
UPTEC IT 20046

Examensarbete 30 hp
November 2020

Mapping medical expressions
to MedDRA using Natural Language
Processing

Vanja Wallner

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Mapping medical expressions to MedDRA using
Natural Language Processing

Vanja Wallner

Pharmacovigilance, also referred to as drug safety, is an important science for
identifying risks related to medicine intake. Side effects of medicine can be caused by
for example interactions, high dosage and misuse. In order to find patterns in what
causes the unwanted effects, information needs to be gathered and mapped to
predefined terms. This mapping is today done manually by experts which can be a
very difficult and time consuming task. In this thesis the aim is to automate the
process of mapping side effects by using machine learning techniques.

The model was developed using information from preexisting mappings of verbatim
expressions of side effects. The final model that was constructed made use of the
pre-trained language model BERT, which has received state-of-the-art results within
the NLP field. When evaluating on the test set the final model performed an accuracy
of 80.21%. It was found that some verbatims were very difficult for our model to
classify mainly because of ambiguity or lack of information contained in the verbatim.
As it is very important for the mappings to be done correctly, a threshold was
introduced which left for manual mapping the verbatims that were most difficult to
classify. This process could however still be improved as suggested terms were
generated from the model, which could be used as support for the specialist
responsible for the manual mapping.

Tryckt av: Reprocentralen ITC
UPTEC IT 20046
Examinator: Lars-Åke Nordén
Ämnesgranskare: Robin Strand
Handledare: Lucie Gattepaille

Sammanfattning

Läkemedelsövervakning är viktigt för att identifiera risker relaterade till medicinintag.
Biverkningar av medicin kan till exempel orsakas av interaktioner, hög dosering och
missbruk. För att hitta mönster i vad som orsakar de oönskade effekterna måste infor-
mation samlas in och mappas till fördefinierade termer. Denna kartläggning görs idag
manuellt av experter, vilket kan vara en mycket svår och tidskrävande uppgift. I denna
avhandling är syftet att undersöka om vi kan automatisera processen av att kartlägga
biverkningar med hjälp av maskininlärning.

Modellen utvecklades med hjälp av information från redan existerande mappningar av
rapporterade biverkningar. Den slutliga modellen som konstruerades använde sig av
BERT, som har visat mycket goda resultat för olika uppgifter inom det språkteknologiska
området. Vid utvärderingen av test datat utförde den slutliga modellen en accuracy på
80,21 %. Det visade sig att vissa uttryck för biverkningar var mycket svåra för vår
modell att klassificera på grund av saker som tvetydighet eller brist på information. Ef-
tersom det är mycket viktigt att dessa kartläggningar görs korrekt infördes en threshold
som uteslöt de uttryck som var svårast att klassificera. Dessa uttryck lämnades istället
för manuell kartläggning. Processen av manuell kartläggning kunde däremot underlättas
då föreslagna termer genererades från modellen och skulle därmed kunna användas som
stöd för den ansvarige specialisten.

ii

Acknowledgements

First of all, I would like to thank UMC for the opportunity of working with this thesis
project. It has been a fun, challenging and educational experience! I would like to direct
my gratitude to the staff working at UMC, especially my team, for always being helpful
and making me feel welcome at the office. A special thanks to my supervisor Lucie
Gattepaille for her invaluable guidance. She has given me great advice and feedback on
my work throughout this project. I would also like to thank the terminology specialists
at UMC that took their time to evaluate some of my data, which made it possible for me
to carry out the error analysis. Last but not least thank you to my reviewer Robin Strand
for reading and providing feedback on this report.

iii

Contents

1 Introduction 2

1.1 Motivation . 3

1.2 Problem formulation . 3

1.3 Delimitations . 4

1.4 Thesis overview . 4

2 Background 5

2.1 UMC . 5

2.2 MedDRA . 5

3 Theory 7

3.1 Natural language processing . 7

3.2 Classification . 8

3.3 Text representation . 9

3.4 Machine learning . 11

3.4.1 Deep learning . 11

3.4.2 BERT . 12

3.5 Evaluation . 14

3.5.1 Confusion matrix . 14

3.5.2 Accuracy . 15

3.5.3 Precision . 15

3.5.4 Recall . 15

3.5.5 F-score . 15

3.5.6 Error rate . 16

iv

3.6 Data division . 16

4 Methods and data 17

4.1 Data . 17

4.1.1 Explorations . 17

4.2 Preparations . 18

4.2.1 Language filtering . 18

4.2.2 Division of data . 19

4.2.3 Preprocessing . 20

4.3 Modules . 20

4.3.1 String matching - LLT . 20

4.3.2 String matching - training . 20

4.3.3 BERT . 21

4.4 Evaluation . 22

5 Results 24

5.1 Language sorting . 24

5.2 Thresholds . 25

5.3 Pipeline . 26

5.4 Final model . 27

5.5 Classification examples . 28

5.6 Error analysis . 30

6 Discussion 32

7 Conclusion 33

v

8 Future work 35

vi

Glossary

ADR Adverse Drug Reaction

BERT Bidirectional Encoder Representations from Transformers

GS Gold standard

HLGT High level group term (MedDRA hierarchy)

HLT High level term (MedDRA hierarchy)

ICSR Individual case safety report

LLT Lowest level term (MedDRA hierarchy)

MedDRA the Medical Dictionary for Regulatory Activities

PIDM Programme for International Drug Monitoring

PT Preferred term (MedDRA hierarchy)

SOC System organ class (MedDRA hierarchy)

UMC Uppsala Monitoring Centre

1

1 Introduction

1 Introduction

Pharmacovigilance is defined by the World Health Organisation (WHO) as ”the science
and activities relating to the detection, assessment, understanding and prevention of
adverse effects or any other possible drug-related problems.” [1] Pharmacovigilance is
important for identifying risks related to medicine intake caused by interactions, high
dosage, misuse etc. where the detection of these risks can be crucial to ensure patient
safety.

The Uppsala Monitoring Centre (UMC) is working alongside WHO as part of the WHO
Programme for International Drug Monitoring (PIDM) for the common goal of “a sys-
tematic collection of information on serious adverse drug reactions during the develop-
ment and particularly after medicines have been made available for public use”.[2] One
tool developed and maintained by UMC, for the purpose of drug safety, is VigiBase.[3]
It is WHOs global database, containing millions of individual case safety reports (IC-
SRs) from countries all over the world that are part of PIDM. The ICSRs are reports
containing suspected adverse drug reactions (ADRs) which are reported and collected
from both patients and healthcare professionals, by the National Authorities of each
member country of the PIDM. An ADR is a term used to describe the unintended side
effects of drugs that pharmacovigilance experts are trying to detect.

When expressing an ADR in free text, the very same reaction can be explained in many
different ways: ”I have a headache”, ”my head hurts” and ”I have a pain in my head” are
all verbatim expressions of the same condition: Headache. It is of great importance to
classify these expressions as equal in order to find possible correlations between drugs
and side effects. In order to do this, normalization can be performed, mapping the differ-
ent verbatim expressions to the same condition label. As of today this mapping is done
manually by coding specialists who choose a fitting label based on the verbatim. The
labels used for mapping are the terms found in The Medical Dictionary for Regulatory
Activities (MedDRA) which is a terminology that contains several 10,000 of medical
terms. This manual mapping can be a very time consuming task and requires the work
of specialists. When leaving this task for human evaluation there is also the aspect of
subjectivity which can result in similar verbatim being mapped to different labels by
different coding specialists.

2

1 Introduction

1.1 Motivation

This project aims to develop an algorithm that can automate the process of mapping
verbatim expressions of ADRs to MedDRA terms. The results of this project can be
beneficial for the supervisor in multiple ways. For example in improving their mapping
of verbatims in the side effect reports. At the time they only rely on direct matches to
MedDRA and therefore might be missing valuable information. Both in pharmacovig-
ilance and clinical trials experts are manually performing data entry. The proposed
algorithm could therefore be a resource to improve these processes.

1.2 Problem formulation

During this project we will focus on answering the following question:

• How can we use verbatim descriptions of adverse drug reactions to create an
automatic mapping to MedDRA terms?

As a guidance, to help answer the above mentioned main question, a few more specific
questions were formulated:

• How do we handle lack of training data?
Even though we have access to a few million rows of training data we also have
thousands of classes to map to. This means that there might not be enough data to
successfully train a classifier with good results. There might also be class imbal-
ances meaning that some classes are less represented than others in the training
data.

• How do we deal with our training data being inadequate?
In some cases different verbatims with the exact same words can be mapped to
different labels. With a high number of classes there might also be cases where
there are multiple labels that fit the same verbatim, so there might be multiple
correct answers even if the training data will only contain one.

• Can machine learning techniques be used to improve the results?
The verbatims used as input are generally short collections of words. They can
be actual sentences but also just descriptive words and/or measured values that
can be tricky to classify with classic NLP methods. So the question is if improve-
ments can be made by making use of algorithms from the ever advancing machine
learning field?

3

1 Introduction

1.3 Delimitations

Some limitations were made for this project. The project aims to create an algorithm
that can map the verbatim expressions from the side effect reports to the predefined
MedDRA terms. The algorithm will thereby assumably only be applied to text that we
know contain descriptions of medical conditions. The verbatims are in most cases de-
rived from a more descriptive source, like medical records or more thorough reports.
Limiting ourselves to solely using the verbatim for creating this algorithm means we
might be losing information that was available to the coding specialist performing pre-
vious mappings, but this choice was made for the project to stay within a reasonable
scope.

1.4 Thesis overview

The report is split up into multiple sections. After this introduction where motiva-
tion, problem formulation and delimitation have been presented, follows section 2 that
presents the background for the project. In section 3 the theories behind the project
will be presented. Section 4 covers the methods used and section 5 presents the re-
sults achieved. Section 6 covers a discussion followed by final conclusions in section 7.
Lastly section 8 presents ideas about future work.

4

2 Background

2 Background

2.1 UMC

This project is done in cooperation with the Uppsala Monitoring Centre (UMC) which is
a non-profit organisation that works with the goal of improving medicine safety all over
the world. Among other things they maintain Vigibase, the World Health Organization’s
(WHO) database of individual case safety reports. Vigibase contains over 20 millions of
reports from over 130 countries worldwide with cases of suspected adverse events from
medicines. On UMC’s website they describe the purpose of Vigibase as to ”ensure that
early signs of previously unknown medicines-related safety problems are identified as
rapidly as possible.” [3]

2.2 MedDRA

The Medical Dictionary for Regulatory Activities (MedDRA) is a terminology that con-
tains several 10,000 of medical terms presented in a hierarchical order containing five
layers displayed in figure 1.[4] MedDRA is continuously updated with new medical
concepts being added or existing concepts being modified. In this thesis MedDRA ver-
sion 22.1, released in September 2019, is used. [5] In this version the highest level layer
of MedDRA ’System Organ Class’ (SOC) contained 27 terms while the lowest level
layer ’Lowest Level Term’ (LLT) contained over 80,000 terms. The highest level layer
(SOC) contains the most general terms and for each layer the terms get more specific.
The ’Preferred term’ (PT) is the term used to label the side effects in VigiBase and it
consists of almost 24,000 terms. The most specific term (LLT) can contain for example
synonyms or different spellings of the PT, as well as the PT itself.

Every PT is primarily assigned to one SOC but can also be secondarily assigned to
several other SOCs. An example is the PT “Asthma” that is found under its primary
SOC “Respiratory, thoracic and mediastinal disorders” (SOC) but also “Immune system
disorders” (SOC) as secondary. Each LLT is however uniquely related to one PT.

5

2 Background

Figure 1: The five layers of the MedDRA hierarchy. The number of terms present in
each layer (as of 2020-01-15) are shown in parenthesis.

Figure 2 shows an example of how ’Lactose Intolerance’ is categorized in MedDRA.
First we have ’Metabolism and nutrition disorders’ (SOC) which is a very general term,
afterwards comes the more specific ’Food intolerance syndromes’ which is a ’High
level group term’ (HLGT). From the HLGT of food intolerance we specify even more
unto ’Sugar intolerance (excl glucose intolerance)’ which is a ’High level term’ (HLT).
Under this category we find the PT ’Lactose intolerance’ that we were looking for. As
can be seen the chosen PT has four corresponding LLTs. Among the LLTs we find the
PT ’Lactose intolerance’, ’Lactose intolerant’ as well as synonyms including different
spellings ’Lactose diarrhea/diarrhoea’.

6

3 Theory

Figure 2: An example showing the MedDRA hierarchy for the PT ’Lactose intolerance’.

3 Theory

In this chapter the theory and techniques used in this project will be introduced and
explained.

3.1 Natural language processing

Natural language processing (NLP) concerns the interaction between the human lan-
guage and computers. In theory, translating human language to computers could be
an easy task: words are just collections of characters and sentences are collections of
words. However it can be more difficult in practice since the human language can be
ambiguous as well as ever changing and evolving. Yoav Goldberg states in his book
Neural Network Methods for Natural Language Processing that ”People are great at
producing language and understanding language, and are capable of expressing, per-
ceiving, and interpreting very elaborate and nuanced meanings. At the same time, while
we humans are great users of language, we are also very poor at formally understanding
and describing the rules that govern language.” [6]

7

3 Theory

3.2 Classification

Classification is the technique of categorizing data to a set of discrete output values,
referred to as classes or labels. The classification algorithm is created from patterns
found in preexisting mappings. By finding the features that create these patterns and
determine how the data is mapped, any new observations can be mapped according to
this information. The goal is to find enough features to be able to correctly map any new
(unknown) data to the correct class. In an example of classifying vehicles to the labels
”bus”, ”car” or ”motorcycle” the features could for example be the number of wheels,
the length of the vehicle and the presence of a steering wheel. An unknown vehicle
with more than 4 wheels should probably be classified as ”bus” while an unknown
vehicle without a steering wheel should be classified as ”motorcycle”. These patterns
could be found by looking at multiple buses, cars and motorcycles and finding how they
distinguish from one another.

Classification is seen as a supervised learning technique (see section 3.4) in machine
learning since it uses previously made classifications to make future predictions. The
preexisting mappings are referred to as the gold standard (GS) and they are seen as the
benchmark. Within the NLP-field the data used is in text format, usually as words or
sentences. When classifying data in this form the task is more specifically referred to as
text classification. Some well-known examples are: sentiment analysis (text classified as
having positive or negative sentiment) and language detection (predicting what language
the text is written in).

Multi-class classification
The simplest form of classification is called binary classification and is done with only
two classes. Examples of binary classification are classifying data to True/False based
on some criterion, for example classifying e-mails to being spam/not-spam or reviews
of a product to being positive/negative.

When there are more than two classes it is considered a multi-class classification prob-
lem. As the number of classes increases the classification problem gets increasingly
difficult to solve. To explain this increasing difficulty we can compare a binary clas-
sification problem (2 classes) with a multi-class problem of 100 classes. To exemplify
the problem a ”dummy classifier” could be used, that simply classifies everything to the
same class. Statistically (not considering imbalanced classes) this would mean that in
the binary classification we get 50% accuracy while in the case of 100 classes we get
1% accuracy. More generally we would get accuracy = 1

nrOfClasses
, clearly showing

the relation between a decreased accuracy with an increased number of classes. In prac-
tice the algorithms are usually better than this ”dummy classifier”, but as the number
of classes increases any algorithm will have more outputs to consider, decreasing the

8

3 Theory

possibility for a correct classification.

Imbalanced classes
Having imbalanced classes means that the number of observations from different classes,
used to train the classifier, is disproportionate. This can lead to bias within the model
as it is trained to classify more often towards the most represented classes which can
give results that seem more promising than they really are. Let us say there is a binary
classification problem where the goal is to detect spam e-mails and the observations are
95% non-spam and 5% spam. The ”dummy classifier” that always classifies to non-
spam would then give an accuracy of around 95%, which seems great, even if nothing
has really been implemented.

Multi-label classification
Commonly within classification each observation is mapped to a single class. With
multi-label classification however the observations are mapped to a set of classes, one
or multiple ones.

Hierarchical classification
Usually all classes are equally differentiated from one another. If however the classes
are part of a hierarchy they will be more or less related. This relation can be used with
a hierarchical classifier that can start mapping data to a low-level and increase the level
of detail.

3.3 Text representation

For any classification problem the input needs to be numerical since that is the only
representation that a computer can comprehend. When working with NLP-problems we
are using text as input and before doing any calculations we need some method to trans-
late the text into numbers. There are multiple proposed solutions for text representation
some of which are presented in this section.

Bag of words
One simple approach of representing text is Bag Of Words (BOW) which takes the
words and its number of occurrences in a document into account. If two documents
consists of the same words, they are seemingly similar and could therefore belong to the
same class. By creating vectors that reflect on the term frequency, similarities between
documents could be found by vector comparisons.

The data representation will be a vector were each position corresponds to a word that is
present in some of the documents. Each document will then have their own vector were
each number represents the occurrence of the word in the document. This way of rep-

9

3 Theory

resenting each word with a vector of N positions with a ”1” in the position representing
that word and ”0” for the other N-1 positions is called a one-hot encoding.

Document 1 = ”Headache”
Document 2 = ”Drug exposure during pregnancy”
Document 3 = ”Drug exposure”

Using the three documents above as an example the corpus used would consist of the
words: ”drug” ”during” ”exposure” ”headache” ”pregnancy”. Since the corpus consists
of five words, the vector representation will be five dimensions. Comparing the vec-
tor representation below it is clear to see that document 2 has more in common with
document 3 than document 1, as expected.

Document 1 = ”Headache” = [0 0 0 1 0]
Document 2 = ”Drug exposure during pregnancy” = [1 1 1 0 1]
Document 3 = ”Drug exposure” = [1 0 1 0 0]

Tf-idf
The Bag of words representation is based on term frequency but it doesn’t take into
account the fact that words are more or less commonly used. Some words like ”the”,
”of”, ”a”, ”that” appear more often in the English language and these words might
have a high frequency in multiple documents, even if these documents should not be
seen as similar. ”Term frequency - inverse document frequency”, often shortened tf-idf,
deals with this weakness by weighting the frequency of each term with the number of
documents where they are present.

Word embeddings
There are multiple problems with the earlier mentioned representations (BOW and tf-
idf). One being the high dimensionality of the vectors, which will be growing with the
number of terms in the corpus. Another problem is that similar words are not connected
in any way; these representations lack awareness of word meaning. With BOW and
tf-idf there will probably be similarities found between the vector representation of ”I
feel pain in my head” and ”I feel pain in my arm” but not between ”she felt pain in her
head” and ”he had a headache” since the last sentences have no common words.

In his book Speech and Language processing Jurafsky mentions terms such as word
similarity and word relatedness [7]. These concepts can be used to understand the in-
sufficiency of using term frequency for representation, which is simply based on the
words and not the meaning behind them. Even if two words are not synonyms they can
still be more or less similar or related to one another. Cat is not a synonym of dog, but
cats and dogs are still similar words used in similar contexts. In the same manner coffee

10

3 Theory

and cup are neither synonyms nor similar words, but they are still related and associated
to one another.

Word embeddings are a collection of techniques used for creating word vectors and they
often include the use of neural networks. This results in vector representations that are
much more dense then the one-hot encodings mentioned in previous sections. Another
advantage of using word embeddings is that the vectors capture semantic meaning of
words from the contexts of where it appears. When training a word embedding model
with sentences, not only the target word is considered but also its surrounding words.
In 2013 Google introduced a word embedding model which later became known as
word2vec [8] that became very popular for creating word vectors. It makes use of two
architectures called CBOW and Skip-gram and produces word vectors from unsuper-
vised training on a large text corpus.

3.4 Machine learning

Machine learning is a field within computer science. The objective is for the computer to
”learn” how to solve a problem (that it is not explicitly programmed to solve) based on
data. There are different kinds of machine learning algorithms which can be divided into
separate categories. The three most common ones are supervised learning, unsupervised
learning and reinforcement learning.

Supervised learning can be used if we have access to a labeled data set of observations.
The model can learn from this set and find patterns that will help make future predic-
tions. When there is no labeled dataset to begin with, unsupervised learning algorithms
can be used. These models tries to group data together based on underlying patterns.
Lastly reinforcement learning is based on interaction with the environment. The system
learns by rewards, were better choices are rewarded higher and thereby effecting future
choices.

3.4.1 Deep learning

Deep learning is a sub-field within machine learning that is based on artificial neural
networks (ANNs). ANNs are a set of algorithms with a structure inspired by the sig-
nal transmission of neurons in the brain. An ANN is built in multiple layers: starting
with the input layer, ending with the output layer and then a number of hidden lay-
ers in between. ANNs operates on numerical data and the input must be of fixed size.
When working with data that is not numerical by default, for example text, it needs
to be translated into a numerical data representation. When using deep learning algo-

11

3 Theory

rithms the features are extracted from the data without human intervention, as opposed
to traditional machine learning algorithms. This however comes at a cost of needing a
relatively high amount of training data for the algorithm to be successful.

Figure 3: The figure shows the structure of a simple ANN with a single hidden layer.

Recurrent neural networks (RNNs) is a field within neural networks with algorithms
that, opposed to the simpler neural networks, take sequential structures into account
(through time or space depending on the application). This is accomplished by internal
feedback loops in the network that creates what can be referred to as ”memory”.

In a paper from 2017 [10] researchers from Google presented the concept of Transform-
ers, built in an encoder-decoder architecture. The conventional encoder-decoder model
has a sequence of connected RNNs where each RNN inputs a token and outputs a vector
that is based on the token as well as all the previous tokens. One disadvantage of this
model is that the input has to be fed to the system sequentially, as each step is depen-
dent on previous calculations. The Transformer introduced an alternative to the RNN
architecture, which uses something called attention instead of recurrence. As opposed
to the RNN architecture with the sequential dependency of the input, the Transformer
reads the entire word sequence at once and can learn its context both from the previous
as well as the following words. The model is thereby considered to be bidirectional.

3.4.2 BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers, is
a pre-trained language model that was released by Google in 2018. As the name

12

3 Theory

might reveal, the BERT architecture consists of multiple layers of transformer encoders.
The model has received state-of-the-art results on multiple NLP tasks [9]. BERT is
trained on a huge data set consisting of the English Wikipedia (2,500M words) and the
BooksCorpus (800M words). The training is unsupervised and two different tasks are
performed, namely Mask language model (MLM) and Next sentence prediction (NSP),
which creates the word representation. For MLM the model looks at an entire sentence
or piece of text trying to predict the word that has been masked out. This task is seen
as a key technical innovation as it uses the bidirectional training of Transformers for a
language modelling task. For the NSP task, the model received pairs of sentences and
had to predict if the second sentence followed the first in the original document.

The pre-trained BERT model has a general knowledge of the English language but
the model needs to be fine-tuned to perform a specific task. For a classification task
this means training the model using training data to detect how the input relates to the
classes.

As input BERT takes a sequence of tokens. BERT has a corpus of tokens that can be
numbers, words or segments of words, which is used to represent the input. One benefit
of the token representation is that any word can be represented. If a word is not found
within the corpus it can be broken down into multiple tokens and possibly keep some
of the original meaning. As an example BERT has no single token to represent the
word ”chills” but it can instead be represented with the tokens ”chill” and ”##s”, where
the ”##” represents that the token is part of the same word as the previous token. If
the word ”headache” was not found in the token corpus it would be represented by the
tokens ”head” and ”##ache” which in this case still contains most of the meaning. The
worst case scenario would be for a word to be broken down into each character that it
consists of: not keeping a lot of meaning but still being able to represent the word. The
number of tokens is fixed length for a given model and corresponds to the size of the
input layer. If the number of tokens for a given model is 64 it means that any input that
can be represented by less tokens will be padded using a [PAD] token and if an input
needs more than 64 tokens it will be cut off.

When using the fine tuned BERT model for classification it produces an output layer of
logits, with a layer size corresponding to to the number of classes. Logits are integer
values ranging from -∞ to∞ and represents the unnormalised predictions of the model.
The logits can be turned into a distribution of probabilites using the softmax function.
Each class will then be represented by a value showing the models probability for each
possible class being the correct class of a given input. When using the softmax function
on the logits layer to create a vector of probabilities, taking the sum of that vector will

13

3 Theory

always add up to 1. The softmax function is defined as:

S(y) =
eyi
n∑
j=1

eyj

Where S is the resulting softmax vector, e is the standard exponential function and y is
the vector of logits ranging from position i = 1,2,...n.

3.5 Evaluation

3.5.1 Confusion matrix

In binary classification there are two classes, in this example referred to as the positive
labels (P) and the negative labels (N). When we want to evaluate how well our model
can classify class P we’ll use a confusion matrix where we compare the predictions
made to the actual classes. Each observation will be part of one of the sets: TP, TN, FP
or FN.

True positives (TP) - All the observations of class P correctly predicted as P.
True negatives (TN) - All the observations of class N correctly predicted as N.
False positives (FP) - All the observations of class N incorrectly predicted as P.
False negatives (FN) - All the observations of class P incorrectly predicted as N.

Figure 4: Confusion matrix for binary classification

14

3 Theory

3.5.2 Accuracy

Accuracy is the ratio of correct predictions over the total number of observations and can
be a good measurement to understand the overall performance of a system. However
there are other metrics like Precision and Recall that look at FN and FP separately which
can expose imbalances in these rates that are not shown in the accuracy.

accuracy =
TP + TN

TP + TN + FP + FN

3.5.3 Precision

Precision is the ratio of correct positive predictions over all positive predictions. It
shows how many of all the observations that were classified as P that are actually part
of P.

precision =
TP

TP + FP

3.5.4 Recall

Recall is the ratio of all correct positive predictions over all positive observations. It
shows how many of all the observations that are part of P that we correctly classified to
P.

recall =
TP

TP + FN

3.5.5 F-score

The F-score is a measure that considers both the precision and the recall. It is a score
between 0 and 1, with 1 being the perfect score. The general formula looks like this:

Fβ = (1 + β2) ∗ precision ∗ recall
β2 ∗ precision+ recall

The most common f-score is called f1-score meaning that β = 1 in the formula. This
makes recall and precision have an equal impact on the f-score. There are different
possible f-scores that can be used, like f2-score, f0.5-score and f0.2-score, with differ-
ent values for β. Using a value β > 1 will weigh recall higher than precision while a

15

3 Theory

value β < 1 will weigh precision higher than recall. The choice of β therefore depends
on the importance of recall and precision for the classification task. If for example the
task is to detect tumors in x-rays it is very important that no tumor goes undetected and
less important if a tumor is falsely detected (recall over precision). A completely differ-
ent task could be providing product recommendations to customers based on previous
purchases. For this task it is of higher importance that the products recommended are
actually good suggestions and less important that all possible ”good suggestions” are
shown (precision over recall).

3.5.6 Error rate

The error rate is the ratio of incorrect predictions over the total number of observations.

errorrate =
FP + FN

TP + TN + FP + FN

3.6 Data division

In machine learning tasks it is a common practice to split the obtained data set into
separate disjoint subsets for training, validation and testing. The training set is used to
fit the model. It is from this set that the model learns patterns. The validation set is used
to repeatedly evaluate the model. Since the validation set is disjoint from the training
set it will provide new data for the model. From the results of the evaluation of the
validation set, parameter tuning can be performed. In conclusion the model indirectly
learns from the validation set. Lastly the test set is used to evaluate the final model. No
further changes should be made to the model after evaluating against the test set as these
results are seen as the actual performance of the model.

16

4 Methods and data

4 Methods and data

4.1 Data

Data was retrieved from a frozen version of VigiBase, containing all reports up to 5th
of January 2020. From this source 9,869,169 rows of annotated data could be retrieved,
each containing one verbatim and one label. The verbatims are the inputs to our system,
the observations that we want to classify. They are freely entered text containing a
single up to multiple tens of words, expressing ADRs in multiple different languages.
The labels are the preferred terms (PTs) from the MedDRA hierarchy (see section 2.2)
that the verbatims have been mapped to. This mapping is done by an expert while
making the ICSR. MedDRA is, like VigiBase, ever changing. In this project MedDRA
version 22.1 was used [5]. In this version there are 23,954 PTs, however in our labeled
data set only 16,408 (∼ 68,5%) are represented.

4.1.1 Explorations

An initial approach was exploring the data to get a feeling of what kind of difficulties
there were and what methodologies could be fitting to solve them. An early finding was
that even as the verbatims were pulled from free text fields, they were not all unstruc-
tured. A large number of verbatims were already in the form of LLTs, the lowest level
term of the MedDRA hierarchy.

The verbatims are expressed in free text and can contain all sorts of characters. In
the data there exist alphabetical characters, special characters and numbers. They can
contain abbreviations and spelling mistakes to list a few. Among the English verba-
tims a common use of non-alphabetic characters are numbers used to report on medical
measurements. Examples of verbatims including such measurements are ”mxd raised
1.7x10ˆ9/l”, ”lipase (over 4000u/l)” and ”high white blood cell count 80”.

The verbatims in the given data set are of varying length, consisting of between 1 to
53 words. However, around 70% of the verbatims only contain up to 3 words. For the
purpose of word counting a word was defined to be a number of characters separated
from other characters with spacing. ”他服後倒了” will therefor count as 1 word and
”increase in the white blood count” is 6 words.

Each row of data is only mapped to one class, although the verbatim can contain mul-
tiple reported side effects. This means that even though there will only be a single
correct class for each row of data (that is our gold standard), there might be multiple
fitting classes for the verbatim. This will complicate our classification process and is

17

4 Methods and data

something to keep in mind when evaluating the algorithm.

As presented in section 2.2 the PT-level in MedDRA contains 23,954 terms. Having
this enormous selection of labels means dealing with an extreme multi-class problem.
When examining the annotated data the imbalances of the classes is a fact. Looking
at the training data (which will be gathered in section 4.2.2) only 13,978 classes are
represented, meaning that we already lost ∼42% of possible classes. In table 1 the
imbalances of the data becomes clear. Even if the training data set contains 13,978
classes, the table shows that only the 100 most common classes are used to label 54,9%
of the data set. This implies that the 45,1% left is split between the other 13,878 classes
in different measures.

Number of PTs Data covered
100 54,9 %
500 80,7 %
1,000 89,1 %
2,000 94,9 %
3,000 97,1 %
4,000 98,2 %
5,000 98,8 %
7,000 99,5 %
10,000 99,8 %

Table 1: This table shows how much of the training set that is covered for a number of
PTs most commonly used for labeling this set

4.2 Preparations

4.2.1 Language filtering

Since the data consists of verbatims from ICSRs retrieved from countries all over the
world, multiple languages will be present in the data. This thesis will be limited to
working with English verbatims and therefore it is important to find a method that can
successfully separate the English from the non-English verbatims. A number of meth-
ods where tested to find the most effective one for this task. In this section the different
methods are presented. The methods were all evaluated on the same set of 2000 data
rows that were randomly sampled from the whole data set. The 2000 verbatim were
manually labeled as ”English” or ”non-English”, resulting in 478 non-English and 1522
English verbatims.

18

4 Methods and data

Sort by country
An early and easy approach was to examine if we could simply choose to include data
from countries where a majority was written in English. The countries were chosen
based on a manual overview of the data. The countries chosen were: United Arab
Emirates, Australia, Canada, Egypt, United Kingdom of Great Britain and Northern
Ireland, Greece, India and Korea. However this method led to a giant data loss since
many countries had to be excluded because of the presence of non-english verbatims,
even though there was a lot of useful english data also present in these data sets.

Regular expression
When examining the differences in the English vs Non-English data it was clear to see
a common difference in the characters present. There was data containing only non-
alphabetical characters (Chinese/Japanese) and data containing vowels like ”à, é and ı̈”
(French/Italian). By using regular expression these rows could be found and discarded.

Python libraries
The python library langid was used to remove some non-English rows. The function
langid.classify(verbatim) was invoked for every verbatim. Every call made with a verba-
tim that resulted in ”en” (classified as English by langid) was kept and all other verbatim
were removed.

Dictionary
A dictionary was created using a combination of all words in the lexical database Word-
Net [11] and all the words present in any Lowest Level Term in MedDRA (any numbers
or special characters where not added). When evaluating this method each verbatim
was split up into seperate words and each word compared against the dictionary. The
verbatim then received a score of score = englishWords

words
where words refer to the number

of words in the verbatim and englishWords the number of words in the verbatim found
in the dictionary. Finally, since the goal of this language sorting was to make sure that
all data we operate the project on is in actually in English, we based the threshold of the
score upon the precision. The precision was set to be .99 allowing for a .01 error rate of
non-English verbatim.

From evaluation of the results (see section 5.1) the final choice for retrieving only the
english data was a combination of the Dictionary and Regular expression methods men-
tioned above. Using this method left 6,986,110 rows of data (∼70% of the original set).

4.2.2 Division of data

After filtering away non-english verbatims, the remaining 6,986,110 rows were divided
in a three-way split of 70% training data, 10% validation data and 20% test data. Di-

19

4 Methods and data

vision was made with the data sorted over time, based on ReportID:s, meaning that we
are using old data to predict newer data. If the data or how it is labeled has changed
over time, this might be noticeable during the evaluation. If the sets would instead have
been divided by randomly sampling data from across the whole set, the possible data
changes over time would go unnoticed.

4.2.3 Preprocessing

The only preprocessing that was done explicitly was lower-casing all the data. This
since many cases of verbatims in all capital letters were observed in the data. It was
earlier detected that multiple verbatims were structured as LLTs and the lowercasing
will make sure that verbatims such as ”HEADACHE”, ”Headache” and ”headache”
are handled as equals before performing any string matching.

4.3 Modules

The modules are different approaches taken to solve the problem of this thesis. They are
based on simple string matching algorithms as well as the more advanced technology of
the BERT model. The reason for creating these modules was to compare the results of
different algorithms as well as exploring if a combination of different algorithms would
be more beneficial for solving the problem.

4.3.1 String matching - LLT

From explorations of the training data it was discovered that there were many verbatims
that were already written as MedDRA terms. To further explore this finding, a string
matching algorithm for classification was constructed. The algorithm was designed
to compare each verbatim to a dictionary consisting of all LLTs. All the LLTs were
lowercased to match the lowercased verbatims. If a match was found, that verbatim
would be classified to the LLTs corresponding PT.

4.3.2 String matching - training

The second algorithm used the same approach of string match comparisons, but com-
paring the verbatim we want to classify to the verbatims in the training data. We wanted
to make use of previous data by classifying accordingly. If any match was found, the

20

4 Methods and data

verbatim would be labeled as it was labeled in the training data. An initial problem with
this approach was that the very same verbatim expression can be labeled differently in
the training data, resulting in multiple labeling options. To solve this problem all the
verbatims in the training data was compiled into a dictionary of distinct verbatim ex-
pressions. Each distinct verbatim worked as a dictionary key connected to a PT label
value. When creating the dictionary, each distinct verbatim would get the PT that it was
most commonly labeled as in the training data.

4.3.3 BERT

We used a pre-trained BERT base model and fine tuned it for our classification task
using the 4,890,274 rows present in the training data set and trained for 4 epochs. The
input layer was set to 32 and the output layer to 5,000, meaning we input 32 tokens and
have 5,000 possible classes as output. As can be seen in table 1 considering the whole
data set the 5,000 most commonly used labels covers 98.8% of the data labeling.

When using the fine tuned BERT model for classification it produces an output layer of
logits, with a layer size corresponding to to the number of classes, in our case 5,000.
We take the softmax of the logits and classify the verbatim to the class with the corre-
sponding logit of highest softmax value.

Thresholds
Because the verbatims are constructed in free text fields some might be very difficult to
classify. They could for example include measurements, abbreviations, multiple symp-
toms or other ambiguity. In order to avoid misclassification, one option would be to
not classify the most difficult verbatims. The values of the logit layer reflects on the
confidence of the BERT model making good predictions. By taking the values of the
logits into account in the classification process we could decide how confident we need
the model to be.

Since the value of the logits represent the confidence of the corresponding class being
correct, we decided to use this value as a threshold. This is referred to as the val-
threshold. As discovered in the explorations (section 4.1.1) there are cases where mul-
tiple side effects are reported in the same verbatim. This could lead to multiple logits
getting high values. To increase the certainty of the prediction we make, we chose to
also include another threshold based on the difference between the highest and second
highest logit. The smaller the difference between the two highest logits, the less cer-
tainty that the highest value results in a correct prediction, as we have high confidence
in multiple classes. The second threshold is referred to as the diff-threshold.

In practice each verbatim is classified with the PT corresponding to the highest logit

21

4 Methods and data

value, if the logit value exceeded the val-threshold and the difference between the high-
est and second highest logit values exceeded the diff-threshold. For any verbatim for
which the logit values do not satisfy the thresholds, no classification is made. But even
if the confidence of BERT’s prediction is not seen as good enough to classify a verbatim,
there might still be good suggestions among the top predictions. With any verbatim that
is left unclassified the top 5 highest ranked PTs (based on the highest logits from the
BERT output layer) will therefore be provided. If these verbatims are left for manual
mapping it means that the 5 suggestions could be a resource in the process.

Three different modules of BERT were created with the thresholds based on the maxi-
mum f1-score, the maximum f0.5-score and the maximum f0.2-score for both the high-
est value logit (val-threshold) and the difference between the highest and second highest
logit (diff-threshold).

4.4 Evaluation

The modules were evaluated in different combinations to find a pipeline of modules that
gave us the best results on the validation set. The pipelines were evaluated by accuracy
(number of correct predictions) and error rate (number of incorrect predictions). If this
pipeline were to be used in clinical trials it would be very important to not be making
incorrect mappings. Because of this we want to keep the error rate as low as possible.

The evaluation of the pipelines was based on comparisons between the predictions and
the gold standard (GS) as well as an error analysis performed on the different modules
of the final pipeline. The basis for the error analysis was produced by a panel of termi-
nology specialists at UMC. They were asked to review 200 randomly selected verbatims
from each module, where the predicted PT was different from the GS. The terminology
specialists looked at each verbatim and chose a PT that they would code that verbatim
to. Each verbatim was then given a label that shows how the terminology specialists’
PT relates to the (by our system) predicted PT and the gold standard PT.

In table 2 the possible labels and their corresponding description are shown. TS refers
to the PT chosen by the terminology specialists, GS refers to the PT that is our gold
standard and P refers to the (by our system) predicted PT. The label ”-1” was given
when the specialists felt there was not enough information in the verbatim to give it a
PT label. ”0” was given when the specialists chose a PT that was not predicted by our
system, neither the gold standard. ”1” is the case when the specialist chose the same PT
as our system predicted, and ”2” when they chose the same as the gold standard. The
last label ”3” was chosen when the verbatim contained information linking to multiple
PTs, were the specialists would split up the verbatim and code the parts separately.

22

4 Methods and data

As mentioned in section 4.3.3 the output of the manual mapping module is five sug-
gested PTs. In this evaluation ”0” was given when none of the five suggestions (or the
GS) was the same as the specialists’ choice and ”1” when one of the five suggestions
matched their chosen PT.

Label Description
-1 The verbatim has no fitting label
0 (TS != P) AND (TS != GS)
1 TS = P
2 TS = GS
3 The verbatim should be coded to multiple labels

Table 2: The labels used for evaluating the incorrect samples from the different modules

23

5 Results

5 Results

5.1 Language sorting

The results of methods presented in section 4.2.1 for sorting out English data is shown
in the table 3. The different methods were evaluated on a set of 2,000 randomly sampled
rows which were manually labeled as English or non-English.

From table 3 we find that the method Countries had a high precision of almost .99, but
a low recall of .71. It shows that when data was solely selected from a few countries,
the selected data was mainly in English. However a lot of English data (from other
countries) were filtered out.

The RE approach had a prefect recall of 1 meaning that all the English samples were
classified as English. The low precision of around .78 however shows that this method
did not filter out non-English data strictly enough as there were still much left in the
data set.

Python LangID had relatively good results in both precision (.92) and recall (.89) but
was out-performed by the Dictionary method that got a precision of .99 and a recall of
.96.

When combining the Dictionary method with the RE, having a perfect recall, the preci-
sion was slightly improved without any negative effect on the recall. This led to the best
precision and fscore of all the methods which led to the final choice of the Dictionary +
RE as the method for language sorting.

Method Precision Recall F1-score
Countries 0.9899 0.7063 0.8244
RE 0.7841 1 0.8790
Python LangID 0.9192 0.8890 0.9038
Dictionary 0.9898 0.9560 0.9726
Dictionary + RE 0.9905 0.9560 0.9729

Table 3: The different methods for distinguishing english verbatims, evaluated with a
sample set of 2,000 manually labeled rows of data.

24

5 Results

5.2 Thresholds

Table 4 shows the three different thresholds used for the BERT module. Each one of
these three thresholds corresponds to one ”diff”-threshold and one ”val”-threshold. The
values used for ”diff” (difference in highest and second highest logit) and ”val” (the
value of the highest logit) were chosen because they were maximizing three different
f-scores (F1-score, F0.5-score and F0.2-score).

Threshold Diff Val
F1 0.4 9.2
F0.5 2.0 10.8
F0.2 4.1 12.6

Table 4: The different thresholds used to improve the predictions made by BERT

When evaluating the validation set on the BERT module, the distribution of the correctly
classified verbatims are displayed to the left in figure 5. The y-axis shows the value of
the highest value logit (referred to as ”val”). The x-axis shows the difference between
the highest and second highest value logits (referred to as ”diff”). To the right in figure
5 the distribution of the incorrectly classified data is displayed. It may look as if the
graph showing the incorrect predictions has more data because of the intensity of the
heat map. However this is a result of the graphs being generated separately, thereby the
intensity is not comparable.

Comparing the distributions in the graphs, the incorrectly classified verbatims are much
more centered towards the lower values of both ”diff” and ”val”, while the correctly
classified verbatims are more centered around higher values. The three different boxes
present in both graphs show how the three different thresholds introduced in table 4
affect the number of occurrences of correct and incorrect predictions in the validation
set. Everything inside the box will be left unclassified for that specific threshold, while
everything outside the box is classified by BERT. As can be seen the higher the thresh-
old boundary, the fewer incorrect predictions are made. However, this also means that
more of the correct predictions will be left unclassified. The overlapping distribution
of the two graphs shows that no threshold will completely eliminate the errors. Choos-
ing a threshold will really be a trade-off of getting the best possible accuracy without
overstepping the accepted error rate.

25

5 Results

Figure 5: Two heat map graphs displaying the data distribution from the by BERT
correctly and incorrectly predicted verbatims. The graphs also show the three different
thresholds from table 4. The graphs were generated separately and the intensity can
therefore not be compared.

5.3 Pipeline

A number of possible pipelines were evaluated based on different combinations of mod-
ules presented in section 4.3 with different thresholds presented in table 4. The pipelines
are shown in table 5 and the evaluation is done on the validation set.

In pipeline 1 the BERT model is classifying the whole validation set. The accuracy
is 0.8376 which can be interpreted as a good result considering the difficult examples
that exists in the data set (see explorations of the data in section 4.1.1). However the
drawback of this pipeline is the high error rate of 0.1624, which would never be accepted
for the potential use case of the system. To let BERT classify every verbatim seemingly
was a too simple approach. When restricting the classification with different thresholds
in pipeline 2-4 both the accuracy and the error rate drops as the threshold boundary is
increased.

The results of pipeline 5 shows that more than half of the verbatims in the validation
set are actually in the form of LLTs. Even as the error rate for this pipeline setup is
relatively low (around 1%) the presence of these errors is still surprising. They occur
when a verbatim, that is also a LLT, is mapped to another PT than the one that the LLT
is corresponding to.

When apart from LLTs also basing the predictions on training data (meaning classifying
a verbatim in the validation set as it was classified in the training set) the error rate
increases from 1,1 % to 3,58% (comparing pipeline 5 and 6). This shows that the exact
same verbatim can be classified differently, which strengthen the hypothesis that the
mapping is sometimes based on additional information. Because of the high error rate

26

5 Results

brought by basing future predictions on exact matches in the training data (as can be
seen in pipeline 6, 8 and 9) this module was not kept in the final pipeline.

Pipeline 7 is a combination of the modules separately run in pipeline 4 and 5. When
comparing these pipelines it is found that the combination really improves the accuracy
without increasing the error rate notably. The improved accuracy of adding the LLT-
matching before predicting with BERT can possibly be a result of BERT being limited
to a number of classes (in this case 5,000). The LLT-matching can predict any of the
almost 24,000 classes as long as the verbatims are in the form of LLTs, which a notable
section seemingly is.

Pipeline 10 can also be compared to pipeline 7. The pipelines consist of the same mod-
ules but using different thresholds for the BERT prediction. With the relaxed thresh-
old in pipeline 10 the accuracy approximately increases from 71% to 79%. However
pipeline 7 was considered a better option as the error rate more than doubled with the
relaxed thresholds.

id Module 1 Module 2 Module 3 Accuracy Error rate Unclassified
1 BERT - - 0.8376 0.1624 0
2 BERT F1 - - 0.8054 0.0714 0.1232
3 BERT F0.5 - - 0.7520 0.0334 0.2146
4 BERT F0.2 - - 0.6258 0.0111 0.3631
5 LLT - - 0.5549 0.0110 0.4341
6 LLT Training - 0.7046 0.0358 0.2596
7 LLT BERT F0.2 - 0.7106 0.0169 0.2725
8 LLT BERT F0.2 Training 0.7649 0.0387 0.1964
9 LLT Training BERT F0.2 0.7612 0.0389 0.1999
10 LLT BERT F0.5 - 0.7923 0.0365 0.1712

Table 5: Evaluation of possible pipelines on the validation set

5.4 Final model

For the final model, pipeline number 7 from table 5 was chosen because of its low error
rate and relatively high accuracy. In figure 6 the details of how the selected pipeline
works are shown. The first two modules LLT and BERT are the automatic part of the
pipeline that perform classification. The resulting correct and incorrect classifications
are displayed in the figure. The data that could not get automatically classified is left
to the last module Manual mapping where the 5 top suggestions from BERT are given.
The figure shows if the correct label is found within the top 5 suggestions or not.

27

5 Results

When evaluating the pipeline on the validation set the accuracy is measured to 71.06%
(LLT-matching: 55.49% and BERT: 15.57%) compared to the 80,21% (LLT-matching:
66.50% and BERT: 13.71%) when evaluating on the test set. The increase in accuracy
can evidently be explained by a bigger part of the test set consisting of LLT terms,
compared to the validation set. As mentioned in section 4.2.2 the sets were split over
time and the increase in LLTs among the later received verbatims could be explained by
how newer reporting systems choose to input this information.

The results of the manual mapping module shows that the suggestions generated by
BERT are rather accurate. For the validation set about 77% of the verbatims left for
manual mapping has the correct label found in the top 5 suggestions, for the test set the
corresponding results were about 82%. This shows that the suggestions could actually
be a useful resource for someone who were to map these verbatims manually.

Figure 6: Evaluation of the final pipeline. The results on the validation set are shown
in black while the results of the test set are shown in red. The percentages are given as
fractions of each entire data set.

5.5 Classification examples

Table 6, 7 and 8 shows examples of data from the test set that is incorrectly predicted
in the different modules of the pipeline. The examples were selected to show as many
different scenarios of wrong predictions and classifications as possible.

28

5 Results

Table 6 displays verbatims in the form of LLTs that was incorrectly classified. The
verbatim pregnant is classified as Pregnancy but was labeled in the validation set as
Exposure during pregnancy. Seemingly the label contains more information than the
verbatim, making the classification, which is solely based on the verbatim, very difficult.
Another example from the same table is the verbatim feels bad that is labeled Malaise
but classified as Feeling abnormal.

In table 7 the classification Lipase increased made by BERT for a verbatim labeled as
Hyperlipasaemia is found. The classification is incorrect as the correct label was not
captured, however hyperlipasaemia is a diagnosis given for someone with increased li-
pase. A similar case, found in the same table, is a verbatim that is classified as Pyrexia
(which is the diagnostic term for having a fever) while the label is set to Body tempera-
ture increased.

Presented in table 8 are examples of verbatims that were not classified by BERT and
where the label was not found in the top 5 suggestions. The verbatim swollen tongue,
dyspnoea, dysphagia, drooling, cough is labeled as Drooling. In the top 5 suggestions
we find labels such as Dyspnoea, Cough and Swollen tongue, which are all symptoms
expressed in the verbatim.

Verbatim Label (PT) Classification (PT)
pregnant Exposure during pregnancy Pregnancy
application site reaction Skin reaction Application site reaction
painful rash Pain of skin Rash
feels bad Malaise Feeling abnormal
bunion operation Foot deformity Bunion operation

Table 6: Examples of data incorrectly classified by LLT-matching

Verbatim Label (PT) Classification (PT)
lipase (over 4000u/l) Hyperlipasaemia Lipase increased
high temperature all over the body Body temperature increased Pyrexia
imbalance Walking disability Balance disorder
increased anger Mood swings Anger
does not have af Off label use Atrial fibrillation

Table 7: Examples of data incorrectly classified by BERT

29

5 Results

Verbatim Label (PT) Top 5 suggestions (PT)
multiple tumors in me-
diastinum

Mediastinum neoplasm [’Colon cancer’, ’Malignant neoplasm
progression’, ’Neoplasm malignant’,
’Second primary malignancy’, ’Neo-
plasm’]

tablet breakage Prescribed underdose [’Product physical issue’, ’Product qual-
ity issue’, ’Wrong technique in product
usage process’, ’Product container issue’,
’Product complaint’]

raised ketone Acetonaemia [’Blood ketone body present’, ’Urine ke-
tone body present’, ’Ketoacidosis’, ’De-
hydration’, ’Bone disorder’]

fracture (traumatic) Femoral neck fracture [’Fracture’, ’Upper limb fracture’, ’Fall’,
’Stress fracture’, ’Multiple fractures’]

swollen tongue, dysp-
noea, dysphagia, drool-
ing, cough.

Drooling [’Dyspnoea’, ’Cough’, ’Swollen tongue’,
’Anaphylactic reaction’, ’Dysphagia’]

Table 8: Examples of data that was unclassified by BERT (because the logit values did
not pass the thresholds) where the correct label was not found in the top 5 suggestions.

5.6 Error analysis

In this section the results of the error analysis (see section 4.4) is shown in table 9.
For this evaluation 200 random samples of incorrectly predicted verbatims were chosen
from each module (LLT-, BERT- and the manual mapping module) and classified by
terminology specialists at UMC.

For the LLT module the specialists classified all the 200 verbatims with the same PT as
our system. They also noted that in 105 of the 200 cases (just over 50%) the verbatim
was the exact same as the PT chosen by them and our LLT module. These results are
not surprising as the LLT module is based on direct string matches and should therefore
hypothetically have a high accuracy. As mentioned previously, looking at table 6, the
correct labels sometimes seems to be based on more information than solely the verba-
tim. In this error analysis however, the terminology specialists, similarly to our pipeline,
only consider and have access to the verbatim.

For the BERT module in 149 cases (covering 74,5% of the samples) the specialists
chose the same PT as BERT had predicted, compared to the 15 cases (7,5%) where they
chose the gold standard PT. There were also a few cases were the verbatim could not
be classified either because the specialists wanted to split it up as it should be mapped

30

5 Results

to multiple PTs (label ”3”) or because it could not be mapped to any PT (label ”-1”).
7% of the set was labeled as ”-1” and two examples of that are the verbatims: ”to be
high” and ”does not have af”. Another 4.5% needed to be split up, one example is the
verbatim: ”hyperglycemia/pain in hands/swelling on feet”.

When it comes to the last module, the manual mapping module, the chosen labels are
more distributed over the different options then for the other modules. In 27.5% of cases
the specialist chose the same PT as one of the five suggestions from our system while
in 26.7% they chose the same as the gold standard. Another 24.5% of the verbatims
needed to be split up, 8% of verbatims could not be labeled and in 13.5 % of cases none
of the five suggestions nor the gold standard matched the PT chosen by the specialists.

Label LLT
module

BERT
module

Manual
mapping
module

-1 0 (0) 0.070 (14) 0.080 (16)
0 0 (0) 0.065 (13) 0.135 (27)
1 1 (200) 0.745 (149) 0.275 (55)
2 0 (0) 0.075 (15) 0.265 (53)
3 0 (0) 0.045 (9) 0.245 (49)

Table 9: The results of the error analysis are shown as fractions for each module and the
number of occurrences of the labels are shown in parentheses. The description of the
labels can be found in table 2.

31

6 Discussion

6 Discussion

The final pipeline design consists of three different modules namely the LLT-matching
module, the BERT module and lastly the Manual mapping module. BERT is by far the
most important and complex module as it can make automatic predictions for all kinds
of English verbatims. The shortcomings of the other modules are that the LLT-matching
can only make predictions for verbatims structured as LLTs and the Manual mapping
is not automatic as it involves human judgement. However through evaluation of the
pipelines in table 5 it shows that all the above mentioned modules serves a purpose in
the final pipeline, leading up to that choice.

The overlapping distribution of the correctly and incorrectly predicted verbatims (figure
5), in the graphs displaying information from the output layer of BERT, shows that no
threshold will completely eliminate the errors. Choosing a threshold is really a trade-off
of getting the best possible accuracy without overstepping the accepted error rate. The
threshold could be made more or less strict depending on the task of the model and its
accepted error rate.

When comparing the correct labels with either the classification in tables 6 and 7 or with
the corresponding suggestions in table 8 it is clear to see that one major problem for our
model is the great number of classes and how similar they can be. We see that even if the
classification or given suggestions are incorrect (as they differ from the actual label) the
classes are in several cases similar in meaning. Another problem seems to be the limited
information gained from solely using the verbatim as input, as some labels seems to be
based on more information then what is given in the verbatim.

From the error analysis in section 5.6 it was discovered that, assuming that the verbatim
is the only source of information, there are cases where the gold standard might not be
appropriate. This could be a result of many things. It has been mentioned before that the
gold standard might be based on additional information and as the mapping is done man-
ually it would not be surprising for some human errors to occur as well. The specialists
that performed the evaluation found cases of verbatims that, according to them, could
not be mapped or that should be split up into multiple verbatims before being mapped.
They also found that for many of the verbatims the model’s classifications, which were
evaluated as errors, were actually matching their own proposed labels. When looking
at errors from the BERT module, the specialists had chosen the same label as BERT
classified in 149 of the 200 samples (74,5%).

32

7 Conclusion

7 Conclusion

The aim of this thesis was to answer the question introduced in section 1.2, namely:
How can we use verbatim descriptions of adverse drug reaction to create an automatic
mapping to MedDRA terms?. This question can now be answered with the help of the
more specific questions formulated.

• How do we handle lack of training data?
Because of the great class imbalances in the training data, the BERT model was
limited to consider the 5000 most common classes. The drawback of this choice
was that the other 18,954 possible PT classes were excluded. However the string
matching performed in the LLT-module still provided the possibility to match any
class. As the 5000 classes that BERT was limited to covered 98,8 % of the training
data (see table 1) we can conclude that the excluded classes are seldom used as
labels.

• How do we deal with our training data being inadequate?
The model was developed from the information in the preexisting mappings pro-
vided in the training data, namely our gold standard. In explorations of the data it
was found the the same verbatim can be mapped to different classes and in some
cases it seemed as if the mappings were based on more information then what our
model was given (the verbatim). The errors that were obtained when evaluating
the model by comparing the results with the gold standard, were further evalu-
ated by terminology specialists at UMC. This evaluation showed a disagreement
in suitable labels for the verbatims. It showed that the gold standard might not
always be an adequate representation solely basing the input on the verbatims and
that there are classifications made in our test set that could be considered correct
even if they are part of the error rate.

• Can machine learning techniques be used to improve the results?
As can be seen in the evaluation of the final model (figure 6), a large piece of the
test set could be correctly classified with a simple string matching approach in the
LLT-module. However the use of BERT shows that the more difficult verbatims
could with a low trade-off of incorrect predictions increase the accuracy of the
model.

The final model resulted in an accuracy of approximately 80% and an error rate of
approximately 1%, which was viewed by the job initiator UMC as good results. The
goal of automatically mapping verbatim expressions of ADRs to MedDRA terms was
partially fulfilled. For this task it is very important to keep a low error rate and because

33

7 Conclusion

of this requirement, with the approach taken, it was concluded that some verbatims are
too difficult to map automatically. The solution was instead to keep the most difficult
verbatims unclassified and instead provide suggestions that can support the process of
manually mapping them.

34

8 Future work

8 Future work

In some coding events the LLT is actually preferred to use as the MedDRA label (instead
of the PT). A future work is therefore to improve the system to be able to classify to this
more specific MedDRA term. As the MedDRA terms are arranged in a hierarchical
structure this could suggestively be accomplished by extending the system to predict a
LLT based on the ones that are related to the already predicted PT.

From the evaluation of the incorrect results in the pipeline (table 9), it can be concluded
that the coding specialist in some cases base their choice of label upon more than just
the verbatim. In order for the system to get the correct predictions we might therefore
want to consider additional information related to the reported reaction instead of solely
considering the verbatim. However, this of course depends on if basing the label on
additional information is desirable or not, which should first be determined.

The BERT model that was used in this project is the original model trained on gen-
eral English text. Since BERT’s release other more specialized models have been pro-
posed. One example is BioBERT which in addition to BERTs pre-training on English
Wikipedia and BooksCorpus also includes text from biomedical domains in order to
increase performance on tasks with text from this field [12]. Another example is Clini-
calBERT that with its training on clinical text distinctly improves the performance from
BERT, when evaluated on data within that domain. [13] A future improvement could
be to examine if using domain specific BERT models would improve the performance
compared to the general BERT.

35

References

References

[1] World Health Organization (2002), The Importance of Pharmacovigilance, Avail-
able at: https://apps.who.int/iris/bitstream/handle/10665/42493/a75646.pdf

[2] World Health Organization, The WHO Programme for International Drug Mon-
itoring, Available at: http://www.who.int/medicines/areas/quality safety/safety
efficacy/National PV Centres Map/en

[3] VigiBase, The unique global resource at the heart of the drive for safer use of
medicines, Available at: https://www.who-umc.org/vigibase/vigibase

[4] Mozzicato P (2009), MedDRA An Overview of the Medical Dictionary for Regula-
tory Activities, Available at: https://www.researchgate.net/publication/233524508
MedDRA An Overview of the Medical Dictionary for Regulatory Activities

[5] MedDRA (2019), Introductory Guide MedDRA Version 22.1, Available at: https:
//admin.new.meddra.org/sites/default/files/guidance/file/000354 intguide 22.1.pdf

[6] Goldberg Y (2017), Neural Network Methods for Natural Language Processing

[7] Jurafsky D. and Martin J. H. (2019) Speech and Language Processing, Available at:
https://web.stanford.edu/∼jurafsky/slp3/

[8] Mikolov T, Chen K, Corrado G and Dean J (2013), Efficient Estimation of Word
Representations in Vector Space, Available at: https://arxiv.org/pdf/1301.3781.pdf

[9] Devlin J, Chang M-W, Lee K and Toutanova K (2019), BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding, Available at: https:
//arxiv.org/pdf/1810.04805.pdf

[10] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L and
Polosukhin I (2017), Attention is all you need, Available at: https://arxiv.org/pdf/
1706.03762.pdf

[11] Wordnet, Princeton University, Available at: https://wordnet.princeton.edu

[12] Lee J, Yoon W, Kim S, Kim D, Kim S, So C H and Kang J (2019) BioBERT: a
pre-trained biomedical language representation model for biomedical text mining,
Available at: https://arxiv.org/pdf/1901.08746.pdf

[13] Huang K, Altosaar J and Ranganath R (2019), ClinicalBert: Modeling Clini-
cal Notes and Predicting Hospital Readmission, Available at: https://arxiv.org/pdf/
1904.05342.pdf

36

https://apps.who.int/iris/bitstream/handle/10665/42493/a75646.pdf
http://www.who.int/medicines/areas/quality_safety/safety_efficacy/National_PV_Centres_Map/en
http://www.who.int/medicines/areas/quality_safety/safety_efficacy/National_PV_Centres_Map/en
https://www.who-umc.org/vigibase/vigibase
https://www.researchgate.net/publication/233524508_MedDRA_An_Overview_of_the_Medical_Dictionary_for_Regulatory_Activities
https://www.researchgate.net/publication/233524508_MedDRA_An_Overview_of_the_Medical_Dictionary_for_Regulatory_Activities
https://admin.new.meddra.org/sites/default/files/guidance/file/000354_intguide_22.1.pdf
https://admin.new.meddra.org/sites/default/files/guidance/file/000354_intguide_22.1.pdf
https://web.stanford.edu/~jurafsky/slp3/
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://wordnet.princeton.edu
https://arxiv.org/pdf/1901.08746.pdf
https://arxiv.org/pdf/1904.05342.pdf
https://arxiv.org/pdf/1904.05342.pdf

	Introduction
	Motivation
	Problem formulation
	Delimitations
	Thesis overview

	Background
	UMC
	MedDRA

	Theory
	Natural language processing
	Classification
	Text representation
	Machine learning
	Deep learning
	BERT

	Evaluation
	Confusion matrix
	Accuracy
	Precision
	Recall
	F-score
	Error rate

	Data division

	Methods and data
	Data
	Explorations

	Preparations
	Language filtering
	Division of data
	Preprocessing

	Modules
	String matching - LLT
	String matching - training
	BERT

	Evaluation

	Results
	Language sorting
	Thresholds
	Pipeline
	Final model
	Classification examples
	Error analysis

	Discussion
	Conclusion
	Future work

