
Linköpings universitetSE–581 83 Linköping+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Bachelor’s thesis, 15 ECTS | Information Technology

2021 | LIU-IDA/LITH-EX-G--2021/072--SE

Detecting ADS-B spoofing attacks
– using collected and simulated data
Insamling och simulering av ADS-B meddelanden för detektion
av attacker

Joakim Thorn
Alex Wahlgren

Supervisor : Andrei GurtovExaminer : Marcus Bendtsen

External supervisor : Suleman Khan

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publicer-ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko-pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis-ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annananvändning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker-heten och tillgängligheten finns lösningar av teknisk och administrativ art.Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning somgod sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentetändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-nens litterära eller konstnärliga anseende eller egenart.För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for aperiod of 25 years starting from the date of publication barring exceptional circumstances.The online availability of the document implies permanent permission for anyone to read, to down-load, or to print out single copies for his/hers own use and to use it unchanged for non-commercialresearch and educational purpose. Subsequent transfers of copyright cannot revoke this permission.All other uses of the document are conditional upon the consent of the copyright owner. The publisherhas taken technical and administrative measures to assure authenticity, security and accessibility.According to intellectual property law the author has the right to bementionedwhen his/her workis accessed as described above and to be protected against infringement.For additional information about the Linköping University Electronic Press and its proceduresfor publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Joakim ThornAlex Wahlgren

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

In a time where general technology is progressing at a rapid rate, this thesis aims to present
possible advancements to security in regard to air traffic communication. By highlighting
how data can be extracted using simple hardware and open-source software the trans-
parency and lack of authentication is showcased. The research is specifically narrowed
down to discovering vulnerabilities of the ADS-B protocol in order to apply countermea-
sures. Through fetching live aircraft data with OpenSky-Network and through fetching
simulated ADS-B attack data with OpenScope, this thesis develops a data set with both
authentic and malicious ADS-B messages. The data set was cleaned in order to remove
outliers and other improper data. A machine learning model was later trained with the
data set in order to detect malicious ADS-B messages. With the use of Support Vector
Machine (SVM), it was possible to produce a model that can detect four different types
of aviation communications attacks as well as allow authentic messages to pass through
the IDS. The finished model was able to detect incoming ADS-B attacks with an overall
accuracy of 83.10%.
Keywords: ADS-B, ATC, Spoofing, Air Communication, OpenSky, OpenScope, Security,
SVM, Machine learning

Acknowledgments

We would like to thank our supervisor, professor Andrei Gurtov, for his continuous guidance
and support throughout the semester. We also wish to thank research assistant Suleman Khan
for helping us greatly with good inputs, general guidance and helpful insights. Another big
thank you to Ola Runeson, contributor to openScope, for great insights in aviation technology.
Finally we wish to thank last year’s students Anton Blåberg and Gustav Lindahl for letting
us use and expand on their openScope-extension to simulate air communication attacks and
guiding us through the process.

iv

Contents

List of Figures vi

List of Tables vii

List of Listings viii

Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 2
1.3 Research questions . 2
1.4 Delimitations . 2
1.5 Related work . 2

2 Theory 4
2.1 Previous air traffic communication standards . 4
2.2 ADS-B . 4
2.3 Software . 9
2.4 Support Vector Machine . 10

3 Method 12
3.1 Manual collection using hardware . 12
3.2 Authentic data collection . 13
3.3 Attack data collection . 14
3.4 Data cleaning . 16
3.5 Applying machine learning . 19

4 Results 20
4.1 Authentic data collection . 20
4.2 Attack data collection . 21
4.3 Machine learning model . 23

5 Discussion 24
5.1 Method . 24
5.2 Results . 24
5.3 Future work . 26

6 Conclusion 27

Bibliography 28

v

List of Figures

2.1 ADS-B Protocol Stack . 5
2.2 Current requirements for an ADS-B OUT transmitter in US airspace, according to

the FAA . 7
2.3 Example of an SVM graph. 11

3.1 Setup used to send ADS-B messages using the HackRF One transmitter, and the
RTL-SDR dongle combined with an antenna to receive the same messages. 13

3.2 Boxplots of the barometric altitudes in the authentic data set. The y-axis displays
the measured altitude in meters. The geometric altitudes did not contain any out-
liers. 17

4.1 Using dump1090 with the –interactive displays any received messages directly in
the terminal. 20

4.2 Using dump1090 with the –net flag allows the user visualize the aircraft within the
web browser as well. 21

4.3 Settings used for the final attack data collection. 22
4.4 Attack type distribution for data collection . 22
4.5 Confusion Matrix for SVM. 23

vi

List of Tables

2.1 ADS-B message format . 6
2.2 Clarification of the US airspace classes as determined by the FAA 7
2.3 Overview and examples of attack types and their respective primary affected CIA

attribute . 8

3.1 SVC settings for the final SVM model. 19
3.2 Confusion Matrix . 19

vii

List of Listings

3.1 The dump1090 command to receive our own generated ADS-B messages on
the 868 MHz frequency using the interactive and net options. 12

3.2 Python script to change the time elements in the data collection. 14
3.3 Virtual Trajectory Modification attack code. 15
3.4 Transponder attack code. 16
3.5 Python script for removal of missing values from authentic data set. 17
3.6 Python script for detection of flights with unreasonable altitudes between mes-

sages. 18
4.1 Command used for ADSB-OUT to create our own ADS-B message. 20

viii

Abbreviations

ADS-B – Automatic Dependent Surveillance Broadcast

ATC – Air Traffic Control

ATM – Air Traffic Management

CIA – Confidentiality, Integrity, Availability

CPDLC – Controller Pilot Data Link Communications

DNN – Deep Neural Network

EASA – European Aviation Safety Agency

FAA – Federal Aviation Administration

ICAO – International Civil Aviation Organization

IDS – Intrusion Detection System

RF – Radio Frequency

RTL-SDR – Realtek-Sofware Defined Radio

SDR – Software Defined Radio

SSR – Secondary Surveillance Radar

SVM – Support Vector Machine

VTM – Virtual Trajectory Modification

ix

1 Introduction

This thesis is structured as follows:

• Chapter one explains the problems addressed, including background and research
questions as well as related work from which a significant amount of information has
been gathered.

• In chapter two we present the necessary background information considered needed to
move forward with the thesis.

• Chapter three describes the methodology and aims to walk the reader through the pro-
cess of what has been done. Several approaches are discussed and briefly evaluated.

• Chapter four presents the results obtained by using the methods from the previous
chapter.

• In chapter five we discuss the results obtained, as well as methods used and sources of
error.

• The sixth and final chapter presents our conclusions.

1.1 Motivation

As air traffic increases all over the world the need for reliable positioning surveillance is vital
[1]. In the context of aviation, there is a tendency of focusing on the safety of commercial
flights. A common misconception is that safety and security are equivalent. Safety in regards
to aviation systems would more appropriately be defined as minimizing the risk of a potential
aircraft failure. Security, however, as this thesis will highlight, can be defined as ensuring
that both transmitted and received information is authentic and that the integrity of these
messages is maintained. This includes the communication between aircraft and Air Traffic
Controllers (ATCs) such as aircraft positioning, velocity and headings. The combination of
reliable communication and authentic information can then be translated into what we call
security [2].

The current state of communication in civil aviation systems leverages ADS-B, Automatic
Dependent Surveillance-Broadcast, which has enhanced air travel safety significantly since

1

1.2. Aim

deployed. The fundamental concept of ADS-B is that an aircraft broadcasts unencrypted mes-
sages that for example contain position, altitude, velocity, and aircraft identification (ICAO
address) to both other aircraft and nearby ATCs. Through this technique, it is possible to ac-
curately acquire an overview of the airspace that could be used as decision-making material
for pilots and controllers [3].

1.2 Aim

This paper aims to outline security flaws in air traffic communications and provide a solution
to distinguish authentic ADS-B messages from fabricated spoofing attacks. By training a
machine learning model on both spoofed and authentic ADS-B messages, the thesis aims to
develop an Intrusion Detection System (IDS).

1.3 Research questions

Given the aim presented above, the following research questions could be formulated.

1. Through simple means and limited time, how much flight information can be extracted
through air traffic communication, and what difficulties may arise?

2. Since ADS-B is a transparent protocol with very limited security measures, could an
IDS be a reasonable solution to this and if so, how can it be implemented?

1.4 Delimitations

Due to the current pandemic with COVID-19, the number of airborne entities is heavily re-
duced. Hence the possibility to manually collect data was severely limited. As will be further
discussed in chapter 5 multiple machine learning algorithms are available, but due to time
limitations, only one solution is presented in this thesis. Moreover, given the narrow time
frame, only a relatively small data set could be produced.

1.5 Related work

The concern of unencrypted and unauthenticated communication has been addressed in a
great number of papers and articles.

Kacem et al. [4] presents similar problems and proposes a solution to detect ADS-B attacks
using multiple layers of added security measures. Including predicting an aircraft’s flight
path, generating secure messages, and adding an extra validation algorithm at the receiver
endpoint.

Another proposed solution is given by Braeken [5] who discusses multiple previously
proposed solutions. Braeken attempts to show that lack of confidentiality and authentication
can be solved by taking the cryptography approach using what she refers to as Holistic Air
Protection (HAP).

Some of the security problems that come with ADS-B are also shared with the CPDLC
protocol. Gurtov et al. [6] lift many of the concerns mentioned previously. They also give a
brief overview of multiple types of attacks and propose multiple countermeasures, including
cryptography solutions and attempts to solve the identification issues that come within air
traffic communication.

Ying et al. [7] do the same thing as we do: producing an ADS-B message data set to use
for an intrusion detection system. They then attempt to expand the data set with simulated
ADS-B spoofing attacks.

2

1.5. Related work

Similar to this thesis, Eskilsson, Gustafsson, Khan, and Gurtov [8] shows the ease of which
attacks on ADS-B and CPDLC can be performed. They used the same technique for their
ADS-B data transmissions and receival as will be discussed further in this thesis.

As will also be discussed further is the approach that was taken by Lindahl and Blåberg
[9]. They extended an open-source ATC simulator in order to implement communication
attacks on the simulated aircraft. This proved useful for the work in this thesis as further
implementations and additions could be made to their former work.

Related to the topic, Matti, Johns, Khan, Gurtov, and Josefsson [10] explored the possi-
bility of deploying XG (5th and 6th generation) networks within different airspaces. The
networks could be rapidly set up using beam-forming and the internet connection would
provide features such as enhanced security possibilities as well as higher transmission rates.

3

2 Theory

In this chapter, the background information needed for this thesis is presented. Most of which
is gathered from research papers, trusted online sources, and other relevant sources, all pri-
marily written by trusted professors and other researchers within the field.

2.1 Previous air traffic communication standards

Awareness of the air space has always been crucial for Air Traffic Management (ATM) to work
properly. In the earlier days, the backbone of ATM was based on radar technology and is even
used today as a complement to other aviation technologies. The decision-making material
for coordinating aviation entities, both in air and at e.g. airports, consists of information
such as position, direction, and identity. Much of this information was possible to gather
using radar technology in combination with other techniques. However, as the airspace gets
more crowded, aspects such as real-time data, time-delay, and implementation costs which
the mentioned system lacked, became more crucial. Apart from the airspace, the accuracy of
aircraft positions at crowded airports is also a key aspect from an ATM point of view [11, 12].

2.2 ADS-B

As the world gets increasingly more globalized, the need for more precise and reliable air traf-
fic surveillance has risen. When ADS-B was developed, it was able to fill this need through
the open broadcast of real-time positioning and other useful information to both other avia-
tion entities and ATCs. In contrast to radar technology, ADS-B takes advantage of the Global
Positioning System (GPS) transponders that communicate with satellites to retrieve a very
accurate estimate of their current position. This makes for better decision-making material
for aircraft (equipped with an ADS-B receiver) and the overall ATM. This in combination
with the considered low-cost implementation served as a motivation to transition from the
radar-based system. As the name suggests, ADS-B is automatic in the sense that it transmits
surveillance data consistently without interference by any third-party actors. The ADS-B sys-
tem also depends on the installed equipment to be handled properly. The transmissions are
broadcast in a manner so that any entity (e.g. other aircraft or base stations) equipped with
a receiver can intercept the messages [12]. The system can be divided into ADS-B OUT and

4

2.2. ADS-B

ADS-B IN. For an entity to be able to broadcast surveillance data through ADS-B, it must be
equipped with ADS-B OUT technology. This technology is primarily the broadcast transmit-
ter which is the foundation of the protocol. The reason being that it manages the outbound
air traffic communication, and therefore needs to be equipped on the airplane [3]. The receiv-
ing part of the ADS-B architecture is referred to as ADS-B IN, which purpose is to gather the
broadcast data. This technique is implemented in the ground controllers as a means to im-
prove the ATM. However, as a motivation for aviation entities to use ADS-B, it is also possible
for them to be equipped with ADS-B IN, giving pilots an increased air traffic awareness.

The standard frequency on which ADS-B operates is 1090 MHz. On this frequency, it
issues both active responses and more general broadcasts. The universal standard of ADS-B
is more precisely defined as 1090ES (Extended Squitter). This could be explained through
ADS-B transmission being an extension of the Mode-S broadcasting response, which is a
selective communication using transponders and unique identifiers called ICAO-addresses.
The extended squitter consists of information about the aircraft such as position and velocity,
being appended to the Mode-S message [3].

ADS-B can be further dissected into other smaller parts. As presented in Figure 2.1, a
simplified version of the ADS-B communication protocol between aircraft can be seen (Figure
2.1a) as well as when ADS-B messages are intercepted by ground stations (Figure 2.1b). The
ADS-B protocol stack allows for a simpler and perhaps better understanding of which parts
are necessary for a functional communication protocol.

Airborne
Applications

Airborne
Applications

ADS-B OUT / INADS-B OUT / IN

ADS-B
Reports

ADS-B
Message
Assembly

ADS-B
Message
Assembly

Frame
Assembly

Frame
Assembly

RF
Modulation

RF
Modulation

Airborne R
adio

Airborne R
adio

Air Interface

Aircraft Aircraft

(a) ADS-B Air-to-Air Protocol Stack.

FAA
Applications

Airborne
Applications

ADS-B ServerADS-B OUT

ADS-B
Reports

ADS-B
Message
Assembly

ADS-B
Message
Assembly

Frame
Assembly

Frame
Assembly

RF
Modulation

RF
Modulation

Airborne R
adio

G
round R

adio

Air Interface

Aircraft Ground Station

(b) ADS-B Air-to-Ground Protocol Stack.

Figure 2.1: ADS-B Protocol Stack [13].

The ADS-B message

To ensure accuracy between aircraft and ATCs, ADS-B messages containing position and
velocity data are broadcast twice every second. Furthermore, messages containing identi-
fiers used to differentiate aircraft are typically broadcast once every 5 seconds. The ADS-B
message format uses Mode-S frames, which is a data structure primarily used within radar
technology (SSR). Mode-S allows ground stations to request a set of data from an aircraft,
which in turn replies with the data in combination with its ICAO address. These type of mes-
sages are broadcasted using pulse-position-modulation (PPM), giving a data rate of 1 Mbps

5

2.2. ADS-B

(which corresponds to a pulse length of 1 µs) [14]. All this results in a 112-bit message when
transmitting an ADS-B message over PPM, which can be seen in Table 2.1.

Bits Name Abbreviation

1-5 Downlink Format DF
6-8 Message Subtype CA
9-32 ICAO Aircraft Address ICAO24
33-88 Data Frame DATA
89-112 Parity Check PC

Table 2.1: ADS-B message format [15].

The first bits represent the downlink format which describes the format of the rest of the mes-
sage. The standard value of this field when transmitting ADS-B data is 17, which indicates
that the message is an extended squitter (with information about velocity and position etc).
The three bits in the capability field represent what capabilities the sending Mode-S transpon-
der has. The ICAO address is appended which consists of 24 bits whereas the actual payload
follows with a maximum size of 56 bits. The message is concluded with 24 bits of data that
are needed for error detection and to determine whether the message should be discarded
due to corruptness or not [14].

Standards and legislations regarding ADS-B

Regarding the regulations of ADS-B OUT technology, there exist certain air traffic authorities
that operate within each respective airspace. The Federal Aviation Administration (FAA) op-
erates as such and has the primary purpose of ensuring that flights operating in US airspace
are safe [16]. The equivalent of FAA in Europe is the European Aviation Safety Agency
(EASA) which has the same purpose of monitoring the airspace and ensuring high safety
standards. Related tasks that are handled by these organizations include aircraft inspections,
authorization of aircraft design and research targeted at improving overall air traffic safety
[17].

The following rules apply in regards to ADS-B:

1. Starting from Jan 1 2020 effectively all aircraft operating over US airspace are required
by the FAA to be equipped with at least an ADS-B OUT transmitter [18].

2. Starting from Dec 7 2020 effectively all aircraft operating over EU airspace are required
to be equipped with at least an ADS-B OUT transmitter [19].

As of writing this thesis, both of the discussed air spaces have implemented laws that require
civil aircraft to be operated with ADS-B technology as can be seen in Figure 2.2 which can be
further clarified by Table 2.2.

6

2.2. ADS-B

Figure 2.2: Current requirements for an ADS-B OUT transmitter in US airspace, according to
the FAA [18].

Airspace Altitude

Class A All

Class B
Generally, from surface to 10,000 feet mean sea level (MSL)
including the airspace from portions of Class Bravo that extend
beyond the Mode C Veil up to 10,000 feet MSL (e.g. LAX, LAS, PHX)

Class C Generally, from surface up to 4,000 feet MSL including the airspace
above the horizontal boundary up to 10,000 feet MSL

Class E
Above 10,000 feet MSL over the 48 states and DC, excluding
airspace at and below 2,500 feet AGL

Over the Gulf of Mexico at and above 3,000 feet MSL within 12
nautical miles of the coastline of the United States

Mode C Veil
Airspace within a 30 NM radius of any airport listed in Appendix D,
Section 1 of Part 91 (e.g. SEA, CLE, PHX) from the surface up to
10,000 feet MSL

Table 2.2: Clarification of the US airspace classes as determined by the FAA [18].

ADS-B vulnerabilities

The idea of ADS-B technology is to have a network with continuous and accessible aircraft
data. Therefore, it is in some manner thought to be safe in regards to a large amount of
decision-making material. On the other hand, the lack of authentication methods in com-
bination with the transparency could also open up for vulnerabilities. These vulnerabilities
are much like the ones found on the internet, and to understand these, one has to take into
account the ADS-B protocol stack, as different attacks are executed at different layers [14]. In
Table 2.3 an overview of the different attack types is shown with examples [6].

7

2.2. ADS-B

Threat Type Actor Type Affected Attributes Example Attack

Eavesdropping Passive Confidentiality Reading control messages
Jamming Active Availability Channel blocking
Flooding Active Availabiliy Ground station / aircraft flooding

Injection Active Availability / Integrity /
Confidentiality Ghost messaging

Modification Active Integrity False message values
Masquerading Active Authentication Ghost aircraft / ground station identity

Table 2.3: Overview and examples of attack types and their respective primary affected CIA
attribute [6].

Eavesdropping

The possibility of eavesdropping is a direct consequence of operating with ADS-B as a main
feature of the protocol is that it is available. The procedure when eavesdropping on ADS-B
communication consists of listening to the broadcast messages from the sending entities. To
do this, one has to be equipped with a radio frequency receiver that can intercept transmis-
sions at the most commonly used frequency of 1090 MHz. On its own, this threat type is
considered quite harmless, as a core principle of ADS-B is transparency and as it has no im-
pact on the ATM [14]. Flightradar241 is a service that for instance applies this technique with
a worldwide network of receivers, to get a good appreciation of the airspace in real-time.

Jamming

Jamming, in the context of ADS-B, is a form of denial of service (DoS) attack where the adver-
sary exploits the physical layer of ADS-B. The chain of events in a jamming attack includes
interfering with an authentic ADS-B entity by transmitting/requesting messages at a high
frequency. This may lead to the transponder becoming overloaded and a resulting downtime
prevents the authentic entity to transmit real aircraft data. The most likely approach to this
attack is through so-called Ground Station Flood Denial or Aircraft Flood Denial. The attack
that targets a ground station is more viable in the sense that the range could be shortened
much easier compared to a given aircraft, hence it requires a lesser signal power to perform
[14]. Worth noting is that this approach is not specific to the ADS-B protocol as it can be ap-
plied to other protocols that use radio frequency-based communication at the physical layer
[3].

Message deletion

This attack focuses on removing already present ADS-B messages from the data link channel.
There are two approaches to this method and they both take advantage of signals at the same
frequency level as the targeted message. The first one attempts to corrupt the message by
causing bit errors. Through the parity check field in the message, the receiving ATC will
determine if to drop the message due to too many bit errors. The second approach is to
destroy the ADS-B message by transmitting a synchronized signal that periodically causes
negative interference and thereby cancels out the broadcast message [14].

Message injection

As the ADS-B protocol in itself does not implement any authentication procedures, the san-
ity checks are primarily focused on the actual ADS-B message payload and structure. This
means that if an adversary can control the data link transmissions then it is possible to inject

1https://www.flightradar24.com/

8

https://www.flightradar24.com/

2.3. Software

messages with information about the position, velocity, altitude, etc. that looks legitimate.
This could be done through using existing aircraft identification or by using a non-existing
one, depending on the purpose [14].

Message modification

Message modification intends to manipulate the data of the messages sent by an authentic
aircraft. For a modified message to be broadcast and deemed as authentic by a possible re-
ceiver, it requires specific hardware that ensures its legitimacy. As this demands expensive
hardware compared to for example a jamming attack, it is less likely. The attack can be exe-
cuted using a combination of message deletion followed by a message injection, through bit
manipulation of the ADS-B message, or by overshadowing the actual message by transmit-
ting the modified one with a higher signal power [14].

2.3 Software

In this section, the main two softwares used will be explained. These will be further discussed
throughout the thesis.

OpenSky-Network

OpenSky-Network2 is an open-source air traffic service that provides live ATC data and aims
at "improving security, reliability and efficiency" of the airspace. OpenSky-Network also sup-
plies its open API which can be used to collect live data from all over the planet based on
ADS-B receivers, both from organizations and individuals. OpenSky uses so-called state vec-
tors, which are representations of ADS-B data. The difference is that each vector consists of a
combination of a sequence of ADS-B messages. For instance, if one ADS-B message contains
identifier and speed whereas the other ADS-B message contains position and altitude, the
state vector would include the information from both of these messages [20].

OpenScope Simulator

OpenScope3 is an open-source project that simulates air traffic and allows the user to control it
through simplified ATM procedures, such as commands for routing and landing, departing,
and alter velocities. When running the software the user is visually presented with an airport
surrounded by multiple simulated aircraft which can then be manipulated using commands.
If no commands are entered the aircraft will follow the predetermined routes and this can be
seen and followed in real-time.

Last year Lindahl and Blåberg [9] presented an extended version of OpenScope4 that en-
ables the user to perform ADS-B attacks on the simulated aircraft. An expanded GUI was im-
plemented along with four different types of attacks as well as an algorithm that distributes
the attacks across the simulated aircraft.

The attacks implemented last year were the following:

• Jumping aircraft
The purpose of this attack is to simulate a message modification attack where the vary-
ing data are the positional values. This is done through retrieving authentic aircraft
data (in the simulator context), modifying the longitudinal and latitudinal coordinates,
and then displaying the false data to the receiving ATC. When the data changes the user
can visually see the aircraft "jumping" to an other location within the simulator. With

2https://opensky-network.org
3https://github.com/openscope/openscope
4https://gitlab.liu.se/gusli687/openscope-attacks

9

https://opensky-network.org
https://github.com/openscope/openscope
https://gitlab.liu.se/gusli687/openscope-attacks

2.4. Support Vector Machine

the current implementation, data such as velocity and altitude will not be altered and
the frequency of these positional modifications are relatively low. After the so-called
jump, the aircraft will still have its original destination but the following messages are
also fabricated with positional re-calculations until the aircraft reaches it’s destination.

In a real-world scenario this could be performed by fetching real ADS-B messages and
re-transmitting the message with all the same data, except for the longitudinal and lat-
itudinal fields. However, in order to give such an attack any meaningful impact, the
attacker would have to calculate a new route for the aircraft after the jump to be able to
keep broadcasting false ADS-B messages.

• Displaying false data
This attack is similar to the one previously mentioned in the sense that it’s also a mes-
sage modification attack. The difference, however, is that this attack impacts other fields
(namely velocity and altitude) and it is not continuous. The attack not being continuous
means that the ATC receives the false values once in a while and thereby also receives
the real values in between.

• Flooding
This attack simulates a large number of aircraft that aren’t actually airborne. In a real
case scenario, this would mean that a large number of fabricated ADS-B messages are
broadcast on the same frequency as other, authentic, ADS-B messages and thereby re-
sult in flooding on that data link channel.

• Non-responding aircraft
The attack of non-responding aircraft targets the communication between aircraft and
ATCs. The aircraft that are affected by these attacks will not respond to commands
issued by the ATC. As this attack is not targeting ADS-B communication, our collection
of attack data will not consider this [9].

2.4 Support Vector Machine

Support Vector Machine (SVM) is an algorithm that is good in the sense that it requires low
computation power while still providing a very high classification accuracy if implemented
correctly. The idea of SVM is to find a so-called hyperplane that separates different classes of
an object optimally. This is done by optimizing the margin between the hyperplane and each
class to provide room for future classification. Worth noting is that the hyperplane is always
one dimension less than the space that defines the data points. For example, if the data points
exist in a coordinate system, which is a two-dimensional plane, then the hyperplane will be
a one-dimensional line, as can be seen in Figure 2.3 [21].

The marginal distance is the distance between the two parallel margins. The main goal of
this method is to optimize the marginal distance v by choosing the best hyperplane.

Support Vectors: The vector points that are incredibly similar to the hyperplane are
known as support vector points, and these two data points directly relate to the algorithm’s
performance, while other data points have no noticeable effects. It is also necessary to note
that removing support vectors changes the direction of the hyperplane.

Good Margin: For the majority of entities, the support vectors in the positive and negative
classes would be closely but not equally located to the hyperplane, creating a good margin of
separation between them.

Bad Margin: The hyperplane that is close to either positive or negative support class
vectors is referred to as the bad margin.

Hard Margin: The data point is distinguished from positive and negative classes by keep-
ing the marginal difference between the parallel hyperplanes.

Soft Margin: By drawing a hyperplane, these data points cannot be distinguished from
the positive and negative groups. Soft margins are impossible to handle when positive and

10

2.4. Support Vector Machine

Figure 2.3: Example of an SVM graph [22].

negative data points are combined together, reducing accuracy efficiency. Equation 2.1 gives
the line equation.

y = xa + b (2.1)

The two vectors are S, v.

S

 ´b
´a
1

 and v

 1
x
y

STv = ´b ˆ (1) + (´a) ˆ x + 1 ˆ y

STv = y ´ ax ´ b
(2.2)

The hyperplane equation is given in equation 2.3.

STv + b = 0 (2.3)

Where, b is bias and S, v is vector.

11

3 Method

This chapter aims to explain the methods used for the data collection, data handling, at-
tack simulation, and lastly the process of producing the IDS. This chapter includes both the
thought process as well as the actual methods used. The methods will later be discussed and
evaluated in chapter 5.

3.1 Manual collection using hardware

As mentioned previously, ADS-B is split into two different parts – ADS-B IN and ADS-B OUT.
To simulate this, two pieces of hardware were used. The first one was the RTL-SDR dongle,
which is a USB dongle that connects to an antenna. Combined with the Mode-S decoder
dump10901, it was possible to collect all ADS-B messages within the range of the antenna.
With the RTL-SDR dongle connected, the command in listing 3.1 was used to start fetching
the ADS-B messages. Using the –interactive flag the terminal displays a list of all messages
received and using the –net flag allows the user to open the web browser and visualize any
flights, from which messages have been received, on an actual map. In the example in listing
3.1 and for all tests the frequency was set to 868 MHz, which is a license-free frequency,
meaning it can be used by anyone for anything [23]. Because the purpose was to only listen
to messages that were sent manually, the 868 MHz frequency was suitable as the intention
was to not interfere with the actual air traffic on the 1090 MHz frequency.

% ./dump1090 --interactive --net --freq 868000000

Listing 3.1: The dump1090 command to receive our own generated ADS-B messages on the
868 MHz frequency using the interactive and net options.

The second piece of hardware used was the HackRF One – a Software Defined Radio. This acts
as the ADS-B OUT transmitter and allows the user to transmit messages over any frequency
from 1 MHz to 6 GHz [24]. To transmit ADS-B messages, the use of a message encoder was
necessary. To this end, an open-source ADS-B OUT encoder2 was used, which was very
suitable as it works very well in combination with dump1090 and was very simple to get

1https://github.com/antirez/dump1090
2https://github.com/lyusupov/ADSB-Out

12

https://github.com/antirez/dump1090
https://github.com/lyusupov/ADSB-Out

3.2. Authentic data collection

started with. This allowed the user to easily generate ADS-B messages directly in the terminal
and set the aircraft’s callsign, altitude, position, velocity, and broadcast the message instantly.
Both pieces of hardware can be seen in figure 3.1. All software was run on MacOS 11.2.3.

Figure 3.1: Setup used to send ADS-B messages using the HackRF One transmitter, and the
RTL-SDR dongle combined with an antenna to receive the same messages.

3.2 Authentic data collection

The original idea was to collect the data using the hardware described above in section 3.1.
However, due to the current situation with COVID-19 and the limited amount of flights being
in the airspace, this would take too long. Instead, another approach had to be taken. To fetch
the needed amount of data, OpenSky-Network was used. By using the REST API mentioned
above, it was possible to collect ADS-B data at a reasonable rate. Through setting the area
to cover all of central Europe as a request parameter, there were no longer any positional
limitations.

To get an understanding of how the ATC data could be received technically, a blog post
from Geomatics [25] provided an example of how to use the OpenSky-Network REST API to
collect flight data.

While running, the program takes a snapshot of the most recent aircraft data and then
saves every ADS-B message from the given area in a .csv file. This in turn allowed for eas-
ier handling of the data if further needed, e.g. sorting by a certain attribute or removing
unnecessary information to suit the desired data set.

The API collects data with the timestamps in UNIX time. UNIX time is the count of sec-
onds since Jan 1th 1970 which in the year 2021 results in a huge integer. This, however, is not
preferred. Therefore a python script had to be written which can be seen in listing 3.2. This
simply translates all UNIX time elements into a more intuitive format.

13

3.3. Attack data collection

import pandas
from datetime import datetime

def changeFormat(unix):
return str(datetime.fromtimestamp(unix))

df = pandas.read_csv(’airdata.csv’)
df[’time_position’] = df[’time_position’].apply(changeFormat)
df[’last_contact’] = df[’last_contact’].apply(changeFormat)
df.to_csv(’../Data/out.csv’)

Listing 3.2: Python script to change the time elements in the data collection.

By running the API and the script in listing 3.2, quite a lot of data could be retrieved in a short
amount of time. With the position settings set over central Europe, the API calls collected
between 400-800 messages almost instantly, depending on the number of flights currently in
the air.

The final data set was gathered by running the API approximately 30 times during dif-
ferent days and times of the day. By varying the dates and times a varied data set could
be collected, which is desirable for this project. The few modifications made were adding a
field for labeling, which is necessary for the upcoming machine learning model to determine
which aircraft are authentic. Because the API code was running multiple times, each collect-
ing only a part of the final data set, another python script was also written to combine all the
minor .csv files into one. As mentioned, for each of these minor files, the time format was
altered according to listing 3.2.

3.3 Attack data collection

To complete the final data set falsified data was also required. One possible approach was to
send seemingly random ADS-B messages manually and collect them using hardware. This
however may not be considered a trusted method as it would be hard to recreate and there-
fore not considered scientific. Another approach would be to use software to generate false
ADS-B messages and append them to the data set. Since it is quite time-inefficient to send the
data manually, the hardware approach was illustrated simply to highlight the ease of manip-
ulating aircraft communication data. The final attack data set, however, was produced using
software and these steps will be further explained in the following sections.

To produce the attack data the extended version of OpenScope, described in section 2.3,
was used. However, as the ADS-B data values are only displayed within the software itself
further code implementation had to be added. Primarily a way of extracting mentioned data.
This was done by adding a download button into the GUI which triggered an event to con-
tinuously record ADS-B data of all affected aircraft into a .csv file. This was done through a
loop that, for each instance, ran for 10 minutes and continuously fetched simulated ADS-B
messages. The final result was very similar to the .csv file gathered from the OpenSky API,
as needed to eventually combine them.

As mentioned, the advantage of using this simulation tool is that it doesn’t require hard-
ware as well as not being dependent on the real-time airspace. Due to fewer limitations, this
way of producing attack data is therefore considered to represent a bigger part of the final
data set.

To further extend the OpenScope project and to get a wider variety of the final data set,
more attack types were implemented. Following discussions with supervisors, it was de-
cided to add two new types: Virtual Trajectory Modification and Transponder code alteration. To
make the attacks as confusing and unpredictable as possible, a lot of the implementations are
based on randomness. Lindahl and Blåberg [9] implemented an attack distribution method

14

3.3. Attack data collection

which, depending on which attacks are activated as well as how many aircraft are simulated,
distributes attacks to the aircraft accordingly. Both their attacks and the newly implemented
ones include the Math.Random() function which allows for different results and attack pat-
terns with every run of the software. The Math.Random() function returns a float between
0 and 1 and can therefore be used in multiple different ways.

Virtual Trajectory Modification

The Virtual Trajectory Modification (VTM) attack changes an aircraft’s current heading (the
direction the aircraft is facing) to seemingly random values. Depending on the settings in
the code, the changes to the heading can alter with different magnitude and frequency for
an even bigger confusion for the ATC. The code in listing 3.3 is located within a function
called updatePhysics() which updates the simulated aircraft values multiple times each
second. This means that the aircraft’s heading, depending on the variable headingRate
changes quite often. The variable trueHeading is a placeholder and keeps track of the
aircraft’s real heading and is used to calculate the new fake direction of the aircraft. Note that
even if headingDiff is relatively high, each new heading may receive a small change due
to the Math.Random() function may return a value close to zero. This is intentional since
headingDiff is meant to calculate the maximum possible change and not the average.

/*
Apply false headings:
headingDiff: How much the fake heading should vary from the true heading
headingRate: Rate of which the heading will change

*/
if(this.attackType == 6 && Math.floor(TimeKeeper.accumulatedDeltaTime) %

this.headingRate == 0){
this.heading = this.trueHeading * Math.random() * this.headingDiff;

} else if (this.attackType == 6 && (Math.floor(TimeKeeper.
accumulatedDeltaTime) % this.headingRate/4) == 0){
this.heading = this.trueHeading;

}

Listing 3.3: Virtual Trajectory Modification attack code.

Transponder Code Alteration

Unlike the VTM attack, the Transponder Code Alteration attack instead changes the
transponder code once for each affected aircraft, which never changes again. The transpon-
der code (also known as squawk) is a four-digit number given to each aircraft by the ATC for
easier communication and information sharing. It allows the pilot to also send emergency
messages by changing the squawk code to any of three predetermined emergency codes, de-
pending on the situation. These emergencies include loss of control of the aircraft, in case
of hijacking, as well as loss of communication, and finally a non-specified emergency. The
purpose of the squawk attack is to confuse the ATCs by broadcasting alarming values. This
attack is split into two parts: invalid values and emergency broadcasts.

Because the transponder code cannot contain the digits 8 or 9, any ADS-B broadcasts using
these values should therefore be considered invalid and alarming.

The other part is to change the squawk to one of the three emergency codes. This attack
does not change the squawk code back at any time to its original value in its current state.
Parts of the implementation for the squawk attack can be seen in listing 3.4.

15

3.4. Data cleaning

/*
Generates a fake squawk code (with emergency calls or invalid values).
50% chance of emergency call,
50% chance of invalid code including the numbers 8 or 9.
7500 - Aircraft hijacking
7600 - Radio failure
7700 - Emergency

*/
getFakeSquawk(){

var emergency = ["7500", "7600", "7700"];
if (Math.random() > 0.5){

this.hasEmergency = true; // Used for visualization
return emergency[Math.floor(Math.random()*3)];

}else{
var code = ""
for(var i = 0; i <= 3; i++){
code += String(Math.floor(Math.random() * 10));

}
// Replace a random number in the squawk to an 8 or a 9.
var index = Math.floor(Math.random()*4);
code = code.substring(0, index) + Math.round(8+Math.random()) + code.

substring(index + 1);
return code;

}
}

Listing 3.4: Transponder attack code.

3.4 Data cleaning

As the purpose of the collected data is to be used as training data fed to a machine learning
model, it has to be concise. If the collected data in some manner is misrepresentative, it may
lead to flaws in the detection mechanism of the system where it reacts on input where it
actually should not, or the other way around. Therefore, the gathered data must be given in
a form where it is as representative of the real world as possible.

Because the attack simulation data could not yield misrepresentative values, no data
cleaning had to be done for this part. Therefore, the focus of the data cleaning lies with the
authentic data. The authentic data originates from OpenSky where the data gathering process
is unknown and the probability of getting unwanted, missing, or flawed data is considered
higher.

Removing missing fields

When observing the gathered authentic data set, some ADS-B messages contained missing
data fields. Many of them were missing transponder codes (squawk) and others were missing
their callsign. The appropriate measure was to remove these messages from the data set as
an ADS-B message should have these fields to be seen as legitimate, as seen in listing 3.5. The
sensor and position_source fields were not considered to be of importance and therefore those
fields were removed completely from the data set as can also be seen in the code below.

16

3.4. Data cleaning

load file as pandas dataframe
df = pd.read_csv(’dataset.csv’)
remove unnecessary columns
del df[’sensors’]
del df[’position_source’]
remove rows with missing squawk and callsign values
df.drop(df.loc[df[’squawk’].isnull()].index, inplace=True)
df.drop(df.loc[df[’callsign’].isnull()].index, inplace=True)
export to new file
df.to_csv(’./cleanup.csv’)

Listing 3.5: Python script for removal of missing values from authentic data set.

Removing outlying altitudes

Another case to consider when cleaning the data is the possibility of outliers. Outliers are
values in a statistical population that are considered to be abnormal in the sense that they are
too far away from other values. To put this in the context of the collected ADS-B data, outliers
could be messages that have an altitude that is significantly higher than other messages. To
keep an even data set, these messages are therefore removed.

By leveraging statistical functions, the upper and lower bounds were set according to the
the following equations, where µ is the mean of the sample, and σ is the standard deviation.
Anything outside these bounds were considered to be outliers and therefore removed.

Upper bound = µbaro + 3 ¨ σbaro

Lower bound = µbaro ´ 3 ¨ σbaro

Figures 3.2a and 3.2b illustrates the different altitude values before and after the removal of
outliers.

(a) A boxplot of the barometric altitudes in the
authentic dataset before removal of outliers.

(b) A boxplot of the barometric altitudes in the
authentic dataset after removal of the outliers.

Figure 3.2: Boxplots of the barometric altitudes in the authentic data set. The y-axis displays
the measured altitude in meters. The geometric altitudes did not contain any outliers.

As seen in these, outliers only exist in regards to the barometric altitude (viewed as circles
in figure 3.2a) and therefore messages with distant values based on this altitude measure are
removed from the dataset.

17

3.4. Data cleaning

Detecting and removing unreasonable altitude gaps

One problem using the live REST API of OpenSky, documented in their forum3, is that the
altitude may differ by an unreasonable amount within a small period. This means that the
authentic data set could contain false data which needs to be removed. Therefore, based on
the time and altitude difference it was possible to calculate an average vertical rate between
consequent messages of a flight. Using a threshold for the maximum vertical rate allowed,
it was also possible to filter out and remove all flights that exceeded this threshold at some
point during the flight. The average maximum vertical rate across different aircraft seemed
close to 20 m/s and to be sure, the threshold was set to 25 m/s. The python script written for
detecting these flights is shown in listing 3.6 below.

max_vert_rate = 25
bad_flights = []
for index,row in df.sort_values(by=[’icao24’, ’time_position’]).iterrows():

if not prev.empty and row[’icao24’] == prev[’icao24’] and not (row[’
on_ground’] or prev[’on_ground’]):
baro_diff = round(row[’baro_altitude’] - prev[’baro_altitude’])
geo_diff = round(row[’geo_altitude’] - prev[’geo_altitude’])
time_diff = get_time_diff(prev, row)
baro_vert_rate = baro_diff / time_diff
geo_vert_rate = geo_diff / time_diff
if (abs(baro_vert_rate) > max_vert_rate or abs(geo_vert_rate) >

max_vert_rate):
if not row[’icao24’] in bad_flights:

bad_flights.append(row[’icao24’])
prev = row

Listing 3.6: Python script for detection of flights with unreasonable altitudes between
messages.

After removal of outliers from the data set, the non-numeric values were converted to nu-
meric ones. The reason for this is, machine learning algorithms works well on numeric values.
Example of this being changing "True" and "False" in the data set to binary values instead.

3https://opensky-network.org/forum

18

https://opensky-network.org/forum

3.5. Applying machine learning

3.5 Applying machine learning

In this thesis, support vector machine (SVM) was chosen for the for intrusion detection sys-
tem (IDS). SVM is a supervised machine learning algorithm which is mostly used for classifi-
cation problems. In this thesis, SVM was used to separate authentic messages from anomaly
messages. SVC details is given in table 3.1:

SVC

C 1.0
Break ties False
Cache size 200
Class weight None
Coef0 0
Decision function shape ovr
Degree 8
Gamme Scale
Kernel Poly
Max iterations -1
Probability False
Random state None
Shrinking True
Tol 0.001
Verbose False

Table 3.1: SVC settings for the final SVM model.

The experiment was carried out using ”Google Colab,” a Google-provided web Graphical
Processing Unit (GPU). The computer used has a Windows 8.1 operating system and an intel
I7, 8th generation CPU. Python 3.7 was chosen as the programming language. The authen-
tic and attack data sets was combined into one. 70% of this data set was used for training
and validation purpose and 30% of the data set was used for testing and validation purpose.
K-Fold validation was used on both training and testing set. In order to measure the perfor-
mance of the SVM model, per class accuracy score was taken advantage of.

The proposed solution is tested using several performance matrices, including accuracy
(A), false alarm rate (FAR), precision (P), recall (R), and F1-Score (F). The matrices described
above are based on True Positive (TP), False Positive (FP), False Negative (FN), and True
Negative (TN). The confusion matrix is represented in table 3.2.

Prediction

Actual
Positive Negative

Positive TP FN
Negative FP TN

Table 3.2: Confusion Matrix

19

4 Results

In this chapter, we present the final results of our work. This includes the results from data
hardware testing, data gathering, attack simulations, and the final machine learning results.
The chapter is structured similarly to chapter 3.

4.1 Authentic data collection

By using the hardware described in section 3.1 and relatively little software it proved easy
to both collect and transmit ADS-B messages manually. Using the open-source project
dump1090 and the commands in listing 3.1 in combination with the ADS-B encoder an air-
craft, flying 6666 feet over Campus Valla, Linköping, could be simulated. The commands for
the message transmission can be seen in listing 4.1 and the message received can be seen in
figure 4.1 along with the –net feature in figure 4.2.

Note that all message transmissions were done over the 868 MHz frequency to avoid
any risk of confusion for real ATCs or other airborne entities communicating on 1090
MHz.

bash-3.2$ python ADSB_Encoder.py 0xABCDEF 58.401362 15.577728 6666

Listing 4.1: Command used for ADSB-OUT to create our own ADS-B message.

Figure 4.1: Using dump1090 with the –interactive displays any received messages directly in
the terminal.

20

4.2. Attack data collection

Figure 4.2: Using dump1090 with the –net flag allows the user visualize the aircraft within
the web browser as well.

After fetching the authentic data according to section 3.2 approximately 35000 ADS-B mes-
sages were collected and stored into a single .csv file. Since some of the messages, however,
were incomplete some data cleaning had to be made. In the case where messages were miss-
ing fields due to being on the ground no cleaning was made. Some discrepancies did occur,
however, and were solved by removing the message completely from the data set. The most
common of these were missing transponder codes (squawks), missing velocities, or geometric
altitudes. By applying the data cleaning script described in section 3.4 roughly 9000 messages
were removed, meaning that the final authentic data set contained about 26000 messages.

4.2 Attack data collection

When conducting the attack data simulation a majority of the simulated aircraft were affected
by an attack. We decided to use the two attack types that we implemented ourselves, as well
as two attack types implemented last year to get a wider variety in the data set. The attack
settings can be seen in figure 4.3 which is a screenshot taken from the final collection of the
attack data. To get a bigger impact of the jumping attack, the probability was set to high which
results in more frequent jumps. The attack distribution of the data collection can be seen in
figure 4.4. Since openScope is originally an ATC simulator, the area is always revolved around
airports. The airport used in this thesis and data collection (which can be seen from longitude
and latitude values in the attack data) is Seattle-Tacoma International Airport (KSEA).

The attack data collection script was run 6 times which resulted in a total of approximately
25000 messages. Also worth noting is that almost all messages fetched from openScope are
affected by an attack and next to no data are gathered from unaffected aircraft.

Also worth mentioning, in regards to the risk analysis in section ??, is that all of these
attacks can be considered message manipulation and consequently fall under the message
assembly protocol layer.

21

4.2. Attack data collection

Figure 4.3: Settings used for the final attack data collection.

Figure 4.4: Attack type distribution – Blue: False velocity and altitude, Yellow: Jumping
aircraft, Purple: VTM, Green: False squawks.

22

4.3. Machine learning model

4.3 Machine learning model

Based on the data set produced for the final machine learning model, described in section 3.5,
the following results were achieved. The results are also visualized in figure 4.5 below.

For the false heading attack 1433 messages out of 2320 messages were detected correctly,
meaning that from all the messages sent using this attack type, 61.80% were detected cor-
rectly. The remaining 38.20% of these messages were marked as either other attack types or
as authentic messages, scoring the lowest success rate out of the different types. For false in-
formation, the success rate landed at 100% as it detected 1752 out of 1752 correctly, while the
false squawk attack had an accuracy of 93.90%. The jumping attack landed relatively low at
62.10% and finally, the authentic messages were detected correctly in 7957 out of 7982 cases,
landing at an accuracy of 99.70%. Out of all the messages, 14455 out of 15798 were detected
correctly giving the model an overall success rate of 91.49%.

What also can be seen in the confusion matrix is that some of the attacks, namely false
heading and jumping, have a relatively high percentage of their attacks (8.7% and 8.3%) being
predicted as authentic.

Figure 4.5: Confusion Matrix for SVM. The y-axis represents the actual input to the model
whereas the x-axis represents what the model predicts. Thererfore, the diagonal represents
the accuracy of correct predictions.

23

5 Discussion

This chapter aims to discuss and evaluate the used methods and obtained results.

5.1 Method

Even if the desired approach of fetching the messages using hardware was not accomplished,
the complete data set still ended up containing 25000 real ADS-B messages. Because of the
current situation with Covid-19 and the limited amount of flights around Linköping, the solu-
tion of using OpenSky-Network as the data source proved very effective and the final results
were satisfactory. Because the project involved using hardware, question one in section 1.3
can still be addressed.

In terms of replicating the process, there should effectively be no problem as the API used
is open source and next to no modifications to the code were made. One could argue that
more advanced scripts for data cleaning could be used as the ones used for this thesis were
quite basic. Another issue could be that the REST API used does not fetch data continuously
which limits how far flights can be tracked in the data set. One solution to this would be
to implement a loop similar to the one made to openScope to be able to fetch data for a set
amount of time.

As mentioned in section 4.2, the attack types used for the attack data set are all some
form of message modification. Arguments could be made that a more varied set of attacks
would give a better result. However, since the primary focus of this thesis is to detect falsified
messages it also seemed reasonable to use attack types that indeed have falsified data and
spend less focus on attacks that affect the other protocol layers. These would most likely be
more complicated and time-consuming to implement on a realistic level. Regarding this, a
judgment call was made on which attacks would yield the best result, both for the thesis and
the IDS.

5.2 Results

Overall the results obtained were satisfying in regards to the research questions for this thesis.
However, some changes could have further improved the data collection as well as the final
intrusion detection system. These parts will be discussed in the following sections.

24

5.2. Results

Data collection

The major downside of using two different tools to collect the data used is the risk of incon-
sistent data values. For instance, the OpenSky-Network uses the metric system, whereas the
openScope simulator uses the imperial system and was then recalculated in the code to suit
the other data. Another possible issue is that the data is collected from different places in
the world, using central Europe for the authentic data, whereas the attack data is limited to a
single airport in the US. One solution to this could be to simulate the authentic data similarly
to the attack data using openScope. A choice was however made not to do this since it was
desired to have as much real data as possible. In hindsight, however, another area to fetch
authentic data from could have been chosen to get an ever wider variety. What was also no-
ticed, after the data collection procedure, was that it is possible to change the airport inside
openScope to another one than KSEA. Therefore, another method of reducing the inconsis-
tencies between the authentic and attack data collections would be to fetch attack data from
e.g. Frankfurt Main Airport (FRA) which is located in Germany, Europe.

Attack implementation

The aim of the attacks is primarily to cause insecurities within the ATM or to confuse a partic-
ular ATC. Therefore the final attacks could be considered less realistic than those performed
in real life. This could possibly be solved by changing the variables within each respective
attack code without having to completely rewrite the entire attack structure. For this thesis,
there was a desire to show that these attacks are possible regardless of what values end up
in the final message broadcast. Therefore these values could be further developed to increase
how realistically the simulated aircraft are affected. Another argument that could be made is
that all the aircraft data are fetched with the same time interval and all "broadcasts" sends the
same data with every fetch, which is not the case in real ADS-B as described in section 2.2. In
the simulations performed each message contains all data fields of interest and they are all
periodically sent simultaneously for all simulated aircraft.

Machine learning and IDS

As mentioned in section 4.3 the success rates of the different attack types vary between 60%
to 100%. The reason for this is not necessarily due to one single factor. It is however likely
that one major factor is that the false information attack is easier detected because it changes
more than one field in the message – both altitude and velocity. It also periodically change
the values, making it quite obvious for an observer to detect an ongoing intrusion.

Similarly, the false squawk attack also has a relatively high detection rate, indicating that
the attack significantly differs from the authentic data. One could argue that a more realis-
tic attack would stick to using the legitimate transponder code format, change the squawk
to a valid value, and possibly even remove the emergency messages as it makes the attack
too obvious for an ATC. This was discussed during the implementation but not used in the
final attack. However, as discussed, the main goal of the implemented attacks is to cause
confusion, which requires some form of irregularities to be detected.

Aircraft that were affected by the jumping attack had less detection rate than expected.
This is most likely because the jumps occur quite rarely resulting in the attack not having the
expected impact on the data set. This could be improved by either increasing the probability
that a jump occurs or changing the impact of the jump itself, by increasing the jump range or
also altering the affected aircraft’s altitude in the process.

Finally, the false heading attack also showed a lower detection rate than expected which
may be since no values are invalid or unreasonable. The whole point of this attack is that
it shows fast and unexpected heading changes. However, it may be difficult to detect such
attacks without a larger data set and an optimal algorithm.

25

5.3. Future work

The use of SVM has shown that it is possible to produce an IDS using this data collection
method. There are however plenty of different algorithms that can be used, and some may
work better for detecting certain attacks.

5.3 Future work

Since the presented machine learning model was able to detect some attack types better than
others, much work is yet to be done. For example, the classification accuracy of False Heading
attacks was only 61.8%, which could have been increased with a larger data set. Focusing on
larger data sets would yield the machine learning algorithm more data to practice on which
should result in a more accurate model. Other suggestions would be to further experiment
and improve the current attack types, as well as implementing new ones.

In regards to machine learning models, one suggestion would also be to take a deep learn-
ing approach. Since the data is collected continuously one suggestion is the LTSM deep learn-
ing algorithm which could prove better at detecting falsified messages if provided a larger
data set. This however could require a more efficient way of collecting data.

Further improvements could also be made to the openScope GUI to better visualize on-
going attacks as well as the data handling for messages.

26

6 Conclusion

This thesis shows that it is possible to extract information about airborne entities through
the usage of simple, easily accessible hardware and open-source software. Although the
final data set was not collected through this method, this thesis still highlights the security
issues regarding the transparency and authentication of ADS-B. The problems of extracting
data with provided equipment were mainly due to the surrounding airspace being vacant of
aircraft and the sheer amount of data needed.

After applying the SVM machine learning algorithm, the model was able to identify differ-
ent ADS-B message types, ranging from 62.1 % to 100 % depending on the message type and
overall landed on an average accuracy of 91.49%. The model presented in this paper, there-
fore, proves to be better than other research implementations, such as the model presented
by Ying et al. [7] where the achieved accuracy of the SVM-model was 51.52%. Therefore, us-
ing an accurate and well-trained machine learning model to detect ADS-B attacks is a viable
approach to strengthen the security of air traffic communication.

27

Bibliography

[1] The World of Air Transport in 2019. URL: https://www.icao.int/annual-report-
2019/Pages/the- world- of- air- transport- in- 2019.aspx (visited on
03/03/2021).

[2] Martin Strohmeier, Matthias Schäfer, Rui Pinheiro, Vincent Lenders, and Ivan Marti-
novic. “On Perception and Reality in Wireless Air Traffic Communication Security”. In:
IEEE Transactions on Intelligent Transportation Systems 18.6 (2017), pp. 1338–1357. DOI:
10.1109/TITS.2016.2612584.

[3] Andrei Costin and Aurélien Francillon. “Ghost in the Air(Traffic): On insecurity of
ADS-B protocol and practical attacks on ADS-B devices”. In: (July 2012).

[4] Thabet Kacem, Duminda Wijesekera, Paulo Costa, and Alexandre Barreto. “An ADS-B
Intrusion Detection System”. In: 2016 IEEE Trustcom/BigDataSE/ISPA. 2016, pp. 544–551.
DOI: 10.1109/TrustCom.2016.0108.

[5] An Braeken. “Holistic Air Protection Scheme of ADS-B Communication”. In: IEEE Ac-
cess 7 (2019), pp. 65251–65262. DOI: 10.1109/ACCESS.2019.2917793.

[6] Andrei Gurtov, Tatiana Polishchuk, and Max Wernberg. “Controller–Pilot Data Link
Communication Security”. In: Sensors 18.5 (2018). ISSN: 1424-8220. DOI: 10.3390/
s18051636. URL: https://www.mdpi.com/1424-8220/18/5/1636.

[7] Xuhang Ying, Joanna Mazer, Giuseppe Bernieri, Mauro Conti, Linda Bushnell, and
Radha Poovendran. Detecting ADS-B Spoofing Attacks using Deep Neural Networks. 2019.
arXiv: 1904.09969 [cs.CR].

[8] Sofie Eskilsson, Hanna Gustafsson, Suleman Khan, and Andrei Gurtov. “Demonstrat-
ing ADS-B AND CPDLC Attacks with Software-Defined Radio”. In: 2020 Integrated
Communications Navigation and Surveillance Conference (ICNS). 2020, 1B2-1-1B2–9. DOI:
10.1109/ICNS50378.2020.9222945.

[9] Gustav Lindahl and Anton Blåberg. Simulating ADS-B attacks in air traffic management :
By the help of an ATM simulator. 2020.

[10] Erik Matti, Oliver Johns, Suleman Khan, Andrei Gurtov, and Billy Josefsson. “Aviation
Scenarios for 5G and Beyond”. In: 2020 AIAA/IEEE 39th Digital Avionics Systems Confer-
ence (DASC). 2020, pp. 1–10. DOI: 10.1109/DASC50938.2020.9256815.

28

https://www.icao.int/annual-report-2019/Pages/the-world-of-air-transport-in-2019.aspx
https://www.icao.int/annual-report-2019/Pages/the-world-of-air-transport-in-2019.aspx
https://doi.org/10.1109/TITS.2016.2612584
https://doi.org/10.1109/TrustCom.2016.0108
https://doi.org/10.1109/ACCESS.2019.2917793
https://doi.org/10.3390/s18051636
https://doi.org/10.3390/s18051636
https://www.mdpi.com/1424-8220/18/5/1636
https://arxiv.org/abs/1904.09969
https://doi.org/10.1109/ICNS50378.2020.9222945
https://doi.org/10.1109/DASC50938.2020.9256815

Bibliography

[11] Donald McCallie, Jonathan Butts, and Robert Mills. “Security analysis of the ADS-
B implementation in the next generation air transportation system”. In: International
Journal of Critical Infrastructure Protection 4.2 (2011), pp. 78–87. ISSN: 1874-5482. DOI:
https://doi.org/10.1016/j.ijcip.2011.06.001. URL: https://www.
sciencedirect.com/science/article/pii/S1874548211000229.

[12] Dean C. Miller William R. Richards Kathleen O’Brienn. “New Air Traffic Surveillance
Technology”. In: Boeing Aero Magazine (2 2010).

[13] Federal Aviation Administration (FAA). Surveillance and Broadcast Services Description
Document, Washington DC., USA, SRT-042, Rev. 01. 2011.

[14] Mohsen Riahi Manesh and Naima Kaabouch. “Analysis of vulnerabilities, attacks,
countermeasures and overall risk of the Automatic Dependent Surveillance-Broadcast
(ADS-B) system”. In: International Journal of Critical Infrastructure Protection 19 (Oct.
2017). DOI: 10.1016/j.ijcip.2017.10.002.

[15] Santiago Toledo, Aurea Anguera de Sojo, j.m Barreiro, Juan Lara, and David Lizcano.
“A Reinforcement Learning Model Equipped with Sensors for Generating Perception
Patterns: Implementation of a Simulated Air Navigation System Using ADS-B (Auto-
matic Dependent Surveillance-Broadcast) Technology”. In: Sensors 17 (1) (Jan. 2017).
DOI: 10.3390/s17010188.

[16] Federal Aviation Administration. URL: https://www.skybrary.aero/index.php/
Federal_Aviation_Administration_(FAA) (visited on 04/08/2021).

[17] About EASA. URL: https://www.easa.europa.eu/the-agency/faqs/about-
easa (visited on 04/08/2021).

[18] Airspace. URL: https : / / www . faa . gov / nextgen / equipadsb / research /
airspace/ (visited on 04/08/2021).

[19] Amendment to the Airspace Requirements on ADS-B and Mode S. URL: https://www.
easa.europa.eu/newsroom- and- events/news/amendment- airspace-
requirements-ads-b-and-mode-s (visited on 04/08/2021).

[20] The OpenSky Network. The OpenSky Network API Documentation. 2017. URL: https:
//opensky-network.org/apidoc/ (visited on 03/09/2021).

[21] Ali Kashif Bashir, Suleman Khan, B Prabadevi, N Deepa, Waleed S. Alnumay, Thippa
Reddy Gadekallu, and Praveen Kumar Reddy Maddikunta. “Comparative analysis of
machine learning algorithms for prediction of smart grid stability”. In: International
Transactions on Electrical Energy Systems (), e12706. DOI: https://doi.org/10.
1002/2050-7038.12706. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/2050-7038.12706.

[22] Nitish Kumar. Introduction to Support Vector Machines (SVMs). 2021. URL: https://
www.marktechpost.com/2021/03/25/introduction-to-support-vector-
machines-svms/ (visited on 05/14/2021).

[23] Användning av licensfria radiokanaler. URL: https://pts.se/sv/privat/radio/
radiostorningar/anvandning-av-licensfria-radiokanaler/ (visited on
03/18/2021).

[24] HackRF One. URL: https://greatscottgadgets.com/hackrf/one/ (visited on
03/24/2021).

[25] Geomatics. Almost Real Live Data Visualization in QGIs (Air Traffic Use Case). URL:
https://www.geodose.com/2020/09/realtime%5C%20live%5C%20data%
5C%20visualization%5C%20qgis.html (visited on 04/08/2021).

29

https://doi.org/https://doi.org/10.1016/j.ijcip.2011.06.001
https://www.sciencedirect.com/science/article/pii/S1874548211000229
https://www.sciencedirect.com/science/article/pii/S1874548211000229
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.3390/s17010188
https://www.skybrary.aero/index.php/Federal_Aviation_Administration_(FAA)
https://www.skybrary.aero/index.php/Federal_Aviation_Administration_(FAA)
https://www.easa.europa.eu/the-agency/faqs/about-easa
https://www.easa.europa.eu/the-agency/faqs/about-easa
https://www.faa.gov/nextgen/equipadsb/research/airspace/
https://www.faa.gov/nextgen/equipadsb/research/airspace/
https://www.easa.europa.eu/newsroom-and-events/news/amendment-airspace-requirements-ads-b-and-mode-s
https://www.easa.europa.eu/newsroom-and-events/news/amendment-airspace-requirements-ads-b-and-mode-s
https://www.easa.europa.eu/newsroom-and-events/news/amendment-airspace-requirements-ads-b-and-mode-s
https://opensky-network.org/apidoc/
https://opensky-network.org/apidoc/
https://doi.org/https://doi.org/10.1002/2050-7038.12706
https://doi.org/https://doi.org/10.1002/2050-7038.12706
https://onlinelibrary.wiley.com/doi/abs/10.1002/2050-7038.12706
https://onlinelibrary.wiley.com/doi/abs/10.1002/2050-7038.12706
https://www.marktechpost.com/2021/03/25/introduction-to-support-vector-machines-svms/
https://www.marktechpost.com/2021/03/25/introduction-to-support-vector-machines-svms/
https://www.marktechpost.com/2021/03/25/introduction-to-support-vector-machines-svms/
https://pts.se/sv/privat/radio/radiostorningar/anvandning-av-licensfria-radiokanaler/
https://pts.se/sv/privat/radio/radiostorningar/anvandning-av-licensfria-radiokanaler/
https://greatscottgadgets.com/hackrf/one/
https://www.geodose.com/2020/09/realtime%5C%20live%5C%20data%5C%20visualization%5C%20qgis.html
https://www.geodose.com/2020/09/realtime%5C%20live%5C%20data%5C%20visualization%5C%20qgis.html

	List of Figures
	List of Tables
	List of Listings
	Abbreviations
	Introduction
	Motivation
	Aim
	Research questions
	Delimitations
	Related work

	Theory
	Previous air traffic communication standards
	ADS-B
	Software
	Support Vector Machine

	Method
	Manual collection using hardware
	Authentic data collection
	Attack data collection
	Data cleaning
	Applying machine learning

	Results
	Authentic data collection
	Attack data collection
	Machine learning model

	Discussion
	Method
	Results
	Future work

	Conclusion
	Bibliography

