

Degree project

The Topswop Forest

Author: Desheng Zhang
Supervisor: Jonas Nordqvist
Examiner: Hans Frisk
Date: 2021/6/10
Course Code: 2MA41E
Subject: Mathematics
Level: Bachelor

Department Of Mathematics

The Topswop Forest

Desheng Zhang

June 10, 2021

Abstract

In this thesis, we will define the topswop forest and study the properties of
the forest. We will show the number of trees and leaves in the forest. We will
also do an experiment to show there is more than an exponential growth between
the number of nodes of each tree and the number of elements in the permutation.
The experiment also shows that the tallest tree doesn’t always contain the identity
permutation. In the later section, we derive a linear lower bound for the topswop
problem by studying a specific family of permutation.

Contents
1 Introduction 2

1.1 The pancake problem . 2
1.2 The topswops problem . 2
1.3 Content of this thesis . 3

2 Topswop Forest 3
2.1 The topswop function . 3
2.2 Properties of the topswop forest . 6
2.3 The analysis of the number of nodes and flips for each topswop tree . . . 10
2.4 Bounding the topswops problem . 12

2.4.1 The linear lower bound . 12
2.4.2 The best proven quadratic lower bound 16
2.4.3 The Wilf upper bound . 17
2.4.4 The Fibonacci upper bound . 17

3 Discussion 18

Appendices 21

A Tables for the number of nodes and the largest number of flips 21

B Regression results 24

i

C Codes: Compute number of nodes for each tree 25

D Codes: Compute number of flips for the specific tree 25

E Codes: Compute the maximum number of flips in the topswop forest 26

1

1 Introduction
In discrete mathematics, a permutation is an ordered arrangement of some elements of a
set. The prefix reversal is a way of rearranging the permutation by reversing the order of
the first n elements of the permutation, where n is arbitrary. The pancake problem also
known as the problem of Sorting By Prefix Reversals asks for the minimum number of
prefix reversals required to sort a given permutation. The deterministic pancake problem
also called the topswop problem is a variation of the pancake problem and it deals with
finding the maximum number of prefix reversals, where the size of each prefix reversal is
the first element of the permutation. A recent paper [5] has shown the progress of finding
the maximum number of prefix reversals. The topswop problem gives rise to a dynamical
system which can be described in terms of a graph. We can regard the topswop problem
as a forest which is a disconnected and acyclic graph. We are interested in certain
properties of this forest. Typically, one studies the height of the tallest tree, we are also
interested in size of the trees and various other properties. We will start the thesis by
first introducing the pancake problem.

1.1 The pancake problem

The pancake problem was first posed in 1975 [7]. Given a stack of n pancakes in arbitrary
order, all of different sizes, the aim is to sort them in as few operations as possible to
obtain a stack of pancakes with sizes increasing from top to bottom. The only allowed
sorting operation is a spatula flip, in which a spatula is inserted beneath any pancake,
and all pancakes above the spatula are lifted and replaced in reverse order. We can
regard the stack as a permutation and a flip as a prefix reversal of the permutation [3].

Example 1. We have a stack of pancakes in arbitrary order (4, 2, 3, 1, 5). We choose to
flip the first three pancakes and it becomes (3, 2, 4, 1, 5).

1.2 The topswops problem

A variation on the original pancake problem is the deterministic pancake problem, also
known as topswops problem [1], was first proposed by the British mathematician John
Conway as one of a series of card games [9]:

A deck of cards is numbered 1 to n in random order. Perform the following
operations on the deck. Whatever the number on the top card is, count down
that many in the deck and turn the whole block over on top of the remaining
cards. Then, whatever the number of the (new) top card, count down that
many cards in the deck and turn this whole block over on top of the remaining
cards. Repeat the process. Show that the number 1 will eventually reach the
top.

We can view the deck of cards as a permutation on {1, 2, 3, ..., n}. Suppose the first
card from the deck is k, we can describe the topswops problem by the following algorithm:

2

1. Find the first card k from the deck

2. Take the first k cards from the deck

3. Swap these cards and place them back on the deck

4. Repeat step 1, 2 and 3 until the first card is 1.

The question follows: What is the maximum number of steps to the termination? A
recent paper [5] shows the maximum number of steps for n = 18 and n = 19. Thus, the
numerical results are known for n 19 [10] [5], see Table 1 for their list.

Deck Length (n) 1 2 3 4 5 6 7 8 9 10
Maximum iterations 0 1 2 4 7 10 16 22 30 38

Deck Length (n) 11 12 13 14 15 16 17 18 19
Maximum iterations 51 63 80 101 112 130 159 191 221

Table 1: The maximum number of iterations for each n

However, when n � 20 the solutions are unknown. We only have bounds for the
solutions. One of the quadratic lower bound was proven by Morales and Sudborough [8]
and one of the Fibonacci upper bound proven by Klamkin [6].

1.3 Content of this thesis

Follow the topswops problem proposed by Conway, we built a topswop forest based on
the Graph Theory [2]. In Section 2.1, we define the topswop forest. In Section 2.2,
we will study the number of topswop trees and leaves in the forest. Section 2.3 will go
through the results of the experiments for the sizes of trees. A lower bound for the size
of trees will also be contained in the end of this section. In Section 2.4, we will focus on
finding the tallest tree in the forest. In other words, we are going to study on the bounds
of the topswops problem. We will develop a linear lower bound by finding the number
of flips of a specific family of permutation. We will also present the proven bounds in
the end of the section.

2 Topswop Forest
In this section, we are going to study the topswop forest. We will first introduce the
topswop function and define the topswop forest. Then, we will study some properties of
the topswop forest.

2.1 The topswop function

Let Sn denote the symmetric group of permutations on {1, 2, ..., n}. Let P be a permu-
tation in Sn and we denote P [a] as the ath element of P . Now, we let P

0
be an element

in Sn, if P [1] = b, we have

3

P
0
[a] =

⇢
P [b� a+ 1], if 1 a b,

P [a], if a � b+ 1.
(2.1)

Then we define the topswop function f : Sn ! Sn by f(P) = P
0
.

Let Pi denote the ith iteration of the topswop function f . Given a permutation P1,
the iterates of f will be: f(P1) = P2, f(f(P1)) = P3, ..., and the iterates will finally
terminate. Now, we let run(P) denote the sequence of iterates of f and |run(P)| denote
the length of this sequence. We will illustrate this concept by means of an example.

Example 2. Here we list an example of the topswop function: given a permuta-
tion P1 = (4, 3, 1, 2), then P2 = f(P1) = (2, 1, 3, 4), P3 = f(f(P1)) = (1, 2, 3, 4) and
|run(P1)| = 2.

In order to continue our discussion, we need the following lemmas.

Lemma 1. For any given permutations P1, the iterates of f :

P1 ! P2 ! P3 ! ...! Pi 6= P1,

where i � 2.

Proof. We prove this by contradiction. We assume by contradiction that P1 ! P2 !
P3 ! ... ! Pi = P1. Let Pj [1] denote the first element of permutation Pj , where
1 j i. We denote t = max{P1[1], P2[1], ..., Pi[1]}. Suppose at the rth iteration we
have Pr+1[1] = t, at the (r+1)th iteration, we have Pr+2[t] = t. The remaining iterations
will always retain: Pr+k[t] = t, where k � 2.

Now, suppose if 0 r i� 1. Then we have: Pi[t] = t, P1[t] = t, P2[t] = t, ..., Pi[t] =
t. This means t will not appear on the first element anymore during the iterations and
we get: t 6= max{P1[1], P2[1], ..., Pi[1]} which leads to a contradiction. Thus we prove
the lemma.

Lemma 1 shows that there are no repeated sequences during the iterates of the
topswop function.

Now, suppose Pi and Pi+1 are the elements in Sn, where Pi+1 = f(Pi). We can see
that Pi is a preimage of Pi+1. We say a permutation Pi 2 Sn can be traversed back if it
has a preimage.

Lemma 2. A permutation Pi 2 Sn can be traversed back if and only if Pi[a] = a for

some a, where 1 a n.

Proof. We assume Pi can be traversed back. Then Pi has a preimage Pi�1, we denote
Pi�1[1] = a. By formula (2.1) we can derive:

Pi[a] = Pi�1[a� a+ 1] = Pi�1[1] = a

4

Now we assume Pi[a] = a. Then we can derive the preimage:

Pi�1[b] =

⇢
Pi[a� b+ 1], if 1 b a,

Pi[b], if b � a+ 1.
(2.2)

We will also introduce the concept of Wilf Number which was proposed by Wilf [4].
Given a permutation P , there are m numbers in their original positions: P [aj] = aj ,
where 1 j m. We can make the following definition.

Definition 2.1 (Wilf number). We denote w as the Wilf number, then we have

w = 2(a1�1) + 2(a2�1) + ...+ 2(aj�1) + ...+ 2(am�1) =
mX

j=1

2(aj�1)

Example 3. Here, we give some examples of Lemma 2 and the Wilf number:

1. Given a permutation P = (3, 1, 2, 4, 5), we can see that P [4] = 4, the Wilf number
w = 2(4�1) = 8 and by function (2.2) we can derive the preimage (4, 2, 1, 3, 5).

2. Given a permutation P = (1, 4, 3, 2, 5), we can see that P [3] = 3 and P [5] = 5, w =
2(3�1)+2(5�1) = 68 and we can derive two preimages (3, 4, 1, 2, 5) and (5, 2, 3, 4, 1).

3. Given a permutation P = (1, 3, 2, 5, 4), we can see that P [1] = 1, w = 2(1�1) = 1
and we can derive the preimage (1, 3, 2, 5, 4).

4. Given a permutation P = (3, 4, 5, 2, 1), we have P [i] 6= i for 1 i 5, the Wilf
number is zero and the permutation can not be traversed back.

Case 2 illustrates that the preimage of an element in Sn under the topswops function
may contain more than one element. Case 3 shows that the preimage of an element in
Sn can be itself. Case 4 shows an element in Sn with empty preimage.

Now, we denote |Sn| as the total number of permutations of Sn. We get the following
lemma:

Lemma 3. For any given permutation P1 2 Sn, the iterates of f will finally terminate

at the rth iteration, where 0 r |Sn|� 1.

Proof. Case 1: P1[1] = 1
The topswop algorithm will terminate directly and r = 0.

Case 2: P1[1] 6= 1
By Lemma 1, we know that each permutation is different during the iterates of f . Since
the maximum number of possible permutations is |Sn|, we can get 1 r |Sn|� 1.

5

By the above lemma, we know that for any given permutation P1 2 Sn, the iterates of
f will finally terminate. Since the topswop algorithm terminates when the first element
of permutation is 1, we can derive the following corollary.

Corollary 3.1. The iterates of f will finally terminate with P1+r[1] = 1.

Corollary 3.1 provides an answer to Conway’s original problem which is mentioned
in Section 1.2.

2.2 Properties of the topswop forest

Now, we denote R as all the permutations starting with 1, where R ✓ Sn. Let ri 2 R,
where 1 i (n� 1)!. We let Di ✓ D ✓ Sn, where D represents all the derangements
of Sn and Di is a set of derangements that finally terminate at ri. We denote |Di| as the
number of elements in Di and let dj 2 Di, where 1 j |Di|. Let Ti be a graph where
Di and all the permutations during iterates of f(dj), j = 1, 2, ..., |Di| are the vertices.
Let Vj and Vk be any two vertices in Ti. Then we connect Vj and Vk by an edge which
directed from Vj to Vk if Vj is a preimage of Vk under the function of f .

Lemma 4. Ti is a rooted tree.

Proof. By Lemma 2 and 3 we know that Ti is a connected graph. By Lemma 1 we know
that Ti does not have a cycle. By Lemma 1 we know that each node except the root has
exactly one parent. By Lemma 1 and 3 we know that every edge is directed towards the
root. Thus, Ti is a rooted tree.

We can now define the topswop tree and forest:

Definition 2.2 (Topswop Tree). Ti is a Topswop tree, where ri has been designated as
the root and Di are its leaves.

Example 4. An example of a topswop tree is illustrated in Figure 1, where (1, 2, 3, 4)
is the topswop root. (2, 4, 1, 3), (4, 3, 2, 1), (4, 3, 1, 2), (4, 1, 2, 3) and (3, 1, 4, 2) are the
topswop leaves. All the edges are directed towards the root.

6

(2,4,1,3)

(4,2,1,3)

(3,1,2,4)

(2,1,3,4)(4,3,2,1)

(1,2,3,4)

(4,3,1,2) (4,1,2,3)

(3,2,1,4)

(3,1,4,2)

(4,1,3,2)

(2,3,1,4)

Figure 1: Illustration of a topswop tree

Definition 2.3 (Topswop Forest). A topswop forest, denoted by Gn, contains all the
topswop trees.

Example 5. An example of a topswop forest is illustrated in Figure 2. There are 6
independent trees in the forest.

7

(1,2,3,4)

(1,2,4,3)

(1,3,2,4)

(1,3,4,2)

(1,4,2,3)

(1,4,3,2)

(2,1,3,4)

(2,1,4,3)

(2,3,1,4)

(3,2,1,4)

(2,3,4,1)

(3,2,4,1)

(2,4,1,3)

(4,2,1,3) (2,4,3,1)

(4,2,3,1)(3,1,2,4)

(3,1,4,2)

(4,1,3,2)

(3,4,1,2)

(3,4,2,1)

(4,1,2,3)(4,3,1,2)

(4,3,2,1)

Figure 2: Illustration of a topswop forest

We can now study on the properties of the topswop forest. By the definition of the
topswop tree, we can easily derive the number of trees in the topswop forest. We can
make the following proposition.

Proposition 1. The number of trees in Gn is (n� 1)!.

Proof. According to the definition of topswop tree, we can count the number of trees by
finding the number of topswop roots. Since the roots are the permutations starting with
1 in Sn, we can know there are in total (n� 1)! number of roots.

8

Then, we study on the number of leaves in the topswop forest. Since a leaf is a per-
mutation that can not be traversed back. We can regard the leaves as the derangements
of such that no element appears in its original position. We can find the number of leaves
in Gn by counting the number of derangements of an n-set.

Proposition 2. The number of leaves in Gn is n!
nP

i=0

(�1)i

i! .

Proof. First, we need to find all permutations in which each element appears in its
original location. For 1 k n we define Sk to be the set of permutations which leave
k in its natural position. By inclusion-exclusion principle we can derive:

|S1
S
...
S
Sn| =

P
i
|Si|�

P
i<j

|Si
T

Sj |+
P

i<j<k
|Si

T
Sj

T
Sk|+ ...+ (�1)n+1|S1

T
...

T
Sn|

=
�n
1

�
(n� 1)!�

�n
2

�
(n� 2)! +

�n
3

�
(n� 3)!� ...+ (�1)n+1

�n
n

�
0!

=
nP

i=1
(�1)i+1

�n
i

�
(n� i)!

=
nP

i=1
(�1)i+1 n!

(n�i)!i! (n� i)!

= n!
nP

i=1

(�1)i+1

i!

Then, we can derive the number of derangements:

n!� |S1

[
...

[
Sn| = n!

nX

i=0

(�1)i

i!

This proves the proposition.

When n becomes big we can approximate the number of leaves.

Corollary 4.1. When n is large we can approximate the number of leaves to
n!
e .

Proof. By the power series of ex:

e
x =

1X

i=0

x
i

i!

we can obtain using x = �1:

lim
n!1

nX

i=0

(�1)i

i!
=

1

e

By Proposition 2, we can approximate the number of leaves to n!
e when n is large.

The above corollary illustrates that when n increases the number of leaves in the
forest will have a factorial growth.

9

2.3 The analysis of the number of nodes and flips for each topswop
tree

An experiment has been done by running a program in Mathematica. We ran the
experiment for n 11 and derived the results for the number of nodes and the largest
number of flips of each topswop tree. For simplicity, we ranked the first 6 trees with the
largest number of nodes for each n and listed the results in the tables listed in Appendix
A. The first column shows the root of each tree. The second column shows the number
of nodes and the third column shows the largest number of flips.

From the tables, we can see that the trees containing the identity permutation has
the largest number of nodes. We also show the number of the nodes in the bar chart in
Figure 3. For simplicity, we only pick the trees containing the family of permutations
(1, 2, 3, 4, ...n), (1, 3, 2, 4, ..., n), (1, 4, 3, 2, ..., n), (1, 3, 4, 2, ..., n), where 2 n 11. The
vertical axis shows the number of nodes in natural logarithm and the horizontal axis
shows the number of elements in the permutation. The yellow line is a least squares
approximation by a + bn + cn

2, the parameters a,b and c are given by: a = �0.279,
b = 0.379 and c = 0.075. We also did a hypothesis test for the coefficient c and the
result shows that c is significant. Thus, there is more than an exponential growth for
the number of nodes against the number of elements in the permutation.

���������

n(length of each family permutation)
2 3 4 5 6 7 8 9 10 11

0

5

10

15

Ln(# of nodes)

(1,2,3,4,...,n)
(1,3,2,4,...,n)
(1,4,3,2,...,n)
(1,3,4,2,...,n)

Figure 3: Number of nodes of topswop trees (log scale)

Now, we check the largest number of flips in the tables. We can see that the tree
containing the identity permutation tends to have the largest number of flips. However,
this is not always the case. We have the following results.

Theorem 1. The longest sequence of iterations does not always end up in the identity

permutation (1, 2, 3, ..., n).

10

Proof. We prove this by means of a counter-example. In table 6 from Appendix A, we
can see that the largest numbers of flips are both 10 for the topswops tree end up in the
identity permutation and in the permutation (1, 4, 3, 2, 5, 6).

Getting exact results about the sizes of the trees seem difficult. However, we may
produce the lower bound on its size. We let Tn denotes the tree in Gn, where the identity
permutation (1, 2, 3, ..., n) is the root and let |Tn| represents the number of nodes of Tn.

Theorem 2. |Tn| � 2n�1

Proof. Let Tn denote the tree in Gn containing (1, 2, 3, . . . , n).
We define Pi as the nodes of Tn where 1 i |Tn| and let P1 = (1, 2, 3, ..., n). Then,

we use the symbol represents prefix reversal:

P1 Pi

Pi Pj

...

where i 6= j and 1 i, j |Tn|. We append n+1 to each node. Since the prefix reversal
only apply to the first n elements, we can derive:

(P1, n+ 1) (Pi, n+ 1)

(Pi, n+ 1) (Pj , n+ 1)

...

where i 6= j, 1 i, j |Tn| and (P1, n + 1) = (1, 2, 3, ..., n, n + 1) 2 Tn+1. Thus
(Pi, n+ 1) 2 Tn+1.

We define Ii as the permutation of Pi in reverse order and we can easily derive:

(Pi, n+ 1) (n+ 1, Ii)

where 1 i |Tn|. Thus (n+ 1, Ii) 2 Tn+1.
By the previous result we can get |Tn+1| � 2|Tn|. Since |T2| = 2, we have:

|T3| � 2|T2| � 22

|T4| � 2|T3| � 23

...

|Tn| � 2|Tn�1| � 2n�1

This proves the theorem.

11

2.4 Bounding the topswops problem

Suppose, there is a topswop tree Ti containing a leaf which needs the maximal number
of iterations to terminate by topswop function. We can define Ti as the tallest tree in
the forest. We can regard the problem of finding the maximal height of a tree as finding
the maximal number of flips for the topswop problem.
In this section we will develop a linear lower bound for the topswops problem by studying
the specific number of flips of a particular family of sequences. A quadratic lower bound
proven by Morales and Sudborough [8] and a Fibonacci upper bound proven by Klamkin
[6] will also be shown in the section.

2.4.1 The linear lower bound

We denote ⇧ = {⇡n} as an infinite family of permutations, where ⇡n is a permutation on
the integers (1, 2, ..., n). We will study on a particular family of permutations � = {�n}
in ⇧, where n � 6 and the permutations �n are defined by:

�n = 3, 1, 4, 5, 6, ..., n� 1, n, 2

We use run(�n) to denote the sequence of iterates of topswop function and |run(�n)|
denotes the length of this sequence.

Example 6. Here, we give an example when n is even. When n = 8, �8 = (3, 1, 4, 5, 6, 7, 8, 2)
and the iterates of �8:

�8 = (3, 1, 4, 5, 6, 7, 8, 2)

P4 = (4, 1, 3, 5, 6, 7, 8, 2)

(5, 3, 1, 4, 6, 7, 8, 2)

P6 = (6, 4, 1, 3, 5, 7, 8, 2)

(7, 5, 3, 1, 4, 6, 8, 2)

P8 = Q8 = (8, 6, 4, 1, 3, 5, 7, 2)

(2, 7, 5, 3, 1, 4, 6, 8)

(7, 2, 5, 3, 1, 4, 6, 8)

Q6 = (6, 4, 1, 3, 5, 2, 7, 8)

(2, 5, 3, 1, 4, 6, 7, 8)

(5, 2, 3, 1, 5, 6, 7, 8)

Q4 = (4, 1, 3, 2, 5, 6, 7, 8)

(2, 3, 1, 4, 5, 6, 7, 8)

(3, 2, 1, 4, 5, 6, 7, 8)

(1, 2, 3, 4, 5, 6, 7, 8)

where P are the iterations of permutations from (4, 1, 3, 5, 6, 7, 8, 2) to (8, 6, 4, 1, 3, 5, 7, 2)
and Q are the iterations of permutations from (8, 6, 4, 1, 3, 5, 7, 2) to (4, 1, 3, 2, 5, 6, 7, 8).

12

We show the iterates of �8 by topswop function:

f(�8) = P4

f
(2)(P4) = P6

f
(2)(P6) = P8 = Q8

f
(3)(Q8) = Q6

f
(3)(Q6) = Q4

f
(3)(Q4) = (1, 2, 3, 4, 5, 6, 7, 8)

We can derive |run(�8)| = 1 + 2 ⇤ 2 + 3 ⇤ 2 + 3 = 14.

We give another example when n is odd. When n = 7, �7 = (3, 1, 4, 5, 6, 7, 2) and the
iterates of �7:

�7 = P3 = (3, 1, 4, 5, 6, 7, 2)

(4, 1, 3, 5, 6, 7, 2)

P5 = (5, 3, 1, 4, 6, 7, 2)

(6, 4, 1, 3, 5, 7, 2)

P7 = Q7 = (7, 5, 3, 1, 4, 6, 2)

(2, 6, 4, 1, 3, 5, 7)

(6, 2, 4, 1, 3, 5, 7)

Q5 = (5, 3, 1, 4, 2, 6, 7)

(2, 4, 1, 3, 5, 6, 7)

(4, 2, 1, 3, 5, 6, 7)

Q3 = (3, 1, 2, 4, 5, 6, 7)

(2, 1, 3, 4, 5, 6, 7)

(1, 2, 3, 4, 5, 6, 7)

where P are the iterations of permutations from �7 to (7, 5, 3, 1, 4, 6, 2) and Q are the it-
erations of permutations from (7, 5, 3, 1, 4, 6, 2) to (3, 1, 2, 4, 5, 6, 7). We show the iterates
of �8 by topswop function:

f
(2)(�7) = P5

f
(2)(P5) = P7 = Q7

f
(3)(Q7) = Q5

f
(3)(Q5) = Q3

f
(2)(Q3) = (1, 2, 3, 4, 5, 6, 7)

We can derive |run(�7)| = 2 ⇤ 2 + 3 ⇤ 2 + 2 = 12.

13

Theorem 3. For, n � 6, |run(�n)| is equal to
5n
2 � 6 when n is even and

5n
2 �

11
2 when

n is odd.

Proof. The case when n is even:
We define i as an even number and let 6 i n and let P represents the iterations
of permutations from P4 to Pn, where P4 = (4, 1, 3, 5, 6, ..., n, 2) and Pn = (n, n �
2, ..., 4, 1, 3, ..., n� 3, n� 1, n, 2). Consider the permutation with n elements:

Pi�2 = (i� 2, i� 4, ..., 4, 1, 3, ...i� 3, i� 1, i, i+ 1, i+ 2, ..., n, 2)

we iterate it twice:

(i� 1, i� 3, ..., 3, 1, 4, ...i� 4, i� 2, i, i+ 1, i+ 2, ..., n, 2)

Pi = (i, i� 2, ..., 4, 1, 3, ...i� 3, i� 1, i+ 1, i+ 2, ..., n, 2)

By the topswop function, we have f
(2)(Pi�2) = Pi.

Then, we define j as an even number and let 6 j n and let Q represents the iterations
of permutations from Qn to Q4, where Qn = Pn and Q4 = (4, 1, 3, 2, 5, 6, ..., n � 1, n).
Consider the permutation with n elements:

Qj = (j, j � 2, j � 4, ..., 4, 1, 3, ...j � 3, j � 1, 2, j + 1, j + 2, ..., n)

we iterate it three times:

(2, j � 1, j � 3, ..., 3, 1, 4, ...j � 4, j � 2, j, j + 1, j + 2, ..., n)

(j � 1, 2, j � 3, ..., 3, 1, 4, ...j � 4, j � 2, j, j + 1, j + 2, ..., n)

Qj�2 = (j � 2, j � 4, ..., 4, 1, 3, ...j � 3, 2, j � 1, j + 1, j + 2, ..., n)

By the topswop function, we have f
(3)(Qj) = Qj�2.

We show the iterations of �n by topswop functions:

f(�n) = P4

f
(2)(P4) = P6

f
(2)(P6) = P8

...

f
(2)(Pn�2) = Pn = Qn

f
(3)(Qn) = Qn�2

f
(3)(Qn�2) = Qn�4

...

f
(3)(Q6) = Q4

f
(3)(Q4) = (1, 2, 3, 4, ..., n)

It takes (n�4
2)2+1 = n�3 iterations from �n to Pn and (n�4

2)3+3 = 3n
2 �3 iterations

from Qn to (1, 2, 3, ..., n). There are total (n� 3) + (3n2 � 3) = 5n
2 � 6 iterations from �n

14

to (1, 2, 3, ..., n).

Now, we study on the case when n is odd:
We define i as an odd number and let 7 i n and let P represents the iterations of
permutations from �n to Pn, where Pn = (n, n� 2, ..., 4, 1, 3, ..., n� 3, n� 1, n, 2).

Consider the permutation with n elements:

Pi�2 = (i� 2, i� 4, ..., 3, 1, 4, ...i� 3, i� 1, i, i+ 1, i+ 2, ..., n, 2)

we iterate it twice:

(i� 1, i� 3, ..., 4, 1, 3, ...i� 4, i� 2, i, i+ 1, i+ 2, ..., n, 2)

Pi = (i, i� 2, i� 4, ..., 3, 1, 4, ...i� 3, i� 1, i+ 1, i+ 2, ..., n, 2)

By the topswop function, we have f
(2)(Pi�2) = Pi.

Then, we define j as an even number and let 3 j n and let Q represents the iterations
of permutations from Qn to Q3, where Qn = Pn and Q3 = (3, 1, 2, 4, 5, ..., n � 1, n).
Consider the permutation with n elements:

Qj = (j, j � 2, j � 4, ..., 3, 1, 4, ...j � 3, j � 1, 2, j + 1, j + 2, ..., n)

we iterate it three times:

(2, j � 1, j � 3, ..., 4, 1, 3, ...j � 4, j � 2, j, j + 1, j + 2, ..., n)

(j � 1, 2, j � 3, ..., 4, 1, 3, ...j � 4, j � 2, j, j + 1, j + 2, ..., n)

Qj�2 = (j � 2, j � 4, ..., 3, 1, 4, ...j � 3, 2, j � 1, j + 1, j + 2, ..., n)

By the topswop function, we have f
(3)(Qj) = Qj�2.

We show the iterations of �n by topswop functions:

f
(2)(�n) = P5

f
(2)(P5) = P7

f
(2)(P7) = P9

...

f
(2)(Pn�2) = Pn = Qn

f
(3)(Qn) = Qn�2

f
(3)(Qn�2) = Qn�4

...

f
(3)(Q5) = Q3

f
(2)(Q3) = (1, 2, 3, 4, ..., n)

It takes (n�3
2)2 = n� 3 iterations from �n to Pn and (n�3

2)3 + 2 = 3n
2 �

5
2 iterations

from Qn to (1, 2, 3, ..., n). There are total (n� 3) + (3n2 �
5
2) =

5n
2 �

11
2 iterations from

15

�n to (1, 2, 3, ..., n).

Since 5n
2 �

11
2 >

5n
2 � 6, we can derive a linear lower bound for the topswop function

which is 5n
2 �

11
2 , when n � 6.

2.4.2 The best proven quadratic lower bound

We will start out by looking at an infinite family of permutations ⇧ = {⇡n}. The goal
is to find a positive d and let |run(⇡n)| � d ⇤ n2. For each integer 1 < k < n, we denote
⇧(k) as the infinite family of permutations containing all permutations ⇡ on (1, 2, ..., n)
such that ⇡(j) = j, for all 2 j n� k, k = 8, 16,

We are particularly interested in finding permutations in ⇧(k) whose fixed point is
the identity permutation. Such a family is ⌃ = {�n} in ⇧(8), where n > 17 and the
permutations �n are defined by:
�n = n, (2, 3, ..., n� 8), n� 5, n� 6, n� 2, n� 7, 1, n� 3, n� 1, n� 4.
An example of a permutation in ⌃ is �26 = 26, (2, 3, ..., 18), 21, 20, 24, 19, 1, 23, 25, 22. We
can now find the lower bound by studying the number of iterations of �n. The following
results are proved by Morales and Sudborough [8].

Lemma 5. For all n � 24, |run(�n)| � n/5.

Lemma 5 shows that the number of iterations of the family {�n} has a linear lower
bound.

Lemma 6. For all n � 18, such that n ⌘ 2 (mod 8), run(�n) ends with the identity

permutation.

In order to derive the quadratic lower bound, Morales and Sudborough define a
chaining technique in the family {�n|n � 18 and n ⌘ 2 (mod 8)} to create a family of
permutations ⇧, where |run(⇡n)| � d ⇤ n2 and d > 0. For a permutation ⇡n 2 ⇧(t) and
⇡n+k 2 ⇧(k), we define the permutation ⇡n � ⇡n+k in ⇧(t+k) by

⇡n � ⇡n+k[i] =

8
<

:

⇡n[i], if 1 i n and ⇡n[i] 6= 1,
⇡n+k[1], if ⇡n[i] = 1,
⇡n+k[i], if n+ 1 i n+ k.

(2.3)

For example, for �26 = 26, (2, 3, ..., 18), 21, 20, 24, 19, 1, 23, 25, 22 and �34 = 34, (2, 3, ..., 26),
29, 28, 32, 27, 1, 31, 33, 30. We will derive: �26��34 = 26, (2, 3, ..., 18), 21, 20, 24, 19, 34, 23,
25, 22, 29, 28, 32, 27, 1, 31, 33, 30.

Lemma 7. For any t > 0 and any permutations ⇡n in ⇧(t)
and ⇡n+k in ⇧(k)

, such

that ⇡n terminates with the identity permutation, ⇡n � ⇡n+k is a permutation on n+ k

symbols in ⇧(t+k)
such that |run(⇡n � ⇡n+k)| = |run(⇡n)|+ |run(⇡n+k)|.

16

The chaining of permutations can also be applied to more than two permutations.
For permutations �n,�n+k, ...,�n+mk, for m � 1, �n � �n+k � ... � �n+mk denote the
permutation (...((�n � �n+k)� �n+2k)...� �n+mk).

Let ⇡26+8m = �26 � �34 � �42... � �26+8m, where m � 1. By Lemma 7 we can
derive |run(⇡26+8m)| =

Pm
i=0 |run(�26+8i)|. By Lemma 5 we can know |run(�26+8i)| �

(26 + 8i)/5, where i � 0. Thus, we can derive |run(�26+8m)| �
Pm

i=0(26 + 8i)/5 �
4/5m2 + 6m+ 26/5 and we can write it as the following corollary.

Corollary 7.1. For all m � 1, ⇡26+8m = �26 � �34 � �42... � �26+8m is a permutation

on 26 + 8m symbols with |run(⇡26+8m)| � 4/5m2 + 6m+ 26/5.

Hence, a quadratic lower bound for the ⇧-family has been derived. By the above
corollary, we can establish the following theorem.

Theorem 4. The topswop problem has a quadratic lower bound.

2.4.3 The Wilf upper bound

We will briefly introduce the Wilf upper bound proved by Wilf [4]. Let P 2 Sn and
denote P [i] as the ith number of the permutation, where 1 i n. A number is at the
original position if P [i] = i.

Theorem 5. After each iteration of the topswop function, the Wilf number increases.

Proof. We perform one iteration of the topswop function. Each number at the origi-
nal position and larger than P [1], leaves the Wilf number unchanged. The remaining
numbers at the original position will in general not be at the original position anymore.
Nevertheless, the P [1]’s number is at the correct position. And since the sum of the first
P [1] � 1 Wilf number is always smaller than the Wilf number of P [1], the total Wilf
number always increases with at least 1 for each iteration. (A power of two is larger
than the sum of all earlier powers of two by exactly one unit, a fact which is the basis of
binary counting).

The maximal Wilf number is derived when every number is at the original position.
So the maximal Wilf number is 2n+1 � 1 and |run(P)| 2n+1 � 1. Thus an exponential
upper bound has been derived.

2.4.4 The Fibonacci upper bound

We now show a Fibonacci upper bound proven by Klamkin [6]. Suppose that during the
algorithm, there are in total k distinct values for P [1], where 1 k n. A Fibonacci
number is denoted by Fi, where Fi = Fi�1 + Fi�2, F0 = 0 and F1 = 1.

Theorem 6. When P [1] takes on k distinct values, |run(P)| Fk+1.

Proof. We give a proof by induction on k.

17

Base case: Show that the statement holds for the smallest value of k = 1. For
k = 1, P [1] = 1 and the algorithm directly terminates. We have |run(P)| = 0 and
Fk+1 = F2 = 1. Thus |run(P)| Fk+1.

Inductive Step: Show that for any k � 1, if |run(P)| Fk+1 holds when P [1] takes
on k distinct values, then |run(P)| Fk+2 also holds when P [1] takes on k + 1 dis-
tinct values. All k + 1 values that P [1] takes on, are ordered and can be written as:
d1 ... dk dk+1, where dk+1 is the largest value. Suppose at the rth iteration we
have P [1] = dk+1. Denote t = P [dk+1], at the (r + 1)th iteration, we have P [1] = t and
P [dk+1] = dk+1. The remaining iterations will always retain P [dk+1] = dk+1.

Now, suppose if t = 1. Then P [1] = 1 at the (r + 1)th iteration and the algorithm
terminates. During the algorithm, we are sure that both dk+1 and t have never been at
position P [1]. Thus P [1] can take on at most k distinct values(d2, d3, ..., dk+1). Then
r Fk+1 and we can get |run(P)| = r + 1 Fk+1 + 1 Fk+2.
Suppose if t > 1, P [1] can take on at most k � 1 distinct values(d2, d3, ..., dk+1). Then
r Fk. By the induction assumption, we can get |run(P)| Fk+1 + r Fk+1 + Fk =
Fk+2

Since both the base case and the inductive step have been proved as true, by math-
ematical induction the statement |run(P)| Fk+1 holds.

Suppose P [1] takes on all N values we can get |run(P)| FN+1. Thus, we get the
Fibonacci upper bound. By the asymptotic behaviour of Fibonacci sequence, we can
know Fibonacci upper bound is an exponential upper bound.

3 Discussion
Morales and Sudborough show a quadratic lower bound while Klamkin shows a Fibonacci
upper bound for the maximal height of the trees in the forest. As we can see from the
following graph. There is a huge discrepancy between lower and upper bound. The
quadratic lower bound is closer to the real values than the Fibonacci upper bound.

18

Figure 4: The relation between the maximum number of iterations and the length of the
row in a semi-logarithmic graph. From "Topswops", Wikipedia, The Free Encyclopedia,
14 January 2021.

Morales and Sudborough derived the lower bound by studying on a specific tree while
Klamkin derived the upper bound by using mathematical induction on the topswop
algorithm. It seems we could get a bound closer to the real values by finding a proper
tree. One possible way is to find a family of permutation which ends with the identity
permutation and apply the chaining techniques introduced by Morales and Sudborough.
And we may derive a better upper bound by finding the tallest tree.

It is also difficult to produce the exact number of nodes for each topswop tree when
n � 12. The biggest reason is that the number of nodes in the forest has a factorial
growth. When n = 12 there are around 5 billion nodes in the forest. Thus, it could be
quite time-consuming for finding the size of each tree.

19

References
[1] D. Berman and M. S. Klamkin. A reverse card shuffle. SIAM Review, 18(3):491–492,

1976.

[2] B Bollobas. Modern Graph Theory. Graduate Texts in Mathematics 184. Springer-
Verlag New York, 1 edition, 1998.

[3] J. Cibulka. On average and highest number of flips in pancake sorting. Theoret.

Comput. Sci., 412(8-10):822–834, 2011.

[4] M. Gardner. Time Travel and Other Mathematical Bewilderments. W.H. Freeman,
1988.

[5] K. Kimura, A. Takahashi, T. Araki, and K. Amano. Maximum number of steps of
topswops on 18 and 19 cards. CoRR, abs/2103.08346, 2021.

[6] M. S. Klamkin. Problems in Applied Mathematics: Selections from SIAM Review.
Society for Industrial and Applied Mathematics, 1990.

[7] D. J. Kleitman, E. Kramer, J. H. Conway, S. Bell, and H. Dweighter. Prob-
lems and Solutions: Elementary Problems: E2564-E2569. Amer. Math. Monthly,
82(10):1009–1010, 1975.

[8] L. Morales and H. Sudborough. A quadratic lower bound for topswops. Theoret.

Comput. Sci., 411(44-46):3965–3970, 2010.

[9] S. Rabinowitz and M. Bowron. Index to Mathematical Problems, 1975-1979. Indexes
to mathematical problems. MathPro Press, 1999.

[10] N. Sloane. The on-line encyclopedia of integer sequences. volume 1, page 130, 01
2007.

20

Appendices
A Tables for the number of nodes and the largest num-

ber of flips

Root Number of nodes Largest number of flips
1,2 2 1

Table 2: n = 2

Root Number of nodes Largest number of flips
1,2,3 5 2
1,3,2 1 0

Table 3: n = 3

Root Number of nodes Largest number of flips
1,2,3,4 12 4
1,3,2,4 6 3
1,4,3,2 2 1
1,2,4,3 2 1
1,4,2,3 1 0
1,3,4,2 1 0

Table 4: n = 4

Root Number of nodes Largest number of flips
1,2,3,4,5 34 7
1,4,3,2,5 18 5
1,3,2,4,5 18 6
1,4,2,3,5 7 4
1,2,3,5,4 5 2
1,5,3,4,2 4 2

Table 5: n = 5

21

Root Number of nodes Largest number of flips
1,2,3,4,5,6 108 10
1,3,2,4,5,6 69 9
1,4,3,2,5,6 57 10
1,5,4,3,2,6 35 8
1,5,4,2,3,6 19 7
1,5,3,4,2,6 19 5

Table 6: n = 6

Root Number of nodes Largest number of flips
1,2,3,4,5,6,7 407 16
1,3,2,4,5,6,7 271 14
1,4,3,2,5,6,7 198 15
1,5,4,3,2,6,7 116 10
1,6,5,4,3,2,7 115 11
1,4,2,3,5,6,7 101 13

Table 7: n = 7

Root Number of nodes Largest number of flips
1,2,3,4,5,6,7,8 1867 22
1,3,2,4,5,6,7,8 1097 20
1,4,3,2,5,6,7,8 999 17
1,6,5,4,3,2,7,8 506 18
1,5,2,3,4,6,7,8 490 18
1,4,2,3,5,6,7,8 442 17

Table 8: n = 8

Root Number of nodes Largest number of flips
1,2,3,4,5,6,7,8,9 9718 30
1,3,2,4,5,6,7,8,9 5583 25
1,4,3,2,5,6,7,8,9 4587 27
1,5,4,3,2,6,7,8,9 2107 19
1,5,2,3,4,6,7,8,9 2092 24
1,6,5,4,3,2,7,8,9 1953 21

Table 9: n = 9

22

Root Number of nodes Largest number of flips
1,2,3,4,5,6,7,8,9,10 62200 38
1,3,2,4,5,6,7,8,9,10 33093 34
1,4,3,2,5,6,7,8,9,10 25621 35
1,3,4,2,5,6,7,8,9,10 11883 30
1,5,4,3,2,6,7,8,9,10 11096 28
1,5,4,2,3,6,7,8,9,10 10911 30

Table 10: n = 10

Root Number of nodes Largest number of flips
1,2,3,4,5,6,7,8,9,10,11 440330 51
1,3,2,4,5,6,7,8,9,10,11 232038 44
1,4,3,2,5,6,7,8,9,10,11 160618 43
1,3,4,2,5,6,7,8,9,10,11 77339 36
1,6,5,4,3,2,7,8,9,10,11 68686 40
1,5,4,3,2,6,7,8,9,10,11 68370 36

Table 11: n = 11

23

B Regression results

ParameterTable →

Estimate SE TStat PValue
1 -0.27867 0.0919026 -3.03223 0.0190546
x 0.378856 0.0316468 11.9714 6.46092 ×10-6

x2 0.0750753 0.00238954 31.4183 8.54962 ×10-9

,

RSquared → 0.999863, AdjustedRSquared → 0.999824, EstimatedVariance → 0.00301483,

ANOVATable →

DF SumOfSq MeanSq FRatio PValue
Model 2 154.411 77.2057 25 608.6 2.9865×10-14

Error 7 0.0211038 0.00301483
Total 9 154.432

Table 12: Regression result for the yellow line: family of the permutation(1, 2, 3, 4, ..., n).
The regression model: a+ bn+ cn

2.

We first do the F-test: we test the null hypothesis,

H0 : a = b = c = 0

versus the alternative

Ha : at least one of the coefficients a, b, c is non-zero

We choose ↵ = 0.01 as the significant level. The P value is 0.000 which is smaller than
0.01, we can reject the null hypothesis. There is a significant relationship between the
number of nodes and the length of the permutation.

Then we do the t-test: The null and alternative hypotheses for a hypotheses test
about the coefficient b are written as

H0 : b = 0

Ha : b 6= 0

We choose ↵ = 0.01 as the significant level. The P value is 0.000 which is smaller than
0.01, we can reject the null hypothesis and the coefficient b is significant.

Now, we do the t-test for the coefficient c. The null and alternative hypotheses for a
hypotheses test about the coefficient b are written as

H0 : c = 0

Ha : c 6= 0

We choose ↵ = 0.01 as the significant level. The P value is 0.000 which is smaller
than 0.01, we can reject the null hypothesis and the coefficient c is significant. Since c

is significant, we can say there is more than an exponential growth for the number of
nodes.

24

C Codes: Compute number of nodes for each tree
f[arr0_, n0_] := Module[{i, temp, arr = arr0, n = n0, index = n0},

For[i = 1, i <= Floor[n/2], i++,

temp = arr[[i]];

arr[[i]] = arr[[index]];

arr[[index]] = temp;

index -= 1;

];

Return[arr]

]

(*number of nodes for each tree*)

NumOfNodes[list0_] := Module[{len, leafs, i, same, j, list},

list = List[list0];

len = Length[list[[1]]];

For[i = 1, i <= Length[list], i++,

For[j = 2, j <= len, j++,

If[list[[i, j]] == j, AppendTo[list, f[list[[i]] , j]]];

];

];

Return[Length[list]]

]

D Codes: Compute number of flips for the specific tree
(*The number of flips for root (1,2,....n)*)

list = List[{1, 2, 3, 4, 5}];

len = Length[list[[1]]];

For[i = 1, i <= Length[list], i++,

For[j = 2, j <= len, j++,

If[list[[i, j]] == j, AppendTo[list, f[list[[i]] , j]]];

];

]

arr = list[[-1]];

index = 0;

While[arr[[1]] != 1, index++; temp = prefixRev[arr]; arr = temp;

Print[temp]]

25

index

E Codes: Compute the maximum number of flips in
the topswop forest

f[arr0_, n0_] := Module[{i, temp, arr = arr0, n = n0, index = n0},

For[i = 1, i <= Floor[n/2], i++,

temp = arr[[i]];

arr[[i]] = arr[[index]];

arr[[index]] = temp;

index -= 1;

];

Return[arr]

]

(*

3.1 input a vetctor(v1,v2..vn) and output prefix reversal

*)

prefixRev[arr0_] := Module[{n0, arr},

n0 = arr0[[1]];

arr = f[arr0, n0];

Return[arr];

]

(*

3.2 output the pancake graph Gn in matrix form.

*)

deteGraph[n0_] := Module[{p, ma, fac, i, n, j},

p = Permutations[Table[i, {i, n0}]];

fac = Factorial[n0];

ma = Table[0, {x, fac}, {y, fac}];

For[i = 1, i <= fac, i++,

For[n = 1, n <= n0, n++,

For[j = 1, j <= fac, j++,

If[prefixRev[p[[i]]] == p[[j]], ma[[i, j]] = 1; Break[]]

]

]

];

For[i = 1, i <= fac, i++,

26

ma[[i, i]] = 0;

];

Return[ma]

]

(*

3.3 input AdjacencyGraph and n, output the maximum number of \

flips

*)

findMaxNum[adjGraph_, n0_] :=

Module[{permu, i, index, j, begin, end, leaf, step, max},

permu = Permutations[Table[i, {i, n0}]];

begin = Factorial[n0 - 1];

end = Factorial[n0];

leaf = List[];

For[i = begin + 1, i <= end, i++,

index = 0;

For[j = 1, j <= n0, j++,

If[permu[[i, j]] == j, Break[], index++]

]

If[index == n0, leaf = Append[leaf, i]];

];

max = 0;

For[i = 1, i <= begin, i++,

For[j = 1, j <= Length[leaf], j++,

step = FindShortestPath[adjGraph, leaf[[j]], i];

If[max < Length[step], max = Length[step]];

]

];

Return[max - 1];

]

27

Faculty of Technology
SE-391 82 Kalmar | SE-351 95 Växjö
Phone +46 (0)772-28 80 00
teknik@lnu.se
Lnu.se/faculty-of-technology?l=en

	Introduction
	The pancake problem
	The topswops problem
	Content of this thesis

	Topswop Forest
	The topswop function
	Properties of the topswop forest
	The analysis of the number of nodes and flips for each topswop tree
	Bounding the topswops problem
	The linear lower bound
	The best proven quadratic lower bound
	The Wilf upper bound
	The Fibonacci upper bound

	Discussion
	Appendices
	Tables for the number of nodes and the largest number of flips
	Regression results
	Codes: Compute number of nodes for each tree
	Codes: Compute number of flips for the specific tree
	Codes: Compute the maximum number of flips in the topswop forest

