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Abstract
As video games become more complex and more immersive, not just graph-
ically or as an art form, but also technically, it can be expected that games be-
have on a deeper level to challenge and immerse the player further. Today’s
gamers have gotten used to pattern based enemies, moving between pre-
programmed states with predictable patterns, which lends itself to a certain
kind of gameplay where the goal is to figure out how to beat said pattern.
But what if there could be more in terms of challenging the player on an
interactive level? What if the enemies could learn and adapt, trying to out-
smart the player just as much as the player tries to outsmart the enemies.
This is where the field of machine learning enters the stage and opens up
for an entirely new type of non-player character in video games. An enemy
who uses a trained machine learning model to play against the player, who
can adapt and become better as more people play the game. This study aims
to look at early steps to implement machine learning in video games, in this
case in the Unity engine, and look at the players perception of said enemies
compared to normal state-driven enemies. Via testing voluntary players by
letting them play against two kinds of enemies, data is gathered to compare
the average performance of the players, after which players answer a ques-
tionnaire. These answers are analysed to give an indication of preference
in type of enemy. Overall the small scale of the game and simplicity of the
enemies gives clear answers but also limits the potential complexity of the
enemies and thus the players enjoyment. Though this also enables us to
discern a perceived difference in the players experience, where a preference
for machine learning controlled enemies is noticeable, as they behave less
predictable with more varied behaviour.

Keywords: Unity, Machine Learning, ML-Agents, Navigation Mesh, Chal-
lenge, Video Games
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Sammanfattning
I och med att videospel blir mer avancerade, inte bara grafiskt utan också
som konstform samt att dom erbjuder en mer inlevelsefull upplevelse, så
kan det förväntas att spelen också ska erbjuda en större utmaning för att
få spelaren bli ännu mer engagerad i spelet. Dagens spelare är vana vid
fiender vars beteende styrs av tydliga mönster och regler, som beroende på
situation agerar på ett förprogrammerat sätt och agerar utifrån förutsägbara
mönster. Detta leder till en spelupplevelse där målet blir att klura ut det här
mönstret och hitta ett sätt att överlista eller besegra det. Men tänk om det
fanns en möjlighet att skapa en ny form av fiende svarar och anpassar sig
beroende på hur spelaren beter sig? Som anpassar sig och kommer på egna
strategier utifrån hur spelaren spelar, som aktivt försöker överlista spelaren?
Genom maskininlärning i spel möjliggörs just detta. Med en maskininlärn-
ingsmodell som styr fienderna och tränas mot spelarna som möter den så lär
sig fienderna att möta spelarna på ett dynamiskt sätt som anpassas alltefter-
som spelaren spelar spelet. Den här studien ämnar att undersöka stegen
som krävs för att implementera maskininlärning i Unity motorn samt un-
dersöka ifall det finns någon upplevd skillnad i spelupplevelsen hos spelare
som fått möta fiender styrda av en maskininlärningsmodell samt en mer
traditionell typ av fiende. Data samlas in från testspelarnas spelsessioner
samt deras svar i form av ett frågeformulär, där datan presenteras i graf-
form för att ge insikt kring ifall fienderna var likvärdigt svåra att spela
mot. Svaren från frågeformulären används för att jämföra spelarnas spelup-
plevelser och utifrån detta se skillnaderna mellan dom. Skalan på spelet
och dess enkelhet leder till att svaren inte bör påverkas av okända och
ej kontrollerbara faktorer, vilket ger svar som ger oss insikt i skillnaderna
mellan dom olika spelupplevelserna där en preferens för fiender styrda av
maskininlärningsmodeller kan anas, då dom upplevs mer oförutsägbara
och varierande.

Nyckelord: Unity, Maskininlärning, ML-Agents, Navigationsnät, Utman-
ing, Videospel
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1 Introduction
In today’s video games the general design pattern for non-player characters
(NPCs) is that of the state-machine. This is a programming pattern upon
which the actions of the NPC are determined via which state the NPC is in.
For example, a guard might have several states that tell him what to do, like
patrolling, chasing, attacking and returning to his post. Which state he is
in depends on what is happening in the game. If the player comes within
a set distance his state shifts from patrolling to chasing, and when within
attack range he will go into attacking state, which automatically switches
back to chasing after the attack is finished. This programming pattern is
well known and works well for NPCs who are expected to act in certain
ways according to the conventions taken for granted in modern games. This
can be both beneficial and detrimental for a game’s user experience. It both
presents the player with predictable enemies which can be just what the de-
veloper wants the player to overcome, a repeating set of behaviours which
can be outplayed and overcome. But it can also lead to players feeling that
the NPCs they encounter are lackluster and boring, as they know exactly
how they will act every time, and given if the NPC has a too simple state
machine, it can appear unnatural and immersion breaking. With the help
of machine learning more intelligent models that act as more compelling
adversaries in video games could be created.[1][2][3]

1.1 Background and problem motivation
The idea of smarter adversaries in video games should entice anyone who
has any familiarity with video games. Enemies that react smarter to the
player’s actions but also think outside the box could provide a more in-
depth experience. This in combination with today’s accessible game en-
gines, which allows for plug-ins and extensions, the integration of machine
learning into video game environments is certainly within the realm of pos-
sibility. One such game engine which allows for easy integration of ma-
chine learning is Unity, a cross-platform game engine developed by Unity
Technologies. They have developed their own library, the Unity Machine
Learning Agents Toolkit, to integrate current and upcoming machine learn-
ing technology into their own game engine. The library is a open-source
project which aims to aim to "enables games and simulations to serve as
environments for training intelligent agents"[4].

Their implementation is based on PyTorch, which is an open-source ma-
chine learning library used for applications which work with computer vi-
sion and natural language processing, enabling hobbyists or researchers to
train Unity’s ML-Agents (Machine learning agents) to work within both
2D and 3D environments. With the library’s ability to train ML-Agents
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for multi purpose tasks, single, multi and adversarial NPC behavior, au-
tomated testing of game builds and assistance in evaluating game design
decisions, the Unity ML-Agents Toolkit presents ample opportunity to re-
search whether or not smart behavior in video games is a compelling for the
futures video game players.

1.2 Overall aim

The study’s overall aim, is to via the usage of currently available machine
learning technology for video game engines, to investigate whether ma-
chine learning models can act as compelling enemies in video games. The
ML-model will be compared to the more traditional state driven NPCs, con-
trolled by trailed and tested movement controllers, in this case navigation
mesh based movement. In the end the two types of enemies will be put
in play against players who will give their opinion on their game play in-
teractions with the enemies, from which we can compare the two enemies’
gameplay value.

The study’s overall aim is to, with the help of currently available machine
learning technology on the market for video game engines, investigate whether
or not machine learning models can act as compelling adversaries in video
games compared to more traditional state driven NPCs.

1.3 Scope
The scope of this study will be limited to measuring and analyzing the
player’s perceived difference between a trained machine learning NPC and
a simple navigation mesh controlled one. Via the use of a questionnaire con-
sisting of numeric questions the perceived player experience can be com-
pared between the two models. The study will mainly focus on the factors
of challenge, enjoyment and interest perceived by the players when playing
against the two types of NPCs. A small game with simple gameplay ele-
ments and environment will limit the influence other elements have on the
player’s experience. The study will strive to create similar behavior in the
two types of NPCs, though emphasis will be on that they provide an equal
challenge, which will be measured and confirmed via statistics provided
from the players’ gaming sessions.

1.4 Concrete and verifiable goals
Via presenting voluntary players with two similar video games, where one
game has traditional NPCs while the other has machine learning trained
models controlling them. The players will try to complete a given task in
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the video game and afterwards fill out a form about their experience, which
will give insight into how the player’s experience is affected by the different
NPC behaviors.

Via the help of the questionnaire the players answer after their gaming ses-
sion, the study will try to determine which of the two NPC behaviors are
perceived as the most challenging, enjoyable and interesting as adversaries.
The form will use grading scales along with questions that players will
answer, and the answers will be compared to verify if Machine learning
trained models can provide a more compelling game experience when used
as adversaries to the player. Compelling in this study will refer to a combi-
nation of a fair challenge which the player found enjoyable and interesting
to play against, rated by their own scores in the respective categories.

To assure that the challenge is fair, player statistics gathered during the test-
ing sessions will assure that the two types of NPCs provide an equally chal-
lenging experience. A similar trend of player score to time lived in each
session will indicate that the two NPCs are equally challenging.

To summarise the research questions and goals of the study:

• With respect to players’ perceived challenge, enjoyment and interest,
is there a difference in the player experience for players when facing
a machine learning controlled enemy compared to a state driven en-
emy?

• Is the two types of enemies equally challenging, both in regards to
how players perceive them but also statistically?

1.5 Outline
Chapter two goes over the theory behind the report, beginning with the
background of machine learning in video games and after that explaining
the commonly used method of reinforcement learning used for machine
learning. Chapter two also covers what the Unity ML-Tool kit is, other large
research projects within the same field and shortly what a navigation mesh
is in video game environments.

After that chapter three follows, covering the method followed in this study.
Areas such as how the test game will be constructed, how the model will be
trained and how the game will be tested and the results will be compared
is explained. As well as an overview of the Unity engine and how it is
intended to be used in this study is explained. Covering things such as
which components are to be used, how scripts will interact with each other
and what hardware will be used along with what inference mode. It also
covers how the training of the machine learning model will be monitored.
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Chapter four explains the construction of the test game and the vital parts of
it. Areas such as game scenes, machine learning agent and training design,
the navigation mesh agent and the player controller are explained here.

After this chapter five goes over the results of the tests, showing compiled
bar charts and graphs of the questionnaire answers as well as player statis-
tics. It also covers the final design and completed training of the machine
learning model. To complement chapter five, chapter six contains an analy-
sis, discussing the results and giving insight into exposed weaknesses and
other information that is revealed when looking at the results and feedback.

Finally chapter seven goes a summarised conclusion on the findings and
outlines a few ideas for future work.
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2 Theory

2.1 The Unity game engine
The Unity game engine provides an easy to learn environment for con-
structing playable scenarios on a scene to scene basis. It also comes with a
physics system which works for creating good enough physics based player
controllers, as well as in-engine handling of gravity, drag and collisions.
In-engine colliders along with rigidbodies provide a foundation of easy to
implement movement and collision for both the player, the NPCs and the
environment. A general movement script is can be written to handle the
NPCs movement, with variables such as maximum and minimum speed,
turn rate, slow down speed and acceleration, as to provide a easy to change
system for movement on the NPCs which can be used even with changes
to the ML-Agents physical representation in the game world and its ob-
servation vectors. This makes the Unity engine very suitable for real time
simulation which other researchers are starting to take advantage of, exam-
ple being a traffic obstacle avoidance based on machine learning[5]. Others
have used it to try and cut down on development time in video games and
help more game developers finish their games faster with better results[6].

Figure 1: The NPC represented by a cylinder mesh, along with a spawn
point for the training target.

Seen above in figure 1, is the intended visual representation of the NPC
in form of a cylinder mesh with a box attached to indicate its forward di-
rection. Via taking inputs via functions and applying these during Unity’s
FixedUpdate() function which has a frequency equal to that of the physics
system. The inputs correspond to the desired amount of forward and rota-
tional movement of the NPC. And as each tick of FixedUpdate() is called the
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input is translated into movement either forward, backwards or standing
still along with rotation along the Y axis either clockwise or counter clock-
wise or no rotation at all. The desired velocity is applied to NPCs’ rigid-
body, and collisions handled by its colliders, all native to the Unity engine
as to keep the design simple and reliable. This gives the NPC a simple yet
sufficient way of navigating the environment.

2.1.1 Unity ML-Agents Toolkit
The Unity ML-Agents toolkit comes with a large variety of tools that can
be employed to feed the training algorithm with the necessary data to cre-
ate smart behavioural models for the agents. The agents in the ML-Agents
toolkit operate via a set of functions focused around observations, actions
and rewards, each doing their part in forming the final model which will
be used by the NPC during run-time to control the NPC. Each ML-Agent
will, according to chosen parameters, collect observations from their own
Behaviour Parameter component, along with observations from their Ray Per-
ception Sensor components, after which actions will be taken. Actions can be
both discrete and continuous values and they are made up of vectors, called
branches, of set sizes.

It is also possible to choose which device, either the CPU (Central process-
ing unit) or the GPU (Graphics processing unit), that will be used as the
inference device. In this study the computer’s GPU will be used as the in-
ference device, given the choice of having ray perception sensors for each
agent, which is more GPU intensive, and also that the computer’s GPU is
stronger than the CPU. The GPU that will be used in this study is of the
model MSI GeForce GTX 1080 Gaming X.

2.2 Machine learning in video games
The idea of machine learning, specifically reinforcement learning and algo-
rithms, in video games is nothing new. In recent years many simulation
platforms such as Arcade learning[7], VizDoom[8], MuJoCo [9] which en-
ables easy-to-use benchmarking of machine learning algorithms via the help
of existing video games. These along with other environments and plat-
forms have helped speed up the rapid development of more efficient and
powerful algorithms used in machine learning. Though as stated by Juliani
et al. in [10], for researchers to continue to produce high-quality algorithms,
there needs to be easy-to-use, flexible and universal platforms that enable
the production of new algorithms. Which is why they have developed the
Unity ML-Agents Toolkit for the Unity Engine.

Generally the algorithms developed to be used in video games are reinforce-
ment algorithms which construct models via repeated trial and error, based
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on rewards and penalties given over an episode, in order to optimize the
models decision making in the set situation.

Figure 2: The reinforcement learning loop

This process, as seen in figure 2, consists of a looping process of observing
the agent’s environment, taking a decision, performing said decision as an
action and then getting rewarded or punished depending on the results.
An iterative process of these steps builds up a model of how an ML-Agent
should act depending on the current state of the environment the agent is
in along with observations it has been enabled to take in. So in time after
repeated training, a model is generated that will control the behaviour of
the NPC which will act in a manner that maximises the agent’s reward. It’s
also possible to have the ML-Agents in the Unity ML-Agents Toolkit act as
teams, working together or against each other to maximise their teams total
reward, which in turn can be used to train more complex behaviours for the
NPCs.

The key to being able to train these kinds of models in Unity’s 3D environ-
ment is thanks to their work which is utilizing the Tensorflow and PyTorch
libraries. TensorFlow, which is made by the Google Brain Team[11], is an
open-source library developed to enable training and inference for deep
neural networks, though is suitable for a large number of machine learn-
ing related tasks. PyTorch, developed by Facebook’s AI Research lab[12], is
similar to TensorFlow, but instead of focusing on training and inference it
focuses on computer vision and natural language processing.

There has also been research regarding applying machine learning on video
games which is not part of the Unity ML-Agents kit, Google Brains project
or Facebook’s AI research. These studies have look at either teaching AI to
play already existing games or building a game where the players interact
with and train a machine learning model in real time.[13] [14][15]
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2.3 Game scenes
The game scene is constructed to fit the scope of the study. In Unity, scenes
are constructed to fit the need of both training and testing. With the in-
tended player experience of players facing off against NPCs who seek to
defeat them, the player faces these NPCs in a first-person perspective in a
four wall room. The room will have random obstacles generated each time
the player spawns in to randomize the experience and challenge both player
and NPC.

2.3.1 Training scene
The training scene must mimic the intended gameplay scene to such an ex-
tent that the ML-Agents can learn to operate both in their training scene as
well as the gameplay scene. This is done via gradually adding more to the
training scene as to reinforce behaviour patterns in the agents that allows it
to step by step learn the complexity of the gameplay scene. The initial train-
ing scene will consist of a four wall room with the target in the center. The
agents spawn in relatively similar positions and can therefore learn over
time that rewards are administered when the agent touches the target. To
help the agent learn this quicker the target is spawned with collision spheres
set to trigger mode, meaning that they don’t collide with the agent. Instead
they activate a bit of code giving the agent a small reward of 0.2 each time
the agent enters this sphere, which encourages the agent to get closer to the
target’s position.

As the agent successfully learns to move towards the target the agent’s start-
ing position will be assigned according to an increasing range, giving the
agent more different starting positions to learn to navigate from. This is ac-
companied with the target’s position starting to change with each episode,
where an episode is defined as the time between the agent’s start signal
and up until it succeeds or fails at its task. The target will start to appear
each episode on a small set of random positions, the amount of positions
and the range of X and Z values increasing as the agent learns to align and
move towards the target. Upon reaching satisfying performance of localiz-
ing the target and moving towards it, predefined wall placements will be
introduced to the training sessions. With each episode all walls will be put
in a list managed by the Game Manager object and will have a 70% chance to
be set active, giving the agent a random environment each episode to nav-
igate. It is expected that the mean reward of the agents’ training sessions
will fall greatly here as the agent is learning to identify new hinders inside
the training room and moving around them, which is a different set of de-
cisions compared to aligning with the target and moving towards it. More
walls will be added over time as the agent learns to navigate around these
walls until the desired random complexity of the room is achieved.
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2.4 Navigation mesh
As a counterpart to the trained model produced by the ML-Agent toolkit, a
traditional Navmesh (Navigation Mesh) agent will be sufficient. A navmesh
can be summarised as an area defined via multiple two-dimensional convex
polygons. The combined area of these polygons define an area upon which
the agent can move. The Unity engine offers a native solution to gener-
ating navmeshes which can easily be used for the native navmesh agent
component which acts as a basic controller which allows the programmer
to program movement behaviour which uses the generated navmesh. It’s
a good entry level tool for getting reliable movement along predefined 3D
environments without having to delve into complex coding.

9
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3 Method
This study focuses on the question if machine learning models can act as
compelling NPCs in video games, as enemies that are more fun or diffi-
cult to face. Due to scope and time limitations the study mainly focuses on
the short term user experience in a prototype video game where the player
tries to fight off incoming NPCs. The test players will face both a standard
navmesh controlled NPC as well as the trained machine learning model,
and after having played against both fill out a questionnaire regarding their
perceived experience. The test players will answer questions such as "How
challenging/enjoyable/interesting were the enemies to face off against?"
Questions will be answered on a scale of one to five. Other questions will
be questions such as "How familiar are you with video games?", covering
the players previous gaming experiences.

3.1 Game Construction
To be able to test players against the more traditional navmesh based state
driven NPC and the trained machine learning model, a simple game will
be constructed where the player will be tasked with surviving as long as
possible. They will first face off against the navmesh based NPC and af-
ter either winning or losing against it, the same game will load but with the
machine learning model controlled NPC instead. The use of the Unity game
engine will both simplify the process of implementing this game but also
the integration of both a navmesh controlled NPC and a machine learning
model controlled NPC. When the training of the machine learning model
reaches sufficient performance it will be implemented in a similar scene as
the navmesh NPC, and player controls sufficient to play against the NPCs
will be implemented. Due to the current situation with an ongoing pan-
demic the test players will be found online via various communities and
social media platforms, where requests for test players will be submitted.

A first person shooter game is the natural choice given the scope of the
study. The ML-Agents Toolkit has a lot of examples of how to train a ML-
Agent in a 3D space with conventional movement controls that lends itself
well for a game focused around movement. This gives the player a clear
objective of staying alive via hitting enemies with spheres while the enemy
can focus on the simple task of moving to the player. This gives a dynamic
relationship between player and the enemy while keeping the game simple
and limits the factors influencing the machine learning training.
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3.1.1 Game Scenes
The game scenes will be built in a linear fashion to create a simple clear
cut test experience for the players. Starting off with an intro screen with
information regarding the study and the game they are about to play, as well
as a field to enter their name. After this the navigation mesh scene will load,
letting the player play until defeated or the time of 180 seconds has passed.
A time limit is good as it accounts for really good players who might play
forever due to never being defeated. After this an intermission scene will
load to allow players a moment to rest, they continue via pressing a button
which loads the machine learning scene. Here the same procedure will take
place, play for 180 seconds or until defeated. After that a ending scene loads
which thanks the player for participating and gives them a choice between
opening the link to the questionnaire or quitting the game. Either button
will close the application but one opens the questionnaire website also.

3.1.2 Machine Learning Agent
The machine learning agent will be designed to behave similarly to a race-
car. It will be able to accelerate either forward or backwards and turn left
or right. This gives the machine learning model very few input factors to
consider, meaning that it might take some time to get some good results due
to limited movement controllers or that it can’t handle a super cluttered en-
vironment, but given the scope of the study, we want to keep the models
inputs simple as to achieve results faster. Being able to combine motion ei-
ther forward or backward while turning gives the agent enough control and
mobility to act as a challenging opponent with enough training. Its rewards
will be that of a base value of 1 with two progression spheres around the
target, which gives an additive reward of 0.2 when the agent touches them,
meaning the total reward will be 1.4. This follows the guidelines of the doc-
umentation for the Unity ML-Agents Toolkit which recommends holding
reward values small as it is easier for the model to understand the value
of these rewards if they don’t bloat overtime with long training sessions,
which would cause the rewards to lose meaning for the model.

For data-input the agent will be aware of its own position and the target’s
position, both consisting of a X,Y and Z value. This along with the dot prod-
uct between the two known positions gives the model an angle between the
two positions. This in theory would give the agent enough information to
understand where it is, where it needs to go and how to turn and acceler-
ate to get there. To help the agent further it will have a raycast component
consisting of nine raycasts spread as fan in-front of it feeding it information
of hit objects, returning their distance and tag, meaning that the agent can
identify the target and walls hit by the raycasts and the distance to them.
This helps it further to make precautionary adjustments to its movement.
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3.1.3 Navigation Mesh Agent
The counterpart of the machine learning enemy will be a navigation mesh
controlled enemy. This is due to the navigation mesh being a native part of
the Unity engine, cutting down on work time needed to develop a reliable
movement system, which can both move around the play area while avoid-
ing obstacles, for the counterpart enemy. This system is also suitable as the
default behaviour for the navigation agent component in Unity because it
resembles that of the intended movement of the machine learning agent,
meaning they will move similarly and be more comparable.

3.2 Data collection and questionnaire
The data from these tests, which will include players time lived and score,
along with their answers from the questionnaire will be used to evaluate
the perceived challenge, enjoyment as well as how interesting they found
the two types of enemies. The questionnaire will cover how challenging,
enjoyable and interesting the player found the enemies, and an overview
comparing how the two types of enemies scored in these areas will tell us
which one the player might prefer. These factors are chosen to give insight
into if the enemies are equally challenging. Enjoyment is asked about as it
is important to understand if the players want to play against these types of
enemies or finds them fun, and this in combination with interest can indi-
cate if it might be something future players will actively be drawn to, if they
will be intrigued by games in the future who have machine learning models
for their enemies.

Both NPCs scoring similarly on challenge is preferred, as then their scores
on enjoyability and interest will be deciding which is more compelling. To
assure that the enemies are of equal difficulty, time lived and score will be
plotted against each other, with the hopes of showing two similar curves,
telling us that players on average achieve similar scores for similarly long
play sessions. If one of the enemies causes players to either get much less
score or players on average don’t stay alive as long, then the enemies are
not of equal challenge. The study will focus on these two scores mainly
because they can be plotted to give an indication if player performance is
equal between the two enemies, while also keeping the data collection sim-
ple and easily understood in graph form, while at the same time telling if
the challenge is equal.

3.3 Training Monitoring
The Unity ML-Agents toolkit includes as an extension of Tensorflow the per-
formance overview library TensorBoard, which enables us, via a web-based
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graphical user interface (GUI), to overview and monitor both currently on-
going and previous training sessions. This tool will be used to monitor the
progression of our agents training, to see when the agent reaches a satisfac-
tory level of performance.

Figure 3: Overview of model training session in TensorBoard.

The main method of monitoring the progression of the training is done via
the graphs provided by Tensorboard. As seen above in figure 3 there are
two graphs present at all times in Tensorboard, one for monitoring cumula-
tive reward of the models and one for episode length. These graphs will be
monitored after each training session, where we desire to see higher reward
numbers with shorter episode lengths, indicating that the agents finish their
tasks faster and with better results. Due to the nature of machine learning,
where training results can go up and down rapidly before a successful pat-
tern is found by the model, we apply smoothing of a factor 0.6 to the graphs
to make the graphs more readable.
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4 Construction

4.1 ML-Agent design
The design of the ML-Agent is aimed to be general, meaning it should be
able to navigate any environment in 3D space consisting of a flat surface
cluttered with obstacles and a given target to chase. The Unity ML-Agents
rely on observations as to make the most optimal decisions, and given the
nature of our scene being a 3D environment which the agent is supposed
to navigate, the use of observational vectors of the agents own position, the
target’s position, the dot product of the agents and targets location along
with a ray sensor component, the agent is sufficiently equipped to take in
its environment as well as understand where its target location is.

Figure 4: Overview of visual representation of agent’s raycast sensor com-
ponent.

In the CollectObservations(VectorSensor sensor) function provided by the Unity
ML-Agents toolkit, we dictate what information the agent is to observe be-
fore taking any actions. The agent in our study receives its own transform
position, the target’s transform position and the calculated dot product be-
tween itself and the target with respect to their given forward direction.
This means our agent receives in total seven values in our CollectObserva-
tions(VectorSensor sensor) function. In addition to this a child object of our
agent is provided with a ray perception sensor component, giving the agent
the ability to shoot raycasts into the 3D environment and receive observa-
tions of whether or not the raycasts hit anything, what they hit and the
distance to said object. The discrete action values are assigned via switch
statements and passed as inputs to the function SetInputs(forwardAmount,
turnAmount). To encourage the agent to complete its task as quickly as pos-
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sible the agent receives an existential penalty each step the learning process
takes. Meaning each step that is taken in the learning process in the agent’s
current episode the agent receives a penalty calculated by dividing the total
amount of steps the agent can take per episode with the desired max reward,
which in our case is a value of one and not 1.4 due to it being impossible for
the agent to actually achieve.

As seen in figure 4, the agent has nine raycasts spread over a set amount of
degrees. Each raycast has a sphere at the end which is used to detect colli-
sions with desired objects. The size of the spheres are set to help the agent
detect objects even as small as the target, which is in the training case a small
sphere. These raycasts can be given specific rules that dictate what they col-
lide with as to control what the agent is actually observing. In our case the
agents’ raycasts only hit designated walls and the target, both which have
different tags and layers to make sure the agent understands if it is looking
at a wall or the target, and how far away they are.

The Unity ML-Agents toolkit supports agents operating with either discrete
or continuous values. Our agent is designed to operate with discrete val-
ues due to their simple nature. The agents OnActionReceived(ActionBuffers
actions) function handles the agents assigning of values to its action vec-
tors, which in our case is used as input for the attached movement script.
The agent operates via assigning a value of zero, one or minus one to a set
of two variables, which will be used as input to determine if and how the
agent wants to move and rotate.

The agent also has functions which can be called both by the agent and from
outside the script to reward the agent for successfully catching the target or
the player as well as entering a progression trigger zone. Both the training
target and the player have two spherical triggers around them which when
the agent enters is deactivated and the agent receives a small reward of 0.2
as to tell the agent it is getting closer to its target. The decision to include
this was to help the agent learn faster that moving to the target is the desired
result, as a training agent might still miss the target though still graze close
by, and thus giving the agent a small reward for being close helps incentive
the agent to move towards the target’s observed transform position.

4.1.1 Training
The ML-Agents Toolkit training is run via a command prompt where a com-
mand to initialize the training is entered, along with desired parameters,
such as run ID and configuration file to use. In the initial stages of this
project several configuration files were used and tested.

The Unity ML-Agents toolkit supports was is called as behavioural cloning,
which in the ML-Agents toolkit’s case is when a user via the heuristic con-
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trols plays the part of the agent and performs the agents intended task dur-
ing a recording session, after which a demo is created that will serve as a
cheat-sheet for the agent to look at as to know what is expected of it. The
user can then in the configuration file add one or several demo files for the
agent to learn from. In the Unity ML-Agent toolkit the agent will try to
mimic the behavior in the demo, to a settable degree, while still deviating
from it. After each episode the agents performance is judged by the discrim-
inator and if the discriminator can not guess correctly if the agents episode
was a clone of the demo or a attempt of mimicking the demo behaviour,
then the agent gets it reward and learns, resulting in the agent only learning
when it figures out a new unique way to mimic the demo without being to
similar.

Figure 5: In engine view of scene set up for mass training.

To ensure a relatively rapid progression of the training, the usage of multiple
agent instances can be used, letting several agents train at the same time, all
contributing to the same model. As 3D navigation based on random envi-
ronments is a complex task it is a given to use multiple instances of the train-
ing environment to archive tangible results in a meaningful time. Though
in our construction where the agent utilizes ray perception to a large de-
gree, a lot of processing power is needed so a middle ground between the
amount of agents and needed computing power has been struck. A total
of six agents train at the same time, giving the model many times over the
training it needs to progress while not pushing the computer and the GPU
over their limits. See figure 5 for a screenshot of the mass training scene.

4.2 Navmesh counterpart
In the project navmesh agent and its respective scene acts as the counter-
part to the ML-Agent driven scene. The navmesh agent works in a similar
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fashion as the ML-Agent that it is bound by a 2D plane, can move, break
and turn. Though instead of analyzing its environment it operates along a
navigation mesh generated from the two dimensional plane acting as the
ground in the scene.

Figure 6: In editor visualisation of generated navigation mesh.

Above in figure 6 the generated navigation mesh can be seen as a blue plane
with the polygon edges drawn as dark lines. This is the plane which the
navmesh agent can walk along. Thanks to inbuilt tools, Unity offers the
possibility to define spaces that are not walkable, such as walls or other ob-
stacles, these can have the "carve" attribute, meaning that they dynamically
remove form the navmesh areas where the object and the navmesh inter-
sect. This is seen in figure 6 as the walls have a gap between them and
the generated navmesh, showing that the walls have dynamically created
a non-walkable area around them, hindering agents from walking through
them.

The navmesh agent operates on the simple logic of having the players cur-
rent position assigned as their target location, meaning they use the built-in
navigation mesh library in unity to move themselves along the generated
navigation mesh toward the player. If they collide with the player they re-
duce the player’s health by one and delete themselves from the scene.

4.3 Player Controller
Contradictory to the agents movement script, the player will be using the
standard Unity CharacterController component, meaning a reading of the
keyboard input along the horizontal and vertical axis will be fed into the
standard move function of the CharacterController component. This accom-
panied with a custom MouseLook script enables the player to look around via
moving their mouse. This script also handles inputs from the mouse which
allows the player to fire a projectile with a limited rate of fire, with the in-
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tention of fending off the NPCs, as the projectile upon collision destroys the
NPCs. The two scripts allow the player to move Forward/Backwards and
Left/Right relatively in combination with free-look functionality.
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5 Results
The overall result of the study is an insight in how players perceive some
simple yet decisive difference in design of enemies in video games. Com-
paring questionnaire results gives insight in how they judge and perceive
the two types of enemies.

This along with ground work having been done on understanding the chal-
lenges in training machine learning in an interactive 3D environment has
resulted in knowledge and possible future works which will be discussed
in following chapters.

Figure 7: Screenshot of a test session.

Seen above in figure 7 a screenshot of the test game running can be seen.
Here the player is looking at two enemies homing in on the player position,
a red sphere is seen which is a shot recently fired by the player. Information
such as the player’s score, time left and the controls are visible so the player
does not have to remember this and feels in control of the situation.

5.1 ML-Agent Design
The machine learning agent designed as a part of this study is rather simple
given the complex nature of interactive video games. This leaves much to
be desired when it comes to the agent’s behaviour given the time it takes to
train a somewhat decently performing model.

The agent has also proven to perform irregularly under testing due to the
unpredictable nature of player movement. Many of the players move con-
stantly and unpredictably, causing the machine learning agent to either act
randomly or freeze up. This can be attributed to the agents being trained to
optimize a route from their start position to a random static target position,
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meaning if the players keep moving the agent can only rely on its trained
sense of using raycasts to home in on the player. Often the player moves
out of these raycast fans leaving the agent to try its best to apply the model
on a situation it is not prepared for.

5.1.1 ML-Agent Training Progress

Figure 8: Progress over time of machine learning model.

The training progress of the machine learning model went as expected once
the initial necessary factors in the training environment had been correctly
set up. The mean reward was steadily increasing, as can be seen in fig-
ure 8, until a new obstacle, factor or hindrance is introduced which causes
the mean reward to fall until the agent figures out how to handle the new
elements in the environment. In the early stages of training the agent man-
ages to maximise its reward to almost 1.4 which was the maximum amount
of reward value the agent could achieve in the training environment. The
maximum reward in each scene adds up to 1.4, 1 for reaching the target and
0.2 for each trigger sphere the agent passes which there are two of. This
adds up to 1.4 which is an arbitrarily chosen number, apart from it being
recommended by the documentation for the ML-Agents toolkit to start out
with a base max reward of 1 for the start of training and adding very small
numbers to a cumulative reward value. This would only last until elements
such as walls or a greater range of possible spawn locations of the target
were introduced. In the end the agent manages a mean reward of about 0.9,
which out of the maximum of 1.4 is sufficient for this study’s scope. When
observing the agent play against the stationary target it reliably moves to
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the target, avoids walls and doesn’t get stuck. What drags down the score is
that the agent has to search its environment for passages and after that nav-
igate, which it has trouble with due to not braking and turning sufficiently
to take some corners efficiently enough to raise its mean reward further.

5.2 Questionnaire Answers
With the machine learning model trained and paired with a navmesh coun-
terpart, the game was sent to willing participants who played the game and
answered a questionnaire. The answers provided by the participants along
with the statistics gathered from their play sessions gives us valuable insight
into their perception of the different kinds of enemies.

Overall the experience with video games of the participants are either av-
erage or high, along with most of them being experienced with first person
shooter games (FPS). This is good as they will most likely adapt quickly to
the game instead of being overwhelmed by the controls or concept of a FPS
game.

Figure 9: How challenging the enemies was to play against, "Easy" to "Dif-
ficult".

Looking at figure 9 we can see the answers regarding how challenging the
participants found the two sets of enemies. Overall it seems the two agent
types are of equal challenge, with the navmesh agent scoring just slightly
higher on average.
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Figure 10: How enjoyable the enemies was to play against, "Not at all" to
"Very".

This can be put in contrast with the figure 10 which shows how enjoyable
the different enemies were for the players to play against. A comparison of
the two graphs shows that even if they provided a somewhat equal chal-
lenge, the navmesh agent was less enjoyable to play against. Though the
machine learning based ones score was average, it still got a higher enjoy-
ment score than its navmesh counterpart.
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Figure 11: How interesting the enemies was to play against, "Not at all" to
"Very".

The final figure for the questionnaire answers, being figure 11 seen above,
relates to how interesting the players found the two enemy types. A similar
score is seen for both agent types here, which tells us more about the test
game itself rather than the enemy types.

Challenge Enjoyment Interest
Navigation mesh

Enemy 3.0769 2.5385 2.2308

Machine Learning
Enemy 2.6923 2.6923 2.3846

Table 1: Mean values of questionnaire questions.

Finally the questionnaire answers are summarised as mean values, which
can be seen in table 1 above. Looking at these values we can see subtle dif-
ferences between the perception of the two enemies, such as the difference
between mean challenge, as well as difference in mean enjoyment between
the two models.
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5.3 Player gameplay statistics

Figure 12: Score achieved during the played round plotted over the time the
players managed to stay alive.

Finally we map the gathered player statistics in regards to how much score
they gathered and how long they stayed alive. This can be seen above in
figure 12 where we can see, as hoped, two linear lines increasing as higher
scores were achieved. This tells us that the two types of enemies were simi-
lar in challenge.
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6 Analysis
Upon reviewing the results, several insights come to mind. Looking at the
figure 8 and comparing to the score of the ML-Agent given by the player, it
is noteworthy that even if the agent progresses in its training and manages
to achieve higher reward score as the training progresses, it seemed it gave
no greater impact on the player experience. This shows the difficulty of
training a machine learning model for complex tasks with many factors. It
might be easy to just train a machine learning model, but to train correctly
for the task it is to face or solve is very difficult. One must always iterate
back and look over what the machine learning model is being trained to do,
and if the training reflects the coming challenges.

Looking over the barcharts for the answers from the questionnaire, we see
a similarity with the challenge chart on figure 9 and the line graph of figure
12. Looking at these two figures we see that players rated the two types of
enemies as almost equally challenging, and the line graph confirms this. For
both enemy types enemies achieved a similar score in the same time, only
at the far end of the spectrum for score achieved was there some players
who managed to stay alive far longer. These values could be outliers or
the machine learning model was easier to handle in the long run due to the
faulty behavior of the model, such as getting stuck on walls or "giving up"
when the trained model could no longer be applied to the given situation.

Looking over figure 11 regarding how interesting the player perceived the
enemies, the overall score is on the low end of the scale. This can lead to
discussion about how to actually test these kinds of fundamental changes
in a game. Is the enemies not interesting due to the bland and simple de-
sign of the game, which lacks immersion factors such as complex 3D mod-
els, music and a compelling environment. Or was the game too simple?
Would a larger, more complex game have been more interesting? If so, how
large does a study of this type have to be in scope to train a sufficiently
advanced testing model for the machine learning agent such that it can pro-
vide a meaningful challenge and still be simple enough that we can analyze
and control the different factors of the test?

Calculating the mean of the questionnaire answers gives another perspec-
tive on the difference. Looking at the mean values, found in table 1 found
in chapter 5.2, one can see that the difference is not as large as it may ap-
peared by just looking at the barcharts. Some differences to note though
is that the challenge is about 0.3 higher for the navmesh agent, which can
probably be attributed to the two fives given in challenge by the players to
the navmesh agent, meaning the mean value is shifted higher. These fives
can be assumed to be averaged out if the test had a larger sample size of test
players. Still noteworthy.
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Also one can see slightly higher scores overall for the machine learning en-
emy compared to the navmesh enemy in both areas of enjoyment and inter-
est, which gives merit to the studies research question if there is a future for
machine learning models as enemies in future games.
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7 Conclusion
After comparing the answers from the questionnaire along with looking at
achieved scores from players and taking into account the free form replies,
a series of conclusions can be drawn regarding machine learning models in
games and the process of which to get them to work.

Overall players seemed to prefer the ML-Trained Agent compared to the
navmesh, due to its more varied and interesting behaviour. Feedback from
test players suggest that even if the ML-Agent was unpredictable, some-
times providing an entertaining and good challenge, it was also at times
lackluster and merely got lost or freezed. This lackluster behavior can be
attributed to the machine learning model not having been trained against
moving targets, resulting in that the common practice of the players to strafe
around the arena when playing caused the agents to glitch out due to their
model not being trained for a moving target that avoids them. One can
imagine that this is both the weakness and strength of the ML-Agent, with
incorrect or too little training it can’t act according to the situation and there-
fore does not fulfil its objective reliably. But if trained enough and correctly
it acts more interestingly, in ways that normal NPCs either can’t or need a
lot of programming to even come close to mimicking.

Either way the scope of the study enabled the training of a machine learn-
ing model which put up a statistically comparative challenge for the player,
but in edge cases it either behaved unfairly or did not even try to defeat
the player, resulting in what can be assumed to be weighted mean value
for challenge score. These models achieved the intended goal to see if there
was a difference in how the player perceived a more traditional NPC com-
pared to a trained machine learning model driven one. There seemed to
be a higher level of interest and enjoyment in playing against the machine
learning trained one indicating that there is possibly a future for smarter
enemies in video games. This was achieved while at the same time assur-
ing that the challenge presented by the enemies was equal and fair. This
could be done via both asking the players how they perceived the challenge
put up by the two enemies, which showed an equal perceived challenge by
both enemies. But also plotting player performance showed similar trends
in player performance indicating that the enemies were of equal challenge.

To be able to use machine learning in games it needs to be applied in envi-
ronments where it can be trained via reinforcement learning where rewards
can be given in a controlled manner, fostering a desired behaviour before in-
troducing annoyances and disturbance, perfecting the model. Certain gen-
res seem more suited for adapting machine learning for the NPCs, such as
racing games or 2D platforming games, as they have a limited amount of
factors to consider or the conditions remain local and assessable.
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Still this study proves that machine learning can be used in video games in
the future to provide more interesting behaviours from NPCs, even if they
were simple and sometimes faulty, the enemies in our study still managed
to challenge the players while giving an enjoyable gaming session in some
sense.

7.1 Ethical aspects
Before implementing and training a machine learning model to use in their
game, one should consider how this machine learning model will learn to
play and what it will use to improve over time. It might be fair to train
a machine learning model against a base set of scenarios so it performs
those optimally, but one of the interesting aspects of machine learning is
that the machine learning model should improve over time or throughout
a play-through of a game. This raises the questions if the machine learning
model should be trained individually or collectively. It might be tempting
to train the model against all players who play the game as a summarised
model. This might yield a more complex and smarter enemy over time, but
it might also present an unfair model towards players with less experience
with games or with players with disabilities. If the model is trained against a
majority of players who have no disabilities and a lot of gaming experience,
the models might become unfair and outright punishing to play against for
minorities with less experience or disabilities.

So it is of great importance to consider what one’s targeted and potential
player group is. How the machine learning model will learn from these and
how the model will be employed. In more multiplayer oriented or compet-
itive experiences it might be best to train a collective model so that all face
a similar enemy, while in single-player games individual training might be
preferred as the model adjusts according to each player’s needs and capa-
bilities. One should also do some research on how they can limit the ma-
chine learning model so it does not optimize the problem of outsmarting
the player. It might be fun to have enemies who adapt overtime and learn
new tactics, but if they learn unfair tactics to outplay the player by the end
of the game, the game will not be enjoyable.

7.2 Future Work
For future work, it would be suitable to train adversarial models to achieve
a more dynamic relationship, where one model is trained in the role that
the player will take upon playing, meaning that the enemy model is more
suited in actually outsmarting and acting against the player. This can be
done in the Unity engine as several test examples already exist of small scale
adversarial play.
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Doom Competitions: Playing Doom from Pixels”. In: IEEE Transac-
tions on Games (2018).

[9] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics
engine for model-based control.” In: IROS. IEEE, 2012, pp. 5026–5033.
ISBN: 978-1-4673-1737-5. URL: http://dblp.uni-trier.de/db/conf/
iros/iros2012.html#TodorovET12.

[10] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, et al. Unity: A Gen-
eral Platform for Intelligent Agents. 2020. arXiv: 1809.02627 [cs.LG].

[11] Martin Abadi, Paul Barham, Jianmin Chen, et al. “TensorFlow: A sys-
tem for large-scale machine learning”. In: 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). 2016, pp. 265–
283. URL: https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf.

[12] Adam Paszke, Sam Gross, Francisco Massa, et al. PyTorch: An Imper-
ative Style, High-Performance Deep Learning Library. 2019. arXiv: 1912.
01703 [cs.LG].

29

https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/StateMachine.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/StateMachine.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/StateMachine.html
http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20294
http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20294
https://gameprogrammingpatterns.com/state.html
https://gameprogrammingpatterns.com/state.html
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
https://arxiv.org/abs/1809.02627
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703


Machine Learning Adversaries in Video Games
Tim Nämerforslund 2021–06–24

[13] Benjamin Geisler. “An Empirical Study of Machine Learning Algo-
rithms Applied to Modeling Player Behavior in a" First Person Shooter"
Video Game”. PhD thesis. Citeseer, 2002.

[14] Niels Justesen, Philip Bontrager, Julian Togelius, et al. “Deep learning
for video game playing”. In: IEEE Transactions on Games 12.1 (2019),
pp. 1–20.

[15] Kenneth O Stanley, Bobby D Bryant, Igor Karpov, et al. “Real-time
evolution of neural networks in the NERO video game”. In: AAAI.
Vol. 6. 2006, pp. 1671–1674.

30


	Abstract
	Sammanfattning
	Acknowledgements
	Terminology
	Introduction
	Background and problem motivation
	Overall aim
	Scope
	Concrete and verifiable goals
	Outline

	Theory
	The Unity game engine
	Unity ML-Agents Toolkit

	Machine learning in video games
	Game scenes
	Training scene

	Navigation mesh

	Method
	Game Construction
	Game Scenes
	Machine Learning Agent
	Navigation Mesh Agent

	Data collection and questionnaire
	Training Monitoring

	Construction
	ML-Agent design
	Training

	Navmesh counterpart
	Player Controller

	Results
	ML-Agent Design
	ML-Agent Training Progress

	Questionnaire Answers
	Player gameplay statistics

	Analysis
	Conclusion
	Ethical aspects
	Future Work

	References

