
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at Advanced Information Systems
Engineering.

Citation for the original published paper:

Hacks, S., Katsikeas, S. (2021)
Towards an Ecosystem of Domain Specific Languages for Threat Modeling
In: (pp. 3-18). Springer Nature
https://doi.org/10.1007/978-3-030-79382-1_1

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297942

Towards an Ecosystem of Domain Specific
Languages for Threat Modeling

Simon Hacks[0000−0003−0478−9347] and Sotirios Katsikeas[0000−0001−8287−3160]

Division of Network and Systems Engineering
KTH Royal Institute of Technology

Stockholm, Sweden
{shacks|sotkat}@kth.se

Abstract. Today, many of our activities depend on the normal opera-
tion of the IT infrastructures that supports them. However, cyber-attacks
on these infrastructures can lead to disastrous consequences. Therefore,
efforts towards assessing the cyber-security are being done, such as at-
tack graph simulations based on system architecture models. The Meta
Attack Language (MAL) was previously proposed as a framework for
developing Domain Specific Languages (DSLs) that can be used for the
aforementioned purpose. Since many common components exist among
different domains, a way to prevent repeating work had to be defined.
To facilitate this goal, we adapt taxonomy building by Nickerson and
propose an ecosystem of MAL-based DSLs that describes a systematic
approach for not only developing, but also maintaining them over time.
This can foster the usage of MAL for modeling new domains.

Keywords: Ecosystem · Domain Specific Language · Cyber-security
modeling · Cyber-security simulations.

1 Introduction

Today, our society is heavily dependent on IT infrastructures and cyber-attacks
on them can have disastrous consequences for individuals, regions, and whole
nations [28, 29, 35]. Therefore, it is necessary to keep such critical IT infrastruc-
tures secure. One approach is the assessment of their cyber-security, which can
foster a higher degree of security and resilience. However, such an assessment is
difficult as the security-relevant parts of the system must be understood, and
all potential attacks must be identified [24]. We can determine three core chal-
lenges related to these needs: identification of all relevant security properties of
a system; collection of further information on these properties; processing of the
information needs to uncover all weaknesses that can be exploited.

Hitherto, we used attack graph simulations based on system architecture
models [9] to support these tasks. Our attack simulation tool enables the secu-
rity assessor to focus on the collection of the information about the system, as
the simulation addresses the first and the third challenges. As the previous ap-
proach relies on a static implementation, we developed MAL (the Meta Attack

2 S. Hacks and S. Katsikeas

Language) [16]. MAL is a framework for domain-specific languages (DSLs) and
used to define which information about a system is required. Moreover, it speci-
fies the generic attack logic. Then, MAL automatically generates attack graphs
involving the modeled system. Since MAL is a meta language (i.e., the set of
rules that should be used to create a new DSL), no particular domain of interest
is represented.

Over the last three years, after MAL was originally proposed on 2018 [16], a
number of MAL-based DSLs started being developed. Over the past three years,
we can notice that in the first two years the rate of new languages starting to be
developed was steady (four new languages per year) but in the last year, that rate
was significantly increased (nine new languages in 2020). This increasing trend
can be explained by the fact that MAL has gained more recognition through
conference paper presentations as well as journal article publications.

We noticed that the developers were reasoning on similar parts among dif-
ferent languages. Thus, we started the initiative to develop a multi-purpose lan-
guage covering these repeating parts: coreLang [18]. coreLang includes the com-
mon concepts that are needed to model IT related networks, but on an abstract
level. While specifying coreLang into more concrete languages, we recognized
that we were still repeating work in certain domains. Thus, a more systematic
approach for developing MAL-based languages is needed, leading to our research
question: RQ1: What are the properties of a MAL-based languages’ ecosystem of
that reduces redundant work? Simultaneously, a method is needed how such an
ecosystem can be maintained. Accordingly, we formulate our second research
question: RQ2: How can MAL-based languages be developed and maintained to
preserve the ecosystem’s characteristics? The resulting ecosystem’s purpose is
to support the end-user in finding suitable languages for their demands and to
reduce the effort for language developers by avoiding redundancy.

The rest of the paper is structured as follows: Next, we present the related
work, which is on threat modeling in general and the systematic development
of DSLs. To ease the understanding of MAL, we present the idea behind MAL,
before we explain the fundamental properties of the ecosystem. This is followed
by our vision for the future ecosystem as well as the explanation how single
languages should be developed and maintained to fit into the ecosystem. Before
we conclude our work, we discuss different insights regarding the ecosystem and
possible changes to MAL to improve the ecosystem development.

2 Related Work

MAL languages count towards the domain of model-driven security engineering,
in which many domain-specific languages exist [17, 27]. These languages usually
facilitate a model of a system, which incorporates its components, the interac-
tion among these, and security properties such as constraints, requirements, or
threats. One common formalism for model checking and searching for constraint
violations are attack trees [33, 21]. Apart from MAL, which is using this concept,
there are several other approaches elaborating on attack graphs [22, 38].

Towards an Ecosystem of DSLs for Threat Modeling 3

Hitherto, we have united the approaches of attack graphs and system mod-
eling in our previous work [9] by automatically generating probabilistic attack
graphs based on a existing system specification. However, the used languages to
create the attack graphs were hard-coded. Therefore, we have proposed MAL [16]
that allows to create domain specific languages. So far, several languages have
been built in MAL like vehicleLang [19], which allows modeling cyber-attacks on
modern vehicles, or coreLang [18], which contains the most common IT entities
and attack steps. Another approach is the automated creation of MAL languages
by translating existing concepts to MAL [11].

As already indicated, the languages created with MAL are DSLs and we aim
to develop an ecosystem around these languages. Hence, other related work elab-
orates on the development of DSLs and hierarchies of DSLs. do Nascimento et
al. [25] performed a systematic mapping study on DSLs. Besides an increasing
interest in DSLs, do Nascimento et al. notice that security related DSLs receive a
lower attention than other DSLs e.g., related to software engineering purposes.
Developing DSL for special purposes is a common endeavor in software engi-
neering research. Accordingly, a broad range of DSLs has been developed [25].
Hence, researchers [34, 20] took a closer look at the different DSLs and distilled
different reoccurring patterns.

In our work, we create hierarchies between DSLs, which is scarce in exist-
ing research. Nonetheless, different authors [15, 32] combine different DSLs in a
hierarchical fashion, similar to our idea. In their approaches, each layer is used
by different kinds of experts and the upper layer consumes the outputs of the
lower layers. Thus, the developers on the lower layers do not need to have the
overarching knowledge of the higher layers, while the developers of the higher
layers do not need the detailed knowledge of the lower levels. Preschern at al.
[31, 30] propose a meta-DSL which is similar to MAL as it provides a framework
to develop other DSLs. However, while MAL’s purpose is situated in the threat
modeling domain, their meta-DSL is used for physical automation. In contrast
to our work, they do not consider further dependencies between languages de-
veloped with their meta-DSL.

Cleenewerck [8] suggests defining so called “key words” to create components
in DSLs that can be reused among other DSLs. This is similar to our idea of
creating abstract DSLs that then are reused to create more specific languages.
However, his approach is different in the sense that he proposes single fragments
that are then reused, while we reuse the entire language. His approach has the
advantage that the language designer can explicitly choose what to reuse, while
our approach can cover concepts that the designer might have not considered.

3 The Meta Attack Language

Next, we give a short presentation of the MAL. For a detailed overview of the
MAL, we refer readers to the original paper [16]. First, a MAL-based DSL con-
tains the main elements that are encountered on the domain under study, those

4 S. Hacks and S. Katsikeas

are called assets in MAL. The assets contain attack steps, which represent
the actual attacks/threats that can happen on them.

An attack step can be connected with one or more following attack steps so
that an attack path is created. Those attack paths are then used to create attack
graphs which are facilitated when the attack simulation is run. Attack steps can
be either of the type OR or of the type AND, respectively indicating that
performing any individual parental attack step is required (OR) or performing
all parental attack steps is required (AND) for the current step to be performed.

Assets should also have relations between them in order for a model to be
constructed, those relations are called associations in MAL. Inheritance be-
tween assets is also possible and each child asset inherits all the attack steps of
the parent asset. It should be, nevertheless, mentioned that multiple inheritance
is not currently supported in MAL. Additionally, the assets can be organized
into categories for purely organization reasons.

In Listing 1, a short example of how a MAL-based DSL is presented. In this
example, four modeled assets can be seen together with the connections of attack
steps from one asset to another. In the Host asset, the connect attack step is
an OR attack step while access is an AND attack step. Then, the -> symbol
denotes the connected next attack step. For example, if an attacker performs
phish on the User, it is possible to reach obtain on the associated Password and
as a result finally perform authenticate on the associated Host. In the last lines
of the example the associations between the assets are defined.

1 category System {
2 a s s e t Network {
3 | a c c e s s
4 −> host s . connect
5 }
6
7 a s s e t Host {
8 | connect
9 −> a c c e s s

10 | authent i ca t e
11 −> a c c e s s
12 | guessPwd
13 −> guessedPwd
14 | guessedPwd [Exp (0 . 0 2)]
15 −> authent i ca t e
16 & a c c e s s
17 }
18
19 a s s e t User {
20 | attemptPhishing
21 −> phish

22 | phish [Exp (0 . 1)]
23 −> passwords . obta in
24 }
25
26 a s s e t Password extends Data {
27 | obta in
28 −> host . au thent i ca t e
29 }
30 }
31
32 a s s o c i a t i o n s {
33 Network [networks] ∗
34 <−− NetworkAccess −−>
35 ∗ [ho s t s] Host
36 Host [host] 1
37 <−− Creden t i a l s −−>
38 ∗ [passwords] Password
39 User [user] 1
40 <−− Creden t i a l s −−>
41 ∗ [passwords] Password
42 }

Listing 1: Exemplary MAL Code

Towards an Ecosystem of DSLs for Threat Modeling 5

4 Properties of Ecosystems

Jacobidis et al. [14] identified three streams of strategy research elaborating on
ecosystems: the first stream focuses on a company and its environment [36]; the
second stream concentrates on a particular innovation and the related actors [1];
the third stream centers around technological platforms and the actors interact-
ing around them [6]. MAL and the languages created with it, can be understand
as a technological platform and, thus, count towards the third stream.

For ecosystems in the third stream, Jacobidis et al. [14] identified three dif-
ferent types of stakeholders as a common property (P1): the platform sponsors,
the complementors, and the consumers. For our envisioned ecosystem, the plat-
form sponsor is the developer team of the MAL compiler, as their decisions on
MAL’s feature frame the opportunities that the MAL language developers (i.e.,
the complementors) can work with. Both together provide the final value to the
users of the language respectively the consumers. From a complementor perspec-
tive, a property of ecosystems (P2) is the ability to reuse existing components
and sometimes also combine them [14]. In our ecosystem, the complementor will
choose from the different languages those, which are closest to their demands,
and even combine different languages to address overarching demands (cf. Sec-
tion 6). Moreover, this property is mirrored to the consumers (P3), that are free
to choose from the ecosystem and combine different components [14].

Another important property of ecosystems (P4) is to provide an alignment
structure for the different stakeholders creating the single parts of it [2], while
preserving stakeholders’ autonomy [14]. This is achieved by a modular architec-
ture [4] and related design parameters can be set by the platform sponsor. Thus,
an ecosystem provides processes and rules to solve coordination issues arising
along the ecosystem evolution [14].

A fundamental rule of our ecosystem is that at the top, there are languages
that cover criteria of a broad range of demands, while the deeper in the hier-
archy the more specific the languages are. This reminds of the characteristics
of a taxonomy [26], which is comprised by a set of n dimensions that consist of
k characteristics. These characteristics are mutual exclusive in each dimension
for the object that is classified. From a language development perspective, the
mutual exclusivity still holds as the languages should be differentiable from each
other. However, we relax the demand for one layer of characteristics to have sev-
eral levels of concretization. As the relaxation is the only difference, the approach
of Nickerson et al. [26] is still applicable to create an ecosystem of MAL-based
languages. Thus, we present following our adoption of Nickerson et al.:

First, the meta-characteristic of the taxonomy –or rather of the DSL ecosys-
tem in our case– needs to be determined. Nickerson et al. [26] point out that
“The meta-characteristic is the most comprehensive characteristic that will serve
as the basis for the choice of characteristics in the taxonomy.” Thus, the meta-
characteristic guides the development of the ecosystem and should be related to
its purpose. On the one hand, it should support the developer of new MAL-based
languages to situate their language properly with respect to existing languages.
On the other hand, it should serve as aid for the language users to choose the

6 S. Hacks and S. Katsikeas

best suiting language. However, future development of the ecosystem might lead
to changes of the purpose, as also mentioned by Nickerson et al. [26].

Second, the ending conditions need to be determined. The development of
the ecosystem is a continuous effort. Consequently, there is no general ending
condition. If a new language is added to the ecosystem, the ending condition
is its successful situation within the ecosystem. However, the addition of a new
language may also lead to changes in the ecosystem’s structure. Within this
work, we temporally extend these ending conditions to make sure that all ex-
isting MAL-based languages are included and to include imaginary examples to
illustrate the application of the ecosystem.

Next, we develop the ecosystem itself. For the first version of the ecosys-
tem, we follow a conceptual-to-empirical approach [26]. Therefore, we envision a
structure that is detailed in Section 5 and incorporate the existing MAL-based
languages into it. Following the conceptual-to-empirical approach is motivated
by the facts that the number of MAL-based languages is yet not large enough
to follow the empirical-to-conceptual approach and that the ecosystem struc-
ture shall inspire future language development. However, future alterations of
the ecosystem’s structure will obviously follow the empirical-to-conceptual ap-
proach, as a new object will join, which causes a revision of the structure.

5 A Vision for the Structure of an Ecosystem

Before, we have developed the characteristics that lead to the structure for the
ecosystem. Next, we will present the outcome of the application of processes
constituted in P4 (cf. Figure 1). We like to note, that this is just a vision and
a future structure might look different. However, this vision should serve as an
inspiration for the future development of MAL-based languages.

Before diving into the details of Figure 1, we like to discuss shortly the
founding ideas. First, the structure follows the principle from general to specific.
In other words, we situate languages that cover general domains on the top of
the hierarchy and specify the languages to specific domains. This is thought to
reduce the effort for creating languages. Second, we indicate cluster of languages.
These cluster represent languages that belong to a certain domain. They are
thought as help for the end-user to select the best suited language(s). This leads
also to aspect three: each language is not planned as a silver bullet. Instead, the
end-user chooses several languages that satisfy together the overall demand.

As indicated, we envision the future structure of MAL-based languages in a
hierarchical structure. By definition, the origin of all MAL-based languages are
the concepts of MAL (cf. Section 3). The second layer defines languages that
cover certain overall concepts, like coreLang [18] representing common aspects
of IT related networks. So far, coreLang depicts the only existing language on
this layer. Another possible direction for future languages is to include business
aspects into the threat modelling [10, 3].

The next layer concretizes the general-purpose languages. As a first step of
concretization, we envision a differentiation between languages that cover the

Towards an Ecosystem of DSLs for Threat Modeling 7

MAL

coreLang

itLang

officeLang

cloudLang

serverLang

hostLang

….

otLang

icsLang

genera�onLang

transmissionLang

distribu�onLang

…

explora�onLang

liquefac�onLang

storageLang

…

vehicleLang

healthLang

…

…

physicalLang

businessLang

…

Power

Gas

generic specific

Fig. 1. Vision of an ecosystem for MAL-based languages

specifics related to IT and OT. The languages of the IT branch cover aspects
related to classical IT. The OT branch is characterized by a much broader diver-
sification of languages as the spectrum of languages will need to represent very
different domains with different terminologies. So far, we have a language that
is used to model the internals of vehicles (vehicleLang [19]) and a language that
satisfies the need to simulate attackers in industrial environments (icsLang).

We assume that there will not be much need to specify the aforementioned
layer of languages further. For example, to provide the power domain with neces-
sary and to their terminology tailored assets, icsLang can be refined into certain
languages, inspired by the facets included in the Smart Grid Architecture Model
(SGAM) [7]. Similarly, this can be done for the gas domain, inspired by its value
chain [37]. These most concrete languages will mainly rename already existing
concepts to meet the domain specific terminology.

Hitherto, we have described languages that can be arranged into an inheri-
tance hierarchy. However, we recognized possible languages that do not fit into
this hierarchy as they cover orthogonal aspects that might or might not be of
relevance for certain languages in the hierarchy. For example, enterpriseLang [39]
codifies the techniques of MITRE ATT&CK1 into MAL.

6 Single Language Development

So far, we have discussed the overall structure of the DSL ecosystem. However,
the ecosystem is constituted by its languages. Therefore, we will discuss follow-

1 https://attack.mitre.org/

8 S. Hacks and S. Katsikeas

ing how new languages can be integrated into the existing ecosystem and how
existing languages should be maintained to keep the spirit of the ecosystem alive.

6.1 Developing a New Language

Before developing a new language, the developer needs to determine the require-
ments towards the language. In other words, which certain domain(s) should
be covered by the language. Here, the techniques of domain analysis (e.g., [13])
might be of support for the developer. Based on this recognition, the developer
needs to decide if an existing language or a combination of languages within the
ecosystem are already (partly) satisfying the requirements.

If the requirements are already fulfilled, there is no need for an additional
language. However, it might be the case that a language satisfies the require-
ments functionally, but the desired domain demands another terminology. In
this case, we recommend an inherited language from the existing language, that
simply introduces the common terminology of the domain. If the requirements
are already fulfilled by a set of different languages, then a new language should
be comprised of these languages (see Section 6.3).

Finally, if the requirements are not met, there is a need for a new language.
To situate the language properly within the ecosystem, the developer should
determine the language that covers the requirements best. Therefore, the devel-
oper should traverse the ecosystem’s structure from its root by choosing always
the best suiting domain. The traversing ends when the developer reaches a lan-
guage that is too specific and, thus, does not satisfies the requirements anymore.
Accordingly, the new language should be placed on the same level as the first
language that is not satisfactory. If a further reorganization (cf. Section 4) of
the following hierarchies is necessary, needs to be decided case by case. If sev-
eral languages are identified as suitable for an extension. Then these languages
need to be extended by several different new languages that are combined by
the mechanisms described in Section 6.3.

6.2 Language Maintenance

Hitherto, we have discussed how developers should situate new languages within
the ecosystem. However, it might be the case that an already existing language
is covering the domain. In these cases, the reuse of existing languages should be
prioritized. Nonetheless, it might be possible that the language does not contain
all needed concepts. For example, a certain asset could be missing. Then, the
language needs to be maintained.

To minimize site effects on other languages, we recommend adding new as-
sets to languages that are at the lowest level of the ecosystem’s structure. If the
asset is shared among different languages on the same level of abstraction, then
the asset should be moved up to the language of which these languages inherit
from. However, if the there are other languages sharing the same parenting lan-
guage and these languages do not contain the same asset, an additional abstract
language could be necessary. This additional language would be then introduced

Towards an Ecosystem of DSLs for Threat Modeling 9

MAL Lang A
New Asset
...

inheritance (include from)
MAL Lang C

Asset C
Asset D
New Asset
...

MAL Lang B
Asset A
Asset B
New Asset
...

MAL Lang A
Asset A
...

New abstract lang.
Asset A
New Asset
...

inheritance (include from)
MAL Lang B

Asset A
Asset B
...

Case 2: Languages sharing the same parenting language
and these languages do not contain the same asset

Case 1: Asset is shared among different languages
on the same level of abstraction

MAL Lang D
Asset A
New Asset
Asset D
...

MAL Lang C
Asset A
New Asset
Asset C
...

inheritance (include from)

Fig. 2. Two cases of adding new assets in the ecosystem

as parent language for the languages sharing the certain asset. Those two cases
are depicted in Figure 2.

Following this pattern will ensure the downward compatibility of the lan-
guages and, thus, create a more robust ecosystem. Drawbacks of this application
are an increasing number of languages and deep inheritance hierarchies. Ad-
ditionally, in such a deep inheritance chain, many unnecessary assets can be
inherited when creating a new language. A possible solution for these drawbacks
is the introduction of multiple inheritance and partial inheritance, respectively.

The deletion or the change of assets on the lowest level is without danger to
the integrity of the ecosystem, as this will have no influence on other languages.
However, adding, deleting, and changing on higher levels will have direct influ-
ence on all related lower languages. Therefore, these actions should be avoided
on higher levels to impede undesired site effects. If such changes are necessary,
a thorough analysis on the effects will be necessary and even a restructuring
of ecosystem parts might be needed. Thus, we highly recommend to perform
changes just on the lowest levels.

6.3 Combining Languages

As indicated before, the combination of different languages can satisfy the needs
of the end-user. Usually, this will be the case if the end-user wants to model
entire organizations that cover different domains. For example, for manufactur-
ing organizations there will be the computing systems that are necessary for the
manufacturing parts. Further, there will be other systems that support the ad-
ministrative parts within the organization, like accounting or human resources.
To perform simulations for such kind of organizations, the two languages cov-
ering these different aspects are needed. The ecosystem behaves in such cases

10 S. Hacks and S. Katsikeas

similar to the product line pattern [23], as the developer combines the languages
from the ecosystem like the features for product lines.

The determination of the best suiting languages follows basically the same
process as described in Section 6.1, except that the domain analysis [13] will
result in several domains. Thus, the process needs to be performed for each of
the domains to identify the best suiting language.

Next, the languages need to be linked to each other. First, the developer needs
to identify the desired connection points between the languages. Connection
points refer here to certain assets that are on the border (or close to) between
two domains. These assets serve as transition for the attacker from one language
to the other. Afterwards, it should be checked if there already exist links between
the languages due to shared associations inherited from a parent language.

This examination can lead to four kinds of possible findings: First, the ex-
isting link is in line and no further actions are needed. Second, the found link
is contradictory to our intentions and it needs to be removed. Actually, the lan-
guages need to be redesigned to achieve this. However, in future versions of MAL
it might be possible to realize this without changing the languages, e.g., due to
the specialization patter [34]. Third, there is no link between the asset and there
is also non desired. Again, no actions need to be taken. Lastly, there is no link,
but there should be one. In this last case, we see different options to create links
between the languages that we will discuss next.

The first option is using inheritance between assets of the different languages
as we did in powerLang [12]. The advantage is that the changes to the language
are minimal, as just an extension between two assets has to be added. However,
this is still a change on one language. Additionally, this works only if the asset
does not already have an extension, as MAL does not support multiple inheri-
tance (now). Another drawback is that the inheritance might cause unintended
behavior if attack steps get overwritten. To sum up, the disadvantages prevail
the advantages and, thus, inheritance should not be used to link languages.

The second option is to add a dedicated attack step that leads to another
attack step in the other language. This gives a better control on how an attacker
moves between languages and no unwanted side-effects arise. But changes to at
least one language are needed. Further, a deeper understanding of both languages
is needed to determine suitable attack steps for the transition. To sum up, this
approach seems better, due to less unwanted side effects, but should also not be
preferred as changes to the languages are necessary.

For the last option, the languages of the ecosystem need to be prepared first.
Basically, the designer of the language foresees certain attack steps, preferably
encapsulated in a designated asset, that serve as incoming and outgoing con-
nection points. As these attack steps are of technical nature, they might be
hidden to the end-users. A third language can be created in which the outgoing
connection points are linked to the incoming connection points, similar to the
adapter pattern [20]. Thus, no changes to the languages of the ecosystem would
be necessary (cf. Figure 3). Alternatively, outgoing connection points can auto-
matically be linked to incoming connection points, but we think that a human

Towards an Ecosystem of DSLs for Threat Modeling 11

MAL Lang A

belongsAsset A Attack
Step A.1

Attack
Step B.1Asset B

Linking Language

belongs

Connection
Point Asset

Incoming
Conn.
Point 1 Incoming

Conn.
Point 2

belongs
connects to

MAL Lang B

belongs Asset CAttack
Step C.1

Attack
Step D.1

belongs Asset D

connects to

belongs
connects to

connects to

Fig. 3. Combining languages using an intermediate language

evaluation of which concrete points are connected to each other is necessary. A
disadvantage of this technique is the additional effort for the language designers
to consider and model the connections points. However, the effort will be worth
it, as no changes to the languages will be necessary.

When combining languages, the question of responsibility for the mainte-
nance of the linked languages needs to be answered and what happens if changes
are introduced on those languages. The main responsibility for the maintenance
of the languages falls to the developer but if proper versioning is used on them,
then, changes on those languages should not adversely affect the linking lan-
guages.

6.4 First Experimentation Insights

As a first evaluation of our proposed approach, we developed icsLang. icsLang’s
purpose is to provide a set of assets that can be used to model industrial con-
trol systems (ICS) such as substations in power grids. Therefore, we considered
existing MAL-based languages as starting point. The only feasible language was
coreLang [18], as all other languages were in domains that did not fit.

The next step was to determine the needed assets within icsLang. Hence, we
used ATT&CK for Industrial Control Systems2 as inspiration and created for
each of the mentioned assets a representation in icsLang. Next, we defined which
icsLang assets inherit from which coreLang assets based on their description,
where possible. Afterwards, we ensured that behavior, that was not already
covered by the inheritance, was implemented in icsLang. We did not recognize
the need to move new assets up to coreLang as all assets were specific for the ICS
domain (such as physical processes), but we identified several bugs in coreLang
that were corrected afterwards.

To check the applicability of icsLang, we tried to model a substation with it,
which was no challenge. However, we recognized that the used terminology was
slightly different. Therefore, we decided to create substationLang that inherits
the concepts of icsLang and renames to the terminology used in substation.
Moreover, we came along the concept of signaling that was not implemented in

2 https://collaborate.mitre.org/attackics

12 S. Hacks and S. Katsikeas

icsLang. As this concept is not mutual exclusive to substation, but also exists in
other ICS domains such as power generation, we moved the asset up to icsLang.

Using coreLang, icsLang, and substationLang in combination to model both
IT and OT environments that interact with each other, caused no issues due to
the inheritance structure. Consequently, we are not able to provide any deeper
insights on the means for linking substantial different languages to each other.

7 Discussion

Before, we have presented the properties of the ecosystem, a vision for the future
structure of the ecosystem, and the guidelines language developers should follow
to create a sustainable ecosystem. Next, we discuss how our ecosystem meets
the identified properties (cf. Section 4):

The first property, P1, is related to the stakeholders of the ecosystem. In our
case, we have three different groups: the developer team of the compiler (platform
sponsor), the language developers (complementors), and the users of the ecosys-
tem (consumers). One might argue that security experts that provide knowledge
to the language developers might be also stakeholders. We do not agree directly,
since their role as experts does not create an interest in the ecosystem per se. But
they might use the ecosystem for their analysis and, accordingly, they belong to
the consumer group.

To guarantee the ability to reuse and combine the single components of the
ecosystem (P2), we have described a certain set of rules that are thought to
ensure these capabilities (cf. Section 6). However, these guidelines may foster a
deep hierarchy of inheritance. Even if our first experiences with icsLang have
shown that approximately three layers of inheritance might be sufficient, there
are means to cope with deep hierarchies. On the one hand, one could introduce
the concept of multiple inheritance to MAL. In that case, it would be possible
to design language more finely structured and, thus, avoid several levels of in-
heritance. In contrast, this would lead to a bigger number of different languages,
which need to be considered. On the other hand, MAL could be extended so that
is possible to deactivate certain relations between assets or attacks, similar to
the “language specialization patter” [34]. This would not reduce the inheritance
depth but would enable the language developer to reduce the complexity of the
language and opt out undesired behavior.

The latter would not only be useful in the context of inheritance, but also
by combining languages that have a common parent language. It might be the
case that in such settings, relations are inherited that are unintentional. Thus,
removing them from the language would improve the language design.

The free choice and combination of the end-user (P3) is realized, due to
the fact that each language of the ecosystem works standalone, at least for a
certain demand. Moreover, if the languages of the ecosystem follow the guidelines
described in Section 6.3, then the user will be easily able to combine different
languages with each other. However, this interoperability is restricted by the
effort the language developers spend to allow it. One option could be to demand

Towards an Ecosystem of DSLs for Threat Modeling 13

that every language needs to provide the features that are needed to achieve
interoperability.

The last property, P4, is linked to means that achieve an alignment structure.
Therefore, we present a process to develop a structure for an ecosystem of DSLs
(cf. Section 4). The process is inspired by Nickerson et al. [26], thus the process
itself can be considered as quality ensured. However, we cannot state the same
for the resulting vision of the ecosystem. A solution to evaluate this, would be to
split the existing MAL-based languages into two sets and use one for evaluation
of the result [5]. Unfortunately, the number of existing MAL-based languages
is too small so far. Thus, the structure of the ecosystem cannot be evaluated,
which should be tackled in future work.

Finally, to ensure that future MAL-based languages will be added to our
envisioned ecosystem and do not alter its properties, an appropriate tool sup-
port is vital to reduce the effort for developers. This includes classical coding
features such as automatic code completion or refactoring capabilities. But also,
more advanced features are needed, such as a central repository and automated
provision of existing languages, similar to the mechanisms of maven.

8 Conclusion

It is very clear today that protecting our IT infrastructures is of great impor-
tance. One way of achieving this is by defensive protections but another one
is through offensive security. A characteristic example is cyber-attack modeling
and simulations and a framework that allows this is the MAL. MAL has been
proposed in 2018 but since then it has noted an increase in usage and the number
of MAL-based DSLs is constantly increasing year by year.

Because of that and because how closely, in terms of similarity, the differ-
ent IT infrastructures of different domains are, a systematic way of developing
such DSLs and maintaining them needed to be defined. In this paper, we have
proposed our vision towards the ecosystem of DSL for threat modeling. This
ecosystem, whose properties are the answer to our first research question, con-
tains guidelines, best practices and lessons learned for the process of developing
such languages, combining them, but also for the maintenance of them after the
development phase has concluded. All those constitute the answers to our second
research question, which was how MAL-based languages can be developed and
maintained in order to preserve the ecosystem’s properties. Then, in the last
parts of this paper, a thorough discussion on what the plan for the future of this
proposed ecosystem is, was done.

Regarding future work, an evaluation of our proposed ecosystem is on our
plans and from the feedback we will get out of it more concrete advises for
the development of languages inside the ecosystem could be made. Hitherto, we
solely had a look at work contributing to reuse from the DSL domain. However,
other possible inputs might be found in using components, method chunks, or in
research related to product lines. Another point of future work is improvements
to MAL itself, such as the addition of multiple inheritance as mentioned before.

14 S. Hacks and S. Katsikeas

Acknowledgement

This project has received funding from the European Union’s H2020 research
and innovation programme under the Grant Agreement No. 832907, and the
Swedish Centre for Smart Grids and Energy Storage (SweGRIDS).

References

1. Adner, R.: Match your innovation strategy to your innovation ecosystem. HAR-
VARD BUSINESS REVIEW 84(4), 98–107 (2006)

2. Adner, R.: Ecosystem as structure: An actionable construct for strategy. Journal
of Management 43(1), 39–58 (2017)

3. Aldea, A., Vaicekauskaite, E., Daneva, M., Piest, J.S.: Assessing resilience in enter-
prise architecture: A systematic review. In: 24th International EDOC Conference.
pp. 1–10. IEEE CS, Los Alamitos, CA, USA (2020)

4. Baldwin, C.Y., Clark, K.B.: Design rules: The power of modularity, vol. 1. MIT
press (2000)

5. Barbosa, A., Santana, A., Hacks, S., Stein, N.v.: A taxonomy for enterprise archi-
tecture analysis research. In: 21st ICEIS. vol. 2, pp. 493–504. SciTePress (2019)

6. Ceccagnoli, M., Forman, C., Huang, P., Wu, D.J.: Cocreation of value in a platform
ecosystem! the case of enterprise software. MIS Quarterly 36(1), 263–290 (2012)

7. CEN-CENELEC-ETSI, Smart Grid Coordination Group: Smart grid reference ar-
chitecture (2012)

8. Cleenewerck, T.: Component-based dsl development. In: Generative Programming
and Component Engineering. pp. 245–264. Springer, Berlin, Heidelberg (2003)

9. Ekstedt, M., Johnson, P., Lagerström, R., Gorton, D., Nydrén, J., Shahzad, K.:
securiCAD by foreseeti: A CAD tool for enterprise cyber security management. In:
19th International EDOC Workshop. pp. 152–155. IEEE (2015)

10. Goluch, G., Ekelhart, A., Fenz, S., Jakoubi, S., Tjoa, S., a. T. Muck: Integra-
tion of an ontological information security concept in risk aware business process
management. In: 41st HICSS 2008. pp. 377–386 (2008)

11. Hacks, S., Hacks, A., Katsikeas, S., Klaer, B., Lagerström, R.: Creating meta attack
language instances using archimate: Applied to electric power and energy system
cases. In: 23rd International EDOC. pp. 88–97 (2019)

12. Hacks, S., Katsikeas, S., Ling, E., Lagerström, R., Ekstedt, M.: powerlang: a prob-
abilistic attack simulation language for the power domain. Energy Informatics 3(1)
(2020)

13. Hjørland, B.: Domain analysis in information science. J Doc 58(4), 422 – 462 (2002)
14. Jacobides, M.G., Cennamo, C., Gawer, A.: Towards a theory of ecosystems. Strate-

gic Management Journal 39(8), 2255–2276 (2018)
15. Johanson, A.N., Hasselbring, W.: Hierarchical combination of internal and external

domain-specific languages for scientific computing. In: ECSAW. ACM (2014)
16. Johnson, P., Lagerström, R., Ekstedt, M.: A meta language for threat modeling

and attack simulations. In: Proceedings of the 13th International Conference on
Availability, Reliability and Security. p. 38. ACM (2018)

17. Jürjens, J.: Secure systems development with UML. Springer Science & Business
Media (2005)

18. Katsikeas, S., Hacks, S., Johnson, P., Ekstedt, M., Lagerström, R., Jacobsson, J.,
Wällstedt, M., Eliasson, P.: An attack simulation language for the it domain. In:
Graphical Models for Security. pp. 67–86. Springer, Cham (2020)

Towards an Ecosystem of DSLs for Threat Modeling 15

19. Katsikeas, S., Johnson, P., Hacks, S., Lagerström, R.: Probabilistic modeling and
simulation of vehicular cyber attacks : An application of the meta attack language.
In: 5th ICISSP (2019)

20. Keepence, B., Mannion, M.: Using patterns to model variability in product families.
IEEE Software 16(4), 102–108 (1999)

21. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: International Workshop on Formal Aspects in Security and Trust.
pp. 80–95. Springer (2010)

22. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. Comp Sci Rev 13, 1–38 (2014)

23. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

24. Morikawa, I., Yamaoka, Y.: Threat tree templates to ease difficulties in threat
modeling. In: 14th NBiS. pp. 673–678 (2011)

25. do Nascimento, L.M., Viana, D.L., Neto, P., Martins, D., Garcia, V.C., Meira, S.: A
systematic mapping study on domain-specific languages. In: The Seventh ICSEA.
pp. 179–187 (2012)

26. Nickerson, R.C., Varshney, U., Muntermann, J.: A method for taxonomy develop-
ment and its application in information systems. EJIS 22(3), 336–359 (2013)

27. Paja, E., Dalpiaz, F., Giorgini, P.: Modelling and reasoning about security require-
ments in socio-technical systems. Data Knowl Eng 98, 123–143 (2015)

28. Petermann, T., Bradke, H., Lüllmann, A., Poetzsch, M., Riehm, U.: Was bei einem
Blackout geschieht: Folgen eines langandauernden und großflächigen Stromausfalls,
vol. 662. Büro für Technikfolgen-Abschätzung (2011)

29. Petit, J., Shladover, S.E.: Potential cyberattacks on automated vehicles. IEEE
Transactions on Intelligent Transportation Systems 16(2), 546–556 (2015)

30. Preschern, C., Kajtazovic, N., Kreiner, C.: Efficient development and reuse of
domain-specific languages for automation systems. Int. J. Metadata Semant. On-
tologies 9(3), 215–226 (2014)

31. Preschern, C., Leitner, A., Kreiner, C.: Domain specific language architecture for
automation systems: An industrial case study. In: 8th ECMFA. pp. 1–12 (2012)

32. Prähofer, H., Hurnaus, D.: Monaco — a domain-specific language supporting hi-
erarchical abstraction and verification of reactive control programs. In: 2010 8th
IEEE International Conference on Industrial Informatics. pp. 908–914 (2010)

33. Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12), 21–29 (1999)
34. Spinellis, D.: Notable design patterns for domain-specific languages. J. Syst. Softw.

56(1), 91 – 99 (2001)
35. Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., Lopez, J.: A survey of

iot-enabled cyberattacks: Assessing attack paths to critical infrastructures and
services. IEEE Communications Surveys Tutorials 20(4), 3453–3495 (2018)

36. Teece, D.J.: Explicating dynamic capabilities: the nature and microfoundations
of (sustainable) enterprise performance. Strategic Management Journal 28(13),
1319–1350 (2007)

37. Weijermars, R.: Value chain analysis of the natural gas industry: Lessons from the
us regulatory success and opportunities for europe. J NAT GAS SCI ENG 2(2),
86 – 104 (2010)

38. Williams, L., Lippmann, R., Ingols, K.: GARNET: A graphical attack graph and
reachability network evaluation tool. Springer (2008)

39. Xiong, W., Legrand, E., Åberg, O., Lagerström, R.: Cyber security threat modeling
based on the mitre enterprise att&ck matrix. submitted to SoSyM Journal (2020)

