3c, 4, and 5, and in the Finnish case up to 13 textbooks to cover the mandatory 
Parts 1–10 and the supplementary Parts 11–13. The textbooks are produced 
on a free market without state control or certification. Schools make their own 
decisions regarding which (if any) textbooks to use, and teachers often have a 
say in this. Students do not have to pay for their books but can borrow them 
from their school, unless the school provides them for free.   

In Sweden, the textbook series Matematik 5000 (and its predecessors Ma-
tematik 1000, 2000, 3000, and 4000) has had a dominating position on the 
market for several decades. In a 2011 survey of enrollees in engineering pro-
grams at Örebro University, more than 80% said they had used textbooks from 
these series during their years at upper secondary school. Although publishers 
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are unwilling to reveal their market shares, based on informal contacts with 
teachers the impression is that Matematik 5000 continues to be the most pop-
ular textbook series on science and technology programs. Its main competitor 
is Matematik Origo; this textbook does not have the long history of Matematik 
5000, but was released after the national curriculum revision in 2011. If Ma-
tematik 5000 represents a traditional (by Swedish measures) approach to 
mathematics, Matematik Origo can be said to be more reform-oriented. In its 
foreword, its authors express an intention to highlight problem-solving, un-
derstanding, and communication. 

In Finland, one of the most popular textbook series for the long course is 
Pyramidi. The publisher offers this material in a Swedish translation, titled 
Ellips, for the country’s Swedish-speaking minority (approximately 5% of the 
population). In informal contacts with the publisher, they have confirmed that 
Pyramidi and another Finnish textbook series, Pitkä matematiikka, are the 
most common textbook series for students following the advanced syllabus.  

In view of the above, the textbook series Matematik 5000, Matematik Or-
igo, Pyramidi/Ellips, and Pitkä Matematiikka comprise a representative selec-
tion of textbooks from the Swedish and Finnish educational contexts. They 
reflect the curriculum material a vast majority of Swedish and Finnish upper 
secondary students preparing for higher studies in mathematics have used in 
recent years. Therefore, these materials were a natural choice for the investi-
gation in Paper I (which was the starting point for the research presented in 
this thesis). As the author of this thesis neither speaks nor reads Finnish but is 
a native Swede, the Swedish version Ellips was chosen instead of its Finnish 
original, Pyramidi. The second author of Paper I, who is native Finnish and 
fluent in Swedish and Finnish, conducted the analysis of Pitkä Matematiikka 
for Paper I. For the other papers of this thesis, this textbook series was ex-
cluded and all research was based on textbook material from Matematik 5000, 
Matematik Origo, and Ellips. This is of course a drawback when it comes to 
the possibility to generalize results to the Finnish setting. However, the origi-
nal Finnish version of Ellips, Pyramidi, is one of the most used Finnish text-
books. Focusing on Swedish-speaking students in Sweden and Finland, Ma-
tematik 5000, Matematik Origo, and Ellips represent what most students have 
used in upper secondary courses in mathematics in recent decades. 

Throughout the thesis the four respective textbook series are referred to 
using the codes Sw1, Sw2, Fi1, and Fi2, while different codes are used in the 
various papers (see Table 5). Bibliographic details are found in the reference 
list. 

For Paper II, student exercises from a Swedish university compendium in 
single variable calculus were included (Matematikcentrum, 2010). This book 
is referred to as SwU. The corresponding textbook (Persson & Böiers, 2010) 
has been used for several decades in many Swedish universities’ introductory 
courses in mathematical analysis. When new authors revised the text 
(Månsson & Nordbeck, 2011), most of the student exercises remained the 
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same (Matematikcentrum, 2011). University material was included to deter-
mine whether the analytical framework discussed in Paper II could also be 
useful for tasks on this level. 

Table 5. Analyzed textbook series 

Code Textbook series Publisher 

Sw1/SW1/S1/M5000 Matematik 5000 Natur & Kultur 
Sw2/SW2/S2/Origo Matematik Origo Sanoma utbildning 
Fi1/FI1/F1/Ellips Ellips Schildts Förlags Ab 
Fi2/FI2/F2 Pitkä matematiikka WSOY Oppimateriaalit Oy 

 

4.2.3 Textbook data 
All the analyzed upper secondary textbook series provide one book per course. 
As the four topics (logarithms, primitive functions, definite integrals, and 
combinatorics) are treated in different courses, all the corresponding textbooks 
from the chosen series have been analyzed. The only exception is Fi2, which 
has only been included in the analysis of integral calculus, and only in the 
work with Paper I. The included textbooks from the four series and their con-
nection to the four analyzed topics are summarized in Table 6. As there is 
material on primitive functions and definite integrals in two books each from 
Sw1 and Sw2, it is sometimes necessary to be clear about which textbook a 
certain material belongs to. Otherwise, references will only be to textbook se-
ries. 

Table 6. Analyzed textbooks 
Series Topic Book 
Sw1 (M5000) Logarithms 2c 
 Primitive functions 3c & 4 
 Definite integrals 3c & 4 
 Combinatorics 5 
Sw2 (Origo) Logarithms 2c 
 Primitive functions 3c & 4 
 Definite integrals 3c & 4 
 Combinatorics 5 
Fi1 (Ellips) Logarithms 8 
 Primitive functions 10 
 Definite integrals 10 
 Combinatorics 6 
Fi2 (Pitkä) Primitive functions 10 
 Definite integrals 10 
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All analyzed textbooks have a similar structure. They are divided into chap-
ters, sections, and sometimes subsections, and within each section (or subsec-
tion) are expository sections and exercise sets. Expository sections are typi-
cally followed by student exercise sets. Sometimes, chapters or sections start 
with a few introductory tasks (this was more common in the Swedish text-
books than in the Finnish ones). At the end of chapters, or at the end of the 
book, there are often additional sets of mixed problems meant for enrichment 
and rehearsal. Both expository sections and student exercises have been ana-
lyzed, as both kinds of textbook data are necessary to obtain a coherent picture 
of opportunities to learn proof-related reasoning (e.g., Li, 2000; Otten, 
Gilbertson, et al., 2014; Thompson et al., 2012).  

As most analyzed textbooks also cover other topics (besides logarithms, 
primitive functions, definite integrals, and combinatorics), relevant chapters, 
sections, and subsections had to be singled out. This was achieved by reading 
the content pages and skimming through the complete textbook material. Such 
sections, and their corresponding exercise sets, have usually been included in 
their entirety. Related complimentary tasks placed within sets of mixed prob-
lems at the end of chapters (or at the end of the book) have also been included 
in the analysis. In general, the stance has been to include rather than exclude 
material. However, some choices had to be made regarding what should count 
as “related” to the four topics. Such considerations are summarized below. 

In relation to logarithms, sections on powers and exponents that precede 
the introduction of logarithms have not been included, even if they are within 
the same chapters as logarithms. Sections on the derivative of the logarithm 
functions have not been included either, as it is only in the Finnish context that 
derivatives are introduced prior to logarithms. In relation to definite integrals, 
scientific applications with integral formulas for mass, energy, etc., have not 
been included, and neither have formulas for continuous probability distribu-
tions. There are two reasons for this. First, only the Swedish materials feature 
subsections on such material in their integral chapters (in the Finnish context, 
continuous probability distributions are treated in another, non-mandatory, 
continuation course). Second, the Swedish materials are unclear as to whether 
such integral formulas define the physical/probabilistic concepts or whether 
they are derivable properties. Finally, the Finnish textbooks provide some 
complementary material in short theory sections at the end of the books. This 
material was excluded because it was not part of the main text. 

Within the selected expository sections, all main mathematics results have 
been included in the analysis. A main mathematics result is one that the text-
book authors highlight, e.g., with a colored background or a frame, or by la-
belling it as a theorem, principle, rule, etc. Statements in the inline text are 
considered main results if they are accompanied by worked examples illus-
trating their use. In short, main mathematics results are the addressed theo-
rems. 
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The choice to include all main mathematics results in the analysis differs 
slightly from the method of Thompson et al. (2012). They first assembled a 
list of mathematics results (within the topics they studied) that were likely to 
be addressed in the textbooks. Then, they looked for these results in the text-
books and analyzed how they were addressed and justified. The inclusion of 
all addressed main results is motivated by a wish to eliminate the risk of bias 
in the conceptions regarding what ought to be treated (Clarke, 2013). In addi-
tion, the aim of this thesis is not to study textbook coverage of certain content 
but opportunities for proof-related reasoning vis-a-vis the content covered. 

In addition to main mathematics results, all worked examples in expository 
sections have been analyzed, as have all student exercises. The total numbers 
of analyzed mathematics results, worked examples, and student exercises are 
summarized in Table 7. 

Table 7. Size of data sample 

Textbook series Mathematics results Worked examples Student tasks 

Matematik 5000 29 78 760 
Matematik Origo 27 83 876 
Ellips 42 145 747 
Pitkä 28 57 572 

 
In Papers I and IV, the analysis was restricted to integral calculus. Paper II 

focused on proving tasks only; that is, tasks explicitly asking the student to 
“prove” or “show” something. Paper III focused on expository sections and 
included the complete definition-theorem-proof chain of the representation 
formula 𝐹𝐹(𝑥𝑥) + 𝐶𝐶 for the primitive functions to 𝐹𝐹′(𝑥𝑥). The analysis also in-
corporated material presented immediately before, between, and after the def-
inition, theorem, and proof. 

The analyses have taken the perspective of the student in the sense that they 
are based on what students encounter in their textbooks. Teacher guides can 
explain textbook authors’ intentions and include recommendations for class-
room enactment of textbook material. Such information can be valuable in 
judging students’ opportunities to learn from the textbook material. However, 
the role of teacher guides depends on how, and to what extent, they are used. 
While elementary school teachers are known to use teacher guides, there is no 
such widespread tradition among Swedish and Finnish upper secondary math-
ematics teachers. Publishers do not always supply teacher guides. For in-
stance, there are no teacher guides for Fi1. When the Swedish series Sw1 and 
Sw2 were published in 2011 in connection to the implementation of a new 
national curriculum, these series only included student textbooks. Teacher 
guides were published several years later, and are now only available as digital 
resources. For these reasons, teacher guides have not been included in the 
analyses.  
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4.2.4 Remarks on generalizability 
As is evident from the descriptions above, neither the topics nor the textbook 
series or the analyzed sections within them were chosen randomly. The topics 
were chosen to provide a diverse set of interesting cases, and the textbook 
series were chosen to represent what most science and technology students 
use. When all relevant textbook sections had been identified, there was no 
further selection involved – all addressed main mathematics results, all 
worked examples, and all student exercises were analyzed. This has important 
implications when it comes to the generalizability of the findings. The statis-
tical significance of the findings in relation to all topics and all available text-
book series cannot be measured using statistical tests. Such generalizations 
can only be guesses based on assumptions about the nature of the topics, text-
book authors’ didactical preferences, or contemporary norms for textbook de-
sign. On the other hand, all material on the chosen topics from the chosen 
series was analyzed. Thus, the findings can be used to draw conclusions about 
what most Swedish and Finnish science and technology students encounter in 
their textbooks when they study logarithms, primitive functions, definite inte-
grals, and combinatorics at upper secondary level. 

4.3 Analytic procedures and considerations 
Most of the textbook analyses underpinning this thesis were conducted during 
the work with Papers I and IV. Below is a detailed account of the more prac-
tical aspects of these analyses, followed by subsections focused on the differ-
ing and unique aspects of the analyses in the other papers. Common to all 
papers is that the textbook material has been studied from a student perspec-
tive. This is elaborated on in the last subsection. 

4.3.1 Papers I and IV 
On a global level, the textbook analysis adhered to an iterative procedure. The 
first topic to be analyzed was integral calculus (i.e., primitive functions and 
definite integrals). First, a preliminary analysis of all materials on integral cal-
culus in Sw1 and Sw2 was conducted by the first author of Paper I. All in-
stances of analytical difficulties were then discussed with the second author 
of Paper I, and more detailed principles for the classification of tasks and jus-
tifications were determined. Then, Sw1 and Sw2 were re-analyzed. At this 
stage, textbook material from Fi1 was also analyzed. This work was paralleled 
by the second author, who analyzed Fi2. The second author translated expos-
itory sections in Fi2 to Swedish to enable the double-checking of coding. In 
addition, all the tasks in Fi2 evaluated as proof-related or ambiguous (i.e., it 
was unclear whether they should be viewed as proof-related) were translated 
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and discussed. Through this procedure, we agreed on the coding and ensured 
that our analyses were based on the same principles. 

For Paper IV, textbook material on logarithms and combinatorics from 
Sw1, Sw2, and Fi1 was analyzed. This analysis was guided by the principles 
agreed upon during the work with Paper I. To further ensure validity and reli-
ability, the analysis of the tasks proceeded as follows. First, the analysis was 
restricted to “ordinary” tasks; i.e., introductory tasks and special activities at 
the end of the book sections were skipped. This was to determine whether and 
how the coding principles needed any adaptation for use on the new topics. A 
sample of tasks representing different natures and types of reasoning, as well 
as tasks found to be difficult to classify, were chosen and discussed with col-
leagues at a seminar. Based on this discussion, final analytical principles were 
settled upon, and were then applied during a final coding iteration of the com-
plete data set to logarithms and combinatorics. 

In the analysis of expository sections, the main unit of analysis has been a 
main result, along with its justification(s) (if such can be found near the state-
ment itself rather than in a separate theory section at the end of the book). The 
main results’ justifications were then classified in terms of type of reasoning, 
as shown in Table 1 in Subsection 3.2.1. Notes were also taken on the labelling 
of the main results and their justifications, generality, and logical structure in 
the formulation of the main results, proof techniques in justifications, and 
whether the justifications were placed before or after the statements. Such de-
tails were collected to be able to discuss opportunities to learn proof in terms 
of transparency and visibility.  

In the Swedish context, integral calculus is introduced in Course 3c and 
continued in Course 4. This has the consequence that some mathematics re-
sults are addressed twice in the same textbook series. However, when such 
recurrence takes place in Book 4, the mathematics results are always ex-
pressed as reminders without justifications or expressed with exactly the same 
justifications as in Book 3c. Therefore, these statements were not coded twice 
but only according to their justifications when they first occur in Book 3c. 
This means that within each textbook series, no mathematics result appears 
more than once in the data. 

There are a few occasions when textbooks offer more than one type of jus-
tification for a mathematics result. For instance, a specific case is discussed 
prior to the formulation of a general mathematics result, after which a general 
proof is presented. In Paper I double coding was avoided, and such mathemat-
ics results were coded as justified with a general proof. In Paper IV, however, 
such mathematics results received double codes. When findings from Papers 
I and IV were compared, this difference was taken into consideration.  

In addition to main mathematics results and their justifications, all worked 
examples in expository sections have been analyzed. This analysis has fol-
lowed the same principles and procedures as the analysis of student exercises. 
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In the analysis of exercise sets, the unit of analysis has been the complete 
textbook formulation of an exercise with its own identifier. If an exercise has 
been divided into parts, typically denoted (a), (b), (c), and so on, each part has 
been counted as a separate task. All tasks have been classified according to 
type and nature of reasoning, as described in Subsections 3.2.2 and 3.2.3. In 
principle, an exercise can receive several codes if it asks the student to accom-
plish several things. However, in no case did any exercise receive double 
codes for type of reasoning. In a few cases, double codes for nature of reason-
ing were assigned. Details on double coding can be found in the separate pa-
pers. 

The two types of reasoning can occur in combination with all natures of 
reasoning. However, one can assume that a typical task in the counterexample 
category consists of refuting a general statement with a specific example. 
Thompson et al. (2012) chose not to designate a type of reasoning for such 
tasks (nor tasks in the outline a proof category). In Papers I and IV, it was 
decided that tasks asking for counterexamples would be counted as general 
(as it must be a general statement that they refute). One can argue that, if the 
student is to provide a specific example, it would be more stringent to view 
such tasks as specific. However, as no tasks asking for counterexamples were 
found in the analyzed textbooks, this decision was of no consequence to the 
findings. 

4.3.2 Papers II, III, and V 
In Paper II, the student exercises in integral calculus analyzed for Paper I were 
further analyzed. However, no exercises from Fi2 were included. Instead, ex-
ercises from a university text, SwU, were included. Proving tasks (exercises 
explicitly asking the student to “prove” or “show” something) were sorted out. 
All such tasks in Sw1, Sw2, and Fi1 had already been categorized as proof-
related and classified as specific or general (according to the principles for 
type of reasoning described in Table 2 in Subsection 3.2.2). Proving tasks in 
SwU were identified and coded accordingly. In the next step, all general prov-
ing tasks were classified according to the function generality framework de-
scribed in Table 4 in Subsection 3.3.1. This required a detailed collection of 
information about the function classes involved in the tasks.  

Some extra distinctions, or analytical clarifications, had to be made during 
the analytical process. First, there were cases in which proving tasks expressed 
relations between two classes of functions. In such cases, the classification 
was based on the most general (in the sense of the function generality frame-
work) of the two classes. Second, the classification was based on mathemati-
cal characteristics that the student could be expected to know about and make 
use of. For instance, a task involving parabolas (formulated in general terms 
without explicit algebraic expressions) was categorized as finitely general, as 
parabolas are graphs of second-degree polynomials and this fact could be used 
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to solve the problem. In another example, the student was asked to prove 
Rolle’s theorem: if 𝑓𝑓′(𝑥𝑥) = 0 everywhere in an interval, then 𝑓𝑓 is constant 
there. Here it is part of the conclusion that the class of functions under consid-
eration is a one-parameter family. Obviously, this cannot be elicited in the 
proof; hence, the task was classified as infinitely general.  

Paper III takes as its starting point the analytical difficulties encountered 
during the work with Paper I. Condensed descriptions of how Sw1, Sw2, and 
Fi1 introduce and define primitive functions, formulate the representation for-
mula 𝐹𝐹(𝑥𝑥) + 𝐶𝐶, and justify this formula, were prepared using the rubrics and 
structure described in Subsection 3.3.2. The classification of type of reason-
ing, and the possibilities to draw conclusions about opportunities to learn 
proof-related reasoning based on such a classification, were then problema-
tized in relation to these accounts. 

Paper V combines the results of Papers I and IV and includes a topic-by-
topic analysis of the findings in order to characterize and contrast the four 
studied topics. An important tool is the diagram in Figure 2 in Subsection 
3.3.3. These characteristics are then discussed from the point of view of purely 
mathematical details of the mathematics content. Aside from this, the analysis 
includes no new steps or considerations beyond what has been accounted for 
in the section above. The discussion, however, requires some fundamental 
knowledge of the mathematics involved. A selection of important details is 
summarized in the Appendix. 

4.3.3 Textbook reader perspective 
All textbook analyses have been conducted from the perspective of a student 
reading the book and doing its exercises. A textbook reader can be conceptu-
alized in different ways. Weinberg and Wiesner (2011) distinguish between 
the empirical reader, the implied reader, and the intended reader. The empiri-
cal reader refers to the actual reader of the text. This perspective has not been 
utilized in this thesis; students’ ways of reading, comprehending, and respond-
ing to textbook material have not been investigated. The implied reader refers 
to the competencies the empirical reader needs in order to correctly interpret 
the text. In principle, the implied reader can be inferred from an analysis of 
the text itself: “the mathematical community has well-established conventions 
for writing, and mathematicians share a common understanding of the con-
cepts that textbooks describe; consequently, the different attributes identified 
by expert readers all contribute to a coherent description of a textbook’s im-
plied reader” (Weinberg & Wiesner, 2011, p. 52). Finally, the intended reader 
is the idea of the reader formed in the mind of the author.  

The attributes of the intended reader cannot be revealed by studying the 
textbook only, but if textbook authors themselves are expert readers and suc-
cessful in constructing the textbook for their intended reader, the intended and 
implied readers coincide. This is the perspective taken in this thesis. There has 
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not been a thorough analysis of the attributes of the textbooks’ implied stu-
dents, or of the textbook authors’ intended students. Analyses have been con-
ducted from the perspective that the intended student is one that follows the 
textbook strictly, works with all the material, interprets it correctly, and com-
prehends it. That is, the intended and implied students are the same. Tasks 
have been coded based on the reasoning required for a correct solution. The 
answer sections have been used to better understand the textbook authors’ in-
tentions and expectations. Proof has been interpreted in the sense of 
Stylianides (2007), as described in Subsection 2.2.1. Occasionally, it has been 
necessary to check previous textbook sections to determine whether or not a 
textbook justification can be considered a proof. 

Stylianides (2014) discusses four different perspectives for textbook anal-
ysis: student, mathematical, teacher, and textbook author. Here, the student 
and teacher perspectives refer to an a priori defined student category, or a 
teacher planning to enact textbook material in a specific classroom context. 
Neither of these perspectives has been applied in this thesis; the mathematical 
and the textbook author perspectives come closer. Justifications in expository 
sections have been coded based on whether or not they are general proofs. 
Tasks have been coded based on the type of reasoning required for a mathe-
matically correct solution from a student who correctly interprets the task. 
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5 Summary of papers 

In this chapter, the five papers are summarized. The focus is on their results, 
but the summaries also include their motives, research questions, and meth-
ods. 

5.1 Paper I 
Paper I is guided by the following research question: What is the nature and 
extent of the reasoning and proving opportunities offered by secondary-level 
integral calculus textbooks in Finland and Sweden? There were several rea-
sons for this direction: the extensive use of textbooks in mathematics class-
rooms around the world, the textbooks’ assumed effect on student learning, 
students’ well-documented difficulties with proofs, the central position of cal-
culus in many countries’ upper secondary school curricula, and the fact that 
proofs and calculus have been pointed out as problematic in the transition be-
tween secondary and tertiary education. In addition, the neighboring countries 
Sweden and Finland offer interesting cases as they have similar educational 
systems, although Finland has outperformed Sweden in international surveys 
like PISA. 

Textbook material on primitive functions and definite integrals from the 
two most widely used textbook series in each country was analyzed. A total 
of 93 statements and justifications in expository sections, 235 worked exam-
ples, and 1,962 student exercises were classified according to type and nature 
of reasoning, following an analytical approach adopted (and adapted) from 
Thompson et al. (2012). 

The results show that the percent of justified statements in expository sec-
tions varies considerably between the textbooks, from 35% to 89%, but that 
Finnish textbooks are more likely than their Swedish counterparts to provide 
justifications. When there are justifications, in the Finnish books they are al-
most always general proofs, whereas the Swedish books mostly base their jus-
tifications on specific cases. The structure of the mathematical theory is made 
more visible in the Finnish books by use of clear labeling of statements and 
proofs, while the word “proof” is virtually absent in the Swedish books. In the 
Swedish books the justifications are placed before the statements, while the 
Finnish ones place them after as often as before. The Finnish books more often 
have proof-related worked examples. 
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The percent of proof-related tasks in the exercise sets is around 10%, and 
varies from 7% to 18% when textbook series are compared. The percentage is 
higher in the Swedish books than in the Finnish ones, 14% compared to 8%. 
Overall, “develop an argument” is the dominating nature of reasoning in 
proof-related task, and more so in the Finnish textbooks (62% and 76% re-
spectively) than in the Swedish ones (35% and 46% respectively). Other na-
tures of reasoning are hence represented more in the Swedish books, and in 
one of them “investigate a conjecture” is the most common. The Swedish 
books have a few “identify or correct a mistake” tasks, while the Finnish ones 
do not. 

The conclusion is that proofs are more visible in the Finnish textbooks, and 
that the Finnish textbooks more often offer opportunities for learning general 
proof and tend to focus on proofs as verification. Proof-related tasks in Swe-
dish textbooks reflect a higher variation in proof-related activities and put 
more emphasis on conjecturing and inductive reasoning, but offer fewer op-
portunities for transition from an empirical to a deductive proof scheme. In 
terms of praxeologies, the Finnish textbooks’ treatment is closer to the deduc-
tive praxeology of university calculus, while that in the Swedish books falls 
within the pragmatic praxeology. 

Paper I includes a comparison with research findings about United States 
textbooks that shows that Finnish textbooks offer justifications more often, 
and more frequently in the form of general proofs. Regarding proof-related 
tasks, Swedish books are like an average United States textbook when it 
comes to percentage of general tasks and variation in natures of reasoning. 

5.2 Paper II 
In Paper II, three research questions are pursued: How can “degree of gener-
ality” in proving tasks involving functions be framed? What analytical diffi-
culties arise when proving tasks are classified according to function general-
ity? What can classification according to function generality reveal about text-
books that a “specific-or-general” classification cannot? There are two main 
motives for this study. The first involves students’ well-documented difficul-
ties understanding the difference between a general argument and what can be 
concluded from a specific case. The other is that the work with Paper I re-
vealed analytical difficulties in relation to the classification of textbook tasks 
as either specific or general, and that general tasks could be general in different 
ways. 

Paper II suggests and tests a framework for the classification of tasks’ level 
of generality based on what class of functions a task asks for reasoning about: 
reasoning about specific functions is non-general, while reasoning about par-
ametric families of functions is finitely general, and reasoning about even 
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larger classes of functions is infinitely general. The classification’s pedagogi-
cal relevance is motivated by the different demands these types of reasoning 
place on the student. 

The framework is tested on proving tasks (that is, tasks with the explicit 
prompt to prove or show something) in integral calculus in three upper sec-
ondary textbooks (two Swedish and one Finnish) and one Swedish textbook 
for a university calculus course. A total of 80 tasks are analyzed. 

The implementation of the analysis shows that proving tasks are mostly 
easy to classify according to function generality. Exceptions to this are tasks 
in which it is unclear which function class is focused on, or whether the stu-
dent can be assumed to be familiar with usable parametric representations. 
Another difficult situation is when the property to prove is a statement about 
the size of a class of functions, for instance a uniqueness property. There are 
situations in which a proof requires reasoning with classes of functions that 
are more general than the statement itself. 

The results of the analysis reveal that there is not necessarily a correlation 
between the number of general proving tasks and the opportunities for stu-
dents to engage in reasoning about arbitrary functions. Two of the studied 
textbooks were similar, in the sense that approximately ¾ of their proving 
tasks were general (according to the principles applied in Paper I).  In one of 
them (a Swedish upper secondary textbook), several of the general proving 
tasks were of non-general function generality, and only one was infinitely gen-
eral. The other (a Finnish upper secondary textbook) had no non-general tasks, 
and a large part were of infinite generality. This means that an analysis of 
function generality can help determine the extent to which a textbook associ-
ates the words “showing” and “proving” with general statements and offers 
opportunities to reason about arbitrary functions, or sets of functions, that do 
not lend themselves to parametric representations. 

5.3 Paper III 
The articulated aim in Paper III is to examine aspects of proof-related reason-
ing that risk being missed when a framework like the one by Thompson et al. 
(2012) is used. The paper also aims to contribute to a more refined conceptu-
alization of opportunities to learn proof-related reasoning in mathematics text-
books. The background is that several research studies have used similar ana-
lytical approaches, with the advantage that findings are easily comparable. 
The disadvantage is the risk that important aspects are constantly missed. 

The investigation in Paper III is based on two ideas. The first is that ana-
lytical difficulties are indicators of potential weaknesses in the framework that 
is used. The second is that by comparing different textbooks’ coverage of the 
same mathematics content, differences can be discovered that are not captured 
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by the framework. Such differences indicate areas where the framework can 
be developed. 

An in-depth analysis of textbook passages from three different upper sec-
ondary textbooks (two Swedish and one Finnish) was conducted. The pas-
sages included the textbooks’ introduction of primitive functions and the proof 
of their uniqueness (up to an additive constant). Detailed accounts of analyti-
cal issues, and of differences not captured by the framework, were created. 

The findings are condensed into four suggestions for inclusion in an anal-
ysis of justifications in expository sections:  

• Definitions and theorems and levels of generality in statements and 
justifications. There are different levels of generality in statements 
and justifications, and the validity of a justification can only be 
judged in relation to the statement it justifies and to relevant defini-
tions.  

• The forms of representation that are used and their purposes. The 
use of words, symbols, and diagrams affects clarity, precision, and 
understanding of justifications.  

• Structural aspects of the mathematical theory. The role of proof in 
mathematics can be more or less explicit depending on how the log-
ical structure within and between definitions, statements, and justi-
fications is emphasized.  

• The ordering of statements, justifications, student activities, and 
worked examples. Student activities and informal justifications 
placed before statements offer opportunities for conjecturing, while 
general proofs placed after a statement emphasize verification. 

All the suggestions focus on object properties of proof-related reasoning and 
hence on opportunities for a reification of the proof concept. 

5.4 Paper IV 
Paper IV is guided by a research question similar to that in Paper I: What 
characterizes opportunities to learn proof-related reasoning offered by Swe-
dish and Finnish upper secondary textbooks? The underlying reasons were 
also similar: students’ well-documented difficulties with proof and textbooks’ 
central role in classroom practice. In addition, Paper IV aims to clarify which 
results from Paper I are generalizable to algebraically oriented topics. 

Textbook material on logarithms and combinatorics from three of the text-
book series (two Swedish and one Finnish) analyzed in Paper I was included. 
A total of 33 statements’ justifications in expository sections, 128 worked ex-
amples, and 992 student exercises were analyzed and classified according to 
type and nature of reasoning, following the same principles as in Paper I.  

Most findings about logarithms and combinatorics are in line with those 
concerning integral calculus reported in Paper I. Expository sections typically 
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address general results and label them as laws or principles. The Finnish books 
have a more detailed and formal exposition than the Swedish ones, and head 
more directly for general formulations. On the other hand, the Swedish books 
usually offer activities through which general results can be conjectured. 
While it is slightly more common for a main result to be justified in the Swe-
dish books (in integral calculus, justifications are more frequent in the Finnish 
ones), in the Finnish books justifications are almost always general proofs 
whereas those in the Swedish books are most often based on specific cases. 
Justifications often precede the statements. Proofs are more visible in the Finn-
ish books, which use phrases like “we prove”, but proofs are never labeled as 
such (which they are in the Finnish books on integral calculus). Only the Swe-
dish books contain worked examples that are proof-related (in integral calcu-
lus, proof-related worked examples are more common in the Finnish than the 
Swedish books). 

The Swedish books offer more exercises on logarithms and combinatorics 
than the Finnish ones do, and a higher percentage of the exercises are proof-
related. But while only 35% of the proof-related tasks are general in one of 
the Swedish textbook series and 60% in the other, almost all proof-related 
tasks in the Finnish books are general. In the Finnish books, all but one of 
these tasks are proving tasks. In the Swedish books, arguments are asked for 
with wording other than “prove that” or “show that”, for instance as “explain 
why” or “motivate why”, and about a third of the proof-related tasks ask the 
student to make or investigate a conjecture. There are also proof-related tasks 
involving other natures of reasoning. However, none of the analyzed books 
contain tasks that ask for a counterexample or an outline of a proof. 

Two “new” natures of reasoning were identified during the analysis: ex-
plaining the thinking behind a presented argument, and matching data in a 
contextual description to the premises of a specific theorem. Such activities 
are suggested as input to a discussion about revisions of the analytical frame-
work itself, and of what competencies students need to practice and develop 
in relation to proofs. 

The results on logarithms and combinatorics are also combined with those 
on integral calculus from Paper I. Together, they convey a picture that oppor-
tunities to learn proof-related reasoning are generally few, but are oriented 
more toward deductive reasoning in the Finnish textbooks and more toward 
empirical reasoning and conjecturing in the Swedish ones. 

Finally, the results are compared with findings about logarithms in United 
States textbooks reported in Thompson et al. (2012). The Finnish and Swedish 
textbooks tend to be more oriented toward general justifications than an aver-
age United States textbook. Proof-related student tasks are more often general 
in Swedish and Finnish books, and justifications in expository sections are 
always general. In the typical United States textbook, only half of the justifi-
cations are general. The percentage of proof-related tasks is higher in a typical 

 63 

address general results and label them as laws or principles. The Finnish books 
have a more detailed and formal exposition than the Swedish ones, and head 
more directly for general formulations. On the other hand, the Swedish books 
usually offer activities through which general results can be conjectured. 
While it is slightly more common for a main result to be justified in the Swe-
dish books (in integral calculus, justifications are more frequent in the Finnish 
ones), in the Finnish books justifications are almost always general proofs 
whereas those in the Swedish books are most often based on specific cases. 
Justifications often precede the statements. Proofs are more visible in the Finn-
ish books, which use phrases like “we prove”, but proofs are never labeled as 
such (which they are in the Finnish books on integral calculus). Only the Swe-
dish books contain worked examples that are proof-related (in integral calcu-
lus, proof-related worked examples are more common in the Finnish than the 
Swedish books). 

The Swedish books offer more exercises on logarithms and combinatorics 
than the Finnish ones do, and a higher percentage of the exercises are proof-
related. But while only 35% of the proof-related tasks are general in one of 
the Swedish textbook series and 60% in the other, almost all proof-related 
tasks in the Finnish books are general. In the Finnish books, all but one of 
these tasks are proving tasks. In the Swedish books, arguments are asked for 
with wording other than “prove that” or “show that”, for instance as “explain 
why” or “motivate why”, and about a third of the proof-related tasks ask the 
student to make or investigate a conjecture. There are also proof-related tasks 
involving other natures of reasoning. However, none of the analyzed books 
contain tasks that ask for a counterexample or an outline of a proof. 

Two “new” natures of reasoning were identified during the analysis: ex-
plaining the thinking behind a presented argument, and matching data in a 
contextual description to the premises of a specific theorem. Such activities 
are suggested as input to a discussion about revisions of the analytical frame-
work itself, and of what competencies students need to practice and develop 
in relation to proofs. 

The results on logarithms and combinatorics are also combined with those 
on integral calculus from Paper I. Together, they convey a picture that oppor-
tunities to learn proof-related reasoning are generally few, but are oriented 
more toward deductive reasoning in the Finnish textbooks and more toward 
empirical reasoning and conjecturing in the Swedish ones. 

Finally, the results are compared with findings about logarithms in United 
States textbooks reported in Thompson et al. (2012). The Finnish and Swedish 
textbooks tend to be more oriented toward general justifications than an aver-
age United States textbook. Proof-related student tasks are more often general 
in Swedish and Finnish books, and justifications in expository sections are 
always general. In the typical United States textbook, only half of the justifi-
cations are general. The percentage of proof-related tasks is higher in a typical 

65



 64 

United States textbook than in the Finnish books, but lower than in the Swe-
dish ones. Swedish and United States textbooks are similar regarding the var-
iation in nature of reasoning in proof-related tasks, and are not as focused on 
proving tasks as the Finnish books are. 

5.5 Paper V 
Paper V aims to answer the following research question: What topic-specific 
characteristics of opportunities to learn proof-related reasoning are seen in up-
per secondary school textbooks? An underlying assumption is that different 
topics offer different kinds of opportunities for learning proof that need to be 
described, explained, and utilized. It has been advocated that reasoning and 
proof be a central part of all topics in the school curriculum, but research has 
indicated that curriculum materials offer teachers limited guidance in this.  

The quantitative results regarding types and natures of reasoning reported 
in Papers I and IV are used as a starting point. The data sample consists of 
textbook material from three textbook series (two Swedish and one Finnish) 
and four mathematics topics (logarithms, primitive functions, definite inte-
grals, and combinatorics), and includes 98 justifications of statements in ex-
pository sections and 2,272 student exercises. Topic-specific patterns in ex-
pository sections are uncovered and characterized by studying the relation be-
tween the proportion of addressed results that are justified and the percentage 
of justifications that are general proofs. Similarly, patterns in exercise sets are 
described in reference to how the proportion of tasks with proof-related rea-
soning relates to how such tasks are distributed over different types and na-
tures of reasoning.  

The percentage of proof-related tasks is low in all topics in all textbooks, 
and never exceeds 25%. Most proof-related tasks are of the “develop an argu-
ment” nature – in most cases there are more tasks in this category than in the 
other categories together. Given this, the findings in Paper V can be summa-
rized as follows. 

Logarithms are characterized by few justified mathematics results; but 
when justifications exist, they are general proofs. Proof-related tasks are less 
frequent than in the other topics, but relatively many of them involve general 
cases, at least in two of the three investigated textbooks. Logarithm sections 
also offer relatively many “make a conjecture” tasks. 

The treatment of primitive functions differs among the textbook series. Jus-
tifications are relatively common in two of them, but in only one is it the gen-
eral arguments that dominate. Proof-related tasks are more common than in 
sections on logarithms. There are almost as high percentages of “investigate a 
conjecture” tasks as there are of “developing an argument” tasks. 

Definite integrals is a topic in which addressed mathematics results are sel-
dom justified; even less so than in sections on primitive functions. In addition, 
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existing justifications tend to be based on specific cases. Approximately, 
proof-related tasks on definite integrals are as common as on primitive func-
tions, and hence more common than in sections on logarithms. Compared to 
primitive functions, proof-related tasks are more often general. “Investigate a 
conjecture” tasks are relatively common.  

Combinatorics, finally, is characterized by a high percentage of justified 
statements, but general arguments are only emphasized in one of the text-
books. Proof-related tasks are more common than in sections on logarithms, 
but in relation to the other investigated topics there are no clear patterns except 
that “develop an argument” is the most dominant in combinatorics. There are 
also relatively many “investigate a conjecture” tasks. 

The paper also suggests explanations for the topic-specific findings that 
originate in the mathematics itself, and uses mathematical details of the four 
topics to point to aspects of proof-related reasoning that could be emphasized 
more: 

Logarithm rules look very similar and are proven in similar ways, and it is 
easier to construct a general proof than to find a generic case. Hence, it is a 
reasonable choice to give general proofs for some formulas and omit justifi-
cations for the rest of them. Instead, students can be asked to conjecture and 
prove the general formulas. This opportunity can be made more visible in the 
textbooks. The investigated textbooks also miss the opportunity to discuss ex-
istence and uniqueness, which are mathematical features that are frequently 
discussed in university mathematics. 

As logarithm rules correspond to power laws, calculation rules for primi-
tive functions correspond to differentiation rules. All of them can be proven 
using the same technique: differentiation. This may explain why justifications 
are often omitted in sections on primitive functions. If results are presented 
for families of functions, generic cases can easily be constructed, which is a 
plausible explanation for why two of the textbooks base their justifications on 
specific cases. A possible conclusion is that there is an opportunity here to let 
the student make conjectures from generic cases and prove them. This oppor-
tunity is not fully utilized by the textbooks. Another example is the represen-
tation formula 𝐹𝐹(𝑥𝑥) + 𝐶𝐶 for primitive functions. This is a rare example of how 
an infinite class of objects can be represented by a closed formula. In addition, 
it is a result that can be formulated as an equivalence and proven by studying 
necessity and sufficiency one at a time. This is another opportunity that is not 
utilized by more than one of the analyzed textbooks. 

The theoretical complexity of definite integrals is a plausible explanation 
for why justifications are few and general proofs are rare. With only one ex-
ception, the results addressed in expository sections are calculation principles. 
Only one or two are presented with general proofs. However, two of the books 
contain an example in which a principle from physics is used as an argument 
for a mathematical theorem. Therefore, even if this topic offers few opportu-
nities for learning general proof, there can be opportunities for connecting 
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mathematical principles to applications, and for explorative activities. The in-
vestigation of student tasks also indicates that this topic offers relatively many 
opportunities for conjecturing. 

Combinatorics has a rather simple theoretical foundation (the addition and 
multiplication principles), which may explain the high number of justified 
statements. Here generic cases come naturally, as do opportunities for transi-
tions between different representations. One can argue that such transitions 
are central to completing a proof, which is in contrast to the other topics in 
which algebraic manipulations are often the core of the proofs. There is also 
an opportunity for the inclusion of completely non-algebraic arguments con-
cerning existence if content such as the Dirichlet box principle is included in 
the curriculum. 
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6 Discussion 

The work with this thesis has been guided by three research questions that also 
encompass the research questions of its separate papers: 

1. What characterizes opportunities to learn proof-related reasoning 
offered by Swedish and Finnish upper secondary mathematics text-
books? 

2. What topic-specific characteristics of opportunities to learn proof-
related reasoning are seen in upper secondary mathematics text-
books? 

3. How can opportunities to learn proof-related reasoning be concep-
tualized and analyzed? 

In this final chapter of the thesis, the first section (6.1) will focus on the em-
pirical findings related to the first and second research questions. They are 
discussed against the background of student difficulties and misconceptions 
that are well-documented in the literature. The third research question is dis-
cussed in the second section (6.2). This discussion is based on the adaptations 
and refinements to the analytical frameworks that have been made in the var-
ious papers. Then follows a section (6.3) on implications for teaching, with 
suggestions for improving opportunities to learn proof-related reasoning. The 
chapter concludes with a methodological discussion (6.4) and suggestions for 
future research (6.5). 
    
6.1 Contributions from empirical findings 
The summary of empirical findings is structured “top-down”. First come the 
general characteristics seen in the accumulated data and throughout most of 
the analyzed data material. Then, the discussion zooms in on specific features 
of countries and topics. This structuring serves two purposes. The first is to 
bring some order to what the character of opportunities to learn proof-related 
reasoning is. The other is to suggest possible explanations of what it is that 
determines this character. Findings presented as context-specific can be the 
result of national steering documents or educational traditions of that country, 
while findings presented as topic-specific can be a consequence of purely 
mathematical aspects of that topic. 

Many findings are based on absolute numbers or relative frequencies of 
justified statements, general proofs, proof-related tasks, general tasks, etc., in 
the textbooks. The impression might be that the higher the number, the better 
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the book; this would be a misinterpretation. There is a limit to what a textbook 
can cover and how many tasks a student has time for. If all theorems are for-
mulated in detail in the textbook, then there is little room for students’ inquiry 
into the exact circumstances under which a statement is true. If all statements 
are justified with general proofs, then there is no room for the students to pro-
vide the proofs. If all tasks are proof-related, then there are few opportunities 
to develop other competencies. If all proof-related tasks are general, then stu-
dents will not have opportunities to learn the different roles of specific and 
general arguments. If all proof-related tasks are related to developing argu-
ments, then there is no room for the evaluation of arguments. The list can be 
made longer. It is impossible to say what the ideal percentage of proven state-
ments and proof-related tasks is, or what the perfect mix of types and natures 
of reasoning is. But low absolute numbers indicate few opportunities to learn, 
and low relative frequencies indicate little emphasis on this kind of reasoning, 
unless students are provided other learning opportunities. 

6.1.1 General findings 
Throughout the analyzed material there are certain findings that seem to be 
independent of textbook series and topic. Here, these are summarized as three 
general findings. 

The first is that proof and proof-related reasoning do not have a prominent 
position in the textbooks. In one of the textbooks, 23% of the logarithm tasks 
are proof-related. This is the highest observed frequency in the analyzed text-
book material; on average, approximately 10% of the tasks are proof-related. 
As the definition of proof-related is broad and includes almost all kinds of 
reasoning, this means that the opportunities for proof-related reasoning are 
few. Tasks asking the student to “prove” or “show” are but a subset, so oppor-
tunities for constructing proofs are even more rare. In addition, there are few 
proof-related worked examples that can serve as role models for the students. 

The figures for Swedish and Finnish textbooks are higher than those re-
ported for United States non-geometry textbooks, in which approximately 5% 
of the tasks were proof-related (Thompson et al., 2012). On the other hand, 
there was great variation between United States textbook series. In geometry, 
for instance, 20–38% of the tasks were proof-related (Otten, Gilbertson, et al., 
2014). When comparing the figures from these studies one must also bear in 
mind that, even though the research groups have used the same analytical 
frameworks, they may have made different analytical distinctions. 

In expository sections, approximately 60% of addressed mathematics re-
sults are justified. The figures in the United States textbooks were the same. 
In the Finnish case the justifications are mostly proofs, while in the Swedish 
case they usually are not. It is difficult to use these figures to draw conclusions 
about opportunities to learn proof. A mathematics result presented without 
proof can be an opportunity for the student to find the proof. However, this 
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opportunity is untapped as there are only a few examples of the textbooks 
explicitly asking the student to provide an omitted proof. 

The second general finding is closely related to the first: there are few op-
portunities for reasoning with general cases. Only half of the proof-related 
tasks in the Swedish books are general. In the Finnish books three quarters are 
general, but the Finnish books have a lower frequency of proof-related tasks. 
These figures are similar to those reported for United States textbooks 
(Thompson et al., 2012). This means that such an important feature of mathe-
matics, that pure reasoning can offer absolute certainty about universal state-
ments, is an exception in the textbooks’ exercises. The observed pattern is also 
that the higher proportion of proof-related tasks, the lower the share of tasks 
that include reasoning about general cases. 

The third general finding is that there is little variation in the structure of 
statements, proving methods, and natures of reasoning activities. Addressed 
mathematics results are usually general, universal conditional statements, typ-
ically in the form of a formula or calculation principle: logarithm rules, ele-
mentary primitive functions, rules of integration, and formulas for permuta-
tions and combinations. There are a few examples of existence results, but 
none of uniqueness results. There is only one example in the analyzed material 
where it is emphasized that a statement is an equivalence. Most proofs are 
direct derivations. There are no examples of contrapositive proofs or proof by 
contradiction. Sometimes the textbooks use specific cases to justify a result 
and then follow up by presenting a general proof, but in no cases are two dif-
ferent valid proofs presented for the same statement.  

The most common proof-related task involves developing an argument: to 
prove, to show, or to explain something. Typically, it is the justification of a 
formula that the task asks for. To some extent there are tasks focusing on mak-
ing or investigating conjectures, and occasionally on the evaluation of argu-
ments, or finding or correcting errors. But such tasks are few compared to 
those involving developing arguments. Students are never asked to provide a 
counterexample or outline a proof. 

Common to the general findings is that areas where opportunities for learn-
ing are rare correspond well to areas where student difficulties are well-docu-
mented. Students have difficulty understanding proofs (e.g., Healy & Hoyles, 
2000), writing proof (e.g., Senk, 1985, 1989), and formalizing informal argu-
ments (e.g., Stylianides et al., 2017). The analyzed textbooks offer few oppor-
tunities to read general proofs or to learn what a proof is and the importance 
of proofs in mathematics. There are also few opportunities to engage in proof-
related activities in textbook tasks. Tasks in which students can outline or fill 
in the details of a proof are nonexistent.  

More specifically, common difficulties include the role and meaning of 
counterexamples (Balacheff, 1988b; Ko & Knuth, 2013), implications 
(Durand-Guerrier, 2003), negations (Antonini & Mariotti, 2008), and quanti-
fiers (e.g., Durand-Guerrier & Arsac, 2005). Students have difficulty with 
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ferent valid proofs presented for the same statement.  
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statements with a complex structure (Zandieh et al., 2014), and frequently 
confuse conditional statements with their converses and inverses (Hoyles & 
Küchemann, 2002; Stylianides et al., 2004). In the analyzed textbooks, oppor-
tunities to read proofs typically involve direct proofs of general statements in 
the form of computational rules. Other kinds of statements (such as existence 
and uniqueness properties) and other kinds of justifications (such as contra-
positive proof or proof by contradiction) are rare. There are few opportunities 
to learn the differences between necessary and sufficient conditions. Proof-
related tasks are also typically devoted to the derivation of formulas, and there 
are no tasks asking for counterexamples. 

 It is well-known that empirical arguments often convince students about 
generalizations (e.g., Almeida, 2001; Healy & Hoyles, 2000; Morris, 2002; 
Sevimli, 2018; Sowder & Harel, 2003), and that students have difficulty dis-
tinguishing invalid arguments from valid proof (Inglis & Alcock, 2012; 
Selden & Selden, 2003). In the analyzed textbooks, many mathematical prin-
ciples are justified with specific cases, and a considerable part of the proof-
related tasks only involve reasoning with specific cases. There are few oppor-
tunities to evaluate or correct arguments. 

Given this, the general findings from the textbook analyses are not surpris-
ing. On the other hand, one can argue that the knowledge about students, com-
bined with an increased focus on reasoning and proof in steering documents 
and policies, would eventually influence curricular resources such as text-
books toward more emphasis on proof-related reasoning.  

6.1.2 Context-specific findings 
 

When Swedish and Finnish textbooks are compared, there are some charac-
teristics more strongly connected to the Finnish books than the Swedish ones 
and vice versa. Three such context-specific findings are highlighted below.  

The first is that proofs and structural aspects of mathematics are more vis-
ible in the Finnish textbooks than the Swedish ones. In the Finnish textbooks 
the labeling in expository sections makes clearer distinctions between defini-
tions and theorems, and between arguments that are and are not proofs. In the 
Finnish books, general proofs are more frequent. In the Swedish books, justi-
fications are mostly based on specific cases; but even when they are general 
proofs, they are not labelled or referred to as such. 

The second context-specific finding is that the Finnish textbooks place 
greater emphasis on deductive reasoning and reasoning about general cases 
than the Swedish ones do. Justifications in expository sections in the Finnish 
textbooks are mostly general proofs. Proof-related tasks are few, but more fre-
quently involve reasoning about general cases than in the Swedish textbooks, 
and are mostly proving tasks. In the Finnish textbooks, proving tasks can even 
be “infinitely general” in the sense that they involve large classes of functions. 
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In the Swedish expository sections, most justifications are based on specific 
cases. Proof-related tasks are more frequent in the Swedish textbooks, but in-
volve reasoning about general cases to a lesser degree. Proving tasks are not 
as dominant, and even proving tasks can be about specific cases only. 

The third context-specific finding is that there is more variation in natures 
of reasoning and greater emphasis on conjecturing in the Swedish textbooks 
than in the Finnish ones. Tasks about providing justification for a given claim 
are dominant in both countries’ textbooks, but less so in the Swedish materi-
als. Proof-related tasks that involve conjecturing are few but more common in 
Swedish textbooks than Finnish ones, as are tasks in which students are to 
evaluate or correct arguments. There are also examples of tasks in the Swedish 
materials in which the student is to match given data to the premises of a the-
orem, or suggest plausible thinking behind a presented argument. 

The differences between the Swedish and Finnish textbooks can be sum-
marized as follows: the Swedish materials are slightly more oriented toward 
conjecturing, evaluation, and the use of empirical arguments, while the Finn-
ish ones are slightly more oriented toward general deductive arguments and 
formalism. These differences are difficult to explain from a steering document 
point of view. Proofs are not emphasized more in the Finnish steering docu-
ments than the Swedish ones; it is rather the other way around (Hemmi, Lepik, 
et al., 2013). Perhaps one explanation for this could be that all analyzed topics 
are in the second half of the Finnish upper secondary curriculum, but closer to 
the middle of the Swedish one. As was found in Thompson et al. (2012), gen-
eral proofs, proof-related tasks about general cases, and tasks focusing on de-
ductive arguments tend to be more common toward the end of upper second-
ary curricula than the beginning. Another tentative explanation could be that 
there is a more formal and deductive tradition in Finnish mathematics educa-
tion, while Swedish mathematics education is more affected by reform ideas 
from the United States (like those expressed in the NCTM Standards) and is 
therefore more oriented toward inquiry and conjecturing. 

One should be careful in declaring which countries’ textbooks are the best. 
Given students’ difficulties with understanding and writing proof 
(e.g.,Stylianides et al., 2017), distinguishing between axioms, definitions, and 
theorems (Vinner, 1977), and understanding the logical structure of statements 
and arguments (e.g., Zandieh et al., 2014), and the fact that students find proof 
invisible (Hemmi, 2008), the character of the Finnish textbooks would be pref-
erable. On the other hand, students’ difficulties with evaluating arguments 
(e.g., Selden & Selden, 2003), and the important role of inquiry and conjec-
turing in relation to learning proof (e.g., Garuti et al., 1998), speak in favor of 
the tendencies of the Swedish books. 
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6.1.3 Topic-specific findings 
Some characteristics of opportunities to learn proof-related reasoning seem to 
be connected to the mathematical topic, rather than to textbook series or coun-
try.  

Logarithmic properties are typically not justified in the textbooks, but when 
they are, they are justified with general proofs. This is in line with the findings 
in Thompson et al. (2012). A plausible explanation for this could be that 
proofs of elementary logarithmic laws are very similar. The laws also corre-
spond to laws for powers and exponents, which students can be assumed to be 
familiar with. Consequently, logarithms offer a possibility to engage the stu-
dent in conjecturing and proving activities. When compared with the other 
analyzed topics, one can also see that proof-related tasks on logarithms more 
often involve conjecturing. In expository sections students are not explicitly 
told to provide omitted proofs, but such proofs are included in the student tasks 
anyway.   

The definition of logarithms offers an opportunity to discuss fundamental 
mathematical questions about existence and uniqueness, questions that are 
rare in the upper secondary mathematics curricula. This opportunity, however, 
is not utilized by the textbooks. The conclusion, therefore, is that by relatively 
small means, proof-related reasoning can be elevated in the teaching of loga-
rithms. 

Primitive functions offer relatively good opportunities for proof-related 
tasks, but seldom about general cases. As with logarithms, the close corre-
spondence with differentiation rules should be able to be used for proof-re-
lated reasoning. This is seen to some extent in the analyzed material. Differ-
ences between the textbook series also point to several areas where proof-re-
lated reasoning can be emphasized. For instance, the formula 𝐹𝐹(𝑥𝑥) + 𝐶𝐶 for the 
primitive functions to 𝑓𝑓(𝑥𝑥) = 𝐹𝐹′(𝑥𝑥) is one of very few examples of how a 
certain class of functions can be represented algebraically, and it also provides 
an opportunity to discuss necessary and sufficient conditions and how equiv-
alences are typically proven. Also, parameter families of functions (such as 
sin (𝑘𝑘𝑘𝑘)) offer easy examples for conjecturing and the justification of formu-
las for primitive functions, either by general arguments or by discussion of 
generic cases. 

Textbook sections on definite integrals include relatively few justifications, 
and when they are provided they are frequently based on specific cases. Given 
the theoretical complexity of this topic, this is not surprising. On the other 
hand, even with a focus on the use of computational principles, students have 
opportunities to read and apply principles that are valid (and expressed for) 
large classes of functions. One of the analyzed textbook series (Fi2 in Paper 
I) explicitly takes as an assumption (an axiom) that the area bounded by the 
graph of a continuous function is well-defined and satisfies certain conditions. 
With this as a starting point, it is possible to define definite integrals and derive 
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fundamental properties rather rigorously on a level comprehensible to upper
secondary students. There are also interesting examples of principles from 
physics being used to justify mathematical theorems. While such lines of rea-
soning are not valid proof, they may have other values in a classroom setting. 
The close connections to applications also offer possibilities for experimental 
work, inquiry, and conjecturing. 

Combinatorics, finally, is the only topic in which essentially all addressed 
mathematics results are justified, albeit not with general proofs. This topic 
typically offers possibilities for general reasoning with or without proof by 
induction, or by use of generic examples. Combinatorics differs from the other 
investigated topics in that it does not require high levels of pre-knowledge.
Hence, proof-related activities need not be hindered by, for instance, a lack of 
algebraical abilities. Indeed, the Dirichlet box principle is an example of a
trivial principle that offers opportunities for proof-related reasoning with al-
most no algebra involved.

6.2 Contributions to frameworks and 
conceptualizations

During the work with this thesis and its papers, there have been several occa-
sions when the analytical frameworks used have had to be adapted. Analytical 
difficulties as well as findings have pointed to a need for adaptations of dif-
fering kinds: sharper distinctions between categories, more refined frame-
works with new subcategories, broader frameworks with new categories, and 
new approaches and new kinds of analyses. Such ideas have been touched
upon in all papers, and focused on in Papers II and III. This subsection brings
all these considerations together, resulting in a rather comprehensive framing 
of proof-related reasoning for textbook analysis. A textbook analysis need (or 
should) not employ all its parts. Doing research requires a focus on certain 
specific aspects while others are left out. However, by presenting all parts to-
gether one gets a picture of the complexities involved and all the different 
analytical questions the textbook analysist may consider investigating. Hope-
fully, this can serve as a starting point for other researchers planning textbook 
studies of opportunities to learn proof and proof-related reasoning, and who 
have chosen approaches similar to that of Thompson et al. (2012) and Otten, 
Gilbertson, et al. (2014), as well as those used in the papers of this thesis. Also, 
this summary contributes to a more refined conceptualization of what oppor-
tunities for proof-related reasoning encompass in relation to textbooks. 

73 

fundamental properties rather rigorously on a level comprehensible to upper
secondary students. There are also interesting examples of principles from 
physics being used to justify mathematical theorems. While such lines of rea-
soning are not valid proof, they may have other values in a classroom setting. 
The close connections to applications also offer possibilities for experimental 
work, inquiry, and conjecturing. 

Combinatorics, finally, is the only topic in which essentially all addressed 
mathematics results are justified, albeit not with general proofs. This topic 
typically offers possibilities for general reasoning with or without proof by 
induction, or by use of generic examples. Combinatorics differs from the other 
investigated topics in that it does not require high levels of pre-knowledge.
Hence, proof-related activities need not be hindered by, for instance, a lack of 
algebraical abilities. Indeed, the Dirichlet box principle is an example of a
trivial principle that offers opportunities for proof-related reasoning with al-
most no algebra involved.

6.2 Contributions to frameworks and 
conceptualizations

During the work with this thesis and its papers, there have been several occa-
sions when the analytical frameworks used have had to be adapted. Analytical 
difficulties as well as findings have pointed to a need for adaptations of dif-
fering kinds: sharper distinctions between categories, more refined frame-
works with new subcategories, broader frameworks with new categories, and 
new approaches and new kinds of analyses. Such ideas have been touched
upon in all papers, and focused on in Papers II and III. This subsection brings
all these considerations together, resulting in a rather comprehensive framing 
of proof-related reasoning for textbook analysis. A textbook analysis need (or 
should) not employ all its parts. Doing research requires a focus on certain 
specific aspects while others are left out. However, by presenting all parts to-
gether one gets a picture of the complexities involved and all the different 
analytical questions the textbook analysist may consider investigating. Hope-
fully, this can serve as a starting point for other researchers planning textbook 
studies of opportunities to learn proof and proof-related reasoning, and who 
have chosen approaches similar to that of Thompson et al. (2012) and Otten, 
Gilbertson, et al. (2014), as well as those used in the papers of this thesis. Also, 
this summary contributes to a more refined conceptualization of what oppor-
tunities for proof-related reasoning encompass in relation to textbooks. 

75



 74 

6.2.1 Proof-related reasoning in expository sections  
The categorization of justifications in expository sections, according to Table 
1 (p. 37), combines the question of who takes (or is given) responsibility for 
providing justifications, and what type of justifications the textbooks provide. 
There can be reason to study the first of these two aspects in more detail. There 
is a difference between leaving a mathematics result unjustified without fur-
ther comment, and saying that “one can prove that”, or “Euler proved that”. 
On the one hand the latter alternatives suggest that the existence of a proof is 
important, while on the other they still leave the student to trust an unspecified 
person or an unknown authority (cf. authoritarian proof schemes (Harel & 
Sowder, 2007)).  

The second aspect, whether or not a provided justification is a general 
proof, includes several considerations. One is the generality of the justification 
and how it relates to the generality of the justified statement. In Paper II, rea-
sons for a more refined characterization than just “general or specific” are of-
fered in relation to student tasks, but can be applied to textbook justifications 
as well. The validity of a proof is also a question about formalism and levels 
of detail. Paper III argues for an analysis that considers how justifications are 
“embedded” in expository sections. In the various papers, other aspects such 
as labeling, ordering, and explicit connections to other parts of the expositions 
are analyzed. The logical structure of statements and justifications, and the 
proving methods and strategies, have also been studied. Investigations of such 
details have their value, as it is well-known that many students find proofs 
invisible, have difficulty distinguishing theorems from definitions and axi-
oms, have problems understanding statements with complex logical struc-
tures, are unconvinced by contrapositive proofs, etc. 

Table 8 summarizes all these ideas, extending and refining the type of anal-
ysis of expository sections that has been conducted and discussed in the papers 
of this thesis. There are likely many other relevant questions when investigat-
ing opportunities for proof-related reasoning in textbook expositions. How-
ever, even if the list in Table 8 is incomplete, it shows the multitude of ques-
tions that textbook analysists, textbook authors, and mathematics teachers 
need to have in mind, and the many elements that constitute proving compe-
tence. 
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Table 8. Analytical questions for analysis of expository sections 

General questions Examples of specific questions 
What kind of mathematics results are ad-
dressed?  

Specific or general statements? General in 
what sense? 

 Universal or existential statements? Multiply 
quantified statements? Uniqueness state-
ments?  

 Statements with sufficient conditions, neces-
sary conditions, or both? 

Can mathematics results be conjectured? Are students given opportunities to conjec-
ture addressed theorems and results? On 
what grounds? 

Who is responsible for providing justifica-
tions? 

No one? The student? The textbook author? 
The teacher? Some other authority or un-
specified person? 

What kind of justifications are provided in 
the textbook? 

Reasoning with specific or general cases? 
General in what sense? Generic cases? 

 Do the justifications qualify as proofs? 
Why/why not? 

 Level of formalism and detail? Intuitive ar-
guments?  

 What forms of representation are used? Al-
gebraic, verbal, graphic, or other? 

 What proving methods and strategies are 
used? Mathematical induction? Separation of 
necessity and sufficiency? Division into 
cases? 

 What logical rules of inference are used? Di-
rect proofs? Proof by contradiction? By con-
trapositive?  

 How are examples used? Supportive exam-
ples? Counterexamples? 

What purposes do the justifications serve? Verification? Explanation? Systematization? 
Discovery? Communication? Intellectual 
challenge? 

How is the mathematical structure made visi-
ble? 

How are statements and justifications labeled 
and talked about?  

 Are axioms, definitions, and theorems sepa-
rated? 

 Is it clear when justifications are proofs and 
not? 

 What is the order between justifications and 
statements? 

Meta-perspective Are there explicit connections to other parts 
of theory? 

 Are proving methods and ideas discussed 
and compared? Are there several proofs of 
the same statement? 
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6.2.2 Proof-related reasoning in tasks 
Proving as an activity, meant to produce proofs or develop the necessary com-
petencies for proof construction, has been conceptualized as a set of natures 
of reasoning (Table 3, p. 38) that represent separate proof-related activities. 
Some are broad while others are narrow. For instance, “develop an argument” 
refers to almost all kinds of tasks in which the student is asked to justify a 
given claim, while “counterexample” refers to the very specific situation of 
the student being asked to provide a counterexample to a false claim. One can 
argue that to provide a counterexample is also to develop an argument, albeit 
of a very specific kind. “Investigate a conjecture” can also involve finding a 
counterexample. Instead of viewing these natures of reasoning as separate, 
one can see them as related to different aspects of the same proof-related ac-
tivity. This can be made clearer by splitting and sorting the natures of reason-
ing in another way, by viewing some of them as subsets of others, and by 
introducing new categories and subcategories. The result is the rather compre-
hensive, yet still tentative, framework presented in Table 9 and Table 10. In 
order to keep this collection of ideas separate from the natures and types of 
reasoning employed in the various papers of this thesis, they are now referred 
to as reasoning activities (Table 9) and properties of reasoning activities (Ta-
ble 10). 

The original framework by Thompson et al. (2012) had seven distinct na-
tures of reasoning. In what follows we will discuss these one at a time, how 
they have been interpreted and adapted for the present study, and how they are 
parts of the more comprehensive framework.  

The first category was “make a conjecture” (M tasks). Typically, students 
are presented with a finite pattern and must reason inductively to conjecture 
how the pattern continues. Thus, the student must find a mathematical princi-
ple for how the pattern develops. However, there are other kinds of tasks in 
which the student is asked to specify a mathematical principle. For instance, 
in Paper I some tasks were found in which the student must find a geometric 
formula for a volume by use of integral calculus. Such tasks were also in-
cluded in the M category. Thus, this category includes finding a (true) mathe-
matical statement by derivation, as well as making a conjecture by “guessing”. 
Another typical feature of M tasks is that the premises are given; that is, the 
student’s task is to specify the conclusion of a conditional statement. In the 
analysis reported in Paper IV, however, textbook tasks were encountered in 
which the student must specify the premises. In principle, there could also be 
situations in which one must find the logical relation between two properties. 
Hence, M tasks can focus on (at least) three different parts of a mathematical 
statement, all of which are central in relation to conjecturing (and hence in the 
process of finding a proof, e.g. Lakatos (1976)). In Table 9, this category is 
therefore renamed “develop a statement”. To specify premises, conclusions, 
or logical relations are listed as examples of subactivites. 
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The second category was “investigate a conjecture” (I tasks). This can also 
refer to tasks in which students study a pattern of some sort, but now the text-
book suggests a principle or conclusion and the student must decide whether 
or not it is true. In this thesis, however, the I category has been used in a 
broader sense, in analogy with the use of the M category. This means that 
whenever the student has been asked to decide whether or not a given state-
ment is true, this has been considered an I task. Therefore, in Table 9 this 
category of activities is named “investigate a statement”. It is implicit that the 
student is assumed to argue for his/her opinion. 

The third category, “develop an argument” (D tasks), was the broadest cat-
egory and the one in which most of the identified proof-related tasks were 
placed. Below is an argument for an even broader interpretation that includes 
arguments by counterexample, correction of arguments, and proof sketching. 
In Table 9, this category keeps the name “develop an argument”.   

 The fourth category was “evaluate an argument” (E tasks). This category 
has been used for all tasks in which an argument is presented to the student 
and the student must decide whether or not the argument is correct. For an 
argument with a flaw, this need not include identifying what is wrong but 
simply determining that something must be wrong. Note that it should not be 
given whether or not the argument has a flaw. In Table 9, however, the iden-
tification of errors has been included in this category and it has been given the 
name “investigate an argument”. 

The four natures of reasoning discussed so far can be regarded as the main 
reasoning activities under which most other proof-related reasoning activities 
can be sorted. These four can also involve highly similar reasoning activities. 
What separates them from one another is how the task is formulated, and what 
information is included. The discovery of the exact formulation of a statement 
can require writing down a full proof. Hence, “develop a statement” and “de-
velop an argument” can include similar activities. In “investigate a statement” 
activities, the student is not told whether to argue for the truth or falsity of the 
statement. As some evidence for why the statement is true (or false) must be 
presented, such reasoning activities can be similar to “develop an argument” 
activities. There can also be considerable differences within these four cate-
gories of reasoning activities. Usually, a different kind of argument is needed 
in order to determine that a statement is true, compared to determining that it 
is false. Evaluations of correct and incorrect arguments may also be very dif-
ferent. In the right column of Table 9, some fundamentally different situations 
related to the four main reasoning activities are presented. 
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Table 9. Reasoning activities in textbook tasks 

Main activities Examples of subactivities 

Develop a statement Specify premises 
 Specify conclusions 
 Specify logical relations 
Investigate a statement Investigate true statements 
 Investigate false statements 
Develop an argument Argue for true statements 
 Argue against false statements 
Investigate an argument Evaluate valid arguments 
 Evaluate invalid arguments 

 
The three remaining natures of reasoning were “correct or identify a mis-

take” (C tasks), “counterexample” (X tasks), and “outline a proof” (P tasks). 
In Paper IV an “other” category was also introduced (O tasks). Instead of 
viewing these as separate from the first four natures of reasoning, it is now 
suggested that they be used for further characterization of properties of the 
four main activities. 

“Correct or identify a mistake” (C tasks) comprises two kinds of activities. 
Correcting a mistake entails developing a correct argument starting from an 
incorrect one, while identifying a mistake is a form of investigation of an (in-
valid) argument. The difference from tasks in the original E category is that 
here it is given that there is an error (but not where the error lies). Thus, E 
tasks and tasks involving identifying a mistake both entail investigating an 
argument. Hence, C tasks can be either “develop an argument” or “investigate 
an argument” activities. Making corrections are relevant in relation to several 
reasoning activities. For instance, a “develop a statement” activity can take an 
incorrect statement as its starting point. Therefore, “make corrections”, is now 
placed in the list of properties in Table 10.  

As discussed above, “counterexample” (X tasks) refers to tasks in which 
the argument against a false claim should be of a very specific kind: providing 
a counterexample. Thus, X tasks can be placed within the “develop an argu-
ment” category. Of course, counterexamples may be the best way to reveal 
that a statement is false; that is, counterexamples may occur in relation to an 
“investigate a statement” activity. An “investigate an argument” activity can 
also include an argument that presents a (potential) counterexample. Thus, 
counterexamples can occur in all four main kinds of reasoning activities. For 
this reason, “counterexample” is now listed as a property in Table 10, within 
the category called “logic”. Examples in support of a statement can also be 
part of all four reasoning activities. Therefore, “supportive example” is an-
other property included in Table 10. Both uses of examples are important 
when learning the correct role of examples in mathematical arguments.  
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 “Outline a proof” (P tasks) involves sketching a proof, to develop an argu-
ment of a less formal form, without all the details of a full proof. Here, one 
can also have the “opposite” situation: filling in details in a proof outline. This 
is also a form of argument development. Thus, P tasks are viewed as “develop 
an argument” activities, while “proof outline”, “fill in details”, and “full 
proof” are listed as properties within the category “detail and formalism” in 
Table 10. 

Two kinds of tasks studied in Paper IV were placed in the “other” category 
(O tasks). The first involved explaining the thinking behind an argument, 
which is yet another kind of “develop an argument” activity. The second kind 
involved tasks in which a real-life situation was to be mapped to the premises 
of the Dirichlet box principle. When wanting to apply a theorem in an argu-
ment, one must check that the premises are fulfilled. Hence, this can also be 
considered an element of argument development. “Explain underlying ideas” 
and “formalize” are included as properties in Table 10. 

To summarize, the framework for natures of reasoning as employed in the 
textbook analysis reported in this thesis can be condensed into four main kinds 
of reasoning activities that capture the essentials of the original M, I, D, and 
E categories. The properties connected to the C, X, P, and O categories are 
other aspects of reasoning and argumentation. As arguments can be developed 
as well as investigated, and used when investigating as well as developing 
mathematical statements, it might be better to study these aspects inde-
pendently. This is why they have been listed as properties of reasoning activ-
ities in a separate table (Table 10).  

In addition, most characteristics of statements and justifications detailed in 
Table 8 also apply to tasks. Statements and arguments in tasks can be specific 
or general. General statements/arguments about functions can involve specific 
functions, parameter families of functions, or “arbitrary” functions. The state-
ments that are investigated (or argued for) can be universal or existential, and 
can express uniqueness or equivalence. An argument that is investigated (or 
asked for) can be in the form of a positive proof, a contrapositive proof, or a 
proof by contradiction. It can be communicated using different forms of rep-
resentations. It might be necessary (or preferable) to split an argument into 
cases, or to study necessary and sufficient conditions separately. A textbook 
can also provide clear directions, or hints, for how to solve the task, or give 
no clues at all. Table 10 is a summary of all these ideas. Note that the category 
called “generality” includes what has been referred to throughout the thesis as 
type of reasoning, but in the refined sense proposed in Paper II. 
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Table 10. Properties of reasoning activities 

Property Examples of subproperties 
Generality Specific case(s) 

General “one-parametric” case 
General “finite-parametric” case 
General “non-parametric” case 

Detail and formalism Full proof 
Proof outline 
Fill in details 
Formalize 
Make corrections 
Explain underlying ideas 

Structure of statement Universal 
Existential 
Uniqueness 
Implication 
Equivalence 
Formula 

Logic Positive proof 
Contrapositive proof 
Proof by contradiction 
Counterexample 
Supportive example 

Forms of representations Algebraic 
Verbal 
Graphic 

Methods and strategies Case division 
Necessity and sufficiency separately 
Mathematical induction  

Directions With directions/hints 
Without directions/hints 

     

6.3 Implications for practice 
While opportunities to learn proof-related reasoning offered by a textbook are 
potential opportunities, such opportunities are not guarantors of student learn-
ing. Nor does a missing opportunity imply that students will not learn. What 
real opportunities students are offered depends on how the curriculum is en-
acted. Teachers can pick and choose from the textbook content, decide on a 
different focus than the textbook has, emphasize other aspects of reasoning, 
supplement the textbook materials with other curricular resources, and so on. 
A standard computational task can offer opportunities for reasoning in a class-
room where it is an established norm to always reflect on how a task is solved, 
why methods and algorithms work, what the general underlying principles are, 
etc. However, if teachers rely heavily on the textbook there is a great risk that 
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what is not emphasized and made explicit in the textbook will not be taught. 
In this case, aspects of proof and proof-related reasoning that are not empha-
sized in the textbook risk being marginalized in classroom practice, and af-
fecting student learning negatively, unless student learning is supported by 
other means. Consequently, it is important that teachers be aware of the limi-
tations of their textbook resources and that (if needed) they be offered other 
kinds of support for teaching important aspects of proof-related reasoning. 
Taking this perspective on the findings in this thesis, they can be used to high-
light areas where such support is needed. 

It is also clear that the findings reported in this thesis correspond well to 
what research has shown about students’ difficulties with proof. Students have 
difficulty constructing proofs with arguments about general cases, and hold 
various misconceptions regarding the role of examples in relation to proving 
and refuting mathematical statements. This thesis shows that proofs are often 
invisible in textbooks, that textbooks offer few opportunities for reasoning 
about general cases, and that students are never asked to provide counterex-
amples. Research has shown that students have difficulty with the logical rules 
of inference, and do not know the relations between a conditional statement 
and its converse, inverse, and contrapositive. This thesis shows that textbooks 
seldom emphasize the logical structure of statements, and seldom provide 
other kinds of arguments than direct derivations of formulas.  

Against this background, the recommendations in the following subsec-
tions should be read as suggestions concerning aspects of proof-related rea-
soning that one should consider giving more attention to in teaching and in 
curriculum resources. They are therefore formulated as questions. How they 
should (or could) be addressed in teaching and textbooks is a matter for future 
research to investigate. 

6.3.1 General suggestions 
Considering what Swedish and Finnish textbooks generally offer in terms of 
opportunities for proof-related reasoning, and what students generally have 
difficulty with, it is recommended that curriculum designers, textbook au-
thors, teachers, and other users of curricular resources consider the following 
when determining the design of curricular resources and teaching: 
 

• Does the exposition make clear distinctions between axioms, defi-
nitions, and theorems? 

• Is the logical structure of addressed mathematics results made 
clear? 

• Does the exposition provide a rich variation of results regarding 
structure, including existential results and uniqueness results, and 
necessary and sufficient conditions? 
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• Are the purposes of presented arguments clear, and is it explicit 
whether or not they are valid proofs? 

• Are the underlying, logical ideas of proofs clear, and are proofs dis-
cussed from a meta-perspective? 

• Are students given role models for proofs of various kinds – includ-
ing proof by contrapositive, by contradiction, and by case division 
– in expositions and worked examples? 

• Are there situations in which it could be instructive to discuss dif-
ferent proofs of the same result? 

• Can students be given the responsibility for conjecturing and prov-
ing some of the central mathematics results? 

• Are there enough proof-related tasks, especially those that require 
reasoning about general cases and reasoning with classes of objects, 
that cannot be represented with a closed algebraical formula? 

• Are there tasks in which the reasoning does not require algebraic 
manipulations? 

• Are there tasks in which the student can practice the complete prov-
ing process of investigating special cases, formulate and test hy-
potheses, and finally prove a general, conjectured principle? 

• Are there tasks in which the student can evaluate, correct, or fill in 
the details of given arguments? 

• Are there tasks in which the student can provide supporting exam-
ples and counterexamples? 

6.3.2 Context-specific suggestions 
As described in Subsection 6.1.2, the Swedish textbooks are somewhat more 
oriented toward inquiry, conjecturing, and empirical arguments, and provide 
greater variation in natures of reasoning, while the Finnish ones are more ori-
ented toward deductive arguments and general reasoning. This implies that 
some of the suggestions in the previous subsection are more directed at actors 
in the Swedish context, and others at actors in the Finnish one.  

In the Swedish context, extra attention to the following issues is recom-
mended: 

• Is there sufficient support for formal aspects of proving, deductive 
arguments, and arguments involving general cases? 

• Are proofs visible, and is the structure of the mathematics theory 
and of the addressed mathematics results made clear? 

In the Finnish context, extra attention should be paid to the following:  
• Are there opportunities for inquiry and conjecturing? 
• Are there opportunities for investigating arguments in addition to 

opportunities for developing arguments?  
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ing some of the central mathematics results? 

• Are there enough proof-related tasks, especially those that require 
reasoning about general cases and reasoning with classes of objects, 
that cannot be represented with a closed algebraical formula? 

• Are there tasks in which the reasoning does not require algebraic 
manipulations? 

• Are there tasks in which the student can practice the complete prov-
ing process of investigating special cases, formulate and test hy-
potheses, and finally prove a general, conjectured principle? 

• Are there tasks in which the student can evaluate, correct, or fill in 
the details of given arguments? 

• Are there tasks in which the student can provide supporting exam-
ples and counterexamples? 

6.3.2 Context-specific suggestions 
As described in Subsection 6.1.2, the Swedish textbooks are somewhat more 
oriented toward inquiry, conjecturing, and empirical arguments, and provide 
greater variation in natures of reasoning, while the Finnish ones are more ori-
ented toward deductive arguments and general reasoning. This implies that 
some of the suggestions in the previous subsection are more directed at actors 
in the Swedish context, and others at actors in the Finnish one.  

In the Swedish context, extra attention to the following issues is recom-
mended: 

• Is there sufficient support for formal aspects of proving, deductive 
arguments, and arguments involving general cases? 

• Are proofs visible, and is the structure of the mathematics theory 
and of the addressed mathematics results made clear? 

In the Finnish context, extra attention should be paid to the following:  
• Are there opportunities for inquiry and conjecturing? 
• Are there opportunities for investigating arguments in addition to 

opportunities for developing arguments?  
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6.3.3 Topic-specific suggestions
Some aspects of opportunities for proof-related reasoning seem to vary de-
pending on topic. There is reason to believe that the mathematics itself sets 
boundaries for what is possible and desirable. Given the topic-specific find-
ings and the discussion in Paper V, the list below gives some examples of 
topic-specific details that one can consider giving special attention. The list is 
only a selection. 

Logarithms: 
• Is there a discussion of existence and uniqueness of logarithms re-

lated to relevant properties of the exponential function?
• Are the similarities between formulations and proofs of logarithm 

rules for products, quotients, and powers, and for such laws for dif-
ferent bases, utilized for student activities involving conjecturing 
and proving? 

Primitive functions: 
• Is the close connection to differentiation rules utilized for activities

involving finding elementary primitive functions and for conjectur-
ing and proving general rules of integration? 

• Is it made clear that being a primitive function is a global property? 
• Is there a discussion of the existence of primitive functions? 
• Is it made clear that the formula 𝐹𝐹(𝑥𝑥) + 𝐶𝐶 is a representation of an 

infinite set of functions with a common property? Is it made clear
that the statement of this formula involves both a necessary and a 
sufficient condition, and how this can be handled in a proof? 

Definite integrals: 
• Are there connections between rules of integration and intuitively

clear properties of areas? 
• Are connections to applications used for designing activities that 

include the formulation and testing of conjectures?  

Combinatorics: 
• Are there possibilities to use combinatorial reasoning to justify al-

gebraic identities and vice versa? 
• Are there possibilities to introduce proof by induction?
• Would it be advantageous to include the Dirichlet box principle to

create opportunities for non-constructive existence proofs, and for 
reasoning that does not require high algebraic abilities? 
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6.4 Methodological discussion 
The analyses conducted in the papers of this thesis only include the student 
textbooks. From the perspective of the teacher, teacher guides can offer im-
portant support for the teaching design, and hence for creating learning oppor-
tunities. Publishers may also provide digital resources such as web-based ma-
terials – for the student as well as the teacher. It is difficult to say whether the 
inclusion of such materials in the analysis would change the outcome; this 
would depend on whether the teacher guides have a different focus on proof-
related reasoning than the textbooks do. However, as the use of teacher guides 
among Swedish and Finnish upper secondary teachers is not widespread, a 
reasonable stance is that they do not have a great effect on the enacted curric-
ulum. 

A limitation is that only two textbook series from each country have been 
investigated – and for Papers I, III, IV, and V, only one Finnish one. But as 
the analyzed textbooks dominate the markets in Sweden and Finland, the find-
ings can be used to say something about what opportunities to learn proof-
related reasoning most students in the two countries have been offered in their 
textbooks. This is how general statements about Swedish or Finnish textbooks 
should be interpreted. It is also important to note that the analyzed textbook 
series are intended for students preparing for higher studies in mathematics, 
science, and technology. Textbooks written for use in vocational programs 
may treat proofs differently; as such programs do not need to prepare students 
for the theoretical and formal exposition of university mathematics, one can 
assume that proof-related reasoning is focused on less in textbooks written for 
their mathematics courses. 

The presented findings are based on an analysis of all justifications of main 
results addressed in expository sections, all worked examples, and all student 
tasks. However, only material in four selected topics was included. Further, 
this selection was not based on a belief that these topics are representative, 
and nor was it random. Consequently, the findings cannot be generalized to 
all topics in the mathematics curricula, and the data sample’s representative-
ness cannot be judged by use of statistical tests. A certain “coherence” in style 
throughout a textbook is plausible, but findings concerning a certain textbook 
series should primarily be read as findings about that series’ treatment of the 
four investigated topics. Studies of United States textbooks reveal that proof-
related reasoning is more emphasized in geometry than in other subjects, and 
one can expect a similar situation in Swedish and Finnish textbooks. There are 
also separate sections on proof and proving in other parts of the Swedish and 
Finnish curricula. The Swedish national syllabus prescribes that elementary 
logic, implications and equivalences, and illustration of the concepts of defi-
nition, theorem, and proof be included in Course 1. In Finland, Part 11 is a 
course in number theory and logic, which, according to the steering docu-
ments, should include the formalization of statements, quantifiers, and proof 
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by contrapositive and by contradiction. Hence, there is reason to believe that 
there are other parts of the analyzed textbook series in which various aspects 
of proof-related reasoning are emphasized more.  

Regarding the analytical processes, it is a drawback that most of the text-
book analyses have been conducted by one person only. Hence, reliability and 
validity rest heavily on a stringent use of the analytical frameworks. Here, 
reliability is strengthened by the fact that two researchers collaborated on the 
analysis for Paper I, compared coding, and determined coding principles that 
could be used in the other papers as well. When new topics were analyzed, 
discussions with colleagues aided in maintaining validity. Coding principles 
are described in the separate papers. Paper IV also includes detailed descrip-
tions of how 18 different textbook tasks were coded so that the reader can 
judge the relevance and validity of the principles used. Still, there are issues 
worth extra mention. 

First, the coding principles could differ from those used by other research-
ers using the same analytical frameworks. For instance, the higher rates of 
proof-related tasks in the Swedish and Finnish textbooks, compared to those 
reported for United States textbooks by Thompson et al. (2012), may be due 
to a more generous interpretation of what should count as proof-related. The 
choice to include all addressed results in the analysis of expository sections 
may have led to different rates of justified statements than if the analysis had 
focused on an a priori selected list of statements (as in (Thompson et al., 
2012). On the other hand, these methodological choices should affect compar-
isons with other studies more than those between different parts of the ana-
lyzed textbook material. 

Second, it has been difficult to formulate a principle for determining 
whether a task offers reasoning about a general case that works independent 
of topic. The requirement that proof-related tasks involving functions be 
counted as general only if they have some degree of freedom beyond an inde-
pendent variable might be too restrictive for the comparison with other topics 
to be fair. The findings also indicate that there were fewer general tasks in 
integral calculus than in sections on logarithms and combinatorics. On the 
other hand, the tasks coded as general would have been even fewer with a 
requirement that they invoke infinite classes of functions. This shows that 
what “general” as a concept should mean needs to be specified. As is elabo-
rated on in Paper II, there are “degrees of generality”.  

6.5 Future research 
Based on the methodological discussion, more solid evidence for this thesis’s 
findings requires investigations of more topics in more textbook series from 
more countries, and that the textbooks be analyzed independently by several 
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researchers. Given that the findings indicate general patterns regarding text-
books from different educational contexts and topics, research can take other 
directions. Based on the findings, three specific areas for future textbook re-
search are proposed below. Then, the perspective is widened beyond the text-
book itself. 

One of the findings in Papers I and IV was that there are topics in all ana-
lyzed textbook series that lack proof-related worked examples. As there were 
so few of these, patterns were difficult to discover. This raises questions as to 
the role of worked examples in textbooks, what they highlight as important, 
what learning opportunities they provide, etc. In relation to proof-related rea-
soning, this seems to be a field that the research so far has given little attention. 
Aside from worked examples, students can also be offered clues or complete 
solutions to exercises in answer sections. This means that one should consider 
including such textbook material if endeavoring to investigate what guidance 
a textbook offers in solving proof-related tasks.  

Another finding in Papers I and IV was that the Swedish textbooks had 
more of a “conjecturing” approach to mathematics, and the Finnish ones a 
“deductive” one. There seems to be a tension between these two approaches. 
If one is emphasized, the other becomes less visible. This tension needs further 
attention. A thorough investigation of “good examples” of how to combine 
the two approaches in textbook expositions would likely be of value for text-
book authors, as well as for teachers. This will require detailed analyses of 
expository sections, for instance as was done involving “embeddings” of jus-
tifications in Paper III. 

The most obvious finding was that many important aspects of proof-related 
reasoning are virtually absent in the textbooks. On the one hand, one cannot 
expect upper secondary school to provide students with all the learning oppor-
tunities required for a mastery of all the items in Tables 8–10. However, if 
students are only acquainted with direct derivations of computational formu-
las, and are unfamiliar with other kinds of proof of other kinds of statements, 
the transition to university mathematics will be problematic. Already in intro-
ductory university courses in algebra and calculus, the student will face state-
ments and arguments with all the various subproperties of generality, struc-
ture, logic, and methods listed in Table 10. A thorough comparison of upper 
secondary textbooks and university textbooks could provide valuable infor-
mation regarding where student difficulties in relation to proof are most likely 
to occur. They could also offer advice on areas that are the most essential to 
focus more attention on in upper secondary school, or where university teach-
ing needs to offer better learning support. The inclusion of a university text-
book in Paper II did not provide sufficient data for drawing any conclusions 
in this direction.  

To stay relevant, textbook research also needs to go beyond the textbook 
and into classroom practice. As the textbook analyses presented in this thesis 
analyzed textbook material as if it was lesson scripts, or documented lectures, 
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the analytical approach should be possible to adapt for analyzing classroom 
teaching episodes. This means that the discussions in Section 6.2 have rele-
vance for the design and analysis of classroom interventions and teaching.  

Classroom interventions aimed at elevating reasoning and proving are rel-
atively rare (Stylianides & Stylianides, 2017), and more research is needed on 
what guidance textbooks need to offer teachers in order to elevate their teach-
ing of proof (Stylianides, 2014). A model for classroom implementation of a 
“rich perspective on proof” needs extensive and thorough testing. Such a 
model should include support for proof-related activities of various kinds: in-
vestigating patterns and formulating conjectures about general principles, as 
well as reading and investigating well-formulated general statements; outlin-
ing and constructing proofs, as well as reading and evaluating proofs; building 
mathematical structures, as well as studying the well-established structures 
that tradition has given mathematics. The model for classroom enactment 
should be reflected in the mathematics textbook and supported by other cur-
riculum resources. The analytical frameworks used in this thesis conceptualize 
proof-related reasoning for the analysis of textbook material. For the develop-
ment and analysis of this model, the frameworks need to be adapted for the 
analysis of classroom activities. Thus, what is proposed here is design research 
including the design of curriculum materials (textbooks), classroom enact-
ment of curriculum (teaching), and analytical/theoretical tools (frameworks) 
for analyzing and understanding the relations between the written and enacted 
curriculum. 

6.6 Concluding remarks 
The aim of this thesis has been to contribute to an informed discussion about 
opportunities to learn proof-related reasoning offered in mathematics text-
books. This has been done by comparing and discussing empirical findings in 
Swedish and Finnish upper secondary textbooks, both from a Swedish-Finnish 
perspective and from a topic-specific perspective, with the literature on stu-
dent difficulties as a background. Experiences from the analytical approaches 
used here have been used to discuss refinements to analytical frameworks and 
conceptualizations of proof-related reasoning. 

Given that the various aspects of proof-related reasoning that are captured 
by the analytical frameworks used here are also desired learning outcomes in 
mathematics education, teachers and students need more support than text-
books typically offer. This thesis contributes by pointing to areas where such 
support can be assumed to be the most valuable, and offers specific sugges-
tions in relation to logarithms, primitive functions, definite integrals, and com-
binatorics. It also makes a conceptual contribution by offering detailed lists of 
both general and specific analytical questions, kinds of reasoning activities, 
and important properties that characterize reasoning activities.  
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Hopefully, this thesis can offer teachers, textbook authors, and textbook 
analysists some aid in their great endeavor to expose the soul of mathematics 
(Schoenfeld, 2009).     
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Appendix 

The analysis of the textbook material requires (of course) more than an ac-
quaintance with the mathematical content; and the discussion in Paper V even 
more so. A short summary of the most important details is included here, with 
notation matching that of the analyzed textbooks. For a more comprehensive
account, any university textbook on algebra or calculus will do. 

A.1 Logarithms 
The logarithm of a to the base b, or the 𝑏𝑏-logarithm of 𝑎𝑎, is denoted log𝑏𝑏 𝑎𝑎 
and is defined implicitly as the solution 𝑥𝑥 to the equation 𝑏𝑏𝑥𝑥 = 𝑎𝑎; i.e., 
𝑏𝑏log𝑏𝑏 𝑎𝑎 = 𝑎𝑎. Important special cases are logarithms for base 10 (denoted lg𝑎𝑎) 
and the natural logarithm ln 𝑎𝑎 where the base is the Euler number 𝑒𝑒 =
2,718 … . This is the only base for which the derivative of 𝑏𝑏𝑥𝑥 is 𝑏𝑏𝑥𝑥.  

For the definition to make sense, the equation 𝑏𝑏𝑥𝑥 = 𝑎𝑎 must be uniquely
solvable. This is the case if 𝑏𝑏 > 0, 𝑏𝑏 ≠ 1 and 𝑎𝑎 > 0. More precisely, the ex-
ponential function 𝑏𝑏𝑥𝑥 is strictly increasing if 𝑏𝑏 > 1 and strictly decreasing if 
0 < 𝑏𝑏 < 1. Strict monotonicity implies uniqueness. Further, with these re-
strictions on 𝑏𝑏, the asymptotic behavior of 𝑏𝑏𝑥𝑥 combined with the continuity
of 𝑏𝑏𝑥𝑥 guarantees that 𝑏𝑏𝑥𝑥 attains every real value 𝑎𝑎 > 0. This guarantees solv-
ability.  

The definition of logarithms makes them a tool for solving exponential 
equations and problems involving exponential growth. Logarithm laws (i.e. 
calculation rules) for products, quotients, and powers follow from correspond-
ing power laws. For instance, the logarithm product law ln(𝑎𝑎 ∙ 𝑏𝑏) = ln 𝑎𝑎 +
ln 𝑏𝑏 follows from the power law 𝑒𝑒𝑥𝑥 ∙ 𝑒𝑒𝑦𝑦 = 𝑒𝑒𝑥𝑥+𝑦𝑦: 

ln(𝑎𝑎 ∙ 𝑏𝑏) = ln�𝑒𝑒ln𝑎𝑎 ∙ 𝑒𝑒ln𝑏𝑏� = ln 𝑒𝑒ln𝑎𝑎+ln 𝑏𝑏 = ln𝑎𝑎 + ln 𝑏𝑏 

Proofs of other laws are very similar (replace ∙ and + with / and – and one
gets a proof of the logarithm quotient law), as are the corresponding laws for 
other bases. 

A.2 Primitive functions
𝐹𝐹(𝑥𝑥) is a primitive function to 𝑓𝑓(𝑥𝑥) in an open interval (𝑎𝑎, 𝑏𝑏) if 𝐹𝐹’(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) 
for all 𝑥𝑥 in (𝑎𝑎, 𝑏𝑏). The derivative 𝐹𝐹’(𝑥𝑥) of 𝐹𝐹 at 𝑥𝑥 is the limit of 
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�𝐹𝐹(𝑥𝑥 + ℎ) − 𝐹𝐹(𝑥𝑥)�/ℎ when ℎ → 0, if it exists and is finite. While the deriv-
ative is defined pointwise, being a primitive function is a property connected 
to an interval and expresses a relation between functions. Primitive functions 
are usually denoted with capital letters. They are also referred to as anti-de-
rivatives or indefinite integrals and denoted ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 . Primitive functions
are important tools for computing definite integrals (see next subsection) and 
for solving differential equations.

Primitive functions (when defined on intervals) are uniquely determined up
to an additive constant; that is, 𝐺𝐺(𝑥𝑥) is a primitive function to 𝐹𝐹’(𝑥𝑥) if and 
only if 𝐺𝐺(𝑥𝑥) = 𝐹𝐹(𝑥𝑥) + 𝐶𝐶 where 𝐶𝐶 is a constant. The sufficiency is trivial, and 
the necessity follows from the fact that a function whose derivative vanishes 
in an interval must be constant there. This, in turn, can be proven using the
mean value theorem. A classical existence result states that every function 
𝑓𝑓 that is continuous in an interval (𝑎𝑎, 𝑏𝑏) has a primitive function in that inter-
val. This is a consequence of the first fundamental theorem of calculus (see 
below). 

As logarithms inherit properties from exponentials, so do primitive func-
tions from derivatives. Two important classes of results are elementary prim-
itive functions (e.g.,  ∫ cos(𝑥𝑥)𝑑𝑑𝑥𝑥 = sin(𝑥𝑥) + 𝐶𝐶 since (sin 𝑥𝑥)’ = cos 𝑥𝑥) and 
general rules of integration (e.g., ∫�𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)�𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 +
∫𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑 since (𝐹𝐹 + 𝐺𝐺)’(𝑥𝑥) = 𝐹𝐹’(𝑥𝑥) + 𝐺𝐺’(𝑥𝑥)).  

A.3 Definite integrals 
The definition of the definite integral 

𝐼𝐼 = � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑,
𝑏𝑏

𝑎𝑎
 

or more precisely the Riemann integral, is theoretically much more compli-
cated than that of indefinite integrals. It is usually defined in one of the two 
following (and equivalent) ways:

• the limit 𝐼𝐼 of Riemann sums ∑ 𝑓𝑓(𝑥𝑥𝑘𝑘)∆𝑥𝑥𝑘𝑘𝑛𝑛
𝑘𝑘=1 when the partition of

the interval [𝑎𝑎, 𝑏𝑏] is infinitely refined (a process which in itself is 
quite difficult to formalize)

• the number 𝐼𝐼 which is a lower bound to all upper sums of 𝑓𝑓 on [𝑎𝑎, 𝑏𝑏] 
and an upper bound to all lower sums of 𝑓𝑓 on [𝑎𝑎, 𝑏𝑏] 

In both cases, the number 𝐼𝐼 must exist and be unique for the definition to 
make sense. Riemann was the first to prove (in the 1850s) that continuity of 𝑓𝑓 
is sufficient for this. The standard proof makes use of uniform continuity. A
formal treatment also requires knowledge of limits and the completeness of 
the real field. Geometrically, the integral represents the area under the graph 
of 𝑓𝑓, and is hence a tool for solving problems that can be represented by such 
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an area (e.g., distance is the area under the velocity graph, energy is the area 
under the power graph). 

There are two fundamental results that connect definite integrals with de-
rivatives. Newton and Leibniz discovered these (independently) in the late 17th

century. The first fundamental theorem of calculus states that if 𝑓𝑓 is continu-
ous, then ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 , if viewed as a function of the upper limit 𝑏𝑏, has the de-
rivative 𝑓𝑓(𝑏𝑏). The standard proof is based on the mean value theorem of inte-
gral calculus. As a trivial corollary, continuous functions always have primi-
tive functions. Another corollary is the second fundamental theorem of calcu-
lus: If 𝐹𝐹 is a primitive function to a continuous function 𝑓𝑓 then   
∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎)𝑏𝑏
𝑎𝑎 . The proof is rather simple. The representation 

formula for primitive functions guaranties that if 𝐹𝐹 is a primitive function to 
𝑓𝑓, then ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑏𝑏) + 𝐶𝐶𝑏𝑏

𝑎𝑎  for some constant 𝐶𝐶. Putting 𝑏𝑏 = 𝑎𝑎 in this 
identity yields 𝐶𝐶 = −𝐹𝐹(𝑎𝑎).  

The second fundamental theorem of calculus implies that integral calcula-
tions boil down to finding primitive functions. Hence, even though the theo-
retical foundations of definite integrals are considered too theoretically ad-
vanced for upper secondary mathematics education, the mathematics results 
can be presented, understood, and applied to geometric and scientific prob-
lems.

A.4 Combinatorics 
Combinatorics is not a specific concept but rather the branch of mathematics 
in which the possibilities to choose and arrange elements in a set are studied. 
At its base lies combinatorial representations of addition and multiplication. 
The addition principle states that when choosing an element from a set 𝐴𝐴 with
𝑛𝑛 elements or from a set 𝐵𝐵 with𝑚𝑚 elements, there are 𝑚𝑚 + 𝑛𝑛 possible choices. 
This principle is used to divide the set of possible choices into disjoint subsets
that can be handled separately. The multiplication principle states that when 
two elements are chosen independently of each other, one from 𝐴𝐴 and one
from 𝐵𝐵, then the number of possible pairs of elements are 𝑚𝑚 ∙ 𝑛𝑛. This principle 
is typically used for combinatorial problems involving sequences of choices. 

From the multiplication principle, formulas for permutations and combina-
tions can be derived. A permutation is an arrangement of the elements in a set. 
If the set contains n elements the first element of a permutation can be chosen 
in n different ways, the second in n-1 different ways, and so on. Hence, the 
multiplication principle implies that the total number of permutations is 𝑛𝑛! =
𝑛𝑛 ∙ (𝑛𝑛 − 1) ∙ (𝑛𝑛 − 2) ∙ … ∙ 2 ∙ 1. The number of 𝑘𝑘-permutations (i.e., permuta-
tions of 𝑘𝑘 elements chosen from the set) is 𝑃𝑃(𝑛𝑛, 𝑘𝑘) = 𝑛𝑛 ∙ (𝑛𝑛 − 1) ∙ … ∙
(𝑛𝑛 − 𝑘𝑘 + 1) = 𝑛𝑛!/(𝑛𝑛 − 𝑘𝑘)!. A 𝑘𝑘-combination of a set with 𝑛𝑛 elements is a 
subset with 𝑘𝑘 elements. As the elements of such a subset can be arranged in 
𝑘𝑘! different ways, there will only be 
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𝐶𝐶(𝑛𝑛, 𝑘𝑘) =
𝑛𝑛!

(𝑛𝑛 − 𝑘𝑘)!𝑘𝑘!

different 𝑘𝑘-combinations. This number is often denoted with the symbol �𝑛𝑛𝑘𝑘�, 
which is read “𝑛𝑛 choose 𝑘𝑘”. 

Combinations also occur as binomial coefficients; according to the bino-
mial theorem,

(𝑎𝑎 + 𝑏𝑏)𝑛𝑛 = ��𝑛𝑛𝑘𝑘�𝑎𝑎
𝑘𝑘𝑏𝑏𝑛𝑛−𝑘𝑘

𝑛𝑛

𝑘𝑘=0

. 

Combinations satisfy the identity 

�𝑛𝑛 − 1
𝑘𝑘 − 1� + �𝑛𝑛 − 1

𝑘𝑘 � = �𝑛𝑛𝑘𝑘�, 

which can be represented in an easily memorized triangular scheme called the 
Pascal triangle, in which �𝑛𝑛 − 1

𝑘𝑘 − 1� is the 𝑘𝑘th entry of the 𝑛𝑛th row. There is also 
a symmetry property that represents the idea that picking 𝑘𝑘 elements out of 𝑛𝑛 
is the same as choosing which 𝑛𝑛 − 𝑘𝑘 elements not to pick: �𝑛𝑛𝑘𝑘� = � 𝑛𝑛

𝑛𝑛 − 𝑘𝑘�. 
Related to choosing and arranging subsets is the Dirichlet box principle 

(also called the pigeonhole principle), which states that if a set with 𝑛𝑛 + 1 
elements is divided into 𝑛𝑛 disjoint subsets, at least one subset will contain 
more than one element. More generally, if a set with more than 𝑛𝑛𝑛𝑛 elements 
is divided into 𝑘𝑘 disjoint subsets, at least one will contain more than 𝑛𝑛 ele-
ments. 

Finally, combinatorics is an important tool in elementary probability the-
ory. The classical definition of probability is the ratio of the number of favor-
able cases to the number of possible cases. Combinatorics provides a means 
to calculate these numbers of cases. 

A.5 Logical inference
A mathematical statement P is either true or false. The negation of 𝑃𝑃 is de-
noted ¬𝑃𝑃, and is true when 𝑃𝑃 is false and vice versa. Usually, mathematical 
statements involve variables, and the values of the variables affect the truth 
value of the statement. A universal statement is true for all values of the vari-
able, whereas an existential statement is true for at least one value of each 
variable and a uniqueness statement is true for at most one value of each var-
iable.  
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A mathematical implication, 𝑃𝑃 ⇒ 𝑄𝑄, is a conditional statement of the form
“if 𝑃𝑃, then 𝑄𝑄”, where 𝑃𝑃 and 𝑄𝑄 represent statements that can be true or false, 
but where 𝑄𝑄 always is true if 𝑃𝑃 is true. The implication 𝑃𝑃 ⇒ 𝑄𝑄 is equivalent 
to its contrapositive ¬𝑄𝑄 ⇒ ¬𝑃𝑃, but not to its inverse  ¬𝑃𝑃 ⇒ ¬𝑄𝑄 or its con-
verse 𝑄𝑄 ⇒ 𝑃𝑃. In a direct proof of an implication 𝑃𝑃 ⇒ 𝑄𝑄, one assumes that P 
is true and argues for how this must lead to 𝑄𝑄 also being true. The argument 
must not build on any assumptions about the truth value of𝑄𝑄. A contrapositive 
proof, on the other hand, assumes nothing about 𝑃𝑃. Instead, the starting point 
is that 𝑄𝑄 is false, and then the proof outlines how this by necessity must lead 
to 𝑃𝑃 also being false. A proof by contradiction assumes 𝑃𝑃 to be true and 𝑄𝑄 to 
be false, and outlines how this leads to a contradiction. 

If 𝑃𝑃 ⇒ 𝑄𝑄and 𝑄𝑄 ⇒ 𝑃𝑃, then P and Q are equivalent, which is written 𝑃𝑃 ⇔ 𝑄𝑄. 
An equivalence is often proven by proving the two implications 𝑃𝑃 ⇒ 𝑄𝑄 and 
𝑄𝑄 ⇒ 𝑃𝑃 one at a time. 

When an implication 𝑃𝑃 ⇒ 𝑄𝑄 is known, and 𝑃𝑃 is known to be true, one can 
conclude that 𝑄𝑄 is true. This is the most common mode of deductive reason-
ing, referred to as modus ponens. If 𝑃𝑃 ⇒ 𝑄𝑄 is true and 𝑃𝑃 is false, no conclusion
can be drawn regarding 𝑄𝑄’s truth value. But if 𝑃𝑃 ⇒ 𝑄𝑄 is true and 𝑄𝑄 is false, 
one can conclude that 𝑃𝑃 must be false. This mode of reasoning is called modus 
tollens.
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