DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING,

m SECOND CYCLE, 30 CREDITS
o T Ry

FKTHS

STOCKHOLM, SWEDEN 20271

VETENSKAP
28 OCH KONST 2%

S Se

Machinery Health Indicator
Construction using Multi-objective
Genetic Algorithm Optimization of
a Feed-forward Neural Network
based on Distance

Master Thesis in Machine Learning

JACOB NYMAN

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Machinery Health Indicator
Construction using
Multi-objective Genetic
Algorithm Optimization of a
Feed-forward Neural Network
based on Distance

Master Thesis in Machine Learning

JACOB NYMAN

Master's Programme, Machine Learning, 120 credits
Date: May 13, 2021

Supervisor: Arvind Kumar
Examiner: Pawel Herman
School of Electrical Engineering and Computer Science
Host company: CNet Svenska AB
Swedish title: Maskin-Halsoindikatorkonstruktion genom Multi-objektiv
Genetisk Algoritm-Optimering av ett Feed-forward Neuralt Natverk
baserat pd Avstand
Swedish subtitle: Examensarbete i Maskininlarning

© 2021 Jacob Nyman

Abstract

Assessment of machine health and prediction of future failures are
critical for maintenance decisions. Many of the existing methods use
unsupervised techniques to construct health indicators by measuring
the disparity between the current state and either the healthy or the
faulty states of the system. This approach can work well, but if the
resulting health indicators are insufficient there is no easy way to steer
the algorithm towards better ones.

In this thesis a new method for health indicator construction is
investigated that aims to solve this issue. It is based on measuring
distance after transforming the sensor data into a new space using a
feed-forward neural network. The feed-forward neural network is trained
using a multi-objective optimization algorithm, NSGA-II, to optimize
criteria that are desired in a health indicator. Thereafter the constructed
health indicator is passed into a gated recurrent unit for remaining useful
life prediction. The approach is compared to benchmarks on the NASA
Turbofan Engine Degradation Simulation dataset and in regard to the
size of the neural networks, the model performs relatively well, but does
not outperform the results reported by a few of the more recent methods.

The method is also investigated on a simulated dataset based on
elevator weights with two independent failures. The method is able to
construct a single health indicator with a desirable shape for both failures,
although the latter estimates of time until failure are overestimated
for the more rare failure type. On both datasets the health indicator
construction method is compared with a baseline without transformation
function and does in both cases outperform it in terms of the resulting
remaining useful life prediction error using the gated recurrent unit.
Overall, the method is shown to be flexible in generating health indicators
with different characteristics and because of its properties it is adaptive
to different remaining useful life prediction methods.

Keywords

Prognostics, Health Indicator Construction, Remaining Useful Life
Prediction, Multi-objective Optimization, Distance

Sammanfattning

Estimering av maskinhélsa och prognos av framtida fel ar kritiska
steg for underhallsbeslut. Manga av de befintliga metoderna anvander
icke-véglett (unsupervised) larande for att konstruera héalsoindikatorer
som beskriver maskinens tillstand 6ver tid. Detta sker genom att méta
olikheter mellan det nuvarande tillstandet och antingen de friska eller
fallerande tillstanden i systemet. Det hér tillvigagangssattet kan fungera
val, men om de resulterande hélsoindikatorerna ar otillrackliga sa finns
det inget enkelt siatt att styra algoritmen mot battre.

I det héir examensarbetet undersoks en ny metod for konstruktion av
hélsoindikatorer som forsoker losa det har problemet. Den &r baserad
pa avstandsmétning efter att ha transformerat indatat till ett nytt
vektorrum genom ett feed-forward neuralt natverk. Natverket ar tréanat
genom en multi-objektiv optimeringsalgoritm, NSGA-II, for att optimera
kriterier som ar onskvéirda hos en halsoindikator. Dérefter anvinds den
konstruerade hélsoindikatorn som indata till en gated recurrent unit
(ett neuralt natverk som hanterar sekventiell data) for att forutspa
aterstaende livslangd hos systemet i fraga. Metoden jamfors med andra
metoder pa ett dataset fran NASA som simulerar degradering hos
turbofan-motorer. Med avseende pa storleken pa de anvinda neurala
nitverken sa ar resultatet relativt bra, men overtriffar inte resultaten
rapporterade fran nagra av de senaste metoderna.

Metoden testas dven pa ett simulerat dataset baserat pa elevatorer
som fraktar sdd med tva oberoende fel. Metoden lyckas skapa en
hélsoindikator som har en oOnskvard form for bada felen. Dock sa
overskattar den senare modellen, som anviande héalsoindikatorn, aterstaende
livslaingd vid estimering av det mer ovanliga felet. Pa bada dataseten
jamfors metoden for hélsoindikatorkonstruktion med en basmetod utan
transformering, d.v.s. avstandet méts direkt fran grund-datat. I bada
fallen overtréiffar den foreslagna metoden basmetoden i termer av
forutsdgelsefel av aterstaende livslangd genom gated recurrent unit-
natverket. Pa det stora hela sa visar sig metoden vara flexibel i skapandet
av halsoindikatorer med olika attribut och p.g.a. metodens egenskaper
ar den adaptiv for olika typer av metoder som forutspar aterstaende
livslangd.

Nyckelord

Prognostik, Halsoindikatorkonstruktion, Aterstaende Livslangd, Multi-
objektiv Optimering, Avstand

Acknowledgments | v

Acknowledgments

I would like to thank Arvind Kumar for the helpful discussions and
valuable feedback throughout the thesis. I also would like to thank Peter
Rosengren and the team at CNet for the cooperation and ideas to adjust
the project to work with encountered problems.

vi| CONTENTS

Contents

1 Introduction
1.1 Thesisaim
1.2 Research Questions
1.3 Scope and limitations

2 Background

2.1 Prognostics and Health Management
2.2 Health Prognostics
2.3 Data acquisition
2.4 Health indicator construction

241 Previouswork

2.4.2 Comparing properties of healthy and faulty states
2.5 Health indicator evaluation.
2.6 Health indicator modelling

3 Theory

3.1 Categorizing distance-based HIs
3.2 Feed-forward neural network
3.3 Genetic algorithm
3.4 Multi-objective optimization
3.5 Multi-objective genetic algorithm

3.5.1 NSGA-IT

3.5.2 MOGA Neural Network
3.6 Recurrent neural networks

3.6.1 Gated Recurrent Unit

4 Method
4.1 The pipelineo
4.2 MOGA-NN for HI construction
421 Baseline

CONTENTS | vii

4.2.2 Distance metrics 31
4.2.3 Fitness function 31
4.2.4 Normalizing the HI 33
4.2.5 Tuning the MOGA-NN 33
4.3 GRU for RUL prediction 34
4.3.1 Piecewise linear RUL 35
4.3.2 Finding the most suitable solution and training the
RUL prediction model 35
4.4 Measuring the performance of the model on the test dataset 38
4.5 Datasets L 38
4.5.1 Turbofan Engine Degradation Simulation 38
4.5.2 Elevator weight simulation dataset 41
5 Results 49
5.1 Turbofan Engine Degradation Simulation 49
51,1 HIs 49
5.1.2 RUL Prediction 56
5.2 Elevator weight simulation 58
52.1 HIs o 58
5.2.2 RUL prediction 62
6 Discussion 67
6.1 Summary of findings 67
6.1.1 Transformation function 67
6.1.2 Comparison with benchmarks 68
6.1.3 Competing risks 68
6.2 Method choices 69
6.2.1 MOGA-NN and MOGA-RNN 69
6.2.2 Backpropagation 70
6.2.3 Artificial points 70
6.3 Thesis evaluation 71
6.3.1 FEthics and sustainability 71
6.3.2 Strengths and weaknesses 71
6.3.3 Contribution 72
6.4 Futureresearch, 73
7 Conclusion 75

References 77

viii | Contents

A Generating weight simulation data

81

List of acronyms and abbreviations | ix

List of acronyms and abbreviations

Notation Description

L The subvector of vector z starting from index ¢ and
ending at index j, j > 1

AM Artificial Intelligence Method

BPTT Backpropagation Through Time

CNN Convolutional Neural Network

DBN Deep Belief Network

DDM Data-driven Method

EWS Elevator Weight Simulation

FBD-HI Failure-based Distance for Health Indicator
Construction

FNN Feed-forward Neural Network

GA Genetic Algorithm

GRU Gated Recurrent Unit

HBD-HI Healthy-based Distance for Health Indicator
Construction

HI Health Indicator

HM Hybrid Method

HP Hyperparameter

HPS Health Prognostics

LSTM Long Short-Term Memory

MOGA Multi-objective Genetic Algorithm

MOGA-NN Multi-objective Genetic Algorithm Neural Network

Mon,, Monotonicity with step size n

NN Neural Network

NSGA-II Non-dominated Sorting Genetic Algorithm II

PCA Principal Component Analysis

PDF Probability Density Function

PHM Prognostics and Health Management

PMM Physical Model-based Method

RBM Restricted Boltzmann Machine

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RUL Remaining Useful Life

Second-mon,, | Second-degree Monotonicity with step size n

SMM Statistical Model-based Method

TEDS Turbofan Engine Degradation Simulation

Trend Trendability

Trend, Spearman-trendability

VHI Virtual Health Indicator

x| List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

Prognostics and Health Management (PHM) is an increasingly
important field as manufacturing intensity grows. A machine or
system failure can cause impactful negative consequences to the business
operation and in turn to the profit. A common strategy is to continuously
monitor the system of interest, model its health and forecast future
failures. These forecasts can then be used to perform well-timed and
condition-based maintenance based on real time information. Consequently,
increasing efficiency and averting costly failures.

For forecasting failures it is crucial to have a health indicator (HI) that
estimates the health of the system as the degradation evolves. Usually
we have one or more measurements obtained through sensors that, to
a certain degree, describe the degradation state of the system. But
these measurements can be noisy, nonlinear and therefore, difficult to
model and forecast. For these reasons, methods have been developed
to construct wvirtual Hls (VHIs) by fusing all sensor measurements into
a single measurement in a supervised or unsupervised fashion. Several
statistical methods and machine learning techniques have been utilized
for this purpose. For instance, genetic programming [1], linear regression
[2], deep belief network [3] (DBN) and restricted Boltzmann machine [4]
(RBM).

Thereafter, the constructed HI is used to forecast the remaining useful
life (RUL) of the system using time series techniques. In recent years deep
learning have been successfully applied for this purpose using models such
as recurrent neural networks (RNNs) [5]-[7] and convolutional neural
networks (CNNs) [8], [9]. But there are also benefits in using more
classical statistical methods, such as state space models [2], [3], due to

2| Introduction

the way uncertainty is quantified and the effectiveness on small datasets.

1.1 Thesis aim

In many of the current methods HIs are constructed through some
unsupervised or supervised approach without explicitly telling the method
what is sought. For example, Hou et al. [4] used the reconstruction error
from an RBM trained on healthy sensor data as an HI. This can work
well but there is little to no control on the form of the HI. For instance, in
these methods, it is not possible to include knowledge about the desired
shape and properties of the HI that fits with the forecasting model or
generally characterize a good HI.

The aim of this thesis is to investigate a more deliberate framework
for HI construction where there is more control over the final shape of
the HIs. At the core of this framework lies the multi-objective genetic
algorithm (MOGA). It is used to optimize a function to transform sensor
data/features/states into vectors in a new space. Thereafter, in this
space, distances between the states and the faulty states, defined as
all states right before failure in the training data, are measured. Then
the HI at each time point is defined as the minimum distance from the
transformed state of the time point to any of the (transformed) faulty
states.

The fitness/objective functions of the optimization process are metrics
related to the quality of the resulting HIs. Because the MOGA is
used, the process does not only enable the user to incorporate domain
knowledge and desired shape of the HI using fitness functions, but
also provides a large population of solutions for the user to choose
between. The function to be optimized is a neural network (NN). NNs
are very powerful function approximators as proven by the universal
approximation theorem [10]. They can also handle noisy data such as
sensor data very well. For this reason this is the model whose parameters
are to be optimized.

1.2 Research Questions

The overall aim is to validate the method, compare it to existing
methods and test it in a difficult setting. The following research questions
are investigated:

Introduction | 3

e How does the proposed method compare with state of the art
approaches such as [4], [6], [11], [12] in terms of RUL prediction?

The first question implies a comparative evaluation of the proposed
method.

« What is the effect of generating HIs by transforming the states
before measuring the distance to the faulty states in terms of the
resulting HIs and RUL prediction error?

The second question is about justifying the notion of using a
transformation function before measuring distance to the faulty states,
which is similar to justifying the use of a more complex model. Simply
measuring the distance in the original space is the baseline and the
transformation function should have a compelling argument to be
preferred (Occam’s razor).

o What are the advantages and disadvantages in using the proposed
method to handle competing risks or failures with different characteristics?

Finally, the third question is about the utility of the method under
different conditions. Competing risks are defined as situations where
several failures could happen but only one of them can occur. This
means that all failures have to be simultaneously modeled and taken into
account when forming the HI and/or performing the prediction of RUL.
The failure types can be seen as failures with different characteristics.

1.3 Scope and limitations

The focus of the thesis lies in the process of constructing Hls from
sensor data/features and then predicting RUL using these HIs. This is
done specifically in regard to machines. For this reason one assumption
that is made is that the system is degrading monotonically. This implies
that the system does not heal without intervention. For machines, usually
the speed of the degradation can change but not the direction. The
assumption is heavily relied upon in the selection/composition of the
fitness functions.

In both of the explored datasets the trajectories were also run to
failure, and thus, no censored data was assumed (see section 2.3 for a
short discussion about censored data). Additionally, in both datasets the

4| Introduction

training/vaidation part of the dataset consisted of 100 trajectories/time
series of degradations. Consequently, the results are bounded to these
types of scenarios.

Background | 5

Chapter 2

Background

2.1 Prognostics and Health Management

PHM is a framework that encompasses several objectives related
to monitoring systems, estimating their health, predicting failures and
generating maintenance strategies. There are several reasons for the
growing interest in this field. The obvious one is that downtime and
maintenance could be costly when a system is unexpectedly failing,
especially in industries where reliability is key. But there could also
be catastrophic consequences impacting human lives directly as pointed
out in [13]. Thus, there are obvious motivations for the interest and
development of the field.

2.2 Health Prognostics

Health prognostics (HPS) is a subcomponent of PHM and the focus
of this thesis. HPS aims to describe the health of a system over time
with the objective of forecasting the RUL of the system. This process
can be decomposed into four steps [14]:

o data acquisition

o HI construction

health stage division

o RUL prediction

sensor 2

sensor 7

6 | Background

The first stage, data acquisition, is the collection of sensor data that
can measure some property related to the degradation of the system
in focus over time. Without time-dependent data, dynamic health
state estimation is not possible. If something happens that causes the
degradation process to accelerate (or decelerate) we would not know
about it.

In the second stage, HI construction, the acquired data is processed to
generate HIs that can adequately describe the degradation of the system.
An HI is a one-dimensional time series that describes the health of the
system over time. This stage can be more or less involved depending
on the complexity of the system. Thereafter the constructed HI is
decomposed into health stages, where the final health stage is used for
the final step, RUL prediction. This is, as the name suggests, about
predicting how much time left there is before failure. In this thesis
the focus will lie in the second and fourth step of the process. That
is constructing HIs and then using these Hls to predict the RUL. The
two steps involved in this thesis are shown in Figure 2.1.

2 10 1 — Available data
—— Future data
0 08
B -2

sensor 4

06
100 200 0 100 200

Timestep Timestep , T

04

21 — available data
—— Future data
0 02
- 2 00

sensor 8

100 20 0 100 20 0) 100 150 200
Timestep Timestep Timestep

Preprocessed features Health indicator

Figure 2.1 — The two steps of HPS in focus for this thesis. In blue the data available
at the time of prediction and in red the unavailable future data points.

2.3 Data acquisition

To be able to create HIs and predict RUL, data is necessary. Sensors
have to be installed to measure quantities related to the degradation.
Examples of popular sensors for mechanical systems are accelerometers
that measure vibration, microphones that measure sound pressure and
infrared thermography that measures temperature [15]. Also the time of

RUL

Background |7

failure and potentially what type of failure occurred (if there are multiple)
have to be recorded. In scenarios where the degradation is monotonic
and is run from start to failure this should be enough. But sometimes
there can be intervening actions, such as maintenance operations, that
cause the health of the system to be restored. These types of actions also
need to be recorded otherwise assumptions of monotonic degradation are
violated and modelling becomes more difficult. Even if a repairing action
is performed and no failure occurs, the sensor data acquired up until this
point can still be useful. This is called censored data, specifically right
censored data [16]. Because it is known that the system has not failed yet
it is also known that the time until failure will be greater than the time
that has passed so far. There are many methods in the field of survival
analysis [16] devoted to making use of such data.

2.4 Health indicator construction

As mentioned earlier the HI construction can be more or less involved.
Sometimes there is multidimensional sensor data with various complex
characteristics. This creates a non-trivial problem of constructing a VHI
that can describe the degradation of the system. Various statistical or
machine learning techniques have been attempted to do this. In other
cases a physical HI already exists and no additional processing is required.
In this thesis the usage of an NN in combination with an MOGA is
investigated for the former scenario.

2.4.1 Previous work

Several methodologies have been developed for constructing VHIs.
The initial step is extracting predictive features from the data. Here
domain knowledge and understanding of the system at hand can be
beneficial. Time domain, frequency domain and time frequency domain
features are common. Thereafter the techniques vary.

Sun et al. [2] used a linear regression model to transform the sensor
measurements into an HI. This was done by creating a dataset where the
states near the end of the time series close to failure were assigned a value
of zero and the states at the beginning of the time series were assigned a
value of one. Then the regression model was fit. The fit model could then
transform sensor measurements to an HI where the health deteriorates
approximately from one to zero. This is a useful way to turn the HI

8 | Background

construction problem into a supervised problem. The problem with this
method is that it assumes a linear transformation of the sensor data or
extracted features is enough, which is not always the case. Furthermore,
since it only uses states at the beginning and end a lot of information is
neglected. The proposed method does not have any of these weaknesses.

Liao [1] used genetic programming to learn a function that transformed
the sensor data into HIs by optimizing the monotonicity of the Hls
(defined in equation 2.1). Genetic programming is a specialized genetic
algorithm (GA) that uses trees to construct a series of mathematical
operators applied to the initial features. Thus, the model could
handle nonlinear data and also used all datapoints of the trajectory.
This is similar to the optimization performed in this thesis but in
the proposed method instead of single-objective optimization, multi-
objective optimization is used. This enables a more complete evaluation
and the ability to find several solutions with different characteristics. One
problem with this approach by Liao is that there is nothing restricting
the HIs from failing at widely different values. It is desirable to fail at
similar Hl-values for RUL prediction (see section 2.6). The proposed
method handles this issue desirably using distance.

Peng et al. [3] used a DBN to project the features into a vector
space containing the most salient information of the data. The HIs were
then constructed by extracting the vectors from the faulty states (states
close to failure in the training data) and taking the minimum difference
between the current vector and any of the vectors in the faulty state
set. Hou et al. [4] used an RBM but here instead of using the minimum
distance to the faulty states the reconstruction error after fitting the
RBM to the healthy states was used as the HI. Similarly Wang et al. used
the same concept but with autoencoders. The reconstruction error for
the sensor data was then expected to increase as the state moved further
away from the healthy working condition, and thus, an HI was obtained
that was increasing over time. One advantage with these methods is
that NNs are used, which are very powerful in extracting information
from raw data and complex relationships. In both approaches though,
(reconstruction loss and distance to faulty states) there is no possibility
of encoding information about what is sought of the constructed HI as
opposed to the proposed method.

Baraldi et al. [18] used multi-objective optimization with binary
differential evolution to optimize criteria of interest in Hls: trendability
(see equation 2.2), monotonicity (see equation 2.1) and prognosability

Background |9

(see [18]). Each solution in the optimization procedure is defining
a subset of the extracted features to use. These features are then
fused together to form HIs using auto-associative kernel regression and
reconstruction loss based on states in the training data close to failure.
Finally, the HIs are evaluated based on the metrics and the solutions
(subsets of features) updated using the optimization procedure. This
method is similar to the method used in this thesis. Both methods use
multi-objective optimization to optimize characteristics of the HIs and
use discrepancies to the faulty states of the system (reconstruction loss vs.
distance). The big difference lie in how the problem is defined. In [18] the
optimization process is optimizing the subset of features to be input into
the HI construction method, but the method itself is unaffected. Thus,
for the method to be able to construct a wide variety of Hls it requires a
wide variety of features. In contrast, in the proposed method a nonlinear
function approximator, an NN, is optimized directly to produce useful
HIs using distance. Because a function is optimized as opposed to only
the selection of features, the proposed method is much more flexible.

2.4.2 Comparing properties of healthy and faulty states

The approach used by Peng et al. calculates distance to the faulty
states after transforming the raw data, the approach used by Hou et al.
and Wang et al. uses the reconstruction loss after fitting to the healthy
states and the approach used by Baraldi et al. uses the reconstruction
loss after fitting to the faulty states. What these approaches have in
common is that they measure some kind of change over time based on
comparing properties from either healthy or faulty states only.

This is a powerful concept since the difference between healthy /faulty
states and the current state should presumably increase/decrease as the
system is degrading. If we use the distance to the faulty states we also
obtain a natural threshold of where the failure occurs on the HI, that
is around zero (zero for the training data, but likely not exactly zero
for future failures). If these distances are calculated from a transformed
space using an unsupervised approach such as the DBN there is not much
control of how the distance evolves over time.

In this thesis distance will be used, but instead of learning the
transformation function using an unsupervised method a more direct
approach is used. This is done by optimizing the transformation function
so as to transform the sensor state into a vector space where the change of

10 | Background

distance over time between the faulty states and the current state exhibits
properties that are desired in an HI. Common ones are correlation
with time and monotonicity (see the next section). To do this multi-
objective optimization is performed using a GA. Distance-based methods
are discussed more in section 3.1.

2.5 Health indicator evaluation

To be able to construct effective HIs we need to understand their
purpose and goal. The goal of Hls is to track the underlying health of
the system and facilitate prediction of RUL. Thus, the ideal evaluation
function for a given set of Hls is to fit some model to them and use the
HI that leads to the optimal prediction of RUL. The problem is that this
means that if we want to evaluate several HIs we have to fit a model
to each one which can be very time consuming. Instead we would like
to have some metric(s) that can quickly assess the ability of the HI to
be useful for its purpose regardless of what model will be used. Many
different metrics have been created for this purpose. A number of them
are presented by Lei et al. [14]. The most common ones are monotonicity
and correlation with time, also known as trendability, defined below:

No. of diff > 0 No. of diff < 0|
T-1 T—1 (2.1)
where diff = HII:T — HIO:T—I

Mon(HI) = |

T (HI, ~ HT)(t - 1)
VEL(HI - TIPS, (6 - 1)

where the notation H1;; denotes the subvector starting from index i
and ending at index j of vector/time series HI. T is the length of the
HI and the overline represents the mean.

These complement each other in the sense that monotonicity evaluates
the local changes and trendability the global trend. But alone these two
are not perfect. Monotonicity is very sensitive to noise and trendability
expects a linear degradation curve. To evaluate nonlinear degradation
the Spearman correlation coefficient can be used between the HI and
time. It is here denoted as Spearman-trendability. It is defined as:

Trend(HI) = |

(2.2)

Trends(HI) = Trend(rank(H 1)) (2.3)

Background | 11

where rank(H 1) denotes the rank sequence of the HI. Thus, it is the
correlation between the rank sequence of the HI and time. One major
difference between correlation and Spearman correlation when the HI
is linear is that Spearman correlation is more robust to outliers (in the
monotonic direction) in the beginning and end of the HI. This is because
it only cares about the rank and not the value.

Hybrid metrics [14] are defined as the combination of several metrics
to evaluate the HI in different aspects simultaneously, often through a
weighted mean. The downside of this is that a weight has to be assigned
to each objective. But using multi-objective optimization, as is used here,
this problem disappears and more diverse and multifaceted solutions can

be found.

2.6 Health indicator modelling

The true objective of an HI is to use it to predict RUL and there are
several different ways to do this. One of the more common ways is to
model the time until the HI passes a known failure threshold. Then the
RUL is defined as [14]:

RULk == 111f(l : HIH.k Z ’)/) (24)

where RULy is the RUL at the kth timestep, HI;,; is the HI at
time [+ k with [> 0, inf is the limit infimum, and v is the failure
threshold. Often due to simplicity, the failure threshold is defined as a
constant value even though ideally we would like to have a probability
distribution. As previously mentioned, one advantage with generating
HIs using the distance to the faulty states is that the final distance will
be close to zero. Consequently, we obtain a natural failure threshold.
Another option is to simply predict the RUL directly given the history
of the HI.

The different methods can be categorized into four groups [14]:

o Physical model-based methods (PMMs)

Statistical model-based methods (SMMs)
o Artificial Intelligence methods (AMs)

« Hybrid methods (HMs)

12 | Background

PMMs are methods based on mathematical models that describe
the physics of the system to assess its current and future health [19].
This requires in-depth knowledge of the degradation phenomena which
is rarely available for complex systems. To be able to model systems
without extensive knowledge of the physical interactions, data-driven
methods (DDMs) can be used.

As opposed to PMMs that are system specific, DDMs can be used for
different systems. The downside is that more data is needed. The data-
driven methods can be divided into SMMs and AMs. SMMs predict the
RUL by modelling the HI using statistical models and the RUL is often
predicted by estimating when the failure threshold is exceeded (as defined
in equation 2.4). Because statistical techniques are used we also obtain
a probability density function (PDF) of the predicted RUL which can be
advantageous for maintenance decisions. Kalman filter [20] and particle
filter [21] are techniques that often can be applied to adaptively fit the
SMM to the current HI trajectory. Thus, the method can be resilient
to individual differences between systems of the same type. Examples of
models are Wiener process models, gamma process models, the double
exponential model and proportional hazard models.

AMs are methods using machine learning techniques to model the
degradation pattern and have become more popular in recent years. For
example RNNs [5]-]7] and CNNs [8], [9]. With these methods the RUL
can be predicted using a failure threshold for the HI but more commonly
by directly predicting the RUL. In some cases the step of constructing
HIs is skipped entirely and instead of first constructing an HI the RUL
is predicted immediately from the raw sensor data, e.g. [5], [8]. Thus,
the pipeline becomes a black box. While having an end-to-end pipeline
can be desirable in some scenarios it also makes the whole process less
transparent and understandable. An HI can be useful for diagnosis,
maintenance decisions and also reassurance of how the predictions are
made. Additionally, multiple models of different types can be applied to
the same data.

Overall, the advantage with AMs is that they can perform very well
on difficult and nonlinear problems given enough data. When predicting
the mode this is often the more accurate approach which can be seen on
benchmarks, for example the dataset presented in section 4.5.1 where all
top solutions used an AM. The downside is that these methods require a
lot of data, more than statistical methods, otherwise there is an increased
risk of overfitting. Also there is no simple way to provide confidence

Background | 13

intervals. Since each type of method has its pros and cons, there have
been research on how to combine them to incorporate the advantages of
each individual method to generate an HM.

The method used in this thesis is an AM, but since the previous step
constructs a number of diverse Hls the last step can easily be changed
to an SMM. This could potentially vary from case to case but during
experimentation using AMs for the RUL prediction was shown to achieve
the best results when point estimates were of interest. The used AM
for the HI modelling is a gated recurrent unit (GRU), an RNN, and is
explained in section 3.6.1.

14 | Background

Theory | 15

Chapter 3

Theory

3.1 Categorizing distance-based Hls

There are two main ways to construct Hls using distance, either the
distance from the healthy states is measured or the distance to the faulty
states is measured. If the faulty states are used the distance will decrease
towards zero. If the healthy states are used the distance will increase
towards some arbitrary distance, likely varying for each trajectory (see
Figure 3.1).

Reconstruction loss will exhibit similar properties as using distance
but it does not necessarily follow the same mathematical axioms and is
thus left out of the discussion. Distance is defined as follows. Given a set
X, a function d, d : X x X — R, is a distance function if the following
axioms hold:

A failure-based distance method for HI construction (FBD-HI), is
here defined as a method using the minimum distance to any of the faulty
states in the training data to generate HIs. A faulty state is defined as the

16 | Theory

Current state

Faulty states

o0 .
FBD-H o ©

®
HBD-HI e o

® FBD-HI HBD-HI
/ O O \
Healthy states

HI

Time

Figure 3.1 — The difference between healthy-based and faulty-based HI construction.
In the top-left the state space is visualized (in reality it will often be in a higher
dimensional space). In the bottom-right the corresponding HI for each type is shown.
Note that this is not real data but a schematic representation.

last state before failure. The FBD-HI is mathematically defined below:

f(St) = Iy
f(strain,i,T) = Z (31)
HI;, = mind(z;, hy)

where s; is the sensor state at time ¢ to generate an HI for, s;qinir
is the sensor state at time T (last state before failure, the faulty state)
of the ith trajectory in the training data and f is some transformation
function.

A healthy-based distance method for HI construction (HBD-HI), is
here defined as a method using the minimum distance to any of the
healthy states in the training data to generate HlIs:

f(s:) = Ry
J(Straingij) = zij,J € HS; (3.2)
H[t = Il’llIl d(Zi’j, ht)
0]

),

where HS; is the healthy indices of the ith trajectory. Here HS is

Theory |17

more loosely defined, but often the initial states of each trajectory will
work.

The transformation function is a function that transforms the sensor
states to some vector space where the distances exhibit properties of
interest. This can be done using DBNs and autoencoders but also
methods such as principal component analysis (PCA) and kernel PCA.
What these methods have in common is the fact that they do not directly
optimize the transformed space for HI learning, they are unsupervised.
The intention behind the proposed method is to directly optimize this
function.

The advantage of the FBD-HI as opposed to the HBD-HI is that an
expected point of failure around zero is automatically obtained, which is
very useful for RUL prediction models using failure thresholds. Because
of this property the FBD-HI is the focus of this thesis.

3.2 Feed-forward neural network

A feed-forward NN (FNN) is a machine learning algorithm where the
inputs/features are nonlinearly transformed using matrix transformations
together with activation functions in a forward fashion, that is without
loops:

y=f(Wz+b)

where y is the output, W is the matrix of weights that describes the
linear transformation, b is the added bias, x is the input and f is the
activation function. This operation can be, and commonly is, performed
several times where the output of the previous transformation becomes
the input to the next. Then each intermediary output-vector creates
a layer and each individual output in the layer denotes a node. The
activation functions are nonlinear in the intermediary layers (otherwise
the network can be collapsed into a single linear transformation) while
the last layer (the actual output) can be shaped based on the labeled
data. For example for categorical data the softmax function generates a
probability distribution. If we have input and output pairs, are using
differentiable (with respect to the input) activation functions and a
differentiable loss function that can evaluate the error between prediction
and the actual output labels. Then we can train the weights for every
layer to minimize the error of the loss function (and in turn learn the

18| Theory

input-output mapping) using backpropagation [22].

3.3 Genetic algorithm

A GA is an evolutionary algorithm (metaheuristic population-based
optimization algorithm) inspired from the Darwinian theory of evolution
[23]. It conmsists of a population of solutions called chromosomes,
which in turn consist of parameters called genes. These solutions are
evolved or discarded based on scores obtained through a fitness function
(or objective function). The algorithm advances the population of
chromosomes using a few key steps iteratively:

1. Initialization
2. Evaluation
3. Selection

4. Crossover

5. Mutation

6. Stop if predetermined criteria is fulfilled, otherwise go to stop 2

Initialization

In the first phase the population is initialized randomly. The most
important thing here is to create a diverse population to explore the
search space adequately.

Evaluation

In the evaluation phase each chromosome is assigned a score based
on the fitness function, that is what we are trying to optimize.

Selection

The selection phase, inspired by natural selection, is where fit
individuals produce offspring that will be part of the next generation
of the population. To determine which individuals that will mate and
produce offspring, different selection operators have been developed. Two
common ones are tournament selection and roulette wheel selection.

Theory | 19

In roulette wheel selection the fitness is normalized into a probability
distribution where each individual’s probability of selection is proportional
to its fitness [24]. Then the cumulative sum of these probabilities are
taken to create a series of consecutive bins proportional to the size of
selection for each individual. Finally, N numbers, where N is the size
of the population, are simulated uniformly between zero and one. For
each number the corresponding bin it falls into (hence the similarity to
a roulette wheel) is selected for the future generation.

In tournament selection £ individuals, where k is the tournament size,
are chosen at random from the population. Then the best individual
among the k is selected as part of the new population [24]. This is
performed N times where the same individual can be selected multiple
times. Here k is a parameter that decides to what degree the better
individuals should be selected. For example if k is equal to N only the
best individual will be selected.

Crossover

After having selected individuals for the future generation, some of
the individuals will crossover/mate to share successful genes. This is
the crossover phase. This process represents local search or exploitation
where we refine the chromosomes by sharing information between them.
There are many different techniques to perform crossover, two common
ones are single and double-point crossover. In these methods the two
parent chromosomes are seen as two long vectors and are split at one
(single point crossover) or two (double point crossover) points to generate
two or three parts, respectively. Then the children are generated by
combining parts from the parents [23], see Figure 3.2.

But at times these general crossover methods do not work because
the chromosome/vector could have internal relationships that will be
destroyed by simply swapping points. In this thesis GA will be applied
to multi-layer NNs as chromosomes and this problem exists here. See
section 3.5.2 for how this operation is performed.

Mutation

If only crossover was used the search would quickly get stuck in
a local optima since no new information is ever incorporated. To
mitigate this there exists another phase called mutation which represents
exploration and leads to a global search. What this method does is

20| Theory

Parent 1 Parent 2

Child 1 Child 2

B N T .

Figure 3.2 — Single-point crossover illustrated. The two parent-solutions are each split
into two components, then the components are combined in a new form to produce
offspring.

that it slightly alters or mutates a gene randomly to look outside of the
current population and attain new information. This way the search can
get out of local optimas. If the chromosome is represented by bits the
switch of a bit could be a mutation operation or if we have a continuous
representation adding Gaussian noise could be the mutation operation.

Parameters

There are two main parameters that will affect the search process:
mutation rate and crossover rate. Mutation rate is the probability of
mutating a gene. Crossover rate is the probability of a chromosome in
the next generation to be produced by crossover as opposed to being
the same as the previous generation excluding mutation. The crossover
rate will often be high to exploit found information adequately and the
mutation rate will be low for the method not to become a complete
random search. But naturally it will vary from problem to problem. The
population size also matters, where a small population would lead to less
diversity but quicker iterations and vice versa for a large population.

3.4 Multi-objective optimization

In single-objective optimization one objective function is being optimized
and we can only optimize it in one way, increase or decrease it (depending
on if it is a minimization or maximization problem). But when we add
another objective function there is usually a trade-off involved, that is

Theory |21

increasing one objective function will decrease the other. An example
in finance is the trade-off between risk and return: if we decrease risk
the return will drop and if we increase return the risk will increase. One
method to handle this is to simply add fixed weights to the objectives,
for example:

f(z) = wizi(z) + woze(x) + ... + w2k ()

where z; is the ith objective function, w; the associated weight
and K the number of objective functions. With this we have turned
multiple objectives into a single objective. The problem with this is that
determining the weights is difficult, the objective function could have
completely different ranges and even if they do not, usually there is no
known perfect trade-off.

To solve this issue there is an approach to multi-objective optimization
where instead of attempting to find a single solution to the problem an
entire set of solutions are searched. The set that is sought is the so called
Pareto optimal set [25]. To explain what this set represents, domination
in regard to multi-objective optimization is explained.

If one solution dominates another, in regard to the optimization
problem at hand, this means that we can claim the solution is objectively
better than the other. This fact can only be stated (given that we have no
known weight for each objective) if the solution is at least as good in every
objective where in at least one of the objectives it is also strictly better.
Here "at least as good" is less than or equal for a minimization problem
and greater than or equal for a maximization problem and "better" less
than for a minimization problem and greater than for a maximization
problem. Otherwise if one objective is worse than the other solution there
is no way to claim it is objectively better. This can mathematically be
defined by the following if all the objectives are to be minimized [25]:

x dominates y, x < y, if and only if
zi(z) < z(y), fori=1,..., K and
zi(z) < zj(y) for at least one objective function j

Note that in some literature x > y is instead used to convey that
x dominates y, like in [25]. Now a solution is called Pareto optimal if
there is no solution dominating it in the solution space. This means
that if one objective is improved one or several other objective functions
will decline. Finally, the set of all Pareto optimal solutions is known

22| Theory

as the Pareto optimal set/front [25]. Thus, the objective of many multi-
objective optimization techniques is to approximate the Pareto front with
a finite number of solutions. The challenges lie in approximating the
optimal solutions as accurately as possible as well as having the solutions
spread out across the Parent front.

3.5 Multi-objective genetic algorithm

GAs are very useful for multi-objective optimization (so called
MOGAS) because of several reasons. They are population based, thus
multiple solutions of the Pareto front can be found in a single run. The
crossover can combine solutions with high scores in different objective
functions to discover new areas of the Pareto front. Additionally, no
modification of the objective functions is needed such as scaling [25].

3.56.1 NSGA-II

Non-dominated Sorting Genetic Algorithm IT (NSGA-II) [26] is a
popular MOGA. 1t is characterized by elitism and non-dominated sorting.
Elitism specifies that the best solution(s) are kept in the population and
are not part of the stochastic selection process. Non-dominated sorting
describes a fitness assignment based on how dominant the solutions are by
assigning them to fronts. The first front is the non-dominated solutions,
and therefore, the current best approximation of the Pareto front. The
second front is the non-dominated solutions given that we have removed
all the solutions from the first front. The third is the same but with the
second front also removed and so on until all solutions have been assigned
a front. Another important property in multi-objective optimization as
mentioned previously is the diversity of the solutions to try to cover
the Parent front as widely as possible. To deal with this issue a so
called crowding distance assignment is performed. What this does is
add a score to each solution based on how close it is to other solutions in
"objective value space'. Whenever there is a choice between solutions, for
example in the selection procedure, the solution with the smallest front-
value is chosen. But for solutions within the same front, for example if
we have more candidates for the Pareto front than the population size,
we will select the solutions with the highest crowding distance score. The
algorithm is defined in Algorithm 1.

Theory | 23

Algorithm 1 NSGA-IT [26]
1: # Both with population size N
2: Py < initialize elitist population
Qo + initialize candidate population
evaluate(P,)
evaluate(Qy)
while max iteration not exceeded or predefind condition not fulfilled
do
7: R, =P, UQ,

8: # Sort the solutions into fronts

9: F = fast-non-dominated-sort(R;)

10: Pi=10

11: 141

12: # Assign crowding distance and fill P, 1 with the best solutions
13: while |P4]| + |F| < N do

14: crowding-distance-assignment (F;)
15: Py < Py UF

16: 14—1+1

17: end while

18: crowding-distance-assignment (F;)

19: # sort by crowding distance operator

20: Sort(F;, <n)
21: # fill the last space of P, with the solutions with highest

crowding distance
22: Pt+1 <_Pt+1U.F:L'|:1 : (N— |Pt+1’)]

23: # generate candidates, the fitness used in the selection is based
on front and crowding distance
24: Q¢+1 < Selection, Crossover, Mutation, Evaluation using P,

25: t—t+1
26: end while

First two populations are generated of the same size, Fy and Q)g. P
will represent the elite solutions and @) the candidate solutions/offspring.
Thus, P is deterministically chosen based on the best solutions found
yet and (Q stochastically chosen based on the standard GA procedures.
Thereafter in the main loop these two populations are combined,
evaluated based on fast non-dominated sort and crowding distance
assignment to generate the new P. From P, () is generated using the
GA operators and then the cycle is repeated. The selection procedure
is binary tournament selection. I refer the reader to the original paper

24 | Theory

by Deb et al. [26] for pseudo code for the two key algorithms, fast non-
dominated sorting and crowding distance assignment.

In NSGA-II constraint handling is performed in two ways. Firstly, in
the non-dominated sorting a solution that has failed a constraint will be
dominated by all solutions that have not. If two solutions have both failed
constraints then the one with the smaller overall constraint violation
will dominate the other. Secondly, in the selection procedure, solutions
with constraint violation will lose against those without in the binary
tournament. If they both have violations the smaller violation wins [26].

3.5.2 MOGA Neural Network

NNs have had immense success in the last decade in areas such as
computer vision and natural language processing. The power of NNs lie
in their abilities to extract information from raw features without feature
engineering as well as the many dynamic ways one can shape network-
structures. For example FNNs, CNNs, RNNs, DBNs and so on. The
common way an NN is trained as previously mentioned is using one of the
various versions of backpropagation. While it used to have issues such
as the vanishing/exploding gradient problem, these are mostly solved
using appropriate activation functions such as ReLU and using skip-
connections. Still though, backpropagation has two major weaknesses.
Firstly, it requires a differentiable objective function, secondly, it cannot
optimize multiple objectives simultaneously by finding the Pareto optimal
set. Both of these issues appear in the challenge of HI construction.
When constructing an HI we want to optimize characteristics such as
monotonicity but these metrics are not always differentiable or have zero
gradient (e.g. monotonicity). At the same time, even if we managed to
construct and use only differentiable metrics, still the issue of how to
optimize multiple objectives exist.

To manage these problems, the parameters of the network will be
found using MOGA, specifically NSGA-II, and with this a set of NN
parameters are found with the goal of populating the Pareto front. Then
we can use a more exact metric to decide between the different solutions.
For instance how well a model fits the HIs constructed from the NN or
how well a model predicts RUL using the HIs. The method is denoted
MOGA-NN.

Theory | 25

Applying GA to neural networks

It is not obvious how to apply the GA’s operations, especially
crossover, to an NN. Since the weights are correlated in sensitive ways
due to the graph structure, performing a single/double-point crossover
will not yield anything sensible. Instead, a specialized crossover has to
be performed.

In this thesis a three-layer NN will be used, that is an input layer,
hidden layer and output layer. In three or more layer networks, two
networks can act similarly yet have parameters that seem dissimilar.
This causes a problem when applying crossover and is often called
the permutation problem or competing conventions problem [27]. One
solution to this is implemented by Garcia-Pedrajas et al. [27]. There
the crossover is performed with respect to the hidden nodes of the NN.
The idea is that each hidden node and the connections from and to it
represent one building block. Altering this building block by merging
it with another building block will not yield anything reasonable in the
sense of crossover. Instead concatenating and/or removing hidden nodes
will combine building blocks into a network where the contribution of
each hidden node will be intact and useful. Define the ¢th hidden node
in the jth NN in the population as:

K
= (> wi
k=1

Where K is the number of inputs. Then the zth output of the jth
NN (given that it is a three-layer NN) is:

yl(x Z BLLH (x

Where N; is the number of hidden nodes in the jth NN. Now the
zth output of the offspring due to crossover of two or more NNs can be
defined as:

J

ZO‘%JB] H] ()
j=1i=1
where P is the number of parents and «; ; € {0, 1} indicates whether
the ith hidden note in the jth network is present in the offspring. In
[27] the authors see this now as an optimization problem to find the

26| Theory

optimal as, and expand on methods to solve it such as GA and simulated
annealing. Thus, the idea is to, inside the crossover operation of GA,
perform another optimization procedure. This is not done in this thesis
for two reasons. Firstly, in this case we are dealing with multi-objective
optimization, and therefore, it is not as simple to evaluate the candidate
offspring. Secondly, this sub-optimization is not very GA-like where
offspring usually are generated stochastically. Instead the offspring will
be generated randomly by sampling hidden nodes from the parents.
Specifically, each hidden node has 50% probability of being part of the
offspring and at least one hidden node from each parent will be part of the
offspring. Note that in the above definition the bias was not mentioned,
but in the method used in this thesis there will be bias added to each
hidden node and it is treated as part of the building block.

One major advantage of the proposed method to other crossover
operations is that the number of nodes in the hidden layer can evolve
over time. Thus, both the weights and structure are optimized to some
degree. For the mutation operation Gaussian random noise is added.

3.6 Recurrent neural networks

An RNN is a type of NN used to handle sequential data. The simple
RNN contains a recurrent hidden state that is updated based on the
current input and the previous hidden state. The update equations are
shown below:

h(t) = g(Wya(t) + Uh(t — 1) + by)
y(t) = f(Woh(t) + b,)

where h(t) is the hidden state vector at time ¢, z(t) is the input at time
t, W,, W, and U are weight matrices, b, and b, biases, ¢ is the hidden
layer activation function, for example sigmoid or tanh, and f the output
activation function that depends on the output. The network is trained
using an extended version of gradient descent that propagates gradients
backwards through time called backpropagation through time (BPTT).
The problem with the simple RNN is that it has been shown to fail to
capture long-term dependencies. When the gradients are propagated
through a large amount of timesteps the learning process becomes
unstable, leading to issues such as the vanishing gradient problem or

Theory | 27

more rarely the exploding gradient problem [28]. For this reason several
better RNNs have been developed to handle this issue.

3.6.1 Gated Recurrent Unit
A GRU [29] is an RNN with added capabilities to capture both short

and long-term dependencies to resolve the issues faced with the simple
RNN. It is similar to the Long short-term memory (LSTM) [30], but is
simpler to compute and implement [29]. It has been shown to outperform
LSTM on some datasets in both performance and convergence time [31].
The update equations look as follows:

r(t) = o(W,x + Uyh(t — 1) + b,)
2(t) = o(Wea + U.h(t — 1) + b.)
h(t) = tanh(Wx + U(r(t) ® h(t — 1)) + by)

h(t) = z(t)h(t — 1) + (1 — 2(t))A()
y(t) = fF(Woh(t) + bo)

where o denotes the sigmoid function, ® is the element-wise multiplication,
f depends on the output, W, W,., W,, U, U,, U,, W, are matrices and
b.,b,, by, are bias-vectors that are learned through BPTT. The vector r(t)
is called the reset gate and decides how much of the previous hidden state
to incorporate anew into the hidden state. The vector z(t) is called the
update gate and controls how much the previous hidden state and the
new candidate hidden state, h(t), should influence the new hidden state.

28| Theory

Method | 29

Chapter 4

Method

4.1 The pipeline

The process from raw data to prediction consisted of the following

steps:

1.

2.

6.

Split the data into training, validation and testing datasets.
Extract features.

Tune parameters iteratively and train a population of FBD-HI NNs
using the MOGA with the training set. Visually validate that the
learned functions generalize to the validation data.

Find the most suitable solution in the population of FNNs.

Fit an RUL prediction model using the generated HIs from the
training data and tune hyperparameters (HPs) using the HIs from
the validation data.

Measure the final performance of the model on the testing dataset

Thus, the HI construction model and RUL prediction model were
trained separately. Step 4 and 5 were in this thesis performed in a
single step, but could for other circumstances be separated. The feature-
extraction process was dataset-dependent and how it was performed for

each dataset is explained in section 4.5.

30 | Method

4.2 MOGA-NN for HI construction

An FNN (presented in section 3.2) was used to construct the HI.
As previously mentioned the network had three layers. This structure
was simple enough not to overfit easily to the data while also with the
hidden layer being able to describe various complex transformations of
the sensor data. Additionally, the constructed GA crossover operator was
specialized for this structure. The approach was a type of FBD-HI. The
FNN took the sensor data as input and outputted a vector representing
the sensor data in a transformed space. Thereafter the minimum
distance, given a selected distance metric, was measured between the
given state and the faulty states. Here the last state of each trajectory
was considered a faulty state. Thus, there were N, equal to the number of
training data trajectories, states to compare with. In situations where N
is very large, it should not be a problem clustering the states or selecting
a few representatives. Since N was not very large in any of the datasets,
this was not performed in this thesis.

Thus, for the proposed method, f in the FBD-HI definition in
equation 3.1 was an FNN. The critical difference to other approaches was
that the parameters of the FNN and partially the structure (the hidden
nodes) were learnt using the MOGA NSGA-II. This was performed
using the GA-operators presented in section 3.5.2, to optimize fitness
functions that are desired for an HI. Each time the network was evaluated,
the HI-curves were constructed for all training data trajectories and
assessed using the fitness functions (see section 4.2.3). The result of the
optimization procedure were a set of FNNs, each one able to construct
HIs using distance.

4.2.1 Baseline

A baseline method was used to verify the value of a transformation
function. It was an FBD-HI without transformation function. Thus, the
sensor data for each state was used as is (aside from any preprocessing
steps) before measuring the distance to the faulty states to generate Hls.
Here f in the FBD-HI definition was simply defined as f(z) = z.

Method | 31

4.2.2 Distance metrics

To use distance, a distance metric/function had to be selected. For
the MOGA-NN the Manhattan distance was used for both datasets. For
the baseline the Manhattan distance was also used for both datasets
to make the comparison fair. For other datasets other metrics could
potentially work better, for example the Euclidean distance.

Euclidean distance, d(x,y) = (x; — y;

= 1M
|

(4.1)
Manhattan distance, d(z,y) = |z — vl

N
Il
fa

where K is the dimension of x and y.

4.2.3 Fitness function

As mentioned in section 2.5, there are many ways to evaluate an
HI. Since no metric takes into account all factors of a good HI, it is
desirable to use multiple. Hybrid metrics have the weakness of requiring
an arbitrary weight to be assigned to each metric. This was solved using
the MOGA. The used metrics in this thesis are defined in Table 4.1 and
the idea behind each of them explained. Additionally, the way the results
were aggregated from the evaluation of each trajectory to one value is
specified in the rightmost column. The evaluation process of one solution
was performed as follows. First the solution generated an HI-vector for
each training data trajectory. Then the ith fitness function was applied
to each HI-vector:

values; = [fi(HIy), f;(HIs), ..., fi(HIN)]

where HI; is the jth Hl-vector generated from the jth training data
trajectory. Thus, for every trajectory one value was obtained. Since only
one value per fitness function is needed, the values had to be aggregated.
This was done using the function, agg, specified in the rightmost column:

value; = agg(values;)

At this point each solution had been assigned a value for each
fitness function. These values then determined the domination-front and
crowding distance, as specified in the NSGA-IT algorithm in section 3.5.1,

32| Method

which the algorithm used to approximate the Pareto front and evolve the

population.
Name Formula Idea Aggregation
Oscillation- Penalizes oscillations. The | Mean
penalty |H Inae — H Lm'"’ percentage of change that
sum(|diff]) + € was moving the HI. The € is
where diff = HI1.p — Hlyr_1 just a small number to avoid
divide by zero.
Mon,, The noise sensitivity problem | Mean
(rponotonic‘ity No. of diff, >0 No. of diff, < 0 is r'educed. For longer time
with step size n) | — | | series, the one-step difference
T—n T—n .
is expected to be very small,
where diff, = HI,.; — Hly.r_,, but for several steps more
significant.
Second-mon,, Monotonicity of the first difference: | If there is indication that | Mean
(second-degree the HI is expected to be
monotonicity Mon,, (diff) increasing faster over time
with step size n)) this metric would favour such
where diff = HII:T — HIO:T—I solutions.
Trendability See equation 2.2 Favours a linear trend. Mean/min
Spearman- See equation 2.3 Favours nonlinear increasing | Mean/min
trendability or decreasing trends.

Table 4.1 — Used fitness functions explained.

For monotonicity both Mon; and Mon;g were used in the experiments.

For second-degree monotonicity, Second-mon;q was used. Here for the

two trendability-metrics the minimum was used as the aggregation
function for the first dataset (described in section 4.5.1) where the
trajectories were fairly consistent. Then a minimum was useful to steer
the solutions to achieve a good trendability for every single trajectory. In
the second dataset (described in section 4.5.2) there were two different
failures with different characteristics. If the minimum was used the value

of the metric would only be affected by the type of failure with least
trendability. Instead, to obtain a better assessment of the trendability of
all trajectories, the mean was used.

Method | 33

4.2.4 Normalizing the HI

After having created a model that can generate Hls from sensor data,
it was useful to normalize the HIs. This made it easier to visually
compare HIs and for the RUL prediction model to digest the data.
The normalization was performed by first extracting the maximum and
minimum value of the HIs generated from the training data. Then each
HI was min-max scaled based on these values.

HI — HIspn

MinMaxScale(HI) = T 7 (4.2)
Smax — Smin

Of personal preference the HI was also modified to increase with a
simple change:

I — {1 — MinMaxScale(HI), if HIs are decreasing over time

MinMazScale(HI), if HIs are increasing over time
(4.3)
Thus, each HI from the training data was between zero and one and
increased over time (if the HI was approximately monotonic). For the
testing/validation data the min and max extracted from the training data
HIs were used for the normalization.

4.2.5 Tuning the MOGA-NN

There were several parameters that had to be decided: the number
of nodes in the FNN, the activation function, the fitness functions,
constraints on the fitness functions, the distance metric, the crossover
rate, the mutation rate and the population size. Because the crossover
operation of the GA could increase and decrease the number of hidden
nodes, the initial hidden nodes was not very important. What was fixed
on the other hand was the dimension of the transformed space where
the distance was calculated. The difficult part was also that there were
multiple objectives which means that it was challenging to determine
which option was the best. Because of this difficulty, the many different
parameters and the time it took to run a complete optimization, no
exhaustive tuning was performed.

Initially a small population was run using a small number of iterations
to test some of the parameters. The maximum achieved value for the
fitness functions in combination with the visualization of the Hls were

sensor 2

sensor 7

34 | Method

used to compare the different settings. Then a few candidates were
run with a larger population size and more generations. Overall, the
performance of the method was not very sensitive to most parameters
and for this reason not much tuning was required. This is discussed more
in section 6.3.2. One of the more critical parameters that improved the
RUL prediction was adding a constraint to the trendability, especially
for the first dataset. This way the population of solutions were more
narrowly positioned in a part of the search space where the solutions
were more successful in terms of RUL prediction with the GRU.

4.3 GRU for RUL prediction

Finally, RUL was predicted using the generated HIs. In this thesis
this was done using a GRU. The training data consisted of trajectories
of HI and RUL pairs: (HI.r,y1.r) where 3, was the RUL target at
time t. At time ¢t the GRU had processed the data from the initial
health to the tth point (H ;) and outputted a prediction ;. Thus, this
model was not threshold based. The error/loss was then measured in

root mean square error (RMSE), \/ 151 (9 — yi)?, and weights updated
through BPTT. The final activation function (f in section 3.6.1) was the
ReLU, ReLU(z) = max(0, z), since RUL is non-negative. The steps from
features to RUL are shown in Figure 4.1.

2 10 { — Available data
—— Future data
0 08
~ -2

sensor 4

100 200 0 100 200 FN N 06

Timestep Timestep > I

GRU

04

21 — available data
—— Future data
0 02
- = 00

sensor 8

100 20 0 100 200 0 s 100 150 200
Timestep Timestep Timestep

Preprocessed features Health indicator

Figure 4.1 — How predictions were made after fitting and selecting an FNN from
the MOGA and fitting a GRU using BPTT. Note that the FNN was not directly
outputting the HI, but a vector where the minimum distance to the faulty states
(also processed using the FNN) was generating the HI. Given that we are at the
150th timestep, the only data available for prediction is the data in blue. The shown
data is described in section 4.5.1.

RUL

Method | 35

4.3.1 Piecewise linear RUL

One problem with fitting an RUL prediction model is that often in the
early stages it is very difficult to forecast the RUL since the degradation
is minimal while the RUL still evolves linearly. To combat this and
improve model training a commonly used method is to change the RUL
by transforming it into a piecewise linear target. The new RUL is the
same for shorter time frames, but for longer time frames a limit is applied:

RUL; = min(RUL, L) (4.4)

where L is the specified threshold. The new target RUL for L = 100
is shown in Figure 4.2. This approach was adopted in this thesis.

— RUL
175 4 - Piecewise RUL

Target
—
o
o

T T

0 25 50 75 100 125 150 175 200
Time

Figure 4.2 — Difference between piecewise linear target RUL and actual RUL.

4.3.2 Finding the most suitable solution and training
the RUL prediction model

These steps could have been performed differently if a different model
was used such as an SMM. Since a GRU was used, the model was
relatively time-consuming to fit as opposed to SMMs. Also there were
a few HPs that had to be adjusted which meant the required number of
experiments would become large if all options had to be exhausted. At

36 | Method

the same time even if all solutions were fit we are dealing with a stochastic
optimization procedure. To combat this the search for the optimal HPs
was performed using a GA. The index of the HI constructing solution in
the population was also treated as an HP. Thus, one search algorithm
was used to both find the HPs for the prediction model and select the
FNN for HI construction. The fixed part of the search was as follows:

o Loss function: RMSE

 Optimizer: Adam [32]

- n=0.01
- 61 =09
— By = 0.999

The HPs to be tuned were:

e The solution in the population: index between one and size of
approximated Pareto front

¢ The number of hidden nodes: between 8 and 64

o The batch size, that is the number of trajectories fed into the
network in each batch: between 2 and the number of trajectories
in the training data (max 80 in both of the datasets)

The fitness function/evaluation criterion was the smallest achieved
validation loss. To avoid unnecessary computation, the technique known
as early stopping was used. This meant that the optimization procedure
was stopped if the validation loss had not improved in a fixed number of
iterations, here 50.

In the used GA, the mutation operation and the initialization of the
parameters were performed by simply sampling uniformly from the range
of each parameter. The crossover of two parents was done as follows for
each parameter independently:

w~ U(0,1)
child = (1 — w)p1 + wps

where child is the child-parameter and pl and p2 are the parameter
values of the first and second parent, respectively.

Method | 37

For the batch size and the number of hidden nodes an integer is
needed and for this reason the final number was rounded to the nearest
integer. The indices used for the specific FNN had no order, and thus, it
would have been pointless to take a weighted average of them. Instead
the weighted average of the vectors of fitness values was taken. That
is the fitness values achieved from the evaluation of the training data
HIs produced by the parent FNNs. To get the offspring index the FNN
whose fitness values most resembled the produced vector, calculated by
minimum Euclidean distance, was picked. Let the vector of fitness values
for one solution be defined as:

v, = [fi(HIs;), fo(HIs;), f3(HIs;), ...

where HIs; is the HIs produced from the training data by the ith
FNN and f; the jth fitness function. The crossover of the ith and jth
FNN was then:

w ~ U(0,1)
v=(1—w)v +wy;
child = arggnin d(vg, v)
where d is the Euclidean distance and child the index of the child-
FNN.
For selection, binary tournament selection was used. Overall, this
kind of search is less time-consuming than doing a grid search and more

efficient than a random search.
The used parameters for the GA were the following:

e 5 generations
e 8 population size
e 0.9 crossover rate

¢ (.2 mutation rate

It was run twice and the parameters achieving the lowest validation
loss chosen.

38| Method

4.4 Measuring the performance of the model
on the test dataset

In the previous step an FNN for HI construction was selected and
optimized HPs for the GRU found. To get a good representation of the
model performance the following process was then performed:

1. Three times in a row fit the GRU with the found HPs and early
stopping using the Hls constructed from the FNN

2. Pick the model that gave the lowest validation loss

3. Measure the test data RMSE

This was done 10 times and the resulting RMSEs define the model
performance. This way some of the variability of the stochastic
optimization process was removed while also taking into account that
different fits lead to different test errors.

4.5 Datasets

To answer the research questions two datasets were explored the using
the proposed method and baseline.

4.5.1 Turbofan Engine Degradation Simulation

The Turbofan Engine Degradation Simulation (TEDS) Dataset was
simulated using the Commerical Modular Aero-Propulsion System Simulation
developed by NASA and is a common benchmark for prognostics methods
[33]. A diagram of a turbofan engine is shown in Figure 4.3.

In this thesis the first of the four datasets, FD001, was used to test
and compare the proposed method with other methods. It contained
100 training trajectories and 100 test trajectories for different engines of
the same type. The training data was split into 80 training trajectories
and 20 validation trajectories. For the test trajectories only a partial
trajectory was available together with the RUL. The dataset contained 21
sensors together with three operating settings. In FD0O1 there was only
one operating condition and also some sensors were constant over time.
Thus, the operating settings and the constant sensors were removed. Left

Method | 39

High-pressure Higt?—pressure
Fan compressor turbine

High-pressure
shaft

Low-pressure
shaft

Low-pressure

Combustion Low-pressure Nozzle
compressor

chamber turbine

Figure 4.3 — Schematic diagram of a turbofan engine.

Image source: "Turbofan
operation" by K. Aainsqatsi / CC BY-SA 3.0 [34].

were 14 sensor measurements with indices 2, 3, 4, 7, 8, 9, 11, 12, 13, 14,

15, 17, 20 and 21. Four sensors for one trajectory are shown in Figure
4.4.

644.0 1430
~ 5435 1420
643.0
1410
642.5
o 1400

0 25 50 75 100 125 150 175 200

sensor
sensor 4

5 50 75 100 125 150 175 200

o4

Timestep Timestep
+2.388e3
555
03
554
~ (o]
— v 02
O 553 o
%) "
G 3
wn 552 wn 01
551
00

5 50 75 100 125 150 175 200
Timestep

0 25 50 75 100 125 150 175 200
Timestep

o4

Figure 4.4 — Four TEDS dataset sensors visualized for one trajectory.

The sensor measurements were standard scaled:

’ - K (4.5)

This is a common operation when training NNs with gradient descent

z =

https://commons.wikimedia.org/wiki/File:Turbofan_operation.svg
https://commons.wikimedia.org/wiki/File:Turbofan_operation.svg
https://creativecommons.org/licenses/by-sa/3.0/

40 | Method

but it is also important here since the initialisation of the NN’s weights
and the adding of Gaussian noise as the mutation operator could be
of a fixed scale. Note that for the validation and test data the mean
and standard deviation extracted from the training data were used to
standard scale the measurements.

Parameters

For the TEDS dataset the following parameters were used for the
FBD-HI using the MOGA-NN:

population size of 100

o crossover rate of 0.9

« mutation rate of 0.05

e 16 hidden nodes

o 8-dimensional transformed space

o ReLU activation function

« initialization using N (0, 1)

« mutation using N (0, 1)

o Manhattan distance

o Fitness functions, aggregation type:

— oscillation-penalty (mean)

— trendability (min)

— Spearman-trendability (min)
— Mon; (mean)

— Mon;g (mean)

— Second-mon;, (mean)
o Constraints: trendability > 0.8

 Piecewise limit of 130 (same for the baseline method)

For the baseline, Manhattan distance was also used.

Method | 41

4.5.2 Elevator weight simulation dataset

This dataset was simulated by mimicking the weights/force exerted
on an elevator inside a grain storage facility. It is here denoted the
elevator weight simulation (EWS) dataset. A graphical representation of
such an elevator is shown in Figure 4.5. The failure was due to either
the loosening of the elevator belt that is moving buckets up and down
with grain. Or other disturbances such as objects being stuck in sensitive
areas causing increased tension between the motor pulling the belt and
the belt. An image of the time series of weights for one batch is shown
in Figure 4.6. As can be seen the weight is initially low before the grain
begins to be transferred, then it increases and stays on the same level for
a bit, scooping up and dropping off grain iteratively. Finally, there is no
grain left in the batch and the level drops down.

e 2o BT e SR ol

(a) The elevator picks up the grain (b) After elevating the grain it is thrown to the next part in

the transportation process

Figure 4.5 — Graphical representation of elevator transporting grain.

In the simulation the idea was that as the belt loosens, the weight
at the lowest point would decrease until a point where it failed. At
the same time, independently, objects could get stuck in sensitive areas
inside the elevator causing increased pressure on the motor. This was
shown as "spikes" in the weight pattern and could cause a different error.
Thus, there were two simultaneous failures that could occur. Similar
to the TEDS dataset, there were 80 training trajectories, 20 validation
trajectories and 100 test trajectories. This time the test trajectories were
not partial, but complete.

42 | Method

1200
1000

800

600

Weight

400

o L

0

80)

o0
ot \
>

oo
o Al
2

20 o
y

"5
NN

Q
3 od e oY

o0
N
N ¢ 3

1
v°
Time

Figure 4.6 — Real elevator weights captured using a sensor.

How it was simulated

The simulation was performed as follows. Firstly, two independent
degradation curves were generated using Algorithm 2.

z b1 P2 1 T2 S1 | S2
Expected failure | 1.01 | 0.005 | 0.01 | 0.03 | 0.07 | 0 | 0.1
Shock failure 1.0 | 0.001 [0.002 | 0.1 |0.15|0.2]|04

Table 4.2 — Parameters for the degradation curves.

The parameters for the two degradation curves/different failure types
are shown in Table 4.2. The crucial difference here was that z = 1.0 for
the shock failure. This meant that the degradation would not start (z
did not change) before a shock occurred (s increased) since:

ri=xi 1 —1(Ts—xi1+8)={rs=x,1,s=0} =2,

Also notice that the rate (r1,72) and shock size (s1, s7) were higher for
the shock failure but the probability of shock (p;, p2) was much smaller.
Thus, the expected failure was anticipated to happen sooner or later while
the shock failure was a more rare event. But when the shock degradation

Method | 43

Algorithm 2 Degradation simulation: ri,T9, P1, P2, S1, 82,2 are
parameters. The final series of xs: xg,2q,... is the degradation
patttern. The length varies stochastically.

5+ 0

20 ~ U(3.5,5)
q~U(ry,ms)

e 2
p~U(p1,p2)
Ts ¢ 2+ X
141
while z;,_; > 0 do
q~U(0,1)
if ¢ < p then
a~ Ul(sy,S2)
S s+a
end if
x;=xi1 —1(Ts — Ti_1 +8)
1 1+1

end while

started it progressed quickly. See Figure 4.7 for the degradation curves
of the two events. As can be seen, the variance of the time from start to
failure was very high for the shock failure while the expected failure was
more consistent.

The simulation was performed for both degradation curves simultaneously
until one of them fell to zero or below and the simulation was stopped.
About 10% of the time the shock failure caused the simulation to stop
and the rest of the times the expected failure.

At each time point the two degradation values were then used to
construct one batch of elevator weights. The expected degradation
state affected the weight when there was no grain in the elevator.
Specifically, the empty weight was two times the degradation state. The
shock degradation state affected the oscillations when the elevator was

Degradation

44 | Method

5
4 L
c -
S 3 ET
©
B 2
—
o
81 ‘
: |
T T T T y T T -1+ T T T T T T
0 20 40 60 80 100 120 0 500 1000 1500 2000 2500 3000
Timestep Timestep
(a) Expected failure (b) Shock failure

Figure 4.7 — The two types of simulated degradation curves.

transferring the grain by causing shocks. This was manifested in a
stochastic manner in the system based on the probability (z, — z)/x
every 7th timestep (representing the time for the elevator to turn one
lap). At the same time the weights were masked with noise. The code
to generate the elevator weights was added as an appendix.

Finally, components were extracted from the generated weights using
simple heuristics and different features extracted from each. The pipeline
is visualized in Figure 4.8. In summary, two degradation curves were
generated and stopped after one of them reached the threshold. For each
timestep the states generated weight data. From this weight data, parts
were extracted and features calculated to create the dataset. One added
difficulty was that at some points the initial or last part of the time
series of weights were missing. Then all features from those components
were set to zero and a dummy-encoded indicator (one if missing, zero if
present) marked that the features were missing.

The extracted features are listed below:

o The initial and last part (before/after grain enters/leaves the
elevator):
— min
— max
— mean

— missing indicator

o The middle part (when the system is filled with grain):

Method | 45

—- = [0.1,0.02, ...]

15 20 3 E £ 0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600

/
Degradation curves / Generate data based on degradation values Extract parts Extract features
~— (here timestep 20)

Figure 4.8 — Pipeline for the simulation.

— variance of the first difference

Thus, there were in total nine features. Four of them are visualized
for one trajectory in Figure 4.9. In the top row two features related to
the expected failure are shown. These were very noisy, but also go to zero
sporadically. This was due to the missing data as previously mentioned.
The time series in the bottom-left shows when the data was missing (one
= missing, zero = not missing). At the bottom-right the single feature
that was related to the shock failure is shown. It is much easier to see
how the degradation evolves but there were far fewer failures of that type.
Finally, the extracted features, like the TEDS dataset, were standardized
using equation 4.5.

One objective with this dataset was to explore how the proposed
method and baseline handle multiple errors and competing risks. In this
case there were really two errors that could be monitored separately (since
they were independent). Thus, practically it could be more effective
to generate two HIs, one for each failure type. Here it was assumed
though that all this information about the number of failures and how
the features were related to each failure was unknown to investigate how
the method behaved. In practice this would be useful when, for example,
maintenance is done simultaneously for all components and there is no
individual adaptation. Also if there is only one type of failure but it could
occur in a multitude of ways with different characteristics. Competing

46 | Method

25
20
15 20
=
£ G 15
10 @
E £
- o 10
& s
0 5
o 0
0 20 40 60 80 100 0 20 40 60 80 100
Timestep Timestep
10
F 4000
g 08 ‘ﬂ-:
B > 3000
706 e
£]
) 04 T 2000
a £
2 02
L] L | o
0.0 —
0 20 40 60 80 100 0 20 40 60 80 100
Timestep Timestep

Figure 4.9 — Four EWS dataset features visualized for one trajectory. Here the failure
was caused by shock.

risks are common in survival analysis and healthcare where a person can
for instance be at risk of dying due to different diseases.

Parameters

For the EWS dataset the following parameters were used for the FBD-
HI using the MOGA-NN:

e 500 generations

» population size of 100
 crossover rate of 0.9

« mutation rate of 0.05

e 16 hidden nodes

o 2-dimensional transformed space
o ReLU activation function

« initialization using N (0, 1)

« mutation using N (0, 1)

Method | 47

e« Manhattan distance

o Fitness functions, aggregation type:

oscillation-penalty (mean)

trendability (mean)

— Spearman-trendability (mean)
— Mon; (mean)

— Monyy (mean)

— Second-mon;j, (mean)
o Constraints: trendability > 0.1

 Piecewise limit of 80 (same for the baseline method)

For the baseline, Manhattan distance was also used.

48 | Method

Results | 49

Chapter 5

Results

5.1 Turbofan Engine Degradation Simulation

5.1.1 Hils

Baseline

First the baseline approach, described in section 4.2.1, was applied to
the TEDS dataset. To apply the method, only the faulty states from the
training data were needed. Then the HIs were generated by taking the
minimum distance from each state to any of the extracted faulty states.
The results from this approach are shown in Figure 5.1. On the left are
the generated validation HIs, each color represents one trajectory. In
the center the states from three validation trajectories (blue, green and
orange) projected onto the two first principal components are visualized.
Additionally, the faulty states (from the training data) are shown with
larger size in red. PCA was used to approximately visualize the state
space since the real state space was 14-dimensional. On the right the
HIs of the same trajectories as in the center plot are shown. These two
plots show three trajectories instead of all of them to avoid the plot
from becoming too cluttered. The trajectories are chosen based on the
visualization of the state space so as to show trajectories that do not
overlap much. In Figure 5.2 & 5.3, shown for the proposed method in
the next section, the same trajectories are displayed but in a transformed
space.

The results are satisfactory in the sense that the HIs appear to
be approximately monotonic and consistent, and the state space seems
structured. From a visual perspective, it is not immediately obvious

50 | Results

what could be improved with the results aside from reducing the noise.
The achieved fitness values for the training data are shown in Table 5.1.
These results were used as references to compare the proposed method
with, and are revisited in the next section.

e Trajectory A
e Trajectory B

e Trajectory C
Faulty states

—— Trajectory A
Trajectory B

—— Trajectory C

8 . ® 09
08 . [[\
2 .§ 08 | \
§ é : - J} ° ﬁﬂ é 07 ,Jw' ‘MVH
© o % o (5 © A
'-é 06 é_ 4 o ..’. .'..'.Q.‘to X é 06 ﬁ"‘ W‘W 'r
£ 04 § ’ o7 o - g os V"I M‘”‘“‘WLM W
s g ” e i YL
2 c | W ® oot BT
02 £ 'M\'{" o G 03
a ylo 02
0 150 200 250 300 350 4 2 0 2 3 6) 0 0 100 150 200
Timestep Principal component 1 Timestep
Figure 5.1 — Visualized results for the TEDS dataset using the baseline, FBD-HI
without transformation function. Left column: all 20 validation HIs. Middle column:
state space visualized using PCA for three validation trajectories and faulty states.
Right column: three validation Hls, corresponding to the ones visualized in the middle
column.
Metric o - .-
Solution Oscillation-penalty | Trendability | Second-mon;y | Spearman-trendability | Monyy | Mon;
Baseline FBD-HI 0.090 0.82 0.0086 0.84 0.38 | 0.056

Table 5.1 — Fitness values obtained using the FBD-HI without transformation function
(the baseline) applied to the TEDS dataset for the training data.

MOGA-NN

The proposed method, described in section 4.2, was then applied to
the TEDS dataset. As before, the faulty states were needed. In addition,
with this method several FNNs have been trained using the MOGA to
transform the sensor data to vectors in a new state space. Then the
distances between the states and faulty states in this space over time
generated HIs that were optimized with respect to the fitness functions.

In the parameters, listed in section 4.5.1, there was a constraint on the
trendability which improved the RUL prediction performance using the
GRU. This is not necessarily optimal for other models. For this reason
the results produced by the solutions resulting from the MOGA with a

Results | 51

smaller constraint of trendability > 0.1 are first shown in Figure 5.2.
Three solutions that produced HIs from the training data that resulted
in the best Mon;g, trendability and oscillation-penalty are shown in the
same way as the baseline in Figure 5.1. As before, PCA was used to
visualize the states.

As can be seen from the HIs in the left column of each row in the
figure, the solutions showed a lot of diversity. For both trendability
constraints (> 0.1,> 0.8), the maximum size of the Pareto front was
achieved, equal to the population size (100). With six fitness functions
this was rather expected. Thus, in total there were 100 solutions like
these, but many were highly correlated.

In Figure 5.3 the more constrained results (trendability > 0.8) are
shown. In the bottom-row of Figure 5.2 and Figure 5.3 the solutions that
achieved the highest oscillation-penalty are shown. Comparing them, it
can be seen that the HIs (right and left column) in Figure 5.3 rise more
consistently in the beginning stages because of the forced trendability
and consequently reduced oscillation-penalty. If the best solution has
a high trendability this constraint improves the search because of the
shrunken search space.

In the top row of Figure 5.3 the best solution found using the HP
search is shown. It is not obvious why this solution was chosen in
particular. One observation from the Hls in the left column, was how
the increasing trend wore off at the end of the HI before failure. An
hypothesis was that the GRU used this information. This highlights one
of the strengths of the optimization through the MOGA. It generates
several solutions, increasing the probability of generating one that is
compatible with the model of choice and achieves a good performance.
In Figure 5.4 a histogram of the number of hidden nodes in the solutions
is shown. It can be seen that the solutions increased the number of
hidden nodes from the starting point of 16.

The final fitness values (of the training data HIs) of the best solution
chosen by the HP search and the solutions with the highest score on
any individual metric are shown in Table 5.2. By iterating through and
comparing the fitness values obtained from all the MOGA-NN solutions
(not only the ones shown in Table 5.2) with the fitness values obtained
with the baseline, it was shown that the baseline was not dominated
by any of the solutions from the MOGA-NN in regard to the training
data. In turn the baseline would be part of the approximated Pareto
front. The same comparison was done but with the fitness values achieved

52| Results

from the validation data. In this case the baseline was dominated by 3
solutions. The fact that just a few solutions dominated the baseline for
the validation data and none in the training data is not unexpected with
six metrics. The NSGA-II algorithm uses crowding distance to spread
the solutions out across the front and because the number of solutions
are finite there is a lot space left . Comparing the state space of the
baseline with the spaces generated by the MOGA-NN, one clear difference
was that in the baseline each trajectory was more separated. If this is
something that better facilitates RUL prediction is uncertain.

Overall, the only obvious advantage that can be seen was the fact
that the MOGA generated several solutions with different characteristics.
That being said, the true objective was to predict the RUL and this
comparison is made in the next section. To understand what kind of
metrics the final solution selected for the GRU favoured, the sum of
each subset of fitness values for the training data were sorted. Then
the position of the chosen solution was extracted. It was found that the
chosen solution had the highest score of the combination of Spearman-
trendability and oscillation-penalty.

Solution Metric Oscillation-penalty | Trendability | Second-mon;g | Spearman-trendability | Monj, | Mon;

Best GRU 0.10 0.82 -0.0028 0.90 0.41 | 0.055

Best oscillation-penalty 0.11 0.80 0.0025 0.88 0.41 | 0.052
Best trendability 0.069 0.91 0.0079 0.90 0.39 | 0.059

Best second-mon;g 0.068 0.85 0.029 0.84 0.33 | 0.039
Best Spearman-trendability 0.073 0.90 0.0094 0.91 0.39 | 0.058
Best Mony 0.10 0.82 0.0056 0.88 0.42 | 0.057

Best Mon; 0.088 0.85 0.0071 0.87 0.38 | 0.074

Table 5.2 — Fitness values obtained using the FBD-HI MOGA-NN applied to the
TEDS dataset with a constraint of trendability > 0.8 for the training data.

Health indicator

Health indicator

Health indicator

10

08

06

04

02

0.0

10

08

06

04

02

10

08

06

04

02

00

Results | 53

e Trajectory A e Trajectory C —— Hl of trajectory A —— HlI of trajectory C
e Trajectory B Faulty states — Hl of trajectory B
10
15
o~
2 10 _ 08
g S
S 05 ©
o
§- o .é 06
00 =
3 £
S =
2 05 S 804
2 ° T
£ 10
e 02
-15 i
0 0 100 150 200 250 300 350 25 00 25 50 75 100 125 150 0 50 100 150 200
Timestep Principal component 1 Timestep
(a) The solution with the best achieved Monjg on the training data.
e Trajectory A e Trajectory C —— Hl of trajectory A —— HlI of trajectory C
e Trajectory B Faulty states — HI of trajectory B
10
15.0
09
o~ 125
o
T 10 5%
< % 4
2 Sor
g 15 -
S £ 06
o
— 50 b=
s =
2 g os
E 25 =
= 04
S 00
03
-25
0 S 100 150 200 250 300 330 4 -2 0 2 4 6 8 10 0 50 100 150 200
Timestep Principal component 1 Timestep
(b) The solution with the best achieved trendability on the training data.
e Trajectory A e Trajectory C — Hl of trajectory A —— HlI of trajectory C
e Trajectory B Faulty states — HI of trajectory B
10
o e
..
~ 4 N $°. o 08
- L] &
5 3300 e Fo% 5
s - o‘. o o ° GO ®
g_ ° e " g, % o o 06
= 'o o e 3 2
S »® £
o L
= 9 . g o ° 1 S 04
© o 3 a =
=% ° %e P
g %) ° &@ { T
E2q @ Sa N e s] 02
[L] &5
-4 . e 00
0 s 100 150 200 250 300 350 2 0 2 2 6 8 1 1 1 0 50 100 150 200
Timestep Principal component 1 Timestep

(¢) The solution with the best achieved oscillation-penalty on the training data.

Figure 5.2 — Visualized results for the FBD-HI MOGA-NN with trendability > 0.1
applied to the TEDS dataset. Each row shows the results of one solution. Left
column: all 20 validation HIs. Middle column: transformed state space visualized
using PCA for three validation trajectories and faulty states. Right column: three
validation Hls, corresponding to the ones visualized in the middle column.

Health indicator

Health indicator

Health indicator

10

08

06

04

02

0.0

10

08

06

04

02

10

08

06

04

02

0.0

54 | Results

e Trajectory A e Trajectory C —— Hl of trajectory A —— HlI of trajectory C
e Trajectory B Faulty states — HI of trajectory B
% 10
~ 20 6}
= 08
§ 15 §
2 10 S 06
£ b=l
S 1=
S 05 =
= =
2 oo 504
£ *
£ 05
02
-1.0
0 s 100 150 200 250 300 350 25 00 25 50 75 100 125 150 0 50 100 150 200
Timestep Principal component 1 Timestep
(a) The best found solution with the HP search.
e Trajectory A e Trajectory C —— Hl of trajectory A —— HlI of trajectory C
e Trajectory B Faulty states — HI of trajectory B
5 ® 10
4 09
o~
= 108
g 2
S 2 go
g 1 ‘5’ 06
g =
—_— e
8o Eos
£ 04
=
a.
-2 03
= 02
0 S 100 150 200 250 300 350 -4 2 0 2 4 6 0 50 100 150 200
Timestep Principal component 1 Timestep
(b) The solution with the best achieved trendability on the training data.
e Trajectory A e Trajectory C —— Hl of trajectory A —— HlI of trajectory C
e Trajectory B Faulty states — HI of trajectory B
10
4 & ®
N
:‘ 3 08
c —
2 . &
©
é_ i % 06
151 & =
2 5 <
.g_ E 04
g ==
=
Oy e 02
] T T T T T T T T T
0 S 100 150 200 250 300 350 25 00 25 50 75 100 125 150 175 0 50 100 150 200
Timestep Principal component 1 Timestep

(c) The solution with the best achieved oscillation-penalty on the training data.

Figure 5.3 — Visualized results for the FBD-HI MOGA-NN with trendability > 0.8
applied to the TEDS dataset. Each row shows the results of one solution. Left
column: all 20 validation HIs. Middle column: state space visualized using PCA for
three validation trajectories and faulty states. Right column: three validation HIs,
corresponding to the ones visualized in the middle column. Marked in the top-left is
a peculiarity of the solution selected by the HP search.

Results | 55

5

Frequency
S

40 45 50
Hidden nodes

Figure 5.4 — Histogram of the number of hidden nodes in the solutions constructed
using the FBD-HI MOGA-NN for the TEDS dataset with trendability > 0.8.

RUL

140

120

100

56 | Results

5.1.2 RUL Prediction

Lastly, an HP search was performed to select one solution from the
population found using the MOGA and HPs for the GRU. The results
from the chosen FNN are shown in the top row of Figure 5.3. The found
GRU parameters were 27 hidden nodes with a batch size of 41. An
HP search was also conducted for the baseline without the additional
solution-parameter. The resulting HPs was 13 hidden nodes and a batch
size of 62. In Figure 5.5 predictions against the target RUL are plotted
for the GRU using HIs from the selected solution from the MOGA for
three validation trajectories.

—— Target RUL R — —— Target RUL S —— Target RUL
Prediction 120 \ Prediction 120 Prediction

100 \ 100
80 80
-
=]
60 o 60
\
40 . 40
N\
20 AN 20

~ 0 \ 0

RUL

s 00 15 130 175 0 3 s 75 W0 15 130 175 0 s 100 150
Time Time Time

Figure 5.5 — Predictions using the FBD-HI MOGA-NN with GRU, plotted against
the target RUL for three validation trajectories.

The models were then trained and tested 10 times each as explained
in section 4.4. The test results in RMSE for the GRU using HIs from
the proposed method and the baseline are shown in the form of boxplots
in Figure 5.6. A nonparametric hypothesis test, the Wilcoxon rank-sum
test, was also performed to assure that the difference between the errors
was significant (p < 0.0002). Thus, the evidence suggested that the
added NN transformation function improved RUL prediction.

The mean RMSE for the tested methods and the comparison with
several benchmarks for the dataset is shown in Table 5.3. From the
benchmarks it can be seen that the performance of the proposed method

was competitive, but there were a couple of approaches that reported a
smaller RMSE.

15.0

145 4

14.0

RMSE

13.5

13.0 A

GRU with MOGA-NN GRU with baseline

Method

Results | 57

Figure 5.6 — TEDS dataset test results in RMSE. Two boxplots are shown, one for
the GRU using HIs from the baseline FBD-HI, and one for the GRU using HIs from
the MOGA-NN FBD-HI. Each method was tested 10 times.

Method RMSE

MLP [9] 37.56

SVR [9] 20.96

RVR [9] 23.80

CNN [9] 18.45

Deep LSTM [7] 16.14
FMLP [35] 13.36
RBM-Bi-LSTM-Sim [4] 13.28
Deep-CNN [§] 12.61
Dual-task LSTM [6] 12.29
1-FCLCNN-LSTM [12] 11.17
2-S-MIC-TCNN-AM [11] 10.45
FBD-HI-MOGA-NN-GRU | 12.61
FBD-HI-Baseline-GRU 14.80

Table 5.3 — Benchmarks for FD001. The second to last row shows the result of the
proposed method and the last row the result of the baseline.

Health indicator

58| Results

5.2 Elevator weight simulation

5.2.1 Hils

Baseline

The same procedure as for the TEDS dataset was performed on the
EWS dataset. The results from the baseline approach are shown in Figure
5.7. The differences from Figure 5.1 (aside from the dataset) are that a
moving average is here used to smooth out the noise and two trajectories
of each type are shown in the center and right plot. In the right plot in
red, the HIs resulting in a shock failure are shown and in blue, the HIs
resulting in an expected failure are shown. As before, PCA was used to
visualize the state space.

Figure 5.7 — Visualized results for the EWS dataset using the baseline, FBD-HI
without transformation function. Left column: all 20 validation HIs. Middle column:
state space visualized using PCA for four validation trajectories and faulty states.
Right column: four validation Hls, two HIs leading to shock failure and two HIs
leading to expected failure, corresponding to the ones visualized in the middle column.
A moving average has been applied to every HI.

The EWS dataset had difficulties that were not present in the TEDS
dataset. For one the trajectories were shorter, which means there were
fewer timesteps to average out the variance. Additionally, there were
missing values in the data as explained in section 4.5.2. Furthermore,
there were two types of failure with different characteristics. For this
reason the HIs on the left and right in Figure 5.7 appeared more "wiggly".
The state space also appeared less structured. In the right plot, it can
be seen that the HIs of the different types of failure differentiated. The

e Shock-trajectory A e Expected-trajectory B . .
s Shock-trajectory B Faulty states — Hl leading to shock failure
e Expected-trajectory A — Hl leading to expected failure
090
4 L]
o~ %° .
o oS i o 085
5 2 " . . =
2 o il g
2 Do e g SPoer 8 os0
£ e ©, o ertalit et o g
8 o Nlge SRS A =
- ' T, BTN g £ o
=3 . ©
£ ’ X T on
& g,““
= e . 065
& & 100 -4 =2 0 2 4 2 @) 100
Timestep Principal component 1 Timestep

Results | 59

expected failure, while noisy, had a clear trend upwards. The shock
failure on the other hand, showed no increasing trend whatsoever.

The fitness values achieved with this approach are shown in the top
row of Table 5.4. Because the majority of failures were caused by the
expected type, the fitness values did not tell the full story. Overall, there
was clearly room for improvement in terms of handling the more rare
failure.

MOGA-NN

The same procedure for the MOGA-NN was performed as for the
TEDS dataset but with the EWS dataset. The size of the Pareto front
was 98 solutions. In Figure 5.9 the results are visualized. Note that
this time PCA was not used to visualize the states since the data was
already two-dimensional. Once again a moving average was applied to
every HI. Comparing the state spaces, in the middle column, with the
baseline in the middle column of Figure 5.7, there are slight differences.
But as the TEDS dataset, it is difficult to interpret the consequences
of these differences. Instead, looking at the HIs on the right, they were
with this method much more consistent. In fact it was quite difficult
to distinguish shock failures from expected failures from the Hls. The
histogram of the number of hidden nodes is shown in Figure 5.8. As
for the TEDS dataset, the number of hidden nodes in the solutions had
increased from the starting point of 16.

This time there was no subset of the fitness functions where the
selected solution (found using the HP search) had the highest sum. The
best subset was of trendability and Mon; and had the third highest
sum of all solutions. This could partially have been because the HP
search is stochastic and there might have been a better solution in the
population. But also the weight associated with each fitness function
was not necessarily uniform. It is in such situations where multi-objective
optimization excels. In Table 5.4 the fitness values of a few of the MOGA-
NN constructed solutions are shown. This time, even with six fitness
functions, the baseline would not be part of the approximated Pareto
front for the training data nor the validation data. In fact 56 of the
found solutions were dominating the baseline in the training data, and
40 of the found solutions in the validation data. Thus, based on the
fitness values and visualized HIs, the MOGA-NN solutions and added
transformation function show more promise.

60 | Results

20

&7

Frequency

30 35 40 45 50
Hidden nodes

Figure 5.8 — Histogram of the number of hidden nodes in the solutions constructed
using the FBD-HI MOGA-NN for the EWS dataset.

Solution Metric Oscillation-penalty | Trendability | Second-mon;y | Spearman-trendability | Mon;y | Mon;

Baseline FBD-HI 0.091 0.57 0.036 0.54 0.23 | 0.049
Solutions from the MOGA-NN FBD-HI

Best GRU 0.14 0.79 0.033 0.78 042 | 0.10

Best oscillation-penalty 0.19 0.62 0.043 0.61 0.30 | 0.073

Best trendability 0.13 0.80 0.038 0.79 0.43 | 0.078

Best Second-mong 0.12 0.68 0.074 0.66 0.30 | 0.049

Best Spearman-trendability 0.15 0.80 0.032 0.81 0.45 | 0.094

Best Monyg 0.14 0.79 0.037 0.80 0.45 | 0.083

Best Mon; 0.12 0.75 0.025 0.72 0.36 | 0.11

Table 5.4 — Fitness values obtained using the FBD-HI baseline and MOGA-NN applied
to the EWS dataset for the training data.

Health indicator

Health indicator

Health indicator

20 40)) 100
Timestep
) 20)) 100
Timestep
(b) The

e Shock-trajectory A .
e Shock-trajectory B
e Expected-trajectory A

Expected-trajectory B
Faulty states

Health indicator

Health indicator

09

Results | 61

—— Hl leading to shock failure
—— Hl leading to expected failure

08

07

06

05

04

09

08

07

06

05

04

20 o &) 100

Timestep

—— Hl leading to shock failure
—— Hl leading to expected failure

20 40 60 80 100
Timestep

300
L]
200
~ 100
c
o
2 0
£
£ . ®
o -0 '. =
-200 L
L]
L]
=300 : . ;
=300 =200 -100 0 100
Dimension 1
(a) The best found solution with the HP search.
e Shock-trajectory A e Expected-trajectory B
e Shock-trajectory B Faulty states
e Expected-trajectory A
300
.
200 .)
2 [}
- L]
‘: 00 u .. L]
S 3 %0
—) L]
2 .. 3‘ C)
[0 e o °
E '
[a) °.0
-100 . g
L]
-200 L .
300 200 100 [100
Dimension 1
solution with the best achieved trendability on the training data.

e Shock-trajectory A .
e Shock-trajectory B
e Expected-trajectory A

Expected-trajectory B
Faulty states

200 {4
150
\ L]
100 %
~ » e
c L]
L] L]
s 50 [S Lo ®.,°. G |
< . e o
[
g e * o oo dd
- L] L]
O s o &
e
..
-100 “
®
-150
-400 -300 -200 -100 0

Dimension 1

Health indicator

07

06

05

04

03

02

—— Hl leading to shock failure
— Hl leading to expected failure

20 P)) 100
Timestep

(c¢) The solution with the best achieved oscillation-penalty on the training data.

Figure 5.9 — Visualized results for the FBD-HI MOGA-NN applied to the EWS

dataset.
solution.

Middle column:

Left column: all 20 validation HIs.

Each row shows the results of one
transformed state space visualized for four validation

trajectories and faulty states. Right column: four validation HIs, two Hls leading
to shock failure and two HIs leading to expected failure, corresponding to the ones
visualized in the middle column. A moving average has been applied to every Hls.

62 | Results

5.2.2 RUL prediction

Finally, once again an HP search was performed to find a single
solution from the population and HPs for the GRU. The results generated
from the chosen solution of the FBD-HI MOGA-NN are shown in the
top row of Figure 5.9. The found GRU parameters using HIs from the
MOGA-NN were 36 hidden nodes with a batch size of 60 and for the
GRU using HIs from the baseline, 21 hidden nodes with a batch size
of 43. To evaluate the results, the predictions for the GRU using the
baseline HIs and the MOGA-NN generated HIs were compared for the
test dataset. The baseline-HI predictions are shown in Figure 5.10 and
the MOGA-NN-HI predictions are shown in Figure 5.11.

Four plots are shown, two failures caused by shock and two failures
caused by expected failure. Additionally, in each graph, the actual
degradation curves are displayed. The red curve is the expected
degradation and an expected failure occurred when this curve went zero.
The green curve is the shock degradation and the shock failure occurred
when this curve went to zero.

Comparing the predictions for expected failures in the bottom row of
each figure, both methods made reasonable predictions. The more visible
difference was seen for the shock failure predictions in the top row of each
figure. The methods were making predictions in regard to the expected
degradation until the shock degradation began. Then the baseline-GRU
at first, contradictingly, increased the RUL forecast. The MOGA-NN-
GRU had a much more reasonable response to the progression of the
shock degradation and started to decrease. Overestimation is expected
before the shock degradation has begun, since then the expected failure
is more likely to occur. However, even the MOGA-NN-GRU, while
not as much as the baseline, overestimated the RUL after the shock
degradation had started. This behaviour could have been caused by the
high stochasticity, the small amount of samples (of shock failure), the
quick degradation or the difficulty of modelling both errors.

The RUL prediction models were trained and tested 10 times as
explained in section 4.4. The achieved mean test RMSE for the GRU
using HIs from the FBD-HI MOGA-NN was 15.52 and it was lower than
the GRU with HIs from the baseline FBD-HI, which was 17.14 (Wilcoxon
rank-sum test, p < 0.0002). The results are visualized in boxplots in
Figure 5.12. Thus, the evidence once again suggested that the proposed
method outperformed the baseline in terms of RUL prediction. The

RUL

RUL

70

20

10

70

20

10

—— Target RUL —— Shock degradation
Prediction —— Expected degradation

0 10 20 30 a0 50 €0 70
Time
(a) Shock failure A

—— Target RUL —— Shock degradation
Prediction —— Expected degradation

0 20 20 &0 80
Time

(c) Expected failure A

DegraNdation

Degradation

Results | 63

—— Target RUL —— Shock degradation
Prediction —— Expected degradation
70
60
50
40
|
=)
e 30
20
10
0
0 5 10 15 20 5 30 35
Time
(b) Shock failure B
—— Target RUL —— Shock degradation
Prediction —— Expected degradation
80
70
-}
=)
=

20

10

DegraNdation

0 20 0 &0 80
Time

(d) Expected failure B

Figure 5.10 — Predictions using a GRU fitted with HIs from the FBD-HI without
transformation function (the baseline) plotted against target RUL for four test
trajectories. Additionally, in each plot the shock and expected degradation curves
are shown. These are the curves that generated the data which in turn the features
were extracted from. In the two plots in the top row the final failure was a shock
failure and in the two plots in the bottom row the final failure was an expected failure.

number of failures of each type in each split of the data are shown in

Table 5.5.

Degradation

RUL

RUL

20

10

64 | Results

—— Target RUL
Prediction

— Shock degradation
—— Expected degradation

Time
(a) Shock failure A

—— Target RUL
Prediction

—— Shock degradation
—— Expected degradation

Time

(c) Expected failure A

Degradation

Degradation

RUL

RUL

70

20

10

20

10

—— Target RUL —— Shock degradation
Prediction —— Expected degradation
L4
L3
’\ c
et o
S
L2 ®©
-]
o
(=]
L1 8
Lo
0 5 10 15 20 5 30 %
Time
(b) Shock failure B
—— Target RUL —— Shock degradation
Prediction —— Expected degradation
Fa
I
19
S
]
123
—
&g
F1
Lo

40 60
Time

(d) Expected failure B

Figure 5.11 — Predictions using a GRU fitted with HIs from an FBD-HI MOGA-NN
solution plotted against target RUL for four test trajectories. Additionally, in each
plot the shock and expected degradation curves are shown. These are the curves that
generated the data which in turn the features were extracted from. In the two plots
in the top row the final failure was a shock failure and in the two plots in the bottom
row the final failure was an expected failure.

RMSE

17.25

17.00 A

16.75 1

16.50 A

16.25 1

16.00 -

15.75 -

15.50 A

=

GRU with MOGA-NN
Method

GRU with’ baseline

Results | 65

Figure 5.12 — EWS dataset test results in RMSE. Two boxplots are shown, one for
the GRU using HIs from the baseline FBD-HI, and one for the GRU using HIs from

the MOGA-NN FBD-HI. Each method was tested 10 times.

Failure type

Sot Expected | Shock
Train 71 9
Validation 18 2
Test 93 7

Table 5.5 — The number of failures of each type in the different splits of the EWS

dataset.

66 | Results

Discussion | 67

Chapter 6

Discussion

The goal with this thesis was to validate the use of a transformation
function in the proposed method, compare the method with benchmarks
and investigate its utility for competing risks. This was performed with
two datasets, the TEDS dataset and the EWS dataset. The findings are
discussed in the next section.

6.1 Summary of findings

6.1.1 Transformation function

The effect of the transformation function was analyzed by comparing
the resulting RUL prediction RMSE with and without it, but also by
making a qualitative judgement by visualizing the generated HIs.

In both datasets the FNN transformation function, trained using
MOGA, performed significantly better in terms of the RUL prediction
RMSE using the GRU than the baseline without transformation function.
On the EWS dataset, from the HIs alone, the proposed method showed
more promise. It visibly took into consideration both failure types (shock
and expected) while the baseline struggled and also produced solutions
that were dominating the baseline in terms of fitness values. The obtained
solutions, especially for the TEDS dataset, were multifaceted and would
likely be difficult to find without multiple-objective optimization. If
it would be desired to use multiple RUL prediction models, each one
can choose their most compatible HI-generator from the found set of
solutions. Additionally, while not performed in this thesis, it should also
be possible to incorporate domain knowledge. For instance if we knew the

68 | Discussion

degradation is exponential, a fitness function evaluating the correlation
between the logarithm of the HI and time could be used. This is solely
enabled by the MOGA-trained transformation function. Overall, the
transformation function adds complexity and in turn flexibility, thus,
enabling more difficult problems to be solved.

6.1.2 Comparison with benchmarks

The comparison with benchmarks was performed with the TEDS
dataset, a popular benchmark for prognostics. Since several new methods
for RUL prediction are evaluated on this dataset, it is very convenient for
performance comparison. The evaluation metric was RMSE. See Table
5.3.

While a few methods reported a better result than the proposed
method, one thing to notice is the simplicity of the proposed method
in comparison with the other methods. For example, RBM-Bi-LSTM-
Sim [4] used a two layer bidirectional LSTM, both layers with more nodes
than used in the single-layer GRU in the proposed method but reported a
worse performance. 1-FCLCNN-LSTM [12] had even higher complexity
with three stacked LSTM layers combined with multiple CNN-layers and
FNN-layers. The Dual-task LSTM [6] used a two-layer stacked LSTM
and three FNN-layers, although with a small number of nodes in each. 2-
S-MIC-TCNN-AM [11] used a different feature extraction method on the
original features before applying a temporal convolutional network with
attention mechanism. Overall, in terms of performance in relation to its
simplicity, the proposed method did very well. Combining the FBD-HI
MOGA-NN with other steps of the pipeline, such as a different RUL
prediction model and feature extraction, would be interesting to explore
in future research. Ideally, the proposed method should be compared
with other methods on more datasets, but this was not performed due
to lack of time.

6.1.3 Competing risks

The efficacy of the method in handling competing risks was addressed
with the EWS dataset. In the simulation two independent failures could
occur, which enabled the investigation of how the proposed method
handles the edge case of failures with different characteristics. That is
errors that are completely unrelated. Here a more qualitative analysis

Discussion | 69

was performed by visualizing the generated HIs and comparing RUL
predictions to the real degradation data (which was available since the
data was simulated).

By comparing the predictions to the target RUL and the degradation
curves, it could be seen that the model took into account both failure
types (shock and expected), although it overestimated the more rare
failure. That being said, the simulated dataset was complex, exhibiting
missing data, short trajectories, independent failures and the rare failure
only occurring in 9 out of 80 trajectories in the training data. The
way the method handles competing risks is by creating one HI for all
degradations. The advantage is that there will be more training data
for the RUL prediction model, since the trajectories for all failures are
combined and not handled separately. For instance, in this case it is
not certain that the GRU could model the more rare failure alone since
it requires a lot of data. Additionally, since it generates a single HI,
practically any RUL prediction model can be used. The disadvantage
is that by mapping the information about all failures onto a single HI,
information is lost. Thus, if the HI is unable to represent all failures
adequately, the method will perform poorly. In this dataset there was
some indication from the overestimation of RUL for the shock failure that
the HI did not perfectly account for both failures. Overall, I believe this
way of handling competing risks or failures with different characteristics
will be useful when the failures have shared traits. Then the HI will be
more likely to represent both failures sufficiently.

6.2 Method choices

6.2.1 MOGA-NN and MOGA-RNN

In this thesis an FNN was trained using the MOGA to generate HIs.
An alternative option would be to use an RNN with the MOGA, but
this alternative was not selected for a few reasons. Most importantly,
the FNN can be applied to each state independently. Thus, one added
performance improvement was to concatenate all states in all trajectories
into a matrix and then feed this matrix into the FNN. Thereafter, the
output could be split into separate HIs for each trajectory. If the RNN
would have been used instead, a hidden state would have to be taken into
consideration and passed between each consecutive state. The training
time would likely increase by an order of magnitude. Additionally, the

70 | Discussion

GA operators would be much more complex. That being said, there are
some potential advantages of using an RNN, as explained in section 6.4.

6.2.2 Backpropagation

An alternative to generating HIs separately with the MOGA-NN and
then training the GRU is to train, in an end-to-end approach, the entire
pipeline using backpropagation. Then the sensor data is first transformed
using the FBD-HI NN to generate an HI. Thereafter, this HI is passed
to the GRU for RUL prediction and finally the error is propagated
backwards to update the weights. A few tests were performed with
this approach and the results were similar to the results achieved using
the FBD-HI MOGA-NN with GRU. In the end, the MOGA-version was
chosen instead since it is not specifically designed to work with the GRU,
and thus, can be combined with multiple method types.

6.2.3 Artificial points

Another idea that was investigated was to add "artificial points".
This would be states that were added to the transformed space to help
measure distance. They could be constructed using additional weight-
vectors added to each solution, aside from the FNN-weights, that are
updated using the GA-operators. Alternatively, entity embeddings [36]
could be used with backpropagation.

Then these points could either be used as additional faulty states
to measure the minimum distance to, but also using some kind of
intermediate distance calculation as "checkpoints'. For instance, one idea
was to use the cumulative minimum distance to the points in addition
to the distance to the faulty states as the HI. Thus, after the trajectories
passed through these points, the cumulative minimum distance would be
close to zero and only the distance to the faulty states would remain.
But these additions did not cause any significant improvements over the
previous method, and therefore, was abandoned. There is potentially
some use of these points but further research needs to be conducted to
solidify this.

Discussion | 71

6.3 Thesis evaluation

6.3.1 Ethics and sustainability

The goal of the thesis is to contribute to increased longevity
and productivity for machines. Additionally, by obtaining a better
understanding of when failures can happen, accidents can be avoided that
could impact human lives directly. On the other hand, if the demand for
machines increases due to improved effectiveness, this could contribute
to an increased energy consumption and environmental consequences.
This problem exists with practically all new technologies. My belief is
that the solution to environmental problems should come from clean and
renewable energy and not from stopping development.

In general the development of artificial intelligence and machine
learning comes with many ethical challenges such as potential discriminatory
bias, replacement of jobs and ill-intended use. For health prognostics,
since the predictions are made in a closed system in regard to machines,
no harmful discriminatory bias is involved. The human labour that is
part of the process is to perform manual checks on the machines to detect
the need for replacement or reparation, and the replacement /reparation
itself. A successful prognostics system would reduce/eliminate the
time spent on both of these tasks. The manual check could be
performed by the prognostics method using data from sensors and the
required reparation would be less severe since the reparation is timed
before failure. The dilemma of replacing jobs is repeatedly present in
technological advancements. Often the tasks replaced are tedious, like
the manual checking. But in turn new jobs emerge, such as researchers
creating new methods and engineers implementing the methods. Finally,
the possibility of ill-intended use is practically neglectable, since it is a
very specific task acting in a closed environment.

6.3.2 Strengths and weaknesses

One weakness with this work is some of the seemingly arbitrary
choices made when it came to tuning and fitting the FBD-HI MOGA-
NN. Because there were numerous choices of parameters for the GA, the
fitness functions, the NN, the distance calculation etc. it is practically
impossible to test all parameters. Additionally, the evaluation of each
setting is nontrivial since multiple solutions with multiple metrics are

72| Discussion

constructed. That being said, there is a reason why GA works well,
regardless of parameters, with an NN in this type of problem specifically.
Since only relative distances between the states and the faulty states
are used in the creation of the Hls, multiple settings can lead to similar
results. Furthermore, solutions are easy to find because of the FBD-
HI approach. For instance, the baseline, which simply used the original
features, generated an HI with an approximately monotonic shape on
the TEDS dataset without transformation. Consequently, the method is
robust to different parameters.

One of the strengths, in my opinion, is how the results were
presented. The necessary information that quantifies the performance
can be described concisely in the RUL prediction results. But this
was accompanied by several figures describing the different HIs and the
state spaces that were generated. While not quantitative evidence, this
provides intuition into what the method does and potential strengths
and weaknesses. Additionally, in the second dataset where the real
degradations were available, a qualitative comparison could be made by
visualizing the predictions for failures of different types in relation to the
degradations.

Arguably, more statistical evidence could have been provided for the
resulting fitness values, but this data is also inherently inexact. The
evaluation metrics are only approximate measures used to quickly assess
the HIs. These are thus useful to get a rough estimate of an HI-generator
without selecting an RUL prediction model. But since the actual RUL
predictions using the HIs are what defines the aptness of the HIs this is
what was quantified statistically.

6.3.3 Contribution

The contribution of this thesis is first and foremost the method
or framework, FBD-HI MOGA-NN for HI construction. This solves
problems that many methods often possess, such as the inability to
steer HIs to exhibit specific characteristics, the HIs failing at widely
different values or not being able to handle nonlinear data. The method
was compared with the state of the art. Furthermore, generating Hls
by measuring distance with and without transformation function was
compared, providing evidence that using such a function has a significant
impact. Additionally, a dataset was generated to test the method
in a difficult situation, thus, exploring a scenario rarely tested. In

Discussion | 73

an industrial setting where domain knowledge is available, adding this
knowledge in the form of a fitness function could be beneficial to generate
useful HlIs.

A distance categorization was also made, FBD-HI and HBD-HI. In
general, I believe it would be useful to partition methods into groups
in this field to more easily be able to grasp differences, advantages and
disadvantages between approaches.

6.4 Future research

In this thesis a new flexible framework for HI construction was
proposed with the ability to construct a wide variety of HIs with
competitive RUL predictions. Overall, I believe there are a lot of
promising future research possibilities and opportunities to extend the
method further. For example, it would interesting to explore more fitness
functions. The shape of the chosen solution for the TEDS dataset using
the HP search was quite unexpected. This lead me to believe that there
are room to improve the fitness functions to promote such solutions.

Another possibility is to investigate the use of multiple HI-generators
from the MOGA, instead of just one, to potentially improve performance.
In that case the method would be more suitable for AMs, since many
SMMs presume a single HI. Since many of the solutions are highly
correlated, using all of them would likely not work. Thus, a selection
procedure, similar to the GA used in this thesis, would be needed.

Another approach would be to change the structure of the transformation
function entirely by for instance swapping the FNN for an RNN.
As previously mentioned, this causes the training time to increase
significantly. That being said, an hypothesis is that this could improve
the performance in situations where the states are highly stochastic and
at each state it is difficult to estimate the health. With the current
method one could use lagged states to mitigate this problem, but RNNs
are in general more flexible.

74 | Discussion

Conclusion | 75

Chapter 7

Conclusion

In this thesis an MOGA-NN HI construction method based on
distance was introduced and used together with a GRU to predict RUL.
The MOGA-NN served as a transformation function in the FBD-HI
framework to optimize fitness functions desireable in HIs. It was tested
on two datasets to analyze its performance and behaviour.

On the TEDS dataset it was able to create a variety of HI-generators
and achieved a strong performance in terms of RUL prediction given the
small size of the NNs, but did not beat the results reported by a few
methods of the state of the art. On the EWS dataset the method was
able to construct a single HI with a desirable shape for two independent
failures, although the RUL predictions overestimated the more rare
failure to a certain degree.

Comparing the method with a baseline FBD-HI without transformation
function, it was shown to outperform the baseline on both datasets in
terms of RUL prediction. Additionally, on the EWS dataset in the
visualization of the baseline without transformation function, there were
signs of problems handling the two failures that were not seen in the
visualization of the proposed method. Because the method is an FBD-
HI, it also has the desirable property of a natural failure threshold which
is useful for many RUL prediction models.

76 | Conclusion

REFERENCES | 77

References

[1] L. Liao, “Discovering prognostic features using genetic programming
in remaining useful life prediction”, IEEFE Transactions on Industrial
Electronics, vol. 61, no. 5, pp. 2464-2472, 2013.

2] J. Sun, H. Zuo, W. Wang, and M. G. Pecht, “Application of a state
space modeling technique to system prognostics based on a health
index for condition-based maintenance”, Mechanical systems and
signal processing, vol. 28, pp. 585-596, 2012.

[3] K. Peng, R. Jiao, J. Dong, and Y. Pi, “A deep belief network based
health indicator construction and remaining useful life prediction
using improved particle filter”, Neurocomputing, vol. 361, pp. 19-28,
2019, 1SSN: 0925-2312. DOIL: https : / /doi . org/ 10 . 1016 /
j . neucom . 2019 . 07 . 075. [Online]. Available: https : //www .
sciencedirect.com/science/article/pii/S0925231219310823.

[4] M. Hou, D. Pi, and B. Li, “Similarity-based deep learning approach
for remaining useful life prediction”, Measurement, vol. 159, p. 107 788,
2020, 1SSN: 0263-2241. DOI: https://doi.org/10.1016/j .
measurement . 2020 . 107788. [Online]. Available: https: //www.
sciencedirect.com/science/article/pii/S0263224120303262.

[5] A. L. Ellefsen, E. Bjgrlykhaug, V. Ksgy, S. Ushakov, and H. Zhang,
“Remaining useful life predictions for turbofan engine degradation
using semi-supervised deep architecture”, Reliability Engineering
& System Safety, vol. 183, pp. 240-251, 2019.

6] H. Miao, B. Li, C. Sun, and J. Liu, “Joint learning of degradation
assessment and rul prediction for aeroengines via dual-task deep

Istm networks”, IEEE Transactions on Industrial Informatics,
vol. 15, no. 9, pp. 5023-5032, 2019.

https://doi.org/https://doi.org/10.1016/j.neucom.2019.07.075
https://doi.org/https://doi.org/10.1016/j.neucom.2019.07.075
https://www.sciencedirect.com/science/article/pii/S0925231219310823
https://www.sciencedirect.com/science/article/pii/S0925231219310823
https://doi.org/https://doi.org/10.1016/j.measurement.2020.107788
https://doi.org/https://doi.org/10.1016/j.measurement.2020.107788
https://www.sciencedirect.com/science/article/pii/S0263224120303262
https://www.sciencedirect.com/science/article/pii/S0263224120303262

78 | REFERENCES

[7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long short-
term memory network for remaining useful life estimation”, in

2017 IEEFE international conference on prognostics and health
management (ICPHM), IEEE, 2017, pp. 88-95.

X. Li, Q. Ding, and J.-Q. Sun, “Remaining useful life estimation
in prognostics using deep convolution neural networks”, Reliability
Engineering System Safety, vol. 172, pp. 1-11, 2018, 1SSN: 0951-
8320. DOIL: https://doi.org/10.1016/j.ress.2017.11.021.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0951832017307779.

G. S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural
network based regression approach for estimation of remaining
useful life”, in International conference on database systems for
advanced applications, Springer, 2016, pp. 214-228.

G. Cybenko, “Approximation by superpositions of a sigmoidal
function”, Mathematics of control, signals and systems, vol. 2, no. 4,
pp- 303-314, 1989.

Y. Jiang, C. Li, Z. Yang, Y. Zhao, and X. Wang, “Remaining useful
life estimation combining two-step maximal information coefficient
and temporal convolutional network with attention mechanism”,
IEEE Access, vol. 9, pp. 16 323-16 336, 2021.

C. Peng, Y. Chen, Q. Chen, Z. Tang, L. Li, and W. Gui, “A
remaining useful life prognosis of turbofan engine using temporal
and spatial feature fusion”, Sensors, vol. 21, no. 2, p. 418, 2021.

K. L. Tsui, N. Chen, Q. Zhou, Y. Hai, and W. Wang, “Prognostics
and health management: a review on data driven approaches”,
Mathematical Problems in Engineering, vol. 2015, 2015.

Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery
health prognostics: a systematic review from data acquisition to rul
prediction”, Mechanical Systems and Signal Processing, vol. 104,
pp. 799-834, 2018.

C. Murphy. (ca. 2020). Choosing the most suitable predictive
maintenance sensor, [Online]. Available: https://www . analog.
com/en/technical-articles/choosing-the-most-suitable-
predictive-maintenance-sensor.html (visited on 03/17/2020).

https://doi.org/https://doi.org/10.1016/j.ress.2017.11.021
http://www.sciencedirect.com/science/article/pii/S0951832017307779
http://www.sciencedirect.com/science/article/pii/S0951832017307779
https://www.analog.com/en/technical-articles/choosing-the-most-suitable-predictive-maintenance-sensor.html
https://www.analog.com/en/technical-articles/choosing-the-most-suitable-predictive-maintenance-sensor.html
https://www.analog.com/en/technical-articles/choosing-the-most-suitable-predictive-maintenance-sensor.html

REFERENCES | 79

[16] P. Wang, Y. Li, and C. K. Reddy, “Machine learning for survival
analysis: a survey”, ACM Computing Surveys (CSUR), vol. 51,
no. 6, pp. 1-36, 2019.

[17] M. Wang, Y. Li, H. Zhao, and Y. Zhang, “Combining autoencoder
with similarity measurement for aircraft engine remaining useful
life estimation”, in Proceedings of the International Conference
on Aerospace System Science and Engineering 2019, 7. Jing, Ed.,
Singapore: Springer Singapore, 2020, pp. 197-208, 1SBN: 978-981-
15-1773-0.

[18] P. Baraldi, G. Bonfanti, and E. Zio, “Differential evolution-based
multi-objective optimization for the definition of a health indicator
for fault diagnostics and prognostics”, Mechanical Systems and
Signal Processing, vol. 102, pp. 382—400, 2018.

[19] A. Cubillo, S. Perinpanayagam, and M. Esperon-Miguez, “A
review of physics-based models in prognostics: application to gears
and bearings of rotating machinery”, Advances in Mechanical
Engineering, vol. 8, no. 8, p. 1687814016 664 660, 2016.

[20] R. E. Kalman, “A new approach to linear filtering and prediction
problems”, 1960.

[21] F. Gustafsson, “Particle filter theory and practice with positioning
applications”, IEEE Aerospace and FElectronic Systems Magazine,
vol. 25, no. 7, pp. 53-82, 2010.

[22] R. Rojas, “The backpropagation algorithm”, in Neural networks,
Springer, 1996, pp. 149-182.

[23] S. Mirjalili, “Genetic algorithm”, in Fvolutionary algorithms and
neural networks, Springer, 2019, pp. 43-55.

[24] N. Saini, “Review of selection methods in genetic algorithms”,
International Journal of Engineering and Computer Science, vol. 6,
no. 12, pp. 22261-22 263, 2017.

[25] A.Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: a tutorial”, Reliability FEngineering €&
System Safety, vol. 91, no. 9, pp. 992-1007, 2006.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: nsga-ii”, IEEFE transactions
on evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002.

80 | REFERENCES

[27] N. Garcia-Pedrajas, D. Ortiz-Boyer, and C. Hervds-Martinez, “An
alternative approach for neural network evolution with a genetic
algorithm: crossover by combinatorial optimization”, Neural Networks,
vol. 19, no. 4, pp. 514-528, 2006.

[28] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult”, IEEFE transactions
on neural networks, vol. 5, no. 2, pp. 157-166, 1994.

[29] K. Cho et al., “Learning phrase representations using rnn encoder-
decoder for statistical machine translation”,; arXiv preprint arXiv:1406.1078,
2014.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory”,
Neural computation, vol. 9, no. 8, pp. 17351780, 1997.

[31] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence modeling”,
arXiv preprint arXiw:1412.3555, 2014.

[32] D.P.Kingma and J. Ba, “Adam: a method for stochastic optimization”,
arXiv preprint arXiv:1412.6980, 2014.

[33] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage
propagation modeling for aircraft engine run-to-failure simulation”,

in 2008 international conference on prognostics and health management,
IEEE, 2008, pp. 1-9.

[34] K. Aainsqatsi. (2008). Turbofan operation. Wikimedia Commons,
[Online]. Available: https://commons . wikimedia . org/wiki /
File:Turbofan_operation.svg. License: CC BY-SA 3.0.

[35] Q. Wang, S. Zheng, A. Farahat, S. Serita, and C. Gupta, “Remaining
useful life estimation using functional data analysis”, in 2019 ieee

international conference on prognostics and health management
(icohm), IEEE, 2019, pp. 1-8.

[36) C. Guo and F. Berkhahn, “Entity embeddings of categorical
variables”, arXiv preprint arXiv:1604.06737, 2016.

[37] C. R. Harris et al., “Array programming with NumPy” Nature,
vol. 585, no. 7825, pp. 357-362, Sep. 2020. DOI: 10.1038/s41586-
020-2649-2. [Online|. Available: https://doi.org/10.1038/
s41586-020-2649-2.

https://commons.wikimedia.org/wiki/File:Turbofan_operation.svg
https://commons.wikimedia.org/wiki/File:Turbofan_operation.svg
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Appendix A: Generating weight simulation data | 81

Appendix A

Generating weight simulation data

The code is in Python using the package NumPy [37]:

import numpy as np

def add_noise(path):
return np.random.normal(0, 3, size=path.shape[0])

def gen_pre(mean):
path = np.ones(np.random.randint (20, 120))*mean*2
add moise
path += add_noise(path)
add spike
end = np.random.randint(2, 5)
last = path.shape[0]-10-end
spike = np.random.randint (5, max(last-5, 6))
path[spike:spike+2] += np.random.randint (150, 300,
<~ size=2)
increase
increase_point = np.random.randint(max(min(spike-10,
- last-1), 0), last)
mx = np.random.normal (666, 100)
path[increase_point:-end] +=
< np.linspace(np.random.randint (20, 30), mx,
< num=(path.shape[0]-end)-increase_point)
path[-end:] += mx
return path

82| Appendix A: Generating weight simulation data

def

def

gen mid(mean, shock):

path = np.zeros(np.random.randint (500, 1500))

add noise

path = np.random.normal (mean, 20, size=path.shape[0])
add shocks

shocks = (np.random.uniform(size=path.shape[0]) <

< shock) *(np.random.normal (-100, 10))

path += shocks*((np.arange(shocks.shape[0]) 7 7) == 0)
return path

gen_end(start, mean):

decrease

path = np.zeros(np.random.randint (5, 100))

down = min(np.random.randint(10, 20), path.shape[0])
path[:down] = np.linspace(start, mean +

< np.random.randint (20, 30), num=down)

add noise

path[down:] = mean + add_noise(path[down:])

return path

Main function to be called
def gen(mean, shock_prob):

pre = gen_pre(mean)
gen_mid(pre[-1], shock_prob)

mid

end = gen_end(mid[-1], mean)
return np.concatenate([pre, mid, end])

For DIVA

{
"Authorl": {

"organisation": {"L1": "School of Electrical Engineering and Computer Science ",

}

"Degree": {"Educational program": "Master's Programme, Machine Learning, 120 credits"},
"Title": {

"Main title": "Machinery Health Indicator Construction using Multi-objective Genetic Algorithm Optimization of a Feed-forward
Neural Network based on Distance",

"Subtitle": "Master Thesis in Machine Learning",

"Language": "eng" },
"Alternative title": {

"Main title": "Maskin-Halsoindikatorkonstruktion genom Multi-objektiv Genetisk Algoritm-Optimering av ett Feed-forward
Neuralt Natverk baserat pd Avstand",

"Subtitle": "Examensarbete i Maskininlarning",

"Language": "swe"

}

"Supervisorl": {

"Last name": "Kumar",
"First name": "Arvind",
"E-mail": "arvkumar@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science ",
¥
"Examinerl": {
"Last name": "Herman",
"First name": "Pawel",
"E-mail": "paherman®@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science ",

}

"Cooperation": { "Partner_name": "CNet Svenska AB"},
"Other information": {
"Year": "2021", "Number of pages": "ix,82"}

TRITA -EECS-EX-2021:221

	Introduction
	Thesis aim
	Research Questions
	Scope and limitations

	Background
	Prognostics and Health Management
	Health Prognostics
	Data acquisition
	Health indicator construction
	Previous work
	Comparing properties of healthy and faulty states

	Health indicator evaluation
	Health indicator modelling

	Theory
	Categorizing distance-based HIs
	Feed-forward neural network
	Genetic algorithm
	Multi-objective optimization
	Multi-objective genetic algorithm
	NSGA-II
	MOGA Neural Network

	Recurrent neural networks
	Gated Recurrent Unit

	Method
	The pipeline
	MOGA-NN for HI construction
	Baseline
	Distance metrics
	Fitness function
	Normalizing the HI
	Tuning the MOGA-NN

	GRU for RUL prediction
	Piecewise linear RUL
	Finding the most suitable solution and training the RUL prediction model

	Measuring the performance of the model on the test dataset
	Datasets
	Turbofan Engine Degradation Simulation
	Elevator weight simulation dataset

	Results
	Turbofan Engine Degradation Simulation
	HIs
	RUL Prediction

	Elevator weight simulation
	HIs
	RUL prediction

	Discussion
	Summary of findings
	Transformation function
	Comparison with benchmarks
	Competing risks

	Method choices
	MOGA-NN and MOGA-RNN
	Backpropagation
	Artificial points

	Thesis evaluation
	Ethics and sustainability
	Strengths and weaknesses
	Contribution

	Future research

	Conclusion
	References
	Generating weight simulation data

