DEGREE PROJECT IN ELECTRICAL ENGINEERING,

@m SECOND CYCLE, 30 CREDITS
o T Ry

FKTHS

STOCKHOLM, SWEDEN 2020

VETENSKAP
28 OCH KONST 2%

s

Using NLP Techniques for Log
Analysis to Recommend Activities
For Troubleshooting Processes

MARTIN SKOLD

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Using NLP Techniques for
Log Analysis to Recommend
Activities For
Troubleshooting Processes

MARTIN SKOLD

Master’'s Programme, Machine Learning, 120 credits

Date: December 15, 2020

Supervisor: Sahar Tahvili (Ericsson), César Soto Valero (KTH)
Examiner: Magnus Boman (KTH)

School of Electrical Engineering and Computer Science

Host company: Ericsson AB

Swedish title: Anvanda NLP tekniker for logganalys for att
rekommendera aktiviteter for felsbkningsprocesser

Abstract

Continuous Integration is the practice of building and testing software every
time a code change is merged into its entire codebase. At the merge, the source
code is compiled, dependencies are resolved, and test cases are executed. De-
tecting a fault at an early stage implies that fewer resources need to be spent to
find the fault since fewer merges need to be checked for errors. In this work, we
analyze a dataset that comes from a Ericsson Continuous Integration flow that
executes test cases daily. We create models to efficiently classify log events
of interest in logs from failing test cases. For all models, each word in the
log events is exchanged with the corresponding word embedding. The em-
beddings come from the FastText Continuous Bag of Words and Skip-gram
models that use character n-grams for each word. For Linear Regression,
Random Forest, XGBoost model, Support Vector Machine, and Multi-layer
Perceptron, the word embeddings of the words of the log event is merged by
weighting the words with the corresponding frequency-inverse document fre-
quency from the dataset. The best performance was achieved with XGBoost,
with a mean Fl1-score of 0.932 and a standard deviation of 0.034 when eval-
uating 100 3-fold cross-validations with different seeds. The LSTM model,
which takes sequential input, got a mean F1-score of 0.896 and a standard de-
viation of 0.061. These results demonstrate the suitability of our approach to
facilitating log analysis and defects detection tasks, reducing time and effort
from developers.

Sammanfattning

Kontinuerlig integration dr nidr man bygger och testar mjukvara varje géng
en kodindring dr sammanslagen med kodbasen. Nar sammanslagningen ut-
fors sd dr kdllkoden kompilerad, beroenden ir 16sa, och testfall dr exekver-
ade. Upptickten av en fel tidigt betyder att mindre resurser behover laggas
pa att hitta felet, eftersom firre kodsammanslagningar behover analyseras. I
denna studie analyserar vi ett dataset som kommer fran ett kontinuerligt inte-
grations flode hos Ericsson som utfor testfall dagligen. Vi skapar en model
som effektivt klassificerar loghédndelser av intresse i loggar i loggar frén fall-
erande test fall. Gemensamt for alla modeller &r att varje ord dr utbytt mot
motsvarande ordinbaddningar som kommer frdn FastTexts Continuous Bag of
Words och Skip-Gram modeller som anvinder n-grams av tecken for varje
ord. For linjar regression, Random Forest, XGBoost, Support Vector Machine
och Multi-Layer Perceptron modellerna sa dr ordinbdaddningarna for orden i
varje log meddelande sammanslagna genom att vikta dem med motsvarande
frequency-inverse document frequency virde. Det bista resultatet uppnad-
des av XGBoost, med ett medelvirde pd Fl-score pd 0.932 och en standard-
avvikelse péd 0.034 nér vi evaluerar 100 st 3-fold korsvalideringar med olika
fron. LSTM modellen, som tar ordinbinbdddningarna i en sekventiell ordning,
fick ett medelvirde pd Fl-score pa 0.896 och en standardavvikelse pa 0.061.
Dessa resultat visar lampligheten i vart tillvigagdngssétt for att underlitta log-
ganalys, vilket reducerar den tid och fokus som utvecklare och utévare behover
lagga pé att pd logganalys.

Acknowledgements

The work presented in this thesis was conducted at Ericsson’s department
Global Artificial Intelligence Accelerator (GAIA), Stockholm. The study was
performed between March and September in the year 2020.

I would like to thank all the people I been working with during this project. 1
want to thank my supervisor Sahar Tahvili for her engagement in the project,
and for always quickly responding to all my requests for advice and the need
for resources. Secondly, I would like to thank my KTH supervisor César Soto
Valero for giving guidance in the world of log analysis and being such good
support. I also want to thank Raghotham Sripadraj for allocating a lot of time
for discussing the problem at hand to find the solutions. Hamidreza Morad-
mand I want to thank for being the bridge between us and the department we
been collaborating with. And last, but not least, I want to thank Pankaj Kha-
pake and Bhagyashree Jain for all the insights in the data and for taking the
time to label the data and help to create troubleshooting activities. Without all
these people this thesis would not have been possible. Since we all have been
working from home this all time, I hope to meet you all in person someday in
the future.

I also would like to thank my fiancée Caroline Larsson for her constant sup-
port, all the way from my first day on KTH, when we left our hometown to go
to Stockholm, to the day I will graduate. You’ve been supporting me through-
out all late nights with assignments, projects, work and you keep giving me
love. I also want to thank all my friends I’ve met at the university, whom I’ve
shared great moments with laughs, setbacks, and opportunities. I hope that
our friendships will be life long.

Stockholm, December 15, 2020
Martin Skold

Contents

(I__Introduction| 1
(LI _Problem Statementl 2
(L2 Research Goals| 3
1.3 Research Questions| 3
(1.4 Scope and Delimitations| 4
(L5 Thesis Outlinel. 4

2~ Background| 5
2.1 LogAnalysis| 5

[2.1.1 Log Anomaly Detection| 6
[2.1.2 Security and Privacy| 7
[2.1.3 Root Cause Analysis (RCA) 7
[2.1.4 Software testing|. 7
[2.1.5 Reliability, Dependability and Failure Prediction| . . . 8
[2.1.6 Log Event Template Extraction| 8
22 RelatedWorkl 10
[2.2.1 Feature Engineering| 10
[2.2.2 Natural Language Processing|. 11

14
[3.1 Dimensionality Reduction| 14
[3.2 Data Representation Techniquesin NLP 15

[3.2.1 Term Frequency and Inverse Document Frequency (TF- [

[IDE). . ..o 15

[3.2.2 N-grams| 16
323 Word2Ved. oo 16
324 Fastlextl. 17
[3.2.5 Continuous Bag of Words (CBOW), 17
[3.2.6 Skip-Gram| 18

[3.3 Machine Learning Models for Classification| 19
[3.3.1 Logistic Regression, SVM, Random Forest, Gradient |

[Boosting, MLP| 0. 19
[3.3.2 Long Short-Term Memory| 20

3.4 Validation Metrics| 22
341 Fl-scorel. 22

[3.4.2 Wilcoxon signed-rank test| 23

343 FriedmanNxNtestl 23

3.5 Summary| 24

4 Methodsl 25
............................. 25
4.2 Data Collectionl 27
4.3 Data Preprocessing| 28
4.3.1 Word Embeddings| 29

4.4 Model Training| 30
4S5 Model Selection| Lo 30
4.6 Hardware Setup and Used Software Libraries| 30

5 Results 31
[5.1 Unit of Analysis and Procedure| 31
.................... 32

[5.1.2 Classifiers with Merged Word Embeddings| 32

0.2 Stafistical Validationl 38

{6 Threats to Validity| 41
[/__Discussion and Future Workl 43
[1_Discussionl. 43
(/2 Future Workl Lo 44
[7.2.1 Ethics and Sustainability| 45

8 Conclusions| 47
A" Hyperparameters| 59
AT LSTM . . . o oo e 59
(A2 Other Classifiersl. 59

ii

Acronyms

ANN
SME
BOW
CBOW
SVM
CI
UMAP
TF-IDF
CNN
NLP
MLP
Al

WE
UMAP
RNN
NN

Artificial Neural Network

Subject Matter Expert

Bag of Words

Continuous Bag of Words

Support Vector Machine

Continuous Integration

Uniform Manifold Approximation and Projection
Term Frequency-Inverse Document Frequency
Convolutional neural network

Natural Language Processing

Multi-Layer Perceptron

Artificial Intelligence

Word Embedding/s

Uniform Manifold Approximation and Projection
Recurrent Neural Network

Neural Network

iii

Chapter 1

Introduction

Software and electronic devices become more and more an integral part of our
lives. They seem to infiltrate every area that could potentially be simplified and
improved by technology. The success of these depends greatly on how stable
and robust the products are. In this regard, testing has become a crucial part of
software development [1]]. Stable software leads to more satisfied customers,
and in many areas devices or software products are not allowed to be used
without proper testing, such as in healthcare services [2].

Continuous Integration (CI) is an industrial standard practice to simplify the
testing process. It consists of merging all developers working copies to a
shared mainline several times a day, and each integration is verified by a pipeline
that is built automatically and tested [3,4]]. This is done to get rapid feedback
and catch errors as early as possible [5]. In this scenario, logs are generated
by the test case executions and are created to give feedback so that anomalies
are detectable [6-8]]. The logs are mostly created to check the state of the sys-
tem during operation. Logs are usually continuously appended to a file, which
means that the file grows and become very large. The size of the logs is di-
rectly related to the test cases size, complexity, testing level (e.g., unit testing,
integration testing). Going through large logs is time-consuming. It is hard
since the logs also contain several entries from the system that are not related
directly to the behavior of the software itself.

At Ericsson, many departments use J enkin an open-source automation server
that builds, deploys, and automates tests execution. Mostly the builds and tests
pass without any problems, but investigations need to be done when errors

"https://www.jenkins.io

https://www.jenkins.io

occur. Currently, the faults that have been encountered before are found by
searching with regular expressions, but it also gives false positives.

The developer must search millions of log lines as soon as a new error or a
similar error with a different output occur, as these will not be identified with
the regular expressions properly. The generated log events often have free text
messages, accompanied by information about the time of execution, the log
level, and what part of the software that generated the log event. One needs
prior experience and need to know the details of the product being tested to be
able to troubleshoot the logs. The department we collaborate with in this study
needs to train employees at least 6 to 12 months before they can troubleshoot
the logs independently and finding a fault may take hours to days. This means
that the activity of troubleshooting is very costly and require multiple people
to investigate the issue. Reading and analyzing a log manually for a failed test
case requires solid domain knowledge. It might suffer from human judgment,
ambiguity, and uncertainty.

Related to log analysis there exist a plethora of previous work. Some examples
are, but not limited to, log template extraction, grouping log events based on
time and order, clustering, test coverage, etc. [6]. A more in-depth discussion
about previous work is presented in Chapter [2| of this thesis.

1.1 Problem Statement

The problem consists in simplifying the analysis of logs by classifying and
grouping the log events generated after each test execution. Moreover, the goal
is to suggest troubleshooting activities for each fault found. The troubleshoot-
ing time spent on log analysis can be significantly reduced by employing, for
example, Artificial Intelligence (Al) techniques related to Natural Language
Processing (NLP). The human work and mental load might be lowered by uti-
lizing classification or clustering algorithms for those test cases that failed due
to the same reason. The troubleshooting activities can be assigned when these
groups have been formed.

By employing ML techniques, the number of different types of errors that
developers need to look for can be narrowed down. This leads to less time
finding the fault and making it is easier for a new developer to solve the issues.
The importance of having large exposure to different errors could be lowered,
saving both time and frustration.

The main goal of this thesis is to implement an automated approach for parsing
and analyzing logs written as text. Moreover, proper troubleshooting activities
need to be mapped to each log corresponding to the failed test case. That way
software developers are given hints on how to solve the issue. Examples of
errors one might find during test case executions are [9, 10]:

(i) the testing environment is not ready for test execution

(ii) there is a mismatch between test cases and the requirements
(iii) there are some errors in the code
(iv) there is a bug in the system under test

(v) any combination of the previous options.

1.2 Research Goals

This study investigates the possibility of creating a decision support system
for mapping proper troubleshooting activities to failed test cases. We analyze
different types of feature engineering on the logs. We then evaluate the per-
formance of different classifiers on the features extracted from the dataset we
collected. More specifically, the goal is:

To provide solutions for a more efficient log analysis and troubleshooting
process, while decreasing unnecessary human effort and increasing the ac-
curacy of the mapped troubleshooting activities.

1.3 Research Questions

This study investigates the possibility of classifying logs and suggesting a pro-
poser action based on the failure causes. In this regard, the following research
questions are answered in this thesis:

* RQ1. Which machine learning methods are appropriate to classify test
case logs originated from a continuous integration pipeline?

* RQ2. What is the effectiveness, in terms of developer time reduction,
of using the most appropriate classification solution?

1.4 Scope and Delimitations

During the process of software building and testing, one can encounter an
almost infinite number of problems. This project will focus on grouping and
classifying faults from test case execution logs. We specifically target one CI
workflow at Ericsson with more than average failures. We do this to be able
to collect and label data faster. Data have been collected, explored and labeled
over a period of a couple of months and is a major part of the project. The data
is limited to failing test cases that was produced during the project execution,
since old logs are deleted due to storing constraints. We design and implement
a pre-processing and pipeline for analyzing test case. The libraries that are we
use that implement language models, dimensionality reduction and classifiers
are referenced in Chapter 4] We hope to in the future extend this approach
to more Jenkins test suit jobs at Ericsson, as the implementation can be used
directly. Note that there are no barriers for implementing the same pipeline
for another CI workflow. In this report we evaluate how well we can identify
the different types of errors that occurs in the logs, with a supervised approach
for a multiclass classification problem. We directly compare the classification
performance. It would be feasible if we could produce a study to see how
useful the tool is by sending a survey to developers. However, to develop a
pipeline that integrates with the production is a project on its own. This means
that we would have to estimate the time savings by consulting subject matter
experts (SMEs).

1.5 Thesis Outline

The organization of this thesis is laid out as follows: Chapter [2] provides a
background of the initial problem and an overview of research on log analysis
and NLP, Chapter @ describes some theories behind the conducted research.
The structure of the proposed approach is depicted in Chapter[d] An industrial
case study has been designed in Chapter [5] Threats to validity and delimi-
tations are discussed in Chapter [6| Chapter [7 clarifies some points of future
directions of the present work and finally Chapter |8 concludes this thesis. In
Appendix [A] the hyperparameters for the models we use can be found.

Chapter 2

Background

This chapter presents a brief overview of the state-of-the-art research related
to logs and logging, which is best summarized by looking at Table[2.1] Since
this thesis is focused on log analysis, we present a summary of the past and
current research within the area. We also mention relevant related research
works within the area of NLP.

2.1 Log Analysis

Log analysis is about extracting knowledge from logs for a specific purpose,
e.g. detecting undesirable behavior in a system, find the cause of system out-
age or analyze test cases [|6]. It is challenging since the systems that produce
the logs are complex and produce them for multiple purposes. Log analysis
is further divided into multiple areas such as anomaly detection, security and
privacy, root cause analysis, failure prediction, software testing, model infer-
ence, and invariant mining, and reliability and dependability [6] as in Table
[2.1] Relevant areas for this thesis are anomaly detection, root cause analysis,
and software testing. These are related since our goal is to classify the error
type of the log events in a log file from a failing test case. We will regard-
less discuss neighboring topics to see how our work relates to the different
sub-fields.

Log Analysis

Log Engineering |t --2 -t oo oo
e S Insights from processed log data.
The development of an effective |} - - - -~ - -= - i T iy - 1
. — Anomaly detection < related of thesis
logging code.

ffffffffffffffffffffffff — Security and privacy

— Anti-patterns in logging code . .
P . 8IS — Root cause analysis < related of thesis
— Implementation of log statements . -
— Failure prediction

— Empirical studi ' '
L rr;[:;;catj ! tle: — Software testing <— related of thesis
B SRR S — Model inference & Invariant mining

Techniques to enable and fulfill the _ Reliability and dependability

| requirements of the analysis process. |y o pratforms
—Parsing s a T T ST T T T T

~ Storage End-to-end analysis tools |

Table 2.1 — An overview of the research topics related to logs and logging [6].

2.1.1 Log Anomaly Detection

Log anomaly detection is when techniques are used to detect undesirable pat-
terns in log data. For example, a model is trained to only present these anoma-
lies to a user by having a dataset with binary labels, abnormal or OK. An
example of an anomaly detection techniques is the supervised model Cloud-
Seer [11]]. It compares temporal differences for different log events and eval-
uates if it is a normal execution flow. In their empirical tests they show an ac-
curacy of > 92 % in detecting anomalies. DeepLog [7] has a similar strategy
and claims that it works with logs that have multiple tasks executing and print-
ing to the same log by using a Long-short Term Memory model. According
to Candido et al. [6], there exist many other techniques within anomaly detec-
tion that aim for creating control flow graphs, finite state machines, doing di-
mension reduction, etc. Another work, LogAnomaly, modifies the Word2Vec
algorithm into a method they call Template2Vec [12H14]. Shortly described,
Word2Vec is a is an unsupervised predictive deep learning-based mode that
learns the context of words and is described more in detail in Chapter [3| In
their implementation they build a vocabulary of templates by first processing
a list of synonyms and antonyms and use them to find log event templates, and
then proceed to create WEs for the templates using Word2Vec. The templates
are then matched with new data as it comes in [[12].

2.1.2 Security and Privacy

The Security and privacy category is about prevent or detect intrusion and
attacks on, for example, servers and databases. It also contains research re-
garding privacy logging, i.e. policies for what information is safe to log. Most
of the logs analyzed here are network logs such as HTTP, router logs, etc. [6].
One study proposes a framework based on belief propagation, inspired from
graph theory, to create a detector that searches web proxy logs to detect mal-
ware [15]]. Another study uses Expectation-Maximization clustering to iden-
tify malicious activities by searching logs from DHCP servers, authentication
servers, and firewalls. [|16]].

2.1.3 Root Cause Analysis (RCA)

Root cause analysis (RCA) is about detecting anomalous and unexpected be-
havior. Anomaly detection can highlight these log events, but a maintainer
needs to investigate the given output. Root cause in this context can mean
that we want to find the failing node, the failing job or failing software. That
can be done by complementing logs with resource usage [17-19]. CRUDE
complement the logs with resource usage and cluster nodes with similar be-
havior using hierarchical clustering. It use anomaly detection to detect jobs
with anomalous behavior and an algorithm for linking these together. In their
empirical evaluation they are able to detect 80 % of the errors [[18]]. Another al-
gorithm, LogCluster cluster sequences of log events using Agglomerative Hi-
erarchical clustering with their own distance measure designed for sequences
of log events and match them with a knowledge base. The knowledge base
is created by clustering known log events sequences of interest. When the
available data is processed, the center log event of each cluster is set as the
representation of each cluster, and a Subject Matter Expert (SME) put a la-
bel each cluster. To reduce the influence of log events with little value, they
weights the them in a log with IDF (Inverse Term Frequency) [20].

2.1.4 Software testing

Software testing, in the context of log analysis, is about improving software
development cycle when performing testing [6]. An example of such a work
is LogCoCo, that estimates code coverage by analyzing execution logs and

linking them to their corresponding code paths [21]. When evaluating the
performance on 6 systems, they achieve above 96 % accuracy while estimating
code coverage for methods, statements and branches.

2.1.5 Reliability, Dependability and Failure Prediction

Reliability and dependability is about estimating how reliable a software or
hardware system is by digging in the logs. Failure prediction is used when
faults have been found before and detect them by monitoring metrics. The
last category is model inference and invariant mining. Model inference is
the study of creating models from logs, such as state machines, client-server
interaction diagrams or dependency models. State machines are used to detect
bugs when the system does not act as intended [6]]. A simple example of a
software invariant is that the number of times a program open and closes a
file should be equal. If a close statement is not present, then we conclude that
something is wrong [22].

2.1.6 Log Event Template Extraction

The Log parsing step is very important and needs to be done in some way
before the log is analyzed. The content in the log files need to be grouped so
the dimension is reduced.

A common technique used is Log event templates extraction. It is about cre-
ating templates that matches different types of log events so that they are
grouped. We will here go in a little deeper into the research in this area. Com-
mon for all these log event template extraction algorithms is that they first
pre-process the logs by replacing uninteresting dates, urls, etc. with an iden-
tifier such as xxdate and xxurl [23]]. One evaluation study evaluated the four
log parsers SLCT (Simple Logfile Clustering Tool), IPLoM [24], LKE (Log
Key Extraction), LogSig [23]] and released corresponding open-source code
implementation. They set out to study the accuracy and efficiency of the dif-
ferent log parsers and how effective they are on log mining and drew a couple
of conclusions from their analysis on these tools.

* Current log parsing methods achieve high overall parsing accuracy (F1-
score).

Log Parser | Year Technique Mode | Efficiency | Coverage | Preprocessing | Open source | Industrial Use
SLCT 2003 Frequent pattern mining Offline High X X v X
AEL 2008 Heuristics Offline High v ' X v

IPLoM 2012 Iterative partitioning Offline High v X X X
LKE 2009 Clustering Offline Low v v X '
LFA 2010 Frequen tpattern mining Offline High v X X X

LogSig | 2011 Clustering Offline | Medium v X X X

SHISO 2013 Clustering Online High v X X X

LogCluster | 2015 Frequent pattern mining Offline High X X v v

LenMa | 2016 Clustering Online | Medium v X v X

LogMine | 2016 Clustering Offline | Medium v v X v
Spell 2016 | Longest common sub-sequence | Online High v X X X
Drain 2017 Parsing tree Online High v ' v X
MoLFI 2018 Evolutionary algorithms Offline Low v v v X

Table 2.2 — Summary of automated log parsing tools. Note that most of them
are not for industrial use [25].

» Simple log pre-processing using domain knowledge (e.g. removal of IP
address) can further improve log parsing accuracy.

* Clustering-based log parsing methods could not scale well on large log
data, which implies the demand for parallelization.

* Parameter tuning for clustering-based log parsing methods is a time-
consuming task, especially on large log datasets.

* Log parsing is important because log mining is effective only when the
parsing accuracy is high enough.

» Log mining is sensitive to some critical events. Around 4% errors in
parsing could even cause an order of magnitude performance degrada-
tion in log mining.

In a later paper, they extended the open-source code and the analysis by also
evaluating AEL, LFA, SHISO, LogCluster, LenMa, LogMine, Spell, Drain,
and MoLFLI [25] and a summary is visible in Table 2.2]

During the development of this work, we implemented different log parsers
such as those mentioned in Table 2.2l However, when we used log template
extraction on our logs, it gave us too many templates (in thousands), hence itl
was not useful. Therefore, we focused more on NLP-related techniques related
to text classification. The details of our research methodology are described
in Chapters [3|and 4]

2.2 Related Work

While reviewing the different topics mentioned above, we see that not much
work have been done within the field of multi-class log classification, as log-
ging systems often trigger very specific errors [6]. In our case, we want to
categorize the type of fault in logs originated from an execution of tests cases,
so it is possible to suggest troubleshooting actions. For example, instead of
binary classification, one could use more labels such as timeout, build error,
HTTP request error, etc. This work is related to anomaly detection, software
testing and root cause analysis but also related to NLP. Therefore, we review
works related to NLP and classification of test cases here. Root cause Anal-
ysis in logs for our context can include steps such as log template extraction,
pre-processing, feature engineering, topic modeling, clustering, translation to
word embeddings (WEs), classification, etc. depending on how one decides
to solve the problem.

2.2.1 Feature Engineering

To classify test case log files, many different variants of feature engineering
and features are used as input to different classifiers. There is no standard for
feature selection and most of the investigated studies try different types of fea-
tures. Recently, a similar master thesis report was published where they tried
to divide the error logs into users or infrastructure problems, i.e. binary classi-
fication. They used Term Frequency—Inverse Document Frequency (TF-IDF)
as input to different classifiers such as SVC, Gradient Boosting, Random For-
est [26]. Another study builds category dictionary libraries using TF-IDF and
then use Levenshtein Distance [27,[28] to measure semantic similarity. Later
they show that deep convolutional networks have a better classification per-
formance than other simpler classifiers based on the given feature input [29].
Another study at Ericsson, that has a similar goal to the one in this study, use
features such as the number of containers invokes (which execute the tests),
number of responses, errors, trace-backs, and warnings in the log, success
rate per build and overall test case success [30]. Another way is to just mon-
itor resource usage to classify different types of errors and correlate it with
the different types of error messages in the logs [31]]. Yet other works use the
timestamps of the log event to find patterns in failing logs [32./33]], by evaluat-
ing the timing in the order of the log events. N-grams are also very common,
for both words and characters [34]. A note can be made to Word2Vec, which

10

has two models (skip-gram, CBOW) to turn words into WEs. The output of
these models can be feed to a classifier [35]. The presented used features in
the papers discussed in this paragraph all present promising results, but they
cannot be directly compared since they all use different data. In the mentioned
papers in this paragraph, classifiers such as linear regression, random forest,
gradient boosting, LSTM, Convolutional neural networks (CNN), Word2Vec
are used.

2.2.2 Natural Language Processing

If we look at the field of NLP, there has been great progress within deep learn-
ing [36], where we observed the same type of progress as computer vision
had a couple of years ago. The previously mentioned work DeepLog uses
the LSTM model [[7]. LogAnomaly use a modified variant of Word2Vec to
learn WEs that provide a numerical representation of the content in logs [|12].
Both are deep learning models. The benefit of the LSTM model is that it takes
sequential input. The benefit of Word2Vec is that it transforms words into a
meaningful representation in the space of embeddings. The simplest exam-
ple, that is not related to test case logs, is constructed by using addition and
subtraction to see how word representations relates: King - Man + Woman
= Queen. A more in-depth of Word2Vec is present in Section [3.2.3] If more
resources are available, pre-trained language models such as GPT-2 [37], GPT-
3 [38], BERT [39], XL-Net [40] and ULMFiT [41] can probably be used in
a similar way. They learn to model language by training on very large corpus
datasets such as filtered snapshots of Wikipedia [41]. ULMFiT shows in its pa-
per that their model can exploit pre-trained models to learn a representation of
another very small new dataset with little training. The models have reached a
new level in text generation [38]], text classification and transfer learning (with
small datasets) [41,42], etc. The problem with these models is they require
very large computational resources where, for example, GPT-3 requires a large
cluster of computers to execute [38]. There are works that try to extract the
essence of these large models by distilling the deep learning models, so it is
possible to execute them with less resources. Distilling means that parts of the
weights in the deep learning models are discarded but still performs very well
on similar tasks. Such an example is distiIBERT, which is a distilled version
of BERT and is deployable on a single machine [43]].

As the area of log analysis is expanding and it also benefit from research out-
side its specific area. Since all logs mostly contain written text, any model

11

that learns to represent the meaning of the log events with word embeddings
can be used to improve the analysis. Table[2.3|represents more related work in
the area of log analysis and troubleshooting, where the employed method and
drawback of each work is specified.

12

Reference

Purpose of paper

Limitations

Kc and Gu [44]]

Using hybrid log analy-
sis and clustering

Requires several predefined transi-
tion patterns between different types
of messages (unsupervised learn-

ing)

Jiang et al. [45]]

Using the character-
istics of the customer
problem

Limited to the costumer cases

Mochizuki et al. [46]

Searching for keyword
file corresponding to
trouble represented by
entered character string

Does not provide the troubleshoot-
ing activities (just searches for and
displays the related logs for trou-
bleshooting)

Winnick [47]]

Using a series of de-
cision trees that are
used to guide the user
through troubleshoot-
ing.

Does not provide the troubleshoot-
ing activities (it generates questions
for the user by a system diagnostic
engine to determine a problem to be
solved for a target system)

Debnath et al. [48]]

Running a program
code to generate seed
patterns from the
preprocessed logs.

Does not provide the troubleshoot-
ing activities (it generates final pat-
terns by specializing a selected set
of fields in each of the seed patterns
to generate a final pattern set.)

Jain et al. [49]

Performing phrase ex-
traction on the text to
obtain a plurality of
phrases that appear in
the text

Is limited to the predefined phrases

Purushothaman
al. [50]

et

Using a ML computing
system

Does not provide the troubleshoot-
ing activities and it just identify an
associated error condition category

Jadunandan et al. [51]]

Using a communication
network operations cen-
ter (NOC) management
system.

Requires the equipment trouble his-
tory data

Vidal et al. [52]

Using unsupervised
learning technique

Does not provide the troubleshoot-
ing activities and it detects just the
test flake

S. Cai et al. [53] Using NLP Using an unsupervised learning and
it does not provide the troubleshoot-
ing activities

Y. Li et al. [|54] Using NLP Provides a sentiment analysis and it

does not provide the troubleshoot-
ing.

Table 2.3 — Summary of relevant related work.

13

Chapter 3

Theory

This chapter gives a brief introduction to all methods and metrics used in this
thesis. Just as the works presented in the beginning, we need ways to trans-
form the content of the test case log files into a representation with meaning.
We will focus on using methods for transforming the text in each log event
into WEs. We then use dimensionality reduction to transform the WEs into a
low-dimensional space. At last we use classifiers to perform inference on the
data we have. In short, the chapter is structured in the following way. In the
first half, dimensionality reduction and NLP based techniques are described.
In the second half, we shortly introduce the models that we compare and eval-
uate.

3.1 Dimensionality Reduction

Dimensionality Reduction is used when data needs to be transformed from a
high-dimensional space to a low-dimensional space. There are multiple rea-
sons why one would want to do dimensionality reduction. Such a reason could
be removing dimensions with low influence on the data, represent the data in
other coordinates, etc. In ML when the data has more dimensions than data
points we suffer from the curse of dimensionality. Training an algorithm to
learn the representation will then lead to severe overfitting, since the model
only learns to represent the data points in the data set. This leads to weak per-
formance when performing inference. Note that there is also a possibility to
remove too much information from the data when doing dimensionality reduc-
tion [55]]. In this work we decided to use Uniform Manifold Approximation

14

and Projection (UMAP), which is what we will describe next.

Uniform Manifold Approximation and Projection (UMAP) is a dimensionality
reduction technique that is used for general non-linear dimensionality reduc-
tion. It relies on three assumptions: That the data is uniformly distributed
on Riemannian manifold, that the Riemannian metric can be approximated as
locally constant, and that manifold is locally connected. Based on these, the
manifold is modeled with a fuzzy topological structure and the embedding
is extracted by finding the low dimensional projection of the data that is the
closest to the structure [56]].

3.2 DataRepresentation Techniquesin NLP

Employing NLP techniques in software testing has received a great deal of
attention recently, since deep learning techniques have been able to create a
better representation of text [57H60]. In this chapter we will go through the
variant of Word2Vec, called FastText, that we use to create WEs. We will also
go through the simple TF-IDF that we later use to weight the different word
embeddings. To utilizing NLP techniques, we need to find a way to represent
our data (a series of texts) to our systems (e.g. a text classifier).

3.2.1 Term Frequency and Inverse Document Frequency
(TF-IDF)

TF-IDF is a statistical measure that is used as a type of weight mostly in text
mining. It weights the number of times a word appears in the document pro-
portionally but also includes an offset from how often the word is used in the
whole corpus. One of its use cases is to find stop words. The Term Frequency
for a word in a document is normalized by considering the document length.
The Inverse Document Frequency considers how often words appear in the
whole corpus so that words that appear in the whole corpus is scaled down,
and word specific to a few documents is scaled up [61]. In more mathematical
terms, we define Term Frequency to be

TF(1) = Number of times term t appears in a document G.1)
N Total number of terms in the document ’

15

and Inverse Document Frequency to be

IDE(1) = log (Total number of d.ocuments) ' (3.2)
Number of documents with term t in it

The TF-IDF weight is the product of these values

TF-IDF(t) = TF(t) x IDF(t) (3.3)

3.2.2 N-grams

N-grams in the context of NLP refers to a contiguous sequence of n items from
a text. Instead of making a word a feature, the contiguous n word is the feature.
This is used to get more context from each word, but the dimensions of the n-
gram words increase exponentially as n increase [34]. A simple example of
word 2-gram is here presented.

This is an example — <This, is>, <is, an>, <an, example>

N-grams are also constructible from the character in a word. Here is a simple
character 2-gram example:

example — <ex>, <xa>, <am>, <pl>, <le>

3.2.3 Word2Vec

Word2Vec is an unsupervised predictive deep learning-based model. It is shal-
low since it only uses 2 layers in its NN. It generates continuous dense vec-
tor representations of words, that capture semantic and contextual similarity.
Word2Vec leverage either the Continuous Bag Of Words (CBOW) model or
the Skip-gram model to create the WE representations, and they are described
in the subsections below. Words that are more similar in context will be closer
in the WE space than words from a different context [13]].

The original implementation use hierarchical SoftMax as output unit and rep-
resent the vocabulary as a Huffman binary tree. A Huffman binary tree assigns

16

short binary codes to common words which in this case reduce the number of
output units needed in the NN.

3.2.4 FastText

The FastText [34] model considers each word as a Bag of Character n-grams
instead of word n-grams. This helps with languages that have many compo-
sitions of the same word. In the Word2Vec model where each found word is
handled as it’s a separate vector. With this model, more rare words have a bet-
ter chance of getting a good representation since the character n-gram occurs
more often than the word itself [[34]]. The creators of FastText [34] recommends
extracting all character n-grams with 3 < n < 6.

FastText utilize the Continuous BOW model and the Skip-Gram model creates
a numerical representation of the words. The closer they are in the numerical
space, the closer they are in context and meaning.

Normally when doing text analysis, lemmatization and stemming are used to
reduce the number of different words. Lemmatization uses language rules to
match words of the same meaning and stemming cuts off the end of the words
to match similar words. The former is better if there such a model available,
but that might not be the case. To instead use character n-grams, in the context
of logs, is very useful since it’s possible capture the meaning of log events
better. Since log events contain variables, values, etc. this means that we get
a representation of a never seen variable name before.

3.2.5 Continuous Bag of Words (CBOW)

The CBOW model is an unsupervised neural network (NN) language model
that predicts the current target word (the center word) based on the surrounding
words, that act as context. Compared to a NN language model, the non-linear
hidden layer is removed so that the projection layer in the NN is shared for all
the words it trains on. The model uses the corpus as training data by keeping
out the current target word and predict and compare the result to the corpus.
CBOW does not care about the order of the words (hence BOW), since it av-
erages out the WEs of the surrounding words [13]]. An example of input and
output of the CBOW model is shown in Figure

17

cBOwW Skip-gram

cold cold cold cold cold

I rr t 1t

rerr T T

Winter is and snowy Winter is and snowy

Figure 3.1 — An example of the input and output of the CBOW and Skip-
gram leveraged by Word2Vec models such the FastText model. The rectangles
represent layers in a ANN.

3.2.6 Skip-Gram

The Skip-Gram model could be described as the inverse of CBOW. The skip-
gram model is an unsupervised NN language model that takes a word (input
word) in the middle of a sentence and will predict the words that are most likely
to be close to this word (surrounding words). The output of the model will be
the probability for all the words in the vocabulary and during training these
outputs are trained to represent nearby words [13]] [14]. An example of input
and output of the Skip-Gram model is visible in Figure[3.1] The architecture
is built like auto-encoders where we train a full network but are only interested
in the hidden layer weight matrix that has learned a smaller representation of
the data [13]].

In the model, which gives us the goal to maximize the following log-likelihood:

T

Z Z log(we|wy) (3.4)

t=1 ceCy

where we want the WE for the words w € {1, ..., W}. C; is the context words
for word wr. It is the probability of observing a context word w, given w;. In
the Word2Vec model, they frame the problem as a set of independent binary
classification tasks. For word w; the context words are framed as positive
examples and random words from the dictionary as negative samples which

18

leads to the following negative log-likelihood:

log(1 + (o))} = (14 ems(wem)) (3.5)
’nE./\/'t,c

With each context position ¢, N . is a set of negative examples sampled from
the vocabulary [34].

In the FastText model each word is represented as a bag of character n-grams.
This means that each word is represented by the sum of the vector representa-
tions of its n-grams. This allows representations to be shared among different
words [34]. With an associated vector representation z,, to each n-gram g, the
scoring function s becomes defined as:

s(w,c) = Z Z)V. (3.6)

where v, is the vocabulary vector [[13]34].

3.3 Machine Learning Models for Classifica-
tion

As with all ML problems, we need algorithms that learns to differentiate the
input data, supervised or un-supervised. In this study we focus on a supervised
problem. The input to our classifiers will be WEs and the output will be the
class labels that represent each category of error types. We will here introduce
the classifiers we will use throughout the study: Logistic Regression, Support
Vector Machine (SVM), Random Forest, Gradient Boosting, Multi-Layer Per-
ceptron (MLP) and LSTM.

3.3.1 Logistic Regression, SVM, Random Forest, Gra-
dient Boosting, MLP

In linear regression, the input and output of the model are linked using linear
variables, i.e. each variable in the input of the data is multiplied with a scalar

19

value. A common way to fit the model is to update the weights with the least-
squares approach. With the use of a cost function, one can also use lasso (L')
or ridge regression (L?) to improve the generalization of the model.

Random Forest are an ensemble learning method for both classification and
regression where the forest is made up of decision trees. Each tree is trained
on a subset of the data and/or a subset of the variables. The data is divided into
each level of the decision tree based on what gives the best split for the given
data points. The prediction result on new data of each trained decision tree in
the ensemble is combined. A low correlation between different decision trees
is achieved when using different features and data points for training for each
tree. It levels out the errors of each individual tree.

Gradient Boosting is a ML algorithm that is used for both regression and clas-
sification problems. It trains an ensemble of weak prediction models. It uses
boosting, i.e. it utilizes weighted averages to make weak learners into stronger
learners. Boosting helps with reducing the variance in the prediction and re-
sults in a model with higher stability. One implementation is where one weak
classifier is added one at a time and are weighted relative to the weak learns
accuracy. The weights are normalized after each added learner is added. The
gradient part of gradient boosting refers to the use of training the ensemble
using gradient descent [62].

Support Vector Machine (SVM) is a supervised algorithm for classification
and regression problems and is very popular due to its ability to classify with
margins between classes. It’s a vector space model that finds the decision
boundary between two classes that are as far as possible from the data points
[63, p. 320]. The data points close to the hyperplane that splits classes are
called the support vectors.

Multi-Layer Perceptron is a feedforward artificial NN (ANN), that contains at
least an input layer, a hidden layer, and an output layer. MLP uses backprop-
agation to update its weights between all nodes. With non-linear activation
functions, and with multiple layers, a non-linear mapping is learned during
training.

3.3.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a famous Recurrent Neural Network
(RNN) which is used to create deep learning models [[64]. The recurrent part

20

| |
© © ©

(a) The repeating module in a standard RNN contains a single layer [65].

C "
+1 /7 < " ™ .
t (anh)

.f; ff C{ Of e
Lo |lo [[emn|[o]
hy_; 'y hy
. T
Xt

(b) The inner workings of LSTM.

Figure 3.2 — The circles with an operator is a point-wise operation, the arrow
means vector transfer, and arrow with two input paths is concatenation.

makes it possible for the model to process sequences of data. This is very
beneficial when processing text, video, time series prediction, etc.

A simple RNN that use backpropagation to update its weights, as the one in
Figure[3.2a] have the problem of vanishing/exploding gradients just as normal
deep feed-forward networks have. So, while an RNN identifies the next word
that only depends on the previous data points, in practice we note that it fails
when the context is given in the further back in time. LSTM solves improves
on this since it is better at remembering long-term dependencies [635]].

Each LSTM unit contains multiple parts that define how the data flows through
the cell as in Figure [3.2b} input gate (i;, C}), output gate (o), forget gate
(f:) [65]. These four cells together form a memory of the cell, by and reg-
ulate the internal state. The forget gate controls what information needs to be
thrown away from the cell state. The input gate controls what values to update
within the unit. The output gate controls what parts of the cell state we will
let through.

21

3.4 Validation Metrics

We will measure the performance of the proposed solution by comparing the
inferred results from the system with the labels of each test case log, given by
the Subject Matter Experts (SMEs). This means that we are dealing with a
supervised problem.

3.4.1 F1i-score

To evaluate the classification, we use the FI-score, which is a combination of
recall and precision. Phrased in a binary classification case, recall is the num-
ber of correctly identified positive results, divided by all results that should
have been classified as positive. Precision is the number of correctly identi-
fied positive results, divided by the sum of the number of correctly identified
positive results and the number of data points incorrectly classified as posi-
tive.

The equation of F1-score is

2
1= —
recall=t + precision™!

Note that recall and precision have the same weight. The two can be weighted
differently, depending on the importance of each factor. In this case, the defi-
nition of F1-score is:

* Precision: the number of correctly detected classes over the total num-
ber of detected classes by each method.

* Recall: the number of correctly detected classes over the total number
of existing classes.

where the [represents the harmonic mean of precision and recall. We choose
to use Fi-score since the dataset was heavily imbalanced in the number of data
points per class, which is viewable in Table 4.1}

To evaluate a more realistic performance of our models, we use k-fold and strat-
ified K-fold cross-validation. When doing k-fold cross-validation, the dataset
is split into K equally sized parts. One part is kept out for testing the per-
formance of the model, and the other parts are used to train the model. This
is repeated k times, one for each split. A stratified k-fold change so that the

22

different classes in the dataset is divided evenly between the k parts. The cross-
validation is presented together with the mean and standard deviation for mul-
tiple k-fold cross-validation executions for different seeds. This gives a more
realistic picture of how the model would perform in production.

3.4.2 Wilcoxon signed-rank test

Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used
to compare samples. It is used to compare if their population mean ranks dif-
fer. We will use it to compare if there is a statistically significant difference
between the performance of the different classifiers, where the null hypoth-
esis that the classifiers have equal Fl-score. It assumes that data are paired
and come from the same distribution and the pairs are chosen randomly and
independently [66].

We choose a significance level of 0.05, that will decide whether we reject the
null hypothesis or not. This means that we have a confidence level of 95 %.
The algorithmic description is described in Wilcoxon’s work [66].

3.4.3 Friedman NxN test

The Friedman test is a non-parametric statistical test [[67]]. We will use it to
rank the results for the different classifiers. It works in the following way:
Given a matrix with the dimension R™** with data {z;; }nxx, With n rows
(blocks, or measurement) and &k columns (treatments or algorithms) the ranks
are calculated within each block. The matrix is then replaced with a matrix
{ri; }nxr where r;; is the rank of z;; within block i. Then the values

’Fj = 1/712”:7“1']‘

are found. The test statistic is

k+1 Zk:(ﬂ k+1)

]=1

23

In the last step the probability distribution of Q is approximated with the chi-
squared distribution when n or k are large. If the p-value is significant, post-
hoc multiple comparisons test should be performed in order to check for sta-
tistically significant difference between each other [67]. The steps for this can
be found in Friedman’s work [68]].

3.5 Summary

In this chapter we have introduced the concepts of dimensionality reduction
using UMAP, techniques for text representation using FastText (Word2Vec)
and shortly described a set of classifiers we use in this study. In the next chapter
we will describe our pipeline and how we use these techniques to map the test
case log files to the different class labels. In short we use a Word2Vec model
(FastText) to transform the words in each log event into WE. We use TF-IDF
to weight the influence of each word so unique words, that are specific for a
class, get a higher weight. We then use UMAP to reduce the dimensionality of
the word embeddings. We then use the described classifiers to evaluate if the
transformed data represent the classes by training algorithms and performing
inference.

24

Chapter 4

Methods

This chapter provides more details regarding the utilized methods for solving
the log analysis problem addressed in this thesis. First, we present the pipeline
in Section Then, we describe the data collection methodology and the
data preprocessing in Sections 4.3 and 4.2] Later, we give details regarding
the model selection and model training.

4.1 Pipeline

Figure [4.1| shows an overview of the proposed solution for mapping a proper
troubleshooting activity for a failed test case log.

The details of each step is specified in the following steps:

1. Clean and filter the logs. The first step is to preprocess the logs into
a more straightforward format. Here unnecessary things such as IP ad-
dresses, web addresses, dates, digits, special characters, capital letters,
etc. that are not needed in the analysis are replaced with identifiers such
as xxip, xxdate etc. For more details, see Section @

2. Extract log events based on a failure identifier. The models that learn
WE:s train on all the defined input. If possible, the performance of the
classifiers can be improved by selecting log event groups that contain
key identifiers and thereby limiting the amount of input data for each
test case log. In Figure {.T] and an example is presented, with words

25

testcase 1 test case 2 test case n
log log log

I

’ |— 2020-08-18T18:33:21,578 INFO [main] LoggingApi: 1452 - *** OVERALL TESTCASE RESULT *** ‘

Step 1
» xxdate info loggingapi overall testcase result
(Keep 5 previous log events as context)
xxdate fail main assertion failed assertion error ... Step 2 Extract wanted log
events, create groups
— xxdate fail main ...
UMAP Translate log events
Merged WE dimension reduction into WE.
» [CBOW WE, SG WE] —— > [CBOW WE, SG WE] Step 3 Merge log events for
all classifiers except
Sequence of WE | [[cBOW WE, SG WE], [CBOW WE, SG WE], [CBOW WE, SG WE], ...]

Classify logs based
on word embeddings

For class j, present unique Map class to
)P 9 Output :
troubleshooting guide troubleshooting

activity

Figure 4.1 — The required input, steps and expected output of the proposed
methodology in this thesis. In the figure.

marked in red. For each found log event, five previous log events are
kept for adding context. For more details, see Sectiond.3]

3. Transform log events into WEs. At this step, we transform the in-
put to WEs before feeding it to the classifiers. All classifiers get both
the FastText CBOW and Skip-Gram WEs representation as input in the
same vector. More specifically, the CBOW part is stored in the first part
of the vector and Skip-Gram in the other part. For all models, except
for LSTM, the WE:s are first reduced using UMAP and then merged by
weighting with tf-idf. The LSTM classifier that takes the WEs directly.
The transformation is described in 4.3.11

4. Classify the logs based on their WEs. In this step, the WEs are sent
into the classifier.

5. Map a proper troubleshooting activity with each class. Each class is
linked to a unique troubleshooting activity. Depending on what action
needs to be taken, an automated action is launched to solve the issue, or,
a message with an action plan is sent to the affected SME.

26

Class ID Description Number of data points
1 Unlock/lock operation failed 78
2 Too high packet loss 30
3 Failed to power on/off unit 201
4 Node not enabled 78
-1 Unknown 109

Table 4.1 — The number of data points per class that was collected for this
project.

4.2 Data Collection

The dataset used in this thesis was gathered at Ericsson. It is produced by
the execution of a Jenkins job that executes tests for a set of products. The
data was collected by issuing three surveys. In total, 767 failing test case logs
were collected from the mentioned Jenkins job. The number of log entries
produced is in the size of gigabytes for each test suit, so we limited the work to
include the logs produced by the internally developed program that is called
by Jenkins. These logs contain everything that is specific to the test case but
leaving out the logs for each product included in the test. This means that the
test case log is where the SME would look first to classify what type of fault
it is.

With the help of SMEs, the data was labeled into 16 different classes that
needed a unique troubleshooting activity. The dataset at hand is very unbal-
anced, so we settled to train on the four classes that contain most of the data
points. The rest of the data was relabeled as class —1, which represents the
unknown. The motivation for this is that the SMEs that would use a tool like
this would like to know if the classifier recognizes the fault, or if there is any
uncertainty. When using deep learning models, an alternative way would be to
change so that we require the output of a final SoftMax layer to be high enough
for a certain class. The unknown class proved to be very helpful in identifying
unknown classes when we trained on previous surveys and made inference on
a new survey. The number of data points in each class are presented in Table

4.1l

Note that we have a class of —1. This is a class where we merged the data
points that we do not have enough data for. In this case, 109/496 is in the
class —1 and contains samples from 12 classes, and data points that SMEs
labeled that they need more context.

27

‘ Test case identifier ‘ Log Events Group ID | Class label

(test case 1) xxdate info connection with unit initiated |1 1
Jenkins build id/ xxdate debug checking status of unit
sub-system job id/ | xxdate warn could not find..

test suit id/ xxdate debug message status..
test case id/ xxdate fail failed to connect to unit ..
xxdate assert assertion failed..
(test case 2) xxdate debug ... 2 3

Table 4.2 — An example of how the extracted groups of log events look like
after filtering the failing test case logs.

4.3 Data Preprocessing

We start by selecting only the failing test case logs. In these logs, we replaced
dates, IP addresses, URL’s, file paths, citation marks, memory addresses, and
digits with identifiers such as xxdate, xxip, xxurl, xxfile, etc. We
also remove words from the data using a stop word list, since the number of
data points in our dataset is relatively small. We extract the Java stack traces
from the log events and keep them in a separate column, essentially removing
them from the input data. In the log event, we replace it with xxstack—
trace.

After that, we searched for higher-order log events such as ASSERT, FAIL,
and ERROR. From these log events, we searched for some key identifiers given
to us by the SMEs. For each highlighted log event, we kept the five previous
log events to add context, and these messages could be of any type. The se-
lection of five log events came from discussion with the SMEs, where they
said that most of the relevant information is found within the five previous
log events. Given the above, we have entries containing six log events with
the last one being the high-level log event that we triggered collection from.
These groups of log events were the input to our models. There can be mul-
tiple groups of log events with different errors within the file since each test
case log file can contain multiple errors. By examining the log events we could
see that most of the important information was present at the beginning of the
log events, so we keep the first 100 words from each log event. When the log
events contain more than 100 words, they often contain stack traces, JSON
responses, memory dumps, etc., hence, do not add any valuable information
to the classifier. Examples of how the data look after the preprocessing step is

presented in Figure [4.1| and Table

28

Log events xxdate assert crash..
xxdate debug connection...

WEs [[0.1,0.2], [3.2,5.8], [-5.1,-3.2], ...,
[0.1,0.2], [-2.0, -1.5.0], [-10.1, 8.0], ...
e]

Table 4.3 — Concatenated WEs that are used as input in models that receive
sequential input.

Log event priority assert | fail | error | info | debug
Number of log events 1 1 1 2 2

Table 4.4 — The position and number of log events kept in the feature vector.

4.3.1 Word Embeddings

The WEs are created using FastTexts” CBOW and Skip-gram models by train-
ing on preprocessed data. For the LSTM model, the classifier will get the in-
put from both CBOW and the Skip-Gram embeddings in a concatenated word
vector. This means the feature vector has the form for a log event as shown in
Table 4.3

Note that in Figure 4.3]the numerical representation of the words is made up.
It is an example of how it represented with 1-dimensional word vectors, and
the dimension can be chosen freely. Here, the first item in the WE vector for
each word represents the CBOW model representation, and the later represents
the Skip-gram representation.

For all classifiers except LSTM, the WEs above are merged since these clas-
sifiers are not designed for sequential data. The WEs for each log event are
averaged by using TF-IDF to weight the importance of each word. After they
have been merged, the dimension of the WEs is reduced using UMAP. We use
a separate UM AP model for the CBOW and Skip-Gram embeddings.

The log events priority (assert, fail, error, etc.) are then used to put
each type of log event into a fixed position in the feature vector. This helps
when log events are presented in a different order. In the input feature vector,
the different types of log events will have the position that is seen in Table 4.4
As the table show, we keep the first assertion/fail/error message, and the first
two info/debug messages. Depending on how many log events you want to
include in each group, this needs to be changed to reflect that.

29

4.4 Model Training

After the preprocessed data has been converted into WEs, they are feed into a
classifier. In this work, we evaluate Linear Regression with L? regularization,
Random Forest, XGBoost, SVM, MLP, and LSTM. All but the LSTM will get
WE:s created by merging log events as described in Section4.3]

4.5 Model Selection

To search for the hyperparameter space, we use a grid search. Similar per-
formance could be achieved with most of the hyperparameters we choose for
all the models except LSTM where the number of LSTM nodes has a huge
effect on the number of parameters. For Random Forest, XGBoost, etc., we
choose a depth of two and three, to decrease the risk of overfitting. For the
LSTM model, we tried to decrease the number of nodes to the lowest possi-
ble. Note that a much more in-depth hyperparameter search could have been
done, but since the distribution of word events change as tests are executed, it
is not a meaningful search as the models would be likely to overfit to the data
at hand.

4.6 Hardware Setup and Used Software Li-
braries

To test the different models, a laptop supplied from Ericsson was used. Its
specifications are: Intel i5-8350U CPU @ 1.70GHz with four Cores and eight
Logical Processors, 16GB DDR4 memory, Windows 10 Enterprise.

Libraries used include Python 3.7.1, Scikit-learn (random forest, linear re-
gression, SVM, MLP, Fl-score) [69], UMAP [56]], FastText [34]], XGBoost
(Gradient Boosting) [62], and Tensorflow using Keras (LSTM) [70]. XG-
Boost is an open-source library that implements a gradient boosting frame-
work for several different languages. To calculate the Friedman NxN test we
use KEEL [71,/72].

30

Chapter 5

Results

In this section, we present the results obtained in this thesis. To compare the
performance of the different machine learning algorithms, we designed an in-
dustrial case study at Ericsson AB in Sweden. To do so, we follow the guide-
lines proposed by Runeson and Host [73]] and Tahvili [2]]. Note that the results
are discussed in Chapter|[7] and it is where we discuss and compare the classi-
fiers performance.

5.1 Unit of Analysis and Procedure

The units of analysis in the case under study are all designed in the way that
the result of each classifier is presented in stratified 3-fold cross-validation,
together with a graph of the mean and standard deviation for multiple 3-fold
executions. The case study was performed in four steps:

Step 1: During a couple of months logs from failing test cases were collected.
767 failing test case executions were selected, and their corresponding log file
was extracted.

Step 2: The logs were pre-preprocessed according to the description in Sec-
tion @ Dates, urls, stacktraces, etc. were replaced with an identifier such
as xxdate, xxurl, xxxstacktrace. Higher-order log events such as
assert, fail and error are selected and we keep those containing key
identifiers, together with the 5 previous log events before them. These log
events form a group that needs to be classified and they were labeled by the
SME:s.

31

Step 3: The filtered groups of log events are transformed into WEs using Fast-
Text, as described in Figure {.1] in Chapter 4] For all the classifiers except
for the LSTM, the words in each log event was added together by weighting
each word embedding using TF-IDF. We then used the dimensionality reduc-
tion algorithm UMAP for all classifiers but LSTM to reduce the number of
dimensions for each word event to prevent overfitting.

Step 4: The classifiers were evaluated with 100 3-fold cross-validations and
a stratified 3-fold cross-validation. Note that the class —1 described as an
unknown class, since we have put the classes with too little data into it. Each
classifier was tested with 100 3-fold cross-validations and a stratified 3-fold
cross-validation.

5.1.1 LSTM Classifier

The LSTM model has an input layer that is connected to a bidirectional LSTM
layer with 32 units and 0.4 in the dropout rate. The LSTM layer is then con-
nected to a SoftMax layer that also uses dropout with the same rate in the
connections between the layers. Categorical cross-entropy is used as a loss
function and Adamax as an optimizer. Adamax is chosen due to empirical
results to show better performance with WEs than with Adam optimizer [74].
The learning rate is initially defined to 0.1 and is exponentially lowered by mul-
tiplying it with 0.97 after every epoch and is then constant after 200 epochs
have been executed.

The input was the WEs created for sequential models described in Section
M.3.1] The results for the LSTM model is presented in Sections [5.11] and
5.12

5.1.2 Classifiers with Merged Word Embeddings

The other classifiers used merged WEs to distinguish the different classes. A
small grid search was performed to find the best hyperparameters. The choice
of hyperparameters did not affect the results much for the different classifiers.
Therefore, the least complex (smaller depth, fewer parameters, etc.) set of hy-
perparameters that was at least within 1% from the top-performing classifiers
F1-Score. Note that a much bigger hyperparameter search could be done, but
would not really give any better hints about the real performance since the
distribution of the errors shift as more data comes in.

32

Class Precision Recall F1-Score Support
-1 0.37 0.42 0.39 36
1 0.74 0.77 0.75 26
2 0.92 0.98 0.95 10
3 0.70 0.57 0.63 67
4 1.00 1.00 1.00 26
| Accuracy | 078 258 |
Macro Average 0.75 0.75 0.74 258
Weighed Average 0.78 0.78 0.77 258
Class Precision Recall F1-Score Support
-1 0.71 0.68 0.69 37
1 1.00 1.00 1.00 26
2 0.97 0.97 0.97 10
3 0.86 0.88 0.87 67
4 1.00 1.00 1.00 26
| Accuracy | 091 258 |
Macro Average 0.91 0.91 0.91 258
Weighed Average 0.91 0.91 0.91 258
Class Precision Recall F1-Score Support
-1 0.30 0.36 0.33 36
1 0.83 0.73 0.78 26
2 0.93 0.64 0.76 10
3 0.78 0.88 0.83 67
4 0.56 0.96 0.70 26
| Accuracy | 070 257 |
Macro Average 0.68 0.71 0.68 257
Weighed Average 0.75 0.70 0.71 257

Table 5.1 — The obtained results using linear regression with L? regularization
and stratified 3-fold cross-validation.

Class Mean | std dev.
-1 0.713 0.056
1 0.906 0.045
2 0.946 0.015
3 0.852 0.030
4 0.949 0.032

’Allclasses‘ 0.87 ‘ 0.036 ‘

Table 5.2 — The mean F1-Score for linear regression with L? regularization for
each class, evaluated on 100 3-fold runs, with different seeds.

The result for the different classifiers is presented in the following tables: Lin-
ear Regression: Table [5.1]and [5.2] Random Forest: Table[5.3]and [5.4] XG-
Boost: Table[5.3and SVM: Table[5.7/and [5.8] MLP: Table[5.9]and
Their hyperparameters is presented in Appendix

33

Class Precision Recall F1-Score Support
-1 0.34 0.75 0.47 36
1 0.55 0.46 0.50 26
2 0.92 0.93 0.93 10
3 1.00 0.37 0.54 67
4 0.79 0.85 0.81 26
| Accuracy | 071 258 |
Macro Average 0.72 0.67 0.65 258
Weighed Average 0.81 0.71 0.71 258
Class Precision Recall F1-Score Support
-1 0.30 0.35 0.32 37
1 0.62 0.96 0.76 26
2 0.93 0.88 0.90 10
3 0.98 0.84 0.90 67
4 0.65 0.50 0.57 26
| Accuracy | 076 258 |
Macro Average 0.70 0.71 0.69 258
Weighed Average 0.79 0.76 0.77 258
Class Precision Recall F1-Score Support
-1 0.62 0.36 0.46 36
1 1.00 0.23 0.38 26
2 0.90 0.75 0.82 10
3 1.00 0.84 0.91 67
4 0.29 1.00 0.45 26
| Accuracy | 069 257 |
Macro Average 0.76 0.63 0.60 257
Weighed Average 0.84 0.69 0.71 257

Table 5.3 — The obtained results using the Random Forest classifier and strat-
ified 3-fold cross-validation.

Class Mean | std dev.
-1 0.571 0.064
1 0.714 0.072
2 0.910 0.018
3 0.813 0.033
4 0.619 0.137

’ All classes ‘ 0.725 ‘ 0.065 ‘

Table 5.4 — The mean F1-Score for the Random Forest classifier for each class,
evaluated on 100 3-fold runs, with different seeds.

For the Linear Regression classifier, we see in Table @ that the highest F1
score, precision and recall is achieved for classes 2 and 4. If one compares it
with Table [5.2] we see that when doing 100 3-folds these classes still get the
highest score.

34

Class Precision Recall F1-Score Support
-1 0.44 0.58 0.50 36
1 0.83 0.77 0.80 26
2 0.94 1.00 0.97 10
3 0.84 0.63 0.72 67
4 1.00 1.00 1.00 26
| Accuracy | 082 258 |
Macro Average 0.81 0.80 0.80 258
Weighed Average 0.84 0.82 0.82 258
Class Precision Recall F1-Score Support
-1 1.00 0.84 0.91 37
1 1.00 1.00 1.00 26
2 1.00 1.00 1.00 10
3 0.92 1.00 0.96 67
4 1.00 1.00 1.00 26
| Accuracy | 098 258 |
Macro Average 0.98 0.97 0.97 258
Weighed Average 0.98 0.98 0.98 258
Class Precision Recall F1-Score Support
-1 0.75 0.58 0.66 36
1 0.96 0.92 0.94 26
2 0.88 0.97 0.93 10
3 0.91 0.90 0.90 67
4 0.96 0.96 0.96 26
| Accuracy | 089 257 |
Macro Average 0.89 0.87 0.88 257
Weighed Average 0.89 0.89 0.89 257

Table 5.5 — The obtained results using XGBoost and stratified 3-fold cross-
validation.

The Random Forest classifier get the highest F1-Score for classes 2 and 3,
as shown in Table [5.3] For class 2 the precision was 0.93 and the recall was
0.88. Compared to Table[5.4] we see that when doing 100 3-folds classes the
mean F1-score for class 3 is 0.813, a bit lower than in the stratified 3-fold.
Also, note that the Random Forest model performs the worst of all the tested
models.

The XGBoost classifier, represented in Table[5.5]and[5.6] get a mean F1-score
above 0.966 for class 1, 2 and4. The unknown class —1 get a mean F1-Score
of 0.782.

The MLP classifier, presented in Table[5.9]and [5.10] get an even performance
between all but the unknown class and scores close to 0.9 for class 1, 3 and 4.
We see a standard deviation of 0.071 for class 4, which is higher than for the
unknown class.

35

Class Mean | std dev.
-1 0.796 0.049
1 0.966 0.033
2 0.988 0.011
3 0.905 0.025
4 0.978 0.016

| Allclasses | 0.932 [0.034 |

Table 5.6 — The mean F1-score for the XGBoost classifier for each class, eval-
uated on 100 3-fold, with different seeds.

Class Precision Recall F1-Score Support
-1 0.81 0.72 0.76 36
1 0.77 0.92 0.84 26
2 1.00 0.97 0.99 10
3 0.90 0.91 0.90 67
4 0.89 0.92 0.91 26
| Accuracy | 091 258 |
Macro Average 0.87 0.89 0.88 258
Weighed Average 0.91 0.91 0.91 258
Class Precision Recall F1-Score Support
-1 0.77 0.89 0.82 37
1 1.00 1.00 1.00 26
2 0.99 1.00 1.00 10
3 0.93 0.85 0.89 67
4 1.00 0.96 0.98 26
| Accuracy | 094 258 |
Macro Average 0.94 0.94 0.94 258
Weighed Average 0.95 0.94 0.94 258
Class Precision Recall F1-Score Support
-1 0.69 0.92 0.79 36
1 0.93 1.00 0.96 26
2 1.00 0.98 0.99 10
3 0.98 0.79 0.88 67
4 0.96 1.00 0.98 26
| Accuracy | 093 257 |
Macro Average 0.91 0.94 0.92 257
Weighed Average 0.94 0.93 0.93 257

Table 5.7 — The obtained results using SVM and stratified 3-fold cross-
validation.

The LSTM model uses sequential WEs and by looking at Table [5.12] we see
that it has a higher mean F1-Score for the unknown class than for class 3.

In Figure we see a comparison of 100 3-fold cross-validations for each
classifier. XGBoost has the highest mean F1-score (0.932) with a standard

36

Class Mean | std dev.
-1 0.782 0.044
1 0.936 0.034
2 0.983 0.010
3 0.890 0.026
4 0.975 0.022

| Allclasses | 0.913 [0.027 |

Table 5.8 — The mean F1-score for the SVM classifier for each class, evaluated
on 100 3-fold runs, with different seeds.

Class Precision Recall F1-Score Support
-1 0.81 0.58 0.68 36
1 0.90 1.00 0.95 26
2 0.99 0.95 0.97 10
3 0.82 0.93 0.87 67
4 0.89 0.96 0.93 26
| Accuracy | 090 258 |
Macro Average 0.88 0.88 0.88 258
Weighed Average 0.90 0.90 0.90 258
Class Precision Recall F1-Score Support
-1 0.82 0.62 0.71 37
1 0.96 0.88 0.92 26
2 0.95 0.96 0.96 10
3 0.87 0.93 0.90 67
4 0.78 0.96 0.86 26
| Accuracy | 090 258 |
Macro Average 0.88 0.87 0.87 258
Weighed Average 0.90 0.90 0.89 258
Class Precision Recall F1-Score Support
-1 0.75 0.83 0.79 36
1 0.89 0.92 0.91 26
2 0.99 0.97 0.98 10
3 0.92 0.85 0.88 67
4 0.89 0.96 0.93 26
| Accuracy | 091 257 |
Macro Average 0.89 0.91 0.90 257
Weighed Average 0.92 0.91 0.92 257

Table 5.9 — The obtained results using MLP and stratified 3-fold cross-
validation.

deviation of 0.034. The second best is the SVM with a mean F1-score of
0.913, and it have lowest standard deviation (0.027). The worst performer is
random forest which performs 14.5 % worse than the linear regression model
in absolute F1-score.

37

Class Mean | std dev.
-1 0.738 0.064
1 0.900 0.062
2 0.968 0.015
3 0.899 0.028
4 0.922 0.071

| Allclasses | 0.885 [0.058 |

Table 5.10 — The mean F1-score for the MLP classifier for each class, evaluated
on 100 3-fold runs, with different seeds.

Class Precision Recall F1-Score Support
-1 0.67 0.5 0.57 36
1 0.96 0.92 0.94 26
2 0.85 0.61 0.71 103
3 0.52 0.82 0.64 67
11 0.96 1.00 0.98 26
| Accuracy | 098 258 |
Macro Average 0.98 0.97 0.97 258
Weighed Average 0.98 0.98 0.98 258
Class Precision Recall F1-Score Support
-1 1 0.84 0.91 37
1 1 1 1 26
2 1 1 1 102
3 0.92 1 0.96 67
11 1 1 1 26
| Accuracy | 098 258 |
Macro Average 0.98 0.97 0.97 258
Weighed Average 0.98 0.98 0.98 258
Class Precision Recall F1-Score Support
-1 0.93 0.69 0.79 36
1 0.81 1 0.90 26
2 0.96 0.98 0.97 102
3 0.95 0.94 0.95 67
11 0.93 1 0.96 26
| Accuracy | 093 257 |
Macro Average 0.92 0.92 0.91 257
Weighed Average 0.94 0.93 0.93 257

Table 5.11 — The obtained results using LSTM and Stratified 3-fold cross-
validation.

5.2 Statistical Validation

On the F1-scores in this section we perform statistical validation using Wilcoxon
signed-rank test and Friedman NxN test, described in Section [3.4.2]and [3.4.3]

38

Class Mean | std dev.
-1 0.820 0.055
1 0.978 0.029
2 0.896 0.041
3 0.812 0.081
4 0.973 0.101

| Allclasses | 0.896 | 0.061 |

Table 5.12 — The mean F1-Score for the LSTM classifier for each class, eval-
uated on 100 3-fold runs, with different seeds.

1.00

0.95

==

0.65

Fl-score

0.60 -

0.55 T T T T T T
Random Linear MLP LSTM SVM XGBoost
Forest ~ Regression

Figure 5.1 — A bar plot to compare the Fl-score of the 100 3-fold cross-
validations for each classifier. It contains the mean F1-score and standard
deviation for each classifier.

In Table[5.13]and Table[5.15| we can see that the null hypothesis, that the mean
F1-score is the same for the classifiers, can be rejected. In Tableﬂwe see the
Friedman ranking, obtained by applying the Friedman procedure. We see that
that the scores show the same result as the bar plot in Figure[5.1] i.e. that the
XGBoost model get the best F1-score, compared to the other classifiers.

39

Algorithm Linear Random | XGBoost | SVM MLP LSTM
Regression | Forest

Linear Regression | - 7.789E-49 | 1.087E-35 | 2.149E-29 | 1.346E-10 | 1.673E-22
Random Forest 7.789E-49 | - 6.159E-51 | 6.198E-51 | 6.145E-51 | 3.704E-02
XGBoost 1.087E-35 | 6.159E-51 | - 1.743E-04 | 1.329E-03 | 1.520E-05
SVM 2.149E-29 | 6.198E-51 | 1.743E-04 | - 5.549E-02 | 4.492E-08
MLP 1.346E-10 | 6.145E-51 | 1.329E-03 | 5.549E-02 | - 1.531E-20
LSTM 1.673E-22 | 3.704E-02 | 1.520E-05 | 4.492E-08 | 1.531E-20 | -

Table 5.13 — Wilcoxon test performed on the F1-scores for each 3-fold in the
cross-validation.

Algorithm Ranking

XGBoost 1.56
SVM 2.49
MLP 2.83

LSTM 3.38

Linear-Regression 4.75
Random-Forest 5.99

Table 5.14 — Average Rankings of the algorithms calculated with Friedman
NxN test.

i algorithms z=(Ro — R;)/SE P
15 Random-Forest vs. XGBoost 28.979336 0
14 Random-Forest vs. SVM 22.891057 0
13 Linear-Regression vs. XGBoost 20.883452 0
12 Random-Forest vs. MLP 20.665234 0
11 Random-Forest vs. LSTM 17.042817 0
10 Linear-Regression vs. SVM 14.795173 0
9 Linear-Regression vs. MLP 12.56935 0
8 XGBoost vs. LSTM 11.936519 0
7 Linear-Regression vs. LSTM 8.946933 0
6 XGBoost vs. MLP 8.314102 0
5 Linear-Regression vs. Random-Forest 8.095884 0
4 XGBoost vs. SVM 6.088279 0
3 SVM vs. LSTM 5.848239 0
2 MLP vs. LSTM 3.622417 2.29E-5
1 SVM vs. MLP 2.225822 2.60E-3

Table 5.15 — P-values Table for o = 0.05.

40

Chapter 6

Threats to Validity

The threats to the validity, limitations, and the challenges faced in conducting
the present study are discussed in this chapter. In the list below, different types
of threats to validity are briefly described and discussed in relation to this
study.

* Construct validity reflects on if the results executed in the study rep-
resents what the researcher is investigating, and if it represents what
the research questions define [[73]. The major construct validity threat
in the present study is the way that the proper troubleshooting activi-
ties are mapped for each class. Utilizing the SMEs knowledge may not
be attainable in other testing processes. Moreover, communication be-
tween different SMEs in the organization, in order to capture and share
information, may require more time and effort than the amount of time
saved by the proposed solution.

* Internal validity reflects on if the relationships found in a study is an
actual relationship, or if it is produced by an unknown factor not known
or considered by the researcher [73]]. One threat to this is that the study is
only performed on a dataset only available to the host company. The test
case log files analyzed contain log events that are created by employees.
Other datasets will probably not have the same structure. However, the
method can still be applied since almost all logs contain the same type
of log event priorities (i.e. ASSERT, FAIL, ERROR, DEBUG, INFO,
etc.). The pipeline is testable on another dataset, but the results cannot
be directly compared to this study if any changes are made.

* External validity reflects on the possibility of generalizing the find-

41

ings and how much the study can interest people outside the investigated
case [73]. Since we treat the groups of log events as pre-processed text,
this model could potentially be used on any log files. An optional step in
the process is to select the log events with certain keywords to reduce the
amount of data that needs to be processed. This may or may not be pos-
sible in other scenarios, depending on what information is extractable
from the dataset.

Reliability reflects on to what extent the data and analysis depend on
the researchers, and if it is repeatable by another researcher [73]. One
threat is that the data is initially labeled by SME at Ericsson. These
labels could be influencing the quality of the data, the number of classes,
etc. By executing a similar study on another dataset, created by other
people, could end up being very different. The ground truth do affect
the results. By examining the dataset, we see that each class resembles
other data points in the same class. With the data we use, we found that
the classifiers are quite stable with different hyperparameters, i.e., that
the data speaks for itself. However, the accuracy of this statement needs
to be evaluated while testing more datasets.

42

Chapter 7

Discussion and Future Work

This chapter discusses the results presented in Chapter[5] We discuss the eval-
uation of different classifiers and the proposed feature engineering method that
involves merging WEs for each log event. We then continue with future work
where improvements to the method are given. We end with a small discussion
related to ethics and sustainability.

7.1 Discussion

In this study, two ways to do feature engineering is evaluated. Both translate
words to WEs using FastText CBOW and Skip-gram models. All the models
are feed with 6 log events per group. After transforming the words in each log
event into WEs, dimension reduction is executed by using UMAP. The LSTM
model, that take sequential input, is given the reduced WEs in a sequential
manner. The other models are feed with the reduced merged WEs that are
weighted with TF-IDF and summed into a merged WE. The best performance
was achieved with XGBoost, with a mean F1-score of 0.932 and a standard
deviation of 0.034 when evaluating 100 3-fold cross-validations with differ-
ent seeds. The LSTM classifier got a mean F1-score of 0.896 and a standard
deviation of 0.061 when evaluating using the same type of cross-validation
and is the best performer on the unknown class(-1). The SVC classifier had
the smallest standard deviation in Fl-score (0.027) and a mean F1-score of
0.913 with different seeds and k-folds. Hence, it is more stable than the other
classifiers with respect to those two parameters.

43

For the classifiers with merged WEs, the F1-score and its standard-deviation
are similar for different data splits and seeds. However, the random forest
classifier is an exception and performs much worse. This suggests that the
merged WEs do capture the meaning or type of error for each group of log
events, and all classifiers but random forest classify it well. The results from
the random forest classifier suggest that in our setup, the classifier is prone to
overfitting.

A conclusion we can make is that the suggested method for merging WEs is
a viable method to reduce the dimensionality of each log event. A second
one is that using the FastText CBOW and skip-gram models, that evaluate
character n-grams, is a viable strategy when dealing with logs that contain
merged words, variables, JSON responses, etc.

7.2 Future Work

The results of this study show the potential to form input features based on
what we have described in Section {.3.1] It opens a possibility for launch
automated troubleshooting activities to solve the problem automatically when
they have been classified. The focus in this study has been to aid the SMEs
in the process of doing log analysis, which is a very time-consuming process
so they can focus and spend their time on more important tasks. There exist
many ways to extend this study, and a subsample of those is:

» Extend the analysis on other datasets: Currently, the analysis is done on
one dataset for one of the internal products at Ericsson. At Ericsson, the
study could be extended to systems that use the same type of logging
tools and store them in the same format. It can also be tested on other
datasets, that do not have many similarities with the dataset in this study.
However, datasets consisting of logs with multiple different classes are
rare. Many papers up until now mostly consist of anomaly detection,
where the classification is a binary case [6].

» Using newer types of deep learning models that can take sequential in-
put. The LSTM model is by today’s standards in ML a quite old al-
gorithm and many other types of architectures have shown promising
results, such as distilBERT. Initial tests have been executed with distil-
BERT [43]], but due to resource constraints, there was not enough time
to evaluate the model.

44

* Include more classes as data points are gathered. Currently, more data
is gathered as it is generated to increase the number of data points per
class. As soon as there are enough data points for the minority classes,
the classifier can be trained to classify these as well. For now, we settled
with not including classes that do not have more than 10 data points,
since those classes did not have enough data to represent the classes.

» Use anomaly detection as a filter instead of key identifiers. A lot of
research has been done on anomaly detection, i.e. binary classification,
where log events with an anomaly are highlighted. This could be a way
to reduce the amount of logs events instead of using key identifiers, but it
also requires access to labels on the log event level, which we in this case
did not have, and it would be too much work for the SMEs to give. The
steps given in this report would be executed on the log events highlighted
using anomaly detection algorithms.

* On other datasets, try same setup but preprocess using log parsers men-
tioned in Section [2.2] The dataset in this case study was structured as
free text rather than log events created from log event templates. If the
log events were more structured, the input could have been filtered using
log templates extraction techniques.

» Train WE models on the whole logs. Training the WE model on the
whole log files would potentially create a better word representation of
the words but would also require much more time for training.

* Test the method on another dataset and use existing log parsers. In this
project, we did initially try to find log event templates for the whole test
case log files. However, many of the templates did not make sense or
were useful due to that the logs we analyzed do contain a lot of free
text. This means that the log events are less structured compared to, for
example, server logs. If a log with more specific patterns is analyzed,
log parsers can be used to find these templates and thereby filter the log
events on a higher level.

7.2.1 Ethics and Sustainability

In this section, the ethical impacts of this work, as well as its effect on sus-
tainability, will be discussed. The impact on society needs to be analyzed, as
every work can have a positive and negative impact that needs to be analyzed.

45

For example, NLP models such as OpenAI’s GPT-3 could potentially be used
to generate text that in turn is used by bots.

However, the work in this case study is not of nature since it’s an analysis
of test cases. Most troubleshooting of failing test cases is done manually at
the department where this study was executed. Having a CI pipeline to daily
evaluate the integrity of the software and hardware under development is very
important. Evaluating failing test cases to find faults is a very time-consuming
process, and it takes time from other tasks the developer has on their sched-
ule. In this work, we have explored ways to process failing test case logs and
classify their fault to simplify the log analysis. The work in this thesis aims
at helping developers troubleshooting and giving them advice for solving a
technical error. The potential with implementing the models in this study is
that give developers more time to other tasks, i.e. they become more produc-
tive and saves the company resources. This type of automation presented in
this paper does have a positive impact on the economy since it is a task that
does not have its own profession and it helps the developers to be more pro-
ductive. Also, the models presented in this thesis only analyze text generated
from automated test case executions, stored in log files. This means there is
no personal information stored there that could be incorrectly handled.

46

Chapter 8

Conclusions

In this study, we have addressed the problem of log analysis, where logs from
failing test cases need to be examined to find errors and find ways to solve
them. We presented a way to filter and pre-process logs and perform feature
engineering to create WEs that are used to classify different types of errors.
The output from the classifier was used to suggest troubleshooting activities.
Since the model uses a supervised approach, SMEs were required to label
groups of log events with the correct error type or troubleshooting activity.
With the help of SMEs, the data used in this study was divided into 16 classes.
We decided to solve the problem for a subset of those classes and relabel the
rest of the classes to a label that represents an unknown class. This was done
to get a more realistic performance. The proposed approach was conducted
and evaluated in an industrial case study at Ericsson AB in Sweden.

Key identifiers, given to us by the SMEs, were used to reduce the size of the
logs. With these, we were able to capture the important part that was needed to
be able to classify the errors. A way to get around this in the future could be to
use anomaly detection to filter out log events of interest. That would require
an online learning system where SMEs can label the data in interesting/not
interesting as well, requiring 2 labels for each log event.

In our presented approach, we train CBOW and Skip-Gram FastText mod-
els. They have the advantage of being able to transform character n-grams
instead of words into WEs. This helps with the problem that logs often con-
tain many uncommon words and includes, for example, variable names, JSON-
responses, stack traces, etc. When the words in each log events are transformed
into WEs, these embeddings are merged. After the merge, we have merged

47

WEs for CBOW and skip-gram, respectively. Each group of log events is then
fed into different classifiers. Models that takes sequential input does not need
the merging step since they operates directly on a sequence of WEs.

The best classifier overall was XGBoost with a mean F1-score of 0.932 and a
standard deviation of 0.034 when evaluating 100 3-fold cross-validations with
different seeds. For the sequential classifier LSTM, we got a mean F1-Score
of 0.896 and a standard deviation of 0.061 when evaluating using the same
type of cross-validation. Our empirical evaluation of the two different types
of feature models, we see that the XGBoost model performs better than the
LSTM model.

A conclusion we can make from this study is that to classify a group of log
events, the data labeled needs to represent the true distribution. For exam-
ple, if many different log events represents the same type of error, and they
occur in different test case log files, enough data to represent the class needs
to be gathered. This could be a trouble for rare errors but note that all these
classes can be included when there is enough data, and data is generated all
the time by the system for CI. In this report, we trained all classifiers with the
unknown class to get a more realistic performance. Also, it is more useful to
the developers since it tells them when the classifier does not know the correct
class.

The approach in this study showed that the methodology used here got good
potential to simplify troubleshooting in test case logs. Using character n-grams
is very useful and merging log events is a successful way of making dimension
reduction in logs. The merged WEs, together with the XGBoost classifier,
is much faster to train compared to the LSTM model and is much easier to
reproduce.

48

Bibliography

[1] S. Tahvili, M. Bohlin, M. Saadatmand, S. Larsson, W. Afzal, and
D. Sundmark, “Cost-benefit analysis of using dependency knowledge at
integration testing,” in The 17th International Conference On Product-
Focused Software Process Improvement, 2016.

[2] S. Tahvili, “Multi-criteria optimization of system integration testing,”
Ph.D. dissertation, Mélardalen University, 2018.

[3] S. Tahvili, M. Saadatmand, S. Larsson, W. Afzal, M. Bohlin, and
D. Sundmark, “Dynamic integration test selection based on test case de-
pendencies,” in The I 1th Workshop on Testing: Academia-Industry Col-
laboration, Practice and Research Techniques, 2016.

[4] S. Tahvili, R. Pimentel, W. Afzal, M. Ahlberg, E. Fornander, and
M. Bohlin, “sOrTES: A supportive tool for stochastic scheduling of man-
ual integration test cases,” IEEE Access, vol. 6, pp. 1-19, 2019.

[5] M. Fowler. (2006, May) Continuous Integration. [Online]. Available:
https://martinfowler.com/articles/continuousIntegration.html

[6] J. Candido, M. Aniche, and A. van Deursen, “Contemporary Software
Monitoring: A Systematic Literature Review,” arXiv:1912.05878
[cs], Dec. 2019, arXiv: 1912.05878. [Online]. Available: http:
//arxiv.org/abs/1912.05878

[71 M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, Oct. 2017, pp. 1285-1298.
[Online]. Available: https://doi.org/10.1145/3133956.3134015

49

https://martinfowler.com/articles/continuousIntegration.html
http://arxiv.org/abs/1912.05878
http://arxiv.org/abs/1912.05878
https://doi.org/10.1145/3133956.3134015

[8]

[10]

[11]

[12]

[13]

[14]

[15]

W. Li, “Automatic Log Analysis using Machine Learning : Awesome
Automatic Log Analysis version 2.0,” Master’s thesis, Uppsala Univer-
sity, Department of Information Technology, 2013.

S. Tahvili, W. Afzal, M. Saadatmand, M. Bohlin, D. Sundmark, and
S. Larsson, “Towards earlier fault detection by value-driven prioritiza-
tion of test cases using fuzzy topsis,” in /3th International Conference
on Information Technology : New Generations (ITNG 2016), 2016.

S. Tahvili, M. Ahlberg, E. Fornander, W. Afzal, M. Saadatmand,
M. Bohlin, and M. Sarabi, “Functional dependency detection for integra-
tion test cases,” in The 18th IEEE International Conference on Software
Quality, Reliability and Security, 2018.

X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “CloudSeer:
Workflow Monitoring of Cloud Infrastructures via Interleaved Logs,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 2, pp. 489—
502, Mar. 2016. [Online]. Available: https://doi.org/10.1145/2980024.
2872407

W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen,
R. Zhang, S. Tao, P. Sun, and R. Zhou, “LogAnomaly: Unsupervised
detection of sequential and quantitative anomalies in unstructured logs,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence. International Joint Conferences on Artificial
Intelligence Organization, Aug. 2019, pp. 4739-4745. [Online].
Available: https://www.ijcai.org/proceedings/2019/658

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
of Word Representations in Vector Space,” arXiv:1301.3781 [cs], Sep.
2013, arXiv: 1301.3781. [Online]. Available: http://arxiv.org/abs/1301.
3781

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and their Compositionality,”
arXiv:1310.4546 [cs, stat], Oct. 2013, arXiv: 1310.4546. [Online].
Available: http://arxiv.org/abs/1310.4546

A. Oprea, Z. Li, T.-F. Yen, S. Chin, and S. Alrwais, “Detection
of Early-Stage Enterprise Infection by Mining Large-Scale Log
Data,” arXiv:1411.5005 [cs], Nov. 2014, arXiv: 1411.5005. [Online].
Available: http://arxiv.org/abs/1411.5005

50

https://doi.org/10.1145/2980024.2872407
https://doi.org/10.1145/2980024.2872407
https://www.ijcai.org/proceedings/2019/658
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1411.5005

[16]

D. Gongalves, J. Bota, and M. Correia, “Big Data Analytics for De-
tecting Host Misbehavior in Large Logs,” in 2015 IEEE Trustcom/Big-
DataSE/ISPA, vol. 1, Aug. 2015, pp. 238-245.

E. Chuah, A. Jhumka, S. Narasimhamurthy, J. Hammond, J. C. Browne,
and B. Barth, “Linking Resource Usage Anomalies with System Failures
from Cluster Log Data,” in 2013 IEEE 32nd International Symposium on
Reliable Distributed Systems, Sep. 2013, pp. 111-120, iSSN: 1060-9857.

N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne,
“CRUDE: Combining Resource Usage Data and Error Logs for Accu-
rate Error Detection in Large-Scale Distributed Systems,” in 2016 IEEE
35th Symposium on Reliable Distributed Systems (SRDS), Sep. 2016, pp.
51-60, iSSN: 1060-9857.

A. Pi, W. Chen, X. Zhou, and M. Ji, “Profiling distributed systems in
lightweight virtualized environments with logs and resource metrics,” in
Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC *18. New York, NY,
USA: Association for Computing Machinery, Jun. 2018, pp. 168—179.
[Online]. Available: https://doi.org/10.1145/3208040.3208044

Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion-ICSE ’16. Austin, Texas: ACM Press, 2016, pp. 102—111. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2889160.2889232

B. Chen, J. Song, P. Xu, X. Hu, and Z. M. J. Jiang, “An
automated approach to estimating code coverage measures via execution
logs,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ser. ASE 2018. New York, NY,
USA: Association for Computing Machinery, Sep. 2018, pp. 305-316.
[Online]. Available: https://doi.org/10.1145/3238147.3238214

J.-G. Lou, Q. Fu, S. YANG, Y. XU, and J. Li, “Mining Invariants
from Console Logs for System Problem Detection,” in Annual Tech-
nical Conference (full paper). USENIX, Jun. 2010. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/mining-
invariants-from-console-logs-for-system-problem-detection/

P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An Evaluation Study on Log
Parsing and Its Use in Log Mining,” in 2016 46th Annual IEEE/IFIP

51

https://doi.org/10.1145/3208040.3208044
http://dl.acm.org/citation.cfm?doid=2889160.2889232
https://doi.org/10.1145/3238147.3238214
https://www.microsoft.com/en-us/research/publication/mining-invariants-from-console-logs-for-system-problem-detection/
https://www.microsoft.com/en-us/research/publication/mining-invariants-from-console-logs-for-system-problem-detection/

[24]

[25]

[27]

(28]

[29]

[30]

[31]

International Conference on Dependable Systems and Networks (DSN),
Jun. 2016, pp. 654-661, iSSN: 2158-3927.

A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A lightweight
algorithm for message type extraction in system application logs,” IEEE

Transactions on Knowledge and Data Engineering, vol. 24, no. 11, pp.
1921-1936, 2012.

J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu,
“Tools and Benchmarks for Automated Log Parsing,” arXiv:1811.03509
[cs], Jan. 2019, arXiv: 1811.03509. [Online]. Available: http:
//arxiv.org/abs/1811.03509

D. Lindqvist, “Detection of Infrastructure Anomalies in Build
Logs Using Machine Learning,” Master’s thesis, Umed Univer-
sity, Department of Computing Science, 2019. [Online]. Available:
http://urn.kb.se/resolve 7urn=urn:nbn:se:umu:diva- 164730

C. Landin, S. Tahvili, H. Haggren, M. Lingkvist, A. Muhammad, and
A. Loutfi, “Cluster-based parallel testing using semantic analysis,” in The

Second IEEE International Conference On Artificial Intelligence Testing,
2020.

C. Landin, L. Hatvani, S. Tahvili, H. Haggren, M. Lingkvist, A. Loutfi,
and A. Hakansson, “Performance comparison of two deep learning algo-
rithms in detecting similarities between manual integration test cases,”

in The Fifteenth International Conference on Software Engineering Ad-
vances, 2020.

R. Ren, J. Cheng, Y. Yin, J. Zhan, L. Wang, J. Li, and C. Luo,
“Deep Convolutional Neural Networks for Log Event Classification on
Distributed Cluster Systems,” in 2018 IEEE International Conference
on Big Data (Big Data). Seattle, WA, USA: IEEE, Dec. 2018, pp.
1639-1646. [Online]. Available: https://ieeexplore.ieee.org/document/
8622611/

J. Kahles, J. Torronen, T. Huuhtanen, and A. Jung, “Automating Root
Cause Analysis via Machine Learning in Agile Software Testing Envi-
ronments,” in 2019 12th IEEE Conference on Software Testing, Valida-
tion and Verification (ICST), Apr. 2019, pp. 379-390, iSSN: 2159-4848.

E. Chuah, A. Jhumka, S. Narasimhamurthy, J. Hammond, J. C. Browne,
and B. Barth, “Linking Resource Usage Anomalies with System Failures

52

http://arxiv.org/abs/1811.03509
http://arxiv.org/abs/1811.03509
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-164730
https://ieeexplore.ieee.org/document/8622611/
https://ieeexplore.ieee.org/document/8622611/

[35]

[37]

from Cluster Log Data,” in 2013 IEEE 32nd International Symposium on
Reliable Distributed Systems, Sep. 2013, pp. 111-120, iSSN: 1060-9857.

T. Kimura, K. Ishibashi, T. Mori, H. Sawada, T. Toyono, K. Nishimatsu,
A. Watanabe, A. Shimoda, and K. Shiomoto, “Spatio-temporal factoriza-
tion of log data for understanding network events,” in IEEE INFOCOM

2014 - IEEE Conference on Computer Communications, Apr. 2014, pp.
610-618, iISSN: 0743-166X.

C. Soto-Valero, J. Bourcier, and B. Baudry, “Detection and analysis
of behavioral T-patterns in debugging activities,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
ser. MSR 18. New York, NY, USA: Association for Computing
Machinery, May 2018, pp. 110-113. [Online]. Available: https:
//doi.org/10.1145/3196398.3196452

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word
Vectors with Subword Information,” arXiv:1607.04606 [cs], Jun. 2017,
arXiv: 1607.04606. [Online]. Available: http://arxiv.org/abs/1607.
04606

C. Bertero, M. Roy, C. Sauvanaud, and G. Tredan, “Experience Re-
port: Log Mining Using Natural Language Processing and Application
to Anomaly Detection,” in 2017 IEEE 28th International Symposium
on Software Reliability Engineering (ISSRE), Oct. 2017, pp. 351-360,
iSSN: 2332-6549.

S. Tahvili, L. Hatvani, E. Ramentol, R. Pimentel, W. Afzal, and F. Her-
rera, “A novel methodology to classify test cases using natural language

processing and imbalanced learning,” Engineering Applications of Arti-
ficial Intelligence, vol. 95, pp. 1-13, 2020.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-
guage models are unsupervised multitask learners,” OpenAl Blog, vol. 1,
no. 8, p. 9, 2019.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, 1. Sutskever, and D. Amodei, “Language Models are Few-

53

https://doi.org/10.1145/3196398.3196452
https://doi.org/10.1145/3196398.3196452
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Shot Learners,” arXiv:2005.14165 [cs], Jul. 2020, arXiv: 2005.14165.
[Online]. Available: http://arxiv.org/abs/2005.14165

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,”
arXiv:1810.04805 [cs], May 2019, arXiv: 1810.04805. [Online].
Auvailable: http://arxiv.org/abs/1810.04805

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V.
Le, “XLNet: Generalized Autoregressive Pretraining for Language Un-
derstanding,” in Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 5753-5763. [On-
line]. Available: |http://papers.nips.cc/paper/8812-xInet-generalized-
autoregressive-pretraining-for-language-understanding.pdf

J. Howard and S. Ruder, “Universal Language Model Fine-tuning for
Text Classification,” arXiv:1801.06146 [cs, stat], May 2018, arXiv:
1801.06146. [Online]. Available: http://arxiv.org/abs/1801.06146

J. M. Eisenschlos, S. Ruder, P. Czapla, M. Kardas, S. Gugger,
and J. Howard, “MultiFiT: Efficient Multi-lingual Language Model
Fine-tuning,” arXiv:1909.04761 [cs], Jun. 2020, arXiv: 1909.04761.
[Online]. Available: http://arxiv.org/abs/1909.04761

V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter,”
arXiv:1910.01108 [cs], Feb. 2020, arXiv: 1910.01108. [Online].
Auvailable: http://arxiv.org/abs/1910.01108

K. Kc and X. Gu, “ELT: Efficient Log-based Troubleshooting System
for Cloud Computing Infrastructures,” in 2011 IEEE 30th International
Symposium on Reliable Distributed Systems, Oct. 2011, pp. 11-20, iSSN:
1060-9857.

W.Jiang, C. Hu, S. Pasupathy, A. Kanevsky, Z. Li, and Y. Zhou, “Under-
standing customer problem troubleshooting from storage system logs,”

in Proccedings of the 7th conference on File and storage technologies,
ser. FAST "09. USA: USENIX Association, Feb. 2009, pp. 43-56.

H. Mochizuki and M. Mochizuki, “Troubleshooting support device,
troubleshooting support method and storage medium having program

54

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1810.04805
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1909.04761
http://arxiv.org/abs/1910.01108

[54]

stored therein,” US Patent US7849363B2, Dec., 2010. [Online].
Available: https://patents.google.com/patent/US7849363B2/en

D. M. Winnick, “Systems and methods for automated troubleshooting,”
US Patent US9984329B2, May, 2018. [Online]. Available: https:
//patents.google.com/patent/US9984329B2/en

B. Debnath and H. Zhang, “Field content based pattern generation for
heterogeneous logs,” US Patent US10678 669B2, Jun., 2020. [Online].
Available: https://patents.google.com/patent/US10678669B2/en

N. Jain and R. Potharaju, “Problem inference from support tickets,”
US Patent US9229800B2, Jan., 2016. [Online]. Available: https:
/[patents.google.com/patent/US9229800B2/en

S. Purushothaman and A. MISHRA, “Data analysis and support engine,”
US Patent US20180285750A1, Oct., 2018. [Online]. Available:
https://patents.google.com/patent/US20180285750A 1/en

K. V. Jadunandan, S. A. Lobo, R. D. Lumpkins, B. D. Lushear,
and P. A. S. Jr, “Communication network operations management
system and method,” US Patent US9 753 800B1, Sep., 2017. [Online].
Available: https://patents.google.com/patent/US9753800B 1/en

F. Vidal, C. Bromann, B. S. Adelberg, R. Henrikson, and J. Sandberg,
“Analytics for an automated application testing platform,” US Patent
US20190340512A1, Nov., 2019. [Online]. Available: https://patents.
google.com/patent/US20190340512A1/en

S. Cai, L. Zhang, A. Palazoglu, and J. Hu, “Clustering analysis of
process alarms using word embedding,” Journal of Process Control,
vol. 83, pp. 11-19, Nov. 2019. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0959152418303366

Y. Li, Q. Pan, T. Yang, S. Wang, J. Tang, and E. Cambria,
“Learning Word Representations for Sentiment Analysis,” Cognitive
Computation, vol. 9, no. 6, pp. 843-851, Dec. 2017. [Online]. Available:
https://doi.org/10.1007/s12559-017-9492-2

C. M. Rosenberg and L. Moonen, “Improving Problem Identification
via Automated Log Clustering using Dimensionality Reduction,” Pro-
ceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 1-10, Oct. 2018, arXiv:
2009.03257. [Online]. Available: http://arxiv.org/abs/2009.03257

55

https://patents.google.com/patent/US7849363B2/en
https://patents.google.com/patent/US9984329B2/en
https://patents.google.com/patent/US9984329B2/en
https://patents.google.com/patent/US10678669B2/en
https://patents.google.com/patent/US9229800B2/en
https://patents.google.com/patent/US9229800B2/en
https://patents.google.com/patent/US20180285750A1/en
https://patents.google.com/patent/US9753800B1/en
https://patents.google.com/patent/US20190340512A1/en
https://patents.google.com/patent/US20190340512A1/en
http://www.sciencedirect.com/science/article/pii/S0959152418303366
http://www.sciencedirect.com/science/article/pii/S0959152418303366
https://doi.org/10.1007/s12559-017-9492-2
http://arxiv.org/abs/2009.03257

[56]

[57]

[58]

[59]

[60]

[63]

[64]

L. Mclnnes, J. Healy, and J. Melville, “UMAP: Uniform Man-
ifold Approximation and Projection for Dimension Reduction,”
arXiv:1802.03426 [cs, stat], Sep. 2020, arXiv: 1802.03426. [On-
line]. Available: http://arxiv.org/abs/1802.03426

S. Tahvili, W. Afzal, M. Saadatmand, M. Bohlin, and S. H. Ameerjan,
“Espret: A tool for execution time estimation of manual test cases,” Jour-
nal of Systems and Software, vol. 161, pp. 1-43, 2018.

S. Tahvili, L. Hatvani, M. Felderer, W. Afzal, and M. Bohlin, “Automated
functional dependency detection between test cases using doc2vec and
clustering,” in The First IEEE International Conference On Artificial In-
telligence Testing, 2019.

S. Tahvili, L. Hatvani, M. Felderer, W. Afzal, M. Saadatmand, and
M. Bohlin, “Cluster-based test scheduling strategies using semantic rela-
tionships between test specifications,” in 5th International Workshop on
Requirements Engineering and Testing, 2018.

S. Tahvili, M. Saadatmand, M. Bohlin, W. Afzal, and S. H. Ameerjan,
“Towards execution time prediction for test cases from test specification,”
in 43rd Euromicro Conference on Software Engineering and Advanced
Applications, 2017.

Tf-idf :: A single-page tutorial - information retrieval and text mining.
[Online]. Available: http://www.tfidf.com/

T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD *16. New York, NY,
USA: Association for Computing Machinery, Aug. 2016, pp. 785-794.
[Online]. Available: https://doi.org/10.1145/2939672.2939785

C. D. Manning, H. Schiitze, and P. Raghavan, “Introduction to
information retrieval,” 2008, iSBN: 9780521865715 9780511414053
Publisher: Cambridge University Press. [Online]. Available: https:
//cds.cern.ch/record/2135372

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997, publisher: MIT
Press. [Online]. Available: https://doi.org/10.1162/nec0.1997.9.8.1735

56

http://arxiv.org/abs/1802.03426
http://www.tfidf.com/
https://doi.org/10.1145/2939672.2939785
https://cds.cern.ch/record/2135372
https://cds.cern.ch/record/2135372
https://doi.org/10.1162/neco.1997.9.8.1735

[65]

[69]

C. Olah. (2015, Aug.) Understanding LSTM networks — colah’s
blog. Online. [Online]. Available: http://colah.github.io/posts/2015-08-
Understanding-LSTMs/

F. Wilcoxon, “Individual Comparisons by Ranking Methods,”
Biometrics Bulletin, vol. 1, no. 6, pp. 80-83, 1945, pub-
lisher: [International Biometric Society, Wiley]. [Online]. Available:
https://www.jstor.org/stable/3001968

M. Friedman, “A Comparison of Alternative Tests of Significance for the
Problem of m Rankings,” Annals of Mathematical Statistics, vol. 11,
no. 1, pp. 86-92, Mar. 1940, publisher: Institute of Mathematical
Statistics. [Online]. Available: https://projecteuclid.org/euclid.aoms/
1177731944

R. Eisinga, T. Heskes, B. Pelzer, and M. T. Grotenhuis, “Exact p-values
for pairwise comparison of Friedman rank sums, with application
to comparing classifiers,” BMC Bioinformatics, vol. 18, no. 1, 2017.
[Online]. Available: https://link.springer.com/epdf/10.1186/s12859-
017-1486-2

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

F. Chollet et al., “Keras,” https://keras.io, 2015.

J. Alcald-Fdez, A. Ferndndez, J. Luengo, J. Derrac, S. Garcia,
L. Sanchez, and F. Herrera, “Keel data-mining software tool: data set
repository, integration of algorithms and experimental analysis frame-
work.” Journal of Multiple-Valued Logic & Soft Computing, vol. 17,
2011.

J. Alcala-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura,
J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas,
J. C. Fernandez, and F. Herrera, “KEEL: a software tool to
assess evolutionary algorithms for data mining problems,” Soft
Computing, vol. 13, no. 3, pp. 307-318, Feb. 2009. [Online]. Available:
https://doi.org/10.1007/s00500-008-0323-y

57

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.jstor.org/stable/3001968
https://projecteuclid.org/euclid.aoms/1177731944
https://projecteuclid.org/euclid.aoms/1177731944
https://link.springer.com/epdf/10.1186/s12859-017-1486-2
https://link.springer.com/epdf/10.1186/s12859-017-1486-2
https://keras.io
https://doi.org/10.1007/s00500-008-0323-y

[73] P. Runeson and M. Host, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, p. 131, Dec. 2008. [Online]. Available:
https://doi.org/10.1007/s10664-008-9102-8

[74] D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980 [cs], Jan. 2017, arXiv: 1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

58

https://doi.org/10.1007/s10664-008-9102-8
http://arxiv.org/abs/1412.6980

Appendix A

Hyperparameters
A1 LSTM
Skip-gram word_ngrams negative size hs sg
3 5 20 1 1
CBOW word_ngrams negative size hs sg
3 5 20 1 0
Exponential Delay initial_Ir decay_steps decay_rate
0.1 100 0.96
Layers type output shape parameters
bidirectional LSTM (, 64) 18688
dropout (, 64) 0
dense ()] 325
softmax ()] 0

Table A.1 — The hyperparameters related to the LSTM classifier.

A.2 Other Classifiers

59

Max number of log assert fail error info debug
events per type per input 1 1 1 2 2
Skip-gram word_ngrams negative size hs sg
3 5r 20 1 1
77777 UMAPfor | n_neighbors n_components init
Skip-gram 20 3 ‘random’
CBOW word_ngrams negative size hs sg
3 5r 20 1 0
77777 UMAPfor | n_neighbors n_components imt
CBOW 20 3 random’
Logistic solver penalty max_iter class_weight
Regression Ibfgs 12 100 ’balanced’
Random Forest max_depth max_features n_estimators class_weight
3 0.3 100 “balanced’
XGBoost max_depth colsample_bytree n_estimators sample_weight
2 0.5 100 “balanced’
MLP hidden_layer_size solver alpha
(100,100) Ibfgs 0.001
Support Vector kernel degree decision_function_shape class_weight
Machine ‘rbf” ‘ovo’ ’balanced’

Table A.2 — The hyperparameters related to all classifiers except the LSTM.

60

TRITA-EECS-EX-2020:891

	Introduction
	Problem Statement
	Research Goals
	Research Questions
	Scope and Delimitations
	Thesis Outline

	Background
	Log Analysis
	Log Anomaly Detection
	Security and Privacy
	Root Cause Analysis (RCA)
	Software testing
	Reliability, Dependability and Failure Prediction
	Log Event Template Extraction

	Related Work
	Feature Engineering
	Natural Language Processing

	Theory
	Dimensionality Reduction
	Data Representation Techniques in NLP
	Term Frequency and Inverse Document Frequency (TF-IDF)
	N-grams
	Word2Vec
	FastText
	Continuous Bag of Words (CBOW)
	Skip-Gram

	Machine Learning Models for Classification
	Logistic Regression, SVM, Random Forest, Gradient Boosting, MLP
	Long Short-Term Memory

	Validation Metrics
	F1-score
	Wilcoxon signed-rank test
	Friedman NxN test

	Summary

	Methods
	Pipeline
	Data Collection
	Data Preprocessing
	Word Embeddings

	Model Training
	Model Selection
	Hardware Setup and Used Software Libraries

	Results
	Unit of Analysis and Procedure
	LSTM Classifier
	Classifiers with Merged Word Embeddings

	Statistical Validation

	Threats to Validity
	Discussion and Future Work
	Discussion
	Future Work
	Ethics and Sustainability

	Conclusions
	Hyperparameters
	LSTM
	Other Classifiers

