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ABSTRACT

Today’s society is increasingly software-driven and dependent on powerful computer tech-
nology. Therefore it is important that advancements in the low-level processor hardware
are made available for exploitation by a growing number of programmers of differing skill
level. However, as we are approaching the end of Moore’s law, hardware designers are find-
ing new and increasingly complex ways to increase the accessible processor performance. It
is getting more and more difficult to effectively target these processing resources without
expert knowledge in parallelization, heterogeneous computation, communication, synchro-
nization, and so on. To ensure that the software side can keep up, advanced programming
environments and frameworks are needed to bridge the widening gap between hardware
and software. One such example is the pattern-centric skeleton programming model and in
particular the SkePU project. The work presented in this thesis first redesigns the SkePU
framework based on modern C++ variadic template metaprogramming and state-of-the-art
compiler technology. It then explores new ways to improve performance: by providing new
patterns, improving the data access locality of existing ones, and using both static and
dynamic knowledge about program flow. The work combines novel ideas with practical
evaluation of the approach on several applications. The advancements also include the
first skeleton API that allows variadic skeletons, new data containers, and finally an ap-
proach to make skeleton programming more customizable without compromising universal
portability.
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1 Introduction

Contemporary computer architectures are increasingly parallel designs with
multiple processor cores. In addition, massively parallel accelerators, such as
GPUs, make these systems heterogeneous architectures. This development is
a consequence of the power and frequency limitations for single, sequential
processors. Parallel architectures help overcome this barrier and maintain
Moore’s law-like growth of computing power. For programmers and pro-
gramming languages designed for sequential and homogeneous systems, it is
a challenge to utilize the resources available in modern computer systems in
an efficient manner. The challenges are many: communication, synchroniza-
tion, load distribution, and so on. This is especially true if also performance
portability is desired, as different systems can vary widely in terms of both
the number and types of processing cores, as well as in other characteristics
such as memory hierarchy.

1.1 Aims and research questions

This thesis aims to introduce the modern approach to high-level parallel pro-
gramming taken by SkePU version 2 and later. SkePU implements its own
interpretation of the skeleton programming concept, which is a widely re-
searched programming model using patterns and parametrizable higher-order
functions as programming constructs. Throughout the thesis, the skeleton
programming approach is explored, with emphasis on recent research and the
current landscape of available skeleton programming frameworks. The the-

1



1. Introduction

sis aims to give a good overview of SkePU syntax and features, but is not
intended to be an exhaustive documentation of the framework. Rather, the
approach is to provide insight into the thoughts and design considerations of
the contributions that has been made to SkePU over the past few years. Dur-
ing this time, SkePU has seen significant change, both in terms of interface
adaption and modernization as well as extensions in feature set and target
hardware platforms.

The work on SkePU 2 and SkePU 3 attempts to address the following:

RQ1 How can a contemporary skeleton programming interface utilize modern
C++ capabilities such as variadic templates and lambda expressions?

RQ2 Can flexibility and type-safety be improved by providing a custom
source-to-source compiler instead of C-style macros, for backend code
generation?

RQ3 How can SkePU be improved for real-world applications, e.g. for scien-
tific computing, by applying application-framework co-design?

Specifically, the thesis goes into detail on three specific contributions, pro-
viding answers to the following research questions:

RQ4 How can lazy evaluation be utilized in SkePU programs composed of
sequences of skeleton operations on the same data set, and specifically,
is inter-skeleton tiling an optimization technique that can be applied in
this scenario?

RQ5 Can CPU-GPU hybrid execution of skeletons be implemented as a back-
end target through the variadic SkePU 2 (and 3) interface? What is the
optimal split ratio of work between CPU and GPU backends, and what
is the possible performance gain?

RQ6 How can SkePU be utilized or provide benefit for applications which
are not a perfect fit for automatic generation of backend-specific code?
Should there be a way for expert programmers to override backend code
generation in cases for which this is desirable?

1.2 Published work behind this thesis

This thesis is based on the work presented in six papers, five published and
one in the process of publication.

1. SkePU 2: Flexible and Type-Safe Skeleton Programming for
Heterogeneous Parallel Systems [30]
August Ernstsson, Lu Li, and Christoph Kessler

2



1.2. Published work behind this thesis

This paper was first presented at the HLPP 2016 symposium in Mün-
ster, Germany on July 4, 2016. The journal paper was published in
International Journal of Parallel Programming in 2017. Initial proto-
type and design work of SkePU 2 was carried out as part of August
Ernstsson’s master’s thesis [26]. The same work was also disseminated
at the EXCESS project workshop in Gothenburg, Sweden on August
26, 2016 and at MCC 2016 workshop on November 29, 2016. A poster
on SkePU 2 based on the contributions in this paper was represented at
HiPEAC 2017 in Stockholm, Sweden.

2. Extending smart containers for data locality‐aware skeleton
programming [28]
August Ernstsson and Christoph Kessler
This paper was first presented at HLPP 2017 in Valladolid, Spain on
July 11, 2017. The paper was published in Concurrency and Computa-
tion Practice and Experience in 2019. The same contribution was also
presented at MCC 2017 by means of a poster and short presentation.

3. Hybrid CPU–GPU execution support in the skeleton program-
ming framework SkePU [55]
Tomas Öhberg, August Ernstsson, and Christoph Kessler
This paper was first presented at HLPP 2018. This journal paper was
published in The Journal of Supercomputing in 2019. The contributions
in this paper are results of the master’s thesis project by Tomas Öhberg
[54], supervised and guided by August.

4. Multi-Variant User Functions for Platform-Aware Skeleton
Programming [29]
August Ernstsson and Christoph Kessler
This paper was first presented at ParCo’19 in Prague, Czech Republic
on September 10, 2019. The journal paper was published in Advances in
Parallel Computing in 2020. A preview of this contribution was repre-
sented at HLPP 2019 with a poster exhibition and short presentation.
The work was also disseminated at the MCC 2019 workshop in Karl-
skrona, Sweden on November 27, 2019.

5. Portable exploitation of parallel and heterogeneous HPC ar-
chitectures in neural simulation using SkePU [57]
Sotirios Panagiotou, August Ernstsson, Johan Ahlqvist, Lazaros Pa-
padopoulos, Christoph Kessler, and Dimitrios Soudris
This conference paper was presented at SCOPES’20 in 2020 and pub-
lished in the proceedings the same year. The paper is the first published
result of collaborations within the EXA2PRO project, and provides re-
sults from applying SkePU in a real-world application context.
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1. Introduction

6. SkePU 3: Portable High-Level Programming of Heterogeneous
Systems and HPC Clusters [27]
August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and Christoph
Kessler
This paper was presented at HLPP 2020 on July 9, 2020. At the time
of writing, an updated version is pending submission for a special issue
journal publication. Also a direct result of EXA2PRO collaborations,
the paper introduces SkePU 3, including its new cluster backend.

In addition to the peer-reviewed published material, this thesis is shaped
by the experience gained from the exposure of SkePU to potential users by
the means of numerous tutorials, given e.g. in conjunction with HLPP 2019
and MCC 2019, and in teaching through the course TDDD56: Multicore
and GPU programming, and through supervision of master’s thesis projects.

Paper 2, 3, and 4 are reproduced in this thesis in large part as individual
contributions. Paper 1 and 6 have the introduction of SkePU version 2 and
SkePU version 3, respectively, as their main contributions, and therefore the
material in these papers is significantly reworked into the chapters of this
thesis which present the history, interface, and implementation of SkePU, to-
gether with a considerable amount of newly written material. In addition,
experimental results and evaluation from all papers is collected and repro-
duced in the results chapter.

1.3 Structure

This thesis is structured as follows:
Chapter 2 presents background surrounding the skeleton programming

paradigm for high-level parallel programming. Various applications of the
skeleton programming model from the scientific community and the industry
are also surveyed in this chapter, as related work. Chapter 3 provides an
initial concise overview of the SkePU framework, the main topic of the thesis.
The deep dive into SkePU then begins with Chapter 4, which explores the
application programming interface of SkePU and the decisions behind it.
This chapter also contains a study of SkePU’s data representation abstrac-
tion, smart containers. Once the outwards-facing aspects of SkePU are
well understood, Chapter 5 explains the implementation of SkePU with its
header library and compiler toolchain.

The subsequent three chapters presents three main contributions and are
based on three of the papers mentioned in Section 1.2: Chapter 6 covers the
work on a data-locality optimization, Chapter 7 presents the hybrid backend,
and Chapter 8 details multi-variant user functions. These chapters omits the
results, which are collected in Chapter 9 together with other published and
unpublished results including performance evaluation.

Chapter 10 concludes the thesis and presents ideas for future work.

4



2 Skeleton programming

This chapter presents skeleton programming—the approach to high-level par-
allel programming which forms the basis for the work presented in this thesis.
It starts with a background and surrounding context of pattern-based parallel
programming, and subsequently moves on to related work, surveying the vast
field of systems implementing skeleton programming and related ideas.

2.1 Background

The motivation behind the need for parallel computing, provided in Chapter 1,
answers the question of why there is a need for (high-level) parallel systems. In
this chapter, we assume that the hardware side of the equation has been taken
care of. An assumption that largely is true—we have access to processing
units of ever increasing width, be it traditional CPU-style cores or accelerator
devices, and these units are assembled in larger and larger clusters. As of the
time of writing, the leading supercomputer cluster in the world has millions
of nodes1 (and total parallel performance of almost half an exaflop).

A natural follow-up is how the underlying issues presented in the moti-
vation should be addressed. Programming of parallel hardware is inherently
more challenging for the user than traditional sequential programming (es-
pecially when the parallel system is heterogeneous), and parallel computing

1A twice-yearly updated list of the most powerful supercomputers in the world is
maintained by Top500.org. At the time of writing, the latest version was available at
https://www.top500.org/lists/top500/2020/06/.
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2. Skeleton programming

systems need to accommodate this fact in the systems and interfaces presented
to the programmer. As expressed by Cole [12], finding the right abstraction
level is the key to balance the equation, and this is an ever-moving target—as
hardware capabilities increase, the penalties imposed by additional levels of
abstraction become more forgiving. As it happens, there seems to be some
scientific consensus, judging by the breadth of work published on the subject
(as presented in this chapter), that the time has come for algorithmic skeletons
(throughout this thesis mostly referred to by the term skeleton programming)
to be a viable high-level abstraction for programming of parallel hardware.

High-level parallel programming frameworks aim to improve on this situa-
tion by reducing the user-facing complexity of programs. A small number of
highly optimized but still general programming building blocks are presented
through a high-level interface. This category of frameworks include applica-
tion specific languages, PGAS (Partitioned Global Address Space) interfaces,
dataflow models, and more, but most importantly for this thesis: the skeleton
programming [12] concept.

Skeleton programming [12, 33] is a programming model for parallel systems
inspired by functional programming. The central abstraction of the concept
are the skeletons which are inherently parallelizable computational patterns.
These patterns are known from functional programming as higher-order func-
tions: functions accepting other functions as parameters. Common examples
include map and reduce. The supplied function is applied to a structured set
of data according to the semantics of the particular skeleton. Typically, the
function is assumed to have no side effects and the computation can thus be
reordered and parallelized.

Compositions of skeletons compose entire programs, sequential in interface
but with parallelizable semantics. Aspects such as communication and syn-
chronization are nowhere to be (explicitly) seen, and even particulars about
how and where computation is performed in the underlying system is de-
cided by the system itself, not the programmer. In other terms: skeleton
programming tends to be more on the declarative side, at least pertaining to
overarching computational structures in a program.

Rabhi and Gorlatch [61] compare patterns in the sense of algorithmic
skeletons to design patterns from software engineering. They note that while
there are similarities and even direct analogues between the two, skeleton
patterns are formal constructs used for performance-related reasons, while
design patterns are loosely defined and applied e.g. for reliability. In this
thesis, the term pattern strictly refers to algorithmic skeletons.

Several parallel programming frameworks implement the algorithmic skele-
ton model [24, 70, 25, 46], some of them for multiple different parallel archi-
tectures (backends) with a single common interface. Selection of backends
can be done with auto-tuning [15]. Examples of skeleton patterns are often
divided into two categories: data parallel patterns such as the aforementioned
map and reduce, and task parallel patterns including task farming and par-

6



2.2. Related work

allel divide-and-conquer, among others. Particularities of how the skeleton
programming model is adapted in the actual frameworks can differ signifi-
cantly, visible for instance in the available skeleton set (and even the naming
of skeleton patterns), backend set, and naturally also the general program
syntax, among others.

2.2 Related work

The skeleton approach to high-level programming of parallel systems was in-
troduced by Cole in 1989 [12, 11]. Since then, many academic skeleton pro-
gramming frameworks have been presented, and the concept also increasingly
found its way into commercial and industrial-strength programming environ-
ments, such as Intel TBB for multi-core CPU parallelism, Nvidia Thrust or
Khronos SYCL for GPU parallelism, or Google MapReduce and Apache Spark
for cluster-level parallelism over huge data sets in distributed files.

While early skeleton programming environments attempted to define and
implement their own programming language, library-based and DSL-based
approaches have, by and large, been more successful, due to fewer dependen-
cies and lower implementation effort. Frameworks for skeleton programming
became practically most effective in combination with (modern) C++ as base
language. Moreover, the approach was fueled by the increasing diversity of
processing hardware with upcoming multi-core and heterogeneous parallelism
since the early 21st century.

This section first surveys two pattern-based frameworks in more detail:
GrPPI in Section 2.2.1 and Musket in Section 2.2.2. Both are relatively re-
cent contributions from the academic community and actively maintained and
published, and they provide both similarities and differences when compared
to SkePU. Some attention is also given to industry-led high-level parallel pro-
gramming, which are led either by individual corporations or through consor-
tia and standardization committees. SYCL is an important standardization
initiative and is given extra attention in Section 2.2.3, while Section 2.2.4 ex-
plores further industry efforts. These are important especially as their wide
availability makes them targets or dependencies of academic work. The re-
mainder of the related work section is spent on just that: the wide variety of
large and small contributions of academic research, most of which come with
implementations and programming systems of their own.

2.2.1 GrPPI
GrPPI [63] is a relatively recent interface for generic parallel patterns. Like
SkePU, it takes full advantage of modern C++ and is designed as an interface
abstracting from and selecting among lower-level frameworks: C++ threads,
OpenMP, Intel TBB, and Thrust.

7
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The patterns offered by GrPPI (it does not use the term skeletons, but
it is a matter of terminology choice) are split into stream parallel and data
parallel groups.

As SkePU does not feature stream parallelism, this is a good opportunity
to discuss common stream parallel patterns. In GrPPI, these are:

• Pipeline
Pipeline parallelization is in essence the opposite of data parallelism:
parallelization is gained not from the width of the data set, but from
the depth of the computation sequence. A pipeline consists of a chain
of function calls (which can, but are not required to be, data parallel
patterns in themselves). Each function is evaluated in parallel with the
others, but due to the dependency chain, each function call are on a
different packet from the data stream. The pipeline eventually fills up
and reaches a steady state where all pipeline stages have independent
data to work on.

• Farm
Much like a stream map, farm computes a transformation of the incom-
ing packets and places the results in the output stream. Each function
invocation is ”farmed” out to a set of parallel workers.

• Filter
The filter pattern takes as input a stream and returns a stream where
packets may be filtered out by a predicate (boolean) function. Par-
allelization is extracted by computing several stream packets at once,
with the requirement that the invocations of the filtering function are
independent.

• Accumulator
Much like a stream version of reduce, the accumulator pattern combines
packets from the source stream using an associative and commutative
binary combination operator. The output stream is partial ”sums” of
the packets in the source stream, with the number of elements dependent
on a set window size.

The set of data parallel patterns is as follows:

• Map
Map is conceptually the same pattern as the SkePU Map presented later
in this thesis. As with all pattern libraries, the full capabilities, interface,
and implementation can differ significantly.

• Reduce
A finite data set is accumulated into a single value by an associative and
commutative binary combination operator, like the SkePU Reduce.

8
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• Stencil
Stencil is the GrPPI name for the same pattern as represented in SkePU
by MapOverlap.

• MapReduce
Unlike the prior data parallel skeletons, GrPPI MapReduce differs in in-
terpretation from the one in SkePU. GrPPI MapReduce is more closely
aligned with the big data analytics framework style MapReduce, where
the mapping function not only computes a transformation of its argu-
ment, but also assigns a key and returns a tuple of the processed result
and the key. In the reduction phase, a computation following the pro-
cess in Reduce is performed on each subsequence of tuples with the same
key.

• Divide & Conquer
Divide and conquer is an established parallel pattern which is missing
from SkePU but available in GrPPI. The input data set is recursively
broken down into smaller subsequences until a base case is reached.
The pattern is parametrizable with splitting, merging, and base case
functions.

Listing 2.1 shows a sorting computation using the GrPPI interface.

2.2.2 Musket
Musket [62] approaches the high-level parallel interface not by integrating into
an existing language like C++, but rather with a domain-specific language
and custom compiler toolchain. Unlike SkePU, the Musket compiler is pro-
vided as a plugin to the Eclipse integrated development environment, allowing
model validation and the resulting errors and warnings to be controlled from
a graphical user interface.

Musket uses generally the same terminology as SkePU, with skeletons pa-
rameterized with user functions. The skeleton set differs quite a bit, with the
fundamental skeleton types in Musket being map, fold, mapFold, zip, and
two different shift partition skeletons.

Map and fold correspond to the SkePU constructs Map<1> and Reduce,
respectively, and as in SkePU, an explicit fusion of the two is provided in
mapFold. The zip skeleton is a way to merge two data structures element-
wise, and as such acts like a map with input arity 2, Map<2> in SkePU.

The basic skeletons may have variants, such as map having the mapIn-
Place when the input data structure is the same as the output, mapIndex
and mapLocalIndex which can access the index within the processed data set.
While similar features exist in SkePU, the approach of expressing them are
different. The fact that both fundamental skeleton patterns and auxiliary
features are shared between Musket and SkePU under different terminology
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Listing 2.1: Excerpt from sample code from the GrPPI repository: Sorting a
sequence of integers using Divide & Conquer.

1 /*
* Copyright 2018 Universidad Carlos III de Madrid
*
* Licensed under the Apache License, Version 2.0 (the "License");

5 * you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE -2.0
*

10 * Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.

15 */

#include "grppi/grppi.h"

std::vector<range> divide(range r) {
20 auto mid = r.first + distance(r.first,r.last)/2;

return { {r.first,mid} , {mid, r.last} };
}

void sort_sequence(grppi::dynamic_execution & exec, int n) {
25 using namespace std;

std::random_device rdev;
std::uniform_int_distribution <> gen{1,1000};

30 vector<int> v;
for (int i=0; i<n; ++i) {

v.push_back(gen(rdev));
}

35 range problem{begin(v), end(v)};

grppi::divide_conquer(exec,
problem,
[](auto r) -> vector<range> { return divide(r); },

40 [](auto r) { return 1>=r.size(); },
[](auto x) { return x; },
[](auto r1, auto r2) {

std::inplace_merge(r1.first, r1.last, r2.last);
return range{r1.first, r2.last};

45 }
);

}
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Listing 2.2: Complete sample code from the Musket repository: computation
of the Frobenius norm.

1 #config PLATFORM GPU CPU_MPMD CUDA
#config PROCESSES 1
#config GPUS 1
#config CORES 4

5 #config MODE release

const int dim = 8192;

matrix<double,dim,dim,dist,dist> as;
10

double init(int x, int y, double a){
a = (double) (x + y + 1);
return a;

}
15

double square(double a){
a = a * a;
return a;

}
20

main{
as.mapIndexInPlace(init());
mkt::roi_start();
double fn = as.mapReduce(square(), plus);

25 fn = mkt::sqrt(fn);
mkt::roi_end();
mkt::print("Frobenius norm is %.5f.\n", fn);

}

and syntactical means (and this fact is merely illustrated with the two, and
not limited to just the SkePU-Musket comparison) can make it challenging
for programmers to go from one to the other, and it also presents a challenge
for attempting an approachable categorization and comparison of different
skeleton programming implementations.

A sample application using the Musket DSL is provided in Listing 2.2,
illustrating the fact that its syntax is strongly evocative of C++ conventions,
but a Musket program is not a valid C++ program.

2.2.3 SYCL
Over the past decade, there has been standardization efforts of skeleton-like
interfaces. One such instance is SYCL [60] from the Khronos Group2. The
Khronos Group manages open standards, including OpenGL and OpenCL.
SYCL is an attempt at bringing heterogeneous C++ programming to as
many programmers as possible. While primarily designed as a higher-level
abstraction layer to OpenCL or multi-threaded CPU processing, the frame-
work is extensible for other hardware platforms. SYCL is intended both as
a programmer-facing interface and a backend target for domain-specific lan-

2https://www.khronos.org/sycl

11

https://www.khronos.org/sycl


2. Skeleton programming

Listing 2.3: SYCL 1.2 code sample adapted from Khronos tutorial material.
1 #include <CL/sycl.hpp>

#include <iostream>

int main()
5 {

using namespace cl::sycl;

int data[1024];

10 // create a queue to enqueue work to
queue myQueue;

// wrap our data variable in a buffer
buffer<int, 1> resultBuf(data, range<1>(1024));

15
// create a command_group to issue commands to the queue
myQueue.submit([&](handler& cgh)
{

// request access to the buffer
20 auto writeResult = resultBuf.get_access<access::write>(cgh);

// enqueue a parallel_for task
cgh.parallel_for<class simple_test >(range<1>(1024),

[=](id<1> idx) { writeResult[idx] = idx[0]; }
25 );

});
}

guages and tools, such as BLAS-style libraries or machine learning environ-
ments.

SYCL addresses the limitations in OpenCL by providing a single-source
interface and by reducing boilerplate and state-machine operations through,
for instance, high-level parallel patterns (parallel_for). A modern C++
foundation also ensures type safety through the use of templates and lambda
expressions.

Listing 2.3 illustrates a minimal SYCL program invoking a parallel_for
task.

While initially SYCL was primarily available in reference implementations
from Codeplay, several projects have since built upon or integrated SYCL in
various programming environments. Examples include Intel’s oneAPI as dis-
cussed later and Celerity [73], the latter of which adopts (and slightly adapts)
SYCL for cluster computations. Celerity is especially interesting when com-
paring SkePU to SYCL, as both originate as heterogeneous single-node APIs
which gets adapted for distributed computing in a later stage. However, the
comparison is not completely fair as SYCL exposes more low-level constructs
than SkePU and is to a higher degree designed to be a compilation target for
other programming environments.

12
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2.2.4 C++ AMP, and other industry efforts
Intel TBB (thread building blocks)3 is a relatively low-level parallel program-
ming interface with explicit thread parallelism, but providing task scheduling
and memory management abstractions as well as data-parallel constructs.
While TBB is relatively old, it is continuously maintained and updated, for
instance with modern C++ conventions such as lambda expressions. TBB
is often one of several implementation targets for higher-level skeleton pro-
gramming frameworks. OpenMP is frequently used as an alternative, being
standardized and not controlled by a single actor.

The corresponding role TBB and OpenMP have on CPUs is on GPUs
handled by OpenCL and CUDA. Both are GPGPU programming interfaces
at a fairly low level with a lot of manual control flow and data management
required from the programmer. OpenCL is defined with a C interface and
an industry standard managed by the Khronos consortium, while CUDA uses
more expressive C++ and is proprietary to Nvidia GPUs.

Nvidia Thrust [6] is a C++ template library with parallel CUDA imple-
mentations of common algorithms. It uses common C++ STL idioms, and
defines operators (comparable to SkePU user functions) as native functors.
The implementation is in effect similar to that of SkePU, as the CUDA com-
piler takes an equivalent role to the source-to-source compiler presented in
this article.

The C++ ISO committee has included a parallel version of STL algorithms
in C++17, which as of recently is starting to see wider adoption.

Although Microsoft’s solution for C++ parallelism is separate from the
standardization efforts, their C++ AMP (Accelerated Massive Parallelism)
interface is largely similar, but with more explicit data management across
devices. C++ AMP provides an extents mechanism for emulating higher-
dimensionality data structures through arrays.

Recently Intel has collected several existing technologies together with
their compiler and profiler toolchains and community language extensions in
what they call oneAPI4. Their proposed programming language is DPC++,
data parallel C++, which is based on standard C++ and SYCL with compiler
technology built on the Clang and LLVM stack. Intel is targeting systems us-
ing a combination of CPU, GPU, and FPGA compute units with extensibility
for other specialized accelerators.

Nvidia is simultaneously providing their own toolchains targeting C++
standard parallelism5 (stdpar). The Nvidia HPC SDK C++ compiler,
NVC++, targets GPU parallelism using only C++ standard library con-
structs, as seen in the example in Listing 2.5.

3https://software.intel.com/content/www/us/en/develop/tools/
threading-building-blocks.html

4https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
5https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
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Listing 2.4: Sample code from the Microsoft documentation: Vector sum with
C++ AMP.

1 #include <amp.h>
#include <iostream>
using namespace concurrency;

5 const int size = 5;

void CppAmpMethod() {
int aCPP[] = {1, 2, 3, 4, 5};
int bCPP[] = {6, 7, 8, 9, 10};

10 int sumCPP[size];

// Create C++ AMP objects.
array_view<const int, 1> a(size, aCPP);
array_view<const int, 1> b(size, bCPP);

15 array_view<int, 1> sum(size, sumCPP);
sum.discard_data();

parallel_for_each(
// Define the compute domain, which is the set of threads created.

20 sum.extent,
// Define the code to run on each thread on the accelerator.
[=](index<1> idx) restrict(amp) {

sum[idx] = a[idx] + b[idx];
}

25 );
}

Listing 2.5: C++ standard parallelism example from Nvidia.
1 int ave_age =

std::transform_reduce(std::execution::par_unseq,
employees.begin(), employees.end(),
0, std::plus<int>(),

5 [](const Employee& emp){
return emp.age();

})
/ employees.size();

Together, the Intel and Nvidia efforts indicate that the industry is embrac-
ing parallel pattern methodologies and moving towards unification and stan-
dardization of pattern-based parallel programming. This observation pertains
specifically to the domains which favor C++ and similar generalized program-
ming languages, for example traditional HPC applications. Domain-specific
toolchains for big data analytics and machine learning have shown tendency
to accommodate parallel programming faster through dedicated frameworks
and tools.

2.2.5 Other related frameworks, libraries, and toolchains
While the number of pattern-based high-level parallel programming systems,
libraries, and frameworks is too large to list all of them here, this section tries
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Listing 2.6: Syntax of a simple FastFlow computation.
1 #include <ff/parallel_for.hpp>

using namespace ff;
int main() {

long A[100];
5 ParallelFor pf;

pf.parallel_for(0,100,[&A](const long i) {
A[i] = i;

});
...

10 return 0;
}

to cover an assortment of approaches. An attempt has been made to give an
idea on the breath of applications of the basic skeleton programming ideas and
other pattern-based solutions. Direct competitors to SkePU are also included,
as well as work that has been influential in the design of SkePU especially for
SkePU 2 and 3.

FastFlow

FastFlow [14] is a high-level programming interface targeting stream paral-
lelism. FastFlow emphasizes efficiency of basic operations and employs lock-
free internal data structures and minimal memory barriers. The REPARA
interface FastFlow is strongly centered around C++11-style attributes, using
source-to-source compilation to generate the FastFlow constructs.

FastFlow was originally designed for multicore CPU execution but added
GPU support later.

Lift

Lift [71] is a high-level functional IR, intermediate representation, based on
parallel patterns. The goal of Lift is to encode GPU-targeted computations
(specifically OpenCL constructs) with an intermediate language which is also
adaptable to other computing targets. This language can be targeted by
other high-level pattern frameworks. Lift contains the data-parallel patterns
mapSeq, a map transformation; reduceSeq, a reduction; id, the identity trans-
form, and iterate, which composes a function with itself a specific number
of times before applying it to a data set. Lift also has several data-layout
patterns such as split and join in addition to yet more hardware-oriented
patterns. The Lift compiler generates efficient backend code by performing
optimizations such as barrier elimination and smart data allocation.

Extensions and optimizations to Lift for stencil computations [72] have
been carried out without using a specific stencil pattern often seen in other
pattern frameworks (such as MapOverlap in SkePU), demonstrating the
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strength of composing small building blocks which encode both computation
and data layout.

Lift has recently been demonstrated to target high-level synthesis of VHDL
code targeting FPGAs. [39]

SkelCL

SkelCL [70] is an actively developed OpenCL-based skeleton library. It is
more limited than SkePU, both in terms of programmer flexibility and avail-
able backends. Implemented as a library, it does not require the usage of a
precompiler like SkePU, with the downside that user functions are defined as
string literals.

SkelCL includes the AllPairs skeleton [69], an efficient implementation of
certain complex access modes involving multiple matrices. In SkePU 2 ma-
trices are accessed either element-wise or randomly, and AllPairs was part of
the inspiration for including both the MapPairs skeleton and the MatRow<T>
and MatCol<T> container proxies in SkePU 3. This again shows how other-
wise similar frameworks based on the same underlying programming model
have differences in their approach. Best practices even for fundamental com-
putations such as in this case matrix-matrix multiplications are frequently
differing across frameworks.

SkelCL has support for dividing the workload between multiple GPUs, but
does not support simultaneous hybrid CPU-GPU execution. As it is based on
OpenCL and lacks a precompilation step, the user functions must be defined
as string literals, lacking the compile time type checking available in SkePU.

Muesli

Muesli (Muenster skeleton library) [10, 25] is a C++ skeleton library built on
top of OpenMP, CUDA and MPI, with support for multi-core CPUs, GPUs
as well as clusters. Muesli implements both data and task parallel skeletons,
but does not have support for as many data parallel skeletons with the same
flexibility as in SkePU 3.

Muesli has support for hybrid execution using a static approach [76], where
a single value determines the partition ratio between the CPU and the GPUs,
just as in SkePU’s hybrid backend. The library also supports hybrid execu-
tion using multiple GPUs, with the assumption that they are of the same
model. The library currently does not provide an automatic way of finding a
good workload distribution which requires the user to manually specify it per
skeleton instance.

Marrow

Marrow [46, 67] is a skeleton programming framework for single-GPU OpenCL
systems. It provides both data and task parallel skeletons with the ability to
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compose skeletons for complex computations. The library uses nesting of
skeletons to allow for more complex computations. Marrow has support for
multi-GPU computations using OpenCL as well as hybrid execution on multi-
core CPU, multi-GPU systems. The workload is statically distributed between
the CPU threads and the GPUs, just like it is in SkePU. Marrow identifies
load imbalances between the CPU and the GPUs and improves the models
continuously to adapt to changes in the workload of the system. The parti-
tioning between multiple GPUs is determined by their relative performance,
as found by a benchmark suite.

Bones

Bones is a source-to-source compiler based on algorithmic skeletons [53]. It
transforms #pragma-annotated C code to parallel CUDA or OpenCL using
a translator written in Ruby. The skeleton set is based on a well-defined
grammar and vocabulary. Bones places strict limitations on the coding style
of input programs.

PACXX

PACXX is a unified programming model for systems with GPU accelerators
[35], utilizing the C++14 language. PACXX was an inspiration in the initial
design and prototyping work for SkePU 2 [26], for example using attributes
and basing the implementation on Clang. However, PACXX is in itself not
an algorithmic skeleton framework.

CU2CL

A different kind of GPU programming research project, CU2CL [47] was a
pioneer in applying Clang to perform source-to-source transformation; the
library support in Clang for such operations has been greatly improved and
expanded since then.

PSkel

PSkel [58] is an example of a high-level parallel pattern library focusing only
on stencil computations. PSkel provides data abstraction though one, two,
and three-dimensional arrays and matching mask objects. The C++ template
library is used to specify element-wise stencil kernels which are computed by
PSkel offloading to either CUDA, OpenMP, or TBB. Abstractions enable array
and mask indexing using either linear or dimensional coordinates.

Qilin

Qilin [44] is a programming model for heterogeneous architectures, based
on TBB and CUDA. Qilin provides the user with a number of pre-defined
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Listing 2.7: Convolution kernel in PSkel, adapted from [58].
1 __stencil__ void stencilKernel(

Array2D<float> input, Array2D<float> output,
Mask2D<float> mask, int i, int j)

{
5 float accum = 0.0;

for (int n = 0; n < mask.size; n ++)
accum += mask.get(n, input, i, j) * mask.getWeight(n);

output(i,j) = accum;
}

operations, similar to the skeletons in SkePU. The library has support for
hybrid execution by automatically splitting the work between a multi-core
CPU and a single NVIDIA GPU. Just as in SkePU, one of the CPU threads
is dedicated to communication with the GPU. The partitioning is based on
linear performance models created from training runs, much like SkePU’s
auto-tuner implementation.

Lapedo

Recent work in hybrid CPU-GPU execution of skeleton-like programming
constructs include Lapedo [36], an extension of the Skel Erlang library for
stream-based skeleton programming, specifically providing hybrid variants of
the Farm and Cluster skeletons where the workload partitioning is tuned by
models built through performance benchmarking; and Vilches’ et al. [52]
TBB-based heterogeneous parallel for template, which actively monitors the
load balance and adjusts the partitioning during the execution of the for loop.
Both approaches exclusively use OpenCL for GPU-based computation.

2.3 Independent surveys

De Sensi et al. [20] have contributed the P3ARSEC benchmark suite, in-
tended to cross-evaluate high-level parallel programming frameworks and li-
braries, specifically pattern-based ones. Being based on a subset of the original
PARSEC [7] benchmark suite, P3ARSEC is intended as a means to com-
pare performance, but just as importantly, programmability aspects. The
authors specifically highlight lines of code, the total length of a program, and
code churn, the number of changes lines when converting a previous (often
sequential) application to using the high-level interface, as measures of pro-
gramming effort. The work is also intended to prove the viability of skeleton
programming (or pattern-based parallel programming) at large, and the re-
sults demonstrate that 12 out of 13 PARSEC benchmark can be expressed by
a small set of common patterns, specifically using FastFlow [1].

Arvanitou et al. [3] conducted a technical debt investigation on parallel
programming using SkePU and StarPU, specifically analyzing the trade-offs
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between portability, performance, and maintenance. In the study, SkePU
was considered representing a highly portable implementation and for StarPU
performance was emphasized. The results show that SkePU does not seem to
negatively affect technical debt across three studied applications.

2.4 Earlier related work on SkePU

The work presented in this thesis does not stretch back to the inception of
SkePU as a skeleton library. Even though the interface has changed in fun-
damental ways, the current version of the SkePU framework is either directly
reliant on, or builds in top of, contributions by the people who have worked
on SkePU before.

We refer to earlier SkePU publications [24, 18, 17] for other work relating
to specific features, such as smart containers.
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3 SkePU overview

SkePU [24, 30, 27] is a multi-backend skeleton programming framework for
heterogeneous parallel systems with a C++11-based interface. A SkePU pro-
gram defines user functions which act as the operators applied in the skeleton
algorithms. SkePU contains both a source-to-source transforming precompiler
and a runtime library, working in tandem to transform high-level application
code and execute it in parallel in the best possible way on available computa-
tional units, providing performance portability. As the precompiler is aware
of the C++ constructs that represent skeletons, it can rewrite the source code
and generate backend-specific versions of the user functions.

Listing 3.1 shows an example application implemented on top of SkePU:
computation of the Pearson product-movement coefficient.

For data abstraction, SkePU provides smart containers which manage
coherency states automatically. Smart containers are available in different
shapes:

• Vector, for one-dimensional data sets;

• Matrix, suitable for two-dimensional data, e.g. images;

• Tensor, for three-dimensional or four-dimensional data sets of fixed
size.

SkePU as of version 3 includes the following skeletons:
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Listing 3.1: A SkePU program computing the Pearson product-moment cor-
relation coefficient of two vectors.

1 #include <iostream>
#include <cmath>
#include <skepu>

5 // Unary user function
float square(float a)
{

return a * a;
}

10
// Binary user function
float mult(float a, float b)
{

return a * b;
15 }

// User function template
template<typename T>
T plus(T a, T b)

20 {
return a + b;

}

// Function computing PPMCC
25 float ppmcc(skepu::Vector<float> &x, skepu::Vector<float> &y)

{
// Instance of Reduce skeleton
auto sum = skepu::Reduce(plus<float>);

30 // Instance of MapReduce skeleton
auto sumSquare = skepu::MapReduce(square, plus<float>);

// Instance with lambda syntax
auto dotProduct = skepu::MapReduce(

35 [] (float a, float b) { return a * b; },
[] (float a, float b) { return a + b; }
);

size_t N = x.size();
40 float sumX = sum(x);

float sumY = sum(y);

return (N * dotProduct(x, y) - sumX * sumY)
/ sqrt((N * sumSquare(x) - pow(sumX, 2))

45 * (N * sumSquare(y) - pow(sumY, 2)));
}

int main()
{

50 const size_t size = 100;

// Vector operands
skepu::Vector<float> x(size), y(size);
x.randomize(1, 3);

55 y.randomize(2, 4);

std::cout << "X: " << x << "\n";
std::cout << "Y: " << y << "\n";

60 float res = ppmcc(x, y);

std::cout << "res: " << res << "\n";

return 0;
65 }
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• Map, data-parallel element-wise application of a function with arbitrary
arity;

• MapPairs, cartesian product-style computation, pairing up two one-
dimensional sets to generate a two-dimensional output;

• MapOverlap, stencil operation in one or two dimensions with various
boundary handling schemes;

• Reduce, generic reduction operation with a binary associative operator;

• Scan, generalized prefix sum operation with a binary associative oper-
ator;

• MapReduce, efficient nesting of Map and Reduce;

• MapPairsReduce, efficient fusion of MapPairs and Reduce;

• Call, a generic multi-variant component for computations that may not
fit the other available skeleton patterns.

Section 4.1 goes into much more depth on the particular modes and fea-
tures of each individual skeleton.

SkePU provides smart containers [17], data structures that reside in main
memory but can temporarily store subsets of their elements in accelerator
memories for access by skeleton backends executing on these devices. Smart
containers also perform software caching of the operand elements to keep
track of valid copies of their element data, resulting in automatic optimiza-
tion of communication and device memory allocation. Smart containers are
well suited for iterative computations, where the performance gains can be
significant. Smart containers are further detailed in Section 4.13.

SkePU has six different backends, implementing the skeletons for different
hardware configurations. These are as follows:

• Sequential CPU backend, mainly used as a reference implementation
and baseline.

• OpenMP backend, for multi-core CPUs.

• CUDA backend, for NVIDIA GPUs, either single and multiple.

• OpenCL backend, for single and multiple GPUs of any OpenCL sup-
ported model, including other accelerators such as Intel Xeon Phis.

• Cluster backend, backed by the StarPU runtime system and MPI for
execution on large-scale clusters, including supercomputers. See Sec-
tion 5.3.4.
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3. SkePU overview

• Hybrid backend, an intermediate control layer that splits up work on
two other backends simultaneously. Currently supports the OpenMP
backend in combination with either of the CUDA or OpenCL backends.
See Chapter 7.

Backend selection is either automatic, guided by an auto-tuning system,
or manually configured by the application programmer. SkePU abstracts ev-
erything related to backend code execution, such as OpenMP directives or
OpenCL kernel launching. However, certain configuration parameters are op-
tionally exposed1 as part of the manual backend selection interface, such as
thread count. Smart containers provide the abstraction layer for backends
with separate or split memory spaces, with data movement handles automati-
cally by SkePU before and after backend delegation of skeleton computations,
as discussed above and in greater detail later in the thesis (Section 4.13).

3.1 History

SkePU (version 1) was introduced in 2010 [24] as a skeleton programming
library for heterogeneous single-node but multi-accelerator systems, from the
beginning designed for portability to include single- and multi-GPU backends
for the C-based OpenCL and for CUDA (which then only partly supported
C++), and had thus been technically based on C++03 and on C preprocessor
macros as the interface to user functions.

SkePU 2, introduced in 2016 [30], was a major revision of the SkePU [24]
library, ushering in ideas from modern C++ to the skeleton programming
landscape. Rebuilding the interface from the ground up, the skeleton set was
updated to be variadic, leaving the old fixed-arity skeletons from SkePU 1
behind. Variadic skeleton signatures was the first main motivator of SkePU 2:
flexible skeleton programming.

This rewrite also took the opportunity to integrate patched-on function-
ality in SkePU 1 into the core design of the programming model. One such
example is the absorption of SkePU 1 MapArray into the basic SkePU 2 Map.
MapArray was a dedicated skeleton in SkePU 1 created as a clone of Map with
the ability to accept an auxiliary, random-accessible array operand into the
user function, allowing deviations from the strictly functional map-style pat-
terns when demanded by the target application. This was one of the first
lessons from practical experience [66] that skeleton patterns are not always
perfectly suited to algorithms in real-world application code.

SkePU 2 also introduced the pre-compiler, lifting SkePU from its humble
origins as a pure template include-library into a full-fledged compiler frame-
work. This, together with the effort to push the C++ type system farther than

1This is in particular useful for debugging and performance measurements.
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most, if not all, comparable frameworks enabled the second main motivator
of SkePU 2: type-safe skeleton programming.

Table 3.1 gives a synopsis of the different features of the three main SkePU
versions.

3.2 SkePU 2 design principles

SkePU was conceived and designed in 2010 with the goal of portability across
very diverse programming models and toolchains such as CUDA and OpenMP;
since then, there has been significant advancements in this field in general and
to C++ in particular. C++11 provides fundamental performance improve-
ments, e.g., by the addition of move semantics, constexpr values, and stan-
dard library improvements. It introduces new high-level constructs: range-for
loops, lambda expressions, and type inference among others. C++11 also
expands its meta-programming capabilities by introducing variadic template
parameters and the aforementioned constexpr feature. Finally, the new lan-
guage offers a standardized notation for attributes used for language exten-
sion. The proposal for this feature explicitly discussed parallelism as a possible
use case [49], and it had been successfully used in, for example, the REPARA
project [13]. Even though C++11 was standardized in 2011, it was only in the
time around the introduction of SkePU 2 that compiler support was getting
widespread, see, e.g., Nvidia’s CUDA compiler.

For this project, we specifically targeted improvement of the following
limitations of SkePU 1:

• Type safety
Macros are not type-safe and SkePU 1 does not try to work around
this fact. In some cases, errors which semantically belong in the type
system will not be detected until run-time. For example, SkePU 1 does
not match user function type signatures to skeletons statically, see List-
ing 9.1. This lack of type safety is unexpected by C++ programmers.

• Flexibility
A SkePU 1 user can only define user functions whose signature matches
one of the available macros. This resulted in a steady increase of user
function macros in the library: new ones have been added ad-hoc as in-
creasingly complex applications has been implemented on top of SkePU.
Some additions also required more fundamental modifications of the run-
time system. For example, when a larger number of auxiliary containers
was needed in the context of MapArray, an entirely new MultiVector
container type [66] had to be defined, with limited smart container fea-
tures. Real-world applications need more of this kind of flexibility.
An inherent limitation of all skeleton systems is the restriction of the
programmer to express a computation with the given set of predefined
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3. SkePU overview

skeletons. Where these do not fit naturally, performance will suffer.
It should rather be possible for programmers to add their own multi-
backend components [19] that could be used together with SkePU skele-
tons and containers in the same program and reuse SkePU’s auto-tuning
mechanism for backend selection2.

• Optimization opportunity
Using the C preprocessor for code transformation drastically limited
the possible specializations and optimizations which can be performed
on user functions, compared to, e.g., template meta-programming or a
separate source-to-source compiler. A more sophisticated tool could, for
example, choose between separate specializations of user functions, each
one optimized for a different target architecture. A simple example is a
user function specialization of a vector sum operation for a system with
support for SIMD vector instructions.

• Implementation verbosity
SkePU 1 skeletons were available in multiple different modes and con-
figurations. To a large extent, the variants were implemented separately
from each other with only small code differences. Using the increased
template and meta-programming functionality in C++11, a number of
these could be combined into a single implementation without loss of
(run-time) performance.

SkePU 2 built on the mature runtime system of SkePU 1: highly op-
timized skeleton algorithms for each supported backend target, smart con-
tainers, multi-GPU support, etc. These were preserved and updated for the
C++11 standard. This is of particular value for the Map and MapReduce
skeletons, which in SkePU 1 were implemented thrice for unary, binary and
ternary variants; in SkePU 2 and later, a single variadic template variant
covers all N -ary type combinations. There are similar improvements to the
implementation wherever code clarity can be improved and verbosity reduced
with no run-time performance cost.

The main changes in SkePU 2 were related to the programming interface
and code transformation. SkePU 1 used preprocessor macros to transform
user functions for parallel backends; SkePU 2 and 3 instead utilizes a source-
to-source translator (precompiler), a separate program based on libraries from
the open source Clang project3. Source code is passed through this tool before
normal compilation. This remains true for SkePU 3 and is discussed in detail
in Chapter 5.

2The initial release of SkePU 2 presented the Call skeleton as a first step towards this
goal. Later, the addition of multi-variant user functions [29] (Chapter 8) provided further
contribution in this direction.

3http://clang.llvm.org
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Listing 3.2: Vector sum computation in SkePU 1.
1 BINARY_FUNC(add, float, a, b,

return a + b;
)

5 skepu::Vector<float> v1(N), v2(N), res(N);

skepu::Map<add> vec_sum(new add);
vec_sum(v1, v2, res);

Listing 3.3: Vector sum computation in SkePU 2.
1 template<typename T>

T add(T a, T b) {
return a + b;

}
5

skepu2::Vector<float> v1(N), v2(N), res(N);

auto vec_sum = skepu2::Map<2>(add<float>);
vec_sum(res, v1, v2);

Listing 3.4: Vector sum computation in SkePU 3.
1 template<typename T>

T add(T a, T b) {
return a + b;

}
5

skepu2::Vector<float> v1(N), v2(N), res(N);

auto vec_sum = skepu::Map(add<float>);
vec_sum(res, v1, v2);

Listings 3.2 and 3.3 contains a vector sum computation respectively in
SkePU 1 and SkePU 2 syntax, showing the interface changes across versions.
Listing 3.4 shows the equivalent code for SkePU 3 for completeness, but the
changes from SkePU 2 are trivial.

3.3 SkePU 3 design principles

The, as of the time of writing, all-new SkePU version 3 builds on top of the
redesign in SkePU 2 while largely retaining the existing syntax and feature
set. For SkePU 3 the design focus is on meeting the requirements of real-world
skeleton programming and the use of SkePU with HPC clusters, larger-scale
applications and build systems. This work was done in close collaboration
with partners from both the scientific community and the industry, as part of
the EXA2PRO project.

27



3. SkePU overview

The approach is holistic, with advancements being done in aspects rang-
ing from syntactical simplification of common constructs and idioms to a
re-evaluation of the memory coherency model of SkePU containers and the
introduction of all-new skeletons and other features.

Some particularly important focus areas are as follows:

• Skeleton set
MapPairs is introduced as a new skeleton, a generalization of the map
pattern for cartesian combinations of container elements; as well as Map-
PairsReduce, a sibling to MapPairs with efficient partial reduction of
results. Other skeletons were revised and updated with new features,
including a new syntax for MapOverlap.

• Smart containers
The container set is amended by the addition of tensors, supporting
higher-dimensional access patterns, and new container proxies (Ma-
tRow, MatCol) allowing e.g. for more scalable data movement on clus-
ters.

• Memory coherency model
The coherency model of out-of-skeleton container access is clearly de-
fined, to help increase predicability and performance.

• Syntactical improvements
Programmability and readability of SkePU-ized code is improved in re-
sponse to feedback and experiences from users, including developers of
large-scale scientific applications.

• Transparent execution on HPC clusters
The single-source, wide portability approach of SkePU programs is ex-
tended to cover computation over multiple nodes in HPC clusters with-
out any cluster-specific programming constructs in the source code, thus
fully abstracting away the underlying distributed platform.

Refinement work of SkePU 3 continues as of writing, and more features
and enhancements will be added.
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4 SkePU programming
interface design

The application programming interface, API, of the SkePU framework is one
of its most central aspects. In high-level parallel and heterogeneous program-
ming, the interface is what determines whether the goal of being ”high-level”
is met. Being high-level is not an absolute metric; it is a moving target as the
field of computer science and engineering progresses. The C programming
language was originally seen as quite high-level, and there are still people
working as programmers in assembly language who might hold that view. In
contemporary high-level parallel programming libraries and frameworks, how-
ever, C or Fortran are generally avoided. SkePU makes extensive use of C++
syntactical features such as classes, templates, and lambda expressions. Raw
pointers and arrays are absent from the interface as well.

While syntactical aspects are important, the true strength of a high-level
programming interface lies in the available constructs. In the skeleton pro-
gramming paradigm these manifest naturally as the skeleton patterns them-
selves, and the skeleton set is often considered one of the most fundamental
defining aspects of a particular skeleton programming implementation. In
this chapter, the skeleton set of SkePU is explored in detail in Section 4.1,
with a special emphasis on the most fundamental data parallel skeleton Map.
This skeleton is a natural starting point to introduce characteristic SkePU
features such as auxiliary data set access in Section 4.2.1, flexible variadic sig-
natures in Section 4.2.2, tuple returns in Section 4.2.3, and index-dependent
computations in Section 4.2.4. Continuing the skeleton set exposé, MapPairs
is presented in Section 4.3 and MapOverlap in Section 4.4; both being special-
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4. SkePU programming interface design

ized variants of the map pattern. Section 4.5 details the Reduce skeleton, the
similar Scan is featured in Section 4.6. This is followed by the fused skeletons
MapReduce in Section 4.7 and MapPairsReduce in Section 4.8. Finally Call
in is covered in Section 4.9.

While the skeleton patterns are provided by the framework, they need user
code to be instantiated and used in applications. Because of backend compat-
ibility requirements, not any C++ code can be used in this way. The chapter
therefore continues by covering the different ways a SkePU programmer can
adapt the skeletons for their purposes: user functions in Section 4.10, user
types in Section 4.11, and user constants in Section 4.12.

This thesis aims to give insight into the design and implementation be-
hind the SkePU framework; the content in this chapter is not intended as a
specification on SkePU, nor as an introductory guide to SkePU programming.
Such documentation can be found on the SkePU web page.1

4.1 Skeleton set

SkePU provides a number of skeletons which represent different data-parallel
patterns, as mentioned in Chapter 3. The skeletons can be loosely ordered
into three groups: the map-based Map, MapPairs, and MapOverlap, being
element-wise transformations of data; Reduce and Scan, two forms of data
accumulation patterns with internal dependency structures; and explicit fu-
sions of a map-based skeleton in sequence with some form of reduction in
MapReduce and MapPairsReduce. Call is a pseudo-skeleton and does not fit
into any grouping. Table 4.1 summarizes skeleton attributes and features to
show similarities and differences between them.

1https://skepu.github.io
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Figure 4.1: Illustrative diagram of the operand access scopes in the Map
skeleton.

4.2 Map skeleton

Map is a term widely used in programming interfaces, sequential as well as
parallel, as a name for a construct that transforms a set of values to another set
of values in accordance with some transformation (mapping) function f . This
function is typically a pure function, deterministic and without side effects,
which aids the compiler or interpreter in automatic program translation and
optimization. In a statically typed language like C++, the types of the domain
and image are fixed but typically they can be different from each other.

SkePU borrows the map label for its Map skeleton. While Map is and
does everything in the preceding paragraph, its versatility and importance in
SkePU greatly exceeds that of typical map constructs. Map is the fundamental
building block of the SkePU programming interface: it is the default building
block for encoding data parallel computations unless a particularly specific
pattern is needed, and in those cases, the vast majority of skeleton patterns in
SkePU are directly based upon the foundations of Map. Indeed, the names tell
the story: MapReduce, MapPairs, MapPairsReduce, and MapOverlap are all

Listing 4.1: Example usage of the Map skeleton.
1 float add(float a, float b)

{
return a + b;

}
5

Vector<float> vector_sum(skepu::Vector<float> &v1, skepu::Vector<float> &v2)
{

auto vsum = skepu::Map(add);
skepu::Vector<float> result(v1.size());

10 return vsum(result, v1, v2);
}
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4.2. Map skeleton

either specialized variations of Map or fusions with another pattern. The im-
portant role played by Map means that understanding the syntax, capabilities,
and limitations of this skeleton is of utmost importance for anyone interested
in using or otherwise learning SkePU.

4.2.1 Freely accessible containers inside user functions
Map patterns often only concern themselves with providing a single element
from the input data set as argument to the mapping operator. To perform
a computation with a non-trivial dependency pattern, the operators can be
defined as lexical closures which capture the enclosing scope, allowing the use
of any free variables inside the operator.

The multi-backend nature of SkePU makes such constructions impractical
from an implementation standpoint.2 The backend environments can have
different programming models and the memory spaces are typically separate
from the C++ domain perceived by the SkePU user. SkePU therefore require
that any auxiliary data structures—limited to smart containers and scalar
values—are declared as bound variables in the user function signature. There
are particular rules for how these objects are declared and passed, discussed
in Section 4.2.2.

SkePU smart containers are C++ objects of intricate class templates, and
cannot be made available in a backend execution context. Therefore, smart
containers as bound variables in user functions are encoded as proxy contain-
ers, further covered in Section 4.14. Listing 4.2 illustrates the use of aux-
iliary smart containers in the matrix-vector multiplication skeleton instance
mvmult3 and Figure 4.17 illustrates how using proxies bring entire container
data sets into the user function. This is a Map instance with no element-
wise inputs, which is a surprisingly powerful construct enabled by the SkePU
design principles presented in Section 4.2.2.

4.2.2 Variadic type signatures
The central aspect of Map which gives it this flexibility and power is the vari-
adic interface. Along with type-safety, flexibility was the main contribution of
the original SkePU 2 paper [30] and master thesis [26], and prompted the com-
plete API redesign from SkePU 1.4 The underlying C++-11 features which

2SkePU user functions may be defined as lambda expressions, which can act as lexical
closures in C++, but SkePU treats them strictly as ”syntactic sugar”. See Section 4.10.1
for further discussion.

3Note that this is not the preferred way to encode matrix-vector multiplication since
SkePU 3, with the introduction of the MatRow proxy container. A better way is shown in
Listing 4.19.

4The original impetus for this change was that the SkePU 1 model of having separate
skeletons for unary, binary, and ternary Map is not ideal neither from a user nor maintainer
perspective in a high-level parallel programming framework.
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4. SkePU programming interface design

Listing 4.2: Matrix-vector multiply in the SkePU 2 style, without MatRow.
1 template<typename T>

T mvmult_f(skepu::Index1D row, const skepu::Mat<T> m, const skepu::Vec<T> v)
{

T res = 0;
5 for (size_t j = 0; j < v.size; ++j)

res += m(row.i, j) * v(j);
return res;

}

10 skepu::Vector<float> y(height), x(width);
skepu::Matrix<float> A(height, width);
auto mvmult = skepu::Map(mvmult_f);
mvmult(y, A, x);

enable this generational leap5 are designed to be used by framework engineers,
and the significant complexity of implementation is elegantly hidden beneath
the framework boundaries. For the SkePU user, it means that using the map
construct is very easy for trivial computations but enables great adaptivity
for more involved situations.

A Map skeleton instance and the corresponding user function are four-way
variadic. Arguments of a call to the instance are effectively grouped into four
sets:

• output arguments (see Section 4.2.3),

• element-wise input arguments,

• random-access input arguments, and

• uniform input arguments.

The size (henceforth arity) of each group is flexible and up to the user
to choose based on the use-case at hand. The only restriction is that there
has to be at least one output argument.6 All Map-like skeletons in SkePU
use the output container to determine the degree of parallelism: each element
corresponds to an invocation of the user function and is an independent task
that could be mapped and scheduled for execution as a unit. It does not
matter how each group is ordered internally, but the relative order of each
group must be taken: outputs come first, followed by element-wise containers
(if any), followed by random-access containers (if any), and finally uniform
scalars (if any).

Element-wise (”elwise”) parameters in a user function are scalar values
(or user types, see Section 4.11), with the corresponding arguments in a skele-
ton invocation being SkePU containers. Each element of the container is

5Mainly variadic templates and advances in template meta-programming: the same
techniques behind the implementation of, e.g., std::tuple from the C++ standard library.

6Call is much like a Map with no return value or element-wise arguments.
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4.2. Map skeleton

Figure 4.2: Difference in return value storage between using multi-valued
return (left) and single-value (by manually managed array-of-struct) return
(right).

uniquely mapped to the parameter of a single user function invocation, in
a data-parallel fashion. Random access parameters and arguments are both
containers (but expressed slightly differently, as explained later) and all ele-
ments are accessible from within a single user function invocation.

In user function definitions, the function signature encodes the outputs as
the return type of the function and the rest of the arguments come within
the parentheses. Extra care has to be observed when crafting a user function,
since SkePU uses the function signature when determining the type informa-
tion for a skeleton instance. Because random-access container arguments are
represented as container proxy types (see Sections 4.2.1 and 4.14) in the user
function signature, the four groupings have natural separations in the type
system. SkePU uses template meta-programming and the pre-compiler to an-
alyze the types in the function header and construct the internal groupings.
Figure 4.17 contains an illustration of how the parameter groups bring data
from the arguments into the user function in different ways.

Astute readers may notice that the random-access container group is al-
lowed to be empty, in which case the distinction between where the element-
wise arguments end and the uniform scalars begin is unavailable. A Map in-
stance definition can optionally contain an explicit template argument, as in
auto instance = skepu::Map<N>(...); where N denotes the element-wise
arity, and if not present in the construct, SkePU will make a best-guess deduc-
tion based on the parameter list (the formal arguments) of the user function.
Skeleton instances are fully statically typed, so if the deduced arity differs
from the actual arguments at the skeleton invocation site, a compile-time
error occurs.7

4.2.3 Multi-valued return
SkePU 3 introduced tuple-like return functionality for cases where a single
skeleton instance requires multiple (element-wise) output containers. This
way, multiple return values can be computed by the same user function, oper-

7The pre-compiler has access to the entire AST and can in principle look at both skeleton
instantiation and skeleton invocations for arity deduction; however, SkePU is designed and
implemented (Chapter 5) such that programs are semantically sound C++ programs also
without the pre-compiler.
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Listing 4.3: User function with multi-valued return.
1 skepu::multiple<int, float>

multi_f(int a, int b, skepu::Vec<float> c, int d)
{

return skepu::ret(a * b, (float)a / b);
5 }

Listing 4.4: Using multi-valued return with Map in SkePU 3.
1 skepu::Vector<int> v1(size), v2(size), r1(size);

skepu::Vector<float> e(1);

auto multi = skepu::Map<2>(multi_f);
5

multi(r1, r2, v1, v2, e, 10);

ating on the inputs in one sweep, potentially improving data locality compared
to two separate skeleton invocations after each other. Although the values are
returned in a tuple-like manner, the output containers are completely separate
objects (see Figure 4.2). This distinguishes this new feature from the use of
custom structs (”user types”, see Section 4.11) as return values, as those are
stored in array-of-records format.

To use this feature, we specify the return type in the user function sig-
nature as skepu::multiple<T, [U, ...]>, i.e., analogous to std::tuple.
Then, at the site of the return statement, we construct this compound ob-
ject by skepu::ret(expr, [expr, ...]).

Listing 4.3 shows an example of a user function utilizing multi-valued
return.

The skeleton instance declaration and invocation follows the syntax of ordi-
nary Map, but instead of supplying one output container as the first argument,
specify several of the correct types and order, as in Listing 4.4.

Multi-valued return statements are available in the skeletons which follow
the typical map pattern: Map, MapPairs, and MapOverlap.

4.2.4 Index-dependent computations
Another feature of Map is the option to access the index for the currently pro-
cessed container element to the user function. This is handled automatically,
deduced from the user function signature. An index parameter’s type is one
out of four types: IndexND where N is the dimensionality of the index, as shown
in the type declarations in Listing 4.5. This feature replaces the dedicated
Generate skeleton of SkePU 1, allowing for a commonly seen pattern—calling
Generate to generate a vector of consecutive indices and then pass this vector
to MapArray—to be implemented in one single Map call.
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4.3. MapPairs skeleton

Listing 4.5: Index types corresponding to each smart container.
1 struct Index1D { size_t i; };

struct Index2D { size_t row, col; }; // note!
struct Index3D { size_t i, j, k; };
struct Index4D { size_t i, j, k, l; };
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Figure 4.3: Illustrative diagram of the MapPairs skeleton.

The Mandelbrot fractal generation in Listing 4.17 is a typical example of
a computation where the user function is reliant on the current index into the
resulting Matrix container.

4.3 MapPairs skeleton

SkePU 3 added an additional top-level skeleton, MapPairs. This skeleton
represents a Cartesian product-style pattern, operating on two distinct sets
of element-wise container inputs. Each vector set may contain an arbitrary
number of vector containers, similar to the variadicity of Map. All of the
vectors in a set are expected to be of the same size. The arities in both
directions are always present in the skeleton construction as explicit template
arguments.

Each Cartesian combination of vector set indices generates one user func-
tion invocation, the result of which is an element in a Matrix. As in Map, there
is an optional Index2D parameter in the user function signature to access this
index.
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4. SkePU programming interface design

Listing 4.6: Example usage of the MapPairs skeleton.
1 int mul(int a, int b) { return a * b }

void cartesian(size_t Vsize, size_t Hsize)
{

5 auto pairs = skepu::MapPairs(mul);

skepu::Vector<int> v1(Vsize, 3), h1(Hsize, 7);
skepu::Matrix<int> res(Vsize, Hsize);
pairs(res, v1, h1);

10 }

Advanced and more flexible use of MapPairs can be carried out similarly to
other SkePU skeletons. For instance, it retains flexibility of Map with regards
to variadicity (5-way variadic, compared to Map being four-way):

• Resulting outputs (see Section 4.2.3),

• Element-wise-V (”vertical”, column-aligned) input arguments,

• Element-wise-H (”horizontal”, row-aligned) input arguments,

• Random-access input arguments,

• Uniform input arguments.

A MapPairs instance of higher arity looks like

auto pairs = skepu::MapPairs<3, 2>(...);.

This instance would accept three vertical and two horizontal input vectors.

4.4 MapOverlap skeleton

MapOverlap represents a computational pattern with as many names as there
are application domains. It is known as a convolution in signal processing,
stencil filter in image processing, window function in statistics, and so on.
The SkePU name of MapOverlap indicates that it is another variant of the
archetypal map pattern, which would typically indicate that there is a degree
of parallelism equal to the number of elements in the result container. This
is almost true, but not quite: the number of user function invocations—and
therefore schedulable tasks—follows this metric, but the ”overlap” part of the
name reveals that these tasks are not independent. In a MapOverlap user
function, not only is a single element-wise mapped element from an input
container accessible, so is also a region of surrounding elements. The indi-
vidual regions overlap each other, and therefore gives rise to read-after-write
dependencies between user function invocations and in general creates a more
complex dependency structure between input and output container elements.
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4.4. MapOverlap skeleton
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Figure 4.4: Illustrative diagram of the MapOverlap skeleton.

In SkePU, the surrounding region is always a hyper-rectangle, i.e., a reg-
ular multi-dimensional box (in up to four dimensions). The side length of
the hyper-rectangle can vary in each dimension, and is defined by a overlap
radius, which is the number of included elements away from the center ele-
ment. Therefore, the total amount of elements included in the overlap region
is ∏D

i (1 + 2oi), where oi is the overlap radius for dimension i and D is the
number of dimensions of the MapOverlap instance as determined from its user
function.

A MapOverlap example showing a two-dimensional convolution is shown
in Listing 4.7.

MapOverlap skeleton instances in SkePU can be of several different types:

• 1D MapOverlap on

– vector containers or
– matrix containers with

∗ row-wise overlap,
∗ column-wise overlap,
∗ row-wise overlap followed by column-wise overlap (two passes),

or
∗ column-wise overlap followed by row-wise overlap (two passes).

• 2D MapOverlap
On matrix containers.

• 3D MapOverlap
On three-dimensional tensor containers.

• 4D MapOverlap
On four-dimensional tensor containers.
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4. SkePU programming interface design

Listing 4.7: Example usage of the MapOverlap skeleton.
1 float conv(skepu::Region2D<float> r, const skepu::Mat<float> stencil)

{
float res = 0;
for (int i = -r.oi; i <= r.oi; ++i)

5 for (int j = -r.oj; j <= r.oj; ++j)
res += r(i, j) * stencil(i + r.oi, j + r.oj);

return res;
}

10 skepu::Vector<float> convolution(skepu::Vector<float> &v)
{

auto convol = skepu::MapOverlap(conv);
Vector<float> stencil {1, 2, 4, 2, 1};
Vector<float> result(v.size());

15 convol.setOverlap(2);
return convol(result, v, stencil, 10);

}

Dimensionality of a MapOverlap instance is determined by the N in the
RegionND<T> type used for the element-wise argument in the user function.
These are compiler-known types and dictates what variant of the skeleton to
use for code generation. Note that the dimensionality of the MapOverlap pat-
tern encoded in the skeleton instance does not necessarily match the dimension
of the smart containers the instance is applied on. In principle, there could
be a MapOverlap variant for any overlap dimension smaller than or equal to
the dimension of the element-wise container input. However, for practical
reasons, only the combinations listed above are implemented in SkePU.

Experiences from SkePU users, and in particular the application of SkePU
in teaching, has showed that the syntax for MapOverlap user functions is one
of the more challenging aspects of SkePU. In SkePU 2, the user function acting
as a stencil operator was specified with a combination of an explicit pointer
parameter and overlap size parameters, and required the user to understand
explicit stride addressing of overlap regions.

For SkePU 3 the MapOverlap syntax is completely redesigned and simpli-
fied. A container proxy, RegionND, encapsulates the aforementioned parame-
ters, plugging the leaks in the abstraction. Further discussion on this proxy
type can be found in Section 4.14.3.

The contemporary syntax for a stencil computation using MapOverlap can
be seen in Listing 4.7.

4.4.1 Edge handling modes
When MapOverlap user functions are evaluated near the edges of the input
container, the overlapping region may reach outside the bounds of the in-
put. The expected behavior of out-of-bounds overlap regions are application-
dependent, but to avoid invalid memory accesses, the implementing framework
must do something to handle these scenarios. SkePU approaches this problem
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Figure 4.5: Expected input and output container sizes when edge element
synthesis disabled, here in 2D MapOverlap.
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Figure 4.6: Edge handling modes of 1D MapOverlap.

in several ways. There are a total of four options for edge handling, three of
which are proper edge-handling modes:

• no edge handling (default for 2D, 3D, and 4D MapOverlap),

• fixed padding with a user-set value,

• duplicate padding of the value closest to the edge (default for 1D
MapOverlap), or

• cyclic (toroidal) padding.

If the ”no edge handling” option is specified, SkePU requires that the size
of the input container is larger than the size of the output container, to ensure
that all user function evaluations correspond to a well-defined overlap region.
Figure 4.5 illustrates this restriction: the overlap radius in this example is
2 in the x-axis and 1 in the y-axis, and the output8 container size is 6 × 6
elements. The input container is therefore expected to be of size 6+ 2∗ 2 = 10
in the horizontal dimension and 6 + 2 ∗ 1 = 8 in the vertical dimension.

8Recall that SkePU always parallelizes skeletons on the output container range.
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In all other modes, the output container will be of equal size to the in-
put container, and in cases where the overlap region intersects the container
boundaries, SkePU synthesizes virtual elements for out-of-bounds accesses.
The properties of each mode is visualized in Figure 4.6.

Synthesis of out-of-bounds elements adds some run-time overhead, but
auxiliary memory usage is kept low: proportional to the overlap region size,
not to the input data size. Depending on various aspects of the skeleton
instance at hand (especially container type), elements in the region may be
either pre-allocated or synthesized lazily upon access.

4.5 Reduce skeleton

Reduce is another well-known pattern in functional programming interfaces.
Also known as a fold, the main differentiator from the transformation of map
is that reduce will turn a collection of values into a single value by the means
of a binary reduction operator (here denoted by ⊕). Conceptually, this is per-
formed by reducing or folding the value set linearly from the right or left, while
carrying a partial result through the chain. This model is typically relaxed
by enforcing additional restrictions on the reduction operator, by requiring it
to be associative and also commutative. Associativity of an operator permits
an expression to be rearranged with regards to precedence, i.e., order of ap-
plication of said operator. For instance, the expression (a⊕ b⊕ c⊕ d) can be
interpreted as either (((a⊕ b)⊕ c)⊕d), a left fold; or ((a⊕ b)⊕(c⊕d)), a tree
reduction. Which interpretation is the most efficient way to implement the
reduction depends on the context: a left fold has excellent spatial locality in
its memory access pattern, and is thus highly suitable for efficient sequential
processing; while a tree reduction enables concurrent execution of operators
near the leaf nodes of the tree and is therefore suitable for highly parallel
scenarios. Commutativity says that the order of the operands themselves can
be interchanged: (a⊕ b) is equivalent to (b⊕ a). SkePU can take full advan-
tage of these properties thanks to its multi-backend design, where the same
computation will be carried out in different ways depending on the selected
backend and other aspects.

Due to the aforementioned restrictions on properties of reduction operators
(or rather user functions, in skeleton parlance), the typing limitations on them
are quite strict, as the result and both parameters must be of the same single
type. This limits what type of reduction computations can be encoded in the
Reduce skeleton in isolation. It is therefore a common pattern to pre-process
a data set before the reduction stage, preferably done by a variant of Map.
In fact, this sequence of Map immediately preceding a Reduce is so common
that this pattern is available in the separate, fused skeletons MapReduce and
MapPairsReduce. Further discussion on this topic can be found in Section 4.7.
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Figure 4.7: Illustrative diagram of the Reduce skeleton in 1D mode.

Listing 4.8: Example usage of the Reduce skeleton for linear reductions.
1 float min_f(float a, float b)

{
return (a < b) ? a : b;

}
5

float min_element(skepu::Vector<float> &v)
{

auto min_calc = skepu::Reduce(min_f);
return min_calc(v);

10 }

4.5.1 One-dimensional reductions
The basic reduction in SkePU is a linear, one-dimensional reduction over a
data set, represented by a smart container. A Vector is therefore a natural
fit for most reductions, but a Reduce skeleton instance will accept smart
container arguments of any dimensionality and treat them as linear sets of
values.9

One common application of reduction can be seen in Listing 4.8, where the
computation finds the minimum element in a vector. The syntax is straight-
forward, but the programmer has to be careful about another aspect of the
Reduce skeleton: each instance carries with it a starting value for reductions,
which by default is zero-initialized. It can be set on the instance by supplying
the start value in a member function call. In this case the computation is done
on float elements, so the start value would likely be set to positive infinity,
lest the computation would evaluate to 0 if the input data consists of strictly
positive values.

4.5.2 Two-dimensional reductions
SkePU also provides two special reduction modes operating on two-
dimensional data, i.e., Matrix. The first is a reduction in one dimension,
along either all rows or all columns. In this scenario the result is passed
in a Vector output argument, distinguishing this mode from a purely linear
reduction of all elements in the matrix.

9The linear interpretation follows the memory layout order presented in Section 4.13,
but the commutativity constraint implies that the reduction semantics allows any element
order.
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Figure 4.8: Illustrative diagram of the access pattern in two-dimensional
Reduce.

Listing 4.9: Example usage of the Reduce skeleton for 2D reductions.
1 float plus_f(float a, float b)

{
return a + b;

}
5

float max_f(float a, float b)
{

return (a > b) ? a : b;
}

10
float min_element(skepu::Matrix<float> &v)
{

auto max_sum = skepu::Reduce(plus_f, max_f);
sum.setReduceMode(skepu::ReduceMode::RowWise);

15 return max_sum(v);
}

The second matrix reduction mode instead accepts two user functions at
the skeleton instance definition: both satisfying the requirements for reduction
operators. The first is being used for reduction in one dimension, just like in
the previous paragraph, and the second then reduces the partial results from
the first phase, with a scalar result remaining.

The initial reduction can be either row-wise or column-wise. A setting on
the skeleton instance object controls which dimension comes first.

4.6 Scan skeleton

Prefix sums are fundamental building blocks in many parallel algorithms. [40]
The generalized pattern is applicable to a wide variety of problems far beyond
the pure functional data processing in SkePU, such as pointer manipulation
in list ranking algorithms. That said, the generalized prefix sums pattern, like
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Figure 4.9: Illustrative diagram of the Scan skeleton.

Listing 4.10: Example usage of the Scan skeleton.
1 float max_f(float a, float b)

{
return (a > b) ? a : b;

}
5

skepu::Vector<float> partial_max(skepu::Vector<float> &v)
{

auto premax = skepu::Scan(max_f);
skepu::Vector<float> result(v.size());

10 return premax(result, v);
}

reductions, can be realized in many different ways, each with their strengths
and weaknesses, suitable for different execution targets. So their relevancy also
applies to skeleton programming interfaces, and SkePU provides a generalized
prefix sum pattern with the Scan skeleton. The semantics are similar to
reduce, with scan producing the equivalent result of computing a reduction on
all subsequences of the data set, starting with the first element. These partial
sums (or the generalized operator) are returned in a linearized container.
Whether the element of index i is included in the prefix sum result at index i
in the result container or not is controlled by a parameter on the Scan skeleton
instance. These variants are known as inclusive and exclusive prefix sums in
the literature.

There is no MapScan in SkePU to mirror MapReduce, but chaining sepa-
rate Map* and Scan skeleton invocations still utilizes the memory management
and data movement optimizations built-in to the smart containers (see Sec-
tion 4.13).

4.7 MapReduce skeleton

MapReduce is also the solution to the problem presented in Section 4.5 about
the requirement of Reduce to only accept associative reduction operators. As
an example, consider a reduction with the goal to find both the maximum
value and the minimum value in a data set. This can be done in a straightfor-
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Figure 4.10: Illustrative diagram of the MapReduce skeleton.

Listing 4.11: Example usage of the MapReduce skeleton.
1 float add(float a, float b)

{
return a + b;

}
5

float mult(float a, float b)
{

return a * b;
}

10
float dot_product(skepu::Vector<float> &v1, skepu::Vector<float> &v2)
{

auto dotprod = skepu::MapReduce(mult, add);
return dotprod(v1, v2);

15 }

ward way with two Reduce instances, but for the sake of discussion we want to
do with only one skeleton instance.10 This operator would be non-associative,
since it takes scalar values as input and somehow returns a tuple of both a
maximum and a minimum partial result. If SkePU allowed non-associative
reduction operators, we could encode this as a left fold, with the left hand
side operand being the running result and the right hand side being the next
value from the data set.

Working within the constraints of SkePU, the solution is given in List-
ing 4.12. MapReduce is used to preprocess the initial data set into the MaxMin
custom data type encoding the reduction results, which allows the reduction
part (max_min_f) to only work on values of this type. There is no computa-

10It might help performance to only do one pass through the data set due to cache effects,
so the example is not as arbitrary as it may seem.
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Listing 4.12: Using MapReduce to compute non-associative reductions.
1 struct MaxMin

{
float max;
float min;

5 };

MaxMin preprocess(float val)
{

MaxMin res;
10 res.max = val;

res.min = val;
return res;

}

15 MaxMin max_min_f(MaxMin a, MaxMin b)
{

MaxMin res;
res.max = (a.max > b.max) ? a.max : b.max;
res.min = (a.min < b.min) ? a.min : b.min;

20 return res;
}

void find_max_min(skepu::Vector<float> floats)
{

25 auto maxmin = skepu::MapReduce<1>(preprocess, max_min_f);
maxmin.setStartValue({-INFINITY, INFINITY});
MaxMin result = maxmin(floats);

std::cout << "Max: " << result.max << "\n";
30 std::cout << "Min: " << result.min << "\n";

}

tion here, only a translation of the data format. Because of the efficient fusion
of the two phases as SkePU evaluates the skeleton application, the overhead
of this transformation is minimal.

4.8 MapPairsReduce skeleton

MapPairsReduce is the combination of a MapPairs followed by a row-wise or
column-wise reduction over the generated matrix elements. Like MapPairs it
supports arbitrary arities of the vertical and horizontal input Vector groups
(<0,0> and up). It returns a Vector containing the row-wise or column-
wise reduction, where the reduction dimension is specified as in 2D Reduce.
Example usage of this skeleton can be seen in Listing 4.13.

4.9 Call skeleton

Not all applications have a computational structure that is straightforwardly
reformulated as skeleton patterns. This is especially true for the particular
skeleton set offered by SkePU, which has a strong focus on data-parallel pat-
terns. At the time of the SkePU 2 interface redesign, the skeletons (especially
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Figure 4.11: Illustrative diagram of the MapPairsReduce skeleton.

Listing 4.13: Example usage of the MapPairsReduce skeleton.
1 int mul(int a, int b)

{
return a * b;

}
5

int sum(int a, int b)
{

return a + b;
}

10
void mappairsreduce(size_t Vsize, size_t Hsize)
{

auto mpr = skepu::MapPairsReduce(mul, sum);

15 skepu::Vector<int> v1(Vsize), h1(Hsize);
skepu::Vector<int> res(Hsize);

mpr.setReduceMode(skepu::ReduceMode::ColWise);
mpr(res, v1, h1);

20 }

the core Map building block) was generalized to handle more complex mem-
ory access patterns inside of user functions themselves (as discussed in depth
in earlier sections, such as 4.2.1). There are advantages of placing chunks
of application code inside the user functions like this, as the code is then
able to access the computing resources e.g. of external accelerators while the
smart containers handle memory transfer and coherency management auto-
matically. The clear downside is that a user function is a sequential block of
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4.9. Call skeleton

Listing 4.14: Example usage of the Call skeleton.
1 void sort_f(skepu::Vec<int> array, size_t nn)

{
#if SKEPU_USING_BACKEND_CL

5 size_t idx = get_global_id(0);
size_t l = nn / 2 + ((nn % 2 != 0) ? 1 : 0);

for (size_t i = 0; i < l; ++i)
{

10 if (idx % 2 == 0 && idx < nn - 1 && array(idx) > array(idx + 1))
swap_f(&array(idx), &array(idx + 1));

barrier(CLK_GLOBAL_MEM_FENCE);

if (idx % 2 == 1 && idx < nn - 1 && array(idx) > array(idx + 1))
15 swap_f(&array(idx), &array(idx + 1));

barrier(CLK_LOCAL_MEM_FENCE);
}

#else
20

for (size_t c = 1; c <= nn - 1; c++)
for (size_t d = c; d > 0 && array(d) < array(d-1); --d)

swap_f(&array(d), &array(d - 1]);

25 #endif
}

void sort(skepu::Vector<int> &v, skepu::BackendSpec spec)
{

30 auto sort = skepu::Call(sort_f);

spec.setGPUBlocks(1);
spec.setGPUThreads(v.size());
sort.setBackend(spec);

35
sort(v, v.size());

}

code: parallelism in SkePU patterns is due to concurrent evaluation of several
user function invocations.

To close this gap, the experimental Call skeleton was included in SkePU
2. Call semantics is like that of Map, without the data parallelism. It can
therefore be regarded as a pseudo-pattern, and is more closely described as a
multi-variant task (or component). Using escape mechanisms in the form of
preprocessor directives, explicit parallelism can be inserted into user function
code. The same computation then has to be explicitly provided for all desired
backends. Listing 4.14 contains a sorting task using Call in this way.

The Call skeleton has been in part superseded and in part complemented
by the work presented in Chapter 8 on multi-variant user functions.

51



4. SkePU programming interface design

Listing 4.15: A basic user function and associated skeleton instance..
1 int scale(int e)

{
return e * 2;

}
5

auto vectorscale = skepu::Map(scale);

scale(result, input);

4.10 User functions

User functions are a central component in SkePU programming. In the con-
ceptual definition, and also at their most basic practical application, user
functions are the operators which instantiate skeletons.

While most user functions are short, perhaps even single-expression
computations—such as the scale function given in Listing 4.15—they are
expressed as general C++ functions, and can contain comparatively complex
code structures. User function code can have local state variables (allocated
on the stack), have conditional branches, nested loop structures iterating over
large data sets, and so on. However, as with any high-level parallel or hetero-
geneous programming interface embedded within C++, there are significant
limitations on what type of operations are allowed within the user function
scope. The reasons are the same that necessitates CUDA to differentiate be-
tween __host__ and __device__ functions, and C++ AMP to introduce a
restrict keyword, to mention only two such instances. Other interfaces ap-
proach the same problem by having clear separation between the sequential
(”host”) code and parallel or heterogeneous (”device”) code, such as OpenCL
with external kernels, or constraining entire applications to a DSL, as done
in Musket and others. The decision in SkePU to use a single-source model is
motivated by cohesive and readable programs, as user functions can be very
small and seamlessly interspersed throughout the application with minimal
syntactical overhead. Tight C++-integration in SkePU allows for an intu-
itive and recognizable syntax and reduced friction when integrating SkePU
skeletons into larger C++ applications.

Due to the inherent limitations discussed in the previous paragraph, SkePU
user functions come with restrictions. Conceptually, the goal of parallel ex-
ecution requires the user functions to be pure functions: their computations
are deterministic given a set of arguments, and they cannot have side effects.
Communication across user function invocations are thus not allowed, nor is
dynamic memory allocation as it requires accessing a shared memory heap.
Targeting systems with heterogeneity or otherwise distributed memory spaces
implies that there by necessity has to be a memory barrier between the un-
managed and managed scopes (see Section 4.15, in particular Figure 4.17).
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Listing 4.16: Skeleton instance with lambda syntax for the user function.
1 auto vsum = Map<2>([](float a, float b) { return a + b; });

Smart containers are made to bridge this gap with as little friction as possible
for the programmer, but other data sets and arbitrary pointers cannot be used
at all from within user function code. Furthermore, syntactical limitations in
certain backend targets preclude usage of many C++ features, such as oper-
ator overloading or range-for loops. This restriction, unlike the previous ones
listed, are not inherent to the parallel programming domain but limitations in
the SkePU pre-compiler, and the set of allowed syntactical constructs grow as
SkePU matures. SkePU user functions are best approached as using a C-style
subset of C++, unless exceptions are explicitly mentioned.

A skeleton instance always needs a user function to be instantiated (pos-
sibly more than one, as with MapReduce). The reverse is not true: functions
do not need to be mentioned within a skeleton construction for SkePU to
treat them as user functions and make them subject to backend code gen-
eration. The chance of a function being called within the dynamic scope
of another skeleton-instantiating user function is enough. In most aspects,
these ”indirect” user functions are subject to the same restrictions. There is
an important distinction, however: a skeleton cannot be instantiated with a
function with parameters of pointer type, as this represents bridging the gap
between unmanaged and managed scope (and thus possibly different memory
address spaces), but indirect user functions can accept pointer arguments. As
illustrated in Figure 4.12, recursion, either direct or indirect, is not allowed
within managed scope.

4.10.1 User functions as lambda expressions
In 4.15, scale is a user function defined as a free function. This is one of two
ways to define user functions in SkePU; the other is with lambda expression
syntax as in Listing 4.16, where the function is written inline with the skeleton
instance. Free functions are suitable for cases where a user function is large
and an inline definition distracts from the pattern-program flow, or when user
functions can be shared across skeleton instances. In most cases, however,
the lambda syntax is superior: it increases code locality while eliminating
namespace pollution. There are no run-time differences between the two, as
identical code is generated by the pre-compiler.

4.11 User types

For many applications, basic types such as int and float may not be suf-
ficient in a high-level programming interface. SkePU therefore includes the
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Listing 4.17: Mandelbrot fractal generation in SkePU.
1 [[skepu::userconstant]] constexpr float

CENTER_X = -.5f,
CENTER_Y = 0.f,
SCALE = 2.5f;

5
[[skepu::userconstant]] constexpr size_t

MAX_ITERS = 1000;

struct cplx
10 {

float a, b;
};

cplx mult_c(cplx lhs, cplx rhs)
15 {

cplx r;
r.a = lhs.a * rhs.a - lhs.b * rhs.b;
r.b = lhs.b * rhs.a + lhs.a * rhs.b;
return r;

20 }

cplx add_c(cplx lhs, cplx rhs)
{

cplx r;
25 r.a = lhs.a + rhs.a;

r.b = lhs.b + rhs.b;
return r;

}

30 size_t mandelbrot_f(skepu2::Index2D index, size_t height, size_t width)
{

cplx a;
a.a = SCALE / height * (index.col - width/2.f) + CENTER_X;
a.b = SCALE / height * (index.row - width/2.f) + CENTER_Y;

35 cplx c = a;

for (size_t i = 0; i < MAX_ITERS; ++i)
{

a = add_c(mult_c(a, a), c);
40 if ((a.a * a.a + a.b * a.b) > 4)

return i;
}
return MAX_ITERS;

}
45

auto mandelbrot = skepu2::Map<0>(mandelbrot_f);
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Figure 4.12: User function call graph.

possibility of using a custom struct as the element type in smart containers
or used as extra argument to a skeleton instance. Even then, there are major
restrictions on such types depending on the backends used; the type should
not have any features outside those of a C-style struct and the memory
layout needs to match across backends.

Listing 4.17 demonstrates user types in SkePU with the use of a complex
number type cplx for Mandelbrot fractal generation. Functions operating
on objects of type cplx are defined as free functions and are treated as user
functions by the pre-compiler.

4.12 User constants

The example in Listing 4.17 also uses the related feature user constants, e.g.,
MAX_ITERS, which are compile-time constant values that can be read in user
functions. These objects are annotated with the [[skepu2::userconstant]]
attribute.

SkePU does not allow C-style macro constants in user function code. This
is mainly a side-effect from the way source-to-source compilation is imple-
mented through the Clang tools, see Chapter 5, but fits with the general aim
of SkePU to move away from macros and instead rely on type-safety through
the C++ type system.
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Scalar arguments to user functions (discussed in Sections 4.2.1 and 4.2.2)
can be employed as a substitute for macros, but their purpose is typically
aimed at scenarios where the value of the argument changes dynamically
across skeleton invocations. Therefore, SkePU provides user constants to
more directly address the need for global, static parameters in user function
code. These objects are regular C++ objects of basic type and therefore type-
safe. Usage of user constants can also be seen in the N-body simulation in
Listing B.2.

4.13 Smart containers

The availability of smart containers for data abstraction and memory man-
agement in SkePU, previously restricted to vector and matrix types, has a
significant effect on the usability of a skeleton programming framework. Even
though a basic one-dimensional data set can be used to emulate more com-
plex data representations, doing so at a framework level rather than on the
user level provides more information to the implementation about access pat-
terns, thus bringing increasing opportunities for optimizing communication-
and memory access patterns; while also providing a more intuitive user inter-
face and reduced application code size for users.

SkePU’s smart containers are precompiler-known run-time data structures
which reside in main memory, but can temporarily store subsets of their el-
ements in device memory for access by skeleton backends executing on these
devices. Smart containers additionally perform transparent software caching
of the operand elements that they wrap, with a MSI-based coherence proto-
col [17]. Hence, smart containers automatically keep track of valid copies of
their element data and their locations, and can, at run-time, automatically
optimize communication and device memory allocation. Smart containers can
lead to a significant performance gain over ”non-smart” containers, especially
for iterative computations on sufficiently large data, where data can stay on
the accelerator devices or remain partitioned across cluster nodes.

The SkePU container set is recently [27] extended with tensors, which
are higher-dimensionality containers, completing the picture in Figure 4.13.
In SkePU 3 there are tensors of three (Tensor3<T>) and four (Tensor4<T>)
dimensions, complementing the existing one-dimensional Vector<T> and two-
dimensional Matrix<T>. Smart container dimensionality in SkePU is therefore
fixed by the framework, though their sizes in each dimension are user-defined.
While the template meta-programming technologies used elsewhere in SkePU
can be used to implement container types of arbitrary dimension, also provid-
ing each skeleton pattern for customizable dimensionality (esp. MapOverlap)
is currently outside the scope of SkePU, and as such the container set is
restrained to cover up to four dimensions.

56



4.13. Smart containers

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

0 1 2 3 4

0 1 2
3 4 5
6 7 8

9 10 11
12 13 14
15 16 17

0 1 2
3 4 5
6 7 8

9 10 11
12 13 14
15 16 17

18 19 20
21 22 23
24 25 26

27 28 29
30 31 32
33 34 35

0 1 2 3 4

0 1 2 3 4

0

1

2

3

4

0 1 2 0 1 2

0 1 2 0 1 2

0

1

2

0

1

2

0

1

2

0 1

0 1

0

1

i

j
i

kj

l
k

i

j

i

1

(a) Vector
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(b) Matrix
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(c) Tensor3
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(d) Tensor4

Figure 4.13: Container indexing and memory layout.

Listing 4.18: Smart container set in SkePU 3.
1 skepu::Vector<float> v(dim1);

skepu::Matrix<float> m(dim1, dim2);
skepu::Tensor3<float> t3(dim1, dim2, dim3);
skepu::Tensor4<float> t4(dim1, dim2, dim3, dim4);

The interfaces for tensor containers are virtually identical to those of vec-
tors and matrices, differing in the obvious ways of naming and element access
as detailed below. Instances of the tensor classes are created with one con-
structor argument for each dimension. Optionally an additional argument of
type T specifies the default value of all elements in the container. The full set
of smart containers in SkePU 3 now covers up to four-dimensional structures;
see Listing 4.18 for their definitions.

The set of Index object types in SkePU, usable in e.g. user function sig-
natures to identify the index of the element being operated on, is likewise
extended with 3D and 4D equivalents (Listing 4.5):
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4. SkePU programming interface design

Tensors are available in the skeleton API as element-wise inputs to Map,
Reduce, MapReduce, Scan, and MapOverlap. They are also accessible freely
in user functions as proxy objects, where applicable. In some skeleton con-
figurations the dimensionality of element-wise inputs is irrelevant by design,
though in Map-based skeletons it can be accessed by using Index parameters.

4.13.1 Container indexing
Even though SkePU aims for a high-level programming interface and its con-
tainers are strongly evoking mathematical terminology, it features zero-based
indexing. SkePU is C++-based and it is to be expected that programmers
with existing C++ experience are used to this mode of indexing, that ar-
guably exposes implementation details of the containers being represented as
memory arrays. Care has to be taken when porting applications from lan-
guages popular in the scientific communities that feature one-based indexing,
such as Fortran and MATLAB.

When indexing smart container objects, regardless of dimensionality, the
first index is always the most significant, that is, changing this index will
cause the biggest jump in the memory offset. This index is typically named
i with the subsequent indices increasing alphabetically: i, j, k, l. These labels
are exposed in the interface of the index types discussed in Section 4.2.4.
Figure 4.13 illustrates the memory layout by numbering each element in the
containers, and how it relates to each index coordinate.

Formally, the access syntax is

container(i,[j, [k, [l]]]) [= value];.

Indexing semantics are slightly different in Region container proxy types,
with the zero index denoting the center element in the region and accepting
negative indices. See Section 4.14.3 for more details.

Figure 4.13 illustrates indexing and memory layout of the four smart con-
tainer types. Figure 4.13a shows a Vector of size 5, Figure 4.13b shows a
Matrix of size 5 × 5, Figure 4.13c shows a Tensor3 of size 2 × 3 × 3, and
Figure 4.13d shows a Tensor4 of size 2 × 2 × 3 × 3.

4.14 Container proxies

Smart containers typically reside in the unmanaged scope of a SkePU program,
outside of user functions. They are complex C++ template types and manage
coherency states across backends, which makes them, in general, impossible
to directly be accessible on the backends themselves. For the basic skeleton
formulations with element-wise operand mappings, there is never a need to
interface with the container objects themselves in user function code. With
random-access parameters as described in Section 4.2.1, this is no longer true.
In SkePU 1, this problem was solved with a specific skeleton (MapArray) with
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Figure 4.14: Element accessibility for MatRow vs. Mat parameters in a user
function.

a pointer parameter in the user function as the way to interface with the full
extent of the container data. In SkePU 2 and later, a more general and less
leaky abstraction is instead available in most skeletons: the proxy container
objects. Expressed in code as Vec<T>, Mat<T>, Ten3<T>, or Ten4<T>; these
objects provide clear and type-safe access to an entire container’s data. In-
dexing is done just like in unmanaged scope (Section 4.13.1) and the proxy
objects provide member fields with container size for each dimension. Other-
wise, the proxies have no features, as they are kept lightweight for preserving
performance.

In addition to whole-container proxy objects, there are three (or six) in-
stances of proxies for partial container access: MatRow<T> and MatCol<T> for
matrices, and RegionND<T> representing the neighborhood around a specific
element for each of the four dimensions of smart containers. Each such partial
proxy object is covered further in the upcoming sections.

4.14.1 MatRow proxy
SkePU has since version 2 allowed for flexible parameter lists for user
functions, including random-access containers (implemented in terms of
lightweight proxy objects) in addition to the default element-wise inputs.
While this allows for powerful expressivity, very little about the access pat-
terns of these random-access containers is known to SkePU, and performance
may thus not always be ideal.

One very common pattern when using Matrix as a random-access con-
tainer parameter is that each user function invocation is only interested in
one row of the matrix. This pattern is seen in matrix-vector multiplication
and similar multi-reduction-style computations. To improve SkePU perfor-
mance in these cases, SkePU 3 introduces a new proxy object, MatRow<T>.
Bridging the gap between element-wise mapped and random-access container
arguments, this proxy type when used in a Map skeleton instance that maps
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Listing 4.19: Matrix-vector multiply using MatRow in SkePU 3.
1 template<typename T>

T mvmult_f(const skepu::MatRow<T> mr, const skepu::Vec<T> v)
{

T res = 0;
5 for (size_t i = 0; i < v.size; ++i)

res += mr(i) * v(i);
return res;

}

10 skepu::Vector<float> y(height), x(width);
skepu::Matrix<float> A(height, width);
auto mvmult = skepu::Map<0,0>(mvmult_f);
mvmult(y, A, x);

over vectors (i.e., the result container(s) of the skeleton are Vector), makes
available one single row of the argument matrix container to the user function,
see Figure 4.14.

As an example, matrix-vector multiplication using MatRow<T> may be im-
plemented as shown in Listing 4.2. Compared to the closest corresponding
SkePU 2 implementation which only provides the more generic Mat proxy
container, the code is more succinct and there is more information about the
access pattern available to SkePU.

There is no change in syntax of skeleton instantiation or skeleton invoca-
tion needed for this feature to apply.

The performance benefit of using MatRow (where applicable) instead of the
more general Mat container proxy comes from significantly reduced operand
data transfer volume when executing over distributed memory scenarios, both
in multi-GPU execution and in cluster execution: the communication pattern
with MatRow is a scatter operation, while with Mat it is a broadcast.

4.14.2 MatCol proxy
Analogous to MatRow, SkePU 3 provides a proxy container encoding column
accesses to random-access matrix containers in MatCol. In most respects
MatCol behaves just like its sibling, with two major differences. Firstly, SkePU
matrices are stored in row-major order in memory, and providing a slice or
view into a single column of a matrix is therefore not as straightforward. Here
SkePU again utilizes its strengths as a high-level multi-backend framework: by
using MatCol, the programmer declares their intent of only accessing elements
from a single column, but not the imperative instructions of how this will be
done. For a shared memory system and a sufficiently small matrix, SkePU may
choose to provide direct, strided access to the underlying container object. On
distributed memory, such as multi-GPU or cluster systems, SkePU will create
a transposed clone of the matrix container (alternatively viewed as now being
stored in column-major order) and divide it among memory subspaces. Even

60



4.14. Container proxies

in the shared memory case, SkePU may use information from the application
state (such as container size, lineage structures, and tuning data) and decide
that transposing is worthwhile.

Secondly, the semantics of which column is selected for each invocation of
the user function has to be defined. SkePU abides to the following rules:

1. If the result container is a vector, let the current element index be i:

a) MatRow binds to the ith row of the corresponding random-access
matrix argument.

b) MatCol binds to the ith column of the corresponding random-access
matrix argument.

2. Otherwise, if the result container is a matrix, let the current element
index be (i, j):

a) MatRow binds to the ith row of the corresponding random-access
matrix argument.

b) MatCol binds to the jth column of the corresponding random-
access matrix argument.

3. Otherwise, the skeleton instance is malformed.

Listing 4.20: Matrix-matrix multiply with MatRow and MatCol.
1 template<typename T>

T mmmult_f(skepu::MatRow<T> ar, skepu::MatCol<T> bc)
{

T res = 0;
5 for (size_t k = 0; k < ar.cols; ++k)

res += ar(k) * bc(k);
return res;

}

10 skepu::Matrix<float> a(height, inner), b(inner, width), c(height, width);
auto mmmult = skepu::MapPairs<0,0>(mmmult_f<float>);
mmmult(c, a, b);

For computations on matrices, these rules are natural and analogous to
the element-wise indexing in the MapPairs and MapPairsReduce skeletons.
In fact, MatRow and MatCol are a perfect fit together with MapPairs, extend-
ing the skeleton to handle computations with the structure of matrix-matrix
multiplications. Listing 4.20 shows how such a computation may look.

Matrix-row and matrix-column user function proxy containers are avail-
able in user functions for Map, MapReduce, and MapOverlap skeleton instances
that satisfy the above requirements.
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Figure 4.15: MatRow and MatCol access patterns in the computation in List-
ing 4.20.

4.14.3 Region proxy
Specifically for the MapOverlap skeleton, the element-wise iterated input ar-
gument container provides access not only to the current element, but rather
a region of elements surrounding the current index. To achieve a high-level
interface for this pattern, SkePU provides the RegionND<T> family of types,
with N ranging from 1 to 4.

An object of the RegionND<T> types can be indexed to access values in
the region, and also carries information about the size of the overlap region
(which can be set dynamically before a skeleton invocation). See Listing 4.7
for an example of region objects used in a convolution computation.

In Figure 4.13, for each container, the third element (indexed 2 in the least
significant index and 0 elsewhere) is darkly shaded, and the surrounding region
with a radius of 1 in each dimension is medium shaded. The neighboring
elements are important for the MapOverlap skeleton. Note that the region is
significantly truncated for all dimensions larger than 1; a full four-dimensional
radius-1 neighborhood would be 34 = 81 elements in total, including the center
element.

Indexing into region objects is zero-based with the center element at the
0 position. Positive and negative indices are used in each dimension to access
the full region, see Figure 4.16.
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Figure 4.16: Indexing into a Region2D matrix proxy with overlap size (1,1).

4.15 Memory consistency model

Experiences from users of SkePU 2 demonstrated that the dual-mode model
of SkePU can be a bit challenging to adapt to. As with, for instance, GPU
programming models, SkePU programs execute code in one of two modes, or
rather scopes: unmanaged scope or managed scope. In GPU programming
parlance (exposed directly in the CUDA interface) these are known as ”host”
and ”kernel” mode. In SkePU, these are represented by being either outside
or inside of the dynamic scope of a skeleton user function. While syntactically
highly similar, the capabilities in each mode are very different. Code residing
in unmanaged scope is treated effectively like any C++ environment, as it
is the goal of the framework to be possible to embed in existing C++ appli-
cations. This means that the programmer can use any C++ constructs and
idioms such as classes, dynamically allocated structures, virtual function calls,
and so on. Inside a user function, however, the environment is effectively a
single-threaded, no-side-effects, C-like land.11

These differences also mean that the memory consistency models are differ-
ent in the two views. SkePU handles memory consistency at the boundary—
during entry and exit of a skeleton invocation and the user function evaluation.
Inside the user function, side effects are not allowed and therefore random
memory reads are disabled, and the coherency model is straightforward.

SkePU 2 separated container accesses in unmanaged scope into two kinds:
[] array notation and () functional notation. Array notation maintained
consistency while functional notation bypassed any checks and enabled direct
reads and writes on the internal, host-side memory array. The bracket opera-
tor checked for the accessed element’s state in the data container’s metadata
(updated or invalid) and, if necessary, would trigger a (bulk) data movement

11The reason for this is to preserve compatibility with as many accelerator environments
as possible, such as OpenCL C or even FPGAs.
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Figure 4.17: Scopes with differing capabilties in a SkePU program.

to update the container’s copy in host memory from a currently valid device
copy.

During the design of SkePU 3, experiences gained from field observations
of SkePU 2 made it clear that this model was confusing, as the checked array
notation incurred overhead when used in tight loops, and spurious usage of
functional notation could lead to unintended errors. Thus, SkePU 3 removes
the array-style angle bracket notation completely, and functional-style element
access is not consistency-checked unless explicitly requested by a compile-
time command. Functional notation is chosen as it scales naturally to the
multi-dimensional container types, matrices and tensors. (Element indexing
of smart containers is covered in more detail in Section 4.13.1.)

Instead, the programmer should flush the whole container instead before
doing single-element accesses of user function data, as described below.

Hence, there is no longer a coherency-satisfying single-element access
mechanism to SkePU smart containers except inside user function proxy ob-
jects (Vec<T>, Mat<T>, etc). However, optional runtime checks outside user
functions can be (re-)activated for parenthesis accesses by setting a compiler

64



4.15. Memory consistency model

Listing 4.21: Examples of using the flush operation.
1 skepu::Vector<int> v1(n), v2(n);

skepu::Matrix<int> m1(n, n), m2(n, n);

v1.flush(); // FlushMode::Default
5 m1.flush(); // FlushMode::Default

skepu::flush(v2, m2); // FlushMode::Default

v1.flush(skepu::FlushMode::Dealloc);
10 m1.flush(skepu::FlushMode::Dealloc);

skepu::flush<skepu::FlushMode::Dealloc>(v2, m2);

flag, e.g., for debugging purposes or for backwards compatibility with code
written for SkePU 2.

A common pattern in SkePU applications is that smart containers are
used for a computationally intensive part of the application, and the data is
then either handed over to a non-SkePUized section, or serialized e.g. to disk.
To accommodate this pattern, it is important that there is a way to ensure
consistency of the local container contents. SkePU 3 provides this through
the flush operation to complete the new consistency model.

Flushing smart container data can be performed on smart container in-
stances or collectively by a variadic free function. Either approach accepts a
flush mode enum argument providing options, e.g. if the remote data buffers
should be cleaned up or not, as seen in Listing 4.21.

The flush (member) functions are known symbols to the pre-compiler, so
the presence or absence of flush operations in SkePU source code is subject
to static analysis and optimization.

4.15.1 External scope
Recently introduced as part of SkePU 3, the final piece of the puzzle in the
SkePU memory consistency model is the external scope. Code placed in an
external scope is guaranteed to be executed in a sequential and synchronous
context, and as long as smart container dependencies are declared correctly,
all data belonging to containers declared as read will be made available to
read inside the external scope, and all changes to those declared as write are
kept consistent and available to skeletons as soon as the scope is exited.

The syntax is as follows:
skepu::external (
[ skepu::read(rdcontlist),] [&]() {

...
} [, skepu::write(wrcontlist)]

);
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where the optional arguments skepu::read() and skepu::write() list con-
tainer objects that may be read from respectively written to main memory in
the code block (...).

The main purpose of this scope and corresponding construct is to maintain
a sequential programming interface even when a SkePU program is launched
as a SPMD program, i.e., when the cluster backend is used (see Section 5.3.4).
As the name implies, any operation using external resources, such as a file
system or network communication, should be placed within the external scope.
This semi-automatic solution with an explicit framing construct allows to not
depend on static analysis by the pre-compiler, which may not be feasible in
the context of separate compilation and using libraries.

A typical SkePU application may have a program structure of an external
construct early on to read input data from a file, followed by a sequence of
skeleton invocations performing computation, and finally another external
block for serializing results.
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5 Implementation

This chapter provides insight into the implementational aspects behind the
SkePU project. Anything presented below is not intended to be required
knowledge by users of SkePU as a programming interface and framework, and
relying on implementation details (including the generated code) discussed in
this chapter could lead to SkePU applications breaking as the implementation
evolves.

5.1 Implementation overview

SkePU is implemented in three parts. There is a sequential runtime system, a
source-to-source compiler tool, and the parallel runtime system1 with multiple
backends supported. The integration of these parts is illustrated in Figure 5.1.

A SkePU program can be compiled with any standard C++11 compiler,
producing a sequential executable. This means that the sequential skeletons
can act as a reference implementation, both to users—who can test their
applications sequentially at first, with the advantages of simpler debugging
and faster builds—and to SkePU backend maintainers.

1The parallel runtime of SkePU 2 and later is based on the original SkePU 1.x backends.
By a combination of using new and powerful C++11 language features, offloading boiler-
plate work to the precompiler, and general improvement of the implementation structure,
the verbosity and code size of the implementation was greatly reduced. In some areas,
e.g., combining the source code for unary, binary, and ternary Map skeletons into a single
variadic template, the amount of lines of code was reduced by over 70 percent. [26]
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Figure 5.1: SkePU compiler chain.

5.2 Source-to-source compiler

The role of SkePU’s source-to-source precompiler is to transform programs
written for the sequential interface for parallel execution. The precompiler
has four major tasks:

• Kernel code generation: For backends like OpenCL, which are not
compatible with C++ syntax or runtime features, the precompiler will
generate kernel code compiled and run on the external device.

• Run-time support: In addition to the kernel code itself, the precom-
piler generates ”glue code” that launches the device kernel as well as
supporting definitions and data structures. This way, the implementa-
tion of parallel skeleton patterns in the SkePU library can be simplified
and support backend compilers with less feature-rich or stable template
metaprogramming implementations.

• Analysis and optimization: Having full access to the source code and
its AST, the precompiler can suggest or perform optimizations on the
program to improve performance while preserving functionality. This
aspect of the precompiler is promising but limited so far; it remains one
of the promising areas for future work on SkePU.
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Listing 5.1: Before precompiler transformation.
1 #include <skepu>

template<typename T>
T add(T a, T b)

5 {
return a + b;

}

int main()
10 {

auto adder = skepu::Map(add<float>);
}

• Error checking: SkePU comes with several limitations on what can
and cannot be done in, e.g., the user functions. Many of these restric-
tions are not enforceable within the C++ type system and can lead to
compilation errors in the backends, or even undefined run-time behavior
of programs. Since the pre-compiler is based on the Clang framework, it
has access to inline error and warning formatting and will catch common
mistakes early on. The checking is inherently limited, since guaranteeing
a C++ program’s correctness is impossible.

The task of the precompiler is limited by design. Its main purpose is
to transform user functions, for example by adding __device__ keywords
for CUDA variants and stringifying the OpenCL variant. A user function
is represented as a struct with static member functions in the transformed
program. The precompiler also transforms skeleton instances, redirecting to
a completely different implementation accepting the structs as template ar-
guments. It also redefines user types for backends where necessary. For some
backends such as OpenCL and CUDA, all kernel code is generated by the
precompiler.

An example of a transformation of the template user function in Listing 5.1
can be seen in Listing 5.2. In this case, only the sequential CPU (on by de-
fault), OpenMP, and OpenCL backends are enabled. Each GPU backend
adds significantly more code to the generated output: everything executed as
a kernel on the GPU device is generated by the SkePU pre-compiler, as well as
additional boilerplate glue-code used to launch said kernels. Listing 5.3 con-
tains an excerpt of the kernel code generated (in the OpenCL kernel language,
as a static text string) for the SkePU program in Listing 5.1 and Listing 5.4
shows part of the code generated on the CPU side to launch the kernel. Note
that both of these listings are edited for presentational purposes.

In the future, the precompiler role will be expanded to include automated
selection of system-specific user function specializations, guided by a platform
description language [37]. The precompiler can either select the most appro-
priate specialization directly, or include multiple variants and generate logic
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Listing 5.2: After precompiler transformation.
1 #define SKEPU_PRECOMPILED

#define SKEPU_OPENMP
#include <skepu>

5 template<typename T>
T add(T a, T b)
{

return a + b;
}

10

struct skepu_userfunction_adder_add_float
{

using T = float;
15 constexpr static size_t totalArity = 2;

constexpr static size_t outArity = 1;
constexpr static bool indexed = 0;
using IndexType = void;
using ElwiseArgs = std::tuple<float, float>;

20 using ContainerArgs = std::tuple<>;
using UniformArgs = std::tuple<>;
typedef std::tuple<> ProxyTags;
constexpr static skepu::AccessMode anyAccessMode[] = {
};

25
using Ret = float;

constexpr static bool prefersMatrix = 0;

30 #define SKEPU_USING_BACKEND_OMP 1
#undef VARIANT_CPU
#undef VARIANT_OPENMP
#undef VARIANT_CUDA
#define VARIANT_CPU(block)

35 #define VARIANT_OPENMP(block) block
#define VARIANT_CUDA(block)

static inline SKEPU_ATTRIBUTE_FORCE_INLINE float OMP(float a, float b)
{

return a + b;
40 }

#undef SKEPU_USING_BACKEND_OMP

#define SKEPU_USING_BACKEND_CPU 1
#undef VARIANT_CPU

45 #undef VARIANT_OPENMP
#undef VARIANT_CUDA
#define VARIANT_CPU(block) block
#define VARIANT_OPENMP(block)
#define VARIANT_CUDA(block) block

50 static inline SKEPU_ATTRIBUTE_FORCE_INLINE float CPU(float a, float b)
{

return a + b;
}

#undef SKEPU_USING_BACKEND_CPU
55 };

int main()
{

skepu::backend::Map<2,
60 skepu_userfunction_adder_add_float ,

bool, void> adder(false);
}
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Listing 5.3: Generated OpenCL kernel.
1 __kernel void add_precompiled_MapKernel_add_float_arity_2(

__global float* skepu_output,
__global float *a,
__global float *b,

5 size_t skepu_n,
size_t skepu_base

)
{

size_t skepu_i = get_global_id(0);
10 size_t skepu_gridSize = get_local_size(0) * get_num_groups(0);

while (skepu_i < skepu_n)
{

skepu_output[skepu_i] = add_float(a[skepu_i], b[skepu_i]);
15 skepu_i += skepu_gridSize;

}
}

Listing 5.4: Generated OpenCL kernel launcher code.
1 template<typename Ignore>

static void map
(

size_t skepu_deviceID,
5 size_t skepu_localSize,

size_t skepu_globalSize,
skepu::backend::DeviceMemPointer_CL <float> *skepu_output,
skepu::backend::DeviceMemPointer_CL <float> *a,
skepu::backend::DeviceMemPointer_CL <float> *b,

10 Ignore,
size_t skepu_n,
size_t skepu_base

)
{

15 skepu::backend::cl_helpers::setKernelArgs(
skepu_kernels(skepu_deviceID),
skepu_output->getDeviceDataPointer(),
a->getDeviceDataPointer(),
b->getDeviceDataPointer(),

20 skepu_n,
skepu_base

);
cl_int skepu_err = clEnqueueNDRangeKernel(

skepu::backend::Environment<int>::getInstance()
25 ->m_devices_CL.at(skepu_deviceID)->getQueue(),

skepu_kernels(skepu_deviceID),
1, NULL,
&skepu_globalSize, &skepu_localSize,
0, NULL, NULL

30 );
CL_CHECK_ERROR(skepu_err, "Error launching Map kernel");

}
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to select the best one at run-time based on dynamic conditions. The extensi-
bility was an important motivation when deciding to construct SkePU 2 as a
precompiler-based framework using the Clang libraries.

5.3 Backends

After a SkePU program has been processed by the pre-compiler, the generated
source code now has access to the full SkePU runtime library of implementa-
tion backends.

The hybrid backend is a major contribution and covered in great detail in
Chapter 7.

5.3.1 Sequential CPU backend
The most straightforward of the SkePU backends is the sequential CPU vari-
ant, which is different compared to the direct compilation path of SkePU.
When using the pre-compiler and the sequential backend, the application uses
the full smart container implementation and goes through the standard back-
end selection process. Thus, the motivation for a sequential CPU implemen-
tation is a more fair comparison for performance evaluations. The sequential
backend is also generally more optimization-oriented compared to the direct
compilation, and may have fewer correctness checks and programmer feed-
back mechanisms. Compared to the multi-core CPU backend, the sequential
CPU implementation avoids potential overhead of OpenMP directives and
thread management. However, the sequential backend is rarely relevant for
real-world computations, where the data sets are sufficiently large.

5.3.2 Multi-core CPU backend: OpenMP
For multi-core systems, SkePU provides a multi-threaded backend based on
the industry standard OpenMP interface. Using this backend requires an
OpenMP-supported C++ compiler such as GCC or ICPC.

In SkePU 2 and earlier, all skeletons, in particular the Map based skele-
tons, assumed an equal load distribution of the user function executions over
the entire range of input container elements. Some applications may however
exhibit an irregular workload distribution instead, especially in CPU-affine
computations and sometimes even in combination with very short input vec-
tors, which are typically prime targets for the OpenMP backend.

For these cases, SkePU 3 adds support for dynamic scheduling in the
OpenMP backend. Available scheduling modes in the OpenMP backends
are dynamic, guided self-scheduling, auto (for auto-tuned scheduling as im-
plemented in the OpenMP target compiler), and of course static which is the
default scheduling mode.
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Figure 5.2: Clang AST of the add user function from Listing 5.1.
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Figure 5.3: Backends available in SkePU.
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Figure 5.4: Cluster execution modes in SkePU.

In addition, the chunk size (the smallest number of user function invoca-
tions to schedule as a group) can be explicitly set in the backend specification.

Performance evaluation results for three load balancing benchmarks using
the OpenMP backend are given in Section 9.7.1.

5.3.3 GPU backends: OpenCL and CUDA
SkePU targets GPUs using either the CUDA or OpenCL frameworks.
OpenCL can also target other types of accelerators, such as Intel Xeon Phi,
while CUDA is vendor-specific to Nvidia GPUs. Most of the skeletons in
SkePU can target several GPUs at once, splitting up the work between them.
(A separate hybrid backend can optionally use GPUs and OpenMP simulta-
neously, with a load-balanced work distribution.)

5.3.4 Cluster backend: StarPU and MPI
SkePU 3 provides two different modes of using cluster resources:

• Outer MPI mode: the application code already contains explicit MPI
code for cluster-level parallel execution, using SkePU only locally on
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each node for execution of skeletons on multicore CPU and/or acceler-
ators.

• Inner MPI mode: The application does not contain any MPI (nor other
parallelization) code. If an environment for MPI parallel execution is
available (usually, multiple nodes on a cluster), then skeletons can trans-
parently execute in parallel across these nodes if selecting the MPI back-
end.

Outer and Inner MPI mode are mutually exclusive, i.e., for applications
that are pre-parallelized using explicit MPI code the MPI backends of all
skeletons are disabled.

The implementation of inner MPI parallelism is technically based on gen-
erating StarPU task code using the MPI interface of the StarPU runtime
system [5], which detaches each node’s generated send and receive operations
into special CPU ”codelets” that are exposed to StarPU as separate tasks
for dynamic scheduling [4]. Distributed variants of the smart data-containers
(Vector, Matrix etc.) with the same interface as the node-local counterparts
come with default distributions, and each cluster node runs one copy of the
SkePU executable atop a local instance of StarPU in SPMD style. Execu-
tion over distributed container operands follows the “owner computes rule”,
stating that each node only executes those operations that calculate (write)
elements it owns (i.e., are part of its local partition of the result container).

For using inner MPI parallelism, no syntactic changes in SkePU code are
required, thus following SkePU’s strict portability principle. The illusion of a
single SkePU process performing all the work on a single node even with the
MPI backend is maintained by implementing the Reduce skeleton by an MPI
Allreduce operation so that the reduction result is available on each of the
SPMD processes. The weak memory consistency model of SkePU (see Sec-
tion 4.15) applies also to distributed containers: the programmer must ex-
plicitly flush (i.e., gather) them back to the master (i.e., the rank 0 process)
before the most recent values of elements of remote partitions can be accessed
by a read access on the master, or after a write access by the master.

The only remaining issue in SPMD execution is that I/O operations need
be protected from being executed everywhere. To make sure that such code
is executed only by the SPMD master process, such code should be guarded
by the skepu::external construct covered in Section 4.15.1. The distributed
data of the containers to be output is automatically flushed. Before the code
block is evaluated read containers are gathered, and afterwards the write
containers are distributed using scattering.
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5.4 Continuous integration and testing

SkePU is primarily a research-oriented project, distributed as open-source and
not marketed as a commercial product. However, part of the goal of SkePU
is to be a viable tool for integration into existing or new C++ applications
as a way to parallelize computation in a portable and performant manner; or
at the very least be a good choice for prototyping skeleton programming or
high-level parallelism in general. This goal requires some level of stability and
reliability of SkePU as well as an accessible installation process. As SkePU
has matured as a framework over the past few years, it has been evolving in
these aspects too, and as of now has an established continuous integration
system in place, including automated testing facilities ranging from unit-level
tests (for instance, on smart container operations) as well as system-level
tests of the entire build-and-run process of SkePU applications. The testing
infrastructure is relatively new and the number and types of tests are steadily
increasing.

5.5 Dependencies

SkePU requires the target platform to provide a C++11-conforming compiler.
C++11 support in compilers is quite mature today, and support is available
in all recent versions of GCC, Clang, and the Intel, Microsoft, and Nvidia
toolchains. Access to the precompiler tool is also necessary for parallel builds,
so by extension a development system needs to be able to build LLVM and
Clang. These code repositories and the generated build files are quite large,
several hundreds of megabytes in total. However, the SkePU tool chain is
designed to allow for cross-precompilation. In other words, all decisions based
on the architecture and available accelerators, etc., are made after the precom-
pilation step, and it is possible to split the build process of SkePU programs
such that the pre-compilation occurs on a system with the full pre-compiler
LLVM stack installed. The final compilation step only needs the backend
compiler, and can be done, e.g., on an embedded system with a small storage
footprint.

Cmake is used throughout LLVM and also for the SkePU examples. For
testing, SkePU relies on the ctest build environment (included as part of
Cmake) and on Catch 2 for the test program implementation.

5.6 Availability

SkePU is made available to the general public through an open-source dis-
tribution of all its source code, including the source-to-source compiler. It is
published with a permissive modified four-clause BSD license and hosted on
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GitHub2. Cmake support and extensions helps making the SkePU compiler
toolchain possible to integrate in existing application build systems. Docu-
mentation and code samples are hosted at the SkePU website, and several
recent publications on SkePU are available as open access.

2https://skepu.github.io
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6 Extending smart
containers for data
locality awareness

This chapter is closely based on the following publication:

August Ernstsson and Christoph Kessler. “Extending smart containers for
data locality-aware skeleton programming.” In: Concurrency and Computa-
tion: Practice and Experience 31.5 (2019), e5003. doi: 10.1002/cpe.5003

Material from the above paper is ©2018 John Wiley & Sons, Ltd. and
included in this thesis with permission from the copyright holder.

Experimental evaluation is presented later, in Chapter 9.
In this chapter, we present an extension for the SkePU to improve the per-

formance of sequences of transformations on smart containers. By using lazy
evaluation, SkePU records skeleton invocations and dependencies as directed
by smart container operands. When a partial result is required by a differ-
ent part of the program, the run-time system will process the entire lineage
of skeleton invocations; tiling is applied to keep chunks of container data in
the working set for the whole sequence of transformations. The approach is
inspired by big data frameworks operating on large clusters where good data
locality is crucial. We also consider benefits other than data locality with
the increased run-time information given by the lineage structures, such as
backend selection for heterogeneous systems.
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6.1 Introduction

In data centers and supercomputers, parallelization is taken to a different
level. A large number of computer nodes are integrated with an interconnec-
tion network, processing large amounts of data. In these systems, computa-
tional resources typically exist in abundance, while data access is the perfor-
mance bottleneck. In big data analytics, frameworks with interfaces similar
to algorithmic skeletons have been constructed to solve mostly the same prob-
lems of programmability, performance, and portability. The MapReduce pro-
gramming model [21] from Google was the first successful such framework. It
gained popularity outside of Google though the open-source implementation
Hadoop1. An evolution of MapReduce is Spark2, like Hadoop open-source and
maintained by the Apache Software Foundation.

As data access latency is important in big data scenarios, Spark and related
frameworks have developed techniques to optimize data locality and reduce
the number of unnecessary loads and stores. However, memory accesses are
also an important consideration on the smaller scale of single-chip parallelism,
as the memory technology and interfaces have not improved at the same pace
as multi-core processors. This is known as the memory wall [77]. In this con-
tribution, we apply ideas from big data frameworks to skeleton programming
and evaluate the results.

This chapter contains a description of the implementation of lazy evalua-
tion and loop tiling of sequences of skeleton invocations as well as a discussion
of application scenarios. Performance evaluation of loop tiling on example ap-
plications using the Map and MapOverlap skeletons is presented in Chapter 9.

We first present an overview of big data technologies in Section 6.2. Sec-
tion 6.3 details our contribution, lazy evaluation and loop tiling for the SkePU
skeleton framework, and its implementation. Section 6.4 compares our contri-
bution to compile-time kernel fusion and presents applications better suited
to our dynamic solution. Section 6.5 lists related work.

Performance evaluation results are presented later, in Section 9.3.

6.2 Large-scale data processing with MapReduce and
Spark

This section introduces the MapReduce and Spark programming environments
for big data applications. These models share a basic functional interface with
algorithmic skeletons, but the trade-offs and design choices are different. In
big data contexts, the cost of computation is small compared to the cost of
data movement, and as such higher-level programming languages such as Java
or Python are typically used.

1http://hadoop.apache.org
2http://spark.apache.org
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6.2.1 MapReduce
The MapReduce programming model is designed for large-scale data process-
ing on clusters. It is a high-level model while still being flexible enough to
allow any computation to be expressed with a sequence of the fundamental
programming construct: the MapReduce block. As the name suggests, this
building block has similar semantics to the MapReduce skeleton in SkePU, but
there are additional parts to accommodate the cluster scenario. MapReduce
can roughly be deconstructed into three steps:

1. Map phase
This step performs a transformation of each key-value pair in the input
sequence to zero, one, or several key-value pairs in the output sequence,
perhaps in different domains.

2. Shuffle phase
The shuffle phase will shuffle and sort the key-value pairs so that ele-
ments with identical keys are located on the same node.

3. Reduce phase
The reduce phase will, for each key, perform some accumulation of the
set of values associated with this key.

Due to this separation of computation into super-steps with communi-
cation only occurring at well-defined points, the MapReduce model can be
considered an implementation of the bulk-synchronous programming (BSP)
model [56, 75]. Each MapReduce super-step begins with each node reading
its assigned subset of the input data from secondary storage, and ends with
a write of the output to disk.

6.2.2 Spark
The goal of Spark is to improve upon the performance of MapReduce, specif-
ically in iterative applications such as machine learning [50], by means of
avoiding unnecessary reads and writes to the file system [79]. Spark does this
by introducing an abstraction called resilient distributed datasets (RDDs),
read-only collections of arbitrary data partitioned over a set of nodes. Spark
classifies the computations that can be done on RDDs into two classes: trans-
formations and actions. In essence, computations that can preserve the cur-
rent partitioning (i.e., can be done locally on the residing node) are trans-
formations. These include, but are not limited to, map, filter, union, and
intersection. A transformation on an RDD always returns a new RDD.
Actions, in contrast, all require some form of collection or reduction of the
RDD objects. Typical actions include reduce, count and collect.

The reason for classifying computations into transformations and actions
are that operations on RDDs are lazy. The computation is not carried out
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Listing 6.1: Word count program with Spark in Scala.
1 val textFile = sc.textFile("hdfs://...")

val counts = textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)

5 counts.saveAsTextFile("hdfs://...")

immediately upon evaluation of a function call, instead recorded into a lin-
eage graph associated with the returned placeholder RDD. As long as only
transformations are performed, Spark can build up the lineage graph without
performing any actual computations.

6.3 Lazily evaluated skeletons with tiling

In this section, we present an approach to apply the idea of lineages and lazy
evaluation to skeleton programming.

6.3.1 Basic approach and benefits
Lazy evaluation of skeleton invocations works by, instead of computing the
skeleton algorithm immediately at the call site, recording the skeleton, smart
container arguments, and the surrounding context. The system will detect de-
pendencies across skeleton invocations and build a graph, a lineage, where the
nodes are skeleton invocations with recorded contexts and the edges represent
dependencies.

A lineage graph is therefore fundamentally tied to the smart containers.
A single smart container can be used as input or output in multiple nodes
of a lineage. As long as the operations on smart containers are element-wise
transformations, the lineage graph can continue to be built up (otherwise, it is
an evaluation point, see Section 6.3.4). The lineage graph essentially encodes
a partial order of skeleton invocations, where the ordering relation models
dependencies and thus is dependent on the containers used as arguments. As
the lineage graph contains all dependency information, the physical call order
of skeleton invocations is irrelevant and the runtime system is free to execute
skeleton invocations in any sequence that is compatible with the dependency-
carried partial ordering. The runtime can as such aim to find the sequence
that offers the best locality of reference. As will be clear later, evaluations of
skeleton invocations will in practice not even follow a strict sequence, as the
runtime will interleave different phases on a per-element basis.

With the introduction of lazy skeletons in SkePU, the following areas will
all have opportunities for performance improvements, among others:

• Backend selection on lineage level instead of single invocation level.
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Listing 6.2: Before transformation.
1 for i in 1 to N do

a[i] = a[i] * b[i]

for i in 1 to N do
5 c[i] = a[i] + a[i]

Listing 6.3: After transformation.
1 for i in 1 to N do

a[i] = a[i] * b[i]
c[i] = a[i] + a[i]

• Cache-aware skeleton algorithms with tiling applied to sequences of
skeleton transformations.

• Big data scenarios, by further applying tiling on secondary storage-
aware smart containers.

• Secure smart containers, where data is stored in encrypted form in
off-chip memory and is decrypted only when part of the current working
set.

6.3.2 Backend selection
The lineage makes more information available to the run-time backend se-
lection mechanism. Instead of greedily applying the tuning parameters to a
single skeleton invocation at a time, the backend can be selected for the whole
sequence at once. A typical consideration for backend selection is whether the
advantage of performing a computation on an accelerator is worth the effort
of moving data back and forth. For a sequence of computations, data move-
ment will only happen once in either direction but the computational load
will encompass all skeleton invocations in the lineage.

6.3.3 Loop optimization
By collecting information about a series of data transformations (Map skeleton
invocations) we can apply several loop optimization techniques to improve the
temporal locality of reference [22].

Loop fusion is a known technique for low-level compiler optimization. Two
or more loops can be combined into one, as in Listings 6.2 and 6.3. However,
in the context of skeleton lineages, the overhead of switching between the
contexts of different skeleton invocations for every single element is too large
for it to be practical. Locality can still be preserved, though, if the switching
is done in between processing chunks of elements.
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f0

f1

f2

(a) No tiling

f0

f1

f2

(b) Tiling

Figure 6.1: Sequence of skeleton transformations with and without tiling.

Loop tiling (also known as loop blocking or nesting) is a well-known tech-
nique for optimizing the locality of reference [41], especially on large, two-
dimensional data sets.

Figure 6.1 conceptually illustrates tiling of skeleton lineages. f0, f1, and
f2 are skeleton transformations lazily recorded in a lineage. At evaluation
time, without tiling, each transformation will be processed completely before
moving on (as is the case without lazy evaluation), see Figure 6.1a. With
tiling, a chunk of the container space will have all transformations applied
before moving on to the next chunk, as in Figure 6.1b. (In practice, there
may be multiple containers involved and the destination container may or
may not be the same as one of the inputs.)

6.3.4 Evaluation points
In contrast to the read-only RDDs in Spark, SkePU offers much more flexibil-
ity in how smart containers can be used. One consequence of this is that op-
erations on smart containers cannot easily be separated into transformations
and action classes, and from there decide when to apply the lazily accumu-
lated skeleton invocations. A smart container’s lineage will be evaluated if it
is used as an input to Reduce or Scan, if it is used as a random-access input
argument to Map, MapReduce, MapOverlap, or Scan, or if individual elements
are accessed.

Lineages can also be discarded without evaluation, as skeleton algorithms
are semantically free of side effects. This will occur if a smart container is
destroyed or reused as output before an evaluation point has been reached.

6.3.5 Further application areas
The proposed technique offers an automatic solution to make skeleton pro-
gramming more cache-aware. However, the approach is general enough to
accommodate any scenario in which there is a substantial cost associated
with loading and storing data to and from the current working area. In big
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data processing, the working area is instead the primary memory of a compute
node, and the load and store operations are slow network communication or
disk I/O.

As security and integrity become increasingly important aspects of com-
puting, we can also envision use-cases where data is permanently encrypted
in main memory and only decrypted and moved to a smaller, isolated (and
secured by other means) memory area for processing. The cost of decrypting
and encrypting data would be significant compared to the typically relatively
simple Map transformations.

6.3.6 Implementation
The technique described above has been implemented in SkePU for its Map
skeleton, and subsequently extended to also include the MapOverlap skele-
ton as described later in Section 6.3.7. For lazy skeleton evaluation, we use
C++11 lambda expressions to capture the context of a skeleton invocation
(container iterators, uniform arguments, and skeleton settings such as a user-
set backend specification). Lineages are graphs of linked nodes, each node
containing a function object resulting from the lambda expression as well as
dependency information as addresses of the container arguments. The con-
tainers themselves need not be captured, as the lifetime of a lineage is tied
to the scope of a smart container. Unevaluated lineage nodes will simply be
discarded when the associated containers go out of scope.

The syntax for SkePU is unchanged. Lazy evaluation and lineage con-
struction occur automatically, with optional API added for explicit control,
such as requesting the evaluation of container. Adding a node to a lineage will
create dependencies to all nodes with corresponding container arguments, as
such, an operation is introduced to remove transitive dependencies from the
lineage graph.3

An example program can be seen in Listing 6.4. The program contains
only Map skeletons with various transformations and parameter configura-
tions. The resulting lineage graph, combined for all smart containers in the
program, shows skeleton invocations and dependencies, see Figure 6.2. The
graph also shows the starting nodes for evaluating each container. Each node
is a recorded skeleton invocation and shows a global incrementing timestamp,
skeleton name, input and output container arguments. The directed edges
represent dependencies; only the black edges are true data dependencies while
red edges indicate write-after-read dependencies and blue edges correspond to
write-after-write dependencies. Note that Spark only has true dependencies
due to the read-only nature of RDDs. The existence of these false dependen-
cies in SkePU could open up for a smart container ”renaming” optimization
where possible, similar to register renaming in a microprocessor.

3This could also be done at node insertion time, but may induce some overhead when
the lineage grows large.
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Listing 6.4: Program generating a lineage graph when evaluated lazily.
1 // Smart containers

skepu::Vector<float>
v1(size, 1), v2(size, 2), v3(size, 3),

5 v4(size, 4), v5(size, 5), v6(size, 6),
v7(size, 7), v8(size, 8), v9(size, 9);

// User functions

10 float add_f(float a, float b)
{

return a + b;
}

15 float sub_f(float a, float b)
{

return a - b;
}

20 float mult_f(float a, float b)
{

return a * b;
}

25 float square_f(float a)
{

return a * a;
}

30 // Skeletons

auto add = skepu::Map(add_f);
auto sub = skepu::Map(sub_f);
auto mult = skepu::Map(mult_f);

35 auto square = skepu::Map(square_f);
auto copy = skepu::Map([](float a) { return a; });
auto generate = skepu::Map<0>([](skepu::Index1D index, float start)
{

return index.i + start;
40 });

// Transformations

add(v1, v3, v4);
45 copy(v9, v1);

mult(v2, v1, v3);
square(v1, v2);
add(v5, v5, v1);
add(v5, v5, v9);

50 add(v6, v7, generate(v6, 5.f));

for (int i = 0; i < 5; i++)
add(v8, v8, v8);
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12 add
in: v8 v8 
out: v8 

v8

11 add
in: v8 v8 
out: v8 

10 add
in: v8 v8 
out: v8 

3 square
in: v2 
out: v1 

4 add
in: v5 v1 
out: v5 

v1

2 mult
in: v1 v3 
out: v2 

v2

1 copy
in: v1 

out: v9 

v9

0 add
in: v3 v4 
out: v1 

6 generate
in: 

out: v6 

7 add
in: v7 v6 
out: v6 

8 add
in: v8 v8 
out: v8 

9 add
in: v8 v8 
out: v8 

5 add
in: v5 v9 
out: v5 

v5

v6

Figure 6.2: Lineage constructed by the program in Listing 6.4.

6.3.7 Lazy tiling for stencil computations
MapOverlap is the SkePU skeleton implementing stencil operations on smart
containers. To extend the lazy evaluation and tiling implementation for
MapOverlap instances, care must be taken to ensure that dependencies from
the input elements to the output elements are not violated during the lazy eval-
uation. Naively tiling the computation like Map forms dependencies across
tile borders. Eissfeller and Muller [23] proposed the triangle model for reduc-
ing data transfer times for iterative computations. A variant of that method
is implemented in SkePU for tiling MapOverlap skeletons.
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We start by observing that there are ”safe” regions in the data sets where
all of the elements can be computed for each skeleton invocation in the lin-
eage, each tile independently of the others. These regions shrink for each
subsequent invocation in the lineage, as the cumulative overlap will increase
with each stencil computation. When illustrating the safe regions for each tile
and iteration as in Figure 6.3, a triangle pattern emerges. An initial approach
for the tiling, which handles the unsafe elements in a separate phase from the
non-overlapping regions, is given in Algorithm 1.

Procedure 1 Stencil tiling, first approach
Input: Lineage of n dependent stencil computations i = 0, . . . , n − 1

1: procedure Triangle
2: B ← tiling block size
3: overlapi ← overlap for stencil computation i
4: indenti ← prefix sum overlap0 + overlap1 + ... + overlapi for all i
5: for each tile T, from left to right do ▷ Phase 1
6: for all instances i, in dependence order do ▷ Elements in tile T

without dependencies from other tiles
7: Compute instance i from BT +indenti to B(T +1)−indenti−1

▷ Phase 2
8: for all instances i, in dependence order do ▷ Remaining elements

in tile T
9: Compute instance i from BT to BT + indenti − 1

10: Compute instance i from B(T + 1) + indenti to B(T + 1) − 1

Though this first approach can be reworked to improve access locality
and reduce the number of skeleton context switches, by merging phase 1
and 2 when possible without violating dependencies. This is used for the
implementation in SkePU and is formulated in Algorithm 2.

The approach is exemplified in Figure 6.3. A sequence of three MapOver-
lap calls, with overlaps of 1, 0, and 2 in that order, is evaluated lazily with a
block size of 16. The sequence is computed in three phases, but the size of the
region for each phase varies slightly from the block size and also across the
different skeleton calls. The darker shaded elements indicates the overlapping,
unsafe regions of the data at each point in the lineage sequence.

MapOverlap  
(o1=2)

MapOverlap  
(o3=1)

Map 
(o2=0)

Tile size

Figure 6.3: Evaluation scheme for tiling sequenced MapOverlap calls.
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Procedure 2 Stencil tiling, improved
Input: Lineage of n dependent stencil computations i = 0, . . . , n − 1

1: procedure Triangle2
2: B ← tiling block size
3: overlapi ← overlap for stencil computation i
4: indenti ← prefix sum overlap0 + overlap1 + ... + overlapi for all i

▷ First tile, phase 1
5: for all instances i, in dependence order do
6: Compute instance i from 0 to B − indenti − 1

▷ Inner tiles
7: for each tile T, from left to right do
8: for all instances i, in dependence order do
9: Compute instance i from B(T −1)−indenti to BT +indenti−1

▷ Last tile, phase 2
10: T ← last tile
11: for all instances i, in dependence order do
12: Compute from BT − indenti to BT − 1

6.4 Applications and comparison to kernel fusion

Building the skeleton lineage at runtime is a dynamic approach to optimiz-
ing sequences of skeleton invocations. The contrasting static approach is to
analyze data flow at build time and combine user functions and the skeleton
instances they are used in. This approach is known as kernel fusion [64].
Kernel fusion is supported in SkePU by manually combining user functions,
achievable thanks to the flexibility provided by SkePU skeletons.

The example given in Listing 6.5 illustrates how element-wise multiply-
add operations using two binary Map skeleton instances can be fused into a
single ternary Map. Data locality is improved.

Kernel fusion has been implemented in skeleton programming frameworks
as an automatic optimization technique where the data flow across skeleton
invocations can be determined at compile time. Our proposed tiling approach
is more general, applicable to applications with data- or parameter-dependent
skeleton sequences. It is also conceivable to combine the two approaches, with
just-in-time fusion of kernels based on the lineage.

The following sections contain two applications where the sequence of
skeleton invocations are dynamic and data-dependent, exemplifying situations
where lineage-based tiling is applicable.

6.4.1 Polynomial evaluation using Horner’s method
Horner’s method for polynomial evaluation is based on rewriting a polynomial
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Listing 6.5: Manual kernel fusion in SkePU where a, b, and c are smart
containers. User functions are omitted for brevity.

1 float mult_f(float a, float b)
{

return a * b;
}

5
float add_f(float a, float b)
{

return a + b;
}

10
auto mult = skepu::Map(mult);
auto add = skepu::Map(add);

mult(res, a, b);
15 add(res, res, c);

// Fused:

20 float fused_mult_add_f(float a, float b, float c)
{

return a * b + c;
}

25 auto muladd = skepu::Map(mult_add_f);

muladd(res, a, b, c);

Listing 6.6: Parallel polynomial evaluation in SkePU. User functions are omit-
ted for brevity.

1 skepu::Vector<float> horner_eval_nonfused(
skepu::Vector<float> &coeffs, skepu::Vector<float> &x_vals)

{
size_t degree = coeffs.size() - 1;

5 auto mult = skepu::Map(mult_f);
auto add = skepu::Map<1>(add_f);

skepu::Vector<float> res(x_vals.size(), coeffs(degree));

10 for (int i = degree-1; i >= 0; --i)
{

mult(res, res, x_vals);
add(res, res, coeffs(i));

}
15

return res;
}

p(x) =
n

∑
i=0

aix
i = a0 + a1x + a2x2 + a3x3 +⋯ + anxn

as p(x) = a0 + x(a1 + x(a2 + ⋯ + x(an−1 + anx))) to reduce the number of
operations, i.e., exponentiations of x, required for evaluation.
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Listing 6.7: Parallel exponentiation by squaring in SkePU.
1 skepu::Vector<float> exp_by_squaring(

size_t exp, skepu::Vector<float> &x_vals)
{

auto bitmap = generate_bitmap(exp);
5

auto square = skepu::Map(square_f);
auto mult = skepu::Map(mult_f);

skepu::Vector<float> res(x_vals.size(), 1);
10

for (int i = bitmap.size()-1; i >= 0; --i)
{

square(res, res);
if (bitmap[i] == 1)

15 mult(res, res, x_vals);
}

return res;
}

Noticing that the formula is a repeated sequence of multiplications and
additions, a data-parallel implementation can be expressed as in Listing 6.6.
Manual kernel fusion can be applied to the loop body as in Listing 6.5, but
there is a bigger optimization opportunity of improving data locality across
loop iterations. Simply fusing two kernels is not applicable here, and the
number of loop iterations is dependent on the input data (polynomial degree).

6.4.2 Exponentiation by repeated squaring
Exponentiation by repeated squaring computes the value xn in O(logn) mul-
tiplications. For example, x10, naively computed by nine multiplications, can
be written as x2x8 = x2((x2)2)2 and by repeatedly squaring x this is reduced
to four multiplications. The rewritten form is analogous to the binary repre-
sentation of x, e.g. 1010 = 10102.

This is implemented as a data-parallel SkePU program in Listing 6.7. In
this case, in addition to the properties of the program in Listing 6.6, invo-
cations of the mult skeleton instance is skipped for loop iterations where the
corresponding bit in x is 0. The resulting lineage will look very different when
varying the exponent.

6.4.3 Heat propagation
A heat propagation algorithm uses iterative stencil computations to find the
convergent temperature in some shape. The iterative pattern should fit the
lazy evaluation scheme, but for determining the stop condition a reduction on
the entire data is typically used to find the error (the maximum temperature
difference on some point the volume) after each iteration. As the reduction will
break the lineage formation and prevent tiling across iterations, the iteration
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Listing 6.8: Heat propagation, unrolled to enable lineage construction.
1 // Main MapOverlap skeleton

auto kernel = skepu::MapOverlap([](skepu::Region1D<double> a)
{

double sum = 0;
5 for(int i = -a.oi; i <= a.oi; ++i)

sum += a(i);
return sum / (a.oi*2 + 1);

});
kernel.setOverlap(1);

10
// Error calcualtion skeleton
auto max_diff = skepu::MapReduce(

[](double a, double b) { return abs(a - b); },
[](double a, double b) { return (a > b) ? a : b; }

15 );

// Initialize volume with non-uniform values
auto init = skepu::Map<0>([](skepu::Index1D index, size_t size) {

size_t left = index.i;
20 size_t right = size - index.i - 1;

return (double)(left < right ? left : right);
});

skepu::Vector<double> m0(size), m1(size), m2(size), m3(size), m4(size);
25

init(m0, size);

int iters = 0;
double error = INFINITY;

30 while (error > ERR_TOLERANCE)
{

kernel(m1, m0);
kernel(m2, m1);
kernel(m3, m2);

35 kernel(m4, m3);
iters += 4;

// Lineage is evaluated before the reduction here
error = max_diff(m3, m4);

40 std::swap(m0, m4);
}

loop can be unrolled. The error calculation is only done after every few
iterations. Inside the unrolled iteration loop, there is perfect opportunity for
lineage building. The implementation can be seen in Listing 6.8.

With an unrolling factor R, R−1 intermediate data structures are required
in addition to the default two. R MapOverlap calls, each with the prior ones
output as input, are followed by a MapReduce call to find the maximum
error. The reduction causes the lineage to be evaluated at the end of each
loop iteration. Figure 6.4 illustrates the lineage building and evaluation in
this application.
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Figure 6.4: Lineage building for iterative heat propagation using MapOverlap.

6.5 Related work

Apache Spark is the primary inspirational source for this work, introducing lin-
eages and related concepts for big-data processing on large distributed mem-
ory clusters. Spark is a development of MapReduce [21] and the Hadoop
implementation. For a related discussion on big data frameworks and the
connections to skeleton-like programming paradigms, see [51].

Another very recent project is FlashR by Zheng et al.[80]. Matrix opera-
tions are evaluated lazily in a memory-hierarchy-aware manner targeting the
R programming language and SSDs for machine learning applications.

The run-time approach to optimizing skeleton sequences presented in this
paper can be contrasted with compile-time techniques, such as the fusion
optimizing framework by Sato and Iwasaki [64] for GPU-based systems.
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7 Hybrid CPU-GPU
skeleton evaluation

This chapter is closely based on the following publication:

Tomas Öhberg, August Ernstsson, and Christoph Kessler. “Hybrid CPU–
GPU execution support in the skeleton programming framework SkePU.” in:
The Journal of Supercomputing (Mar. 2019). issn: 1573-0484. doi: 10.1007/
s11227-019-02824-7

Experimental evaluation is presented later, in Chapter 9.
In this contribution, we present a hybrid execution backend for SkePU.

The backend is capable of automatically dividing the workload and simulta-
neously executing the computation on a multi-core CPU and any number of
accelerators, such as GPUs. We show how to efficiently partition the workload
of skeletons such as Map, MapReduce, and Scan to allow hybrid execution on
heterogeneous computer systems. We also show a unified way of predicting
how the workload should be partitioned based on performance modeling.

7.1 Introduction

The ever-growing demand for higher performance in computing, puts require-
ments on modern programming tools. Today parallelism stands for the ma-
jority of the performance potential and even if heterogeneous, multi-core and
accelerator equipped systems have been the norm for more than a decade,
we still face the challenge of automatically exploiting the performance po-
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tential of such systems. An effective parallel programming framework should
not only let the programmer implement the applications to run on any pro-
cessing unit the hardware provides, but also to run on all processing units,
dividing the workload between multiple processing units, possibly of different
kind. This way of simultaneously executing an algorithm on multiple, het-
erogeneous processing units is referred to as hybrid execution. To relieve the
burden of partitioning and scheduling from the programmers, the frameworks
should preferably figure out the best way to divide the workload automat-
ically. Such a system must take the relative performance of the hardware
components of the system executing the application into consideration, as
well as the characteristics of the computation.

This chapter presents a new hybrid execution backend for SkePU. The
work is based on Öhberg’s master’s thesis [54]. The main contribution is the
introduction of workload partitioning implementations for all data parallel
skeletons in SkePU, capable of dividing the work between an arbitrary number
of CPU cores and accelerators

The rest of this chapter is structured as follows: Section 7.2 starts by
introducing the task-based programming library StarPU. Section 7.3 presents
the new hybrid backend implementation and how the workload is partitioned
in all skeletons. This is followed by Section 7.4, where the auto-tuner is
described. Related libraries and frameworks with support for heterogeneous
architectures are discussed in Chapter 2.

The results of performance evaluations made on the hybrid execution im-
plementation are presented in Chapter 9.

7.2 StarPU

The old implementation of hybrid execution in SkePU 1 used the StarPU li-
brary as a backend. This implementation was ported to SkePU 2 as a baseline
to compare the new hybrid backend to. StarPU1 is a C-based task program-
ming library for hybrid architectures. The goal of StarPU is to provide a
unified runtime system for heterogeneous computer systems, including differ-
ent execution units and programming models. StarPU also offers a high-level
C++ interface or, optionally, compiler-extension pragmas.

A task in StarPU is defined in terms of codelets. Describing a computa-
tional task, codelets are combined with input data to form tasks. Tasks are
passed to the runtime system asynchronously, and later mapped and sched-
uled to be executed on any of the available computing resources. The codelets
can contain code written in C/C++, CUDA, and OpenCL. StarPU’s modu-
lar implementation ensures that different scheduling policies and performance
models can be used. Examples of scheduling policies include eager-based,

1http://starpu.gforge.inria.fr
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priority-based, and random-based schedulers. It is also possible to con-
struct custom schedulers using the pre-implemented scheduling components.
Similar to SkePU, StarPU performs its own data transfer optimization by
caching data on the computational units where it was last accessed [74].

StarPU has been used in a number of application scenarios, recent exam-
ples including finite-volume CFD [8] and seismic wave modeling [48].

7.3 Workload partitioning and implementation

The new hybrid execution implementation in SkePU is made as a new backend,
allowing the programmer to explicitly choose whether or not to use it. During
precompilation the hybrid backend is automatically included if the OpenMP
and either CUDA or OpenCL is selected. The hybrid backend works with
both CUDA and OpenCL. Which accelerator implementation will be used is
determined by availability and the programmer’s preference.

In the first stage of a skeleton invocation, the workload is partitioned into
two parts by the hybrid backend: one for the CPU and one for the accel-
erators. The CPU and accelerator parts are then further divided between
the CPU threads and any number of accelerators respectively. The hybrid
skeleton implementations use OpenMP, where the first thread will manage
the accelerators and the rest of the threads will work on the CPU partition.
The implementation is very similar to the already existing OpenMP back-
end, in order to match its performance. To reduce duplication of code within
SkePU, the accelerator partition is computed by the already existing CUDA or
OpenCL backend implementations. To make this work, some of the internal
APIs of the accelerator backends (CUDA and OpenCL) had to be general-
ized to work on subparts of containers. As both accelerator backends already
have support for multi-accelerator computations, also the hybrid backend has
support for hybrid execution with multiple accelerators. The workload par-
titioning in the accelerator backends is however, still limited, as the work is
evenly divided between all accelerators. This works well when all accelerators
are of the same type, but will not be optimal in case different accelerator
models are used.

The workload is partitioned according to a single parameter: the partition
ratio. The ratio defines the proportion of the workload that should be com-
puted by the CPU; the rest is computed by the accelerators. The partition
ratio can either be manually set by the programmer, or automatically tuned
per skeleton instance to make SkePU predict the optimal partition ratio for a
given input size. The auto-tuning will be described later in this paper. How
to use hybrid execution with a manually configured partition ratio is shown
in Listing 7.1. This example shows how to set up hybrid execution for 16
CPU threads and one accelerator, where 20% of the workload will be com-
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Listing 7.1: Using the hybrid backend with a manually set partition ratio.
1 const int NUM_THREADS = 16;

const int NUM_GPUS = 1;
const float PARTITION_RATIO = 0.2;

5 skepu::Vector<int> in, out;

skepu::BackendSpec spec(skepu::Backend::Type::Hybrid);
spec.setCPUThreads(NUM_THREADS);
spec.setDevices(NUM_GPUS);

10 spec.setCPUPartitionRatio(PARTITION_RATIO);
skeleton_instance.setBackend(spec);

skeleton_instance(out, in);

puted by the CPU threads, the rest by the accelerator. Which accelerator
implementation (CUDA or OpenCL) to use is specified by compiler flags.

Map is highly data parallel by nature and is therefore straightforward to
partition. The ratio defines how many output elements to compute on the
CPU, the rest is computed by the accelerator backend. The CPU partition
is further divided into equal sized blocks, one for each CPU thread. The
partitioning scheme of the Map skeleton is shown for three CPU threads in
Figure 7.1.

Figure 7.1: Partitioning of the Map skeleton.

Reduce is performed in two steps. The partition ratio defines how many
input elements to be reduced on the CPU, the rest is reduced by the acceler-
ators. The CPU partition is further divided into equally sized blocks, one per
CPU thread. First, each CPU thread and the accelerator backend reduce their
block of the input data to produce a temporary array of partial reductions.
This small array is then reduced by a single CPU thread to a global result.
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Partitioning of the Reduce skeleton for one-dimensional input containers with
two CPU threads is shown in Figure 7.2.

Figure 7.2: Partitioning of Reduce skeleton.

MapReduce is implemented in a similar way to the Reduce skeleton.
The input arrays are first partitioned as in the Reduce skeleton and the CPU
partition is evenly divided between the threads. Each CPU thread and the
accelerator backend reduce their part of the data, by first performing the Map
step. The intermediate results are then reduced down by a single CPU thread.
Partitioning of the MapReduce skeleton is shown in Figure 7.3.

Figure 7.3: Partitioning of MapReduce skeleton.
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MapOverlap is similar to the Map skeleton. The partition ratio defines
how many output elements to compute on the CPU, the rest being computed
by the accelerators. The CPU partition is then divided into one block per
CPU thread. Extra consideration had to be taken to all variations of edge
handling and different corner cases caused by the size of the overlap region.
Partitioning of the one-dimensional MapOverlap skeleton with an overlap of 1
element on each side is shown in Figure 7.4. The work of a single user function
call is highlighted in yellow.

Figure 7.4: Partitioning of MapOverlap skeleton.

Scan has more data dependencies than the other skeletons and requires
a more complex partitioning implementation. The input array is partitioned
into a CPU and an accelerator part as before, and the CPU partition is further
divided into equally sized blocks, one per CPU thread. Each CPU thread and
the accelerator backend start by performing a local Scan of their block of the
input data. After this step each block misses the Scan offset of the preceding
blocks. The last resulting element of the local Scan of each CPU block are
collected into an temporary array and a single CPU thread performs a Scan
on that array. This produces an array of the missing offset values of each
block. In the second step, each CPU thread (except for the first, as its block
is already complete) combine their local Scan result with the missing value
from the array. For the CPU, the local Scan step and the combining step
require the same number of operations, one per element in the block. This
makes the two steps take approximately the same amount of time. This is not
the case for the accelerators on the other hand, especially not a GPU. The first
step is much less data parallel and takes longer than the second step where a
number of independent operations are made on different data elements. This
means that a GPU will go idle if the first and second steps are to be made
synchronized with the CPU, as it will finish its second step much faster than
the CPU. This was solved by letting the accelerator backend take care of the
last part of the input array. As nothing is dependent of the result of the last
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block, the result of the local Scan of the accelerators’ partition is not needed
in the missing values array. We can thus let the accelerators spend more
time on the first step than the CPU threads are spending, and only make the
accelerators check that the CPUs have produced the array of missing values
before starting the second step. This makes load balancing between CPU and
accelerators much easier and utilizes the available processing capacity better.
Partitioning of the Scan skeleton is shown in Figure 7.5.

Figure 7.5: Partitioning of Scan skeleton.

Apart from the partitions shown here, there are also variants for Map on
matrices, one-dimensional and two-dimensional Reduce on matrices as well
as row-wise MapOverlap on matrices. The Map implementation partitions
the elements between the PUs based on the partition ratio, just as if it was
an array. In the case of Reduce and MapOverlap, the matrix is partitioned
row-wise, so all PUs get whole rows to operate on. This can make it hard to
balance the workload for matrices with few rows. However, in connection with
automatic backend selection tuning [18], such cases would probably not select
the hybrid execution at all. A more sophisticated partitioning for matrices
would be hard to realize, especially for the MapOverlap skeleton, due to the
many corner cases and complex data access patterns.
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7.3.1 StarPU backend implementation
To show the advantages of the static workload partitioning in the new hy-
brid execution backend, the experimental StarPU integration from SkePU 1
was ported to SkePU 2. Similar to SkePU, StarPU uses its own custom data
management system. In order to keep SkePU’s smart container API [16], the
smart containers automatically transfer the control to StarPU once they are
used with the StarPU backend. The control is taken back by SkePU once the
container is used with one of the other backends. The memory management
code in SkePU 2 was not changed since SkePU 1, allowing this part of the code
to be reused from the old SkePU 1 integration of StarPU. StarPU is integrated
into SkePU 2 as a separate backend, just as our hybrid execution implemen-
tation. This, together with the memory management implementation allows
the already existing SkePU backends to be used alongside the StarPU back-
end. No changes had to be made to the API of SkePU, apart from adding
StarPU as an extra backend type. Currently only the main features of the
Map, Reduce and MapReduce skeletons are ported, but more skeletons and
features will be ported in the future.

As StarPU is a task-based programming framework, a SkePU skeleton in-
vocation must be mapped to a number of tasks. This is done by splitting the
workload into a number of equal-sized chunks. The programmer can manually
tweak the number of chunks, as this affects the performance. More chunks are
desirable for larger input sizes as it makes load balancing easier, but for small
input sizes too many chunks will lead to significant scheduling overheads. The
StarPU backend has two implementation variants, one using OpenMP and one
using CUDA. The already existing OpenMP and CUDA backend implemen-
tations could not be reused due to the abstraction gap between SkePU and
StarPU. This gap was noticed already during the integration of StarPU into
SkePU 1 and it has since grown even more in SkePU 2 with the increased use
of metaprogramming and other high-level C++ features. StarPU uses a lower
level C-style API and passes arguments using void pointers and runtime type
casting. SkePU 2, on the other hand, builds argument lists at compile time
using variadic templates and parameter packs. It was still possible to inte-
grate them by implementing the StarPU functions as static member functions,
creating the argument handling code at compile time.

7.4 Auto-tuning

Apart from manually setting the partition ratio, SkePU can automatically
predict a suitable partition ratio by performance benchmarking. Due to how
general and flexible the SkePU framework is, implementing an auto-tuner
that works well for every imaginable skeleton instance may not be possible.
The execution time could, for example, be bound by the size of the random
access containers, by uniform arguments, or even be data-dependent on con-
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tainer elements. Predicting optimal partition ratio for such skeleton instances
would require very sophisticated and time consuming algorithms and/or user
interaction. Instead focus was put on implementing a tuner that would give
good predictions for common cases, where the execution time grows linearly
with the size of the element-wise accessed containers. For specific skeleton
instances the partition ratio can always be set by hand.

The auto-tuning presented in this paper resembles the tuning presented by
Luk et al. [44] in their Qilin framework, although our tuner extends this work
by supporting multiple accelerators. This is possible as our implementation
sees multiple accelerators as one single device, thanks to the already existing
multi-device implementations in the CUDA and OpenCL backend. Our tuner
builds two execution time models, one for the CPU and one for the accelerator
backend. At tuning time the programmer must choose the number of CPU
threads and accelerators to tune for. The tuning is performed once per each
skeleton instance in the application for a specific machine. In case the con-
figuration of the machine changes (for example if accelerators are added/re-
moved or if more or less CPU cores are used) the skeleton instance has to
be re-tuned. The tuning is performed on the OpenMP and CUDA/OpenCL
backends. The OpenMP backend will be executed with one thread less than
specified by the programmer, as one thread in the hybrid backend will be fully
dedicated to running the accelerator backend. The programmer can choose
upper and lower limits to the input size, as well as the number of input sizes
to benchmark. The input sizes to benchmark is then evenly spread over the
interval defined by the limits. The OpenMP and CUDA/OpenCL backends
are executed five times on each input size, and the median value is inserted
into the execution time model of that backend. This is made to minimize the
impact of temporary fluctuations.

Once the execution time benchmarks are stored in the model, the model
is fitted to a linear curve using least-squares fitting. As the execution time
grows linearly with all skeletons (assuming the user function takes O(1) time),
a linear approximation of the execution time is sufficient for our needs. The
fitting will create two linear equations on the form:

t = ax + b (7.1)

where t is the execution time, x is the input size and a and b are parameters
found by the least-squares fitting.

Let us consider a problem size N and a (CPU) partition ratio R. The
partition size of the CPU will then be NR and the partition size of the accel-
erator N(1−R). This gives us execution times tcpu and tacc for the CPU and
accelerator respectively:

tcpu = acpuNR + bcpu (7.2)
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tacc = aaccN(1 −R) + bacc (7.3)

The workload is perfectly balanced between the CPU and the accelerator if
tcpu = tacc. Combining the equations 7.2 and 7.3 and solving for the partition
ratio R gives:

R =
aaccN + bacc − bcpu
N(acpu + aacc)

(7.4)

At runtime Equation (7.4) is used to predict the optimal partition ratio for
a given input size N . In practice the value of R can be in three intervals: the
interval 0 < R < 1, where hybrid execution is predicted the optimal strategy,
and the value of R is used as the partition ratio; R ≤ 0, where accelerator-only
execution is considered optimal; or R ≥ 1, where CPU-only execution is con-
sidered optimal. In the last two cases, the hybrid backend will automatically
fall back to executing the skeleton using the OpenMP or CUDA/OpenCL
backends, as the overhead of hybrid execution is predicted to be too high.
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8 Multi-variant user
functions

This chapter is closely based on the following publication:

August Ernstsson and Christoph Kessler. “Multi-variant User Functions for
Platform-aware Skeleton Programming.” In: Proc. of ParCo-2019 confer-
ence, Prague, Sep. 2019, in: I. Foster et al. (Eds.), Parallel Computing:
Technology Trends, series: Advances in Parallel Computing, vol. 36, IOS
press. Mar. 2020, pp. 475–484. doi: 10.3233/APC200074

Experimental evaluation is presented later, in Chapter 9.
This contribution extends the multi-backend approach of SkePU by pro-

viding the possibility for the programmer to provide additional variants of
user functions tailored for different scenarios, such as platform constraints.
This chapter introduces the overall approach of multi-variant user functions,
provides several use cases including explicit SIMD vectorization for supported
hardware, and evaluates the result of these optimizations that can be achieved
using this extension.

8.1 Introduction

The core contribution of this work is a generalization of the variant selec-
tion mechanism for the skeleton programming framework SkePU, where the
problem-specific, sequential user code used to customize a skeleton at skeleton
instantiation can be provided in several variants, some of which might even
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be platform-specific. This is done in a general-purpose programming environ-
ment, which differentiates the approach from existing domain-specific variant
selection [31]. Our work is also tightly integrated with a platform modeling
system [37] allowing build-time lookup of eligible variants going beyond only
algorithmic choice or minor variations in performance tuning parameters. The
approach is powerful and flexible enough to allow selection based on hardware
architecture, levels of heterogeneity, software installations, and more.

The idea and implementation of the core contribution is presented in Sec-
tion 8.2, followed by several use cases in Section 8.3.

8.2 Idea and implementation

There are multiple scenarios where a user function with a singular defini-
tion can be too restrictive for the purposes of performance: use cases include
algorithms with different tradeoffs in time complexity versus memory com-
plexity (some platforms may have very limited memory space available per
execution thread), instruction set architecture differences such as native dou-
ble or half precision floating point arithmetics, the existence of SIMD vector
instructions, or other hardware-accelerated implementations of common com-
putations. Since these attributes are constrained on the underlying platform,
the software-defined code variants must somehow be declared compatible only
with the appropriate hardware configurations. For this we employ a combi-
nation of language attributes, annotations at source-code level that are rec-
ognized by the SkePU source-to-source compiler, in addition to the platform
description language XPDL [37].

A platform description (such as the one given in Listing 8.1) is supplied to
the SkePU source-to-source compiler and depending on the attributes in the
model, user function variants are either included or removed from the resulting
program. In this example, the user function variant in Listing 8.3 requires
the Intel AVX extension to the instruction set. The list of variants for each
user function and their prerequisites for inclusion are declared in a manifest
file (example given in Listing 8.4). Here XPDL metaprogramming queries or
other statically evaluated expressions can be used. As the model in Listing 8.1
declares the platform to support this extension (line 7 in Listing 8.1), this
vectorized variant will be included for variant selection at run-time. In cases
where library or binary compatibility is not required for the extension, this
filtering of eligible variants can also happen at run-time, as long as the XPDL
model is available for querying. This approach is preferred when a single
program executable might run on different hardware configurations.

User function variants are defined externally from the main source file.
The variants are placed in individual source files in subdirectories, following
a standard naming schema, with one directory for each user function. A
component implementation descriptor file defines the hardware platform and
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Figure 8.1: Overview of the components involved in SkePU variant selection
and subsequent build process.

Listing 8.1: XPDL model for an Intel Xeon Gold 6130 CPU. Please refer to
XPDL publications [37] and documentation for details about the syntax.

1 <?xml version="1.0" encoding="UTF-8"?>
<xpdl:model xmlns:xpdl="http://www.xpdl.com/xpdl_cpu"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.xpdl.com/xpdl_cpu xpdl_cpu.xsd ">

5 <xpdl:component type="cpu" />
<xpdl:cpu name="Intel_Xeon_Gold_6130" num_of_cores="16"

num_of_threads="32" isa_extensions="avx avx2">
<xpdl:group prefix="core_group" quantity="16">

<xpdl:core frequency="2.1" unit="GHz" />
10 <xpdl:cache name="L1" size="32" unit="KiB" set="16" />

<xpdl:cache name="L2" size="1" unit="MiB" set="16" />
</xpdl:group>
<xpdl:cache name="L3" size="22" unit="MiB" set="1" />
<xpdl:power_model type="power_model_Gold_6130"></xpdl:power_model>

15 </xpdl:cpu>
</xpdl:model>

run-time requirements for each variant. See Figure 8.1 for an illustration of
the workflow: the outlined rectangles denote directories in the file system and
the filled rectangles represent files.
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Listing 8.2: A SkePU program performing element-wise vector addition.
1 float add(float a, float b) { return a + b; }

int main(int argc, char *argv[])
{

5 const size_t size = N; // multiple of 8
auto vector_sum = skepu::Map(add);
skepu::Vector<float> v1(size), v2(size), res(size);
vector_sum(res, v1, v2);

}

8.3 Use cases

In this section we present two use cases in detail: user function vectorization
and multi-variant components with the Call skeleton. We also provide further
examples for application of multi-variant components at the end of the section.

8.3.1 Vectorization example
As an example of where user function variants are applicable, consider in-
struction set extensions for SIMD vectorization. These extensions allow the
processor to compute the same instruction in parallel over multiple data items,
even from a single thread. Many compilers today are auto-vectorizing [43, 42,
45], but this optimization requires a number of preconditions to be satisfied,
such as the correct data alignment and no pointer aliasing; and even then,
additional compiler flags are often required. For a high-level parallel program
such as a SkePU application, aggressive inlining and loop unrolling must also
be applied by the backend (external to SkePU) compiler before there is even
an opportunity for auto-vectorization.

For the aforementioned reasons, vectorization is a good motivational use
case for multi-variant user functions. Consider the SkePU program in List-
ing 8.2. The program performs element-wise addition of two vectors using
the SkePU Map skeleton with arity 2. The user function add is trivial, with
two inputs (one from each vector) and the function body returning the sum
of the two elements. This user function is straight-forward for the SkePU
source-to-source compiler to handle when generating output for all backends:
sequential CPU, OpenMP, CUDA, and OpenCL; it is just a matter of copying
the function body. However, by this approach, the CPU backends will not
be guaranteed optimal performance in the case of the hardware platform sup-
porting SIMD ISA extensions. As such, it makes sense to provide a variant
of add and make it available for run-time selection.

Listing 8.3 contains a variant of add that is defined in a separate file as
outlined in Section 8.2. This file is referenced from the manifest, as seen in
Listing 8.4. In this case, there needs to be a block of eight elements available
for the function to enable the use of SIMD instructions, which is different in
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Listing 8.3: Variant of the add user function with explicit vectorization.
1 #pragma skepu vectorize 8

void add(float* c, const float *a, const float *b)
{

__m256 av = _mm256_load_ps(a);
5 __m256 bv = _mm256_load_ps(b);

__m256 cv = _mm256_add_ps(av, bv);
_mm256_store_ps(c, cv); // return by pointer

}

Listing 8.4: Manifest file for user function add.
1 skepu::VariantList {
2 skepu::Variant("add_avx",
3 skepu::Requires(
4 xpdl::includes<xpdl::cpu_1::isa_extensions, xpdl_avx >::value
5 ), skepu::Backend::Type::CPU
6 )
7 };

signature to the default variant.1 This variant uses compiler intrinsic functions
which map directly to Intel AVX instructions. The elements in this variant are
passed and returned by pointer, and the component implementation descriptor
contains the specification of how many elements it accepts in one block (here
illustrated by an inline pragma). The elements in the array have to be copied
to intermediate vector registers before computation.

8.3.2 Generalized multi-variant components with the Call
skeleton

The version 2 revision of SkePU [30] introduced an atypical skeleton construct
known as Call. The Call skeleton, unlike all other skeleton constructs in
SkePU and other typical skeleton programming libraries, does not encode
a computational pattern, but rather is an entry point for a self-contained
component for arbitrary computations. This construct is highly useful in
SkePU for two main reasons: firstly, not all computations can be efficiently
expressed as data-parallel algorithms, which is the type of patterns present in
SkePU, and it is desirable to let generic computations integrate with the smart
container and backend selection and tuning systems within SkePU. Secondly,
the optimal way to structure computations is in general different for different
parallel backends; there needs to be a way to provide variants also for these
non-skeleton computations.

1The need for framework support in this example is not a universal trait; user function
variants can be defined with the same signature and even without any required platform
constraints.
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A common class of computations that fit the above criteria are sorting
algorithms. Another example is the fast Fourier transform (FFT) [78], which
has several highly optimized implementations available at library level. In
cases such as FFT, an instance of Call can be instantiated with a naive
sequential FFT algorithm as the default user function, and additional user
function variants are specified as shown in Figure 8.1 and implemented as
thin wrappers over libraries such as FFTW for CPU and CuFFT for Nvidia
GPUs. Both the backend type and the presence of libraries in the target
system is specified and taken into account for variant selection.

8.3.3 Other use cases
There are a number of other use cases for when multi-variant user functions
can be useful for improving performance portability. Below are some sug-
gestions: The user can specify a hand-optimized user function variant to be
used only with a certain backend, such as CUDA (declared via the platform
attribute in the user function’s component implementation descriptor), while
the generic auto-generated user function is used for all other backends. Even
within the same backend and the same platform constraints, complex user
functions may offer multiple variants implementing the same computation by
different algorithmic approaches. Selection between the variants can be con-
trolled by input size and shape, as well as other run-time properties such as
idle resources and memory pressure. See e.g. the CellSort sorting algorithm
[32] where the algorithm used is closely coupled to the characteristic archi-
tecture and instruction set of the Cell processor. When SkePU skeletons are
invoked from a language other than C++, components that have a variant
defined for that language would have lower overhead due to bridging and data
representation and would open up for improved compiler optimization.

8.4 Related work

High-level parallel programming using skeletons or patterns [12] allows to
model semantics as well as parallelization-relevant properties (such as type
of parallelism, data access pattern, data locality constraints) of a computa-
tion using special predefined generic constructs (called skeletons or patterns)
at a level of abstraction that is clearly above that of source code (such as
OpenMP, OpenCL or CUDA). Existing skeleton programming frameworks
include SkePU [24, 30], FastFlow [1], Marrow [46], GrPPI [63], Thrust [6] and
others.

None of these skeleton programming frameworks considered automated,
platform-specific operator specialization for multi-element groups in skeleton
instantiations or calls. Lift, [71] on the other hand is a framework consist-
ing of a functional pattern-based programming language, a compiler and an
intermediate representation with pre-defined skeleton-like constructs for the
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hierarchical, functional modeling of data-parallel computations. It allows for
(cost-model directed) rewriting of Lift IR trees by a design space exploration
process to automatically take into account platform-specific structures such as
SIMD operations, data transfers and data layout transformations, which can
be expressed by OpenCL-specific constructs. While Lift is more general than
our method, it requires the programmer to specify skeleton instances as a hi-
erarchically nested functional decomposition of multiple primitive operators.
In contrast, our approach is based on the simpler SkePU programming API,
which is more high-level and does not require special tooling nor automated
design space exploration nor an explicit intermediate representation.

PetaBricks is another framework which also exposes algorithmic variant
(”choice”) selection [2, 59]. In contrast to SkePU, PetaBricks is task-oriented
with a more involved run-time scheduling system, and does not integrate a
platform modeling subsystem into the toolflow.

It is also possible to take a more domain-specific approach. SLinGen [68]
is a generative programming environment for linear algebra which outputs
optimized C code, including optional vectorization driven by intrinsics. The
Cl1ck system for matrix computations [31] focuses on generating multiple
alternative application variants for a single operation.

The limitations of compiler auto-vectorization are explored by Larsen et
al. [42] who also suggest improvements to the programming language and
environment to facilitate the optimization in more scenarios.
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9 Results

This chapter collects quantitative results from evaluations done on SkePU in
general as well as the specific contributions presented throughout the thesis.

Being a high-level programming interface, we are interested in the usabil-
lity of SkePU for programmers of different skill levels. Section 9.1 therefore
presents a survey on the usability of SkePU code, including aspects of read-
ability and programmer feedback through error messages.

However, as a parallel programming framework, the speedup relative to
sequential processing is one of the most important measurable metrics for
SkePU. Absolute speedup numbers require optimized sequential implementa-
tions of application in addition to ”SkePU-ized” code performing computa-
tions generating exactly the same result. Such performance evaluation can be
found in Section 9.6.

Because of the effort of constructing such benchmarks, performance evalu-
ation of specific innovations or additions to SkePU is often done by comparing
relative to SkePU itself. Section 9.2 evaluates SkePU backends against each
other and in addition compares skeleton structures introduced in SkePU 2 to
the closest corresponding construction in SkePU 1.2.

Section 9.3 evaluates the performance of the lineages optimization (Chap-
ter 6), Section 9.4 presents performance results of the hybrid backend imple-
mentation from Chapter 7, and Section 9.5 evaluates the multi-variant user
functions of Chapter 8.

Finally, Section 9.7 contains micro-benchmarks (synthetic code or small-
scale applications) on features introduced in SkePU 3.
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Figure 9.1: Comparison of code clarity, SkePU 1 vs. SkePU 2.

9.1 SkePU usability evaluation

The results in this section were first published in the paper SkePU 2: Flexi-
ble and Type-Safe Skeleton Programming for Heterogeneous Parallel Systems
[30]. The survey was based on the work-in-progress programming interface
for SkePU 2.

9.1.1 Readability
The interface introduced in SkePU 2 (and still being the basis of SkePU 3)
aims to improve on that of SkePU 1 with increased clarity and a syntax that
looks and feels more native to C++. To evaluate this, a survey was issued to
16 participating respondents, all master-level students in computer science.
The participants were presented with two short example programs: one very
simple and one somewhat complex, each both in SkePU 1 and SkePU 2 syntax.
To avoid biasing either of the SkePU versions, the order of introductions was
reversed in half of the questionnaires. See the thesis [26] for more discussion
on the survey, including the code examples presented to the respondents.

Note, however, that the survey was issued when the syntax of SkePU 2
was not yet finalized. At the time C++11 attributes were required to guide
the precompiler: skepu::userfunction on user functions, skepu::instance
on skeleton instances, skepu::usertype on user-defined struct types ap-
pearing in user functions, and skepu::userconstant for global constants on
constexpr global variables. The attributes allowed for a straightforward im-
plementation of the precompiler, and the reasoning was that clearer expression
of intent from the programmer could improve any error messages emitted.

Figure 9.1 presents the responses comparing the two SkePU versions in
terms of code clarity (to the question How would you rate the clarity of this
code in relation to the previous example?). The usability evaluation indicates
that the SkePU 1 interface is sometimes preferred to the SkePU 2 variant, at
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Listing 9.1: Faulty SkePU 1 code.
1 UNARY_FUNC(plus_f, float, a,

return a;
)

5 skepu::Vector<float> v(N);
skepu::Reduce<plus_f> globalSum(new plus_f);
globalSum(v);

Listing 9.2: Faulty SkePU 2 code.
1 [[skepu::userfunction]]

float plus_f(float a) {
return a;

}
5

skepu2::Vector<float> v(N);
auto [[skepu::instance]] globalSum = skepu2::Reduce(plus_f);
globalSum(v);

least when the user is not used to C++11 attributes as indicated by the free-
form comments in the survey. We realized that the decision to use attributes
as a fundamental part of the syntax needed to be revisited.

In the more complex example, respondents generally considered the
SkePU 2 variant to be clearer. We believe that the reason for this is the
fact that it has fewer user functions and skeleton instances than the SkePU 1
version (thanks to the increased flexibility offered in SkePU 2). The user func-
tions are also fairly complex, so the macros in SkePU 1 may be more difficult
to understand.

The results can still be considered valid for SkePU 3, since the interface
of the specific skeletons in the survey has not changed much except for the
attributes. However, an updated and expanded usability survey of state-of-
the-art SkePU interface would be of general interest.

9.1.2 Improved type safety
One of the goals with the SkePU 2 design was to increase the level of type
safety from SkePU 1. In the following example, a programmer has made the
mistake of supplying a unary user function to Reduce. Listing 9.1 shows the
error in SkePU 1 code, and Listing 9.2 illustrates the same in SkePU 2 syntax.

The SkePU 1 example compiles without problem, and only at run-time
terminates with the error message in Listing 9.3. The message itself is shared
between all reduce instances, limiting the information obtained by the user.
SkePU 2, on the other hand, halts compilation and prints an error message
even before the precompiler has transformed the code. It directs the user to
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Listing 9.3: Error messages from SkePU 1 and 2.
1 // In SkePU 1, at run-time:

[SKEPU_ERROR] Wrong operator type!
Reduce operation require binary user function.

5 // In SkePU 2, at compile-time:
error: no matching function for call to 'Reduce'

auto [[skepu::instance]] globalSum = skepu2::Reduce(plus_f);
^~~~~~~~~~~~~~

note: candidate template ignored: failed template argument deduction
10 Reduce(T(*red)(T, T))

the affected skeleton instance. (The message does not directly describe the is-
sue, an aspect which can be further improved with C++11’s static_assert.)

9.2 Initial SkePU 2 performance evaluation

The results in this section were first published in the paper SkePU 2: Flexible
and Type-Safe Skeleton Programming for Heterogeneous Parallel Systems [30].
Experiments were carried out on an early version of SkePU 2 and on hardware
available at the time.

The system used for testing consists of two eight-core Intel Xeon E5-2660
”Sandy Bridge” processors at 2.2GHz with 64 GB DDR3 1600 MHz mem-
ory, and a Nvidia Tesla k20x GPU. The test programs were compiled with
GCC g++ 4.9.2 or, when CUDA was used, Nvidia CUDA compiler 7.5 using
said g++ as host compiler. Separate tests were conducted on consumer-grade
development systems, showing similar results after accounting for the perfor-
mance gap. The framework has also been tested on multi-GPU systems using
CUDA and OpenCL, and a Xeon Phi accelerator using the Intel’s OpenCL
interface, the latter shown in Figure 9.3. All tests include data movement to
and from accelerators, where applicable.

Results are shown in Figure 9.2. The following test programs were evalu-
ated:

• Pearson product-movement correlation coefficient
A sequence of three independent skeletons: one Reduce, one unary
MapReduce and one binary MapReduce. The user functions are all
trivial, containing a single floating point operation. The problem size is
the vector length.

• Mandelbrot fractal
A Map skeleton with a non-trivial user function. There is no need for
copy-up of data to a GPU device in this example, but the fractal image
is copied down from device afterwards. In fact, there are no non-uniform
inputs to the user function, as the index into the output container is all
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9.2. Initial SkePU 2 performance evaluation

(a) Coulombic potential (b) Mandelbrot fractal

(c) Pearson product-movement correlation co-
efficient

(d) N-body simulation

Figure 9.2: Test program evaluation results. Log-log scale.

that is needed to calculate the return value. The problem size is one
side of the output image.

• Coulombic potential
Calculates electrical potential in a grid, from a set of charged particles.
An iterative computation invoking one Map skeleton per iteration. The
user function takes one argument, a random-access vector containing
the particles. It also receives a unique two-dimensional index from the
runtime, from which it calculates the coordinates of its assigned point
in the grid.

• N-body simulation
Performs an N-body simulation on randomized input data. The program
is similar to Coulombic potential, both in its iterative nature and the
types of skeletons used.
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(a) Pearson product-movement correlation co-
efficient

(b) Mandelbrot fractal

Figure 9.3: Evaluation results on Xeon Phi using OpenCL.

(a) SkePU 1.2 (b) SkePU 2

Figure 9.4: Comparison of Taylor series approximation

The preview release of SkePU 2 had not been optimized for perfor-
mance. Even so, it has already shown to match or surpass the performance
of SkePU 1.2 in some tests. However, the results vary with the programs
tested and seem particularly dependent on the choice of compiler. A ma-
ture optimizing C++11 compiler is required for SkePU 2 to be competitive
performance-wise.

In cases where the increased flexibility of SkePU 2 and later allows a pro-
gram to be implemented more efficiently—for example by reducing the amount
of auxiliary data or number of skeleton invocations—SkePU 2 may outper-
form SkePU 1 significantly. Figure 9.4 shows such a case: approximation of
the natural logarithm using Taylor series. For SkePU 1, this is implemented
by a call to Generate followed by a call to MapReduce; in SkePU 2 and later
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a single MapReduce is enough, reducing the number of GPU kernel launches
and eliminating the need for O(n) auxiliary memory.

9.3 Performance evaluation of lineages

The results in this section were first published in the paper Extending smart
containers for data locality‐aware skeleton programming [28]. Experiments
were carried out on an experimental branch of SkePU 2 and on hardware
available at the time.

We have conducted performance evaluation of the lazy tiling approach
by benchmarking the applications presented earlier: Horner’s method in Sec-
tion 6.4.1, exponentiation by repeated squaring in Section 6.4.2, and heat prop-
agation from Section 6.4.3. The first two are sequences of Maps while the latter
uses MapOverlap.

All performance evaluation was performed on Intel Xeon CPU model E5-
2630L at 2.40 GHz and hyperthreading enabled. The cache memory hierarchy
was as follows: 32 kB L1 data cache, 256 kB L2 cache, and 15 MB L3 cache.
All programs were precompiled with the SkePU source-to-source compiler into
C++ source files, which were then processed by the GCC C++ compiler ver-
sion 5.4.1 in C++11 mode. The optimization level was set at -O3 with no
other flags explicitly set. SkePU’s built-in benchmarking API uses standard
C++11 functions (std::chrono library) for wall-clock-based time measure-
ments.

9.3.1 Sequences of Maps
Both Horner’s method and exponentiation by repeated squaring are iterative
sequences of Map skeletons with small user functions and virtually ideal sit-
uations for lineage building. With a trivial user function, the benchmark is
memory bound and tiling should give a significant performance improvement.
The source code is very similar to Listings 6.6 and 6.7, but instrumented with
measurement directives and additional constructs for explicitly requesting lin-
eage evaluation.

The lineage length is data dependent for both examples. We used a coef-
ficient vector of size 8 for Horner’s method and the exponent 87 for repeated
squaring. Note that the exponent not only defines the length of the lineage
but also the shape, i.e., how many calls to mult occur in between iterations.

Results are visible in Figure 9.5, where each line represents one of four
problem sizes (size_r in the source code). Different chunk sizes (chunksize)
are tested for each problem size. We can see that a significant speedup can
be achieved from loop tiling, as long as the problem size is large enough. The
optimal chunk size seems relatively consistent across the tests, but this will
be dependent on the memory hierarchy of the target system. There is still
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(a) Horner’s method

(b) Exponentiation by repeated squaring

Figure 9.5: Benchmark results for Map sequences.
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Figure 9.6: Heat propagation with tiled MapOverlap.

some overhead with the lambda expression-based implementation, but the
advantages of tiling are still apparent. A chunk size equal to the problem size
will result in the same behavior as if the lazy tiling is not enabled, and is
included as the last data point for each series as a baseline. Comparing that
with the optimal chunk size shows that the tiling implementation can provide
over 3x speed-up. Considering the attributes of the benchmarks as described
above, this is likely to be a best-case scenario.

9.3.2 Heat propagation
We have also instrumented the code from the heat propagation example in
Listing 6.8 for performance evaluation. Using an unrolling factor of 4 gives the
results in Figure 9.6. Compared to the Map benchmarks, this application is
less well-suited for the lineage-based tiling, as there is more work per element
and the algorithm is relatively more computation bound. A single container is
also not used more than twice in the scope where the lineage is built up. Even
so, Figure 9.6 shows a similar behavior to the Map benchmarks with a big
performance gain once the chunk size fits in the caches. Both the maximum
performance gain and the relative overhead of lazy evaluation is less significant
here, but the optimal chunk size still has 23 % speed-up when compared with
no tiling.

9.4 Hybrid backend

The results in this section were first published in the paper Hybrid CPU–GPU
execution support in the skeleton programming framework SkePU [55].
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The implementation was evaluated on a system consisting of two octa-
core Intel Xeon E5-2660 (16 cores in total) clocked at 2.2 GHz with 64 GB
of memory and a NVIDIA Tesla K20x GPU with 2688 processor cores and 6
GB of device memory. The programs were compiled with nvcc (v7.5.17) using
g++ (v4.9.2) as host compiler.

9.4.1 Single skeleton evaluation
First each skeleton type was evaluated with typical user functions. Input sizes
ranging from 100,000 to 4,000,000 in increments of 100,000 were used. Each
input size and backend combination was executed seven times and the median
execution time was noted to eliminate outliers caused by other operating
system processes occasionally running on the CPU. The predicted partition
ratio used in the hybrid backend was also noted for each input size. The
hybrid backend was tuned with the auto-tuner a single time and the same
execution time model was then used for all input sizes. The results are shown
in Figure 9.7. As can be seen in the graphs, the hybrid backend improves
upon the performance of the OpenMP and CUDA backends for all skeletons,
at least as the input size grows. For most skeletons the hybrid backend even
manages to match the performance of the OpenMP and CUDA backends for
small input sizes, by switching to CPU-only or GPU-only execution. For the
Scan skeleton however, a leap in the hybrid backend curve can be seen, where
the partition ratio prediction switches from CPU-only to hybrid too early,
as the predictor overestimates the performance of hybrid execution. This is
likely due to the extra complexity of the hybrid execution implementation
of the Scan skeleton, where the performance of the CPU and the accelerator
partitions do not completely match the performance of the OpenMP and
CUDA/OpenCL backends used in the auto-tuning.

9.4.2 Generic application evaluation
To evaluate the implementation in a more realistic context, we also compared
the performance of the new hybrid scheme on some of the example applications
provided with the SkePU source code. A presentation of the applications and
which skeletons they use is shown in Table 9.1. In the Skeletons column,
the number within <> tells the arity of the skeleton instance, i.e. how many
element-wise accessed input containers it uses.

The applications were executed with five different configurations. First
with the sequential CPU backend as a baseline. Then the OpenMP, CUDA
and hybrid backends. For the hybrid backend, all skeletons were tuned with
the auto-tuner. Tuning was done with 10 steps and the tuning time was not
included in the measured execution time. Finally, we used an oracle to find
the upper limit to the speedup possible to achieve with the hybrid backend
implementation, given an optimal partition ratio choice. Oracles has been
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(d) MapOverlap

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

2

4

6

8

10

Problem size [num elems]

E
x
ec
u
ti
on

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

20

40

60

80

100

P
ar
ti
ti
on

ra
ti
o
[%

]

(e) Scan

OpenMP
CUDA
Hybrid

(CPU) Partition ratio

Figure 9.7: Execution time of skeletons

used in earlier research to show the upper bound of hybrid execution imple-
mentations [44, 34, 65]. We let the oracle execute the application using the
hybrid backend with a manually set partition ratio for each skeleton instance,
ranging from 0% to 100% in increments of five percentage points. For multi-
skeleton applications all combinations of ratios were tested. The fastest of
these execution times was then saved as the oracle’s time. All backends, in-
cluding all partition ratio combinations tested by the oracle, were executed
seven times, and the median execution time was used. The results are shown
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Application Algorithm Skeletons
CMA Cumulative moving average Map<1>, Scan
Coulombic Coulombic potential Map<1>
Dotproduct Dot product MapReduce<2>
Mandelbrot Mandelbrot fractal Map<0>
PPMCC Pearson product-moment correlation coeff. Reduce, MapReduce<1>, MapReduce<2>
PSNR Peak signal to noise ratio Map<2>, MapReduce<2>
Taylor Taylor series expansion of log(1 + x) MapReduce<0>

Table 9.1: List of applications used in the evaluation.

in Figure 9.8. The figure shows that the hybrid backend improves upon the
OpenMP and CUDA backends in most applications. By comparing the hy-
brid bar to the oracle bar we can see that the auto-tuning finds good partition
ratios, but there is some room for improvement. According to the oracle two
of the applications (PSNR and Taylor) do not gain from hybridization, at
least not the tested problem sizes. This is also found by the auto-tuner in
the Taylor case, as it falls back to CPU-only execution. PSNR is the only
application where the hybrid backend fails to improve upon the performance
of the OpenMP and CUDA backends. The reason for this is that the auto-
tuning finds the optimal partition ratio to be 40% for the Map skeleton and
CPU-only for the MapReduce skeleton. Although this is the optimal partition
ratio for each individual skeleton instance, it is not the optimal choice when
both skeletons are considered because of the need to move data between CPU
and GPU memory. According to the oracle, offloading all data to the GPU
gives the best execution time in this case.
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Figure 9.8: Speedups comparisons of example applications

124



9.5. Evaluation of multi-variant user functions

9.4.3 Comparison to dynamic hybrid scheduling using
StarPU

Finally, we show the improvement over the experimental hybrid execution
implementation based on the StarPU runtime system that was implemented
in SkePU 1. To make a fair comparison, parts of the old StarPU implemen-
tation was ported to SkePU 2. We also compared the execution time to the
OpenMP and CUDA backends. As StarPU is supposed to get better over time
by learning how to schedule the work, we tried executing the same skeleton
multiple times. Each backend was executed 30 times in a row. New input
containers were allocated each time to rule out the impact of data locality.
The results are shown in Figure 9.9. In the graphs we can see the stability
of the OpenMP, CUDA and hybrid backends. It is also apparent that the
hybrid backend with the auto-tuning manages to find a good load balance
and improves upon the execution time of the individual processing units. The
performance of the StarPU backend is unstable, even though it manages to
match the performance of the hybrid backend in some iterations. For the
Reduce skeleton both the hybrid and the StarPU backend have a hard time
to improve the performance, as the skeleton works much better on the CPU
compared to the GPU.

The execution time of the StarPU backend stabilizes somewhat with time,
but it is still uneven after 20-30 repeated executions. This is likely due to the
low number of tasks (manually found to be between 3 and 14) each skeleton
instance had to be divided into for the best performance. This in turn is a
result of the relatively small input size that was used in the evaluation. StarPU
comes with a substantial overhead and might therefore be better suited for
applications with even larger input sizes. The StarPU backend can also be of
interest for special kinds of user functions with a very skewed workload, where
adaptation is needed at runtime. But as these corner cases were not the target
of the new auto-tuning implementation, no experiments were performed with
such applications for this paper.

9.5 Evaluation of multi-variant user functions

The results in this section were first published in the paper Multi-variant User
Functions for Platform-aware Skeleton Programming [29].

We present performance evaluations for two distinct use cases for multi-
variant user functions: vectorization of Map-type skeleton applications on real
and complex numbers, and specialization of the algorithms used in the user
function of a stencil-type image filtering operation using MapOverlap.

125



9. Results

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

Iteration

E
x
ec
u
ti
o
n
T
im

e
[m

s]

(a) Map, 20 ⋅ 106 elements
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(b) Reduce, 90 ⋅ 106 elements
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(c) MapReduce, 20 ⋅ 106 elements

Hybrid CPU-GPU execution support in SkePU 15

6.3 Comparison to dynamic hybrid scheduling using StarPU

At last we show the improvement over the experimental hybrid execution im-
plementation based on the StarPU runtime system that was implemented in
SkePU 1. To make a fair comparison, parts of the StarPU implementation
was ported/reimplemented to SkePU 2. We also compared the execution time
to the OpenMP and CUDA backends. As StarPU is supposed to get better
over time by learning how to schedule the work, we tried executing the same
skeleton multiple times. Each backend was executed 50 times in a row. New
input containers were allocated each time to rule out the impact of data local-
ity. The results are shown in Fig. 8. In the graphs we can see the stability of
the OpenMP, CUDA and hybrid backends. It is also apparent that the hybrid
backend with the auto-tuning manages to find a good workload partitioning
and improves upon the execution time by the individual processing units. The
performance of the StarPU backend is unstable, even though it manages to
match the performance of the hybrid backend for the Reduce skeleton in some
iterations. We expected the execution time of the StarPU backend to stabi-
lize as the prediction models improves, but this does not seem to be the case.
More investigations are required to draw any reliable conclusions from this
experiment.
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Fig. 8: Execution time of repeated invocations of the same skeleton

7 Related work

The skeleton programming library Marrow [16] consists of a mixed set of
data and task parallel skeletons. The library uses nesting of skeletons to allow

Figure 9.9: Execution time of repeated invocations of the same skeleton

9.5.1 Vectorization
To demonstrate the performance gained from vectorization of user functions
in a scenario in which automatic compiler optimization might be prohibited,
we test the example from Section 8.3.1 using the Intel C++ Compiler v.18.0.1.
-O3 level optimization is enabled for all benchmarks, and the results are pre-
sented as the average of 100 runs. All computations are performed on single-
precision floating point data. The target system uses Intel Xeon Gold 6130
processors. Two vectorization scenarios are evaluated:

Element-wise vector addition: Three variants are compared: no vec-
torization, and vectorization by a factor of four and eight, respectively.

Element-wise vector multiplication of complex numbers: Complex
numbers stored in struct-of-arrays format, with four input data containers in
total. Three versions are tested: no vectorization, factor eight direct vector-
ization, and a refactored vectorized version using fused multiply add (FMA)
vector instructions.

For scalar element addition, the results show that there is always a benefit
of vectorization if available. However, as seen in Figure 9.10 the overhead of
loading and storing vector registers is significant when there is only one vector
instruction to compute. The choice between four element vector instructions
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Tabell 1
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Figure 9.10: Element-wise vector addition, three variants. Execution time
normalized (per element).
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Figure 9.11: Element-wise complex vector multiplication, three variants. Ex-
ecution time normalized (per element).

and eight element variants does not matter as much, as the best performer
is inconsistent. It is clear that more computation is required to get the most
out of manual vectorization.

We also evaluate complex number multiplication (Figure 9.11). The com-
plex numbers are stored in cartesian form and multiplied element-wise ac-
cording to (a + bi) × (c + di) = (ac − bd) + (ad + bc)i. There are more vector
instructions to amortize the register transfer overhead over in this case, even
though the number of inputs is doubled. An alternate version with FMA
instructions provides more efficient computation but at the cost of reducing
this amortization factor.

9.5.2 Median filtering
To demonstrate and evaluate the application of multi-variant user functions
to provide different algorithmic approaches to the same computation, we look
at the median filtering operation on images. For each pixel in the output
image, the filter selects the median value of all pixels in a region surrounding
the corresponding pixel in the input image. The region is defined by a radius,
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Table 9.2: User function variants for median filtering.

Variant Time Memory Dependencies
Double loop O(n2) O(1) None
Histogram O(n + ∣D∣) O(∣D∣) None
qsort O(n logn) O(n) C standard library

Tabell 1

Radius Histogram@CPU Double 
Loop@CPU

qsort@CPU Histogram@Open
CL

Double 
Loop@OpenCL

1 18,016 27,0033 100,532 98,8517 3,26233
2 24,8867 157,36 289,542 118,44 13,3127

3 36,2013 512,905 558,184 163,519 31,638

4 50,3843 1310,26 917,703 230,294 71,3263
5 69,294 3079,99 1384,77 321,951 153,462

6 87,8233 5723,43 1927,57 435,204 299,778

7 114,423 10106,8 2529,17 544,664 516,585
8 138,084 16580,7 3220,22 726,51 1053,77
9 168,067 24460 3989,91 840,6 1298,88
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Figure 9.12: Median filtering using different median computation algorithms.

the same in both x and y dimensions. Using the MapOverlap skeleton, the
image filter is then implemented directly by providing the median-finding
algorithm as the user function. This can be done in several ways: by sorting
the elements in the region, brute-force counting search, or by a histogram
collection, among others. The characteristics of the aforementioned three
approaches are compared in Table 9.2 (in the table, n denotes input size and
∣D∣ denotes the size of the value domain).

A comparison of execution times for the different variants is presented
in Figure 9.12. The OpenCL variants target a single NVIDIA Tesla K20c
GPU. The radius is varied in the range 1-9 pixels, but note that this has an
effect in two dimensions and will scale the input region in the user function
quadratically. The input image is fixed at 512 × 512 pixels, in 24-bit RGB
format. The results show that there is no algorithm that is optimal across
both backends; we even see that, on the GPU, the best variant varies with
the filter radius.

9.6 Application benchmarks of SkePU 3

The results in this section were first published in the paper SkePU 3: Portable
High-Level Programming of Heterogeneous Systems and HPC Clusters [27].
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Figure 9.13: Execution times (seconds) of the SkePU 3 port of Variant A
of the Embedded Runge-Kutta ODE solver implementation in the Libsolve
library [38], solving the Brusselator 2D-MIX problem for 4 different system
sizes.

9.6.1 Libsolve ODE solver
Figure 9.13 shows SkePU 3 performance results for an embedded ODE solver
from the Libsolve library1 [38], solving the Brusselator 2D-MIX problem with
7 stage vectors for four different system sizes (N = 250, 500, 750, 1000 rows)
on a server with 12 cores Xeon(R) CPU E5-2630L and a K20c GPU, with
pre-selected single-node CPU and GPU backends respectively. The solver
core uses 9 different skeleton instances (of Map, Reduce and MapReduce) with
an average of 63 calls to skeleton instances per time step; it iterates over 1976
time steps in total for the largest scenario in Figure 9.13, for which it performs
124,532 calls to skeleton instances in total.

9.6.2 N-body
Figure 9.14 shows performance results for the N-body scenario of Section 4.8
using the OpenMP backend, taken on the same server. There is a slight
increase in execution time, although too small to account for an inlining issue
(discussed in Section 4.8). A likely explanation for the slowdown is due to the
change in memory access pattern. Depending on the environment, the more
significant improvement in memory footprint might be enough to prefer the
MapPairsReduce variant.
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Figure 9.14: Normalized execution time and memory footprint for two vari-
ants of N-body: the Map variant (Listing B.1) and MapPairsReduce variant
(Listing B.2).

Figure 9.15: Execution time (ms) of the SkePU 3 port of the PARSEC bench-
mark Blackscholes on its largest input set. Left: Time with serial, OpenMP,
OpenCL backends in SkePU and for manually multithreaded code in PAR-
SEC. Right: Time and speedup with MPI backend on the cluster of Fig-
ure 9.17.

9.6.3 Blackscholes and Streamcluster
Execution time results for SkePU 3 ports of PARSEC benchmarks Blacksc-
holes and Streamcluster on the same server can be found in Figures 9.15
and 9.16. The results show that the SkePU abstraction overhead compared
to the hand-multithreaded PARSEC code is small (Blackscholes) or very
small (Streamcluster), and that SkePU provides further targets for free (here,
OpenCL for Blackscholes). The Streamcluster benchmark also exhibits a com-
mon problem encountered in SkePU-izing legacy C/C++ code: arrays con-
taining a pointer-based data structure (e.g., a directed graph), if packaged
e.g. in a Vector container, work very well with the OpenMP backend but
are not portable to execution on e.g. a GPU with a different address space,

1Libsolve repository: https://github.com/UBT-AI2/rk
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Figure 9.16: Execution times of the SkePU 3 port of the PARSEC benchmark
Streamcluster on 106 data points.

as host addresses are not portable to device memory. For such cases, more
advanced container types (e.g., directed graphs) would be required, which is
left for future work.

9.6.4 Brain simulation
The results in this section were first published in the paper Portable Exploita-
tion of Parallel and Heterogeneous HPC Architectures in Neural Simulation
Using SkePU [57].

Figure 9.17 shows the scaling behavior of the SkePU 3 port of a brain simu-
lation mini-application [57] performing 200 time steps with 90000 neurons and
dense synapse connectivity using up to 32 nodes (each node having two Xeon
Gold 6130 with 16 cores each) of the Tetralith cluster at NSC Linköping. The
version that uses the MatRow<> container proxy benefits from more scalable
communication compared to using the default Mat<> container. For compari-
son, the diagram also shows a manual MPI parallelization of the SkePU code
(i.e., outer-MPI SkePU) where the communication structure corresponds to
that of the MatRow version; while the scaling behavior is similar, it also shows
that the execution time overhead of using SkePU with the StarPU-MPI based
backend is here up to a factor of 2.

9.7 Microbenchmarks of SkePU 3

The results in this section were first published in the paper SkePU 3: Portable
High-Level Programming of Heterogeneous Systems and HPC Clusters [27].

9.7.1 OpenMP scheduling modes
For the same machine, Figure 9.18 shows the positive performance effect
of using dynamic scheduling in three data-parallel benchmarks with irreg-
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9. Results

Figure 9.17: Execution time (in seconds, logarithmic scale) of the SkePU 3
port of a brain simulation mini-application [57] performing 200 time steps
with 90000 neurons using up to 32 nodes (each with 32 cores) of the Tetralith
cluster. ”Outer MPI” refers to a manual MPI parallelization, the two ”Inner-
MPI” versions use SkePU’s StarPU-MPI backend instead.
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Figure 9.18: Execution time (normalized to the sequential CPU backend time)
for three irregular-load benchmarks.

ular workload, in spite of the runtime overhead of dynamic scheduling: (1)
Generating a 1024×1024 Mandelbrot image using the SkePU 3 Map OpenMP
backend with different scheduling modes. Dynamic scheduling (chunksize 16)
outperforms the static default mode. (2) Lexicographic reduction finding the
maximum among 108 date/time tuples. Guided dynamic scheduling (chunk-
size 8) outperforms the static default mode. (3) Counting prime numbers
using MapReduce where dynamic scheduling performs best. Results for the
sequential CPU and OpenCL backends are provided as reference.
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Table 9.3: Microbenchmark results of vector initialization, seconds.

With GPU backends No GPU backends
Seq. consistency v[i] 0.899 0.308
Weak consistency v(i) 0.313 0.310

9.7.2 SkePU memory consistency model
To illustrate the motivation behind the change of consistency model for SkePU
smart containers (Section 4.15), we have measured the execution time through
a microbenchmark. Allocating and initializing the elements of a SkePU vector
using a simple for-loop results in the numbers in Table 9.3. If the SkePU
application is compiled without either GPU or CUDA backends there is no
appreciable overhead, but as soon as those device copies are present it is
approximately 3x faster to use non-managed access operators.
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10 Conclusion and
future work

This chapter concludes the thesis by summarizing the contributions and re-
flecting back on the work in a wider context. It also provides suggestions for
directions of future work.

10.1 Conclusion

Algorithmic skeletons is a high-level interface to parallel computing, especially
suitable for programmers without expert knowledge about parallel systems
design. Skeleton programming frameworks such as SkePU provide a way for
the user to focus on the application and algorithms at hand without having
to consider subtle details of communication, synchronization, load balancing,
and other hardware-specific issues. Therefore, the resulting applications can
attain performance-portability across the ever-widening landscape of parallel
hardware configurations—from low-power embedded systems to large-scale
clusters, with the entire spectrum possibly utilizing complex heterogeneous
architectures—with minimal or no guidance from the programmer.

The work presented in this thesis has specifically demonstrated how skele-
ton programming frameworks can adapt and improve as foundational lan-
guages such as C++ evolve to become more expressive and powerful. Building
on these results, manifesting as what currently is SkePU version three, specific
contributions have been introduced to improve hardware utilization though
run-time optimizations of computational task graphs and hybrid CPU-GPU
execution, as well as allowing also expert programmers to get the most out of
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the framework with multi-variant user functions in skeletons. The thesis has
also shown how SkePU has been adapted to target supercomputer clusters,
which is important for large-scale HPC application domains.

The foundational improvements to SkePU presented in the thesis opened
up a large field of potential new development directions and possible features,
and therefore, the work has still only begun.

10.2 Future work

This section explores areas of interest for future work related to SkePU. Nat-
urally, the focus on the SkePU framework makes these ideas skewing practical
over theoretical.

10.2.1 Modernize the SkePU tuner
The auto-tuning mechanism in SkePU should be improved with the same
techniques used in the rest of SkePU, such as variadic interface and taking
advantage of the precompiler. This will enable more intelligent exploration of
parameter space and targeting parameters outside of only the size of container
arguments in skeleton invocations.

10.2.2 Skeleton fusion
SkePU 3 provides MapReduce and MapPairsReduce as explicitly separate
skeleton constructs from the constituent parts, Map, MapPairs, and Reduce.
The ”fused” skeletons provide measurable gain compared to separating the
invocations, which motivates their existence. The programmer is however
required to be aware of these skeletons and make explicit choices at design-
time regarding matters of performance optimization, which would ideally be
the responsibility of the framework. Several other skeleton programming in-
terfaces fuse skeletons automatically, with some even being designed around
transforming sequences and nestings of skeleton calls, with auto-tuning de-
termining the best realization. SkePU has different challenges which make
a fully general skeleton transformation system likely unfeasible, but it also
means that a fusion in SkePU could be a worthwhile contribution to the sci-
entific community and not just a catch-up of features in competing projects.

10.2.3 SkePU standard library
One of the goals of SkePU is to make efficient parallel and heterogeneous
programming as simple and concise as possible. For common and straightfor-
ward computations, such as computing the sum of a vector, SkePU can still
be needlessly verbose:
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1. User function is defined: often four lines of code even for a single-
expression function if formatting standards have to be followed.

2. Skeleton instance is declared and assigned: separate statement on one
line, with a named object being introduced in the scope.

3. Invoking the skeleton: with the invocation being an expression (not a
statement), this is already very lightweight.

Using lambda expressions combines step 1 and 2 and avoids introducing a
named function in the surrounding scope. Still, C++ lambda expressions are
syntactically heavy for single-expression functions. Therefore, we are explor-
ing the addition of a standard library for SkePU. Such a library would define
common user function operators and also ready-made skeleton instances for
direct use. It would also provide fundamental types often needed by SkePU
applications which do not exist at language-level in C++ or the target back-
ends, e.g. complex numbers. The standard library would also be adopted
internally inside SkePU for operations on smart containers.

10.2.4 Evaluating SkePU in further application domains
Skeleton programming is one out of many approaches to high-level parallel
programming. Not every computation can be naturally described with skele-
ton patterns, or might not be efficiently expressed this way. However, each
implementation of the skeleton paradigm has its own strengths and weak-
nesses; e.g., SkePU can re-use a lot of C or C++ code when integrating into
existing code bases, but is generally limited to data-parallel computations. In
an attempt to understand the applicability of SkePU in real-world use, we
aim to evaluate how SkePU works in more and larger-scale applications than
before. The project partners in EXA2PRO and existing benchmark suites,
such as PARSEC [7] and Rhodinia [9], are examples of sources of such code
bases. Results from these studies is also expected to improve SkePU itself
in a closed feedback loop, as is already the case with several features new in
SkePU 3.

10.2.5 Extending the skeleton set of SkePU, such as with
stream parallelization

The skeleton set in SkePU is constantly being reevaluated. Occasionally,
progress allows skeletons to be removed, as they are absorbed into others.
This happened with Generate and MapArray from SkePU 2, being absorbed
into a generalized Map. Conceptually, MapOverlap is a prime target for merg-
ing with Map, where the region objects could be grouped with the other con-
tainer proxy arguments, with possible advantages being implementation of
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patterned applications which need region access into multiple input contain-
ers simultaneously.

However, most interest lies in adding all-new patterns to SkePU through
additional skeletons. SkePU focuses on data parallelism, which makes it a less
than ideal fit for several common applications, e.g. from popular benchmark
suites. Extending SkePU for stream parallelism at this point appears the most
interesting direction, as recent SkePU contributions including lineage-backed
lazy evaluation [28] are based on related ideas.

New smart containers used in conjunction with existing skeletons can also
enable new application areas. An example of potential new smart container
formats are graph structures.

10.2.6 Extended programmability survey
The usability survey conducted early in the work on SkePU 2 showed promis-
ing results but was limited in scope and is in some aspects outdated. A new
survey would compare SkePU-ized application code against lower-level par-
allel programming interfaces and possibly also alternative high-level parallel
programming frameworks.
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A.1 Abbreviations
API Application programming interface
ASIC Application-specific integrated circuit
AST Abstract syntax tree
DSEL Domain-specfic embedded language (also EDSL)
EU FP7 European Union Seventh Framework Programme
FPGA Field-programmable gate array
GCC GNU Compiler Collection
GPGPU General-purpose graphics processing unit
HLPP International Symposium on

High-Level Parallel Programming and Applications
HPC High-performance computing
IDE Integrated development environment
IEC International Electrotechnical Commission
ISO International Organization for Standardization
LLVM The LLVM Compiler Infrastructure
MCC Nordic Workshop on Multi-Core Computing
MSI Modified–shared–invalid (cache coherence protocol)
NVCC Nvidia’s CUDA compiler
STL C++ Standard Template Library
TBB Intel Threading Building Blocks
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A.2 Domain-specific terminology

Accelerator
Broad term, referring to a processing unit more specialized than a gen-
eral CPU. Examples: GPU, FPGA, ASIC, DSP.

Heterogeneous (system or architecture)
Containing both one or more CPUs and one or more accelerators.

Performance-portable (parallel program)
Program which can be executed on different parallel and heterogeneous
architectures with reasonable performance.

Pre-compiler
See ”source-to-source compiler”.

(Algorithmic) skeleton
Parameterizable generic component with well defined semantics, for
which (sometimes multiple) parallel or accelerator-specific implemen-
tations exist.

Superscalar (computer architecture)
Processor core utilizing instruction-level parallelism by duplicating exe-
cution units, thereby executing multiple instructions per clock cycle.

Source-to-source compiler
Compiler tool which does transform input source code to output source
code on a similar abstraction level, such as C++ code to C or C++
code. Compare with a typical C++ compiler producing assembly code
or an executable binary.

A.3 SkePU-specific terminology

Backend
See Section 5.3. A type of programmable computation unit targeted for
parallelization by SkePU.

Container proxy
See Section 4.14.

Elwise parameter
See Section 4.2.2.

Lineage
See Chapter 6.

Multi-variant (user function)
See Chapter 8.
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Random-access parameter
See Section 4.2.1.

Smart container
See Section 4.13. A C++ object of a type such as skepu::Vector, hold-
ing a collection of values of some templated type. SkePU intelligently
manages the memory of the container, including distribution over clus-
ters and copies on external devices, transparently to the programmer.

Skeleton
See Section 4.1. A computational pattern encoded in the SkePU frame-
work as compiler-known C++ classes. Example: skepu::Map.

Skeleton instance
See Section 4.1. Callable objects created in a SkePU program by instan-
tiating a skeleton class.

Skeleton invocation
See Section 4.1. When a skeleton instance is applied one or more smart
containers. The invocation may be synchronous or asynchronous.

User function
See Section 4.10. C++ function acting as an operator used when instan-
tiating a skeleton. Applied to container elements as part of a skeleton
invocation.
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B Application source code
samples

Listing B.1: N-body simulation code using Map.
1 // Particle data structure that is used as an element type.

struct Particle
{

float x, y, z;
5 float vx, vy, vz;

float m;
};

constexpr float G [[skepu::userconstant]] = 1;
10 constexpr float delta_t [[skepu::userconstant]] = 0.1;

/*
* Array user-function that is used for applying nbody computation,
* All elements from parr and a single element (named 'pi') are accessible

15 * to produce one output element of the same type.
*/

Particle move(skepu::Index1D index, Particle pi, const skepu::Vec<Particle> parr)
{

size_t i = index.i;
20

float ax = 0.0, ay = 0.0, az = 0.0;
size_t np = parr.size;

for (size_t j = 0; j < np; ++j)
25 {

if (i != j)
{

Particle pj = parr[j];

30 float rij = sqrt((pi.x - pj.x) * (pi.x - pj.x)
+ (pi.y - pj.y) * (pi.y - pj.y)
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+ (pi.z - pj.z) * (pi.z - pj.z));

float dum = G * pi.m * pj.m / pow(rij, 3);
35

ax += dum * (pi.x - pj.x);
ay += dum * (pi.y - pj.y);
az += dum * (pi.z - pj.z);

}
40 }

Particle newp;
newp.m = pi.m;

45 newp.x = pi.x + delta_t * pi.vx + delta_t * delta_t / 2 * ax;
newp.y = pi.y + delta_t * pi.vy + delta_t * delta_t / 2 * ay;
newp.z = pi.z + delta_t * pi.vz + delta_t * delta_t / 2 * az;

newp.vx = pi.vx + delta_t * ax;
50 newp.vy = pi.vy + delta_t * ay;

newp.vz = pi.vz + delta_t * az;

return newp;
}

55
Particle init(skepu::Index1D index, size_t np)
{

// Initialize positions and accelerations
}

60
auto nbody_init = skepu::Map<0>(init);
auto nbody_simulate_step = skepu::Map<1>(move);

void nbody(skepu::Vector<Particle> &particles, size_t iterations)
65 {

size_t np = particles.size();
skepu::Vector<Particle> doublebuffer(particles.size());

nbody_init(particles, np);
70

for (size_t i = 0; i < iterations; i += 2)
{

nbody_simulate_step(doublebuffer, particles, particles);
nbody_simulate_step(particles, doublebuffer, doublebuffer);

75 }
}

Listing B.2: N-body simulation code using MapPairsReduce in SkePU 3.
1 // Particle data structure that is used as an element type.

struct Particle
{

float x, y, z;
5 float vx, vy, vz;

float m;
};

constexpr float G [[skepu::userconstant]] = 1;
10 constexpr float delta_t [[skepu::userconstant]] = 0.1;

struct Acceleration
{

float x, y, z;
15 };
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Acceleration influence(skepu::Index2D index, Particle pi, Particle pj)
{

Acceleration acc;
20

if (index.row != index.col)
{

float rij = sqrt((pi.x - pj.x) * (pi.x - pj.x)
+ (pi.y - pj.y) * (pi.y - pj.y)

25 + (pi.z - pj.z) * (pi.z - pj.z));
float dum = G * pi.m * pj.m / pow(rij, 3);

acc.x = dum * (pi.x - pj.x);
acc.y = dum * (pi.y - pj.y);

30 acc.z = dum * (pi.z - pj.z);
}
else
{

acc.x = 0;
35 acc.y = 0;

acc.z = 0;
}
return acc;

}
40

Acceleration sum(Acceleration lhs, Acceleration rhs)
{

Acceleration res = lhs;
res.x += rhs.x;

45 res.y += rhs.y;
res.z += rhs.z;
return res;

}

50 Particle update(Particle p, Acceleration a)
{

Particle res = p;

res.x += delta_t * p.vx + delta_t * delta_t / 2 * a.x;
55 res.y += delta_t * p.vy + delta_t * delta_t / 2 * a.y;

res.z += delta_t * p.vz + delta_t * delta_t / 2 * a.z;

res.vx += delta_t * a.x;
res.vy += delta_t * a.y;

60 res.vz += delta_t * a.z;

return res;
}

65 Particle init(skepu::Index1D index, size_t np)
{

// Initialize positions and accelerations
}

70
auto nbody_init = skepu::Map<0>(init);
auto nbody_influence = skepu::MapPairsReduce <1, 1>(influence, sum);
auto nbody_update = skepu::Map<2>(update);

75 void nbody(skepu::Vector<Particle> &particles, size_t iterations)
{

size_t np = particles.size();
skepu::Vector<Acceleration> accel(np);

80 nbody_init(particles, np);
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for (size_t i = 0; i < iterations; ++i)
{

nbody_influence(accel, particles, particles);
85 nbody_update(particles, particles, accel);

}
}
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