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Abstract

In this paper we will explore Rabin’s cryptosystem, one of the cryptographic
algorithm that is similar to RSA developed by Michael O. Rabin based on the
quadratic residue problem. We will introduce the background theory, the scheme and
the security of Rabin and a basic padding scheme to use for Rabin’s system. Also,
there is another exploration of picking different type of primes and an algorithm
to solve the quadratic residue problem when the prime p 6≡ 3 (mod 4) and the
experiment to measure the performance of that algorithm.

Acknowledgements

I would like to express our gratitude to my supervisor Dr. Per Anders Svensson
for his guidance throughout the making of this thesis. Thanks to his extraordinary
knowledge passed to me along the process, I have learned a lot more interesting
topics in the field of Cryptography. It is simply not possible for me without his
advice. I also want to thank my mother, sister and high school teacher for providing
me with emotional and psychological support. It has been a very long and stressful
process for me and thank you everyone for supporting me along the way.

2



Contents

1 Introduction 4

2 History 4

3 Basic Number Theory 5

4 Rabin’s Scheme 8
4.1 Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.1 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.1 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Problems 15
5.1 Uniqueness of Ciphertext . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.1 Message and Key size . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Four Different Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3 The Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 Malleable attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Other choice of primes 21
6.1 Tonelli-Shanks Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Proof of Tonelli-Shanks algorithm . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 The Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Discussion 28

8 Appendix 30
8.1 Mathematica code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.2 Textbook Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.3 Padding test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.4 Tonelli-Shanks algorithm . . . . . . . . . . . . . . . . . . . . . . . 32
8.1.5 Tonelli-Shanks Theoretical Test . . . . . . . . . . . . . . . . . . . . 34
8.1.6 Tonelli-Shanks Practical Test . . . . . . . . . . . . . . . . . . . . . 34

3



1 Introduction

Rabin’s cryptosystem is an asymmetric cryptographic algorithm which, similar to RSA,
relies on the difficulty of integer factorization for its security. There is currently belief
that integer factorization is a hard problem since it is unsolved in the domain of computer
science. Unlike RSA, the equivalence of breaking Rabin scheme and integer factorization
has been proven, while there is no such proof for the other system [11, p. 292]. As the
dominance of RSA grows, one wonders why a mathematically provably secure algorithm
is not always the market choice, whereas the “good enough” solution can have massive
influence over the modern society, not to mention that it is more of a belief rather than
solid proof. With that being said, in this paper, we shall explore the history, theory, and
description of the Rabin’s cryptosystem.

2 History

Throughout the history of hiding the message, most of the cryptosystems before 1970 are
based on shared secrets, that is the sender and receiver need to establish identical keys.
If one of the party somehow lost the key and someone found it, their communication is no
longer private, i.e. the adversary can easily eavesdropping to their conversation without
the hardship of decoding the message. However, the art of keeping the secrets did not
stop just by sending nonsensical numbers and letters. People also trying to hide it by
talking in a different languages, using code words which are shared between small groups
and even steganography, which is concealing the messages via special way of writing.

Up until 1970, most cryptosystems are based on symmetric algorithm. That is, in
order to decrypt the ciphertext, both sender and receiver have to share the identical
key, which is used for both encryption and decryption, hence the name. However, the
research for a modern way of encryption is really needed. In 1976, Whitfield Diffie and
Martin Hellman introduced the concept of asymmetric key cryptosystem. This later
became known as Diffie-Hellman key exchange, although it is not exactly an encryption
scheme. In 1977, just one year after, three computer scientists at MIT named Ron Rivest,
Adi Shamir and Leonard Adleman invented a scheme and later published their work in
1978. Their algorithm is later known as RSA from their initials. This scheme uses the
product of the modulo exponentiation of two large primes to encrypt and decrypt. The
encryption and decryption processes use different keys and its difficulty is at best as hard
as factoring large integers.

Rabin’s cryptosystem was first introduced in 1979 by Michael O. Rabin, just one
year after the publication of RSA. This paper was published in the MIT Laboratory for
Computer Science. Interestingly enough, the publication of RSA also happened at MIT.
It is no wonder why there are so much similarity between these two cryptosystems in
term of inner working, description and sometimes the weaknesses as they might share.
However, the popularity of one does not imply of the other. Nowadays there are more
cryptographic schemes which are different class than both RSA and Rabin. People
nowadays consider newer schemes based on elliptic curves and some other which does
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not relies on the integer factorization, which is the basis for both RSA and Rabin.

3 Basic Number Theory

Before the introduction of Rabin’s cryptosystem, one needs to grasp some concepts of
number theory. This is the study of numbers, specifically, the study of integers, which
based itself on the set Z.

At first glance it is tempting to think that there are only four basic operations that
one learned from elementary school which are addition, subtraction, multiplication and
division. However, division is a dangerous operation since not all result from the divisions,
even between two integers, are integer. For example, 1

2 is not an integer. So is there a way
to perform division on the set of integers? The answer comes from the Ancient Greek,
from Euclid’s time. It is called the division algorithm (or Euclidean division).

Theorem 1 (Division Algorithm (Euclidean Division) [18, p. 37]). Given that a, b ∈
Z, b > 0, the division algorithm states that there are unique q, r ∈ Z such that a = bq+r,
where 0 ≤ r < b.

Surprisingly, division algorithm is a theorem rather than just a definition, meaning
there needs to be a proof before one can use it. Prior to proving this theorem, there is
one important axiom that one needs to know.

The Well-ordering Principle [18, p. 6] Every non-empty set S of the positive
integers has the least element.

According to Kenneth H. Rosen written in his book Elementary Number Theory,
this well-ordering principle is obvious yet important [18, p. 6]. It is easy enough to
see this principle in practice by taking a finite subset from Z and sort its elements in
order. Consider A = {6, 8, 4, 2, 0}, we can sort the set elements as A = {0, 2, 4, 6, 8} and
the least element of this set is 0. This well-ordering property of the non-empty positive
integer set allows us to prove the division algorithm.

Proof. This proof is inspired by the book [18, p. 38].

Part 1 (The existence of q and r). Consider the set S of all integers in the form of a− bk
where k is an integer. We have

S = {a− bk | k ∈ Z}.

Let T be the set of all non-negative integers in S. We know that T 6= ∅ since a−bk > 0
when k < a/b.

By the well-ordering property, T has the least non-negative element, let it be r = a−bq.

Part 2 (0 ≤ r < b). If r ≥ b then

r > r − b = a− bq − b = a− b(q + 1) ≥ 0

which contradicts our choice of r = a− bq be the least non-negative integer in the form
of a− bk.
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Part 3 (q and r are unique). Assume that we have two equations a = bq1 + r1 and
a = bq2 + r2. That means bq1 + r1 = bq2 + r2. By some algebraic techniques, we will have
b(q1 − q2) = r2 − r1. That means b divides r2 − r1.

Since 0 ≤ r1 < b and 0 ≤ r2 < b, that gives −b < r2− r1 < b. Hence, b divides r2− r1
if and only if r2 − r1 = 0, or r2 = r1.

Since b 6= 0, that gives the equation b(q1 − q2) = 0 having the solution if and only if
q1 − q2 = 0, or q1 = q2.

Definition 1 (Divisibility). Let a and b be integers, b 6= 0. We say that a is divisible by
b, or b divides a, denote b | a if there exists q ∈ Z such that a = bq.

Example 1. We have 2 | 4 since 4 = 2 · 2 + 0.

Definition 2 (Modular arithmetic [18, p. 145]). Let b be a positive integer. If a and r
are integers, we say that a is congruent to r modulo b if b | (a− r).

Modular arithmetic is sometimes called clock arithmetic due to their similarity
between this operation and counting hour since the number wrap around a circle, in this
context, the clock.

Theorem 2 (Properties of modular arithmetic [18, p. 147]). For all a, b, c, k, n ∈ Z,
we have the following:

1. Reflexivity: a ≡ a (mod n).

2. Symmetry: a ≡ b (mod n) ⇐⇒ b ≡ a (mod n).

3. Transitivity: If a ≡ c (mod n) and c ≡ b (mod n) then a ≡ b (mod n).

From theorem 2, we see that both a and r are equivalent (the same element) of the
set congruence class modulo b, usually denoted Zb from the algebraic context.

The main idea of proving such is to revert this equivalent relation, i.e. if a ≡ b
(mod n) then there exists q ∈ Z such that a = nq + b or n | a − b. This idea carries
throughout the study of number theory and is also used to prove many theorems later in
this thesis.

Aside from these basic properties of an equivalent relation, modular arithmetic also
has these properties:

1. Addition and Subtraction: a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d
(mod n) and a− c ≡ b− d (mod n).

2. With constant: If k ∈ Z and a ≡ b (mod n), then k + a ≡ k + b (mod n) and
ka ≡ kb (mod n).

3. Multiplication: If a ≡ b (mod n) and c ≡ d (mod n) then ac ≡ bd (mod n).

Example 2. We have that 4 = 2 · 2 + 0 therefore 4 ≡ 0 (mod 2).
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4 and 0 are so-called congruent to each other since they belong to the same equivalence
class in Z, namely 0̄, or all integers that gives remainder 0 when divided by 2.

Definition 3 (Coprime integers). Suppose two integers a and b are coprime (relatively
prime) then gcd(a, b) = 1.

The concept of coprime integers stems from the idea of prime numbers. They are the
building blocks of integers, only having two factors, 1 and itself. Coprime is an extension
of that concept, if two numbers have no common factors other than 1, then from the
perspective of integers, they are relatively prime to each other.

With that being said, we can use this view to define the modular inverses.

Definition 4 (Modular multiplicative inverse). Let a and n be integers where n 6= 0.
We say that b is a multiplcative inverse of a modulo n if ab ≡ 1 (mod n)

If a modular multiplicative inverse of an integer exists then it will be unique, see
Theorem 4. This applies to all integers. Finding such inverse can be done using extended
Euclidean algorithm.1

Theorem 3 (Existence of modular multiplicative inverse). An integer a has a multiplica-
tive inverse modulo n if and only if gcd(a, n) = 1.

Proof.

Part 1. Assume that a has a multiplicative inverse. Then there exists b such that ab ≡ 1
(mod n). That means ab − 1 = nk for some k ∈ Z. Rearrange the equation, we have
ab− nk = 1. This is the linear Diophantine equation and only has the integer solutions
if and only if there exists c ∈ Z such that c | gcd(a, n). In other words, gcd(a, n) = 1.

Part 2. Assume that gcd(a, n) = 1. Then the equation ab − kn = 1 will have integer
solutions for some b, k ∈ Z. That means ab − 1 = kn. By the property of modular
arithmetic, ab ≡ 1 (mod n) which implies that b is the multiplicative inverse of a with
respect to modulus n.

Theorem 4 (Uniqueness of multiplicative modular inverse). Let b be multiplicative
inverse modulo n of a. Then b is unique.

Proof. From the previous theorem, we know that gcd(a, n) = 1. Let b and c be the
inverses of a. We have ab ≡ ac ≡ 1 (mod n). By the property of modular arithmetic,
n | a(b− c), which means n | (b− c) if and only if b ≡ c (mod n).

Theorem 5 (Fermat’s Little Theorem). Let p be a prime and a be an integer. Then

ap ≡ a (mod p).

There are many proofs of Fermat’s little theorem, including one using Wilson’s
theorem [18, p. 216], which will be discussed later. However, this proof will use binomial
theorem instead.

1See [18, p. 108-109] the proof of extended Euclidean algorithm.
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Proof. This proof is inspired by the wiki [4].
We will use the technique of induction.
Base case: 12 ≡ 1 (mod 2).
Assume that ap ≡ a (mod p) for a = n. Then by the Binomial Theorem, we have

(n + 1)p = np +

(
p

1

)
np−1 +

(
p

2

)
np−2 + · · ·+

(
p

p− 1

)
n + 1.

We know that
(
p
k

)
= p!

k!(p−k)! for 1 ≤ k ≤ p− 1. Furthermore, since p is a prime, it is

obvious that p - k! and p - (p− k)!, and
(
p
k

)
is always positive integers in our case. That

means
(
p
k

)
contains the factor of p. In other words p |

(
p
k

)
. Taking the modulo for (n+1)p,

we see that most of the terms disappear since
(
p
k

)
np−k ≡ 0 (mod p). That leaves us

(n + 1)p ≡ np + 1 (mod p).

The induction hypothesis says that np ≡ n (mod p). Substituting into the equation,
we get (n + 1)p ≡ n + 1 (mod p).

4 Rabin’s Scheme

With those background theory, we begin with the introduction to Rabin’s cryptosystem.
First, let us start with the key generation, since every encryption scheme, modern or
classic, starts with a secret password.

4.1 Key Generation

For simplicity we choose a pair of primes p and q such that p, q ≡ 3 (mod 4). In
Rabin’s original paper, this way of choosing primes makes the decryption process more
straightforward [17, p. 7].

Step 1: Pick a pair of prime p and q such that p, q ≡ 3 (mod 4).
Step 2: Let n = pq, that shall be our public key.
In order for the public key to be secure enough, we need to pick two prime p and q such

that they are large and chosen in such a way that it prevents the use of some factorization
methods (such as Fermat’s factorization method [18, p. 130-134] or Pollard p− 1 method
[19, p. 317], as these methods were first introduced for students in cryptography and
number theory) and far enough from each other, otherwise the attacker would be able to
obtain the private key by factorizing it, thwarting our secure communication scheme.

4.2 Encryption

4.2.1 Background Theory

Definition 5 (Quadratic residue). Let a and n be an integer. If there exists x such that

x2 ≡ a (mod n).

then a is called the quadratic residue modulo n. Otherwise a is quadratic non-
residue modulo n.
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4.2.2 Algorithm

Suppose we would like to encrypt m to generate the cipher text c. Pick 0 ≤ m < n and
compute

m2 ≡ c (mod n).

Example 3. Alice wants to send Bob her favorite number. She knows that if she sends it
in plaintext, the attacker would easily obtain it. Let us assume that her favorite number
is 69 which she will send to Bob.

Bob picks two random primes, let us say 59 and 79 which he multiplies and obtains
4661 and sends it to Alice as his public key. Alice then takes her favorite number, squares
it and takes the modulo with regard to Bob’s public key. We have 692 = 4761 ≡ 100
(mod 4661).

She then sends 100 as the ciphertext to Bob. Of course, we assume that Eve also
obtains 100 and 4661 as those two exchange the conversation over a public channel and
Eve cannot factorize 4661, which makes this conversation “private.”

4.3 Decryption

In order to decrypt Rabin’s cryptosystem, we need to compute the square root residue of
c, namely x2 = c (mod n). Given the choice of n is large enough, it is extremely hard to
solve such equation if one does not know the factorization of n.

4.3.1 Background Theory

As always, there are some background theories that are attached to every part before the
main description of Rabin’s scheme.

Theorem 6 (Chinese Remainder Theorem (CRT) [18, p. 162]). Let n1, n2, . . . , nk be
positive pairwise relative primes. Let a1, a2, . . . , ak be arbitrary integers. Then the
system 

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...

x ≡ ak (mod nk)

has a unique solution modulo N = n1n2 · · ·nk.

Proof. This proof is inspired by the book [18, p. 162-163] and the video [12].

Part 1 (Existence). Let N = n1n2 . . . nk and Ni = N/ni for each i = 1, 2, . . . , k.
Basically, N be the product of all modulo and Ni be the product of all modulo except ni

for 1 ≤ i ≤ k.
First, we show that gcd (ni, Ni) = 1. Suppose there exists d ∈ Z such that d | ni and

d | Ni. Now, let 1 ≤ j ≤ k but j 6= i. Since all of the modulo are relatively prime, that
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means d | nj ⇒ d | gcd(ni, nj). But since ni and nj are relatively prime as well, that
means gcd(ni, nj) = 1.

Next we will establish the solution. Since gcd(ni, Ni) = 1, there exists a modular
multiplicative inverse of Ni modulo ni. Let xi be an integer such that Nixi ≡ 1 (mod ni).

Also we have Nixi ≡ 0 (mod nj) for j 6= i. Again, this is possible since Ni consists
all the factors of N but ni so nj is one of the factors that Ni contains.

We claim that

x = x1N1a1 + x2N2a2 + · · ·+ xkNkak (1)

is our solution. Applying the modulo ni for 1 ≤ i ≤ k to (1), we see that all other terms
except xiNiai are congruent to 0.

Therefore x ≡ 0 + 0 + · · ·+xiNiai + · · ·+ 0 (mod ni). Since xiNi ≡ 1 (mod ni), that
leaves us x ≡ ai (mod ni) for 1 ≤ i ≤ k. Without loss of generality, this extends to all
equations in our system.

Now we have found the solution, we have to prove its uniqueness. The strategy
is based on the property of modular arithmetic. If x ≡ y (mod N) and x, y are the
solutions, then they belong to the same equivalent class, or in our context, the same
solution.

Part 2 (Uniqueness). Let x, y be solutions. That means x ≡ ai (mod ni) and y ≡ ai
(mod ni). By the modular arithmetic property x−y ≡ ai−ai ≡ 0 (mod n). By definition,
that means ni | x− y. Since N = n1n2 . . . ni . . . nk, which means that N is a composite
number consists of all factors, which also includes ni, then N | x− y.

In conclusion x ≡ y (mod N).

The theorem is thereby proven.

Lemma 1 (Quadratic residue equation [18, p. 416]). Let p be an odd prime and a an
integer that does not divide p. Then the equation

x2 ≡ a (mod p)

has either two incongruent solutions or no solutions modulo p.

Proof. This proof is inspired by the book [18, p. 416].
Assume that x2 ≡ a (mod p) has a solution x = x0. Then x20 ≡ a (mod p) and

(−x0)2 = x20 ≡ a (mod p), which is two of our solutions. Note that x0 6≡ −x0 (mod p)
since if x0 ≡ −x0 (mod n) then by the property of modular arithmetic, we have x0 −
(−x0) = 2x0 will divide p. As p is an odd prime, this is simply impossible. Note that
p - x0 as well.

Let another solution be x = x1 such that x1 6≡ ±x0 (mod p), that is x1 is another
solution to the equation than x0 and −x0. Then we have x20 ≡ a (mod n) and x21 ≡ a
(mod n). By the property of modular arithmetic, x20−x21 = (x0−x1)(x0+x1) ≡ a−a = 0
(mod p). This means p | x0 − x1 or p | x0 + x1, which translates to x0 ≡ x1 (mod p) or
x0 ≡ −x1 (mod n).

In conclusion, there are exactly two incongruent solutions, or no solution at all.
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Lemma 2 ([21, p. 91]). Let p be a prime and a2 ≡ 1 (mod p). Then a ≡ ±1 (mod p).

Proof. This is trivial since p | a2 − 1 = (a− 1)(a + 1), either p | a− 1 which means a ≡ 1
(mod p), or p | a + 1 which means a ≡ −1 (mod p).

Theorem 7 (Wilson’s Theorem [18, p. 217]). If p is prime then (p− 1)! ≡ −1 (mod p).

Proof. This proof is inspired by the book [18, p. 218].
Consider (p− 1)! = 1 · (2 · 3 · · · · · · · (p− 2)) · (p− 1). Since p is prime, by Theorem

3 and 4, there exists a unique inverse a−1 of a for each integer a with 1 ≤ a ≤ p − 1.
By Lemma 2, we have 1−1 ≡ 1 (mod p) and (p − 1)−1 ≡ p − 1 (mod p) and these are
the only elements the equal their own inverses. That means we can group the integers
from 2 to p− 2 into (p− 3)/2 pairs such that the product of the element in each pair is
congruent to 1 (mod p), or in another way

2 · 3 · · · · · (p− 3) · (p− 2) ≡ (2 · 2−1) · (3 · 3−1) · · · ≡ 1 · 1 · · · · · 1 · 1 (mod p).

Then (p− 1)! ≡ 1(p− 1) ≡ p− 1 ≡ −1 (mod p).

Definition 6 (Legendre Symbol [18, p. 417]). Let p be an odd prime and a be an integer
that is not divisible by p. The Legendre symbol is defined as(

a

p

)
=

{
1 if a is quadratic residue modulo p

−1 if a is quadratic non-residue modulo p.

Theorem 8 (Euler’s criterion [18, p. 418]). Let p be an odd prime and a be an integer
that is not divisible by p. Then(

a

p

)
≡ a(p−1)/2 (mod p).

Proof. This proof is inspired by the book [18, p. 428], the wiki [3] and the video [13].
Consider that ap−1 (mod p), by Fermat’s Little Theorem, we have

ap ≡ a (mod p)

⇐⇒ ap−1 ≡ 1 (mod p)

⇐⇒ ap−1 − 1 ≡ 0 (mod p)

⇐⇒
(
a(p−1)/2 − 1

)(
a(p−1)/2 + 1

)
≡ 0 (mod p)

⇐⇒ a(p−1)/2 ≡ 1 (mod p) or a(p−1)/2 ≡ −1 (mod p). (2)

If a is quadratic residue modulo p then there exists b such that a ≡ b2 (mod p).
Substitute b into a we have

a(p−1)/2 ≡
(
b2
)(p−1)/2

(mod p)

≡ bp−1 (mod p) (simplify the exponent)

≡ 1 (mod p) (Fermat’s Little Theorem).
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If a is quadratic non-residue modulo p, that means a 6≡ b2 (mod p). Since p is prime,
that means the congruence bx ≡ a (mod p) has a unique solution, namely x ≡ b−1a
(mod p). We also know that x 6≡ b (mod p) because that would give us b2 ≡ a (mod p),
which is a contradiction.

For each 1 ≤ i ≤ p− 1, we can group into (p− 1)/2 pairs such that each pair gives
ij ≡ a (mod p) where i 6= j. Similar to the proof of Wilson’s Theorem, we have

a · a · · · · · a · a ≡ a(p−1)/2 ≡ 1 · 2 · · · · · (p− 1) ≡ (p− 1)! (mod p)

and by Wilson’s Theorem, (p− 1)! ≡ −1 (mod p) so a(p−1)/2 ≡ −1 (mod p) in this case.
Rewrite the proof in term of Legendre symbol, we conclude that

a(p−1)/2 ≡
(
a

p

)
(mod p) =

{
1 if a is quadratic residue modulo p

−1 if a is quadratic non-residue modulo p.

Remark 1. Fermat’s Little Theorem has been mentioned and used a lot during the
proof of Euler’s Criterion showing the importance of Fermat’s Little Theorem in the field
of number theory. It also appears in abstract algebra and other fields of mathematics.

4.3.2 Algorithm

The inversion (decryption) algorithm is given in Rabin’s original paper [17, p. 6-9] and
the two books by Galbraith [7, p. 492] and Menezes et al [11, p. 292].

In order to decrypt the ciphertext, we have to find four values of the quadratic residue
modulo n. Since n has two factors p and q, the equations m2 ≡ c (mod n) will have four
solutions. In order to find each of them, we need to find the solutions for the system{

m2 ≡ c (mod p)

m2 ≡ c (mod q).

Given by section 4.2.2 there exists a solution m0 for the equation m2 ≡ c (mod n).
That implies {

m2
0 ≡ c (mod p)

m2
0 ≡ c (mod q).

By lemma 1 we know that for modulo p there exist two incongruent solutions for the first
equation. Similarly, there are two incongruent solutions for the second equation modulo
q. By CRT we can recombine these into four solutions modulo n.

Using CRT, we need to find particular solution of each factor, namely, m ≡ mp

(mod p) and m ≡ mq (mod q).
Since p, q ≡ 3 (mod 4), compute the square root of c modulo p and q using the

formula {
mp ≡ c(p+1)/4 (mod p)

mq ≡ c(q+1)/4 (mod q).

12



The proof of this formula is in Rosen’s book [18, p. 423-424]. We only prove it for
mp, similar arguments can be used for mq.

Recall that c(p−1)/2 ≡ 1 (mod p) by the Euler’s criterion. We will prove that c(p+1)/4

is indeed particular solution to m2 ≡ c (mod n). This follows from

(c(p+1)/4)2 = c(p+1)/2 = cp/2+1/2 = c(p/2−1/2)+1 = c(p−1)/2 · c ≡ 1 · c = c (mod p).

Similar computation can be done for (c(q+1)/4)2 ≡ c (mod q).
If p or q 6≡ 3 (mod 4), we can some modular square root algorithms to search for

these square roots, which will be discussed below.
We have successfully extracted two square roots modulo p and q. Now, in order

to solve the system, or solve this equation m2 ≡ c (mod n), somehow combine these
solutions in order to have four possible candidates. Note that if x0 is the solution to
m2 ≡ c (mod n) then one other solution will be −x0 (mod n), or simply n−x0 (mod n).

We continue with the decryption algorithm. First, use the extended Euclidean
algorithm to find yp and yq such that yp · p + yq · q = 1.

Then, use the formula given by CRT to find four square roots of c modulo n
m1 ≡ yp · p ·mq + yq · q ·mp (mod n)

m2 ≡ n−m1 (mod n)

m3 ≡ yp · p ·mq − yq · q ·mp (mod n)

m4 ≡ n−m3 (mod n).

After that, one of the four candidates will be the message. It is usually decided by extra
data such as padding, headers and other attached information.

Example 4. Bob has received Alice’s message c ≡ 100 (mod 4661). He knows the
factorization of his secret key, which is 4661 = 59 · 79. Let p = 59 and q = 79 in this case.
Now, he starts to compute the following

mp = 100(59+1)/4 = 10060/4 = 10015 ≡ 49 (mod 59)

mq = 100(79+1)/4 = 10080/4 = 10020 ≡ 10 (mod 79).

Then finding yp and yq using extended Euclidean algorithm:

79 = 59− 20

59 = 20 · 2 + 19

20 = 19 + 1

1 = 20− 19

= 20− 59 + 20 · 2
= 59− 20 · 3
= 59− 79 · 3 + 59 · 3
= 59 · 4 + 79 · (−3)

13



so yp = 4 and yq = −3.
Then, using CRT

m1 = −4 · 59 · 10 + 3 · 79 · 10 ≡ 4592 (mod 4661)

m2 = 4661− 4692 ≡ 69 (mod 4661)

m3 = −4 · 59 · 10− 3 · 79 · 10 ≡ 10 (mod 4661)

m4 = 4661− 10 ≡ 4651 (mod 4661).

Now Bob have to use extra information that is sent by Alice in order to select which one is
her favorite number. There is no way that Bob would know it is either 10, 69, 4592, 4651
that is Alice’s original message since all of them squared give exactly 100 modulo 4661.
In that case, further instruction or information is needed.

4.4 Security

Rabin’s scheme has been proven to be secure, unlike RSA where no such proof exists
yet. According to Rabin, “breaking the RSA function is at most as hard as factorization,
but is not known to be equivalent to factorization [...]” [17, p. 1-2]. The original proof
of security is in his paper. The idea of his proof is that the inversion or brute-forcing
the message is harder, i.e. taking more steps or longer time to perform, than factoring a
number. This means breaking Rabin’s cryptosystem is equivalent to integer factorization.

Lemma 3 ([9, Lemma A.69, p. 428-429]). Let n = pq with p, q are distinct primes. Let
u, v be the quadratic residue modulo n with u 6≡ ±v (mod n). Then the prime factors of
n can be computed from u and v using Euclidean Algorithm.

Proof. The proof is inspired by the book [9, p. 429].
Since u and v are quadratic residue modulo n i.e. there exists a ∈ Z such that a2 ≡ u

(mod n) and a2 ≡ v (mod n). By the property of modular arithmetic, u2 − v2 ≡ 0
(mod n).

We have n = pq and
u 6≡ v (mod n) (given) ⇐⇒ pq - u− v

u 6≡ −v (mod n) (given) ⇐⇒ pq - u + v

u2 ≡ v2 (mod n) (quadratic residue of n) ⇐⇒ pq | (u− v)(u + v).

Notice that n = pq and p, q are distinct primes, which means that the factors of n
are 1, p, q, pq. Furthermore, gcd(u + v, n) 6= pq since pq - u + v and gcd(u + v, n) 6= 1
since that means gcd(u− v), n) = pq, which is not possible. Hence, the computation of
gcd(u + v, n) yields one factor of n.

Example 5. Now, let u = m1 and v = m3 in the decryption algorithm and example 4.
Now, m1 −m3 ≡ 2yq · q ·mp (mod n = pq). Which means that

gcd(u− v, n) = gcd(2yq · q ·mp, pq) = q

14



is one factor of n. Similarly, computing m1 + m3 yields the other factor of n.
Without loss of generality, this procedure can be extended for all four quadratic

residues modulo n.

Example 6. Let n = 4661 as in the decryption procedure and assume that we do not
know the factorization of n in this case. Let assume that we found two quadratic residue
of n: u = 69, v = 10 such that u2 ≡ v2 ≡ 692 ≡ 102 ≡ 100 (mod n). Computing

gcd(69− 10, 4661) = gcd(59, 4661) = 59

which will be one factor of n, and

gcd(69 + 10, 4661) = gcd(79, 4661) = 79

will be the other factor.

Lemma 3 implies that given the ability to find the square root modulo n, one can
factorize n. Conversely, the ability to factorize n yields the quadratic residue of n, as
described in the decryption procedure of Rabin’s cryptographic technique. [9, p. 428]
This means cracking Rabin’s scheme is equivalent to integer factorization, which means
the cryptosystem is provably secure. However, the same thing cannot be said for RSA
since there is no such proof exists for both factorization equivalency and no proof for
other possible ways to attack RSA.

5 Problems

5.1 Uniqueness of Ciphertext

The size of public key and the sending message also matters. Unlike RSA where different
keys generate different ciphertexts from the same message, using Rabin we only compute
m2 ≡ c (mod n) so sometimes one might compute the same ciphertext even with different
keys of n. This is bad news. These similar ciphertexts is a weak point to attack the
communication netowrk with bad Rabin implementations, especially with data harvesting
techniques to gain valuable information without decrypting the messages or requiring to
know the content of the conversations.

One might suggest that increasing the key size could potentially mitigate or even
protecting these mediocre implementations. This is not the whole picture. To understand
this, we shall introduce the relationship between message and key size in the context of
Rabin’s cryptosystem.

5.1.1 Message and Key size

Definition 7 (Small-sized message (SSM)). A small-sized message is m such that
m2 < n.

Example 7. Let m = 3, n = 21. Then c ≡ m2 (mod 21) ≡ 9 (mod 21).
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SSM allows one to significantly decrease the possibility of collision between text
since one could potentially filter the output by picking the smallest possible candidate.
However, SSM is intended for demonstration only. In reality, it sabotages Rabin’s scheme
by making it easier to compute the quadratic residue by simply computing the square
root without brute forcing. As shown in the example, Eve does not need to know the
factorization of n nor computing the quadratic residue of c, which is a hard problem.
If the encryption key is larger than the ciphertext, then Eve simply read the original
message by computing the squareroot of the ciphertext without even using CRT to
recover the other 3 outputs, which she can easily recognize since c is a perfect square.
We have m2 ≡ c (mod n). According to the rule of modular arithmetic, m2 = nq + c.
Since m2 < n, q = 0. Then m2 = c.

Definition 8 (Large-sized message (LSM)). A large-sized message is m such that m2 ≥ n.

Example 8. Let m = 9, n = 21. Then c ≡ m2 (mod 21) ≡ 18 (mod 21).

From the definition, the message is generally considered large-sized if it is large enough
relative to the key. In order to generate a LSM, one can pad the message until it fits the
key size, or one can reduce the key size if possible. However, both of these approaches
have their own advantages and disadvantages.

However, a message cannot be represented by an integer that exceeds n since ev-
erything is computed modulo n. Picking this makes the decryption impossible. Let us
demonstrate this with a simple example.

Example 9. Let m = 30, n = 21. Then c ≡ m2 (mod 21) ≡ 18 (mod 21). We have
30 ≡ 9 (mod 21). Computing the quadratic residue of 18 gives us four different results:
12, 9,−9,−12 (mod 21), and none of these gives the original message, which is 30. The
only clue we know is that the original message is in the residue class of 9 modulo 21.

We can generalize this result with a simple proof. Consider the message m2 = c > n.
Prior to the encryption routine, compute m ≡ m′ (mod p). Now, if m > n, we have
that m = qn + r, q > 1, therefore m 6= r. That means in the decryption routine, we get
c−1 ≡ r (mod n), and since r 6= m, we lose the original message.

This is why we only have SSM and LSM but not MSM (medium-sized message)
because that would make the our definition redundant.

5.2 Four Different Outputs

5.2.1 Problem

From what we have seen, solving the quadratic residue of the cipher text always gives
us four different unique outputs, and they are all valid when we perform the check
for quadratic residue, namely x2 ≡ c (mod n). This is not ideal for a cryptosystem
and therefore requires a solution to differentiate between desired plaintext and other
candidates. The usual method could be the sender informs how the condition of her
message, by adding extra information, which, is the base idea for padding.

16



5.2.2 Padding

A commonly suggested solution is padding which is the practice of adding data to the
original message prior to the encryption. The padded data can appear before, inside or
after the message. Sometimes the padding itself is adding nonsensical data to obscure
the message. Sometimes it works like a signature, or a standard form to recognize where
the message should start and end, which is surrounded by some keywords. Reading
this description may raise some confusion between padding and steganography as their
principles are somewhat similar. However, steganography’s objective is concealing the
content, while padding is adding extra data.

There have been many padding schemes introduced over time. Consider a classic
example of writing a letter.

Thursday, January 1, 1970

Dear Alice,
Happy New Year. Unfortunately I will not be able to send you an e-mail this year
due to heavy network traffic. I hope everything goes well this year.
Sincerely yours,
Bob

From this example, we can see that the letter from Bob contains the metadata,
namely, the date. We consider in this case the message starts after “Dear Alice” ends
before “Sincerely yours” which suggest that they are the way of “padding the letter.” In
principle, not only they make the letter looks more standardized but also better format
and follows some comprehension, which makes it easy to read in a typical fashion. It
helps Alice to know what she is reading, what she would expects from Bob and where
the main message should be.

The letter example also demonstrate how padding in modern cryptography works.
It adds some data which signal standard of padding scheme, a bit of random data and
also some data to tell where the message begins and ends. For example, consider Alice
wants to send Bob her phone number, 0− 123− 456− 7890, the 0 suggest that where the
actual phone number starts. If Bob wants to call her from another country, he needs
to know which country Alice is currently living and replace the 0 pad with her country
code, e.g 0046− 1234567890. For this Rabin’s cryptosystem, since there are 4 different
outputs of the same message, a padding is necessary to distinguish between the actual
message and garbage data itself. We suggest a padding scheme as the following and call
it Playground Padding.

Definition 9 (Playground Padding procedure). Let m be the message written in decimal
base, we think of m as a string of decimal digits, or m = m1m2 . . . mk. The playground
padding scheme for the message is defined as the following:

1. Concatenate i digits 1 as prefix of m.
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2. Concatenate i digits 1 as suffix of m.

3. The message is now in the form of 1 . . . 1︸ ︷︷ ︸
i digits of 1

||m|| 1 . . . 1︸ ︷︷ ︸
i digits of 1

, we could denote as

1 · · · 1m1 . . .mk1 . . . 1, in this case || denotes the string concatenation.

4. Encode the message into whatever base desired to send over the network.

Denote (PP)i, i = 1, 2, . . . for i digits padded before and after the original message.

5.2.3 The Experiment

We ran the simulations with encrypting the Alice’s phone number with padding, ranged
from one to five padded 1 into the phone number and test how many collisions happen.
Of course, the padding scheme and the message is written in decimal and not binary.
The key itself using the in the experiment is randomly generated to ensures every outputs
are random and does not collide with itself and each padding scheme repeats maximum i
times.

Padding a number of digit 1 into the message, preferably two digits 1 before and
after the message. For instance, Alice’s phone number is 01234567890, after padding
with (PP)1 becomes 1012345678901, after (PP)2 it becomes 110123456789011 and so on.
Adding more digits reduces the probability of ambiguous message, however it comes at
the cost of storing, processing and sending the message. Furthermore, the key has to be
large enough, otherwise it could be lost in transmission if the modulo is smaller than the
message itself.

The key for this experiment will be randomly generated and every message fits LSM’s
criteria to ensure fair testing. The simulation code was written in Mathematica (see
Appendix 8.1.2).

5.2.4 Result

Figure 1: Playground Padding and Collisions

We plot the number of collisions against the number of (PP)i in figure 1. After some
trials and errors in the test run, we decided that one millions trials for each (PP)i, for
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1 ≤ i ≤ 5. As seen on the graph, the number of collision candidates decrease significantly
as the i increases which suggests that collision rate for (PP)1 is about 0.06, (PP)2 is
0.0006 and (PP)3 is 6 · 10−6 and inconclusive for (PP)4 and (PP)5.

Based on the trend observed, we project that for every consecutive n, the collision
probability decreases by 10−2. This means increasing the n decreases the number of
collision significantly. For this, we conclude that even for a simple playground scheme,
this idea of padding to increase the message recognition chance increases significantly.

This collision percentage fits our prediction. Consider the case for PP1, Alice will
send Bob the padded mp = 1m1 where m = x1x2 . . . xk−1xk is her original message
represented with k digits in decimal. Since we use the LSM standard for communication,
we know that m2

p ≤ (2 · 10k+2)2 ≤ (5 · 102k+3). Therefore our sample space will be

around 5 · 102k+3 numbers. Based on the algorithm, we always obtain one answer in the
form of 1m1, the three other candidate needs to have different form in order for us to
build a system to recognize the message. However, for x < 5 · 102k+3, there are numbers
such as 11, 101, . . . , 191, 1001, . . . 1991, . . ., meaning that there are 1 + 10 + 100 + · · · =∑2k+2

i=1 10i = 10 · 102k+2−1
10−1 candidates.

The probability of getting a collision is

10 · 102k+2−1
10−1

5 · 102k+3

and probability of not getting a collision is

1−
10 · 102k+2−1

10−1
5 · 102k+3

so the probability of not getting a collision thrice is(
1−

10 · 102k+2−1
10−1

5 · 102k+3

)3

and the probability of getting at least one collision is

1−

(
1−

10 · 102k+2−1
10−1

5 · 102k+3

)3

under the assumption of a uniform distribution of digits. In order to calculate the
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probability, we compute the following limit

lim
k→∞

1−

(
1−

10 · 102k+2−1
10−1

5 · 102k+3

)3


= lim
k→∞

(
1−

(
1− 10 · (102k+2 − 1)

45 · 102k+3

)3
)

= lim
k→∞

(
1−

(
1− 10

45
· 102k+2 − 1

102k+3

)3
)

= lim
k→∞

(
1−

(
1− 10

45
· 1

10
− 10

45
· 1

102k+3

)3
)

= lim
k→∞

(
1−

(
1− 1

45
− 1

45 · 102k+2

)3
)

=1−
(

1− 1

45

)3

= 1−
(

44

45

)3

which is approximately 0.06 or 6% in our case, as expected. Without loss of generality,
we can expand this argument to see that the rate of collision of PP2 is 6 · 10−4 or 0.06%,
of PP3 is 6 · 10−6.

On the contrary, there are some drawbacks with padding. The first obvious is that
message length increases significantly, in this case by around 100 times for every two
padded digits. This means we also need to select bigger key size to adapt padded messages
and possibly longer processing time and storage required as well. This performance
penalty suggests that designing a padding scheme is not an easy job. That is why people
have to compromise to have a balance between security and efficiency.

Of course, the name playground padding suggests that the algorithm is for testing
and should not be used to develop any standard. This padding scheme is not provable
secure but probably the inverse. As the messages get longer, the storage and bandwidth
requires for storing them increases. However, processing data in decimal form is not ideal
for computer since using binary is better. On the extra note, PPi scheme can be done in
any base with little to no changes.

5.3 Malleable attack

Since Rabin’s cryptosystem is similar to RSA, one of its textbook weaknesses is the
vulnerability to malleable attack.

Definition 10 (Malleability [16, p. 192]). In cryptography, the cryptosystem is malleable
if the attacker is able to transform a ciphertext to another ciphertext which decrypt to a
related plaintext .

That means the attacker does not neccesary have the knowledge of the plaintext
itself but transformation of that plaintext into a related ciphertext. The idea of padding
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stems from the concept of large size messages, namely, to make it large enough so that it
is significantly harder to alter the ciphertext into something else. To understand how
malleability works, we illustrate using the example, inspired the lecture note [1, p. 2].

Suppose Alice wants to send Bob message m with public exponent e = 2 and modulus
n, she computes c = m2 (mod n) and send c as the ciphertext to Bob. Now, Eve wants
to compute the transformation of m, say f(m) = km (mod n). She asks Bob to decrypt
c′ = k2 · c (mod n) ≡ (k ·m)e (mod n) and send her the results. We assume that Eve
does not know the factorization of 4661, otherwise Eve does not need to use this trick.

Example 10 (No padding). We come back to the example described in the Decryption sec-
tion. In this scenario, Alice does not use PP procedure. Now, somehow Eve intercepts Al-
ice’s ciphertext to Bob and asks him to compute the decryption of f(m) = 32c = 9c = 900
(mod 4661) instead. After decryption, Bob gives Eves four candidates 4631, 30, 207, 4454
for which Eve’s simply multipliying each element by 3−1 ≡ 1554 (mod 4661) and also
obtain four possible integer candidates which are 10, 69, 4592, 4651.

Example 11 (With padding). It is arguably better for Eve to factorize integers on
average instead of developing a clever way to defeat padding, even with simple (PP)n.
First, she needs to makes sure that km for k = 2, 3, . . . fits the LSM standard, which
is impossible to know since she does not know the message. Second, if km > n, she
could potentially pick k = 1/l for l = 2, 3, . . .. However, she is required to know the
factorization of c to correctly pick l, since k2 | c.

If Alice use (PP)1 and send Bob m2 = 16912 ≡ 2288 (mod 4661). Let k = 3, she
asks Bob to decrypt c′ = 9c ≡ 1467 (mod 4661). Bob then gives Eve four candidates:
1757, 2904, 3258, 1403 and Eve only needs to multiply these by the 3−1 ≡ 1554
(mod 4661), which has been demonstrated in example 10. Although Playground Padding
does not mitigate much of the attack from Eve, it requires Eve to ask Bob decrypting
the ciphertext and finding the modular inverse of her chosen number (in this case 3),
which costs Eve some extra computing power.

It is no surprise that in practice, the textbook version of Rabin or RSA is never used.
To help RSA more secure, there are many padding schemes that developed to make RSA
secured against this attack. The most widely known and used is PKCS#1, the first
Public-Key Cryptography Standards. But not all padding schemes are secure as it might
sound. For example, the old version v1.5, published in 1993, has a several weaknesses
discovered throughout it existence [6]. The newest version of PKCS#1 is v2.2, published
in 2012 [14]. Potentially, we can use this for RSA padding for Rabin, given that they are
just similar enough, but not equivalent. Of course, there are some other padding schemes
that has been developed specifically for Rabin’s cryptosystem like HIME(R) [2, p. 4].

6 Other choice of primes

One could propose that choosing primes such that p 6≡ 3 (mod 4) and q 6≡ 3 (mod 4), for
example, p ≡ 1 (mod 4) or p ≡ 1 (mod 8). In that case, the formula for decryption in
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section 4.3.2 does not apply. However, there are some algorithms capable of computing
the quadratic residues such as Cipolla’s, Tonelli-Shanks and Berlekamp–Rabin. Tonelli-
Shanks algorithm will be used to demonstrate the finding of quadratic residues when the
factorization of the key is known.

6.1 Tonelli-Shanks Algorithm

Tonelli-Shanks algorithm is an algorithm to determine the square root of a given integer
n modulo prime p. It is best to use it for p ≡ 1 (mod 4) since there is already a formula
to directly compute the square root of n given that p ≡ 3 (mod 4) given in section 4.3.2.
It was developed by Alberto Tonelli in 1891 and later improved by Daniel Shanks in 1973
(Shanks called this RESSOL).

In 1999, Ezra Brown published his paper “Square Roots from 1; 24, 51, 10 to Dan
Shanks” in The College Mathematics Journal which explained several concepts for the
Tonelli-Shanks algorithm [5]. It featured the core idea, stems from Lemma 2 and the
proof of this algorithm.

Note that Lemma 2 is not true for composite n since the ability of computing quadratic
residue modulo n implies the ability to factorize n. This has been shown in section 4.4
since we needs to use CRT to find all the quadratic residues modulo n instead of taking
±
√
c ≡ m (mod n) as the inversion algorithm, since there exists two more quadratic

residues of composite n. An example is that a = ±1 and a = ±473 both satisfy x2 ≡ c
(mod 4661) [5].

If a has square roots by Euler’s criterion, and p is an odd prime then we can write
p− 1 = q · 2s with s > 0 and q is odd. Let x = a(q+1)/2, we know that x is almost square
root since

x2 ≡ aq+1 ≡ asa (mod p)

and if as ≡ 1 (mod p) then x is a square root, off by a fudge factor, and using the
Tonelli-Shank algorithm to keep updating it until we identify the correct answer [5, p.
91].

The description of Tonelli-Shanks algorithm is based on the book [15, p. 112-114],
the video [20] and the paper [5, p. 91-92].
Input

• p: a prime

• n: an integer

Process

Step 1: Check

(a) n is a square by computing Euler’s criterion: check if n(p−1)/2 ≡ 1 (mod p).
Return nothing (or error) if true.

(b) n divides p. Return r = 0 if true.
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Step 2: Find q and s such that p− 1 = q · 2s and q is odd by continuously factorizing 2
out of p− 1.

(a) Initialize

• q = p− 1

• s = 0

(b) Loop until 2 - q
i. Assign s + 1 to s

ii. Assign q/2 to q

Step 3: Select z to be a quadratic non-residue of p.

(a) Initialize z = 2

(b) Loop until Euler’s criterion of z is not 1:
(
z
p

)
6≡ 1 (mod n)

i. Assign z + 1 to z

Step 4: Initialize

• m = s

• c ≡ zq (mod p)

• t ≡ nq (mod p)

• r ≡ n(q+1)/2 (mod p)

Step 5: Loop until t = 1

(a) Find the least i such that 0 < i < m and t2
i

= 1

i. Initialize

• i = 0

• te = t

ii. Loop until te 6= 1

• Assign i + 1 to i

• Assign te ≡ t2e (mod p)

(b) Assign

• b ≡ c2
m−i−1

(mod p)

• m = i

• c ≡ b2 (mod p)

• t ≡ t · b2 (mod p)

• r ≡ r · b (mod p)

Step 6: Return r.
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We can optimize the algorithm by adding another check. If p ≡ 3 (mod 4) then simply
computing r ≡ n(p+1)/4 (mod p) gives us the direct answer we found. However, we decide
against adding it as this would add too many optimizations for the algorithm, which will
be explained in the experiment later.
Output

• r from the algorithm

• Error if terminate early.

On average, Tonelli-Shanks algorithm requires

2m + 2k +
s(s + 1)

4
+

1

2s−1
− 9 (3)

modular multiplications, with m is the number of digits of p and k is the number of 1 in
the binary representation of p, s is the number of exponent s in the algorithm such that
p − 1 = q2s [21, p. 431]. On the extra note, this is an probabilistic algorithm since it
requires us to find quadratic non-residue modulo p [10, p. 2]. There is no known method
to find the quadratic residue nor non-residue deterministically (else we would be able to
defeat Rabin’s scheme). This is why the performance is given in the average case, not
the usual best, worst and average cases like most of the deterministic algorithms.

6.2 Proof of Tonelli-Shanks algorithm

The proof is based on the wiki [8] and Brown’s paper [5, p. 91-92]. The strategy is to
show that the algorithm will halt at some point and the correctness of output.

First, we want to show that these three loops invariants hold.

• c2
m−1 ≡ 1 (mod p)

• t2
m−1 ≡ 1 (mod p)

• r2 = tn

We have z is the quadratic non-residue and n is the quadratic residue, the initialization
goes as follow:

• c2
m−1

= zq2
s−1

= z
p−1
2 ≡ −1 (mod p) (since z is a quadratic non-residue)

• t2
m−1

= nq2s−1
= n(p−1)/2 ≡ 1 (mod p) (since n is a quadratic residue)

• r2 = nq+1 = tn

After every loop, by substituting c,m, t, r with c′,m′, t′, r′ after each iteration, we
obtain the following

• We assign b ≡ c2
m−i−1

(mod p).
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• We find i such that 0 < i < m and t2
i ≡ 1 (mod p). This guarantees step 5(a)ii

with the check te = 1 will terminate and return the least i since we search every i
from 1 and up.

• We assign m = i to be m′.

• We assign c ≡ b2 (mod p) to be c′ then

c′2
m′−1

= (b2)2
i−1

= c2
m−i2i−1

= c2
m−i+i−1

= c2
m−1 ≡ −1 (mod p).

• We assign t ≡ tb2 (mod p) to be t′ then

t′2
m′−1 ≡ (tb2)2

i−1 ≡ t2
i−1

b2
i ≡ −1 · −1 ≡ 1 (mod p)

• Since i is the smallest integer such that t2
i ≡ 1 (mod p), that means t2

i−1 6≡ 1
(mod p), therefore t2

i−1 ≡ −1 (mod p), per Euler’s criterion.

• b2
i

= c2
m−i−12i = c2

m−1 ≡ −1 (mod p)

Also, since t2
m−1 ≡ 1 (mod p), we always find

• We assign r ≡ r · b (mod p) to be r′ then

r′2 ≡ r2b2 = tnb2 ≡ t′ · n · 1 ≡ t′n (mod p).

Since we know that t2
m−1 ≡ 1 (mod p), the test against t = 1 at step 5 ensure that we

have the condition to halt. Also, since we always find i such that 0 < i < m and assign
new value of i to m, m decreases every iteration and the algorithm stops. At the end, we
output the invariant r such that r2 ≡ n (mod p).

6.3 The Experiment

Similar the experiment in section 5.2.3, we decided to test the performance of the
algorithm in a small experiment. There are two experiments, theoretical and practical
performance. First, we decide on how many primes to measure since it is impractical to
test every prime number in existence within certain ranges. After some trial and error,
we limit the range of testing as follow

• For prime p such that 0 < p < 105, we test all these primes in this range.

• For 105 ≤ p ≤ 1050, we randomly choose 10000 primes for each digit increment in
decimal representation.

• We decided not to go further as 166 binary digits are large enough for our case.
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We subdivide each prime by its number of digits in decimal base into each own group.
We perform the theoretical and practical experiment for each group.

For the theoretical part, using equation (3) for each prime and then calculate the
average for each group.

For the practical part, using randomly generated a random square for each prime
such that they fit the LSM standard and run the algorithm to compute quadratic residue
and measure how many loop counts. According to the algorithm design, we will count
four loops

• the p-loop (find p− 1 = q2s)

• the z-loop (find the least quadratic non-residue)

• the te-loop (find i such that t2
i

= 1)

• the t loop (run until t = 1)

and sum all up for each prime. Then, taking the average loop count for each group of
primes.

We believe this is the best way to measure runtime because using the timer (measure
how long each computation run) could give us different result every runtime. There are
also many essential background processes to keep the operating system running (and
Mathematica) that could affect the result. Measuring total loop runs yields an estimation
on the performance of our implementation of Tonelli-Shanks algorithm regardless of the
machine that we are using.
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Figure 2: Theoretical test (average)

Figure 3: Practical test (average, standard deviation)

Figure 4: Practical test (maximum, minimum, average)
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6.4 Result

The number of modular multiplications in the theoretical test increases linearly, while
the practical test averages around 7 loop counters for almost all cases, except the case
of two digit primes (which the average is 6) so we can safely ignore that as it is not
significant. However, even with the all loops counted, once we look back at the maximum
and minimum loop counts in the practical test, we notice that the average is significantly
closer to the minimum loop count than maximum one. This indicates even something
is not right with the design of this experiment, suggesting that something too much
optimization has been done and other factors which we did not include. The prime
suspect for this is the function PowerMod as we do not know how it works nor can we
count how many “modular multiplications” as described in the theoretical test. Therefore,
surprising that the experiment yield this behavior as the theoretical test expects a vastly
different result from the practical one. This behavior is expected.

Zooming out the graph of the practical test with the maximum loop counts tells
us a completely different story. The maximum loop counts vary significantly between
each group but never exceed 200 in our case. This further confirms our suspicion of the
optimization for the PowerMod function.

Testing Tonelli-Shanks algorithm in a modern environment presents new challenges.
First of all, the data set is large so the waiting time for simulation was long. Obviously, it
is simply impractical to test all primes in a given range so the limitation was introduced.
Second of all, Mathematica is a closed source software, which means that our functions
use in this case is only what we have. There are too many optimizations. For example, the
PowerMod which only returns the result but does not tell us how many multiplications it
takes in the CPU. Of course, with great numbers comes great computing time. But if
the question is how great that is then it is not possible for us and outside of the scope of
this paper to answer that question.

On the extra note, the theoretical Tonelli-Shanks algorithm yields a linear graph
when it comes to measuring performance is interesting. We do not know whether this
behavior is expected in our data set the test itself is too good to be true. There is not
much information exists in this case to explain this linear behavior. On the practical side
of the test, we should expect similar behavior if we are able to include the loop counts of
the PowerMod function.

7 Discussion

Throughout the thesis we have discussed the history, theory, algorithm and some sur-
rounding problems that Rabin’s scheme trying to solve and arise in the process. Of
course, the amount of accompanied theories make it impossible to put everything into
section 3 and instead write the necessary one prior to the start of the description. This
strategy however has one major flaw, that is, making the process of locating theory much
harder since it distributes different definitions, lemmas, theorems, etc. throughout the
paper. Considering the target audience for this paper, we think that this strategy of
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distributing is better than unifying every background theories into one large section.
It is quite sad to see such a robust cryptosystem, provably secure yet not popular

than RSA. It is much more simple to understand and implement than RSA. The proof
that it is as secure as the integer factorization makes it more mathematically safe than
the believably secure of RSA. However, we never said that RSA is a weak algorithm. The
existence of belief and provability is interesting when it comes to applying mathematical
concepts into the society. It is not the best algorithm that gets chosen. Sometimes, the
good enough could be the best suited for the market. Understandably, the limiting in
choosing primes, which, could be solved using RESSOL and four candidates as output
meaning that implementing a good system to based on Rabin’s scheme could be more
complex than RSA, potentially sabotaging the communication if too much information is
exchanged over the public network on finding the correct key.

The limitation of both time and computing resource meaning that we cannot perform
large enough scale testing for PPi and RESSOL. However, looking at the result, it is
promising for us to have an efficiently designed system to communicate based on Rabin’s
scheme. We conclude that this is simply enough for the playground type of experiment to
demonstrate the security and efficiency in the textbook version of Rabin, with some minor
padding. In fact, there have been multiple attempts of developing a padding algorithms.
The performance of RESSOL, one could expect more optimizations be introduced, not
only the PowerMod itself but to the overall implementation.
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8 Appendix

8.1 Mathematica code

8.1.1 Preamble

This should be included in the “Initialization cell” in order for the code to work.

Se tDi r ec to ry [ NotebookDirectory [ ] ] ;
f i l e = FindFi l e [ ” Functions / Tone l l i −Shanks . nb ” ] ;
NotebookOpen [ f i l e , V i s i b l e −> True ] ;
NotebookEvaluate [ f i l e , I n s e r t R e s u l t s −> True ] ;
NotebookClose [ f i l e ] ;

8.1.2 Textbook Simulation

p = 59 ;
q = 79 ;
n = p∗q

(∗ Encryption ∗)
m = {69} ;

c = PowerMod [m, 2 , n ]
a = 1 ; (∗Change a = 3 f o r example f o r the m a l l e a b i l i t y ∗)
Mod[m, n ]
c = aˆ2∗ c ;
(∗ Decrypt ion ∗)
mp = PowerMod [ c , (p + 1)/4 , p ] ;
mq = PowerMod [ c , ( q + 1)/4 , q ] ;

{g , {yp , yq}} = ExtendedGCD [ p , q ] ;
m1 = Mod[ yp∗p∗mq + yq∗q∗mp, n ] ;
m2 = n − m1;
m3 = Mod[ yp∗p∗mq − yq∗q∗mp, n ] ;
m4 = n − m3;

out1 = {m1, m2, m3, m4} ;
out1 = out1 [ [ All , 1 ] ] ;
ModularInverse [ a , n ] ;
Mod[ out1∗ ModularInverse [ a , n ] , n ] (∗ Output ∗)

8.1.3 Padding test
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(∗Prime genera tor ∗)

m = {” 01234567890 ” } ;
out5 = {} ;
Do[
m = StringJoin [ ”1” , m, ”1” ] ;
m = {ToExpression [m] } ;
out4 = 0 ;
Do[
(∗Key generator , remember to p i c k l a r g e enough prime ∗)
p = RandomPrimeWithMax [m[ [ 1 ] ] , 3 , 4 ] ;
q = RandomPrimeWithMax [m[ [ 1 ] ] , 3 , 4 ] ;
n = p∗q ;
(∗ Encryption ∗)
c = PowerMod [m, 2 , n ] ;
(∗ Decryption , f o r m=3 (mod 4) ∗)
mp = PowerMod [ c , (p + 1)/4 , p ] ; mq = PowerMod [ c , ( q + 1)/4 , q ] ;

{g , {yp , yq}} = ExtendedGCD [ p , q ] ;
m1 = Mod[ yp∗p∗mq + yq∗q∗mp, n ] ;
n1 = IntegerDigits [m1 ] [ [ 1 , 1 ] ] == Mod[m1, 1 0 ] [ [ 1 ] ] == 1 ;
m2 = n − m1;
n2 = IntegerDigits [m2 ] [ [ 1 , 1 ] ] == Mod[m2, 1 0 ] [ [ 1 ] ] == 1 ;
m3 = Mod[ yp∗p∗mq − yq∗q∗mp, n ] ;
n3 = IntegerDigits [m3 ] [ [ 1 , 1 ] ] == Mod[m3, 1 0 ] [ [ 1 ] ] == 1 ;
m4 = n − m3;
n4 = IntegerDigits [m4 ] [ [ 1 , 1 ] ] == Mod[m4, 1 0 ] [ [ 1 ] ] == 1 ;

(∗ Output ∗)
mout = ToString /@ {m1 [ [ 1 ] ] , m2 [ [ 1 ] ] , m3 [ [ 1 ] ] , m4 [ [ 1 ] ] } ; (∗∗
I f us ing mod , remember to t ake the f i r s t e lement ∗∗)

comp1 = StringTake [ ToString [m[ [ 1 ] ] ] , j ] ;
comp2 = StringTake [ ToString [m[ [ 1 ] ] ] , −j ] ;
a1 = StringTake [ mout [ [ 1 ] ] , j ] ; b1 = StringTake [ mout [ [ 1 ] ] , −j ] ;
n1 = StringMatchQ [ a1 , comp1 ] && StringMatchQ [ b1 , comp2 ] ;
a2 = StringTake [ mout [ [ 2 ] ] , j ] ; b2 = StringTake [ mout [ [ 2 ] ] , −j ] ;
n2 = StringMatchQ [ a2 , comp1 ] && StringMatchQ [ b2 , comp2 ] ;
a3 = StringTake [ mout [ [ 3 ] ] , j ] ; b3 = StringTake [ mout [ [ 3 ] ] , −j ] ;
n3 = StringMatchQ [ a3 , comp1 ] && StringMatchQ [ b3 , comp2 ] ;
a4 = StringTake [ mout [ [ 4 ] ] , j ] ; b4 = StringTake [ mout [ [ 4 ] ] , −j ] ;
n4 = StringMatchQ [ a4 , comp1 ] && StringMatchQ [ b4 , comp2 ] ;

31



out1 = {m1, m2, m3, m4} ;
out2 = {n1 , n2 , n3 , n4 } ;
out3 = Count [ out2 , True ] ;
I f [ out3 > 1 , out4 += 1 ,
I f [ out3 == 0 ,
Print [ ” e r r o r ” , ”\n” , { i , m, mp, mq, yp , yq , out1 } , ”\n” ,
” detec ted ” ] ] ] ;
, { i , 1 , 1000000} ] ; (∗ change 1000000 to how many t e s t d e s i r e d ∗)

m = ToString [m [ [ 1 ] ] ] ;

AppendTo [ out5 , out4 ] ;
Print [{m, out4 } ] ;
, { j , 1 , 5 } ] ;
Print [ out5 ] ;

8.1.4 Tonelli-Shanks algorithm

This is the file “Tonneli-Shank.nb” of the project.

(∗ Adapted from : h t t p s ://www. youtube . com/ watch ?v=d7ZFCf95MAQ∗)

(∗ Return : True i f t h e r e i s an i n t e g e r a = xˆ2 ∗)
EulerCr i ter ionQ [ n , p ] :=
Module [{} ,
I f [Mod[ n , p ] == 0 , Return [ True ] ,
Return [PowerMod [ n , (p − 1)/2 , p ] == 1 ]
] ;
] ;

(∗ Return : { r e s u l t , #loop , s}∗)
Tonel l iShanks [ n , p ] :=
Module [{ temp , q , s , m, b , c , i , t , r , z , count , mod4val } ,
mod4val = Mod[ p , 4 ] ;
count = 1 ;

I f [Mod[ n , p ] == 0 , Return [{0 , count , None } ] ] ;

I f [Not [ Eu lerCr i te r ionQ [ n , p ] ] , Print [ ”Not quadrat i c r e s i d u e . ” ] ;
Return [{None, None, None} ] ;
] ;

(∗ F a c t o r i z e q ∗)
q = p − 1 ;
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s = 0 ;
While [Mod[ q , 2 ] == 0 ,
count += 1 ;
s += 1 ;
q = q / 2 ; ] ;

(∗ Find q u a d r a t i c nonres idue ∗)

z = 1 ;
While [ Eu lerCr i te r ionQ [ z , p ] ,
count += 1 ;
z += 1 ;
] ;

(∗ Let−par t ∗)
m = s ;
c = PowerMod [ z , q , p ] ;
t = PowerMod [ n , q , p ] ;
r = PowerMod [ n , ( q + 1)/2 , p ] ;

(∗The loop ∗)
While [ t != 1 ,

count += 1 ;
i = 0 ;
temp = t ;

(∗ Repeated squar ing ∗)
While [ temp != 1 ,
count += 1 ;
i += 1 ;
temp = PowerMod [ temp , 2 , p ] ;
] ;

b = PowerMod [ c , Power [ 2 , m − i − 1 ] , p ] ;
m = i ;
c = PowerMod [ b , 2 , p ] ;
t = Mod[ t ∗b∗b , p ] ;
r = Mod[ r ∗b , p ] ;
(∗ Print [{m, r , b , t , c } ] ; ∗)
] ;
Return [{ r , count , s } ] ;
] ;
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8.1.5 Tonelli-Shanks Theoretical Test

FindS [ p ] := Module [{ q , s } ,
q = p − 1 ;
s = 0 ;
While [Mod[ q , 2 ] == 0 ,
s += 1 ;
q = q / 2 ; ] ;
Return [ s ] ;
] ;
aaa = OpenAppend [ ”Output/ outputTone l l i 5 . txt ” ] ;
Do[
p = {} ;
I f [ i < 5 ,
q = Power [ 1 0 , i − 1 ] − 1 ;
While [ q < Power [ 1 0 , i ] − 1 ,
q = NextPrime [ q ] ;
AppendTo [ p , q ] ;
] ;
,
I f [ 5 <= i < 60 ,
p = RandomPrime [{10ˆ( i − 1) − 1 , 10ˆ( i ) − 1} , 1 0 0 0 0 ] ;
, p = RandomPrime [{10ˆ( i − 1) − 1 , 10ˆ( i ) − 1} , 1 0 0 0 0 ] ;
]
] ;
temp = DigitCount [ p , 2 ] ;
m = Total [ temp , { 2 } ] ;
k = temp [ [ All , 2 ] ] ;
s = Map[ FindS , p ] ;
sum = 2 m + 2 k + s ( s − 1)/4 + 1/(Power [ 2 , s − 1 ] ) − 9 ;
mean = Mean[ sum ] ;
out2 = Round [ mean ] ;
Print [{ i , out2 } ] ;
WriteLine [ aaa , { i , out2 } ] ;

, { i , 2 , 5 0 } ] ;
Close [ aaa ] ;

8.1.6 Tonelli-Shanks Practical Test

aaa = OpenAppend [ ”Output/ o u t p u t T o n e l l i P r a c t i c a l 5 . txt ” ] ;
Do[
p = {} ;
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I f [ i < 5 ,
q = Power [ 1 0 , i − 1 ] − 1 ;
While [ q < Power [ 1 0 , i ] − 1 ,
q = NextPrime [ q ] ;
AppendTo [ p , q ] ;
] ;
,
I f [ 5 <= i ,
Do[
q = RandomPrime [{10ˆ( i − 1) − 1 , 10ˆ( i ) − 1 } ] ;
AppendTo [ p , q ] ;
, { j , 1 , 10000}
] ;
]
] ;

l i s t 1 = {} ;
l i s t 2 = Table [
Tone l l iShanks [
Power [ RandomInteger [{Power [ 1 0 , i − 1 ] − 1 , Power [ 1 0 , i ] − 1} ] ,
2 ] , p [ [ i ] ] ] [ [ 2 ] ] , { i , 1 , Length [ p ] } ] ;
out = { i , l i s t 2 } ;
Print [ out ] ;
WriteLine [ aaa , out ] ;
, { i , 2 , 50}
] ;
Close [ aaa ] ;
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