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Data-driven Open Set Fault Classification of
Residual Data using Bayesian Filtering

Daniel Jung

Abstract—Data-driven fault classification in industrial applica-
tions is complicated by unknown fault classes and limited training
data. In addition, different faults can have similar effects on
sensor outputs resulting in fault classification ambiguities, i.e.
multiple fault hypotheses can explain the data. One solution
is to identify and rank all plausible fault classes which give
useful information, for example at a workshop when performing
troubleshooting. A probabilistic fault classification algorithm is
proposed for residual data classification combining Weibull-
calibrated one-class support vector machines for fault class
modeling and Bayesian filtering for time-series analysis. The fault
classifier ranks different fault classes and can identify sequences
from unknown fault realizations, i.e. faults not represented in
training data. Real residual data computed from sensor data
and model analysis of an internal combustion engine are used as
a case study illustrating the usefulness of the proposed method.

Index Terms—Fault classification; Open set classification; Ma-
chine Learning; Support Vector Machines; Hybrid fault diagno-
sis.

I. INTRODUCTION

IN the automotive industry, on-board diagnosis (OBD) sys-
tems have been used for emission-related monitoring for

decades. New applications, such as predictive maintenance
and assisted troubleshooting at the workshop, are important
to improve reliability and reduce system down-time in order
to increase costumer value. Connected vehicles and cloud
computation capacities have put focus on machine learning
methods for fault diagnosis and prognostics.

Fault diagnosis of industrial systems is often conducted
by analysis and classification of time-series data collected
during system operation, for example sensor data or computed
residuals [1], [2]. When designing a fault diagnosis system,
there are often many different types of faults that can occur
in the system and should be detected. Even though there are
tools to systematically identify all these fault classes early in
the system development phase, see for example [3], it is still
a difficult task, especially for large-scale or complex systems.
Therefore, there can be unknown faults that are not taken into
consideration when training the diagnosis system [4].

Another complicating factor in data-driven fault diagnosis is
collecting representative training data from all relevant faults.
Data collection is an expensive and time-consuming process
and not feasible in many applications [5], [6]. Especially,
since many faults do not occur until after years of operation.
Therefore, training data are not representative of all fault
scenarios which means that a diagnosis system must be able
to identify both known and unknown fault scenarios.
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Different faults can have similar effects on system dynamics
resulting in fault classification ambiguities. Therefore, it is
not desirable that a data-driven classifier only selects one
fault class, since the true fault could be missed, but should
instead identify and rank all plausible fault classes [4]. This
type of information is useful, for example, at the workshop to
support a technician during troubleshooting [7]. For reliable
fault classification, it is also necessary to identify data sets with
unknown faults, i.e., fault scenarios not represented in training
data, since these cases need special attention to improve
classification performance over time [8].

A. Problem Formulation

The objective of this work is to develop a data-driven
fault classification algorithm for time-series data, for example
sensor data or model-based residuals, that identifies and ranks
fault hypotheses (fault classes). It is assumed that training
data are limited and not representative of all fault realizations.
Machine learning algorithms that assume all data classes are
known and representative training data are available, are not
expected to give reliable outputs, especially in fault scenarios
where data deviate too much from the training data. A fault
classifier should therefore be able to identify when there are
data sequences with unknown fault scenarios, i.e. sequences
that do not resemble training data.

Fault diagnosis of an internal combustion engine is used as a
case study. The fault scenarios cover different types of engine
faults, including sensor faults, leakages, and air filter clogging.
As input to the data-driven fault classification algorithm, a set
of residual data is computed from a physically based model
and real data from different fault scenarios collected from the
engine test rig [9], see Fig. 1.

B. Related Research

Data-driven monitoring and fault diagnosis of internal com-
bustion engines is investigated in, for example, [10]. A data-
driven classifier approach for fault diagnosis of an electric
throttle control system is proposed in [5] where incremental
learning is used to improve classification performance over
time. In [11], an ensemble approach for automotive fault
classification of both known and unknown faults in time-series
data is developed by combining multiple machine learning
methods for classification. A two step fault classification
approach to handle unknown faults in an electronic system
using Gaussian mixture models and k-means is proposed in
[12]. With respect to the mentioned work, an incremental
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Fig. 1. The picture shows the engine test bench that is used for data collection.

probabilistic fault classification method is proposed that ranks
different faults using model-based residuals as input.

One solution to limited training data is to use a physically
based model of the system to generate features, for example
residuals [4]. Fault diagnosis methods for automotive applica-
tions, combining model-based and data-driven methods, are
proposed in, for example, [13], [14], [15], [16]. Research
highlights the benefits of bridging and combining model-based
and data-driven methods for fault diagnosis instead of only
focusing on one of them [17].

In [18], both sensor data and residual data are used as
input to a tree augmented naive Bayes fault classifier. In [6],
a conditional Gaussian network is proposed to handle both
known and unknown fault classes. In [19], feature selection
using neural networks is applied before training the fault
classifiers. In [4], a hybrid diagnosis system design is proposed
which combines model-based fault isolation with support
vector data description anomaly classifiers to rank the different
fault hypotheses. In [20], model-based residuals and sensor
data are used as inputs to a Bayesian network to perform fault
classification and in [21] model data features are extracted and
fed into a neural network classifier. In [22], a hybrid approach
combining model-based residuals with hidden Markov models
and Bayesian methods is used to classify unknown faults.

Another related research topic is the open set recognition
problem in computer vision where data can belong to unknown
classes not covered by the training data [8]. Unknown classes
are further categorized into known unknowns and unknown
unknowns, where the second case corresponds to the unknown
faults considered in this work. Different algorithms have
been proposed to solve the open set recognition problem, for
example Weibull-calibrated support vector machines [23] and
extreme value machines [24].

This work is based on previous research in [4], [25]. The
main contribution, with respect to mentioned works, is a
data-driven probabilistic classification algorithm of time-series
data combining Weibull-calibrated one-class Support Vector
Machines [26] and Bayesian filtering and smoothing [27]
to improve classification performance and ranking of fault
hypotheses.

II. FAULT CLASS MODELING USING OPEN SET
CLASSIFICATION

In real-life applications where training data are limited, it is
important that a classifier can identify residual data that cannot
be explained by any of the known fault classes, i.e. data that
significantly deviates from training data.

A. Using One-class Classifiers for Modeling Fault Classes

Let m be the number of available residuals and r̄ =
(r1, r2, . . . , rm) is a sample of all residuals outputs. The
purpose of modeling different fault classes is to identify which
fault hypotheses can explain the observed data r̄. One-class
classifiers are suitable for modeling fault classes since each
class can be modeled individually.

There are multiple methods proposed for one-class classi-
fication, for example probabilistic models, one-class support
vector machines (OSVM), and isolation forests (iForests) [28].
Probabilistic models use probability distributions to model
data from one class and detect outliers, with respect to that
class, when the likelihood of a sample is small, see for example
[6]. Non-probabilistic models, such as OSVM and iForests,
model a decision boundary that encapsulates training data to
determine if new data can be explained by that class or not.

Since training data are assumed to be limited, the distri-
bution of data is not expected to be representative of each
fault class. Training data might have been collected through
experiments to cover different fault realizations but not to be
representative of the actual distribution of fault realizations.
The objective is to identify plausible fault hypotheses, regard-
less of how likely they are. Therefore, a non-probabilistic
approach is used to model which observations r̄ can be
explained by each fault class. Training data from each known
class is modeled using a decision function representing the
maximum distance from any training data where a new sample
could be explained by that class, called a compact abating
probability (CAP) model [23]. Unknown fault classes are
identified when data are significantly deviating from training
data. Fig. 2 illustrates a set of CAP models and the problem
of classifying a set of new data when it significantly deviates
from the known fault classes. It is shown in [23] that an OSVM
classifier with a radial basis function (RBF) kernel yields a
CAP model.

B. One-class Support Vector Machines

There are two similar approaches for designing OSVM
classifiers, referred to as ν-SVM [29] and Support Vector Data
Description (SVDD) [30], respectively, where ν-SVM is used
in this work. An OSVM classifier uses the kernel trick to
model a decision boundary that encapsulates data from that
class [31]. This is illustrated in Fig. 2 where the black lines
represent the decision boundaries of two OSVM classifiers
modeling data from Class 1 and Class 2, respectively.

The OSVM classifier computes a score function, when
evaluating each new sample, that is positive when belonging
to the nominal class or negative if it is considered an outlier,
i.e. not belonging to that class. The OSVM classifier evaluates
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Class 1

Class 2

New data

Class 2

Class 1???

Fig. 2. An illustration of two CAP models using OSVM classifiers to model
two known fault classes. The new data cannot be explained by any of the
known fault classes and is considered to belong to an unknown fault class.

each sample of residual data independently, meaning that time-
series information of the residuals are ignored.

In previous work [4], a set of OSVM classifiers is used
to model the CAP models from known fault classes. When
classifying new data, each fault class is ranked based on how
many samples that are associated to that fault class. Note that
a sample can be explained by multiple fault classes. As new
data are collected from different faults and correctly classified,
the OSVM classifiers are updated accordingly to improve
performance over time. Incremental training can be applied
to reduce the computational cost when new data are collected,
see for example [32].

C. Weibull-calibrated OSVM

Even though the OSVM classifier is a CAP model, its
decision boundary depends on the distribution of the support
vectors. Therefore, is it is relevant to have a measure of the
probability that a sample r̄, can be explained by fault class f l,
here denoted P (r̄ ∈ f l). There are some proposed methods to
translate the score computed by a SVM into a probability, for
example Platt scaling [33] or Weibull-calibrated SVM [23].
The advantages of Weibull-calibrated SVM with respect to
Platt scaling are discussed in, e.g. [23]. However, the Weibull-
calibrated SVM classifier is a multi-class classifier that outputs
one fault class, which could be the unknown class. Since
the objective here is to model each fault class separately,
to identify all plausible fault hypotheses, a Weibull-calibrated
OSVM method, proposed in [26], is used called PI -OSVM.

In [23], [26], statistical extreme value theory is applied
when proposing the PI -OSVM classifier to model data from
each class. The output scores from the support vectors of the
OSVM are modeled to be reverse Weibull distributed. The
corresponding cdf of the reverse Weibull distribution measures
the probability that a new sample can be explained by that

fault class, referred to as probability of inclusion in [26]. An
example is shown in Fig. 3 showing the distribution of the
OSVM score for a set of data, a reverse Weibull distribution
fitted to the score values, and the corresponding cdf.

-1 0 1 2 3 4 5 6 7
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3
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0.5
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Fig. 3. PDF and CDF of the parameterized reverse Weibull distribution fit to
the score values of the support vectors of a OSVM classifier.

The reverse Weibull cdf parameterized for the OSVM score
value g(r̄) is given by

P (r̄ ∈ f l) =

{
e
−
(

−g(r̄)+νl
λl

)κl
if − g(r̄) + νl ≥ 0

1 otherwise
(1)

where νl, λl, κl ≥ 0 are fitted parameters for fault class f l. For
(1), denoted PI -OSVM, to be a CAP model, the probability
Pf l(r̄) is thresholded by a parameter δ which represents when
the Euclidean distance from a new sample to the training data
is too large. An example of PI -OSVM models P (r̄ ∈ f l) for
a set of fault modes f l are shown for a two residual output
case in Fig. 4 where different fault scenarios in training data
result in different residual outputs. The z-axis represents the
conditional probability (1) that each fault class can explain the
residual outputs.

Fig. 4. A set of PI -OSVM models are parameterized for two residuals. The
figure shows the probability of inclusion for each fault class.

III. FAULT CLASSIFICATION OF TIME-SERIES DATA USING
BAYESIAN FILTERING AND SMOOTHING

One approach to classify each sample r̄t, where subscript
t is used to denote time index, using the set of PI -OSVM
models is to select the class f l with the highest probability, i.e.,
arg maxf l P (r̄ ∈ f l). The probability of a sample to belong
to an unknown fault class, denoted fx, is difficult to model
without prior information. In [6], [23], there are no probability
models of the unknown fault class fx. Instead, fx is selected
when the probabilities of all known fault classes are below
some threshold. Here, P (r̄ ∈ fx) = δ is modeled equal to the
threshold of the corresponding CAP models, i.e. samples that
do not belong to a known fault class are more likely to come
from an unknown fault class.
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Since a fault is often present during a longer time interval,
Bayesian filtering and smoothing are applied here to improve
classification performance by weighing in information from
consecutive samples [27]. This is relevant if there are multiple
fault classes that can explain the same observations.

The probability that the system is changing from one fault
mode to another at time t is modeled using a transition matrix
Π ∈ Rn+1×n+1, where n is the number of known fault classes
and plus one for the unknown fault class. Let Πl,k denote the
element representing the probability that the system changes
from mode f lt−1 to fkt at time t. Faults are rare events and
the probability that the system is changing mode is considered
small compared to the system staying in the same mode.

The pdf p(r̄t|f l) of the residual output r̄t given fault class f l

is unknown. However, to be able to use the PI -OSVM models
in a Bayesian framework, it is assumed here that p(r̄t|f l) is
large when P (r̄ ∈ f l) is large. Then, the pdf is modeled as
p(r̄t|f l) ∝ P (r̄ ∈ f l).

A Bayesian filter evaluating the probability of each fault
class f lt at time t can be computed sequentially as

p(f lt |r̄1:t) ∝ p(r̄t|f lt)
n+1∑
k=1

Πk,lp(f
k
t−1|r̄1:t−1) (2)

where the prior distribution p(f l0|r̄0) = p(f l0) and the proba-
bilities of all modes are normalized, i.e.

∑n+1
k=1 p(f

l
t |r̄1:t) = 1.

The sequential formulation of Bayesian filtering is suitable
for on-line computations where class probabilities are com-
puted based on previous samples. A workshop would be able
to download logged data and perform off-line computations
on the whole data batch. Bayesian smoothing can be applied
to a batch of T samples by performing an additional backward
filtering after (2) as

p(f lt |r̄1:T ) ∝ p(f lt |r̄1:t)
n+1∑
k=1

Πl,kp(f
k
t+1|r̄1:T ) (3)

followed by a normalization to compute the class probabilities.
Combining the PI -OSVM classifiers and Bayesian filtering or
smoothing gives a systematic method to identify and rank the
different fault hypotheses based on how many samples in a
data batch are classified as each fault class [4].

IV. CASE STUDY

The case study in this work is the same internal combustion
engine system as considered in [25] and [9]. Sensor data have
been collected from the engine test bed, including nominal
system behavior (NF - No Fault) and seven different single-
fault scenarios: air filter clogging fpaf , leakages at the air
filter fWaf and at the throttle fWth, and four different sensor
faults fy,T ic, fy,pic, fy,pim, and fy,Waf . Table I summarizes
the seven fault scenarios. The locations of the four sensors are
shown in Fig. 5 where yTic and ypic measure the temperature
and pressure after the intercooler, ypim measures the pressure
at the intake manifold, and yWaf measures the air flow through
the air filter.

A mathematical model is available describing the air flow
through an internal combustion engine. The model has been

TABLE I
A SUMMARY OF FAULT SCENARIOS COLLECTED FROM ENGINE TEST RIG.

Fault Description
fpaf Air filter clogging
fWaf Leakage after air filter
fWth Leakage before throttle
fy,T ic Intermittent fault in sensor measuring temperature at intercooler
fy,pic Intermittent fault in sensor measuring pressure at intercooler
fy,pim Intermittent fault in sensor measuring intake manifold pressure
fy,Waf Intermittent fault in sensor measuring air flow through air filter

flow flow

paf

pempc

pt

pimpic Intake man.

Air

ExhaustAir Filter

Throttle

Wastegate

uwg

uth

Exhaust man.

Intercooler Engine

Comp. & Turb.

Exhaust

Fig. 1. Overview of the engine. The model consists
of six receivers for each of which the pressure
variable is shown.

speed at its highest possible level, which provides
a fast transient response, or to lower the back
pressure, which ensures good fuel economy. This
leads to two different control strategies that will
be described in section 6.

Matching up a compressor, a turbine, and an
engine is a complex task that involves several
steps. The following procedure is a simplification,
but it illustrates the key steps: 1) Determine
engine displacement and maximum engine power,
which results in data on the boost level and on
the maximum air mass flow. 2) Determine the
compressors that fulfill those requirements and
that reach the desired boost pressure without
surging at the lowest flows possible. 3) Determine
the turbines that drive the compressors as closely
to the surge line as possible without generating
too high a back pressure. Based on this procedure,
simulations and experiments are done to find the
compressor and the turbine that best match a set
of given performance criteria.

Three-way catalytic converters are typically used
to reduce emissions by requiring the engine to
operate at stoichiometric conditions, i.e., λ =
1. We thus focus our investigation on engines
operating at λ = 1, thus ignoring the problem
that current turbine materials cannot withstand
temperatures above 1300 K. Current practice is to
protect the turbine at high air mass flows by fuel
enrichment, which significantly raises the levels of
pollutants and the fuel consumption.

3. OPTIMAL FUEL ECONOMY:
FORMULATION OF THE PROBLEM

The brake-specific fuel consumption BSFC is de-

fined as the fuel mass flow
∗
mf divided by the

generated power P

BSFC !
∗
mf

P
=

∗
mf

Tq 2π N

where N is the engine speed in revolutions per
second. One problem with the definition of BSFC
is that there is a singularity at zero torque.
Therefore it is advantageous to look at 1

BSFC =

Tq 2π N/
∗
mf which then has to be maximized

for best fuel efficiency. Optimizing the cruising
scenario with constant speed for the best fuel

economy is thus the same as maximizing Tq/
∗
mf .

For cruising we now also consider the maximiza-
tion under limited resources, that is a desired fuel

flow
∗
mf,des, which now becomes

max Tq(uth, uwg,
∗
mf )

subject to
∗
mf (uth, uwg) =

∗
mf,des

A constant fuel flow corresponds to a constant
air flow, since we are restricting engine operation
to stoichiometric conditions. This leads to the
following formulation of the problem

max Tq(uth, uwg,
∗
ma)

subject to
∗
ma(uth, uwg) =

∗
ma,des

(1)

4. MODELING OF A TURBOCHARGED
ENGINE

The structure incorporates a number of control
volumes which are separated by flow restrictions
(see Figure 1). As a detailed explanation of the
complete model would exceed the scope of this
paper, only the components necessary for study-
ing the problem of fuel optimality are described
in the following paragraphs.

The formulation of the fuel-optimal operation of
turbocharged SI engines shows that models for
engine torque and engine air-mass flow are nec-
essary. Since the control inputs affect the intake
and exhaust manifold pressures, the models must
describe how these pressures influence the torque
levels and the air flow.

4.1 Engine Air Mass Flow

The air mass flow to the engine is modeled using
the volumetric efficiency ηvol which provides the
data necessary to calculate the amount of fresh

ypic

yTic

ypim

yWaf

yω

yxpos

ypamb

yTamb

uwg

umf

Fig. 5. A schematic of the model of the air flow through the model. This
figure is used with permission from [34].

used in previous works for residual generation, see for example
[4], and the model structure is similar to the model described
in [35], which is based on six control volumes and mass and
energy flows given by restrictions, see Fig. 5.

Nine residual generators r̄ = (r1, . . . , r9) have been gener-
ated in [25] from the model, using the Fault Diagnosis Toolbox
in Matlab [36]. A residual is a function comparing two differ-
ent estimates of the same quantity to detect inconsistencies,
for example, between a sensor value and a model prediction
of the measured quantity. An illustrative example is shown in
Fig. 6 where u represents control signals, f faults, y sensor
data, ŷ model predictions, and r = y − ŷ is the residual.

The internal combustion engine is an example of a system
that operates at many different operating conditions including
transients. The residuals are designed to, ideally, filter out the
system dynamics while being sensitive to faults. Even though
both sensor data and residuals can be used as inputs to a
classifier, only residual data will be used here.

The nine residuals are evaluated using data from different
fault scenarios collected from the engine test rig1. The data set

1Residual data are available in the Fault Diagnosis Toolbox [36] that can be
downloaded from https://faultdiagnosistoolbox.github.io. The selected residual
subset used in this work is described in [25].

https://faultdiagnosistoolbox.github.io
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Model
˙̂x = g(x̂, u)

ŷ = h(x̂, u)

+

f(t)

u(t)

y(t)

ŷ(t)

r(t)

−

Fig. 6. An example of a residual r(t) comparing measurements from the
system y(t) with model predictions ŷ(t).

contains 20 276 samples including nominal and faulty data. To
evaluate the situation with limited training data, only 10% of
the residual data, both nominal operation and from different
fault scenarios, are used as training data and the remaining set
is used for validation. Figure 7 shows data from each residual
from both nominal (NF) and seven fault classes (blue data) and
the corresponding fault label (red data). The air filter clogging
fpaf and leakages fWaf and fWth have been collected from
persistent fault scenarios, while sensor fault data are collected
from intermittent sensor faults as shown in the figure.

V. EXPERIMENTAL RESULTS

A PI -OSVM model (1) is calibrated for each class in the
training data and a decision threshold δ = 5% is selected
for each model. The OSVM classifier, used in the PI -OSVM
models, is implemented using the function fitcsvm in
Matlab and its kernel parameters are fit to training data using
a subsampling heuristic [37]. In this analysis, fault detection
and classification are performed simultaneously and the fault-
free class NF is included as a fault class.

Validation data from each fault scenario in Fig. 7 are used
to evaluate the similarity between the models by analyzing
how many samples can be explained by each fault class.
Figure 8 shows the percentage of data from each fault scenario
that can be explained by each fault class. Samples that are
not associated to any known fault class are classified as the
unknown fault class fx. Note that the sum of each column
in Fig. 8 can exceed 100% since each sample can belong to
multiple fault classes. A significant number of samples can be
explained by more than one fault class, e.g. {NF, fpaf} and
{fwaf , fwth}, showing that the CAP models for the different
fault classes are overlapping. It is also visible that the overlap
is not symmetric between fault pairs. For example, 81% of
the samples from fault scenario fpaf can also be explained
by fy,pim but only 31% of the samples from fy,pim can be
explained by fpaf .

The CAP models are useful to identify fault hypotheses, i.e.
which fault classes could explain the residual data. However,
each sample is classified independently of the others ignor-
ing information from the time-series data. To improve fault
classification performance, the next step is to take time-series
information into consideration.

A. Classification Using Bayesian Filtering and Smoothing

The next step is to evaluate the benefits of applying
Bayesian filtering and smoothing with respect to only sample-

Fig. 7. Data from nine residuals collected from nominal system behavior (NF)
and seven different faults. Each subplot shows one residual output where the
blue curve is the residual output and the red curve is class label.

by-sample classification of residual data. First, sample-by-
sample classification is performed where each sample r̄t is
associated to the fault class f l with the highest probability
p(f lt |r̄t) at time t. Each fault class f l is ranked during a fault
scenario by counting how many samples are associated with
that fault class, similar to what is used in [4] and [25].

The distribution p(f lt |r̄t) is evaluated using validation data
where the a priori distribution p(f l0) of all fault classes f l

are assumed equal and the results are shown in Fig. 9. It is
highlighted in gray when each fault class is the true fault in
the data set. Ideally, p(f lt |r̄t) = 1 when f l is the true fault
class and zero otherwise. Fig. 10 summarizes classification
performance when each sample r̄ is classified as the fault class
f l with the highest probability p(f lt |r̄t). Each element (k, l)
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96% 97% 2% 4% 33% 12% 29% 1%
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Fig. 8. Modeling fault classes using residual data from Fig. 7 and CAP
models, here thresholded PI -OSVM models. The overlap between fault
classes is evaluated by counting the percentage of data that can be explained
by each fault class. Samples not belonging to any known fault class belong
to the unknown fault class fx.

in the matrix shows how many samples from a fault scenario
with fault f l are associated to fault class fk. The evaluation
in Fig. 8 shows that it is more difficult to correctly classify
fault classes when the CAP-models are overlapping, in this
case mainly {NF, fpaf} and {fwaf , fwth}, respectively.
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Fig. 9. Fault class probabilities p(f l
t |r̄t) from validation data in Fig. 7. The

gray intervals represent when the corresponding fault class is the true one and
the probability should be high, and zero otherwise.

A comparison of filtered (2) and smoothed (3) estimates of
class probabilities are shown in Fig. 11. Here, the transition
probability between two different classes in Π is chosen
experimentally as 1% and staying at the same class as
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Fig. 10. Evaluation of a set of PI -OSVM classifiers where the output of the
ensemble classifier for each sample is the class with the highest probability,
see Fig.. 9. Each column represent a fault scenario and each row the ranking
of each fault class.

100 − (n + 1)%. Experiments show that a higher transition
probability between fault classes results in bigger fluctuations
in p(f lt |r̄t) while a lower transition probability reduces the
fluctuations but, sometimes, also requires more samples after a
fault occur before p(f lt |r̄t) changes significantly. The different
subplots in Fig. 11 show the computed probability of each fault
class where the highlighted gray areas show when the fault is
present and the ranking should be high, and zero otherwise.

Each sample is associated to the fault class with the highest
probability after applying Bayesian filtering and smoothing.
Compared to the sample-by sample classification in Fig. 9
the filtered estimates significantly improve fault classification
performance, especially between fault classes that are over-
lapping in Fig. 8. The smoothed probability often seems to
dominate for one class at each sample time compared to using
the Bayesian filter only. In the figure, only a few samples are
classified to belong to the unknown fault case.

Classification performance using Bayesian filtering and
smoothing are shown in Fig. 12 and Fig. 13, respectively. The
output percentages show the ranking of each fault class in each
scenario. The most significant improvement, with respect to
the sample-to-sample classification in Fig. 8, is classification
of fault fpaf where the ranking of the true fault increases from
61.3% to 81.3%. When comparing the results in Fig. 12 and
Fig. 13, Bayesian smoothing has only a slight improvement in
classification accuracy with respect to Bayesian filtering.

B. Classification of unknown faults

Unknown fault scenarios are simulated by training a set
of PI -OSVM models without including training data from
the fault class that is considered unknown in the scenario.
Seven unknown fault scenarios are evaluated where data from
one fault class in Table I are excluded during each training
phase and a set of PI -OSVM models is trained based on the
remaining known fault classes. Then, validation data from the
unknown fault class is classified using the PI -OSVM models
and Bayesian smoothing to rank the different fault classes in
each scenario. Ideally in each fault scenario, the unknown fault
class fx should have the highest rank since the model of the
true fault is not available.



IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOLOGY 7

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Fig. 11. Fault class probabilities using Bayesian filtering p(f l
t |r̄1:t) and

smoothing p(f l
t |r̄1:T ). The gray intervals represent when the corresponding

fault class is present. Smoothing makes the probability of one fault class more
dominating with respect to the other classes compared to filtering.
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Fig. 12. Classification and ranking of a set of fault scenarios using a set of
PI -OSVM classifiers and Bayesian filtering, see Fig. 11. The rows represent
the ranking of the different fault hypotheses for each fault scenario in the
different columns.

The results of the unknown fault scenarios are shown in
Fig. 14. Note that NF is not evaluated as an unknown fault
scenario, and therefore the first column is marked with X, but
it is ranked in the other fault scenarios. The unknown fault
class in each fault scenario is marked with ’-’ since there
is no PI -OSVM model to rank that fault. In all sensor fault
scenarios, i.e. fy,T ic, fy,pic, fy,pim, and fy,waf , the unknown
fault class has the highest rank. The two faults fwaf and fwth

are classified as each other and fpaf is classified as NF, which
are expected since the CAP models are overlapping, see Fig. 8.
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Fig. 13. Classification and ranking of a set of fault scenarios using a set of
PI -OSVM classifiers and Bayesian smoothing, see Fig. 11. There is a slight
improvement compared to only using Bayesian filtering in Fig. 12.

The situation when NF gets a high rank, when a fault is present
in the system, is likely when it is difficult to distinguish faults
from model uncertainties and sensor noise.

One solution is to perform fault diagnosis in two steps,
starting with a fault detection step followed by a fault classifi-
cation step when a fault is detected. In situations where false
alarms should be avoided, change detection algorithms such
as cumulative sum (CUSUM) [38] can be used to reduce the
false alarm rate and improve detection performance of small
faults by allowing a longer time before detection. If a fault is
detected with a low risk of false alarms, the following fault
classification step can be performed by only considering faults
without including the nominal class NF. For example, if a fault
is detected in the unknown fault scenario with fault fpaf , see
Fig. 14, and the NF fault class is removed during the Bayesian
smoothing step, the ranking of fpim increases from 19.6% to
82%, the unknown fault class fx increases from 1.3% to 13%,
and all the remaining fault classes remain below 2.4%. The
higher ranking of fpim is explained by the overlapping CAP
models of the two fault classes, see Fig. 8.
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Fig. 14. Evaluation of classification of unknown fault scenarios. Training
data from the selected unknown fault class are not included when training the
set of PI -OSVM models. All known fault classes are ranked using Bayesian
smoothing and the evaluated fault class is marked with ’-’ in each scenario.
Ideally, the unknown fault class fx should have the highest rank in each
column. However, some unknown faults are identified as another known fault
class when the CAP models are overlapping.

The results show that the fault classification algorithm is
able to handle unknown faults, but if residual data from a
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new type of fault is similar to a known fault, that previously
known fault class will have a higher rank. When the root cause
of a detected unknown fault has been correctly identified, for
example by a technician at the workshop, the fault models can
be updated accordingly with the new training data, using for
example incremental learning of the existing fault model or
creating a new model for a new identified fault class.

VI. CONCLUDING REMARKS

Data-driven fault classification is complicated by unknown
fault modes and limited training data. If multiple fault classes
can explain residual data it is relevant to identify and rank the
different faults instead of only selecting the most likely one,
for example when supporting a technician at a workshop. The
solution proposed here is to apply the principles of open set
recognition which considers the problem of data classification
when there are unknown fault classes and limited training data.
Modeling each fault class using a PI -OSVM classifier is used
to measure the probability of inclusion that can be combined
with Bayesian filtering or smoothing to improve classification
performance of time-series data. An advantage of the proposed
method is that it is straight forward to update and include
new fault classes over time as new data are collected and
labelled. Experiments using real engine data from different
fault scenarios show that the proposed fault classification algo-
rithm can identify unknown faults and that including temporal
information significantly improves classification performance
with respect to sample-to-sample classification.
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[14] C. Svärd, M. Nyberg, E. Frisk, M. Krysander, Automotive engine FDI
by application of an automated model-based and data-driven design
methodology, Control Engineering Practice 21 (4) (2013) 455–472.

[15] J. Luo, M. Namburu, K. Pattipati, L. Qiao, S. Chigusa, Integrated model-
based and data-driven diagnosis of automotive antilock braking systems,
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans 40 (2) (2010) 321–336.

[16] D. Jung, C. Sundström, A combined data-driven and model-based resid-
ual selection algorithm for fault detection and isolation, Transactions on
Control Systems Technology (99) (2017) 1–15.

[17] K. Tidriri, N. Chatti, S. Verron, T. Tiplica, Bridging data-driven and
model-based approaches for process fault diagnosis and health monitor-
ing: A review of researches and future challenges, Annual Reviews in
Control 42 (2016) 63–81.

[18] H. Khorasgani, G. Biswas, A methodology for monitoring smart build-
ings with incomplete models, Applied Soft Computing 71 (2018) 396–
406.

[19] W. Zhang, G. Biswas, Q. Zhao, H. Zhao, W. Feng, Knowledge distill-
ing based model compression and feature learning in fault diagnosis,
Applied Soft Computing (2019) 105958.

[20] K. Tidriri, T. Tiplica, N. Chatti, S. Verron, A generic framework for de-
cision fusion in fault detection and diagnosis, Engineering Applications
of Artificial Intelligence 71 (2018) 73–86.

[21] I. Matei, M. Zhenirovskyy, J. de Kleer, A. Feldman, Classification-based
diagnosis using synthetic data from uncertain models, in: PHM Society
Conference, Vol. 10, 2018.

[22] Y. Yan, P. Luh, K. Pattipati, Fault diagnosis of components and sensors
in hvac air handling systems with new types of faults, IEEE Access 6
(2018) 21682–21696.

[23] W. Scheirer, L. Jain, T. Boult, Probability models for open set recog-
nition, IEEE transactions on pattern analysis and machine intelligence
36 (11) (2014) 2317–2324.

[24] E. Rudd, L. Jain, W. Scheirer, T. Boult, The extreme value machine,
IEEE transactions on pattern analysis and machine intelligence 40 (3)
(2018) 762–768.

[25] D. Jung, Engine fault diagnosis combining model-based residuals and
data-driven classifiers, in: IFAC International Symposium on Advances
in Automotive Control, 2019.

[26] L. Jain, W. Scheirer, T. Boult, Multi-class open set recognition using
probability of inclusion, in: European Conference on Computer Vision,
Springer, 2014, pp. 393–409.

[27] G. Kitagawa, Non-gaussian state—space modeling of nonstationary time
series, Journal of the American statistical association 82 (400) (1987)
1032–1041.

[28] R. Domingues, M. Filippone, P. Michiardi, J. Zouaoui, A comparative
evaluation of outlier detection algorithms: Experiments and analyses,
Pattern Recognition 74 (2018) 406–421.

[29] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, J. Platt, et al.,
Support vector method for novelty detection., in: NIPS, Vol. 12, Citeseer,
1999, pp. 582–588.

[30] D. Tax, R. Duin, Support vector data description, Machine learning
54 (1) (2004) 45–66.

[31] T. Hastie, R. Tibshirani, J. Friedman, J. Franklin, The elements of statis-
tical learning: data mining, inference and prediction, The Mathematical
Intelligencer 27 (2) (2005) 83–85.

[32] D. Tax, Ddtools, the data description toolbox for matlab, version 2.1.2
(June 2015).

[33] J. Platt, Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods, Advances in large margin
classifiers 10 (3) (1999) 61–74.

[34] L. Eriksson, S. Frei, C. Onder, L. Guzzella, Control and optimization of
turbo charged spark ignited engines, in: IFAC World Congress, 2002.

[35] L. Eriksson, Modeling and control of turbocharged si and di engines,
OGST-Revue de l’IFP 62 (4) (2007) 523–538.

[36] E. Frisk, M. Krysander, D. Jung, A toolbox for analysis and design of
model based diagnosis systems for large scale models, in: IFAC World
Congress, Toulouse, France, 2017.

[37] Matlab 2018b statistics and machine learning toolbox, the MathWorks,
Natick, MA, USA (2018).

[38] E. Page, Continuous inspection schemes, Biometrika 41 (1/2) (1954)
100–115.


	Data
	main
	Introduction
	Problem Formulation
	Related Research

	Fault Class Modeling using Open Set Classification
	Using One-class Classifiers for Modeling Fault Classes
	One-class Support Vector Machines
	Weibull-calibrated OSVM

	Fault Classification of Time-series Data using Bayesian Filtering and Smoothing
	Case Study
	Experimental Results
	Classification Using Bayesian Filtering and Smoothing
	Classification of unknown faults

	Concluding Remarks
	References


