
Review Article
Localization Tools in General Purpose Game Engines: A
Systematic Mapping Study

Marcus Toftedahl

Division of Game Development, University of Skövde, Skövde, Sweden

Correspondence should be addressed to Marcus Toftedahl; marcus.toftedahl@his.se

Received 31 March 2021; Accepted 5 July 2021; Published 23 July 2021

Academic Editor: Cristian A. Rusu

Copyright © 2021 Marcus Toftedahl. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper addresses localization from a game development perspective by studying the state of tool support for a localization work
in general purpose game engines. Using a systematic mapping study, the most commonly used game engines and their official tool
libraries are studied. The results indicate that even though localization tools exists for the game engines included in the study, the
visibility, availability, and functionality differ. Localization tools that are user facing, i.e., used to create localization, are scarce while
many are tool facing, i.e., used to import localization kits made outside the production pipeline.

1. Introduction

“The world is full of different markets and cultures and, to
maximize profits™[sic], nowadays games are released in sev-
eral languages. To solve this, internationalized text must be
supported in any modern game engine.” [1]

This introductory quote is a snippet from the “Games
and Internationalization” section in the official documenta-
tion of the open source game engine Godot [2]. With the rise
of digital storefronts and app stores, even small scale game
developers have the opportunity to act on a global market.
The availability of game creation tools and game engines
has also been vital for a more diverse game development
scene where game creation is accessible not only to profes-
sionals in the field [3]. The indie game development scene,
where small-scale game development companies develop
and release digital games, has been identified as a growing
field [4]. The indie term can have different meanings,
depending on the angle relating both to the “look-and-feel”
of a certain game and to the specific production setting [5].
Freeman and McNeese [6] lift the differences between indie
game production and larger production settings in the
“mainstream” game industry, highlighting the differences in
production and distribution structures, while a mainstrea-
m/AAA game development project consists of large teams,
having big budgets and a structure including separate func-

tions or specific corporate entities handling functions such
as marketing or distribution. This is not always the case with
indie game development, where Pereira and Bernardes [7]
note that the structure of indie development is more flexible,
including both the development process and the distribution.

Nicoll and Keogh [8] highlights Unity [9] as a game
engine initially targeted to the “grassroots” of game develop-
ment, including small teams and indie developers. Unity, as
well as other game engines, provides a platform for devel-
opers to develop games using readily available game creation
tools and other necessary components. A modern game
engine contains a number of tools to create functionality
and content in a game project. Game engines also provide
functionality to deploy the produced games on a wide variety
of platforms, including both multipurpose platforms (such as
computers and smartphones) and specialized gaming plat-
forms (i.e., game consoles). Connection to digital storefronts
and distribution systems can also be provided through a
game engine, where common distribution channels such as
Steam, Google Play, and other digital storefronts can be used.
As these digital channels are global, games can be released to
an international audience; hence, localization is needed. Pre-
vious research has shown that independent developers with
limited resources focus on localization late in the develop-
ment process, in some cases even first when the game is
released, before realizing the need of localization [10]. This

Hindawi
International Journal of Computer Games Technology
Volume 2021, Article ID 9979657, 15 pages
https://doi.org/10.1155/2021/9979657

https://orcid.org/0000-0002-8291-1793
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9979657


indicates that there could be a lack of awareness regarding
localization as a part of the development process. The locali-
zation process described from a software perspective involves
creating a localization-friendly product through planning for
localization, having technical support for multiple languages
and other variables such as measuring units and currencies
[11]. From a media perspective, i.e., film and television, the
focus on localization work often lies on subtitling and audio
dubbing [12]. Localization from a software and a media per-
spective is relatively straight forward where a localization-
friendly development process is defined [13].

Game localization practices have its root in these fields,
but since games and game production are neither the same
nor solely a combination of media and software production
[14], this paper is a step towards defining a localization-
friendly game development process. This is done by explor-
ing the state of localization tools in modern game engines
using a systematic mapping methodology. The focus is on
general purpose game engines (such as Unity) and their con-
nected tool libraries. The main research question is formu-
lated as “How can a localization-friendly game production
pipeline be constructed using a general purpose game engine
and its connected tool library?” and is explored through three
(3) subquestions: “Which commonly used general purpose
game engines have tools included for game localization”;
“How are the localization tools described in the correspond-
ing official documentation”; and “In which ways can the pro-
duction pipeline be expanded by adding additional tools to
achieve a localization-friendly development process?”

2. Game Engines and Tools

Game engines have become a term commonly used to
describe the software used to create a game. During the
mid-1980s, game developers shifted towards creating tools
that could be reused to create multiple titles, often within
the same game genre instead of building each and every game
from scratch [15]. An example of this is SCUMM (Script Cre-
ation Utility for Maniac Mansion) initially created to produce
the game Maniac Mansion [16]. SCUMM was, after the
release ofManiac Mansion, used to create a number of other
game titles in the point and click adventure game genre dur-
ing a period spanning over 20 years. As the time went and
new games were made, updates were made to SCUMM to
adhere to new hardware standards in the game industry
(i.e., higher resolution graphics, digitized sound, and differ-
ent media formats) as well as new tool’s end features to
enhance the workflow in production while keeping the basic
structure of how the game assets are organized [17]. While
SCUMM was an in-house game engine, not available to the
public to use, there are numerous examples of game engines
and game creation tools released to the public either com-
mercially or as open source software. From an historical per-
spective, game creation tools such as Garry Kitchen’s Game
Maker [18] (depicted in Figure 1) or Shoot’Em Up Construc-
tion Kit [19] have allowed their users to create games using
built-in tools for asset creation and game logic.

Game creation tools like these have been used by both
professionals and hobbyists to create games, and while nei-

ther SCUMM nor Garry Kitchen’s Game Maker or any of
the other game creation tools mentioned used the term game
engine, they allowed creators to leap ahead in the game pro-
duction cycle by using readily available tools [20]. The term
game engine was popularized in the early 1990s in connec-
tion to the rise of PC gaming, where the game Doom [21]
was marketed with a specific focus on its technology and
tools for creating content in the game, using the term Doom
Engine to describe the technology behind the game [22]. The
term game engine has been identified as ambiguous, used to
describe a wide range of game creation software packages and
related concepts, as well as being used in everyday game
development lingo as the software used to create a game. This
has led to misunderstandings and difficulties in communicat-
ing the processes around game development, where the term
game engine is used both referring to the underlying technol-
ogy running the game and creating the game [23].

In this paper, the focus lies on game engines as part of the
production pipeline when developing a game. Toftedahl and
Engström [24] have proposed a taxonomy to nuance the ter-
minology of game engines as game production software. In
the proposed taxonomy, game engines are divided into gen-
eral purpose game engines (i.e., a game engine targeted at a
broad range of game genres) and special purpose game
engines (game engines targeted at specific game genres). In
connection to the game engine, a number of tools are
included in the production pipeline. The production pipeline
is, based on O’Donnell [25] and Toftedahl and Engström
[24], an important entity in the game development process,
where the flow of production is handled by game creation
software. The production pipeline and the game engine it
contains are characterized by a very high degree of plasticity,
i.e., tools can be added and altered in order to suit the specific
needs for the development of a game. The altering of the
structure of the production setting by using additional tools
to enhance the workflow is addressed by O’Donnell [25]
describing the production pipeline as “[…] the set of prac-
tices, tools, standards, aesthetics and themes that will carry
the project into the production phase of game development”.
Figure 2 shows a model of a production pipeline containing a
game engine and an arbitrary number of tools. The tools are
divided into three categories: user facing tools (tools for con-
tent creation, typically with a GUI); tool facing tools (integra-
tion tools connecting different parts of the pipeline or
middleware adding functionality); and product facing tools
(in the engine core, highly optimized) [24].

The production pipeline can be specific to each and every
project created, but when a pipeline is deemed effective
enough, it can become a specific asset for the company, used
for more than one project. One example of this is the Unreal
Engine [26] originally developed internally during the crea-
tion of the gameUnreal series [27] of games and later released
as a commercial game engine [25]. During recent years, a
plethora of game engines have become available for game
developers of all sizes and levels of professionalism. Nicoll
and Keogh [8] highlight how Unity [9] has become a widely
used game engine and emphasize the importance of available
tools to make game creation possible. Further, Unity’s setup
using a component oriented system, where the workflow

2 International Journal of Computer Games Technology



can be altered based on the individual competences instead of
relying on all implementation/coding to be conducted by
programmers, is a feature added to both the creativity and
flexibility in a game development project [8]. WhileUnity fits
into the general purpose category of game engines, i.e., it can
be used to create a wide variety of games for many platforms,
it also contains a set of standard tools for game creation tasks
as well as an official tool library, where the production pipe-
line can be expanded with additional tools by relatively sim-
ple means to fit the purpose of the development project in
question. This is a model used by several publicly available
general purpose game engines.

3. Game Localization Practices and Translation
Management Systems

Game localization and its underlying processes are well-doc-
umented, based on its roots in software and media localiza-
tion. The area of game localization has gained some
attention from a translation studies research perspective
where games as a medium for localization have been scruti-
nized from a linguistic and translation perspective [28]. From
a translator’s perspective, the book Game Localization:
Translating for the Global Digital Entertainment Industry
[29] gives an in-depth description of the field, including both
overview of research conducted in the area and case descrip-
tions from game localization projects. From a game develop-
ment research perspective, there are few papers addressing

game localization [28, 30]. While research is scarce, the area
is somewhat covered by industry sources including best prac-
tice books, such as The Game Localization Handbook [31]
describing the process from a practitioner’s perspective.

Regardless the perspective, there is a common view
regarding the importance of a localization-friendly develop-
ment process. Bernal-Merino [32] highlights the industrial
process of game localization and argues that localization
aware procedures need to be integrated into the complex
game development process on multiple levels and stages.
Further, Bernal-Merino [32] emphasizes the variety of
platforms and their inherent differences (i.e., ranging from
mobile phones to dedicated game systems) making a uni-
versal game localization model difficult to design. Fry and
Lommel [11] describes a global product development
cycle, a general process of developing a product for a
global market (see Figure 3). The development process is
split into two main phases: internationalization and local-
ization. The first phase in the process chronologically is
internationalization, where the product is developed and
implemented in such way as the second phase, localiza-
tion, is possible. This means that the product is designed
to be ready for localization, where necessary alterations
in terms of language and other content can be made with-
out redesigning the product. Localization is then the sec-
ond phase, where translations and other adaptations to
the product are made, using the system support created
in the internationalization process.

Figure 1: Cover and sprite editor tool from Garry Kitchen’s Game Maker.

User
facing tools

User
facing tools

User
facing tools

User
facing tools

Game engine

Core engine

Product
facing tools Game

Tool
facing tool

Tool
facing tools

Figure 2: A model of a game development production pipeline.

3International Journal of Computer Games Technology



Chandler and Deming [31] mean that the goal of interna-
tionalization is to create a project that easily can be localized
with minimum effort and resources for the developer. When
planned for, all game features can then be present in interna-
tional versions of the game. If the game project is designed
and planned for with internationalization as a guiding factor,
the necessary alterations in the localization phase are easier
to make. The planning aspect is also highlighted by O’Hagan
and Mangiron [29], meaning that a localization-friendly
development process planned for in advance saves consider-
able development time, compared to the ad hoc processes
where localization is an afterthought and has to be imple-
mented retrospectively.

To aid in the process of localizing a product, specific
localization tools can be used. Esselink [33] describes the evo-
lution of localization tools, where mainly early developers of
office suites saw the need to adapt their software to be useful
in different regions around the world. The localization-
friendly development and the model depicted in Figure 3
have its origins in the software localization realm. The use
of a localization kit is a part of the localization-friendly devel-
opment setting. A localization kit contains information of the
assets be localized in the process. It most basic form, a local-
ization kit, is a text file with a structure where a number of
attributes can be assigned to each text string; i.e., the file con-
tains all localized text strings that should be displayed in the
game, separated by language [32]. Each text string is pro-
vided with a specific identification number used to identify
when and where the text line should be displayed at runtime.
More advanced localization kits include the assets that
should be localized in a folder structure. Esselink [13] means
that a well-prepared localization kit will save considerable
time when conducting the localization process. A well-
prepared localization kit is especially valuable when working
with several outsourced translators, i.e., when separate lan-
guages are handled by different external contacts. A localiza-
tion kit is also essential when obtaining project quotations
from external vendors, allowing for a more exact estimation
of the costs for the work in question. Further, Esselink [13]
highlights three components that a localization kit generally
should contain, preferably in a well-organized folder struc-

ture: (1) localization guidelines and schedule information,
including schedules and deliverables; (2) build environments
and source files, i.e., information regarding the structure of
the project and its technical aspects; and (3) reference mate-
rials to show and describe the product, including beta ver-
sions or other work material. To aid the help of creating
and managing these localization kits, a translation manage-
ment system (TMS) can be used. Figure 4 shows an example
of a TMS, where the status of each translation can be man-
aged and monitored.

Since localization relates to several types of assets in a
game, the project structure of the localization kit is impor-
tant. Localization is complex taking the three aspects of local-
ization into consideration: linguistic issues (relating to the
translation of the language in the product); content and cul-
tural issues (including presentation of information through
icons, graphics, or color); and technical issues (including
the technicalities behind doing necessary alterations to a
product without having to rebuild everything from scratch)
[11]. Muñoz Sánchez and López Sánchez [35] have identified
four good practices that a game development team should
have in mind from the early stages of development to achieve
a localization-friendly development project: (1) separation of
the translatable text from the source code (i.e., not “hard
coded” text strings that should be displayed in the game at
runtime); (2) selection of appropriate fonts and coding for
different languages (i.e., support for a wide variety of charac-
ter sets, while maintaining both a coherent visual appearance
and technical support); (3) interface design adaptable to the
text shown or with plenty of space (i.e., accommodating for
different layouts of text boxes shown in game due to varying
lengths of translated text strings); and (4) use of special tags
for gender, sex, or numbers (due to different pronouns, etc.,
in certain languages). A localization-friendly game produc-
tion pipeline should be able to handle the aspects of localiza-
tion, where linguistic and content and cultural issues are
supported with a well-planned technical infrastructure.

4. Research Questions and Method

This paper has the aim to survey the state of localization tools
in general purpose game engines and the possibility to have a
localization-friendly development setting. The paper
addresses both the localization tools included in the standard
installation of the game engine and external tools that can be
added to expand the production pipeline. This has been
achieved through a systematic mapping study, focusing on
general purpose game engines and the localization tools
available in connection to the included engines. A systematic
mapping study is described by Petersen et al. [36] as a
method useful to get an understanding and overview of an
area, in comparison to the systematic review used to scruti-
nize an area more in detail. Petersen et al. [36] highlights that
the main differences between a systematic mapping study
and a review study lie in the granularity of the results and
the formulation and connection to the research questions.

The main research question guiding this paper is formu-
lated as follows: “How can a localization-friendly game

Phase 2 Phase 1

Globalization
process

Local product
marketing

Product
design

Product
development

Local product
testing & QA

Product
localizaation

Product
testing & QA

Lo
ca

liz
at

io
n

In
te

rn
at

io
na

liz
at

io
n

The product

Figure 3: The global product development cycle, after Fry and
Lommel [11].

4 International Journal of Computer Games Technology



production pipeline be constructed using a general purpose
game engine and its connected tool library?”

In order to explore this, three (3) subquestions are
addressed:

(i) Which commonly used general purpose game
engines have tools included for game localization?

(ii) How are the localization tools described in the corre-
sponding official documentation?

(iii) In which ways can the production pipeline be
expanded by adding additional tools to achieve a
localization-friendly development process?

Through the subquestions, it will also be possible to
explore the general area around game localization tools, to
get a deeper understanding of the current state of game local-
ization tools in connection to general purpose game engines.

5. Inclusion Criteria for the Game Engines in
the Study

The inclusion criteria for the game engines in this study are
twofold: (1) general purpose game engines that are (2) pub-
licly available. The data regarding commonly used game
engines by Toftedahl and Engström [24] is used to identify
relevant game engines. In Table 1, an overview of the
included game engines and their respective inclusion criteria
is presented. The table is divided in two main sections where
the ten most used game engines identified from the digital
game stores Steam [37] and Itch.io [38] are listed.

Several of the game engines based on the data from the
Steam game store are excluded due to their in-house nature,
i.e., they are not available to the public and are either only
used for in-house projects or available only by specific licens-
ing agreements. Due to the closed nature of these game

engines, it is also difficult to categorize them into the general
purpose criteria, but since they are excluded based on the avail-
ability aspect, this is not a factor impacting this study. In con-
trast to the game engines identified from the Steam data, the
game engines identified through the data from Itch.io are all
available to the public. The main reason for exclusion in the
Itch.io section is the general purpose criteria. Several identified
game engines from Itch.io are special purpose game engines,
i.e., only for producing games in a specific genre or on very spe-
cific target platforms. Twine [39], Bitsy [40], and Ren’Py [41] are
used to create text driven games or visual novels; RPG Maker
[42] is aimed at the RPG genre; and PICO-8 [43] is used to cre-
ate games for a retro-inspired “fantasy console” with strict lim-
itations in terms of size and performance.

GameMaker [44] and Construct [45] are included in the
general purpose category even though they have limited 3d
graphics functionality. While they are mainly used for 2d
games, both GameMaker and Construct can be used to create
games in multiple genres and the games can be played on a
multitude of platforms. Since game engines, tools, and related
software are evolving and being updated at a rapid pace, the
following list contains information regarding which version
of each game engine the information in this study is based
on. The most recent stable/long-term release of the game
engines has been used and is listed (beta versions and similar
excluded):

(i) Unity 2020.2.3

(ii) Unreal Engine 4.26

(iii) GameMaker 2.3.1.542

(iv) Godot 3.2.3

(v) CryEngine 5.6

(vi) Construct 3 r234.4

Figure 4: Screenshot of a TMS: Weblate [34], an open source web-based system for localization.

5International Journal of Computer Games Technology



6. Search Queries and Data Sources

To ensure that the search queries used would result in data
relevant for the aim of the study, the terms used in localiza-
tion processes presented by Fry and Lommel [11] and Esse-
link [13] among others were used as a starting point. The
terms “globalization,” “internationalization,” and “localiza-
tion” (including spelling variations) were used to search the
official documentations of the included game engines.
Searching the documentations using “globalization” gave no
(0) hits related to the aim of the study. “Internationalization”
gave results in three (3) of the official documentations.
“Localization” gave most results: four (4) of the documenta-
tions contained results relevant to the aim of this study. All
results from the “internationalization” query were also found
when searching for “localization.”

Based on this initial search, focus was put on “localiza-
tion” as a search term. When browsing the results, other
related key words were found (“translation” and “language”)
and incorporated in the final set of search queries. To catch as
many instances of localization related information as possi-
ble, spelling variations and different forms of the search
terms were used:

(i) Localization

(a) To catch different spellings (localization and
localisation) as well as different inflections, the
search has been carried out using locali∗ as
search term

(ii) Translation

(a) The search query translat∗ has been used to
catch variations of translate (translation, trans-
late, translator, etc.)

(iii) Language

(a) The search query language∗ has been used to
catch both singular and plural forms

The search queries were then used to find information
related to the aim of the study from both the official docu-
mentation and the connected tool libraries available.

To get an overview of the state of localization tools in
general purpose game engines, three main data sources
related to the included game engines have been used: (1)
the official documentation provided in with the game engine,
(2) the standard production pipeline of the game engine and
its plasticity, and (3) the official tool library connected to each
game engine. Table 2 shows an overview of these areas, where
each main area is divided into two subareas. The first sub-
areas indicate whether the included game engines have the
basic prerequisites to search the official documentation and
expand the production pipeline and if an official tool library
exists.

All included game engines have an official documenta-
tion available through the official websites. All official docu-
mentations have a search function making it possible to use
the search queries to find documentation regarding localiza-
tion. All included game engines have support for additional

Table 1: Game engines and their inclusion criteria.

General purpose? Publicly available? Included in study?

Data from steam

Unreal Engine Yes Yes Yes

Unity Yes Yes Yes

Source ? No No

CryEngine Yes Yes Yes

Gamebryo ? No No

IW ? No No

Anvil ? No No

id Tech ? No No

Essence ? No No

Clausewitz ? No No

Data from Itch.io

Unity Yes Yes Yes

Construct Yes Yes Yes

GameMaker Yes Yes Yes

Twine No Yes No

RPG Maker No Yes No

Bitsy No Yes No

PICO-8 No Yes No

Unreal Engine Yes Yes Yes

Godot Yes Yes Yes

Ren’Py No Yes No

6 International Journal of Computer Games Technology



tools; i.e., the production pipeline can be expanded. All
included game engines have official tool libraries, accessible
either through the official website or from within the game
engine itself.

7. An Overview of Localization Tools in General
Purpose Game Engines

The following subchapters present the results from the tool
review divided into the respective game engines. Due to the
different structures of both the included official documenta-
tion and tool libraries in connection to the included game
engines, the structure of the information relating to each
game engine can differ slightly. Each subchapter is address-
ing the information found in the official documentation,
the included localization tools, and the localization tools
available in the tool libraries. Tables with more information
regarding the localization tools found in the tool libraries
are found in Supplementary Materials (available here).

It should be noted that information and descriptions
(including historical information) regarding game engines
are difficult to find from peer-reviewed or even industry
sources. One of the most comprehensive sources containing
relevant information of game engines is the English version
of Wikipedia, hence the frequent use of Wikipedia sources
in the subchapters.

7.1. Construct. Construct [45] is a game engine developed by
Scirra Ltd., available since 2007. Construct has been released
in three major versions: Construct Classic (rebranded as Clas-
sic with the release of Construct 2), Construct 2, and Con-
struct 3. The first iteration, Construct Classic, was only
available for development on theWindows operating system,
using a visual programming coding interface only. The cur-
rent iteration, Construct 3, has moved to run on multiple
platforms, with the game engine running in a modern web
browser of choice. Since 2019, the visual programming-only
interface has been expanded, and Construct 3 is now support-
ing programming in JavaScript [46].

Construct is limited to create 2d games, with the goal
“[…] to make the best 2D game engine in the world” [47].
Construct is available to the public through a subscription
model with Individual, Business, and Educational Organiza-
tion licensing agreements. A free version of the Personal
license is available with limitations in terms of how many

assets allowed in a project, features in the editor, and publish-
ing possibilities [48].

7.1.1. Localization Tools and Information in Construct and Its
Documentation. There are no localization tools provided
with Construct. There are no mentions of localization of
game projects in the official documentation. The only refer-
ence in the documentation relating to the search queries is
relating to how to change language in the Construct editor
itself.

7.1.2. Localization Tools in Construct Tool Library. The offi-
cial tool library connected to Construct is called Construct
Addons, containing tools to be used for game creation and
tools to alter the appearance of the Construct editor. Con-
struct Addons are divided into four categories: Plugins,
Behaviours, Effects, and Themes. There are 253 Addons in
total available for Construct. Searching the Construct Addons
for localization tools using the keywords results in two (2)
tools: c3-i18next and Google Translate.

The two localization tools found in Construct Addons are
both in the Plugins category of the tool library. Both tools
have a similar functionality, acting as tool facing tools (i.e.,
tools that connects to other tools) between external frame-
works for localization. The framework i18next, which the
tool c3-i18next connects to, is an internationalization frame-
work built-in JavaScript, providing a solution for several
kinds of localization related tasks, scalable for the need of
the specific product. The i18next framework can be con-
nected to a TMS in order to structure the localization work.
The tool with the name Google Translate connects toMLKit,
a machine learning service toolkit provided by Google.
MLKit has a number of localization and language-related fea-
tures, including automated translation services through the
Google Translation API.

The two (2) localization tools found in Construct Addons
are tool facing tools.

7.2. CryEngine. CryEngine [49] is a game engine developed by
Crytek, a German game development company. CryEngine
was developed in 2002, as a tech demo to showcase the, at
the time, latest graphics card technology. The tech demo
gained attention from the community and was subsequently
developed into a full game, Far Cry [50]. CryEngine has been
used to develop a number of both internal games at Crytek

Table 2: Overview of the general purpose game engines included in the study.

Official documentation Production pipeline Official tool library

Searchable?
Addressing
localization?

Expandable?
Localization tool

included?
Connected tool

library?
Localization tools

available?

Construct Yes ? Yes ? Yes ?

CryEngine Yes ? Yes ? Yes ?

GameMaker Yes ? Yes ? Yes ?

Godot Yes ? Yes ? Yes ?

Unity Yes ? Yes ? Yes ?

Unreal
Engine

Yes ? Yes ? Yes ?

7International Journal of Computer Games Technology



but has also been used by other companies, licensing the
technology for their projects [51]. The latest iteration, CryEn-
gine V, introduced a license model using a “pay what you
want” licensing fee for the use of the game engine. If a com-
mercial game is released using CryEngine, a royalty percent-
age has to be paid to Crytek [52].

7.2.1. Localization Tools and Information in CryEngine and
Its Documentation. CryEngine has localization tools as a part
of its standard toolset. The documentation describes the use
of the localization system in relation to the different asset
types that can be localized. The localization-related infor-
mation in the documentation has separate chapters in
relation to relevant categories. Examples of this include
the following:

(1) User Interface (HUD/Menu)

(i) UI Overview

(A) Localization System

(B) Texture Localization

(2) Dialog

(i) Localization

(3) Audio

(i) Audio Middleware

(A) FMOD Studio Workflow

(a) FMOD and Localization

The documentation covers localization of text (including
dialogs), audio, graphical assets, and how external tools (as
the FMOD audio middleware example above) can access
the localization system and the localized assets. Each section
has detailed descriptions on how to use the localization sys-
tem for different kinds of assets. In the Dialog section an
overview of the function is provided: “CRYENGINE is able
to localize text and sound for different languages. All of the
necessary data is stored inside pak files, stored in the <roo-
t>/Localization folder.” Detailed descriptions of PAK/Folder
structure, Translating Spoken Text, Texture Localization,
General Setup, and Test Localization Settings are provided.
Similar descriptions are found in the other localization-
related sections, with both an overview of the use and
detailed information on how to implement the localization
into the game project.

The localization system in CryEngine is tool facing. The
user needs to create the localization kits and then import
them into the localization system using the described folder
structure and process. This is further emphasized by the sec-
tion in the official documentation regarding localization,
where the exemplified with a screenshot of how a translation
table should be formatted. The translation table, demon-
strated created in Excel, is shown in Figure 5.

7.2.2. Localization Tools in CryEngine Tool Library. The offi-
cial tool library connected to CryEngine is called CryEngine
Marketplace, mostly containing assets for game creation (3d
models, texture maps, sound effects, etc.) and also tools to
expand the production pipeline. CryEngine Marketplace is
divided into 11 categories, where Plugins, Scrips, Full Project,
and Training/Tutorials are the categories not containing
assets for game creation. In total, there are 1340 items in
the CryEngine Marketplace.

The search queries did not result in any localization tools
in the CryEngine Marketplace. Since the CryEngine Market-
place contains a limited number of tools (30 in total, divided
into the categories listed above), a manual review of all avail-
able tools was made to ensure that any eventual localization
tools are identified. The manual review did not reveal any
localization tools.

7.3. GameMaker. GameMaker [44] is a game engine provided
by YoYo Games. GameMaker was first developed and
released by Mark Overmars in 1999 as a cross-platform game
creation tool using a drag-and-drop visual programming
interface as well as a proprietary scripting language called
GameMaker Language (GML). GameMaker is intended to
produce 2d games primarily but allows for rudimentary 3d
game creation as well [54].

GameMaker is available through five different licenses: a
Trial License providing access to GameMaker and its crea-
tion capabilities at no cost for 30 days with no publishing
options; a Creator License for either Windows or MacOS
which for a yearly fee gives access to the full functionality
of GameMaker as a creation tool but limits its publishing
options to publishing on the platform the game is developed
on; a variety of Developer Licenses where the full functional-
ity of the game engine is included and different publishing
packages for mobile, desktop, or web are available for a
one-time fee; Console Licenses including publishing on game
consoles for a yearly fee; and an Education License for using
GameMaker in an educational setting. The main differences
between the licenses of GameMaker lie in which platforms
to deploy to and its publishing possibilities; the functionality
of GameMaker as a creation tool is similar [55].

7.3.1. Localization Tools and Information in GameMaker and
Its Documentation. GameMaker does not have any built-in
tools to support localization work. The documentation men-
tions localization and related terms with one reoccurring
statement regarding how to handle the reading and writing
of various text files, highlighting the importance of using
the correct text encoding format (in this case, UTF8) to
ensure compatibility with non-Roman letters. The same text
is found in three separate categories/sections of the Game-
Maker documentation: Text Files (containing an overview
of the use of text files); Ini Files (containing a brief overview
of what an ini file is); and File Library (an introduction to the
Files section of the visual scripting interface in GameMaker)
[56].

No further information regarding localization of a project
could be found in the GameMaker documentation.

8 International Journal of Computer Games Technology



7.3.2. Localization Tools in GameMaker Tool Library. The
official tool library connected to GameMaker is called Mar-
ketplace, containing both assets for game creation (i.e.,
graphical assets, sound, music, etc.) and tools and scripts to
expand the functionality of the game engine. GameMaker
Marketplace is divided into 18 categories, and there are
3499 items in total available in GameMaker Marketplace.

Searching the GameMaker Marketplace for localization
tools using the keywords results in 7 tools. Five (5) of these
are targeted to aid in the process of handling different lan-
guages in the game itself, i.e., providing functions to read
an external localization kit containing source and target
locales and to switch language during runtime by using spe-
cific commands. These 5 tools are not used to create the
localization kit itself, but acting as a bridge between a locali-
zation kit created elsewhere and the game project, i.e., tool
facing tools. One (1) tool,Arabic Support, is to aid the process
of using Arabic letters in a game project, providing scripts to
handle the issues related to having another character set. One
(1) tool,Multilanguage and Translate, is a more comprehen-
sive set of localization scripts connecting to an external local-
ization manager where automatic or manual translation can
be managed.

All 7 localization tools on GameMaker Marketplace are
tool facing tools.

7.4. Godot. Godot [2] is a 2d and 3d game engine initially
released in 2007 by the developers Juan Linietsky and Ariel
Manzur. Linietzky and Manzur developed Godot as an in-
house game engine used in several game companies in Latin
America, before releasing Godot as an open source project
under theMIT License in 2014. TheMIT License grants users
to use Godot for free, for any purpose, to make changes to the

engine, and to distribute both unmodified and changed ver-
sions of the engine. The free nature of usage also applies to
the games created with the engine. Godot can be run on sev-
eral platforms and be used to create games targeting PC,
mobile, and web [57].

7.4.1. Localization Tools and Information in Godot and Its
Documentation. Godot comes with localization tools in the
standard package, and the documentation has comprehen-
sive information regarding localization and internationaliza-
tion. The documentation has a Project Workflow section,
where subsections are describing how to import different
kinds of assets into the game project. The subsections cover
the importing process and specific information on how to
import images, audio samples, translations, and 3d scenes.
The section describes the process in detail, using the built-
in localization tool to handle different assets to localize.

Further, the documentation also covers Internationaliza-
tion as a topic in the Tutorials section. This section gives a
general overview of an internationalization and localization
process, covering both implementation aspects and general
aspects such as lists of locale codes and text formats and stan-
dards. The examples in the documentation regarding locali-
zation using Godot also refer to an official localization
demo, which shows the localization examples from the docu-
mentation in a project form. The localization demo can be
downloaded from the Asset Library.

The localization tool included as a standard tool in Godot
is tool facing. The tool is used to import previously made
localization kits through a GUI. The user can also get an
overview of both the languages used and the connected text
and assets to be localized, although not created and modified.
Figure 6 is a screen capture of the Godot localization tool.

Figure 5: Screenshot of the Dialog System/Localization Manager section of CryEngine official documentation [53].

9International Journal of Computer Games Technology



7.4.2. Localization Tools in Godot Tool Library. The official
tool library connected to Godot is called Asset Library, con-
taining both assets for game creation (graphical assets,
sound, music, etc.) and tools and scripts to expand the func-
tionality of the game engine. Godot Asset Library is divided
into 10 categories. 813 items in total are available in the
Godot Asset Library, and three (3) of these are localization
tools.

Searching Godot Asset Library for localization tools
revealed only three in total, and one of the results is the afore-
mentioned translation demo called GUI Translation Demo.
The link in the documentation mentioning the localization
demo leads to this asset. It is worth noting that the GUI
Translation Demo itself does not appear in the search results
when using the locali∗ search query, only when using trans-
lat∗.

One (1) of the tools in the Godot Asset Library is tool fac-
ing (the aforementioned GUI Translation Demo, containing
scripts to import external files), while two (2) are user facing
(Localization Editor and Translation Editor) used to create
and manage localization-related work.

7.5. Unity. Unity [9] is a game engine provided by Unity
Technologies, released first in 2005. Unity was developed with
the goal to make state-of-the-art game creation technology
easily accessible to developers of all sizes. The first versions
of Unity focused on 3d games, later shifting to support the
creation of both 2d and 3d games for a wide range of plat-
forms. Unity is available to the general public through either
a number of free individual versions aimed at students and
hobbyist developers or through subscriptions aimed at game
developers with larger teams.Unity supports deployment to a
large number of target platforms, including smart devices,
computers, and game consoles [58].

7.5.1. Localization Tools and Information in Unity and Its
Documentation. No results regarding localization or related
concepts were found in the official Unity documentation
using the search query.

7.5.2. Localization Tools in Unity Tool Library. The official
tool library connected to Unity is called Unity Asset Store,
containing both assets for game creation (graphical assets,
sound, music, etc.) and tools and scripts to expand the func-
tionality of the game engine. Unity Asset Store is divided into
3 main categories: Assets (containing 3d models, textures,
sound, etc., for game creation); Tools (containing tools to
expand the production pipeline in various ways); and Services
(containing specific services such as monetization, in-app
purchasing, and advertising). 65977 items in total are avail-
able in the Unity Asset Store, of which 8921 are in the Tools
category. The Tools category of Unity Asset Store contains
21 subcategories, of which one is Localization. The Localiza-
tion subcategory contains 80 tools in total. Since the Unity
Asset Store has a specific category for localization tools, the
80 tools in that category have been used in the study. No fur-
ther search has been conducted to find additional tools out-
side the Localization category.

An overview of the localization tools in Unity Asset Store
is found in Supplementary Materials (available here). Of the
tools in the Localization category, 59 tools are tool facing
and 21 tools are user facing.

7.6. Unreal Engine. Unreal Engine [26] is a game engine pro-
vided by Epic Games. Unreal Engine has its origins in the
AAA game development scene as the technology behind
the Unreal series of games first released in 1998. Even though
developed as an internal game engine at first, the Unreal
Engine was early on available to external game development
studios through licensing deals. In 2009 a version of Unreal
Engine 3, named Unreal Development Kit (UDK), was
released to the general public. UDK allowed game developers
to access many of the features included in Unreal Engine
without having to license the technology from Epic Games.
The licensing requirement for Unreal Engine was further
lifted in 2014, allowing schools and universities access to
the full version of Unreal Engine 4. Since 2015, Epic Games
has been providing Unreal Engine to the general public, to
both professional and hobby game developers. Commercial
products developed with Unreal Engine owe a royalty per-
centage to Epic Games if certain levels of revenues are
reached by the product in question. Unreal Engine supports
deployment to a large number of target platforms, including
smart devices, computers, and game consoles [59].

7.6.1. Localization Tools and Information in Unreal Engine
and Its Documentation. Unreal Engine provides localization
tools in the standard installation. The official documentation
gives a thorough explanation regarding how to use the local-
ization system, covering several types of assets, and how to
make the workflow more effective. In the section Setting Up
Your Production Pipeline, the documentation has a subsec-
tion named Localization, covering the following topics:
Localization Overview, Text Localization, String Tables, Asset
Localization, Localization Tools, Pipeline Optimization, and
Managing the Active Culture at Runtime. All information
regarding localization is gathered under the Localization sub-
section. The Localization Tools topic goes into detail regard-
ing the tools provided within the localization system of
Unreal Engine, describing the workflow and the different
components of the system. The Localization Tools in Unreal
Engine is divided into The Localization Dashboard, describ-
ing the tool where the localization targets are managed;
Translation Editor, where the text in the game can be checked
and edited; Translation Picker, displaying information
regarding text values used in the UI of the project; and Auto-
mating Localization, where parts of the localization pipeline
can be automated using the Unreal Automation Tool.

The localization tool provided through theUnreal Engine
standard installation is user facing, where the user can create
and edit the localization kit.

7.6.2. Localization Tools in Unreal Engine Tool Library. The
official tool library connected to Unreal Engine is called
Unreal Engine Marketplace, containing both assets for game
creation (graphical assets, sound, music, etc.) and tools and
scripts to expand the functionality of the game engine.

10 International Journal of Computer Games Technology



Unreal Engine Marketplace is divided into 16 categories.
15,785 items in total are available at Unreal Engine Market-
place, of which three (3) are localization.

Two of the localization tools found when searching the
Unreal Engine Marketplace are in the Engine Plugin category,
both of them providing a solution for using Amazon Web
Services (AWS) translation service with the Blueprint visual
scripting system. The other tool,MSL Toolkit, is in the Com-
plete Project section, providing several functions including
menu, settings, and localization systems, promising to save
time and simplify the workflow when building menu systems
in a game project.

Unreal Engine Marketplace contains two (2) tool facing
localization tools and one (1) user facing tool.

8. Summary of Localization Tool Overview

Table 3 shows an overview of the status of localization tools
available for general purpose game engines. All game engines
have official documentation available online. All of the offi-
cial documentations are searchable and can be searched
freely with no login required. While being not a part of the

aim of the study, it can be noted that Unity, Unreal Engine,
and Godot have their documentation translated into different
languages than English, while GameMaker and Construct
only have documentation in English. CryEngine, Unreal
Engine, and Godot have documentation that addresses local-
ization specifically, i.e., the same engines that have localiza-
tion tools included. The GameMaker documentation has
one reference to localization (described in the GameMaker

Figure 6: A screenshot of the localization tool in Godot.

Table 3: Summary of localization tools in general purpose game engines.

Official documentation Production pipeline Official tool library

Searchable?
Addressing
localization?

Expandable?
Localization tool

included?
Connected tool

library?
Localization tools

available?

Construct Yes No Yes No Yes Yes

CryEngine Yes Yes Yes Yes Yes No

GameMaker Yes No ∗ Yes No Yes Yes

Godot Yes Yes Yes Yes Yes Yes

Unity Yes No Yes No Yes Yes

Unreal
Engine

Yes Yes Yes Yes Yes Yes

Table 4: Summary of types of tools in the official tool libraries per
game engine.

Tool facing tools User facing tools Total

Construct 2 0 2

CryEngine 0 0 0

GameMaker 7 0 7

Godot 1 2 3

Unity 59 21 80

Unreal Engine 2 1 3

Total 71 24

11International Journal of Computer Games Technology



chapter above), hence the asterisk in the table. All game
engines in the study are expandable; i.e., the production pipe-
lines can be expanded with additional tools. Construct,
GameMaker, and Unity do not have a localization tool in
their standard toolset and have no detailed localization-
related information in their official documentation either.
All included game engines have an official tool library con-
nected to them, where additional functionality can be added
through tools created by either community members or the
providers of the engines. All official tool libraries are available
online and are searchable. CryEngine is the only game engine
in the study whose official tool library does not have any
localization tools available.

Regarding user or tool facing tools, 71 of all identified
tools are tool facing and 24 are user facing. Only Unreal
Engine has a user facing tool included as a part of the stan-
dard installation, while Godot and CryEngine provide tool
facing tools for localization. A summary of the types of tools
in the official tool libraries is presented in Table 4.

Since a majority of the identified and classified localiza-
tion tools are tool facing, additional tools are needed to con-
duct the localization work itself (i.e., using a TMS or other
tool for creating a localization kit). All user facing tools iden-
tified in the study have a tool facing component; i.e., the
localization work can be integrated using the tool itself.

9. Discussion and Conclusions

The market around game engines and tools are diverse, and
several actors with different aims and scopes are involved.
Ranging from multibillion dollar companies to smaller indie-
like studios, the game engine market might be as diverse at
the game market itself. As a conclusion to the paper, the
research questions are addressed, starting with the subques-
tions leading to an answer of the main research question.

(a) Which commonly used general purpose game
engines have tools included for game localization?

Three (3) of the included game engines have tools for
localization provided as a part of the standard installation:
CryEngine, Godot, and Unreal Engine. Two of them, CryEn-
gine andUnreal Engine, have their roots in the AAA develop-
ment section of the game industry, used to produce several
AAA game titles during a long time before the technology
was made available to the general development community.

Both these game engines have localization systems as a part
of the standard tool package and detailed information on
how to use them in the official documentation. This might
imply that localization has been an important factor in
developing AAA games (such as Unreal Tournament or
Far Cry) and that these tools have “survived” the transi-
tion from an in-house technology to a publicly available
game engine.

The third example of a game engine having well-
documented localization tools is Godot, an engine also hav-
ing its roots in the game industry as an internal development
tool. Although maybe not as well-known as the previous
AAA examples, Godot was mainly used at game companies
in Latin America before its turn to open source. Could its
Latin America roots have influenced the inclusion of a local-
ization tool, both due to a local market with diverse language
preferences?

Unity, often hailed as the most wide-spread game engine,
does not have any included game localization tools. Game
localization is not mentioned in the official documentation
either, meaning that a developer using Unity has to build a
localization-friendly production pipeline using tools devel-
oped either by themselves or by using one or more of the
multitude of localization tools available in the Unity Asset
Store. Nicoll and Keogh [8] lift the democratization aspect
of Unity Technologies marketing strategies. Unity is in its
marketing hailed as the technology behind half of the mobile
games in the world [60], thus having a large user group. The
democratization aspects includes strong connections to its
developer community, where sharing of knowledge is com-
mon. This is manifested in the localization tools area as, in
comparison to the other included game engines, a large por-
tion of localization tools of different kinds.

(b) How are the localization tools described in the corre-
sponding official documentation?

Where included localization tools exists (i.e., CryEngine,
Godot, and Unreal Engine), the tools are described in such
detail that it would be possible to have localization-friendly
development pipeline. The descriptions of the general pro-
cess often relate to the proposed localization processes iden-
tified from previous research [11, 13, 29]. In the game
engines where no localization tools are included as a part of
the standard toolset, there are limited (or no) mentions of
localization and related concepts.

User
facing tools

User
facing tools

Translation
management
system

Localization
kit importer Game engine

localization
system

Product
facing tools

Core engine

Tool
facing tools General

purpose game engine

Figure 7: A proposed model of a localization-friendly game production pipeline.

12 International Journal of Computer Games Technology



Looking at the description of the tools available in the
connected tool libraries, the documentation varies. Some
have thorough documentation, explaining in detail how the
localization process can be carried out, while some have only
a few lines describing the general usage. The terminologies
related to localization topics proposed by for instance Esselink
[13] are in these scenarios often used scarcely, or there are
similar terms giving search results relating to other aspects of
game development. Examples of this are multiple spelling var-
iants (localization vs. localisation, etc.) as well as terms with
multiple meanings. Translation is, in relation to game engines
at least, often used to express the mathematical meaning of
translating a position of an object or point in a grid system,
something that is commonly discussed in both 2d and 3d
game developments. Alas, translation is also among the most
common terms relating to localization processes.

(c) In which ways can the production pipeline be
expanded by adding additional tools to achieve a
localization-friendly development process?

The production pipeline can be expanded with localiza-
tion tools in all of the game engines in this study. All game
engines included in the study have support either to create
tools to accommodate for localization or to use existing tools
by expanding the production pipeline using the connected
tool library available. All included game engines have an offi-
cial tool library connected to them.

The majority of tool facing localization tools highlights
the need of adding translation management systems (or sim-
ilar) to the pipeline in order to create localization kits includ-
ing the necessary localization data [13]. Figure 7 depicts a
proposed model of a production pipeline where a Translation
Management System (user facing, used to create and manage
the localization kit) is connected to a Localization Kit
Importer (tool facing, handling the connection and data
transfer between the TMS and the game engine), which con-
nects to a Game Engine Localization System (both tool and
user facing, handling the connection to subsequent tools in
the pipeline and connection to other game assets as well).

The proposed model of a localization-friendly game pro-
duction pipeline allows for translation work, by working with
the TMS, as well as game development tasks using the pro-
posed Game engine localization system where the connec-
tions between the localization kit and the assets to be
localized are made. Godot contains an example of a Game
engine localization system (see Figure 6) where correspond-
ing localization strings can be mapped to specific game assets.

Based on the subquestions, an answer to the main
research question can be given:

(d) “How can a localization-friendly game production
pipeline be constructed using a general purpose game
engine and its connected tool library?”

The proposed model in Figure 7 provides a partial
answer to the research question. The technical prerequisites
for each project would still be project specific. As Bernal-
Merino [32] points out, it is difficult to generalize a model

suiting all game development projects. But with the pro-
posed model of a production pipeline, the pieces of the pipe-
line can be identified and planned for. The state of game
localization tools in contemporary general purpose game
engines is good, where contemporary general purpose game
engines have localization support either built-in or expand-
able by adding additional tools. In some cases, e.g., Game-
Maker and Construct, it can be considered unlikely to
“stumble” upon localization processes either by using the
game engine or by browsing the tool library or reading the
official documentation due to the lack of visible localization
related topics. Even though Unity has neither built-in sup-
port for localization nor addressing it in its documentation,
its large community and official tool library with plenty of
localization tools make it plausible that a localization-
friendly development setting can be achieved.

Even when a game engine has localization support (as in
the cases CryEngine, Godot, and Unreal Engine), the localiza-
tion functions and tools are not in the immediate line of sight
when using either of the game engines. This can of course be
related to the actual need of localization. If the game is not
planned to be released in multiple languages or territories, a
localization work will be down prioritized. But it is much eas-
ier to have plans for it when localization is decided to be
implemented.

The information regarding Godot and its development
and evolution also highlights the importance of having reli-
able information sources regarding game production, game
production tools, and related topics. Even though Wikipedia,
where background information regarding the game engines
in this paper to a large extent was gathered from, is very use-
ful for such information, its reliability can (and should) be
questioned. Until there is a larger body of knowledge with
peer-reviewed and well-documented sources, Wikipedia is
the best (and sometimes only) choice.

As an inspiration for a future work, the introductory
quote from the Godot documentation can serve as an
inspiration:

“The world is full of different markets and cultures and,
to maximize profits™[sic], nowadays games are released in
several languages. To solve this, internationalized text must
be supported in any modern game engine”[1]

The quote as well as many of the tools found in this study
focuses on text. While text is a large (and important) part of
localization (whether the text is in graphical assets or in
recorded dialogue is also an aspect), there is an aspect of
games posing an interesting localization challenge not com-
monly addressed—game play or game mechanics. A sugges-
tion for a future work is to research game production and
game localization regarding regional differences in these
areas, both from a cultural and technological perspective.

Data Availability

The details of the systematic mapping review derived from
the corresponding official tool libraries used to support the
findings of this study are included within the supplementary
information file(s).

13International Journal of Computer Games Technology



Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

This research has been funded by the Game Hub Scandinavia
2.0 project under the Interreg Öresund-Kattegat-Skagerrak
European Regional Development Fund (Project ID NYPS
20201849).

Supplementary Materials

The data regarding localization tools found in the official tool
libraries of the included game engines is provided as a sepa-
rate file. All other data are presented within the paper.
(Supplementary Materials)

References

[1] Godot Engine Team, “Godot documentation - Importing
translations,” 2021, https://docs.godotengine.org/en/stable/
getting_started/workflow/assets/importing_translations.html/
.

[2] Godot Engine Team, “Godot [general purpose game engine],”
2021.

[3] J. R. Whitson, “Voodoo software and boundary objects in
game development: how developers collaborate and conflict
with game engines and art tools,” New Media & Society,
vol. 20, no. 7, pp. 2315–2332, 2018.

[4] F. Parker, Indie game studies year eleven, DIGRA 2013-
DeFragging Game Studies, 2013.

[5] M. B. Garda and P. Grabarczyk, “Is every indie game indepen-
dent? Towards the concept of independent game,”Game Stud-
ies, vol. 16, no. 1, 2016.

[6] G. Freeman and N. McNeese, “Exploring indie game develop-
ment: team practices and social experiences in a creativity-
centric technology community,” Computer Supported Cooper-
ative Work (CSCW), vol. 28, no. 3-4, article 9348, pp. 723–748,
2019.

[7] L. S. Pereira and M. M. S. Bernardes, “Aspects of independent
game Production,” Computers in Entertainment, vol. 16, no. 4,
pp. 1–16, 2018.

[8] B. Nicoll and B. Keogh, The unity game engine and the circuits
of cultural software, Palgrave Pivot, 1 edition, 2019.

[9] Unity Technologies, “Unity [general purpose game engine],”
2021.

[10] M. Toftedahl, P. Backlund, and H. Engström, “Localization
from an indie game production perspective: why, when and
how?,” in DiGRA '18 - Proceedings of the 2018 DiGRA Interna-
tional Conference: The Game is the Message, Torino, Italy,
2018.

[11] D. Fry and A. Lommel, The localization industry primer, LISA,
2003.

[12] C. M. Hevian, “Video games localisation: posing new chal-
lenges to the translator,” Perspectives, vol. 14, no. 4, pp. 306–
323, 2007.

[13] B. Esselink, “A Practical Guide to Localization,” in Language
International World Directory, vol. 4, John Benjamins Publish-
ing Co, Amsterdam, 2000.

[14] C. O'Donnell, “Games are not convergence: the lost promise of
digital production and convergence,” Convergence, vol. 17,
no. 3, pp. 271–286, 2011.

[15] A. Thorn, Game Engine Design and Implementation, Jones &
Bartlett Publishers, Sudbury, MA, 2011.

[16] Lucasfilm Games, “Maniac Mansion [Computer Game],”
1987.

[17] M. L. Black, “Narrative and spatial form in digital media,”
Games and Culture, vol. 7, no. 3, pp. 209–237, 2012.

[18] Activision, Garry Kitchen's Game, “Maker [special purpose
game engine],” 1985.

[19] Sensible Software, “Shoot'Em-Up Construction Kit [Special
Purpose Game Engine],” 1987.

[20] J. Aycock and K. Biittner, “LeGACy code: studying how (ama-
teur) game developers used graphic adventure creator,” in
International Conference on the Foundations of Digital Games,
vol. 23, Bugibba, Malta, 2020.

[21] id Software, “Doom [computer game],” 1993.
[22] H. Lowood, “Game engines and game history,” in History of

Games International Conference Proceedings, p. 2014, Kine-
phanos, January 2014.

[23] E. F. Anderson, S. Engel, P. Comninos, and L. McLoughlin,
“The case for research in game engine architecture,” in Pro-
ceedings of the 2008 Conference on Future Play: Research, Play,
Share, Future Play 2008, Toronto, Ontario, Canada, 2008.

[24] M. Toftedahl and H. Engström, “A taxonomy of game engines
and the tools that drive the industry,” in DiGRA '19 - Proceed-
ings of the 2019 DiGRA International Conference: Game, Play
and the Emerging Ludo-Mix, Kyoto, 2019.

[25] C. O'Donnell, Developer's Dilemma: The Secret World of
Videogame Creators, The MIT Press, 2014.

[26] Epic Games, “Unreal Engine [general purpose game engine],”
2021.

[27] Epic Games, “Unreal [computer game],” 1998.
[28] C. Mangiron, “Research in game localisation,” The Journal of

Internationalization and Localization, vol. 4, no. 2, pp. 74–
99, 2018.

[29] M. O'Hagan and C. Mangiron, Game Localization: Translating
for the Global Digital Entertainment Industry, vol. 106, John
Benjamins Publishing, 2013.

[30] M. Toftedahl, “Localization and regional aspects of game pro-
duction - a research overview,” in 13th International Confer-
ence on Game and Entertainment Technologies, Zagreb,
Croatia, 2020.

[31] H. M. Chandler and S. O. M. Deming, The game localization
handbook, Jones & Bartlett Publishers, 2011.

[32] M. Á. Bernal-Merino, Translation and localisation in video
games: making entertainment software global, Routledge, 2014.

[33] B. Esselink, “The evolution of localization,” The Guide from
Multilingual Computing & Technology: Localization, vol. 14,
no. 5, pp. 4–7, 2003.

[34] Weblate Team, “Weblate [Computer Software],” 2021.
[35] P. Muñoz Sánchez and R. López Sánchez, The ins and outs of

the video game localization process for mobile devices, vol. 14,
no. 14, 2016Tradumàtica, 2016.

[36] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “System-
atic mapping studies in software engineering,” in 12th Interna-
tional Conference on Evaluation and Assessment in Software
Engineering (EASE) 12, Bari, Italy, 2008.

[37] Valve, “Steam [digital storefront],” 2021.

14 International Journal of Computer Games Technology

https://downloads.hindawi.com/journals/ijcgt/2021/9979657.f1.pdf
https://docs.godotengine.org/en/stable/getting_started/workflow/assets/importing_translations.html/
https://docs.godotengine.org/en/stable/getting_started/workflow/assets/importing_translations.html/


[38] itch corp, “itch.io [digital storefront],” 2021.

[39] Interactive Fiction Technology Foundation, “Twine [Special
Purpose Game Engine],” 2021.

[40] A. Le Doux, “Bitsy [Special Purpose Game Engine],” 2021.

[41] T. Rothamel, “Ren'Py [Special Purpose Game Engine],” 2021.

[42] Enterbrain, “RPG Maker [special purpose game engine],”
2020.

[43] Lexaloffle Games, PICO-8 [Special Purpose Game Engine],
2021.

[44] YoYo Games Ltd, “GameMaker [general purpose game
engine],” 2021.

[45] Scirra Ltd, “Construct [General Purpose Game Engine],” 2021.

[46] Wikipedia, “Construct (game engine),” 2021, https://en
.wikipedia.org/wiki/Construct_(game_engine)/.

[47] Scirra Ltd, “Construct FAQ,” 2021, https://www.construct.net/
en/make-games/faq/.

[48] Scirra Ltd, “Construct Licences,” 2021, https://www.construct
.net/en/make-games/buy-construct/.

[49] Crytek, “CryEngine,” 2021, https://www.cryengine.com/.

[50] Crytek, “Far Cry,” 2004.

[51] Wikipedia, “CryEngine,” 2021, https://en.wikipedia.org/wiki/
CryEngine/.

[52] Crytek, “CryEngine Licences,” 2021, https://www.cryengine
.com/ce-terms/.

[53] Crytek, “CryEngine Documentation - Localization Manager,”
2021, https://docs.cryengine.com/display/SDKDOC2/
Localization+Manager/.

[54] Wikipedia, “GameMaker,” 2021, https://en.wikipedia.org/
wiki/GameMaker/.

[55] YoYo Games, “GameMaker Licences,” 2021, https://www
.yoyogames.com/en/get/.

[56] YoYo Games, “GameMaker Documentation - Ini Files,” 2021,
https://manual.yoyogames.com/GameMaker_Language/
GML_Reference/File_Handling/Ini_Files/Ini_Files.htm/.

[57] Wikipedia, “Godot (game engine),” 2021, https://en.wikipedia
.org/wiki/Godot_(game_engine)/.

[58] Wikipedia, “Unity (game engine),” 2021, https://en.wikipedia
.org/wiki/Unity_(game_engine)/.

[59] Wikipedia, “Unreal Engine,” 2021, https://en.wikipedia.org/
wiki/Unreal_Engine/.

[60] Unity Technologies, “Unity - the game engine of choice for
mobile game developers,” 2021, https://en.wikipedia.org/
w ik i /Ht tps : / /un i ty . com/pages /un i ty -p ro-mob i l e -
gamesUnreal_Engine/.

15International Journal of Computer Games Technology

https://en.wikipedia.org/wiki/Construct_(game_engine)/
https://en.wikipedia.org/wiki/Construct_(game_engine)/
https://www.construct.net/en/make-games/faq/
https://www.construct.net/en/make-games/faq/
https://www.construct.net/en/make-games/buy-construct/
https://www.construct.net/en/make-games/buy-construct/
https://www.cryengine.com/
https://en.wikipedia.org/wiki/CryEngine/
https://en.wikipedia.org/wiki/CryEngine/
https://www.cryengine.com/ce-terms/
https://www.cryengine.com/ce-terms/
https://docs.cryengine.com/display/SDKDOC2/Localization+Manager/
https://docs.cryengine.com/display/SDKDOC2/Localization+Manager/
https://en.wikipedia.org/wiki/GameMaker/
https://en.wikipedia.org/wiki/GameMaker/
https://www.yoyogames.com/en/get/
https://www.yoyogames.com/en/get/
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/File_Handling/Ini_Files/Ini_Files.htm/
https://manual.yoyogames.com/GameMaker_Language/GML_Reference/File_Handling/Ini_Files/Ini_Files.htm/
https://en.wikipedia.org/wiki/Godot_(game_engine)/
https://en.wikipedia.org/wiki/Godot_(game_engine)/
https://en.wikipedia.org/wiki/Unity_(game_engine)/
https://en.wikipedia.org/wiki/Unity_(game_engine)/
https://en.wikipedia.org/wiki/Unreal_Engine/
https://en.wikipedia.org/wiki/Unreal_Engine/
https://en.wikipedia.org/wiki/Https://unity.com/pages/unity-pro-mobile-gamesUnreal_Engine/
https://en.wikipedia.org/wiki/Https://unity.com/pages/unity-pro-mobile-gamesUnreal_Engine/
https://en.wikipedia.org/wiki/Https://unity.com/pages/unity-pro-mobile-gamesUnreal_Engine/

	Localization Tools in General Purpose Game Engines: A Systematic Mapping Study
	1. Introduction
	2. Game Engines and Tools
	3. Game Localization Practices and Translation Management Systems
	4. Research Questions and Method
	5. Inclusion Criteria for the Game Engines in the Study
	6. Search Queries and Data Sources
	7. An Overview of Localization Tools in General Purpose Game Engines
	7.1. Construct
	7.1.1. Localization Tools and Information in Construct and Its Documentation
	7.1.2. Localization Tools in Construct Tool Library

	7.2. CryEngine
	7.2.1. Localization Tools and Information in CryEngine and Its Documentation
	7.2.2. Localization Tools in CryEngine Tool Library

	7.3. GameMaker
	7.3.1. Localization Tools and Information in GameMaker and Its Documentation
	7.3.2. Localization Tools in GameMaker Tool Library

	7.4. Godot
	7.4.1. Localization Tools and Information in Godot and Its Documentation
	7.4.2. Localization Tools in Godot Tool Library

	7.5. Unity
	7.5.1. Localization Tools and Information in Unity and Its Documentation
	7.5.2. Localization Tools in Unity Tool Library

	7.6. Unreal Engine
	7.6.1. Localization Tools and Information in Unreal Engine and Its Documentation
	7.6.2. Localization Tools in Unreal Engine Tool Library


	8. Summary of Localization Tool Overview
	9. Discussion and Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments
	Supplementary Materials

