
PREDICTION OF DRUG INDICATION LIST BY
MACHINE LEARNING

Submitted by

Bolin Wu

A thesis submitted to the Department of Statistics in partial
fulfillment of the requirements for a two-year Master of Arts degree

in Statistics in the Faculty of Social Sciences

Supervisor

Yukai Yang

Spring, 2021

ABSTRACT

The motivation of this thesis originates from the cooperation with Uppsala Monitoring Cen-

tre, a WHO collaborating centre for international drug monitoring. The research question is

how to give a good summary of the drug indication list. This thesis proposes a regression

tree, Random Forests and XGBoost, known as tree-based models to predict the drug indica-

tion summary based on its user statistics and pharmaceutical information. Besides, this thesis

also compares the aforementioned tree-based models’ prediction performance with the base-

line models, which are basic linear regression and support vector regression SVR. The analysis

shows SVR with RBF kernel and post-pruning tree are the best models to answer the research

question.

Keywords: regression tree, random forests, XGBoost, drug indication, support vector re-

gression

Contents

1 Introduction 1

1.1 Background . 1

1.2 Literature Review . 2

2 Methodology 2

2.1 The Baseline Models . 2

2.2 Regression Tree . 4

2.3 Random Forests . 7

2.4 XGBoost . 7

2.5 Evaluation Method . 10

3 Data 11

4 Empirical Analysis 13

4.1 The Baseline Models . 13

4.2 Regression Tree . 15

4.3 Random Forests . 18

4.4 XGBoost . 18

5 Discussion 21

Acknowledgement 24

References 25

Appendix 26

Prediction evaluation figure . 26

R code . 27

2

1 Introduction

1.1 Background

This thesis is written in cooperation with Uppsala Monitoring Centre (UMC). UMC is an inde-

pendent, non-profit foundation as well as a WHO Collaborating Centre for International Drug

Monitoring. UMC maintains the WHO global database called VigiBase. The primary purpose

of VigiBase is to collect reports of suspected adverse drug reactions (ADRs) from all over the

world. Some reports also provide drug indications, which are recorded valid reasons for some-

one to use a medication. For example, one indication of paracetamol is headache. Currently,

the users of VigiBase are not using the reported indications in VigiBase in any systematic ways.

Usually, when people are interested in a drug’s indication, they would look up the drug’s official

label approved by a country’s drug regulatory authority. However, as we may encounter in real

life, doctors also give prescriptions for off-label indications based on their knowledge and expe-

rience. Therefore we would like to make good use of reported indications in VigiBase because

they provide both officially labelled and off-label indication. From top to bottom, the Medical

Dictionary for Regulatory Activities (MedDRA) hierarchy 1 consists of System Organ Class,

High Level Group Term, High Level Term, Preferred Term and Lowest Level Term (LLT). In

this thesis, we are interested in the indication at the preferred term (PT) level, and one of our

intended users is the internal clinical staff. "Preferred Terms(PTs) is a distinct descriptor (single

medical concept) for a symptom, sign, disease diagnosis, therapeutic indication, investigation,

surgical or medical procedure, and medical social or family history characteristic"2.

One problem we face when using reported indications is that each drug could have more

than hundreds of PT indications. However, since some of the indications are rarely used or re-

porting errors, the user may only, for example, be interested in the top 20 or 30 indications. We

aim to predict the percentile of indications to be included in a summary of reported indications

for a drug. Moreover, we would like to explore what statistical model that is best suited to help

answer our research question.

The outline of the paper is as follows. Section 2 introduces the implemented methodologies.

Section 3 and Section 4 describes the data and the exact implementation and results of models.

Besides, section 4 also includes the prediction results of a sampled test set. Section 5 gives a

1Reference link of MedDRA hierarchy: https://www.meddra.org/how-to-use/basics/hierarchy
2MedDRA hierarchy definition

1

discussion of the previous results.

1.2 Literature Review

In this thesis, we have 12 predictors that we select subjectively from VigiBase, and it is un-

known which predictors have prediction power statistically. Therefore we choose the tree-

based models because several empirical studies have shared that classification and regression

tree (CART) has good properties like automatic search mechanism that predictors importance

ranking, predictor value selection (Prasad, Iverson, and Liaw 2006) and no need for data trans-

formation (Loh 2014). Lee et al. (2006) argue that CART outperforms traditional discriminant

analysis like logistic regression and support vector machine (SVM) in the field of credit scoring.

The tree-based model has been a promising technique for numeric prediction. Since N.Morgan

and Sonquist (1963) published the first regression tree algorithm in the literature, researchers

have developed a bloom in this field. Breiman et al. (1984) theorized the classification and

regression tree (CART) model and provided fundamental properties. Based on that, Bartlett

et al. (1998) and Breiman (2001) proposed boosting and random forest respectively. These

two methods are well-known ensemble learning techniques that play an instrumental role in

regenerating people’s interest in CART subject.

However, most of the research is based on big data size, and there is a lack of robust re-

search on its relatively small data size performance. Moreover, labelling data can be pretty

expensive in the pharmaceutical science field because of the need for experts and data privacy

requirements, but finding potential relevant predictors is easier. Therefore, this paper compares

the prediction performance of tree-based models and the baseline models when the input data

have many predictors but small sample sizes.

2 Methodology

2.1 The Baseline Models

First we can start with introducing the linear regression model estimated by ordinary least

square (OLS). We choose it as one of the baseline models because it is a basic model in statis-

tics. Suppose the data consists of n observations and p predictors, then we can have an equation

as follows:

2

yi = β1xi1 + β2xi2 + ...+ βpxip + εi (1)

where yi is the dependent variable, xip is the predictor, βp is the coefficient and εi is the error

term. We can also rewrite Equation (1) in matrix notation as:

y = Xβ + ε (2)

where y and ε are n × 1 vectors of the values of dependent variables and errors for each

observation. X is an n× p matrix of predictors. By using OLS, β can be estimated as follows:

β̂ = (XTX)−1XTy (3)

Next, we proceed with introducing Support Vector Regression (SVR), which is SVM for

regression. We choose SVR as the other baseline model because it is a standard method of

machine learning toolbox and it has a good orientation towards industrial applications (Smola

and Schölkopf 2004).

For introductory reasons, we begin by describing a simple linear function with only one

predictor:

yi = wixi + εi (4)

where yi is the dependent variable, xi is the predictor, wi is the coefficient and εi is the error

term.

The object is to minimize the l2-norm of the coefficient:

minimize
1

2
||w||2

subject to |yi − wixi| ≤ ε

(5)

In SVR model, we do not care about errors as long as they are less than ε which is known

as the principal of maximal margin. However, given a specific constraint ε on errors in (5),

we can not guarantee all the data points fall into the margin. For data points that are still fall

outside the constraint, we need to take them into account by setting the slack variable ξ which

denotes the deviation from the margin.

3

minimize
1

2
||w||2 + C

n∑
i=1

|ξi|

subject to |yi − wixi| ≤ ε+ |ξi|

(6)

The constant C and ε are two hyperparameters in the algorithm. As C increases, the tol-

erance for points outside of ε also increases. As ε decreases, the desired accuracy on training

set is higher and the error margin is narrower. In practice we can tune the hyperparameters

by grid searching and cross validation which we will show in the next empirical analysis sec-

tion. Another note is that in SVR, the data is scaled by default to obtain a better prediction

performance.

Moreover, SVR model uses a set of mathematical functions that are defined as the kernel

functions. The purpose of kernel functions is to transform the input data into the required form,

aiming for better prediction performance. Two common kernel function for numeric predictions

are

• Linear kernel: K(x, u) = xT · u

• Gaussian radial basis function (RBF) : K(x, u) = exp(− ||x−u||
2

σ2)

where x and u above denote all the pairs of data points. For details see Smola and Schölkopf

(2004) and Awad and Khanna (2015).

2.2 Regression Tree

In Hastie, Tibshirani, and Friedman (2009), the CART model can be illustrated as in Figure 1.

The general idea of the algorithm is to automatically find the splitting variables and split points

to split the feature space into different regions. The procedure can be split into two phases: tree

growing and tree pruning.

4

Figure 1: Illustration of the regression tree. Source: Hastie, Tibshirani, and Friedman (2009)

2.2.1 Tree Growing

According to Hastie, Tibshirani, and Friedman (2009), to grow the tree, we seek the splitting

variable j and split point s that meet

min
j,s

[min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2] (7)

where yi is the dependent variable, c1 and c2 are estimated by Equation (9). The object of

Equation (7) is to minimize the node impurity, which is a measure of the homogeneity of the

labels at the node.

The pairs of half-planes are defined by:

R1(j, s) = X|Xj ≤ s

R2(j, s) = X|Xj > s
(8)

The inner minimization with regard to j and s in Equation (7) is solved by :

ĉ1 = ave(yi|xi ∈ R1(j, s))

ĉ2 = ave(yi|xi ∈ R2(j, s))
(9)

Essentially, the tree growing algorithm can be explained by the following four steps:

5

1. Let j grid over all the variables of the dataset. Let s grid over all the possible values of

jth variable.

2. Allocate each observation according to the given j and s into two groups. And then

calculate the mean value of each group, ĉ1 and ĉ2. Get the within group deviation.

3. Return the j and s that give the minimum node impurity. Then we get one split of the

tree.

4. Iterate the step 1 - 3 until some condition is reached, e.g. minimum node size and maxi-

mum tree depth.

This process can be also called greedy algorithm, because we are griding over all the pos-

sible values and return the best split with the smallest within group deviation at each step.

2.2.2 Tree Pruning

After we have fully grown the tree, it may have an over-fitting problem. To generalize the tree

better on the test set, we need to prune the tree. Tree pruning can be divided into pre-pruning

and post-pruning. Pre-pruning is also known as early stopping criteria. As the name suggests,

the criteria are set as parameter values while building the model. For example we can set the

maximum depth of a tree, the minimum number of records that must exit in a node for a split

to happen and the minimum number of records that can be present in a terminal node.

The strategy of postpruning is to grow a large tree T0 and we define a subtree T ∈ T0 to be

any tree that can be obtained by pruning T0. For every subtree T, we can get the cost complexity

defined as follows (Hastie, Tibshirani, and Friedman 2009):

|T |∑
m=1

(
∑
xi∈Rm

(yi − ĉm)2) + α|T | (10)

where |T| denotes the number of terminal nodes in T, Rm is the plane of node m derived by

Equation (8),
∑

xi∈Rm
(yi− ĉm)2 denotes the sum of squared residuals within each node. The α

is the complexity parameter estimated by cross validation. As α increases, more of the tree is

pruned, which increases the total impurity of its leaves. See Breiman et al. (1984) for details.

The purpose of postpruning is to find the final subtree Tα̂ that minimizes cost complexity, thus

reducing overfitting problem.

6

2.3 Random Forests

Random Forests is an ensemble method that combines the simplicity of decision trees with

flexibility resulting in an improvement in accuracy on test set. The algorithm is as below

(Hastie, Tibshirani, and Friedman 2009):

1. For b = 1 to B: Draw a bootstrap sample Z∗ of size N from the training data.

2. Create a decision tree using the bootstrapped dataset. The tree growing algorithm is

similar to the one described in Section 2.2.1, but only use a random subset of p features

at each step.

3. Output the ensemble of trees {Tb}B1 .

4. Make a prediction at a new point x: f̂Brandom forest(x) = 1
B

∑B
b=1 Tb(x).

For regression, the recommended number of feature to sample is P/3 where P is total number

of variables in the dataset and the minimum node size is five (ibid.). The idea of Random Forests

is to decrease the correlation between the trees. If we consider each tree to be an independent

and identically distributed random variable with variance σ2. The variance of B averaged trees

is given by:

ρσ2 +
1− ρ
B

σ2 (11)

where ρ denotes the correlation between the trees. If we increase the B then the second

term in expression (11) will vanish. The remaining part is the function of correlation between

the trees and the variance. Since we only choose a subset of all the features when constructing

the trees, the correlation between the trees is reduced, thus the averaged variance is reduced.

Another advantage of Random Forests is that it uses the predictive ability of all features

rather than just a few of them. This usually improves the prediction performance on the test

set.

2.4 XGBoost

XGBoost stands for "Extreme Gradient Boosting" which follows the principle of Gradient

Boost. It is a powerful machine learning algorithm proposed by Chen and Guestrin (2016).

7

It earns great reputation in recent years because of its scalability, sophisticated design, compu-

tation speed as well as its outstanding prediction performance in many Kaggle 3 competitions.

In order to introduce the mechanics of XGBoost we need to first review the concepts of Gra-

dient Boost algorithm. In this paper, we will introduce the algorithms in a self-contained and

principled way so that the explanations are clean and formal.

2.4.1 Gradient Boost

Intuitively speaking, Gradient Boost constructs a series of regression trees so that the latter tree

is built based on the error made by the previous trees with scaling. And it iterates until it has

made the number of trees that users ask for or additional trees fail to improve the fit.

Mathematically, the Gradient Boost algorithm (Friedman 2002) is as follows. Please note

that all the variables are defined below the algorithm.

1. Input: Data {xi, yi}ni=1 and a differentiable loss function L(yi, F (x)).

2. Initialize model with a constant value:

F0(x) = arg min
γ

n∑
i=1

L(yi, γ)

3. Let M denote the total number of trees. For m =1 to M:

(a) For i = 1,...,n compute:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(b) Fit a regression tree to the rim values and create planes Rjm

(c) Let Jm denote the total number of leaves. For j = 1,...,Jm compute:

γim = arg min
γ

∑
xi∈Rij

L(yi, Fm−1(Xi) + γ)

(d) Update

Fm(x) = Fm−1(x) + ν

Jm∑
j=1

γjmI(x ∈ Rjm)

4. Output FM(x)

3Kaggle is an online community of data scientists and machine learning practitioners

8

In Step 1, one popular loss function for regression is 1/2(yi − F (x))2 where F(x) is the

function that gives the predicted values. In Step 2, γ denotes the predicted value. We could

either use gradient descent or first derivative to solve for F0(x). In Step 3 (a), if we use the loss

function 1/2(yi−F (x))2, then rim values are the same as residuals of each sample. However, it

is technically called pseudo residuals because if we use another loss function, e.g. (yi−F (x))2,

then rim denotes a process similar to calculating the residuals, but not exactly the same. In Step

3 (b), we use the regression tree to grow the tree. In Step 3 (c), we calculate the output value for

each leaf. It is similar to the expression in Step 2, but one difference is that here we are taking

the previous prediction into account. Another difference is that the summation only considers

the samples in each leaf instead of all of the samples. In Step 3 (d), ν denotes the learning rate

which is between 0 and 1. A smaller ν restricts the influence of each tree on the final prediction.

The summation represents the addition of the output values γj,m for all the leaves Rj,m that x

can be found in.

In summary, when Gradient Boost is used for regression with loss function to be 1/2(yi −

F (x))2, we start with a leaf that is the average value of the variable we want to predict. Then

we estimate a tree based on the residuals. And we scale the tree’s contribution to the final

prediction with a learning rate. After that we include another tree based on new residuals.

Finally, we keep including trees based on the error made by the previous trees until certain

conditions are fulfilled.

2.4.2 XGBoost Principles

XGBoost is built based on the Gradient Boost algorithm. However, there are several differences

in modeling details.

Firstly, XGBoost used a more regularized model formalization to control over-fitting (Chen

and Guestrin 2016). The object function that we want to minimize in XGBoost is as follows:

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk)

where Ω(fk) = γT +
1

2
λ||w||2

(12)

In Equation (12), we can see that the object function consists of two parts: a differentiable

convex loss function l and the regularized term Ω. T is the number of terminal nodes in a tree,

γ is a user defined penalty term which encourages pruning, w is the output value of a leaf, λ

is a scalar of regularization penalty. The purpose of the equation is to find the optimal output

9

value w to minimize the object function L(φ). It can be solved by using second order Taylor

polynomial. For details please see Chen and Guestrin (2016).

Another difference is that XGBoost uses its uniquely constructed tree instead of a regression

tree. When growing XGBoost Trees for Regression, we calculate similarity scores and gain to

determine how to split the data. And we make the splits up to the specified maximum depth.

After that we prune the tree backwards by calculating the differences between gain values and a

user defined tree complexity parameter,γ. The similarity score and gain of a leaf hL are defined

as follows:

Similarity Score =
1

2

(
∑

i∈hL gi)
2∑

i∈hL hi + λ

Gain = LeftSimilarity Score + RightSimilarity Score

− RootSimilarity Score

Gain− γ =

positive number then keep the branch

negative number then prune the branch

(13)

Where gi and hi represents the first and second derivative of the loss function l(ŷi, yi) re-

spectively. And the output value that gives the largest gain is set to be the split point.

2.5 Evaluation Method

In this thesis we choose two evaluation metrics: root of mean squared error (RMSE) and mean

absolute error (MAE). The definitions are listed as follows.

RMSE =

√∑N
i=1(yi − ŷi)2

N

MAE =

∑N
i=1 |yi − ŷi|

N

where yi is the observed value, ŷi is the predicted value and N is the total number of obser-

vations.

One difference between RMSE and MAE is that compared to MAE, RMSE does not treat

each error the same. RMSE gives more weights to larger errors while MAE is less sensitive to

outliers.

When we split the dataset into training set and test set by random sampling, we may face

the problem of variability of evaluation results on the test set due to the randomness. To make

10

the comparison of different models more robust, we will use k-fold cross-validation (CV) as

follows:

1. Split the observations randomly into k groups.

2. For j = 1 to k:

(a) Let the observations in group j be the test set and estimate the model on the remain-

ing k-1 groups.

(b) Make the predictions for the observations in group j.

(c) Calculate sample RMSEj and MAEj with the calculated predictions and true values

in group j.

3. Compute the overall k-fold CV RMSE :
√∑N

i=1(yi−ŷi)2
N

and MAE:
∑N

i=1 |yi−ŷi|
N

.

Considering the computation power, we choose 10-fold CV (k = 10) in this thesis. We will

evaluate prediction performance of different models by comparing their overall RMSE and

MAE as well as the sample RMSEj and MAEj.

3 Data

We choose 12 predictors to predict the length of the medical indication list. To get the labelled

data, firstly we find the indications of top 60 most common drugs in the VigiBase. After that

we get indication mapped to the MedDRA LLT. Then we use the MedDRA hierarchy to group

each drug on PT level and count the entry of each indication’s record on PT level in all the

reports, sorting in descending order. Finally a medical doctor labels the data by annotating the

cutting index of each drug. The cutting index is a threshold that every indication above it should

be considered as an interested indication. The bigger the cutting index is, the more indications

should be included in the summary of a drug and vice versa. An example of the exported

indication is Table 1. Please note that due to the sensitive nature of the data, the numbers in the

table are simulated.

11

Table 1: An Example of Indication List of Acetylsalicylic Acid

Index Number of Entry PT Level Indication

1 21590 Prophylaxis

2 15322 Cardiac disorder

2 5690 Pain

...

710 4 Obesity

The data set consists of 12 predictors and one label:

• n_indications: The number of distinct reported indications of the drug.

• avg_age: The average age of patients who take a specific drug.

• avg_weight: The average weight of patients who take a specific drug.

• age_range: The age range of patients who take a specific drug. It is calculated by maxi-

mum age minus minimum age.

• n_country: The number of distinct countries from which reports for a drug were entered

in VigiBase.

• n_route: The number of reported paths of administration of a drug.

• n_dosage_number: The number of distinct structured dose number of the drug. We will

give an example below.

• n_dosage_unit: The distinct number of structured dose units of the drug. For example if

we say 2 mg in one dose, then "2" is the dose number and "mg" is the dose unit.

• n_ATC: The number of distinct ATC 4 number of a drug. The ATC number classifies an

active drug substance into anatomical, therapeutic, pharmacological and chemical sub-

groups.

• n_body: The number of parts of body that a drug can be used to. It is identified by the

first level of ATC.
4Reference link of ATC: https://www.whocc.no/atc/structure_and_principles/

12

• n_co_reported_drugs: The total number of co-reported drugs of the drug.

• n_null_uni_reports: The number of reports without dosage information of the drug.

• percentile: The cutting index of a drug’s indication divided by the total number of rows

of its indication list. The cutting index is labeled by a medical doctor manually.

The percentile is what we would like to predict for each drug. The larger percentile is, the

larger proportion of its original indications list would be included for the summary of a drug

and vice versa.

In this thesis, because of limited resources of labelling data, the sample size is 60.

4 Empirical Analysis

We mainly use R to prepare the data as well as build the models. For data pre-processing,

we use "tidyverse" library. To train the regression tree model, Random Forests and XGBoost,

we use "rpart" ,"randomForest", and "xgboost" packages, respectively. And in the following

analysis, all the grid searchings of optimal parameters use 10-fold cross-validation.

Moreover, since there are ten estimated models in total in 10-fold CV so that it will be too

long to list all of their results in the thesis. Therefore the following model results, for example,

percentile prediction, tree model visualization and feature importance, are based on the first

10-fold CV sample with the number of observations to be fifty-four and six in the training set

and test set respectively. The drug names of the six sampled test data are celecoxib, diazepam,

fentanyl, interferon beta-1a, iron, and lorazepam.

4.1 The Baseline Models

Since the goal of the linear regression model in this thesis is to make prediction instead of

inference, the statistical hypothesis tests are not our main concern. Therefore we will not

examine the significance of variables and hypothesis test for each 10-fold CV iteration. The 10-

fold CV RMSE and MAE for the linear regression model are 0.0689 and 0.0520, respectively.

In terms of SVR, as mentioned previously in Section 2.1, we need to find the optimal

hyperparameters C and ε. The recommended search range of C and σ is the exponentially

growing sequence. (Hsu, Chang, and Lin 2003). And when the kernel is RBF, we also need

to tune the parameter σ. We will use "e1071" package in R. And the parameter tuning can be

13

done by the "tune()" function in this package, which uses 10-fold cross-validation by default.

One note is that in this package, the parameter σ is measured by the argument "gamma". The

grid range region is (0.001,0.01,0.1,1,10,100) for C, (0.01,0.01,0.1,1,10,100) for gamma and

(0.01,0.1,1) for ε. For each loop in 10-fold CV, we find the optimal parameters, estimate SVR

and calculate the prediction values. The results are listed below:

Table 2: 10-fold CV Results of SVR

Kernel Function RMSE MAE

Linear 0.0703 0.0543

RBF 0.0504 0.0622

One set of the predicted percentile given by the baseline models is shown in Figure 2. Given

the sample data, the linear regression is good at predicting diazepam and fentanyl. The SVR

with RBF kernel is better at predicting the percentile of celecoxib and interferon beta-1a. The

SVR with linear kernel makes a good prediction for lorazepam. However, none of the baseline

models gives a good prediction for iron.

Figure 2: Prediction Results of Baseline Models

14

4.2 Regression Tree

In the regression tree model, we do not need to tune the parameters for the base tree. We let the

base tree grow fully with a minimum number of observations in any terminal node to be two.

For the post-pruning tree, the complexity parameter is derived from the base tree’s complexity

parameter table. The parameter tuning of the pre-pruning tree needs to be set up manually,

which we will explain below.

Figure 3: An Estimated Fully Grown Base Tree

Figure 3 is a visualization of the base tree. The number in each circle denotes the predicted

value in its node; the percentage means the ratio of observations falls into that node. We

can see that the base tree is deep with the depth to be seven and may have an over-fitting

problem. Figure 4 shows the estimated relative errors with different complexity parameters.

The post-pruning strategy is to choose the best complexity parameter that gives the smallest

relative error in Figure 4. The relative error is estimated by cross-validation, and we view it

as an approximation of RMSE of the test set. An example of a post-pruning tree with the best

complexity parameter, which is 0.16 in this case, is shown in Figure 5.

In Figure 5 the post-pruning tree has a much shallower depth which may help reduce the

over-fitting problem.

For the pre-pruning tree, we need to determine the three main arguments. The first is the

minimum number of observations in a node for a split to be attempted (minsplit). The second

15

Figure 4: The Complexity Parameters of the Estimated Base Tree

Figure 5: The Estimated Post-pruning Tree, cp = 0.16

is the minimum number of observations in any terminal node (minbucket). The third is the

maximum depth of any node of the final tree (maxdepth). The grid searching information and

corresponding 10-fold CV RMSE is listed in Table 3 and Table 4. One example of a pre-pruning

tree with the best cross-validated parameters is shown in Figure 6 which is shallower than the

16

base tree as expected.

Table 3: Grid Searching Setup of Prepruning Parameters

Parameter Range Number of Combinations Time Consumption per CV Iteration

minsplit (6, 9, 12, 21)

80
5.76

seconds
minbucket (2,3,4,7)

maxdepth (1, 3, 5, 7, 9)

Figure 6: The Estimated Pre-pruning Tree, minsplit = 10,minbucket = 2, maxdepth = 3

After we grasp the estimation of each regression tree, we can make a comparison of 10-fold

CV RMSE of each model. The results are listed in Table 4. we can see that the post-pruning

tree gives the best prediction performance while the base tree model to be the worst.

Table 4: 10-fold CV Results of Regression Tree

Type RMSE MAE

Base Tree 0.0736 0.0590

Pre-pruning Tree 0.0663 0.0528

Post-pruning Tree 0.0673 0.0520

17

4.3 Random Forests

There are two important parameters in the Random Forests algorithm: The number of trees

used in the forest (ntree) and the number of variables randomly sampled as candidates at each

split (mtry). The grid searching information is listed in Table 5. Compared with the regression

trees’ prediction performance, Random Forests gives better results with the 10-fold CV RMSE

and MAE on the test set to be 0.0648 and 0.0529, respectively.

Table 5: Grid Searching Setup of Random Forests Parameters

Parameter Range Number of Combinations Time Consumption per CV Iteration

ntree (1,11,...,191)
160

20.90

secondsmtry (1,2,...,8)

Furthermore, the Random Forests can produce the feature importance of each variable. It

is useful when we want to investigate the contribution of each predictor to our model. Figure 7

shows two measures of feature importance of different predictors. "%IncMSE" is the increase

in mean squared error of predictions as a result of variable j being permuted. "IncNodePurity"

relates to the node impurity difference before and after the split, which is summed over all splits

for that variable, over all trees. We can see that the number of distinct structured dose number

of the drug is the essential features which is consistent as seen in the post-pruning tree. The

average weight of patients, the number of reports without dosage information and the number

of distinct indications and the number of co-reported drugs share similar prediction importance.

The distinct ATC number is the least important predictor.

4.4 XGBoost

Since there are seven booster parameters in the function, it is nearly impossible to get a set of

universal optimal parameters. Besides, our main concern is to reduce the test error. Therefore

the tuning strategy is focusing on girding the parameters that prevent over-fitting: learning rate

(η), complexity parameter (γ) and the sub-sample ratio of the training instance (subsample).

The grid search range is listed below. Other arguments are default values, with the maximum

number of iterations (nrounds) to be 100, the number of features supplied to a tree (colsam-

ple_bytree) to be 1, minimum number of instances required in a child node (min_child_weight)

18

Figure 7: An Example of Estimated Feature Importance Chart from Random Forests

to be 1, and the maximum depth of tree (max_depth) to be 6. Here we do not tune the maximum

depth because it is related to γ already.

Based on the information given in Table 6, we can see that for one set of training and

test data, the grid searching takes around 9.53 minutes, therefore for the whole 10-fold CV

procedure, it takes about 9.53×10 minutes to finish. Given the grid searching set up, the final

10-fold CV RMSE and MAE are 0.0731 and 0.0594 respectively.

Table 6: Grid Searching Setup of XGBoost Parameters

Parameter Range Number of Combinations Time Consumption per CV Iteration

η (0,0.05,0.10,...,0.3)

378
9.53

minutes
γ (0,10,20,...,80)

subsample ratio (0,0.1,0.2,...,0.5)

Similar to Random Forests, XGBoost estimates feature importance as well. Figure 8 shows

that the average weight of patients is the most important predictor. However, the other variables

give much less contribution compared with the feature importance result of Random Forests.

Therefore, given the sample set, the predictor importance of XGBoost is less balanced than

the one of Random Forests. This may be one of reasons why XGboost does not give a better

19

Figure 8: An Example of Estimated Feature Importance Chart from XGBoost

overall prediction performance.

Now let us proceed to compare the prediction results of the tree-based models. In Figure 9

there are two noticeable points. Firstly, the post-pruning and pre-pruning tree produce the same

predictions for all of the six test samples. The reason could be that both trees are shallow, and

the six samples happened to fall in the same leaves. The second is similar to baseline models,

none of the tree-based models gives an ideal prediction for iron.

At last, we can compare the prediction performance of the models mentioned above.The

Figure 10a in appendix tells us their performance overall and Figure 10b shows their perfor-

mance for each of the CV samples.

In terms of MAE, SVR with RBF kernel is the best model on average and it has the smallest

range difference of sample MAE. The post-pruning tree and pre-pruning tree can give the best

possible predictions since their minimum sample MAE values are the lowest. However, the

post-pruning tree is better than pre-pruning tree because it has smaller range difference. The

base tree is the worst model because it has a high overall MAE value, and its maximum sample

MAE is the highest.

When it comes to RMSE, Random Forests and SVR with RBF kernel are the two best

20

Figure 9: Prediction Results of Tree-based Models

model on average, and they have the smallest sample RMSE range difference. Similarly, the

two pruning trees are still the ones that give the lowest minimum sample RMSE. The Random

Forests has the lowest maximum sample RMSE.

When comparing the most complicated model XGBoost and the most basic linear regres-

sion, we find that XGBoost gives both higher overall RMSE and MAE as well as higher min-

imum and maximum sample RMSE and MAE. Therefore in our study, the XGBoost is worse

than the linear regression.

5 Discussion

In this thesis, we predict the percentile of drug indication given the twelve predictors from Vi-

giBase. It can be a helpful tool for retrieving interested indications of a drug to future VigiBase

users, for example, internal clinical staff. By inputting a drug’s 12 predictors that are mentioned

in Section 3, the user can get a good summary of its indication list.

To have an overview of prediction performance, we compare different models from the

perspective of MAE and RMSE. On one hand, if we only consider the overall prediction per-

formance, then SVR with the RBF kernel is the best model to answer our research question

21

because it has the lowest values for both RMSE and MAE. The reason could be that, instead of

focusing on minimizing the errors, SVR uses a soft margin which results in a good generaliza-

tion on the test sets.

On the other hand, if we care about the prediction performance on different cross-validated

samples, the post-pruning tree is the best model. Its minimum sample RMSE and MAE are the

lowest, which means it has a possibility to make the best predictions for some drugs. Besides,

compared with pre-pruning tree, post-pruning tree has a lower maximum RMSE and MAE,

indicating that the worst prediction of post-pruning tree is better than one of the pre-pruning

tree. The reason could be that for each training set, the post-pruning tree will calculate a new

cross-validated complexity parameter to prune the base tree rather than following a fixed grid

searching pattern. Therefore post-pruning tree has a better generalization than pre-pruning tree

on the test set. Although the overall RMSE and MAE of post-pruning tree are not the best

among the six models, we can find that the difference is acceptable. The differences between

the post-pruning tree and SVR with RBF kernel are 0.005 and 0.002 for RMSE and MAE,

respectively.

Moreover, we also find that the XGBoost model fails to outperform other models as we

supposed. One reason could be that XGBoost is a complicated model with lots of parameters.

We do not have enough computation power to grid search an extensive range of parameters to

reduce the over-fitting problem when iterating the cross-validation. The other reason is that our

dataset is not large and complicated enough to exploit the ability of XGBoost fully. In our case,

the baseline models are better choices than XGBoost considering their similar performance

but a considerable gap in computation time. However, XGboost, like Random Forests, gives

the feature importance information which the baseline models do not provide. The average

weight of patients (avg_weight) and the number of distinct structured dose number of the drug

(n_DosageNumber) are the most essential features for XGBoost and Random Forests respec-

tively. This is reasonable because if there is more flexibility to prescribe a drug’s dosage, then a

doctor is more likely to prescribe it to the patients. In addition, a drug given at a different dose

may be used for different indications. For example, Acetylsalicylic acid at 75 mg is used as a

blood thinning drug to prevent blood clots while the dose of 500 mg is used to treat pain and in-

flammation. Thus the drug may have more interested indications. And the average weight may

implicitly contain other information. For example, if the average weight of patients is larger

than 90 kg, we may assume that perhaps most of the patients are male or they are adults. The

22

drugs given to varying age groups are expected to have more indications. Therefore it could

also be a good predictor. Another example is that a higher average weight would include more

obese people and obesity is linked to increased risk of many diseases so that more interested

indications should be included.

For future research, annotating more training data and including more features in the study

would be a good idea since tree-based models, especially XGBoost, are excellent at handling

large complex data set. Besides, in this thesis, the data set is from the sixty most common

drugs. We need more annotation of the drugs with fewer reported cases in VigiBase so that the

model will have better scalability. In addition, given the predicted percentile, we can consider

applying the clustering method to the indications in the predicted percentile to derive a more

concise final indication list. Furthermore, we can try to predict if an individual indication

should be included in the list to have a more precise list. Last but not least, in this thesis,

we do list-wise deletion for the records with missing value so that the models do not use any

information on missing data. In the future, we can use imputation to handle the missing value.

23

Acknowledgement

Throughout the writing of this thesis, I have received great support and assistance.

I would like to thank Uppsala Monitoring Centre to provide the funding and position for

this thesis project. It has been a wonderful experience to write my thesis here.

I want to thank my supervisor, Henric Taavola from Uppsala Monitoring Centre, for his

guidance through each stage of the process. Your expertise was invaluable in formulating the

research questions and critical steps. I really appreciate your time and patient support. I would

also like to thank my other supervisor, Yukai Yang, from the statistics department, Uppsala

University. Your professional suggestions pushed me to sharpen my thinking.

I want to thank my colleagues at Uppsala Monitoring Centre for their excellent collabora-

tion. Christian Rausch, I want to thank you for your assistance in annotating the data. Without

your help, I would not be able to perform my empirical analysis. Eva-Lisa Meldau, thank you

for your insightful feedback which brought my work to a higher level. Jim Barrett, thank you

for your time of sharing your machine learning analysis experience with me. Oskar Gauffin,

thank you for your insights and explanations of the variables in the VigiBase.

Finally, I would like to thank my father. Because of your financial support, I can focus

on completing my master thesis in Sweden instead of worrying about my finance, especially

during the COVID time.

24

References

Awad, Mariette and Rahul Khanna (2015). “Support Vector Machines for Classification”. In:

Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and Sys-

tem Designers. Berkeley, CA: Apress, pp. 39–66. ISBN: 978-1-4302-5990-9.

Bartlett, Peter et al. (1998). “Boosting the margin: a new explanation for the effectiveness of

voting methods”. In: The Annals of Statistics 26.5, pp. 1651–1686.

Breiman, Leo (2001). “Random Forests”. In: Machine Learning 45, pp. 5–32.

Breiman, Leo et al. (1984). Classification and regression trees. The Wadsworth & Brooks/Cole

statistics/probability series. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books &

Software.

Chen, Tianqi and Carlos Guestrin (Aug. 2016). “XGBoost: A Scalable Tree Boosting System”.

In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining.

Friedman, Jerome (Feb. 2002). “Stochastic Gradient Boosting”. In: Computational Statistics &

Data Analysis 38, pp. 367–378.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The elements of statistical

learning: data mining, inference and prediction. 2nd ed. Springer.

Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin (2003). A Practical Guide to Support

Vector Classification. Tech. rep. Department of Computer Science, National Taiwan Uni-

versity.

Lee, Tian-Shyug et al. (2006). “Mining the customer credit using classification and regres-

sion tree and multivariate adaptive regression splines”. In: Computational Statistics & Data

Analysis 50.4, pp. 1113–1130. ISSN: 0167-9473.

Loh, Wei-Yin (2014). “Fifty Years of Classification and Regression Trees”. In: International

Statistical Review 82, pp. 329–348.

N.Morgan, James and John A. Sonquist (1963). “Problems in the Analysis of Survey Data, and

a Proposal”. In: Journal of the American Statistical Association 58, pp. 415–434.

Prasad, Anantha M., Louis R. Iverson, and Andy Liaw (2006). “Newer Classification and Re-

gression Tree Techniques: Bagging and Random Forests for Ecological Prediction”. In:

Ecosystems 9, pp. 181–199.

Smola, Alex J. and Bernhard Schölkopf (2004). “A tutorial on support vector regression”. In:

Statistics and Computing 14, pp. 199–222. ISSN: 1573-1375.

25

Appendix

Prediction evaluation figure

(a)

(b)

Figure 10: Comparison of 10-fold CV RMSE and MAE of Different Models

26

R code

1 library(tidyverse)

2 library(dplyr)

3 library(rpart)

4 library(rattle)

5 library(rpart.plot)

6 library(RColorBrewer)

7 library(randomForest)

8 library(xgboost)

9 library(e1071) # for SVR modelling

10 library(purrr) # for grid search data frame

11 library(ggplot2)

12

13 ####−−−−−−−−−−−−−−−−−−−−−−−− pre−setup −−−−−−−−−−−−−−−−−−−−−−−−####

14 # get the percentile

15 df_pct = df_numeric %>%

16 mutate(percentile = cut_index / real_n_indication) %>%

17 select(−c(cut_index))

18 # 10 fold CV

19 n = nrow(df_pct)

20 k = 10

21 set.seed(2021)

22 folds = sample(rep(1:k,n/k),n, replace = F)

23 train_num = df_pct[folds != 1,]

24 test_num = df_pct[folds == 1,]

25

26 ####−−−−−−−−−−−−−−−−−−−−−−−− SVR −−−−−−−−−−−−−−−−−−−−−−−−####

27

28 ### kernal = linear

29

30 ## an example of prediction

31

32 # use cross validation to find the best parameter

33 best_cost = tune(svm, percentile~., data = train_num, kernel = ’linear’,

27

34 ranges = list(cost = 1*10^(−3:2),

35 epsilon = c(0.01,0.1,1)))$best.parameters

36 svr_m = svm(percentile~., data = train_num,kernel = ’linear’,

37 cost = as.numeric(best_cost[’cost’]) ,

38 epsilon = as.numeric(best_cost[’epsilon’]))

39 pred_svr_linear = predict(svr_m, test_num %>% select(−percentile))

40

41

42 # CV for model comparison

43 svr_p = numeric()

44 rmse_svr_linear_i =c()

45 mae_svr_linear_i =c()

46 start_time_svr_linear <− Sys.time()

47 for (i in 1:k) {

48 set.seed(1234)

49 train = df_pct[folds != i,]

50 test = df_pct[folds == i,]

51 best_cost = tune(svm, percentile~., data = train, kernel = ’linear’,

52 ranges = list(cost = 1*10^(−3:2),

53 epsilon = c(0.01,0.1,1)))$best.parameters

54 svr_m = svm(percentile~., data = train,kernel = ’linear’,

55 cost = as.numeric(best_cost[’cost’]) ,

56 epsilon = as.numeric(best_cost[’epsilon’]))

57 svr_p[folds == i] = predict(svr_m, select(test,−percentile))

58 rmse_svr_linear_i[i] = caret::RMSE(test$percentile, svr_p[folds == i])

59 mae_svr_linear_i[i] = caret::MAE(test$percentile, svr_p[folds == i])

60 }

61 end_time_svr_linear <− Sys.time()

62 grid_time_comsumption_svr_linear=end_time_svr_linear −

63 start_time_svr_linear

64 ten_fold_RMSE_svr_linear = caret::RMSE(df_pct$percentile, svr_p)

65 ten_fold_MAE_svr_linear = caret::MAE(df_pct$percentile, svr_p)

66 ten_fold_RMSE_svr_linear

67

28

68

69

70 # kernal = radial

71 # an example of prediction

72

73 best_cost = tune(svm, percentile~., data = train_num, kernel = ’radial’,

74 ranges = list(cost = c(0.01,0.1,1,10,100),

75 gamma = c(0.01,0.1,1,10,100),

76 epsilon = c(0.01,0.1,1))) $best.parameters

77

78 svr_m = svm(percentile~., data = train_num,kernel = ’linear’,

79 cost = as.numeric(best_cost[’cost’]) ,

80 epsilon = as.numeric(best_cost[’epsilon’]))

81 pred_svr_RBF = predict(svr_m, test_num %>% select(−percentile))

82 pred_svr_RBF

83

84

85 # CV for model comparison

86 svr_p = numeric()

87 rmse_svr_rbf_i = c()

88 mae_svr_rbf_i = c()

89 start_time_svr_rbf <− Sys.time()

90 for (i in 1:k) {

91 set.seed(1234)

92 train = df_pct[folds != i,]

93 test = df_pct[folds == i,]

94 best_cost = tune(svm, percentile~., data = train_num,

95 kernel = ’radial’,

96 ranges = list(cost = 1*10^(−3:2),

97 epsilon = c(0.01,0.1,1),

98 gamma = c(0.01,0.1,1,10,100)))$best.parameters

99 svr_m = svm(percentile~., data = train,kernel = ’radial’,

100 cost = as.numeric(best_cost[’cost’]) ,

101 epsilon = as.numeric(best_cost[’epsilon’]))

29

102 svr_p[folds == i] = predict(svr_m, select(test,−percentile))

103 rmse_svr_rbf_i[i] = caret::RMSE(test$percentile, svr_p[folds == i])

104 mae_svr_rbf_i[i] = caret::MAE(test$percentile, svr_p[folds == i])

105 }

106 end_time_svr_rbf <− Sys.time()

107 grid_time_comsumption_svr_rbf_10CV = end_time_svr_rbf − start_time_svr_rbf

108

109 ten_fold_RMSE_svr_rbf = caret::RMSE(df_pct$percentile, svr_p)

110 ten_fold_MAE_svr_rbf = caret::MAE(df_pct$percentile, svr_p)

111 ten_fold_RMSE_svr_rbf

112

113

114

115 ####−−−−−−−−−−−−−−−−−−−−−−−− Linear Model −−−−−−−−−−−−−−−−−−−−−−−−####

116 # An example

117 linear_model = lm(percentile~., data = train_num)

118 # prediction on the validation set

119 pred_lr = predict(linear_model, test_num)

120 pred_lr

121

122 # CV for model comparison

123 lr_p = numeric()

124 rmse_lr_i = c()

125 mae_lr_i = c()

126 for (i in 1:k) {

127 set.seed(1234)

128 train = df_pct[folds != i,]

129 test = df_pct[folds == i,]

130 lm = lm(percentile~., data = train)

131 lr_p[folds == i] = predict(lm,test)

132 rmse_lr_i[i] = caret::RMSE(test$percentile, lr_p[folds == i])

133 mae_lr_i[i] = caret::MAE(test$percentile, lr_p[folds == i])

134 }

135 ten_fold_RMSE_lr = caret::RMSE(df_pct$percentile, lr_p)

30

136 ten_fold_MAE_lr = caret::MAE(df_pct$percentile, lr_p)

137 ten_fold_RMSE_lr

138 ten_fold_RMSE_lr == mean(rmse_lr_i)

139

140

141

142

143

144 ####−−−−−−−−−−−−−−−−−−−−−−−− Regression Tree −−−−−−−−−−−−−−−−−−−−−−−−####

145 # an example of prediction

146 # base tree

147 reg_tree0 = rpart(percentile~., data = train_num, method = ’anova’,

148 control = rpart.control(cp = 0,minbucket = 2))

149 # result

150

151 png(’example_base_tree.png’,width = 1189, height = 679, units = "px")

152 rpart.plot(reg_tree0, type = 3, digits = 3, fallen.leaves = TRUE)

153 dev.off()

154 printcp(reg_tree0)

155 png(’example_cp_base_tree.png’,width = 1078, height = 646, units = "px")

156 plotcp(reg_tree0)

157 dev.off()

158 # prediction

159 pred_rt_base <− predict(reg_tree0, test_num)

160

161 # pre−pruning tree with the CV best parameter

162 best_par = tune.rpart(percentile~., data = train_num,

163 minsplit = c(6, 9, 12, 21),

164 minbucket = (c(2,3,4,7)),

165 maxdepth = seq(1,10, by = 2))$best.parameters

166 pre_pruned_m = rpart(percentile~., data = train_num, method = ’anova’,

167 control = rpart.control(minbucket = as.numeric(best_par[’minbucket’]),minsplit =

as.numeric(best_par[’minsplit’]),maxdepth = as.numeric(best_par[’maxdepth’]),cp = 0.01))

168 # pre−pruning with minbucket = 2,minsplit = 10,maxdepth = 3,cp = 0.01

31

169 pre_pruned_m = rpart(percentile~., data = train_num, method = ’anova’,

170 control = rpart.control(minbucket = 2,

171 minsplit = 10,

172 maxdepth = 3,cp = 0.01))

173 pred_rt_prep <− predict(pre_pruned_m, test_num)

174

175 # example results

176

177 png(’pre_pruning_2_10_0.01_3.png’,width = 480, height = 480, units = "px")

178 rpart.plot(pre_pruned_m, type = 2, digits = 3, fallen.leaves = TRUE)

179 dev.off()

180 printcp(pre_pruned_m)

181 # plotcp(pre_pruned_m)

182

183 # post−pruning pree

184 cp_best = reg_tree0$cptable[which.min(reg_tree0$cptable[,"xerror"]),"CP"]

185 post_pruned_m = prune(reg_tree0,cp = cp_best,minbucket = 2)# no max maxdepth

186 png(’post_pruning.png’)

187 rpart.plot(post_pruned_m, digits = 3, fallen.leaves = TRUE)

188 dev.off()

189 pred_rt_postp <− predict(post_pruned_m, test_num)

190 pred_rt_postp

191

192

193 # CV for model comparison

194 base_p = pre_pruned_p = post_pruned_p = numeric()

195 rmse_base_i = rmse_pre_pruned_i = rmse_post_pruned_i = numeric()

196 mae_base_i = mae_pre_pruned_i = mae_post_pruned_i = numeric()

197

198 start_time_rt <− Sys.time()

199 for (i in 1:k) {

200 set.seed(1234)

201 train = df_pct[folds != i,]

202 test = df_pct[folds == i,]

32

203 # tree grow

204 base_m = rpart(percentile~., data = train, method = ’anova’, control = rpart.control(cp = 0,minbucket = 2))

205 base_p[folds == i] <− predict(base_m, test)

206 rmse_base_i[i] = caret::RMSE(test$percentile, base_p[folds == i])

207 mae_base_i[i] = caret::MAE(test$percentile, base_p[folds == i])

208 # pre prune

209 best_par = tune.rpart(percentile~., data = train,

210 minsplit = c(6, 9, 12, 21),

211 minbucket = (c(2,3,4,7)),

212 maxdepth = seq(1,10, by = 2))$best.parameters

213 pre_pruned_m = rpart(percentile~., data = train, method = ’anova’,

214 control = rpart.control(minbucket = as.numeric(best_par[’minbucket’]),

215 minsplit = as.numeric(best_par[’minsplit’]),

216 maxdepth = as.numeric(best_par[’maxdepth’]),cp = 0.01))

217 pre_pruned_p[folds == i] <− predict(pre_pruned_m, test)

218 rmse_pre_pruned_i[i] = caret::RMSE(test$percentile, pre_pruned_p[folds == i])

219 mae_pre_pruned_i[i] = caret::MAE(test$percentile, pre_pruned_p[folds == i])

220 # post prune

221 cp_best = base_m$cptable[which.min(base_m$cptable[,"xerror"]),"CP"]

222 post_pruned_m = prune(base_m,cp = cp_best,minbucket = 2)# no max maxdepth

223 post_pruned_p[folds == i] <− predict(post_pruned_m, test)

224 rmse_post_pruned_i[i] = caret::RMSE(test$percentile, post_pruned_p[folds == i])

225 mae_post_pruned_i[i] = caret::MAE(test$percentile, post_pruned_p[folds == i])

226 }

227 end_time_rt <− Sys.time()

228 grid_time_comsumption_rt_10CV = end_time_rt − start_time_rt

229 base_RMSE = caret::RMSE(df_pct$percentile, base_p)

230 base_MAE = caret::MAE(df_pct$percentile, base_p)

231 pre_pruned_RMSE = caret::RMSE(df_pct$percentile, pre_pruned_p)

232 pre_pruned_MAE = caret::MAE(df_pct$percentile, pre_pruned_p)

233 post_pruned_RMSE = caret::RMSE(df_pct$percentile, post_pruned_p)

234 post_pruned_MAE = caret::MAE(df_pct$percentile, post_pruned_p)

235 # retuen the averaged RMSE

236 ten_fold_rt = data.frame(base_RMSE, pre_pruned_RMSE, post_pruned_RMSE)

33

237 ten_fold_rt_mae = data.frame(base_MAE, pre_pruned_MAE, post_pruned_MAE)

238 ten_fold_rt

239

240

241 # Grid search set up of regression tree

242 gs_rt <− list(minsplit = c(6, 9, 12, 21),

243 minbucket = (c(2,3,4,7)),

244 maxdepth = seq(1,10, by = 2)) %>%

245 cross_df() # Convert to grid data frame

246 gs_rt

247

248 ####−−−−−−−−−−−−−−−−−−−−−−−− Random Forests −−−−−−−−−−−−−−−−−−−−−−−−####

249 # an example of prediction

250 best_par = tune.randomForest(percentile~., data = train_num,

251 mtry =seq(1,8),

252 ntree = seq(1,200,by =10),

253 importance = T) $best.parameters

254 rf_m = randomForest(percentile~., data = train_num,

255 mtry = as.numeric(best_par[’mtry’]),

256 ntree = as.numeric(best_par[’ntree’]),importance = T)

257 pred_rf = predict(rf_m, select(test_num,−percentile))

258 pred_rf

259

260 # feature importance

261

262 importance(rf_m)

263 png(’example_feature_importance.png’,width = 1508, height = 866, units = "px")

264 varImpPlot(rf_m,main = ’Feature Importance’,)

265 dev.off()

266

267 # CV for model comparison

268 rf_p = numeric()

269 rmse_rf_i= numeric()

270 mae_rf_i= numeric()

34

271 start_time_rf = Sys.time()

272 for (i in 1:k) {

273 set.seed(1234)

274 train = df_pct[folds != i,]

275 test = df_pct[folds == i,]

276 best_par = tune.randomForest(percentile~., data = train,

277 mtry =seq(1,8), ntree = seq(1,200,by =10),

278 importance = T) $best.parameters

279 rf_m = randomForest(percentile~., data = train,

280 mtry = as.numeric(best_par[’mtry’]),

281 ntree = as.numeric(best_par[’ntree’]),importance = T)

282 rf_p[folds == i] = predict(rf_m, select(test,−percentile))

283 rmse_rf_i[i] = caret::RMSE(test$percentile, rf_p[folds == i])

284 mae_rf_i[i] = caret::MAE(test$percentile, rf_p[folds == i])

285 }

286 end_time_rf = Sys.time()

287 grid_time_comsumption_rf_10CV = end_time_rf − start_time_rf

288 ten_fold_RMSE_rf = caret::RMSE(df_pct$percentile, rf_p)

289 ten_fold_MAE_rf = caret::MAE(df_pct$percentile, rf_p)

290 ten_fold_RMSE_rf

291

292 # Grid search set up of Random Forests

293 gs_rf <− list(mtry =seq(1,8),

294 ntree = seq(1,200,by =10)) %>%

295 cross_df() # Convert to data frame grid

296 gs_rf

297

298

299 ####−−−−−−−−−−−−−−−−−−−−−−−− XGBoost −−−−−−−−−−−−−−−−−−−−−−−−####

300

301 # an example of prediction

302 train_x_num = data.matrix(select(train_num,−percentile))

303 train_y_num = train_num$percentile

304

35

305 test_x_num = data.matrix(select(test_num,−percentile))

306 test_y_num = test_num$percentile

307

308 xgb_train_num = xgb.DMatrix(data = train_x_num, label = train_y_num)

309 xgb_test_num = xgb.DMatrix(data = test_x_num, label = test_y_num)

310

311 # train model

312 xgb_num = xgboost::xgboost(data = xgb_train_num, max.depth = 5, nrounds = 100, eta = 0.9,

313 nthread = 2,early_stopping_rounds = 6)

314 print(xgb_num)

315 pred_xgb = predict(xgb_num, xgb_test_num)

316 pred_xgb

317 #view variable importance plot

318 mat <− xgb.importance (feature_names = colnames(train_x_num),model = xgb_num)

319 png(’xgb_feature_importance.png’,width = 1267, height = 829, units = "px",type = ’windows’)

320 xgb.plot.importance (importance_matrix = mat[1:12],xlab = ’Gain’, main =’Feature Importance’)

321 dev.off()

322 # CV for model comparison

323 # grid search three parameters with xgb.cv

324 gs <− list(eta =seq(0,0.3, by = 0.05),

325 gamma = seq(0,80, by = 10),

326 subsample = seq(0,0.5, by = 0.1)) %>%

327 cross_df() # Convert to data frame grid

328 gs

329

330 grid_search_xgb = function(input_data,gs_df){

331 best_rmse = numeric()

332 start_time <− Sys.time()

333 best_n_rounds = numeric()

334 for (b in 1:nrow(gs_df)) {

335 params <− list(booster = "gbtree", objective = "reg:squarederror",

336 eta=gs[b,]$eta, gamma=gs[b,]$gamma,

337 max_depth=4, subsample=gs[b,]$subsample,

338 colsample_bytree=1)

36

339 xgbcv = xgb.cv(params = params,

340 data = input_data,

341 nrounds = 150,

342 nfold = 10,

343 showsd = T, stratified = T,

344 print_every_n = 10,

345 early_stop_round = 4,

346 maximize = F, metrics = "rmse")

347 # best_n_rounds[b] = which.min(xgbcv$evaluation_log$test_rmse_mean)

348 best_rmse[b] = min(xgbcv$evaluation_log$test_rmse_mean)

349 }

350 end_time <− Sys.time()

351 return(tibble(’best_parameter’ = gs_df[which.min(best_rmse),],

352 ’best_rmse’ =min(best_rmse),

353 # ’best_iteration’ =best_n_rounds[which.min(best_rmse)] ,

354 ’time_consumption’ = end_time − start_time,

355))

356 }

357

358

359

360 ## 10−fold CV RMSE with grid searching

361 xgb_p = numeric()

362 rmse_xgb_i = c()

363 mae_xgb_i = c()

364 start_time_xgb <− Sys.time()

365 for (i in 1:k) {

366 set.seed(1234)

367 train = df_pct[folds != i,]

368 test = df_pct[folds == i,]

369 # prepare data

370 train_x_num = data.matrix(select(train,−percentile))

371 train_y_num = train$percentile

372 test_x_num = data.matrix(select(test,−percentile))

37

373 test_y_num = test$percentile

374

375 xgb_train_num = xgb.DMatrix(data = train_x_num, label = train_y_num)

376 xgb_test_num = xgb.DMatrix(data = test_x_num, label = test_y_num)

377 # model

378 # parameter grid searching

379 gs_info = grid_search_xgb(input_data = xgb_train_num, gs_df = gs)

380 # find it the xgb with best parameters

381 xgb_m = xgboost::xgboost(data = xgb_train_num, max.depth = 4, nrounds = 150,

382 eta = gs_info$best_parameter$eta,gamma = gs_info$best_parameter$gamma,

383 nthread = 4,early_stopping_rounds = 3,

384 subsample=gs_info$best_parameter$subsample)

385 xgb_p[folds == i] = predict(xgb_m, xgb_test_num)

386 rmse_xgb_i[i] = caret::RMSE(test$percentile, xgb_p[folds == i])

387 mae_xgb_i[i] = caret::MAE(test$percentile, xgb_p[folds == i])

388 }

389 end_time_xgb <− Sys.time()

390 # runningf time

391 grid_time_comsumption_xgb_10cv = end_time_xgb − start_time_xgb

392 ten_fold_RMSE_xgb = caret::RMSE(df_pct$percentile, xgb_p)

393 ten_fold_MAE_xgb = caret::MAE(df_pct$percentile, xgb_p)

394 ten_fold_RMSE_xgb

395

396

397 ####−−−−−−−−−−−−−−−−−−−−−− make the RMSE comparison chart −−−−−−−−−−−−−−−−−−−−−−####

398 library(ggplot2)

399 RMSE_compare = cbind(ten_fold_RMSE_lr,

400 ten_fold_RMSE_svr_linear,

401 ten_fold_RMSE_svr_rbf,

402 ten_fold_rt,

403 ten_fold_RMSE_rf,

404 ten_fold_RMSE_xgb)

405 # round to 5 digits

406 is.num <− sapply(RMSE_compare, is.numeric)

38

407 RMSE_compare[is.num] <− lapply(RMSE_compare[is.num], round, 5)

408 RMSE_compare = tibble(Model = c(’Linear Regression’,’SVR (Linear Kernel)’,’SVR (RBF Kernel)’,

409 ’Base Tree’,’Pre−pruning Tree’,’Post−pruning Tree’,

410 ’Random Forests’,’XGBoost’),

411 ’RMSE’ = as.numeric(RMSE_compare[1,]))

412

413 RMSE_compare = RMSE_compare %>% arrange(RMSE)

414

415 ggplot(RMSE_compare) +

416 geom_bar(aes(x =reorder(Model, RMSE), y = RMSE),stat="identity",position = ’dodge’) +

417 # make the number show up above the bar

418 geom_text(aes(x =reorder(Model, RMSE), y = RMSE,label=RMSE),

419 position=position_dodge(width=0.9),

420 vjust=−0.25) +

421 labs(title = "10−fold CV RMSE of Different Models",

422 subtitle = "Ranking in ascending order",

423 x = "Model",

424 y = "RMSE of Predicted Percentile")+

425 # change title position

426 theme(plot.title = element_text(hjust = 0.5)) +

427 scale_y_continuous(breaks=seq(0,1,0.005))

428 ggsave("10−fold_CV_RMSE_of_Different_Models.png", width = 30, height = 20, units = "cm")

429

430

431

432 ####−−−−−−−−−−−−−−−−−−− make the MAE comparison chart −−−−−−−−−−−−−−−−−−−####

433 MAE_compare = cbind(ten_fold_MAE_lr,

434 ten_fold_MAE_svr_linear,

435 ten_fold_MAE_svr_rbf,

436 ten_fold_rt_mae,

437 ten_fold_MAE_rf,

438 ten_fold_MAE_xgb)

439 # round to 5 digits

440 is.num <− sapply(MAE_compare, is.numeric)

39

441 MAE_compare[is.num] <− lapply(MAE_compare[is.num], round, 5)

442 MAE_compare = tibble(Model = c(’Linear Regression’,’SVR (Linear Kernel)’,’SVR (RBF Kernel)’,

443 ’Base Tree’,’Pre−pruning Tree’,’Post−pruning Tree’,

444 ’Random Forests’,’XGBoost’),

445 ’MAE’ = as.numeric(MAE_compare[1,]))

446

447 MAE_compare = MAE_compare %>% arrange(MAE)

448

449 ggplot(MAE_compare) +

450 geom_bar(aes(x =reorder(Model, MAE), y = MAE),stat="identity",position = ’dodge’) +

451 # make the number show up above the bar

452 geom_text(aes(x =reorder(Model, MAE), y = MAE,label=MAE),

453 position=position_dodge(width=0.9),

454 vjust=−0.25) +

455 # guides(fill=FALSE) + # use this if changing the bar color

456 labs(title = "10−fold CV MAE of Different Models",

457 subtitle = "Ranking in ascending order",

458 x = "Model",

459 y = "MAE of Predicted Percentile")+

460 # change title position

461 theme(plot.title = element_text(hjust = 0.5)) +

462 scale_y_continuous(breaks=seq(0,1,0.005))

463 ggsave("10−fold_CV_MAE_of_Different_Models.png", width = 30, height = 20, units = "cm")

464

465

466 ####−−−−−−−−−−−−−−−− make the RMSE & MAE comparison chart −−−−−−−−−−−−−−−####

467 # The color−blind friendly palette begins with grey:

468 cbPalette <− c("#999999", "#E69F00", "#56B4E9",

469 "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")

470

471 metrics_compare = left_join(RMSE_compare,MAE_compare, by = "Model")

472 metrics_compare = metrics_compare %>% tidyr::gather(c("RMSE","MAE"),

473 key = ’metrics’,

474 value = ’value’)

40

475

476 metrics_compare %>%

477 # arrange(metrics,value)%>%

478 mutate(Model = factor(Model, levels = unique(Model))) %>%

479 ggplot() +

480 geom_bar(aes(x =Model, y = value,fill = metrics),stat="identity",

481 position = ’dodge’) +

482 # make the number show up above the bar

483 geom_text(aes(x =Model, y = value,label=round(value,5),group = metrics),

484 position=position_dodge(width=1), vjust=−0.25) +

485 # guides(fill=FALSE) + # use this if changing the bar color

486 scale_fill_manual(values = c(cbPalette[1], cbPalette[2]))+

487 labs(title = "10−fold CV Evluation Metrics of Different Models",

488 subtitle = "Ranking in ascending order by RMSE",

489 x = "Model",

490 y = "Percentile")+

491 # change title position

492 theme(plot.title = element_text(hjust = 0.5)) +

493 scale_y_continuous(breaks=seq(0,1,0.025))

494

495 ggsave("10−fold_CV_Evluation_Metrics_of_Different_Models.png", width = 30, height = 20, units = "cm")

496 saveRDS(metrics_compare,"metrics_compare.rds")

497

498

499 ####−−−−−−−−−−−−−−−−−−−−− make prediction comparison chart −−−−−−−−−−−−−−−−−−−−−####

500

501

502 # find the drug name

503 all_drug_names = m_df$base_composition_name[1:60]

504 test_drug_names = all_drug_names[folds==1]

505 # find the test label

506 test_label = test_num$percentile

507 # pred_xgb = rep(0,length(test_drug_names))

508 prediction_compare = cbind(test_label,

41

509 pred_lr,pred_rf,

510 pred_rt_base,

511 pred_rt_postp,

512 pred_rt_prep,

513 pred_svr_linear,

514 pred_svr_RBF,pred_xgb)

515 prediction_compare = as_tibble(prediction_compare)

516 # round to 5 digits

517 is.num <− sapply(prediction_compare, is.numeric)

518 prediction_compare[is.num] <− lapply(prediction_compare[is.num], round, 5)

519 # put in the column of drug name

520 prediction_compare = prediction_compare %>% mutate(Drug_name = test_drug_names)

521 # delete drug name

522 column_gather = colnames(prediction_compare)[− length(colnames(prediction_compare))]

523 column_gather

524 prediction_compare = prediction_compare %>% tidyr::gather(column_gather, key = ’Model’,value = ’value’)

525

526 # 1. baseline models prediction

527 base_line_pred = prediction_compare %>% filter(Model %in% c(’test_label’,

528 ’pred_lr’,’pred_svr_linear’,

529 ’pred_svr_RBF’))

530 base_line_name = (base_line_pred %>%

531 select(Model) %>%

532 distinct())$Model

533 base_line_name

534 # make the plot

535 ggplot(base_line_pred) +

536 geom_line(aes(x = Drug_name, y = value,

537 group = Model, color = Model,size = Model))+

538 labs(#title = "Prediction Comparison of Baseline Models",

539 x = "Drug Name",

540 y = "Cut Percentile",

541 color = "Model Name and Test Label") +

542 # change title position

42

543 theme(plot.title = element_text(hjust = 0.5)) +

544 scale_color_manual(labels = c("Linear Regression", "SVR (linear kernel)",

545 "SVR (RBF kernel)","Test Label"),

546 values = cbPalette[c(2:length(base_line_name),1)])+

547 scale_y_continuous(breaks=seq(0,1,0.005))+

548 scale_size_manual(values = c(rep(0.5,3),1),guide = ’none’)

549 ggsave("pred_base_percentile.png", width = 30, height = 20, units = "cm")

550

551 saveRDS(base_line_pred,"base_line_pred.rds")

552 # 2. Tree−based models prediction

553 tree_pred = prediction_compare %>% filter(Model %in% c(’test_label’,’pred_rf’,

554 ’pred_rt_base’,’pred_rt_prep’,

555 ’pred_rt_postp’,’pred_xgb’))

556 tree_name = (tree_pred %>% select(Model) %>% distinct())$Model

557 tree_name

558

559

560 ggplot(tree_pred) +

561 geom_line(aes(x = Drug_name, y = value,group = Model,color = Model,size = Model))+

562 labs(#title = "Prediction Comparison of Tree−based Models",

563 x = "Drug Name",

564 y = "Cut Percentile",

565 color = "Model Name and Test Label") +

566 # change title position

567 theme(plot.title = element_text(hjust = 0.5)) +

568 scale_color_manual(labels = c("Random Forests", "Base Regression Tree",

569 "Post−pruning Regression Tree", "Pre−pruning Regression Tree",

570 "XGboost","Test Label"),

571 values = cbPalette[c(2:length(tree_name),1)])+

572 scale_y_continuous(breaks=seq(0,1,0.005))+

573 scale_size_manual(values = c(rep(0.5,5),1),guide = ’none’)

574

575 ggsave("Prediction_Comparison_of_Tree−based_Models.png", width = 30, height = 20, units = "cm")

576

43

577 saveRDS(tree_pred,"tree_pred.rds")

578 ####−−−−−−−−−−−−−−−−−−−−−−−− make box plot (RMSE) −−−−−−−−−−−−−−−−−−−−−−−−####

579 RMSE_compare_box = cbind(rmse_lr_i,

580 rmse_svr_linear_i,

581 rmse_svr_rbf_i,

582 rmse_base_i,

583 rmse_pre_pruned_i,

584 rmse_post_pruned_i,

585 rmse_rf_i,rmse_xgb_i)

586 RMSE_compare_box = as_tibble(RMSE_compare_box)

587 model_names = c(’Linear Regression’,

588 ’SVR (Linear Kernel)’,’SVR (RBF Kernel)’,

589 ’Base Tree’,’Pre−pruning Tree’,’Post−pruning Tree’,

590 ’Random Forests’,’XGBoost’)

591 colnames(RMSE_compare_box) = model_names

592

593 RMSE_compare_box

594 saveRDS(RMSE_compare_box,"RMSE_compare_box.rds")

595

596

597 m <− apply(RMSE_compare_box, MARGIN = 2, FUN = range, na.rm = TRUE)

598 dff_range = m[2,] − m[1,]

599 # set the order of model in x−axis

600 o <− order(dff_range, decreasing = FALSE)

601 o

602 png(’boxplot_RMSE.png’,width = 1189, height = 679, units = "px",type = ’windows’)

603 boxplot(RMSE_compare_box[, o],ylab = ’RMSE’, ylim = c(0.0,0.11),

604 main = ’Ranking by range difference of RMSE in ascending order ’)

605 dev.off()

606

607 ####−−−−−−−−−−−−−−−−−−−−−−−− make box plot (MAE)−−−−−−−−−−−−−−−−−−−−−−−−####

608 # mae_xgb_i = rep(0,k)

609 MAE_compare_box = cbind(mae_lr_i,

610 mae_svr_linear_i,

44

611 mae_svr_rbf_i,

612 mae_base_i,

613 mae_pre_pruned_i,

614 mae_post_pruned_i,

615 mae_rf_i,mae_xgb_i)

616 # round to two digits

617 MAE_compare_box = as_tibble(MAE_compare_box)

618 model_names = c(’Linear Regression’,

619 ’SVR (Linear Kernel)’,’SVR (RBF Kernel)’,

620 ’Base Tree’,’Pre−pruning Tree’,’Post−pruning Tree’,

621 ’Random Forests’,’XGBoost’)

622 colnames(MAE_compare_box) = model_names

623

624 MAE_compare_box

625 saveRDS(MAE_compare_box,"MAE_compare_box.rds")

626

627 m <− apply(MAE_compare_box, MARGIN = 2, FUN = range, na.rm = TRUE)

628 dff_range = m[2,] − m[1,]

629 # set the order of model in x−axis

630 o <− order(dff_range, decreasing = FALSE)

631 o

632 png(’boxplot_mae.png’,width = 1189, height = 679, units = "px",type = ’windows’)

633 boxplot(MAE_compare_box[, o],ylab = ’MAE’, ylim = c(0.0,0.11),

634 main = ’Ranking by range difference of MAE in ascending order ’)

635 dev.off()

636

637

638

639 ####−−−−−−−−−−−−−−−−−−−−−−−− make box plot (RMSE & MAE)−−−−−−−−−−−−−−−−−−−−−−−−####

640 # combine the two boxplots in one figure

641 metrics_compare_boxplot = rbind(RMSE_compare_box %>% mutate(’metrics’ = ’RMSE’) %>%

642 tidyr::gather(model_names, key = ’Model’,value = ’value’),

643 MAE_compare_box %>% mutate(’metrics’ = ’MAE’) %>%

644 tidyr::gather(model_names, key = ’Model’,value = ’value’)

45

645)

646

647

648 metrics_compare_boxplot %>%

649 ggplot(aes(x =Model, y = value,fill = metrics)) +

650 geom_boxplot() +

651 stat_boxplot(geom=’errorbar’)+

652 facet_grid(metrics~.)+

653 scale_fill_manual(values = c(cbPalette[1], cbPalette[2]))+

654 labs(title = "Boxplot Comparison of Evluation Metrics of Different Models",

655 x = "Model",

656 y = "Percentile")+

657 # change title position

658 theme(plot.title = element_text(hjust = 0.5)) +

659 scale_y_continuous(breaks=seq(0,0.1,0.005))

660

661 ggsave("boxplot_comparison_MAR_RMSE.png", width = 30, height = 20, units = "cm")

46

