
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Datateknik

2020 | LIU-IDA/LITH-EX-A--20/045--SE

Evaluating Memory Models for
Graph‐Like Data Structures in the
Rust Programming Language:
Performance and Usability
Utvärdering av Minnesmodeller för Graf‐Liknande Datastruk‐
turer i Programmeringsspråket Rust: Användbarhet och Pre‐
standa

Rasmus Viitanen

Supervisor : Rouhollah Mahfouzi
Examiner : Christoph Kessler

External supervisor : Henrik Sjööh

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet ‐ eller dess framtida ersättare ‐ under 25 år från publicer‐
ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko‐
pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis‐
ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan
användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker‐
heten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som
god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet
ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman‐
nens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet ‐ or its possible replacement ‐ for a
period of 25 years starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to down‐
load, or to print out single copies for his/hers own use and to use it unchanged for non‐commercial
research and educational purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are conditional upon the consent of the copyright owner. The publisher
has taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to bementionedwhen his/her work
is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures
for publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Rasmus Viitanen

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

Representing graphs in Rust is a problematic issue, as ownership forbids typical rep-
resentations found in e.g. C++. A common approach is to use reference counting to rep-
resent graphs, but this can easily lead to memory leaks if cycles are present in the graph.
As naïve reference counting is not sufficient, we must search for alternative representa-
tions. In this thesis, we explore different memory models that allow safe representations
of graph-like data structures in Rust. These memory models are later evaluated in terms
of performance and usability. We find that region-based allocation is, in most cases, the
best model to use when performance is of importance. In cases where usability is more
important, either reference-counting with cycle collection or tracing garbage collection is
a solid choice. When it comes to multi-threading, we propose a new implementation of a
lock-free transactional graph in Rust. To our knowledge, this is the first lock-free graph
representation in Rust. The model demonstrates poor scalability, but for certain graph
topologies and sizes, it offers performance that exceeds the other graph models.

Acknowledgments

I would like to thank Rouhollah Mahfouzi for supervising my thesis and clearing up any ques-
tions of mine. Furthermore, I would like to thank Christoph Kessler for being the examiner.
Finally, the Web R&D team at Configura deserves much praise for their inclusion and helpful-
ness throughout my thesis. Special thanks to Henrik Sjööh for being my external supervisor.

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 2
1.3 Research questions . 2
1.4 Delimitations . 2
1.5 Industry Context . 2

2 Background 3
2.1 The Rust Programming Language . 3
2.2 Performance . 7
2.3 Usability . 7
2.4 Graphs . 7
2.5 Vertex and Edge Representations . 8
2.6 Garbage Collection . 9
2.7 Reference Counting . 9
2.8 Region-based allocation . 10
2.9 Concurrency and Parallelism . 10
2.10 Memory Reclamation in Concurrent Systems . 12

3 Related Work 14
3.1 Reference Counting . 14
3.2 Tracing Garbage Collection . 16
3.3 Region-based Memory Management . 17
3.4 Memory Management in Concurrent Systems . 17
3.5 Graph representations . 18
3.6 Benchmarks . 18
3.7 Usability . 18
3.8 Measurements . 19

4 Method 20
4.1 Measuring Performance . 20
4.2 Experiment Planning . 21
4.3 Execution . 31

v

4.4 Analysis . 34

5 Results 39
5.1 GC Bench . 39
5.2 The GAP Benchmark Suite . 41
5.3 Operations . 46
5.4 Usability . 47

6 Discussion 48
6.1 Results . 48
6.2 Method . 51
6.3 Use in Industry . 52
6.4 The work in a wider context . 52

7 Conclusion 53

Bibliography 54

A Glossary 58
A.1 Abbrevations . 58

vi

List of Figures

2.1 An impossible representation of a graph in Rust, as both Node 1 and Node 3 takes
ownership of Node 2. 6

2.2 A representation of a graph where each edge is stored as a reference. This solves
the issue of multiple ownership, but introduces the question as to how the edges
can be mutated and which entity owns the actual nodes. 6

2.3 A representation of a graph where a collection takes ownership of the nodes and
edges are stored as references. 6

2.4 An example of a cycle leading to unreclaimable memory. When the reference
marked with a cross is removed there is no way to reach the cycle by stepping
through the references. This means that the cycle can be regarded as garbage and
should thus be removed. This is not the case however, as the cycle will keep the
reference count from reaching zero. 10

4.1 Layout of the epoch-based graph. The list of edges stores an edge object instead
of an index. This means that the edge can hold arbitrary information, such as the
weight or the direction of the edge. By storing an atomic pointer to the adjacent
vertex instead of an index in the edge object, we avoid traversals in the linked-list
when looking up an edge. 24

4.2 Process for measuring performance. 29

5.1 GC Bench for sequential construction. The labels on the horizontal axis represent
the depth of the generated trees (Stretch Tree/Long Lived Tree/Min Tree/Max Tree). 40

5.2 GC Bench for parallel and sequential construction. The labels on the horizontal
axis represent the depth of the generated trees (Stretch Tree/Long Lived Tree/Min
Tree/Max Tree). 41

5.3 Estimated execution times for each kernel in the GAP benchmark suite for the
arXiv astro-ph dataset. The estimate is measured as the slope of the regression
model. The error bars display the lower and upper bound of the confidence interval. 42

5.4 Estimated execution times for each kernel in the GAP benchmark suite for the
Euroroad dataset. The estimate is measured as the slope of the regression model.
The error bars display the lower and upper bound of the confidence interval. . . . 43

5.5 Estimated execution times for each kernel in the GAP benchmark suite for the
Facebook (NIPS) dataset. The estimate is measured as the slope of the regression
model. The error bars display the lower and upper bound of the confidence interval. 44

5.6 Estimated execution times for each kernel in the GAP benchmark suite for the
Hamsterster Friendships dataset. The estimate is measured as the slope of the re-
gression model. The error bars display the lower and upper bound of the confidence
interval. 45

5.7 Benchmark group: OPS 20/20/25/25/10 . 46
5.8 Benchmark group: OPS 40/40/10/10/0 . 47

vii

Listings

2.1 An example of a simple Rust program that summarizes the values in a vector. . 4
2.2 A Violation of Rust’s Ownership Rule. 4
2.3 The explicit lifetime parameter 'a, guarantees that the inner reference is valid

for the lifetime of the wrapping Vertex. 5
3.1 A reference counted pointer stepping through all the objects in an array. The

net result is that only the first and last data objects will have its reference count
changed. 15

4.1 Logic for the cursor when inserting a new vertex. 24
4.2 Example of a function that allocates a graph from a file. The input parameter

create_node takes a closure that creates a new node from an index number,
and connect connects two nodes together. 28

4.3 Example of invoking the load_data function for G::EPOCH. 28

viii

List of Tables

4.1 Graph operations of interest. 21
4.2 Memory management model candidates . 22
4.3 Graph variations. 26
4.4 Selected datasets . 26
4.5 Specification of the machine used for the benchmarks. 27
4.6 Collection Criteria . 31
4.7 Sampling Specification . 32
4.8 Benchmarking group: arXiv astro-ph . 34
4.9 Benchmarking group: Euroroad . 35
4.10 Benchmarking group: Facebook (NIPS) . 36
4.11 Benchmarking group: Hamsterster Friendships . 37
4.12 Benchmarking group: OPS 20/20/25/25/10 . 38
4.13 Benchmarking group: OPS 40/40/10/10/0 . 38

5.1 Benchmarking group: OPS 20/20/25/25/10 . 46
5.2 Benchmarking group: OPS 40/40/10/10/0 . 46
5.3 Usability for the different graph representations. 47

ix

1 Introduction

This chapter aids in understanding the motivation, aim, specific research questions and delim-
itations for this thesis. The chapter explains the current state and concerns of the problem,
gives a brief explanation as to why this thesis is conducted, and states the expected outcome.
Finally, the industry context is presented for this thesis.

1.1 Motivation

Rust is a systems programming language that enables both high-level abstractions and low-level
control. The language has a range of use cases, including web development, game development
and embedded systems. Rust is sometimes blamed for a high learning curve and a complex
design, as it is seemingly different from other traditional programming languages. The design
choices that help Rust achieve its safety and performance can oftentimes hinder a programmer
from doing things that other languages otherwise allow. For example, Rust’s ownership rules
that guarantee memory safety, may force a developer into highly complex representations
that result in usability hazard. One example of this, is when representing data structures
such as graphs. In languages such as C++ or Python, this is most of the time a trivial
problem. In C++ we can, for example, use pointers to represent edges in the graph. This is
typically not the case for Rust, because Rust forbids multiple ownership of values, while also
forbidding mutable references to be aliased. With such constraints it becomes extensively hard
to represent arbitrary graphs - especially those that include cycles. Instead, one must search
for alternative representations.

Today, several attempts have been made to come up with suitable memory models for
graphs and similar structures. One solution, is to introduce raw pointers through unsafe
Rust and represent the graphs similar to how it would be done in C++. Using unsafe Rust
however, breaks some of the guarantees that come with using Rust in the first place, which
is why unsafe Rust most of the time is recommended to be avoided. The alternative is to
use non-trivial solutions, such as reference counting, garbage collection or through region-
based allocators. The different methods each have their implications. Reference counting, for
example, can cause memory leaks and is also prone to run-time overhead – as borrow-checking
can not be done during compilation. Other solutions are likely to not offer the same usability.

As Rust continues to grow, it is fair to believe that many will lean towards Rust when
developing applications with performance and safety in mind. Meanwhile, graph-like data

1

1.2. Aim

structures are extensively used in software solutions. This makes it important to understand
which memory models for graph-like data structures can be used and under which circum-
stances.

1.2 Aim

In this thesis, we explore different memory models that can be used to represent graph-like
data structures in the Rust programming language, while still complying with Rust’s ownership
model. Specifically, we explore the different memory models available for mutable graph-
like data representations and quantitatively measure the performance of each model. The
representations are expected to differ in terms of usability, hence we aim to evaluate the
usability of each model and map it against the measured performance.

1.3 Research questions

1. Which memory models are suitable for arbitrary graph-like representations in Rust?

2. What is the time behavior performance difference for the identified memory models?

3. How do the memory models differ in terms of operability and user error protection?

1.4 Delimitations

While it would be possible to make changes to the Rust language itself, it is not an aim for
this thesis. This thesis explores memory models that can be used with currently available Rust
features, including those available in the Rust nightly toolchain. The execution setting can
either be single-threaded or multi-threaded. Further, the memory models explored are limited
to garbage collection, reference counting and region-based allocation. The graph representation
itself is not restricted and can use any layout (for example an adjacency list).

1.5 Industry Context

This thesis is conducted on behalf of the company Configura. Configura develops 3D software
for space planning purposes and has identified Rust as a great fit for developing high perfor-
mance web applications. The 3D models used by Configura are represented by a graph-like
data structure, and loading these into Rust is a troublesome problem. Hence, Configura is in-
terested in finding suitable ways for representing arbitrary graph-like structures in Rust. The
representation is preferred to demonstrate high performance, while also being easy to work
with in order to minimize development cost.

2

2 Background

This chapter includes relevant information that is needed in order to understand this thesis.
First, a brief introduction is given to the Rust programming language in order to understand
why it is inherently hard to represent graphs in Rust. Then, we present general information
about graphs and memory reclamation schemes. As this thesis is not limited to single-threaded
environments, we also give an introduction to concurrent types and memory reclamation in
concurrent systems.

2.1 The Rust Programming Language

Rust is a programming language with many application areas. It is considered to be a systems
programming language and is striving for safety and performance. The language is typed,
compiled and has properties of both object-oriented and functional programming languages.
The Rust ecosystem consists of a multitude of working groups, ranging from game development
to embedded and all the way to the web. Even though Rust is similar to other languages,
it has a couple of constraints and design choices that can be confusing even for experienced
developers. For example, the language is not as object oriented as Java, as it does not allow
inheritance, which invalidates many of the popular object-oriented design patterns. Further,
the memory management and reference handling is not as relaxed as C++, making it non-
trivial to translate C++ code to Rust.

Even though the design choices can be confusing to programmers, the systems in place
are there for a good reason, and are the reason as to why Rust can achieve its safety and
good performance. The most prominent design choice is the enforcement of the Resource
Acquisition Is Initialization (RAII) pattern, which is made possible through what is known
as ownership. In Rust, all data objects are said to have an owner, where the owner has full
control of data that it owns. Multiple ownership of the same data is typically not allowed, but
some workarounds exist, see Section 2.1.4. Rust also keeps track of the scope of all entities,
so that they are dropped once they are not needed, thus fulfilling the RAII pattern. Once the
owner goes out of scope, so does the owned data.1 This means that data objects typically do
not have to define a dedicated constructor, and the programmer does not have to manually
call free/delete. For entities that need to do some special cleanup when going out of scope, it

1https://doc.rust-lang.org/rust-by-example/scope/raii.html

3

2.1. The Rust Programming Language

is possible to implement the Drop2 trait. It is also possible to escape some of the constraints
in Rust by using an Unsafe closure, which allows abilities that are considered to be unsafe,
such as dereferencing raw pointers.

Listing 2.1: An example of a simple Rust program that summarizes the values in a vector.
1 fn summarize(values: std::vec::Vec<u32>) -> u32 {
2 let mut sum = 0;
3 for value in values {
4 sum += value;
5 }
6 sum
7 }
8

9 fn main() {
10 let sum = summarize(vec![1, 2, 3]);
11 println!("Sum is: {}", sum);
12 }

2.1.1 Ownership
The concept of ownership is one of the most important parts of Rust, and enables the language
to achieve memory-safety and high performance. The ownership model would be very limiting
if it was impossible to occasionally lend out and borrow different values from the true owner.
This is why Rust allows borrowing. What this means, is that entities other than the owner are
able to borrow a value. This can be done either mutably or immutably and is done through a
reference. A common problem when lending out values, is that values can be changed or even
dropped by the owner. This would typically cause dangling pointers or other similar issues
in other languages. Rust is able to eliminate these issues by having two simple rules for how
references are handled:

R1) A reference cannot outlive its referent.

R2) A mutable reference cannot be aliased.

An example of violating R2 can be seen in Listing 2.2. A vector is immutably borrowed on
line 4 and mutably borrowed on line 5. Because the scope is being tracked by Rust this is not
a problem in itself. The line on row 9 however, extends the scope of the immutable borrow to
after the mutable borrow. This violates R2.3

Listing 2.2: A Violation of Rust’s Ownership Rule.
1 fn main() {
2 // This will not compile
3 let mut numbers = vec![1, 2, 3];
4 let borrowed_numbers = &numbers;
5 let mutably_borrowed_numbers = &mut numbers;
6

7 // immutable borrow used after a mutable borrow
8 // yields a compilation error
9 println!("{:?}", borrowed_numbers);

10 }

2https://doc.rust-lang.org/std/ops/trait.Drop.html
3https://doc.rust-lang.org/nomicon/ownership.html

4

2.1. The Rust Programming Language

2.1.2 Aliasing
Aliasing is a concept dealing with shared memory. When multiple variables or pointers refer
to the very same memory region, they are said to alias. Rust’s ownership rules forbid simulta-
neous aliasing of mutable references as dictated by the second rule of ownership. Immutable
references can be aliased freely.4

2.1.3 Lifetimes
The rules of ownership says that a reference cannot outlive its referent. To be able to detect
violations of this rule, Rust must know if the reference is valid in the current scope. To do
so, references are marked and bound to a specific lifetime. Sometimes, these lifetimes must
be explicitly annotated by using a lifetime parameter. An example of explicit lifetimes for a
struct can be seen in Listing 2.3.5

Listing 2.3: The explicit lifetime parameter 'a, guarantees that the inner reference is valid for
the lifetime of the wrapping Vertex.

1 struct Vertex<'a> {
2 inner: &'a SomeType
3 }

2.1.4 Breaking Single Ownership
The single ownership rule can be broken through reference counting. Reference counting is
available in Rust’s standard library through the struct std::rc::Rc6. This type of reference
counting does not work between multiple threads. To enable reference counting between
threads, atomicity is required. For this reason, another reference counting entity exists called
std::sync::Arc7. This type of reference counting results in additional overhead compared to
non-atomic reference counting.

A more volatile way of breaking single ownership is to use raw pointers. This can be
achieved by using the unsafe closure. When using raw pointers, one must however be careful
with memory allocation and deallocation, as this method does not handle memory automati-
cally.

2.1.5 Interior Mutability
When mutating a Rust value, the interior mutability pattern can be used, which is a pat-
tern that essentially breaks Rust’s pointer aliasing rules. Interior mutability can be achieved
through a datatype called UnsafeCell, which is also the only way to achieve it in safe
Rust8. Some amenities exist for working with UnsafeCell, these are std::cell::Cell9 and
std::cell::RefCell10. Typically, these are wrapped by some reference counting datatype
such as std::rc::Rc in order to allow multiple ownership. In the case of using atomic reference
counting through std::sync::Arc, there are other structs that can be used for interior mu-
tability, for example read-write locks or mutexes. When using the interior mutability pattern,
the enclosing entity does not need to be marked as mutable.

As with single ownership, unsafe Rust can effectively be used to achieve interior mutability.
This is achieved by mutating raw pointers. The approach does not impose the same guarantees
as UnsafeCell and must be handled with special care in order to avoid memory problems.

4https://doc.rust-lang.org/nomicon/aliasing.html
5https://doc.rust-lang.org/nomicon/lifetimes.html
6https://doc.rust-lang.org/std/rc/struct.Rc.html
7https://doc.rust-lang.org/std/sync/struct.Arc.html
8https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
9https://doc.rust-lang.org/std/cell/struct.Cell.html

10https://doc.rust-lang.org/core/cell/struct.RefCell.html

5

2.1. The Rust Programming Language

2.1.6 Graphs in Rust
One attempt at representing a graph in Rust would be to let each vertex in the graph contain
a list of its adjacencies. To do this, an initial idea would be to store the adjacent vertex
directly in this list. However, this kind of representation is impossible in cases where a vertex
is adjacent to more than one node, as it would require the vertex to be owned by multiple
instances, which is not allowed in Rust. This problem is illustrated by Figure 2.1.

Node 3
edges: [node2]

Node 2
edges: []

Node 1
edges: [node2]

Figure 2.1: An impossible representation of a graph in Rust, as both Node 1 and Node 3 takes
ownership of Node 2.

To circumvent the issue of multiple ownership, which Rust forbids, another attempt would
instead be to store references instead of direct objects, which can be seen in Figure 2.2. This
solution is also problematic, as it raises questions as to how one would proceed to mutate
individual nodes in the graph. Furthermore, the question as to which entity should take
ownership of the nodes is also challenging. If we were to store the nodes in some kind of
collection, as illustrated by Figure 2.3, we run into problem as to how that graph can be
constructed in the first place. First, it would require the nodes to be moved into the node
collection. Secondly, in order to form the edge between two nodes, they would have to be
accessed via the node collection by a mutable borrow of the first node, and an immutable
borrow the second node. Finally, when we want to add the second node to the adjacency list
of the first node, we run into problems, as we are currently holding both an immutable and a
mutable borrow to the node collection, thus violating the rules of ownership.

Node 3
edges: [&node2]

Node 2
edges: []

Node 1
edges: [&node2]

Figure 2.2: A representation of a graph where each edge is stored as a reference. This solves the
issue of multiple ownership, but introduces the question as to how the edges can be mutated
and which entity owns the actual nodes.

Node 3
edges: [&node2]

Node 2
edges: []

Node 1
edges: [&node2]

NodeCollection
nodes: [node1, node2, node3]

Figure 2.3: A representation of a graph where a collection takes ownership of the nodes and
edges are stored as references.

It turns out that representing arbitrary graphs in Rust with traditional references is impos-
sible. Instead, we have to search for alternative approaches that allow e.g. multiple ownership.

6

2.2. Performance

2.2 Performance

Performance can mean a lot of different things depending on context. For example, good
performance can mean good resource utilization. For this thesis, we use the ISO/IEC
25010:2011 [21] standard to define performance. Specifically, when we talk about performance,
we are referring to time behavior performance, which is defined by the ISO/IEC 25010:2011
standard as

”Degree to which the response and processing times and throughput rates of a
product or system, when performing its functions, meet requirements.” [21]

2.3 Usability

When it comes to the usability software quality, the ISO/IEC 25010:2011 [21] standard lists
six different parts that are all related to usability. These are: appropriateness recognizability,
learnability, operability, user error protection, user interface aesthetics and accessibility. For
this thesis, we are particularly interested in the user error protection and the operability of the
graph representations, which is defined as

Operability: ”Degree to which a product or system has attributes that make it
easy to operate and control.” [21]
User error protection: ”Degree to which a system protects users against making
errors.” [21]

2.4 Graphs

This section explains different properties of graphs and describes the notation used for different
properties along with their mathematical definition. For this thesis, we use the same notation
as the notation used in the Koblenz Network Collection (KONECT) [23].

2.4.1 Properties and Notation
A graph is composed of a set of vertices V = {v1, v2, ..., vn} and a set of edges E, where an edge
is formed by a connection between two vertices e(i,j) = (vi, vj). We call this graph G = (V,E).
A directed graph is created when the edges in the graph have a direction. Cycles are formed
when it is possible to start from a vertex vi, traverse the edges in in the directed graph and
end up back at vertex vi. When programmatically creating a graph, a common representation
is to store an adjacency list in each vertex. This adjacency list composes of references to
every other vertex that is connected to the vertex. To add an edge to a vertex, the edges
are specified during the construction of a vertex, or by mutating an already existing vertex.
Another approach is to represent the graph using a container that wraps a list of all vertices
and edges. Mutating such graph representation will not require its vertices to be mutable,
instead the wrapping graph container must be mutable.

The size of a graph is denoted n and is defined as n = ∣V ∣, which describes the number
of vertices. The volume of a graph is denoted m, and is defined as m = ∣E∣ and describes
the number of edges in the graph11. Individual vertices have a degree, d, which describes the
number of edges connected to that vertex. In directed graphs, the degree of a vertex is instead
described by both an in-degree and an out-degree. The in-degree describes the number of
incoming edges, and the out-degree describes the number of outgoing edges. The maximum

11The size of a graph in other literature is commonly defined as the number of edges. To avoid confusion
with KONECT, we have chosen to use this definition.

7

2.5. Vertex and Edge Representations

degree of a graph describes the degree of the vertex with the largest degree within the graph.
This is defined as

dmax =max
u∈V

d(u)

The average degree, davg, is a measurement of the density of the graph. The average degree
is defined as

davg =
1

∣V ∣ ∑u∈V
d(u) = 2m

n

The relative edge distribution entropy, Her, of a graph gives information about the degree
distribution of the graph. It is a good measurement to understand how uniformly connected
the vertices are. If all vertices have the same amount of edges the relative edge distribution
entropy is Her = 1. In a star-graph it would assume the value of zero. The relative edge
distribution entropy is defined as

Her =
1

ln(n) ∑u∈V
−d(u)

2m
ln(d(u)

2m
)

2.4.2 Graph types
Graphs can be either directed or undirected. In an undirected graph the edge relationship is
symmetric, meaning that an edge e(u,v) is equal to e(v,u) and represents the same edge. In
directed graphs, an edge e(u,v) is not equal to another edge e(v,u), and the edge e(u,v) can exist
without the presence of the edge e(v,u).

2.5 Vertex and Edge Representations

There are multiple ways of representing vertices and edges in a graph. For this, a range of
data structures can be used. The most common representations use either an adjacency list or
an adjacency matrix. In an adjacency list, the edges adjacent to a vertex are stored in a list
containing data that describes these edges in some manner. This way of representing a graph
makes it easy to extract information about the edges. This can be useful in e.g. a breadth-first
search, as getting the edges of a given vertex only requires a look-up in the adjacency list,
which is easy and cheap to iterate over. When using an adjacency matrix, the relationship
between vertices is instead represented in a N×N -matrix, where each element eij in the matrix
describes whether the two vertices vi and vj are adjacent.

Representing an adjacency list in a computer program requires some form of underlying
data structure. In cases where it is acceptable to trade memory for speed, the adjacency list
could simply be represented by a HashMap or a HashSet. This would allow for quick access
and insertion of individual edges. In the case where it is not suitable to use a HashMap or
HashSet, a vector or a linked list could be suitable.

2.5.1 Bloom filters
A Bloom filter is an unsound data structure that can be used to check if an entry has previously
been added to the data structure. A Bloom filter is unsound in the manner that a look-up
in the filter can yield false positives, however it cannot yield false negatives. It is possible to
adjust the probability of a false positive by changing how much space the Bloom filter uses.
This is done by changing the number of bits per element in the Bloom filter. The Bloom filter
data structure can be of use when inserting a new vertex into a graph that uses a link-based
data structure to store its vertices. If the default behavior is to insert the vertex if it is not
in the graph, and update the vertex if the vertex is present – a search through the entire list

8

2.6. Garbage Collection

would be required in order to guarantee that an insertion is unique. By using a Bloom filter,
the time complexity is reduced to amortized O(1) for every unique insertion. In the rare case
of receiving a false positive by the Bloom filter, the complexity is O(n). In both cases, the
complexity for a non-unique insertion is O(n).

2.6 Garbage Collection

Garbage collection is a technique to automatically handle reclamation of memory. There are
many techniques for garbage collection such as tracing and reference counting. When we talk
about garbage collection in this thesis, we are referring to tracing garbage collection. The
general case of a tracing garbage collection builds on two phases 1) Garbage detection and
2) Memory reclamation. During the first phase, the collector traverses all objects of interest
and marks reachable objects. This process is also known as tracing. During the second phase,
all unmarked objects are reclaimed. In a mark-and-sweep collector this is done by sweeping,
which further examines the memory for garbage [37].

The cost of executing the operations for garbage detection and memory reclamation can be
expensive. For this reason, languages that use manual memory management tend to demon-
strate better performance than languages with garbage collectors. Not only are garbage col-
lected systems slower, but they are likely to suffer from stop-times, which is a huge problem in
real-time systems. Stop-times occur when the regular execution of the program has to halt in
favor of the garbage collector to be able to perform its operations. To mitigate this issue and
minimize the stop-time, collectors oftentimes run their operations in the background as much
as possible.

Even though Rust is not a garbage collected language, it is still possible to create and use
a custom garbage collector if needed. Rust enables enough freedom to be able to perform both
tracing (garbage detection) and memory reclamation. This is demonstrated by the rust_gc
project12, where it is possible to attach a garbage collector to specific data objects. Even
though languages with manual memory management tend to be faster, a garbage collector
could be desired in order to increase the usability and flexibility of the language.

2.7 Reference Counting

Reference counting is a technique to automatically reclaim space when it is not needed. Ref-
erence counting works by keeping track of how many referents a data object has. Whenever a
new referent is added the reference count is incremented; when a reference is removed it gets
decremented. Once the reference count reaches zero, the object will not have any referents
and the memory consumed by the object is reclaimed. A problem with reference counting is
that cycles can lead to unreclaimable memory. Figure 2.4 illustrates the problem with cycles
in reference counted systems [9].

12https://github.com/Manishearth/rust-gc/

9

2.8. Region-based allocation

2 1

1 1

Figure 2.4: An example of a cycle leading to unreclaimable memory. When the reference
marked with a cross is removed there is no way to reach the cycle by stepping through the
references. This means that the cycle can be regarded as garbage and should thus be removed.
This is not the case however, as the cycle will keep the reference count from reaching zero.

2.8 Region-based allocation

Both reference counting and garbage collection causes unwanted overhead and performance
concerns. An alternative approach is to handle the memory manually. This can be done
by using region-based memory management, which allocates a controllable chunk of memory.
This approach is taken in some systems with high real-time requirements [16]. A region is a
part of the memory that is allocated and deallocated at once, which stores objects with similar
lifetime. By allocating a big region at once instead of single objects, later allocation time and
deallocation time of individual objects can be kept short, as adding individual objects to the
region does not require new allocations. A big problem with this type of allocation however,
is that it can easily lead to memory issues. For example, if we have an active pointer to
somewhere in the allocated region and wrongly reclaim that space in the region, we will end
up with a dangling pointer. In Rust, we can manually allocate a region in memory by using
the allocator provided by the standard library13.

2.9 Concurrency and Parallelism

Rust is famous for making it easy to develop concurrent and parallel systems. The language
efficiently prevents common issues that arise when running simultaneous tasks through its
ownership system. Sometimes, the ownership system is not enough, and it is sometimes desired
to use shared ownership. With shared ownership, it can no longer be statically guaranteed
that a resource will not be modified by another thread when reading it. To mitigate these
issues, there are generally two approaches 1) Lock-based protection and 2) Atomics.

2.9.1 Lock-based mutual exclusion
One way of preventing issues that arise in concurrent systems is to introduce locks. Locks limit
the access to the locked data object such that it can be guaranteed that reads and writes do
not interfere in some hazardous way. With the locking mechanism comes the issue of resource
contention, where threads will have to wait until they can acquire the lock before access to the
data is granted. There are different types of locks that are suitable for different use cases, for
example, a read-write lock (available through std::sync::RwLock) allows multiple readers or
one writer at any given time. A mutex lock guards the data such that it can only be accessed
by a singular entity at a time.

13https://doc.rust-lang.org/std/alloc/index.html

10

2.9. Concurrency and Parallelism

2.9.2 Atomics
When compiling a program, the order of operations can be changed by the compiler in order
to achieve a more efficient program. This becomes a problem when running a program on
multiple threads, as the order of operations may be important for correctness. For this to
behave correctly, a guarantee is needed that asserts that the order of operations on one thread
exactly matches the order of operations on another thread. To mitigate this issue it is possible
to introduce Atomics. Atomics is a concurrency primitive that assures that read and writes
of shared data by multiple threads are well-defined behavior, such that each thread is able to
finish their operation before the next thread continues.

Atomics make it possible to safely share and edit the same data across multiple threads, as
it is possible to guarantee that one instruction takes place at a time. Hence, mitigating the issue
of conflicting reads and writes. One interesting property of atomics, other than being safe to
share between threads, is that atomic types can be used to implement lock-free data structures.
A lock-free data structure has the nice property of enabling concurrent read and writes without
the possibility of a deadlock, as one thread is always guaranteed to make progress. As lock-
free data structures do not need to use locks to synchronize shared resources contention is
kept to a minimum. This means that lock-free data structures sometimes demonstrate better
performance than systems relying on locks or mutexes.

Several possibilities exist for working with Atomics in Rust. One commonly used datatype
is std::sync::Arc, which is an atomic reference counter. This type can safely be shared
across multiple threads, contrary to the non-atomic reference counter std::rc::Rc. While
the reference counting for this datatype is lock-free, the wrapped data does not necessarily
demonstrate such properties, and it is common to add a lock for the inner type.

For more primitive access to Atomics in Rust, a module named std::sync::atomic is
available. This module builds on the same atomics used in C++20 and allows different memory
orderings to be specified. These memory orderings make it possible to give instructions to the
compiler as to how memory is synchronized. For example, one available ordering is SeqCst,
which stands for sequentially-consistent. This type of ordering ensures that all threads observe
the same order of operations. The available memory orderings are (weakest to strongest):
Relaxed, Release, Acquire, AcqRel and SeqCst.

A central operation in the world of atomics is the Compare-And-Swap (CAS) operation.
CAS stores a value into the atomic type if the currently stored data matches some data that
the performing thread is expecting. The operation takes three arguments, a pointer to the
value to be updated, the expected value and the new value.

2.9.3 The ABA Problem
The ABA problem is a problem that occurs in concurrent systems and can lead to devastating
issues. The problem is quite easy to understand, but harder to mitigate. Consider the case
where two threads is accessing and modifying a value and performs the following sequence of
operations:

1. Thread 1 reads the value A

2. Thread 2 modifies the value to B and then back to A

3. Thread 1 reads the value A and continues as normal

The problem here is that thread 1 naïvely assumes that nothing has changed, since the
value that was read the first time matches the value that was read the second time. This
problem is present in some systems using the CAS operation, but the problem can effectively
be eliminated with some extra consideration. One solution is to attach a tag to each value
that changes with each modification. With such a solution, the problem is reduced to only

11

2.10. Memory Reclamation in Concurrent Systems

checking that the tag is up to date with the current read value. This check leads to additional
overhead, and other solutions are possible that demonstrates better performance [10].

2.10 Memory Reclamation in Concurrent Systems

Memory reclamation works a bit different in concurrent systems, and it is sometimes not feasi-
ble to use a traditional memory reclamation mechanism. In a concurrent system using lock-free
data structures, additional precautions must be made in order to reassure that memory recla-
mation does not occur while memory is still in use in the system. The performance loss of
using a memory reclamation mechanism that works in a concurrent setting can in some cases
outweigh the performance increase of using a lock-free data structure. If the memory reclama-
tion mechanism however is carefully chosen, efficient reclamation can be achieved. Some of the
more popular mechanisms for efficient reclamation include: quiescent-state-based reclamation,
epoch-based reclamation and hazard-pointer-based reclamation [17].

2.10.1 Lock-free Reference Counting
Lock-free reference counting is similar to traditional reference counting, except that it works
in multithreaded and concurrent environments. Every new clone of a reference increments the
reference count, and when the reference count reaches zero, the memory is reclaimed. In order
to successfully synchronize the reference count between multiple threads, the incrementing
and decrementing operations are atomic. In Rust, it is possible to use the std::sync::Arc
type in order to achieve lock-free reference counting. This type uses a fetch add or subtract
instruction in order to atomically increment or decrement the reference count14.

2.10.2 Quiescent State
Reclamation mechanics that are based on quiescent states reclaim memory by recording which
objects were removed in a specific time interval. When the time interval is over, the memory
can be reclaimed if it can be proven that no thread is referencing the data. The interval is
commonly called a grace period.

In order to prove that no thread has active references, the application uses quiescent states.
This state describes when a thread does not reference any shared data. To enter a quiescent
state, one can simply call a function that enters the state when a remove or delete operation is
performed. Quiescent-State-Based Reclamation (QSBR) is a blocking reclamation mechanism,
meaning that other threads will have to wait for the reclamation process to be completed before
execution can continue.

2.10.3 Epoch Reclamation
Epoch-Based Reclamation (EBR) is similar to quiescent state-based reclamation in the sense
that the reclamation mechanism also relies on time intervals in order to reclaim memory. This
also means that EBR is blocking. The difference between EBR and QSBR is that EBR is
more user-friendly, where a developer does not have to manually call a function that enters
the quiescent state. Instead, EBR builds on what is known as critical regions. A critical
region marks that the thread is requesting data from the underlying data structure. Once the
requested data is processed and completed the thread exits the critical region.

Threads using EBR operate in what is called epochs. The global epoch can assume three
different epoch states A, B and C. When a thread enters a critical section, it updates its
thread-local epoch state such that it matches the global epoch. If a removal or deletion occurs
inside a critical section, the object gets stored in a list of garbage for the current epoch. This

14https://doc.rust-lang.org/src/alloc/sync.rs.html

12

2.10. Memory Reclamation in Concurrent Systems

way, the object is only logically deleted and can only be physically deleted once it is safe to
do so. Safe physical deletions, and thus memory reclamation, occurs when all threads are in
a state that matches the global epoch, which can be checked whenever. If all thread states
match with the global epoch, data that was logically deleted two epochs earlier can safely be
deleted. Once the physical deletion is done, the global epoch can proceed to the next state.
The epoch state is looping, meaning that if the global epoch is in state C, it will proceed to
state A.

2.10.4 Hazard Pointers
Hazard pointers is a way to achieve non-blocking memory reclamation and thus eliminate long
stop-times. Hazard-Pointer-Based Reclamation (HPBR) works by letting each thread have a
set of hazard pointers that marks data that is currently in use by the thread. By marking
the data, other threads are instructed that it is not allowed to modify or delete that data
until it has been unmarked by the thread owning the hazard pointer. To delete a node, an
object is placed into a list of objects to be deleted. This way, the object is logically deleted,
but physical deletion is deferred until it is safe to delete the object. Physical deletion occurs
when the delete-list reaches a certain size, where the deletion is done by scanning the list and
removing the objects that have no hazard pointer currently marking the object. If a hazard
pointer is still marking the data, it is once again added to the delete-list. Hazard pointers are
multi-reader and single-writer pointers and successfully prevent the ABA problem [28].

13

3 Related Work

This chapter presents related work regarding different memory models and graph representa-
tions. Very little scientific work has been done specifically for Rust, but we expect properties
of the models to be independent of language. Further, as Rust is a systems programming
language supporting both high- and low-level control, we expect an implementation of the
concepts mentioned in this chapter to be possible in Rust. This assumption is strengthened
by the different implementations that already exist today.

3.1 Reference Counting

Reference counting was introduced in 1960 by Collins [9] as an idea that multiple data occur-
rences in list representations do not have to be stored in multiple places in the computer. In its
introduction, it is said that two methods have been highlighted in previous literature to solve
this issue. One of those methods is the method used in Rust, where data has a single owner
and where data can be borrowed by others. The method proposed by Collins [9] for solving
this issue is to instead have shared ownership that builds on reference counting. Reference
counting, even though proposed in 1960, is still being used today. Two prominent problems
of reference counting is the ability to collect cycles and the added run-time overhead. Refer-
ence counting is also available in Rust and part of the standard library. Garbage cycles are
a known issue in the Rust implementation as well, where references that form a cycle easily
lead to memory leaks1.

3.1.1 Throughput
One problem with reference counting apart from cycle collection is throughput, as creating and
destroying references (known as mutating) causes run-time overhead. Several modifications of
the reference counting technique presented by Collins [9] back in 1960 have been proposed in
order to improve the throughput. These are primarily deferred reference counting, coalescing
reference counting, generation based reference counting and ulterior reference counting [3, 14].

Deutsch and Bobrow presented deferred reference counting in 1976 [11]. The idea behind
deferred reference counting is to avoid some overhead of reference counting by ignoring refer-
ence counts for objects that are subject to frequent mutations. This causes higher throughput,

1https://doc.rust-lang.org/1.30.0/book/second-edition/ch15-06-reference-cycles.html

14

3.1. Reference Counting

but since the references are deferred, reclamation of memory is not instant. The deferring is
done by putting zero-count references in a table, and the memory reclamation occurs once
this table is scanned. Using a zero-count table is not the only way of dealing with deferred
references [7]. Blackburn and McKinley presented ulterior reference counting in 2003 [7]. This
mechanic is related to deferred reference counting and works synchronously. It can be seen as
a generalization of deferred reference counting and achieves both high throughput and short
pause times.

Levanoni and Petrank presented another approach called coalescing reference counting in
2007 [32]. This mechanic limits the number of mutations for a reference by only recording the
first and last mutations. The idea is that a reference that changes its interior data multiple
times in a row, will result in a mutation sequence that is equivalent with only executing the
first and last mutation. Suppose that a reference RC refers to an arbitrary data object dn. We
write this RC(dn). If RC iteratively points to every data object in the set D = {d0, d1, . . . , dn},
i.e., RC(d0)→ RC(d1)→ ⋅ ⋅ ⋅→ RC(dn), traditional reference counting executes the algorithm
in Listing 3.1. The result is that mutations other than the mutations at the edges have an
unchanged reference count. This means that we can ignore the mutations.

Listing 3.1: A reference counted pointer stepping through all the objects in an array. The net
result is that only the first and last data objects will have its reference count changed.

1 D = [d_0, d_1, ..., d_n]
2 ptr = RC(D[0])
3

4 for new_data in D[1:] {
5 old_data = *ptr
6 *ptr = data[new_data]
7 old_data.rc--
8 new_data.rc++
9 }

Shahriyar et al. presented another reference counting system in 2013 that successfully
identifies reusable memory and eliminates memory fragmentation [34]. They identify one of
the performance issues of previous reference counted systems as poor heap organization and
locality.

3.1.2 Cycle reclamation
Apart from throughput limits of reference counting, garbage cycles can cause memory leaks
if not properly collected. Bacon and Rajan presented a paper [4] in 2001 that revisits the
reference counting method presented by [9]. They propose a way of conducting cycle collection
using different garbage collection techniques that collect cycles that would otherwise cause
memory leaks. Apart from issues with cycles of garbage, the authors also list two other
problems with reference counting, namely: 1) added storage overhead due to keeping track of
the reference count for each object; 2) run-time overhead due to changing the reference count
for each added or deleted reference. To solve the issue of cyclic garbage, the authors make a
proposal to use a cycle collector that works concurrently and traces locally. They also present
a non-concurrent cycle collector that works in a similar fashion. The concurrent cycle collector
presented in the paper, is the first concurrent cycle collector to ever be presented.

The cycle collector presented by Bacon and Rajan [4] was tested for eight different bench-
marks, each consisting of a different number of cycles and size. The largest benchmark al-
located 19,2 million objects. The measurements show that the amount of tracing needed by
the collector varies heavily based on the layout of the data collected. The evaluation and
comparison between the cycle collector and other methods is described in greater detail in
another article by Bacon et al. [2]. During the measurements, the cycle collector had a max-
imum pause time of 6 milliseconds. Comparing this number to a parallel mark-and-sweep

15

3.2. Tracing Garbage Collection

collector, the max pause time was 563 milliseconds. The implementation of the cycle col-
lector was written in the Java programming language. The short pause times that the cycle
collector demonstrates are likely an effect of the loose synchronization between the objects
creating and destroying references and the collector, where the normal case does not require
any synchronization at all [4]. An open-source Rust implementation of the non-concurrent
version of the cycle collector presented by Bacon and Rajan [4] is bacon_rajan_cc2. Another
cycle collector inspired by the collector by Bacon and Rajan [4] is presented by Paz et al. [32].
This cycle collector combines the collector in [4] with what is known as a sliding-view collector.
The result of combining these, along with some other design choices, is a cycle collector that
achieves very short pause times (less than 2 milliseconds).

A more recent proposal to handling cyclic garbage in reference counted systems was pre-
sented by Frampton et al. [14] in 2009. This collector is based on mark-and-sweep collection
and has similarities to the cycle collector proposed by Bacon and Rajan [4]. The collection
consists of three phases 1) Root; 2) Mark; 3) Sweep. In addition to the phases, a queue is held
in memory by the collector that tracks all unvisited objects. First off, the algorithm executes
the root phase, where all objects that live outside the collected space and are referenced by
rooted objects in the collected spaces are added to the unvisited queue. Secondly, the collector
enters the mark phase, in which it processes the unvisited queue and checks if there are any
marked objects. In the case of an unmarked object, it will be marked and all the objects it is
referring to will also be added to the queue. After all objects in the queue have been processed;
the algorithm checks that objects that potentially cause so-called collector-mutator races are
indeed added to the queue. If they are not, they will be added in this step and the mark
phase is restarted. Finally, objects that remain unmarked are freed. A notable mention for
this mark-and-sweep-collector, is that it makes optimizations during the mark phase. This is
done by checking if the objects are acyclic, which in their case consists of checking if any of the
member fields is a pointer or if it points to another acyclic object. A lot of other optimizations
are also done in order to speed up the collector, such as optimizing the sweep phase by only
sweeping cyclic objects and objects they point to.

3.2 Tracing Garbage Collection

McCarthy [27] introduced garbage collection the same year as reference counting was intro-
duced [9]. The general case of garbage collection is known to suffer from poor performance,
which has led to many attempts in finding new techniques for high-performance garbage collec-
tion. Wilson [37] presented many techniques for synchronous garbage collection and explained
the differences between the different mechanics. In this article, it is mentioned that systems
requiring high performance most commonly benefit from tracing garbage collectors over refer-
ence counting collectors. Hybrids of mark-and-sweep collectors and copy collectors are often
used to achieve maximum performance.

Bacon et al. [3] showed that high performance collectors are hybrids of both reference
counting and garbage collection. This was found when they developed two collectors, one
based on reference counting and one based on garbage collection. When optimizing both of
them for performance, they started to see some similarities between the two. This led them
to formulate a unified theory of garbage collection that claims that garbage collection and
reference counting are duals. They also strengthen the claim that tracing garbage collectors
achieve higher throughput than collectors based on reference counting, however tracing garbage
collectors are prone to higher pause times. It should also be mentioned that pause times in
tracing garbage collection is rather unpredictable.

Blackburn and McKinley [6] proposed a mark-region garbage collector called Immix that
promises good performance and space efficiency. A mark-region collector is a type of non-
moving collector that allocates and reclaims larger regions in memory instead of single fields.

2https://github.com/fitzgen/bacon-rajan-cc

16

3.3. Region-based Memory Management

The Immix collector is able to perform better than other available collectors, such as mark-
and-sweep collectors.

Lin et al. [25] explored the possibility of implementing an Immix based garbage collector
in the Rust programming language. They found that it was possible to implement a collec-
tor with very little fuzz by using already existing features and implementations of e.g. task
queues. They identify that Rust is a good fit for implementing high-performance garbage col-
lectors. They compared the performance of the implementation to a similar garbage collector
in C, where their proof-of-concept demonstrated similar performance. The resulting collector
composes of 220 LOC, excluding external code. To measure performance, they relied on micro
benchmarking of three different operations: 1) allocation, 2) object marking and 3) object trac-
ing. They measured the time taken by each operation for 50 million objects of 24 bytes each,
and repeated this process twenty times. The comparison used the gcbench micro benchmark.
gcbench is briefly mentioned by [18] as well.

3.3 Region-based Memory Management

An alternative to reference counting and tracing garbage collection is to handle the memory
manually. One way of handling this, is by allocating large controllable regions in memory
that we can later store our data in. Hamza and Counsell [16] explored the state-of-the-art
of region-based memory management in Java. More specifically, the Real-Time Specification
for Java (RTSJ)3 based allocation strategy called scoped allocation, which is a form of region-
based memory allocation. They identify region-based memory management as a mechanic that
demonstrates higher performance than both garbage collection and reference counting. One
highlighted problem that exists in Java regarding region-based memory management, is the
limitation of not knowing the lifetime of the objects that are to be allocated. This is an issue,
because we can allocate a long-living region for short-lived objects. This will lead to occupied
memory that is unused. In Rust, we expect this to be a non-issue, as lifetimes are explicit
and the allocated region is expected to have the same lifetime as our graph. Hamza and
Counsell also highlight that the region-based memory model can lead to usability troubles for
developers, as it often requires more logic for handling the memory as well as making sure that
the references are safe. Scoped memory as specified by RTSJ is reclaimed when all allocated
objects are dropped. Hence, deallocation time is cheap, as the deallocation only occurs once
every object is dropped. Allocation time is proportional to the size of the allocated object as
long as there is enough space left in the allocated region. In the rare case of the region having
too little space left, allocation time is increased, as the region must be extended [19].

3.4 Memory Management in Concurrent Systems

Memory reclamation in concurrent systems requires additional care to make sure that memory
is not reclaimed when the memory is still referenced by another thread. Hart et al. [17]
compared the performance of three popular reclamation mechanisms, namely: QSBR, EBR
and HPBR. One property of lock-free data structures is that they can improve performance,
but with languages with manual memory management, the mechanism for memory reclamation
can in some cases outweigh the performance gains of the concurrent datatype. For this reason,
it is important to pick the best suited mechanism in order to minimize the performance penalty.

Each mechanism has different properties that makes it suitable for different use cases.
A common mechanism is Lock-Free Reference Counting (LFRC), which is available through
std::sync::Arc in Rust. LFRC often has the issue of poor performance, and adds significant
overhead that oftentimes outweighs the performance gain of the lock-free data structure [17].
The performance issues of LFRC is a side effect of relying on per-element atomic instruc-
tions [17]. Another mechanism mentioned by Hart et al. was presented by Michael [29] called

3https://www.rtsj.org/

17

3.5. Graph representations

Hazard Pointers. Hazard pointers generally demonstrate better performance than LFRC [17,
29]. The memory reclamation approach also demonstrates comparable performance to lock-
based reclamation strategies even in single-threaded environments. EBR is another mechanism
that demonstrates competitive performance to both LFRC and HPBR [17, 29]. A description
of the reclamation strategies can be found in Section 2.10.

3.5 Graph representations

Graphs can be represented in memory in a range of different ways. One example is to use
an adjacency list. When using an adjacency list in a multi-threaded context, it is required
to use some mechanic that locks the underlying data when it is accessed or modified. This
is commonly done by using a mutex or a read-write lock. Some attempts have been made to
reduce the overhead of the locking mechanism. Linked lists can, for example, be implemented
in a lock-free manner, but implementing a lock-free adjacency list is a problem that is much
more complex. Painter, Peterson and Dechev [30] proposed a way of representing lock-free
transactional adjacency lists. This representation is believed to be the first correct lock-free
transactional adjacency list to be presented. The adjacency list builds on two important
concepts: a multi-dimensional list and lock-free transactional transformation theory. The
multi-dimensional list is used to represent the adjacent objects, and the lock-free transactional
theory enables transactional operations to be performed on the list. The result is an adjacency
list that does not need to acquire locks on vertices when performing operations, thus yielding
better performance that previous lock-based implementations. This claim should however be
carefully considered, as the representation requires vertices to be stored in a link-based data
structure. This limitation can be problematic for operations requiring fast look-up.

3.6 Benchmarks

The previous work when it comes to benchmarks for graph-like data structures is limited.
There are, however, established ways to benchmark e.g., garbage collectors. For example, Lin
et al. [25] used a benchmark called GC Bench to measure the performance of their garbage
collector. GC bench has been used by other researchers as well, e.g. Boehm [8]. The benchmark
works by allocating and deallocating binary trees of various sizes.

Another benchmark that focuses on graph processing operations is called the GAP bench-
mark suite [5]. The suite consists of six different kernels that include functions commonly used
in graph processing. Namely, the kernels are Betweenness Centrality (BC), Breadth-First
Search (BFS), Connected Components (CC), Page Rank (PR), Single-Source Shortest Path
(SSSP) and Triangle Counting (TC). In addition to the kernels, the suite provides a set of
large input graphs that are selected to be diverse, as well as a reference implementation of the
suite written in C++.

3.7 Usability

Tamir et al. [36] mentions that usability testing is a tedious task, where it is not always appli-
cable to use objective metrics collected through software inspections. Instead, it is necessary
to use human test subjects. For example, operability could be measured by specifying a goal,
and allow human test subjects to achieve that goal by operating the system under test. The
effort to achieve that goal would then be a good measure as to how easy or difficult the system
is to operate. The required effort could be measured in a number of ways. For example, it is
possible to measure the number of keystrokes and mouse clicks or the level of eye movement
it took to achieve the goal.

User error protection is seemingly easier to measure than operability. For example, the
probability of user errors are highly correlated with the coupling between objects and the lines

18

3.8. Measurements

of code in a system, among many other software quality metrics [31]. When it comes to API
usability, Zibran et al. [38] explored common factors for usability related bugs. They found
that many of the issues is partly related to the quality of the documentation, the number of
methods exposed and incorrect memory management. Rama and Kak [33] explored metrics
for API usability, where they identified nine different pain-points in API design that can be
quantified. Some of these include methods with long parameter lists, multiple methods with
similar names, not specifying thread-safe methods and poor documentation.

3.8 Measurements

Kitchenham et al. [22] explain guidelines for empirical research in software engineering. One
important guideline that is given in the article, is that experiments should have a well-defined
data collection procedure. Another issue that is raised, is the issue of bias. In the experiment,
it is possible that the analysis will be unfair due to bias. Hence, the experiment should be
conducted such that it is unknown which graph model and representation resulted in which
measurement until they have been properly analyzed. It is also important to collect the raw
data that are produced during the experiment, such that it can be reviewed by the readers.
Finally, the case of determining statistical significance and practical significance is important,
where data should be collected such that it allows for significance to be determined. For
example, the collected dataset must be of sufficient size in order to prove statistical significance,
and practical significance claims can be supported by measuring confidence limits.

While not much work has been done regarding performance measurements in Rust specif-
ically, guidelines for performance measurements in Java is stated by Horký et al. [20]. In
the paper, it is mentioned that warmup is an important part of performance measurements.
Warmup is the idea of letting the program run for a while, in order to warmup the processor
caches and other parts of the program that might differ based on how long the program has
run for. It is also stated that one should be aware of other optimizations made by the compiler.
The paper gives an example of not using the results of a computation, which therefore might
be optimized away by the compiler. This issue can be mitigated in Rust by using the test-crate
available in Rust nightly4.

4https://doc.rust-lang.org/nightly/unstable-book/library-features/test.html

19

4 Method

This chapter explains the used method for this thesis. First, we present a motivation of the
chosen general method. Then, we describe in detail the different phases of this thesis, namely:
Experiment Planning, Execution, and Analysis. These descriptions include the work process,
motivation and intent at finer granularity.

4.1 Measuring Performance

Benchmarking is one of the most important parts of this thesis, and it is important that
we understand how measurements should be done in order to achieve reliable results. When
representing graphs, the underlying memory model and the graph representation model is what
is expected to have an effect on the performance and usability. When dealing with different
memory models, we have identified reference counting, garbage collection and region-based
allocation as suitable memory management models. For lock-free datatypes, HPBR, QSBR,
and EBR are identified as suitable memory reclamation schemes.

Several studies have compared performance of reference counting and tracing garbage col-
lectors [2, 7, 14]. Identifying the performance is typically done by measuring both pause time
duration and throughput. When running benchmarks, it is important to consider the topol-
ogy of the graph. For example, graphs with many or long cycles are not expected to show the
same results as a tree-graph. Bacon et al. [2] ran benchmarks for a range of different graph
topologies. For example, they created one graph that only produced cyclic garbage using a
gaussian distribution in order to fully stress their cycle collector. For a fair result, the size,
number of cycles and number of references per vertex should thus be varied, as these factors
are expected to affect the performance [4].

Lin et al. [25] relied on micro benchmarking when measuring performance. They measured
the time taken for three different operations: 1) allocation, 2) object marking, and 3) object
tracing for their garbage collector implementation. They also measured their collector by
running the benchmark GC Bench. When conducting such benchmarks, it is important to
consider side effects that occur due to the compiler doing optimizations [20]. To circumvent
this issue, it is possible to use a tool for benchmarking that makes sure that the compiler does
not produce a program that does less work than we intend.

Comparing performance of garbage collectors and manual memory management such as
region-based allocation is generally not a problem in languages that are designed for manual

20

4.2. Experiment Planning

memory management. In this case, it is possible to just replace the memory management with
a garbage collector, and measure the performance of each method without making any other
precautions [18]. This is the case in Rust, where it is possible to attach a garbage collector to
specific data objects.

In this thesis, we take inspiration by the work of Lin et al. [25] and use the micro bench-
marking approach to measure individual operations, and GC Bench in order to measure allo-
cation and deallocation. Additionally, we take inspiration by Bacon et al. [2], and run several
benchmarks with different graph topologies via the GAP benchmark suite.

4.2 Experiment Planning

This section describes the planning phase of the experiment. It includes the overall design of
the experiment; selection of graphs; selection of memory models; instrument for measurements;
data collection; and analysis procedure.

4.2.1 Design
Micro benchmarking has shown to be a effective for measuring performance [25]. Using micro
benchmarking, different operations can easily be measured independently [25]. For this thesis,
the main interests for measuring performance include the graph operations listed in Table 4.1.
The operations are all suitable for micro benchmarking, where the same algorithm can easily
be implemented and used for each graph representation, meaning that the underlying memory
model will be the only entity affecting the measured performance. Regarding the operations,
the graph allocation performance for the graphs is important to determine upfront time, and
the other operations determine during regular execution once the graph is loaded into memory.

As there are a multitude of ways for traversing graphs, the GAP benchmark suite has been
chosen in order to measure traversals. The suite includes common graph processing kernels
and is diverse enough to enable a comprehensive analysis. Allocation is not included in the
GAP benchmark suite, which is why we must search for alternative benchmarks. We deemed
GC bench a good candidate for benchmarking allocation an reclamation, as it has been used
in previous research by e.g., Lin et al. [25].

Table 4.1: Graph operations of interest.

Operation
Allocation
Node insertion
Node deletion
Edge insertion
Edge deletion
Find
Traversal

The graph operations are not the only interest for this thesis. Scalability and other char-
acteristics are important in order to enable a complete evaluation. This is because the graph
representations should work with different sized graphs, and it is important to consider other
cases than the time to perform a single operation. The maximum stop-time is also important
to measure, as it can lead to the whole program halting for a duration that is unacceptable.
To motivate the intent behind measuring stop-time, we consider the case where a user is in-
teracting with a 3D object, if the maximum pause-time is a whole second and it occurs as
the user is rotating the object, it will lead to the application freezing for the duration of the
stop-time, leading to poor user experience.

21

4.2. Experiment Planning

4.2.2 Memory Models and Memory Model Selection
The subjects for this experiment are the different memory models and graph representations
that are suitable for use in the Rust programming language. The selection for what is suitable
in Rust is based on a pre-study that exhaustively covers the current state-of-the-art, both in
academia and already existing Rust implementations. To cover the state-of-the-art, a search
for academic research was conducted. The search included queries for region-based allocation,
reference counting, garbage collection, and concurrent memory reclamation. This resulted in
the work presented in Chapter 3. Further, a search on the popular code hosting sites GitHub
and GitLab was conducted in order to find already existing Rust implementations. Using this
approach, several implementations were found, however not all of them were production ready
and not always up to par with the academic research that was found during the state-of-the-art
search. Due to the immaturity of the Rust ecosystem, the number of available implementations
were few in numbers, and it is believed that all significant open-source implementations were
found during our search. Additionally, we reached out to members of the Rust language team
in order to get further insights to current memory models and related language features for
tackling the issue of representing graphs in Rust. They provided no additional information
that had not already been found during our search.

In order to decide whether to proceed with the implementations found online, a set of
selection criteria was formulated. The first selection criterion considers the graph operations,
where it must be possible to add, delete and update individual objects in the graph. This
criterion ruled out some of the region-based allocators, such as the popular rust-type-arena, as
it would not able to deallocate individual objects1. The second criterion considers the maturity
of the implementations and ruled out some individual projects that were not mature enough
to be used for a graph implementation. Finally, any implementation that were far off the
state-of-the-art were not considered. Some projects such as rust_gc were still selected – even
though it might be possible to implement a faster garbage collector. The reason for selecting
this project, is that it was close enough to the state-of-the-art presented in academia.

After the search for implementations were completed, it was noted that some concepts found
in the academic research had not been implemented at all in Rust. For this reason, a lock-
free transactional adjacency list was implemented that used EBR as the memory reclamation
scheme. By implementing this, at least one model for each memory management type were
selected, i.e., reference counting, garbage collection, concurrent reclamation and region-based
allocation. An overview of the memory management models selected for further evaluation
can be seen in Table 4.2.

Table 4.2: Memory management model candidates

Name Memory Management Multi-threading support
G ∶∶ RC Reference Counting NO
G ∶∶ ARC Atomic Reference Counting YES
G ∶∶ CC Reference Counting with Cycle Collection NO
G ∶∶MSGC Mark and Sweep-based Garbage Collection NO
G ∶∶ IMMIXGC Immix-based Garbage Collection YES
G ∶∶ EPOCH Epoch-based Reclamation YES
G ∶∶ ARENA Region-based Memory Management NO

1https://github.com/SimonSapin/rust-typed-arena

22

4.2. Experiment Planning

4.2.2.1 G::RC

Reference counting is a common reclamation scheme, and is extensively used in the Rust
programming language. For this reason, a memory model based on reference counting was
chosen for further evaluation. For our graph representation, the reference-counting pointers
consists of std::rc::Rc, where interior mutability of nodes is enabled via std::cell::RefCell.
To represent edges in the graph, the implementation uses a BTreeMap and strong reference
counts.

4.2.2.2 G::ARC

For a multi-threaded approach to reference counting, a memory model based on atomic refer-
ence counting using std::sync::Arc was chosen for further evaluation. While being similar
to G ∶∶ RC, the performance in a single threaded environment is expected to be worse for this
reference-counting scheme, as the atomic operations yield additional overhead. To represent
edges in the graph, the implementation uses a BTreeMap and strong reference counts. To
achieve interior mutability, a read-write lock (std::sync::RwLock) is used.

4.2.2.3 G::CYCLE

As reference counted systems have trouble handling cycles, a third model based on reference
counting was chosen for further evaluation. This memory model handles cycles by performing
cycle collection. The cycle collection is based on the work by Bacon and Rajan [4]. The used
project is bacon_rajan_cc2.

4.2.2.4 G::MSGC

A garbage collected memory model based on mark-and-sweep memory collection was chosen, as
garbage collection is expected to be more user-friendly and able to scale better than reference
counting. This garbage collector is based on the project rust_gc3, which is a mark-and-sweep
collector.

4.2.2.5 G::IMMIXGC

A second garbage collected memory model was chosen, as mark-and-sweep is not the only
way to perform garbage collection. Immix collectors have shown to demonstrate better per-
formance than some mark-and-sweep collectors, which renders immix collection an interesting
candidate. This collector is based on the work by Lin et al. [25]. Unfortunately, we observed
false reclamation of active objects. For this reason, the collector is not part of the final results.

4.2.2.6 G::EPOCH

Research suggests that it is possible to implement lock-free transactional adjacency lists[30].
Such lists can effectively be used for a graph representation that should perform better than
its lock-based relative. To successfully implement a lock-free transactional graph in Rust, a
memory reclamation scheme that works in concurrent settings is needed. EBR, HPBR, and
QSBR are seen as good candidates for memory reclamation in concurrent systems. As the
performance difference is quite small between the schemes and EBR being more user-friendly,
EBR was chosen as the underlying memory reclamation scheme for our lock-free transactional
graph. The epoch based reclamation scheme is based on the project crossbeam-epoch4, and
the graph representation is based on the research by Painter et al. [30].

2https://github.com/fitzgen/bacon-rajan-cc
3https://github.com/Manishearth/rust-gc/
4https://github.com/crossbeam-rs/crossbeam

23

4.2. Experiment Planning

Some modifications were necessary for our graph representation in order to achieve a true
graph-like data structure with as good performance as possible. The work presented by Painter
et al. [30] suggests that operations for inserting, deleting and finding edges or vertices in the
adjacency list primarily builds on indices. As the primary data structure for the adjacency list
is a linked list, with entries ordered by their id, it becomes expensive to locate a specific entry
in the list and get e.g. linking information that is necessary for inserting new entries. This is
especially true when the list grows, as the worst-case complexity is O(n). In the case where
we are executing a breadth-first search of the graph, we would need to first lookup some start
node in the graph, get all its adjacencies and then use their id to locate their corresponding
vertex in the linked list. This would of course be very expensive. In order to circumvent lookup
of adjacencies in the linked list, we instead chose to store a data object for each of our vertices’
adjacencies. This data object includes a shared atomic pointer to the entry in the linked list.
We also made it possible to store arbitrary data in this object, which enables things such as
weighted or parallel edges. An illustration of the layout can bee seen in Figure 4.1.

Edge 1

vertex: Atomic<Vertex 2>

weight: 32

direction: IN

Edge 2

vertex: Atomic<Vertex 2>

weight: 16

direction: OUT

Vertex 1

data: "This is vertex 1"

Vertex 2

data: "This is vertex 2"

Linked-list

MDList

Figure 4.1: Layout of the epoch-based graph. The list of edges stores an edge object instead
of an index. This means that the edge can hold arbitrary information, such as the weight or
the direction of the edge. By storing an atomic pointer to the adjacent vertex instead of an
index in the edge object, we avoid traversals in the linked-list when looking up an edge.

In addition to our changes to the edge representations, a new operation was added called
G::EPOCH::connect. The reason for adding this operation to the graph is that the operation
InsertEdge presented by Painter et al. required two look-ups in the linked list. One look-up
for finding the node we are adding an edge to; one look-up for finding the edge node in the
linked list. To avoid these two look-ups, which both have the worst-case time complexity
of O(n), G::EPOCH::connect takes an entry from the adjacency list as an input parameter,
along with one argument for an edge representation. This way, the complexity of adding an
edge, where we have direct access to both the parent and the child, is reduced to O(log(n))
complexity, which is required for finding the entry in the multi-dimensional array used to store
the edge.

Our third alteration was to introduce a cursor in the linked-list, in order to be able to
achieve constant complexity for vertex insertion. The cursor is simply a pointer to the end of
the linked list. As the linked list is ordered by id, any insertion of a node with a higher id
than any of the entries in the list will be reduced to only linking it to whatever the cursor is
pointing to and then updating the cursor. An issue arises when a node is inserted with an id
that is less than the node that the cursor is pointing to. If this is the case, a search is done
from the root of the list until the correct position is found.

24

4.2. Experiment Planning

Listing 4.1: Logic for the cursor when inserting a new vertex.
1 fn insert(vertex, root, cursor) {
2 if vertex.id >= cursor.id {
3 cursor.next = vertex;
4 cursor = cursor.next;
5 } else {
6 let current = root;
7 while vertex.id < current.id {
8 if current.next == NULL {
9 break;

10 }
11 current = current.next;
12 }
13 current.next = vertex;
14 }
15 }

In the case where the distribution of key id’s is not sorted, e.g. 0,5,3,7,2, a way to achieve
good performance would be to create a mapping function that maps each node id to the nth

insertion number, i.e. 0 → 0,5 → 1,3 → 2,7 → 3,2 → 4. This would guarantee that any
insertion with any arbitrary key would have constant insertion time. However, as the mapping
function needs to store the insertions in e.g. a B-Tree, the insertion complexity is in reality
O(log(n)). To keep track of the nth insertion, an atomic counter could be used to be able to
sync the count between threads with minimal overhead.

As keeping track of the inserted id’s is memory expensive, an alternative approach using a
lock-free Bloom filter was also implemented. This implementation discarded the sorted linked-
list and instead used an unsorted linked-list, but still required unique entries. Any unique
insertion where the Bloom filter successfully returns that a vertex is not present in the list is
then reduced to O(1), as an it only requires a look-up in the Bloom filter, and a push of the
vertex to the end of the adjacency list. However, when the Bloom filter returns a false positive,
the list has to be searched from the start, resulting in a time complexity of O(n). This also
means that an operation to check if a new vertex is already in the graph is also reduced to
amortized O(1), as it follows the same behaviour. This is the version of G::EPOCH that was
selected for evaluation.

4.2.2.7 G::ARENA

Region-based allocators are able to demonstrate high performance, for this reason a region-
based allocator was chosen for further evaluation. For this study, we chose an allocator called
generational-arena5 that builds on generations in order to mitigate the ABA problem, see
Section 2.9.3. What this means, is that a generation number is stored along with the index
to individual objects in the arena, and every mutation increments this generation number.
Hence, it is possible to detect changes by simply checking that the generation number stored
in the index is the same as the generation number in the arena.

4.2.3 Graphs and Graph Selection
The different memory models are likely to have different performance characteristics depending
on which graph is allocated, traversed or modified. For example, in a reference counted system
the level of overhead increases with the reference count, hence the memory model should
demonstrate quite poor scalability and should thus be properly tested. To properly exhaust
the different properties of the memory models, it is important to choose graphs such that we

5https://github.com/fitzgen/generational-arena

25

4.2. Experiment Planning

can observe these symptoms. In order to do this, four important properties were identified,
see Table 4.3. The number of edges is commonly referred to as the size of a graph and should
thus be a good indicator for how scalable the graph representation is. It is however possible
to have a graph with a very large number of edges, but few nodes. In this case, only the
operations that affect the edges would give meaningful scalability symptoms. For this reason,
the average degree of the graph was also an important factor to consider, as well as the degree
distribution. Finally, the GAP benchmark suite mentions that some sequential algorithms can
experience poor performance if the diameter of the graph is big. Hence, we select graphs with
different sized diameters.

Table 4.3: Graph variations.

Property
Number of nodes
Number of edges
Degree and Degree distribution
Diameter

For suitable real-life graphs, different graphs provided by KONECT were selected. In order
to observe different characteristics of the graphs and identify for which topologies they are
suitable, different graphs were selected such that the set of graphs were as diverse as possible.
We were not able to use the suggested graphs provided in the GAP benchmark suite [5], as
they were too big for our hardware and models to handle. Instead, we chose smaller graphs
with the same characteristics as those presented in GAP. The selected datasets are listed in
Table 4.4, along with their properties mentioned in Table 4.3. The triangle count is also listed,
in order to give a hint of how much work is done when running the the GAP benchmark suite’s
TC-kernel.

Table 4.4: Selected datasets

Dataset V E Avg. Deg Her D TC
Hamsterster friendships [15] 1 858 12 534 13.492 90.8% 14 16 750
Euroroad [12, 35] 1 174 1417 2.4140 98.5% 62 32
Facebook (NIPS) [13, 26] 2 888 2 981 2.0644 70.9% 9 91
arXiv astro-ph [1, 24] 18 771 198 500 21.102 93.1% 14 1 351 441

The Hamsterster friendships dataset was chosen for its high average degree, along with
a fair diameter. Euroroad was chosen due to the big diameter of 62 along with a uniform edge
distribution. The Facebook (NIPS) dataset was chosen for its degree distribution of about
70%. Finally, the arXiv astro-ph dataset was chosen for its big size.

4.2.4 Instrumentation and Setup
To conduct the measurements for this thesis, the micro-benchmarking tool Criterion6 was used
together with the performance profiling tool Intel® VTune™ Profiler7. The Rust toolchain
was nightly-x86_64-pc-windows-msvc with rustc 1.42.0-nightly. The machine used for the
benchmarks had the properties listed in Table 4.5.

6https://github.com/bheisler/criterion.rs
7https://software.intel.com/en-us/vtune

26

4.2. Experiment Planning

Table 4.5: Specification of the machine used for the benchmarks.

CPU Memory Disk Drive
Intel® Core™ i7-10510U 16 GB M.2 PCIe NVMe SSD
1.8 GHz (4.9 GHz turbo) 2666MHz 512 GB
4 Cores (8 Threads) - 2,2 MB/sec (read)
8 MB Intel® Smart Cache - 1,4 MB/sec (write)

4.2.4.1 Criterion

Criterion was chosen as the benchmarking library for this experiment. With Criterion
being a statistics-driven library for micro-benchmarking, we were able to capture a great
variety of statistical data. Criterion also prevents issues with compiler optimizations. Most
of the time, the benchmarking library resolves these issues on its own, but manual use of
the function criterion:black_box helps us assure that the compiler does not replace our
benchmarking function with some pre-evaluated constant.

4.2.4.2 Intel® VTune™ Profiler

As the graph representations are not always trivially implemented, Intel® VTune™ Profiler8

was used for performance bottleneck identification and microarchitecture exploration. The
tool helps to identify how well the cache is utilized in the processor, as well as measuring how
long each function call in the program takes to execute. For example, in our Rust program,
Intel® VTune™ Profiler will mark the lines in our source code with how long they took to
execute. By using Intel® VTune™ Profiler, it was possible to reason about the specifics of each
implementation, and explore the possibility that some result is the effect of the implementation
itself and not the underlying memory model. For example, a graph representation that uses
a multi-dimensional array could demonstrate very poor performance if the implementation
of finding the nth-root of a given dimension is not properly optimized. With a system to
specifically identify such bottlenecks, it becomes considerably easier to reason about possible
improvements to the implementation itself.

In addition to poorly designed algorithms and choice of data structures, it is possible
that the microarchitecture utilization is poor. For example, the application could suffer from
memory stalls, branch misprediction or use of floating-point operations. This is especially
true for G::EPOCH, as it relies on atomic operations, and depending on the specified memory
ordering for each of these instructions, the performance of the application can be drastically
improved. It is also possible that the implementation of G::EPOCH would be subject to false
sharing, as updating an atomic value invalidates its corresponding cache line. The presence of
this issue could have a considerable impact on the demonstrated performance.

4.2.4.3 Code Uniformity

In order to allow each graph representation to execute a similar set of operations, a set of
helper functions were created that take closures as input arguments. These closures include
logic for executing operations that are not equal for all representations. For example, when
loading a graph into memory from a file, all operations are equal except for the constructor
for creating a node and the connect function used to connect two nodes together. Instead, it
is possible to create a helper function that injects these functions. An example of this is given
in Listing 4.2.

8https://software.intel.com/en-us/vtune

27

4.2. Experiment Planning

Listing 4.2: Example of a function that allocates a graph from a file. The input parameter
create_node takes a closure that creates a new node from an index number, and connect
connects two nodes together.

1 pub fn load_data<A, C, T: Clone>(
2 file: &str,
3 mut create_node: A,
4 mut connect: C,
5) -> HashMap<u64, T>
6 where
7 A: FnMut(u64) -> T,
8 C: FnMut(&T, &T),
9 {

10 /* Implementation Elided */
11 }

Invoking this function, it can be asserted that load_data will execute the same code for
each graph representation, with the exception for node construction and the connection of any
two nodes. This means that any differences in performance should be the product of either
the node construction function or the connect function. An example of invoking load_data
can be seen in Listing 4.3.

Listing 4.3: Example of invoking the load_data function for G::EPOCH.
1 let epoch = epochgraph::EpochGraph::new(16, 1 << 16);
2 load_data(
3 dataset,
4 |id| epoch.add_vertex(id, Some(id)),
5 |node1, node2| epoch.connect(*node1, *node2),
6);

4.2.5 Data Collection Procedure
To capture performance data from the different graph representations, a benchmarking system
was set up. The system consists of a composer that generates benchmarks for each of the
operations listed in Table 4.1. In order to create these benchmarks, the composer requires
necessary helper functions in order to generate benchmarks that fulfill code uniformity for
each of the graph representations. After creating a new benchmark, the benchmark composer
adds each benchmark to a benchmark group. A benchmark group includes one benchmark for
one operation for each of the graph representations.

When the benchmark group is created, the benchmark executor runs it in a single session.
Some benchmarks, such as the allocation of a graph, requires external data for the graphs,
which is provided as an input argument to the executor. With the help of Criterion, the
executor makes sure that there are no significant outliers during the measurements, and pro-
duces a report that includes information such as throughput, execution time, and confidence
interval.

An overview of the data collection procedure can be seen in Figure 4.2.

28

4.2. Experiment Planning

ACTIVITY WORK PRODUCT MISC

Performance
Report

Graph
Data

Graph
Repr.

Help
Function

Benchmark

Benchmark
Group

CRITERION
Memory
Model

Compose
Benchmark

Run
Benchmark Group

Helps PerformRequires

Requires

Produces

Requires

Produces

Is part of

Uses

Requires

Figure 4.2: Process for measuring performance.

The activity that actually performs the benchmarks is called Run benchmark group and is
composed of four different activities, namely:

1. Warmup

2. Measurement

3. Analysis

4. Comparison

Of these four activities, only warmup and the measurement activity are regarded as part of
the data collection procedure. Analysis and comparison is part of the analysis procedure, and
is mentioned under the analysis procedure subsection, see Section 4.2.6. During warmup, the
system executes the benchmark without capturing any data about the system under test. This
step is important, as starting the measurements immediately could result in false performance
indications. After the warmup is completed, the system continues to perform the measurements
on the system under test. The measurements are performed in samples and each sample runs
the benchmark for a set number of iterations. The number of iterations per benchmark is
dynamic and is determined by how long each sample takes to execute. The goal is to perform
as many samples as possible in a given time interval. For example, if the target number of
samples is ten with a target time of ten seconds, the number of iterations per sample would
be 10, given that each iteration takes 0.1 seconds.

It is reasonable to believe that some benchmarks can falsely demonstrate poor performance
due to other work being scheduled by the operating system and must thus be detected. In order
to mitigate this issue, one solution would be to run the benchmarks in some virtual machine
and closely monitor the resources used by the VM. Another solution is to simply store the
result of each run, run the benchmarking process multiple times in a random order and then
use the information from previous runs in order to detect eventual performance regressions
or improvements. If all runs show no indication on performance differences, it is reasonable
to conclude that eventual noise is negligible. However, with this approach it is only possible

29

4.2. Experiment Planning

to reason about how the different graph representation relate to each other. This means that
we cannot draw any conclusion of confidence regarding e.g., how many operations per second
each graph representation is able to perform, but it is possible to confidently deduce that some
graph representation performs better than some other representation.

For GC Bench, the size of the graphs became too big and the executions too long for the
benchmarking system to handle. To be able to measure GC Bench, we instead executed the
benchmark one sample at a time, with one iteration per sample, until the observed performance
fulfilled the noise threshold of ±2%. For example, if the first execution took 100ms, and
the second execution 103ms, the performance increase would be +3%, which required the
benchmark to be restarted.

4.2.6 Analysis Procedure
Performance measurements on a computer are likely to demonstrate different results depending
on a large set of uncontrollable factors. Some examples of these factors include the temperature
of the processor and resource contention as a side effect of the operating system scheduling
other tasks in parallel to our measurements. In order to mitigate these issues and be able to
analyze the results even though there is some variation in our measured data, we can rely on
different mathematical approaches that makes it possible to assert e.g., confidence. In order to
properly be able to analyze and interpret the results, plots, and graphs is often a good starting
point. In order to reason about the difference in our measurements, we can use what is known
as a violin plot. Violin plots are excellent for visualizing statistical dispersion and probability
denseness of multiple measurements. This way, it becomes easier to see trends in the data
as to how confident our measurements are. To be able to catch outlier samples, other plots
can be used such as the scatter plot. Scatter plots are suitable when representing individual
samples, and can easily visualize outlier samples.

Other measurements other than plots are suitable for giving a concrete value of the expected
performance for each graph representation. For this, there are a multitude of possible statistic
measures. One common statistic is arithmetic mean, denoted x.

x = 1

n

n

∑
i=1

xi (4.1)

This statistic is suitable for finding a value that indicates how long an execution would take
in the average case. However, it is not an ideal measurement when outlier values are present.
In order to detect when the mean is not reliable, it was necessary to detect eventual outliers in
the collected data. This was done by matching the data to a normal distribution. Any values
that lied outside of the 25th or the 75th percentile were classified as severe outliers.

In addition to outliers, eventual noise in the benchmark environment can lead to unreliable
data. In order to mitigate this issue, it is suitable to use a linear regression model. For our
experiments, we used bootstrap resampling to generate a confidence interval from the collected
samples and Ordinary least squares (OLS) as the regression model. This way, it was possible
to use the regression model to calculate a good estimate by using the slope of the model, hence
reducing the effects of noise and outliers.

It is possible that the OLS regression model was poorly fitted. Hence, the coefficient of
determination R2 was also calculated. Finally, in cases where we run out of memory and have
to extend the size of our data structure, such as arena allocation, we expect to observe large
outliers. This means that we cannot rely on standard deviation. Instead, we used a measure
of median absolute deviation to reason about dispersion. Other graph representations than
region-based allocation were also likely to yield severe outliers, which is why this measurement
was taken for all graph representations.

30

4.3. Execution

4.2.7 Evaluation of Validity
The environment can heavily impact the results of our measurements. This could be very
problematic, as the validity of the measurements can not be guaranteed. In order to detect
problems with the environment, the benchmarking system was setup to run each benchmark
for more than one iteration and in a random order for each iteration. This enabled the
opportunity to formulate a hypothesis stating that the performance difference between each
run is not statistically significant and should not change. With this hypothesis in place,
ensuring that the environment is not tampering with the collected data is reduced to simply
testing this hypothesis. In order to do so, we relied on common hypothesis testing methods,
such as calculating p-values and performing T tests. In order for the result of a benchmark to
be accepted, it was required to fulfill the hypothesis, or be within an accepted noise threshold.
The set of fullfillment criteria is listed in Table 4.6. If any of the criteria were not fulfilled, the
benchmarking process was restarted.

Table 4.6: Collection Criteria

Collection criteria
Severe outliers ≤ 20%
Noise tolerance ≤ 2%
p ≥ 0.05

In addition of making sure that the environment does not affect the results, it was also
necessary to investigate that each graph representation was correctly implemented. This was
done by setting up a test suite that assured that each graph representation performed the
same amount of work. One of the performed tests was to let each representation load a graph
from a file, then traverse the graph using a breadth-first search, record the order of traversal
and finally check that the order was correct. For the reclamation process in epoch-based
reclamation and garbage collection to be triggered, we made sure that the loaded graphs were
of sufficient size.

4.3 Execution

This section describes how the graphs were measured in the benchmark system created during
the experiment planning phase.

4.3.1 Data Collection and Sampling
Data collection must be of sufficient size to be able to confidently prove performance differences.
Meanwhile, the data generation must be carried out such that the integrity of the data is
assured. In order to maximize the integrity of the collected data, the collection procedure and
data generation procedure must be well defined.

To be able to determine differences between runs and assert that the memory models were
benchmarked under the same circumstances, all graph variations were measured during the
same benchmark execution. This execution ran each individual benchmark three times to
detect any differences in the environment.

4.3.1.1 Criterion

For criterion, a warmup period of three seconds was decided in order to fill up caches. Target
sampling time was set to five seconds or 55 iterations, depending on which is fastest. The
confidence level was set to 95% and the confidence interval was determined through bootstrap
resampling of 100000 samples. Further, the number of target samples were set to 10 samples
per benchmark.

31

4.3. Execution

Table 4.7: Sampling Specification

Warmup Time Measurement Time Sample Size
3s 5s or 55 iterations 10

4.3.1.2 Intel® VTune™ Profiler

In order to detect performance bottlenecks, Intel® VTune™ Profiler was setup with hard-
ware event-based sampling with a CPU sampling interval of 0.01 ms. Each operation was
executed 1000000 times for each single run in order to enable sufficient microarchitecture
exploration and hotspot detection. The short CPU sampling interval causes high overhead for
the measurements, but is needed for achieving a detailed description of the performance and
microarchitecture utilization.

4.3.2 Data Collection Performed
For our experiment, we gathered data from two different benchmarks that have been used
in previous research, namely GC Bench and the GAP benchmark suite. Additionally, we
measured two different compositions of operations, in order to be able to reason about single
operations. The source code for our benchmarks and graph representations can be found on
GitHub9.

The GAP Benchmark Suite The GAP benchmark suite [5] includes six different kernels
and aims to measure operations that are commonly used in graph processing. As the suite’s
reference implementation is implemented in C++, it was necessary to first port it to Rust. We
were able to create sequential implementations for every kernel, but due to language constraints
only CC, PR and TC have both sequential and parallel implementations. Details about the
kernels can be seen below, for further information, see the benchmark specification [5].

– Betweenness Centrality
Using Brandes Algorithm

– Breadth-first Search
Using Direction optimizing

– Connected Components
Using the Afforest and Shiloach-Vishkin method

– PR
Using an iterative method in pull direction

– SSSP
Delta Stepping

– TC
Using an order invariant method with possible relabeling

GC Bench The GAP benchmark suite does not include benchmarks for building new graphs.
In order to fill this gap, GC Bench was chosen, as it measures the allocation and deallocation
time of binary trees. First, a large tree is allocated in order to stretch the memory space,
then a long lived tree is constructed that lives for the duration of the benchmark. After the
long lived tree, the benchmark starts to recursively construct trees with increasing depths.
The minimum and maximum depth can be specified before starting the benchmark. For our
execution, we decided on a minimum depth of four and a maximum depth ranging from eight
to fourteen with a step size of two.

9https://github.com/rasviitanen/graphs-in-rust

32

4.3. Execution

OPS Benchmark The OPS benchmark consist of two different distributions of operations
that aims to benchmark write-heavy workloads. OPS/40/40/10/10/0 executes 40% insert ver-
tex operations, 40% delete vertex operations, 10% insert edge operations and 10% delete edge
operations. OPS/20/20/25/25/10 executes 20% insert vertex operations, 20% delete vertex
operations, 25% insert edge operations, 25% delete edge operations and 10% find operations.
The different compositions of operations are selected to reflect the benchmarks used by Painter
et al. [30].

33

4.4. Analysis

4.4 Analysis

The collected results were analyzed and tested for changes in the benchmark environment.
Below are the performance changes output by the last run of our benchmarking system.

Table 4.8: Benchmarking group: arXiv astro-ph

Name Change p − value Verdict
BC/ARC −7.8211% − 1.6185% + 5.0639% p = 0.66 > 0.05 No change
BC/RC −14.799% − 2.3639% + 6.8209% p = 0.73 > 0.05 No change
BC/CC −0.6285% + 7.4832% + 21.061% p = 0.19 > 0.05 No change
BC/GC −7.0517% + 0.2008% + 7.5359% p = 0.96 > 0.05 No change
BC/ARENA −3.9848% + 2.3596% + 9.3906% p = 0.50 > 0.05 No change
BC/EPOCH −5.6092% + 1.2805% + 10.260% p = 0.77 > 0.05 No change
BFS/ARC −2.5493% + 9.6515% + 28.845% p = 0.23 > 0.05 No change
BFS/RC −6.1146% − 0.8646% + 4.0420% p = 0.77 > 0.05 No change
BFS/CC −18.020% − 8.9333% − 0.9701% p = 0.08 > 0.05 No change
BFS/GC +0.0265% + 4.3413% + 9.5048% p = 0.12 > 0.05 No change
BFS/ARENA −2.8230% + 1.5261% + 5.4385% p = 0.51 > 0.05 No change
BFS/EPOCH −4.3985% + 2.8184% + 9.8920% p = 0.46 > 0.05 No change
CC/ARC −1.2456% + 0.5803% + 2.3926% p = 0.59 > 0.05 No change
CC/ARCmt −4.8783% + 0.4671% + 5.9473% p = 0.87 > 0.05 No change
CC/RC −0.1189% + 0.4613% + 1.1406% p = 0.18 > 0.05 No change
CC/CC −1.0900% − 0.2433% + 0.4759% p = 0.59 > 0.05 No change
CC/GC −0.9688% − 0.2744% + 0.4308% p = 0.47 > 0.05 No change
CC/ARENA +0.1113% + 1.0956% + 2.5047% p = 0.09 > 0.05 No change
CC/EPOCH −1.8111% + 0.2483% + 2.1724% p = 0.83 > 0.05 No change
CC/EPOCHmt −7.3797% − 2.5574% + 2.6822% p = 0.37 > 0.05 No change
PR/ARC −2.1918% − 0.8174% + 0.3271% p = 0.28 > 0.05 No change
PR/ARCmt −3.8365% − 0.1324% + 3.5638% p = 0.95 > 0.05 No change
PR/RC −1.9799% − 1.1894% − 0.4838% p = 0.01 < 0.05 Within threshold
PR/CC −1.9752% − 1.0643% − 0.0403% p = 0.05 > 0.05 No change
PR/GC −0.3309% + 0.1453% + 0.6337% p = 0.58 > 0.05 No change
PR/ARENA +0.2573% + 0.7796% + 1.2908% p = 0.01 < 0.05 Within threshold
PR/EPOCH −3.8273% − 1.7636% + 0.1189% p = 0.13 > 0.05 No change
PR/EPOCHmt −5.6315% − 1.5771% + 2.6071% p = 0.50 > 0.05 No change
SSSP /ARC −1.9688% + 2.2557% + 6.1101% p = 0.31 > 0.05 No change
SSSP /RC −1.4045% + 2.4491% + 7.4410% p = 0.32 > 0.05 No change
SSSP /CC +0.9453% + 4.1085% + 7.2647% p = 0.02 < 0.05 Within threshold
SSSP /GC −2.3784% + 1.7388% + 5.8610% p = 0.47 > 0.05 No change
SSSP /ARENA −6.8498% − 1.6118% + 3.4080% p = 0.57 > 0.05 No change
SSSP /EPOCH −13.096% − 6.1596% + 0.7650% p = 0.14 > 0.05 No change
TC/ARC −0.4654% − 0.0580% + 0.3558% p = 0.79 > 0.05 No change
TC/ARCmt −1.7277% − 0.1127% + 1.3936% p = 0.90 > 0.05 No change
TC/RC −1.4055% − 1.1368% − 0.8287% p = 0.00 < 0.05 Within threshold
TC/CC −2.0522% − 1.2022% − 0.4472% p = 0.01 < 0.05 Within threshold
TC/GC −0.0438% + 0.7293% + 2.0937% p = 0.26 > 0.05 No change
TC/ARENA −0.7763% − 0.1597% + 0.4091% p = 0.62 > 0.05 No change
TC/EPOCH −0.7732% − 0.3744% − 0.0250% p = 0.07 > 0.05 No change
TC/EPOCHmt −4.7742% − 0.1823% + 4.8792% p = 0.94 > 0.05 No change

For the benchmarking group arXiv astro-ph, the change in performance of the benchmark
can be seen in Table 4.8. The first column describes the name for the kernel, and the memory
management model that was used. The second column displays the performance change, where
the middle value is the difference estimate; the left value is the lower bound of the confidence

34

4.4. Analysis

interval; the right value is the upper bound of the confidence interval. The last two columns
display the p-value, and a change verdict. In case of the p-value being greater or equal to 0.05,
the verdict is No change, as it fulfills our hypothesis. Otherwise, as in the case for PR/RC,
the change is within the noise tolerance, thus receiving the Within threshold verdict.

Table 4.9: Benchmarking group: Euroroad

Name Change p − value Verdict
BC/ARC −3.2027% − 1.5173% + 0.0865% p = 0.10 > 0.05 No change
BC/RC +0.5683% + 1.5993% + 2.7041% p = 0.01 < 0.05 Within threshold
BC/CC −1.1165% − 0.0552% + 1.1165% p = 0.93 > 0.05 No change
BC/GC −2.7510% − 0.9775% + 0.6994% p = 0.31 > 0.05 No change
BC/ARENA −1.4142% + 0.0848% + 1.6952% p = 0.93 > 0.05 No change
BC/EPOCH −3.0272% − 1.7560% − 0.4496% p = 0.02 < 0.05 Within threshold
BFS/ARC −9.4859% + 0.5610% + 12.342% p = 0.92 > 0.05 No change
BFS/RC −4.6463% + 1.2432% + 8.1824% p = 0.72 > 0.05 No change
BFS/CC −4.9417% + 3.2749% + 11.824% p = 0.47 > 0.05 No change
BFS/GC −7.6616% − 1.4194% + 6.8492% p = 0.73 > 0.05 No change
BFS/ARENA −6.6288% + 2.4324% + 11.867% p = 0.63 > 0.05 No change
BFS/EPOCH −4.5765% + 3.1361% + 11.927% p = 0.48 > 0.05 No change
CC/ARC −0.0798% + 0.7548% + 1.4296% p = 0.08 > 0.05 No change
CC/ARCmt −1.3427% − 0.6472% + 0.1013% p = 0.11 > 0.05 No change
CC/RC −1.5294% − 0.6678% + 0.2607% p = 0.18 > 0.05 No change
CC/CC −0.6111% + 0.2790% + 1.1154% p = 0.56 > 0.05 No change
CC/GC −0.5858% − 0.2656% + 0.0192% p = 0.13 > 0.05 No change
CC/ARENA −0.7900% − 0.1519% + 0.4987% p = 0.66 > 0.05 No change
CC/EPOCH −0.4746% + 0.3654% + 1.2690% p = 0.44 > 0.05 No change
CC/EPOCHmt −1.7481% − 0.2944% + 1.2574% p = 0.72 > 0.05 No change
PR/ARC −0.4865% + 0.7962% + 1.9351% p = 0.24 > 0.05 No change
PR/ARCmt −0.3829% + 1.1654% + 2.5578% p = 0.15 > 0.05 No change
PR/RC −0.1857% + 0.3791% + 1.0091% p = 0.25 > 0.05 No change
PR/CC −1.9451% − 1.4016% − 0.9325% p = 0.00 < 0.05 Within threshold
PR/GC −0.3352% + 0.1794% + 0.7580% p = 0.54 > 0.05 No change
PR/ARENA −1.3291% − 0.4121% + 0.4921% p = 0.41 > 0.05 No change
PR/EPOCH +0.6831% + 1.7368% + 2.8635% p = 0.01 < 0.05 Within threshold
PR/EPOCHmt +0.0824% + 1.3839% + 2.6793% p = 0.07 > 0.05 No change
SSSP /ARC −1.4861% − 0.3304% + 0.7548% p = 0.59 > 0.05 No change
SSSP /RC −0.9478% + 0.3629% + 1.8396% p = 0.66 > 0.05 No change
SSSP /CC −0.3680% + 0.7219% + 1.8251% p = 0.24 > 0.05 No change
SSSP /GC −2.6596% − 0.6162% + 1.0309% p = 0.60 > 0.05 No change
SSSP /ARENA −2.1842% − 0.9852% + 0.1796% p = 0.14 > 0.05 No change
SSSP /EPOCH −0.5842% + 0.9840% + 2.6449% p = 0.27 > 0.05 No change
TC/ARC −0.1430% + 0.6659% + 1.3292% p = 0.11 > 0.05 No change
TC/ARCmt −1.3734% − 0.1793% + 0.9958% p = 0.78 > 0.05 No change
TC/RC +0.0974% + 0.4316% + 0.8299% p = 0.04 < 0.05 Within threshold
TC/CC +0.2020% + 0.5224% + 0.8224% p = 0.01 < 0.05 Within threshold
TC/GC −0.0523% + 0.2977% + 0.6943% p = 0.17 > 0.05 No change
TC/ARENA −1.5051% + 0.2672% + 1.9186% p = 0.78 > 0.05 No change
TC/EPOCH −3.6591% + 3.6398% + 15.687% p = 0.68 > 0.05 No change
TC/EPOCHmt −0.2481% + 1.1954% + 2.8073% p = 0.16 > 0.05 No change

For the benchmarking group Euroroad, the change in performance of the benchmark can
be seen in Table 4.9. In cases where the change estimate is greater than the noise threshold,
such as TC/EPOCH and BFS/CC, the p-value is much bigger than 0.05, which indicates
that the change was insignificant.

35

4.4. Analysis

Table 4.10: Benchmarking group: Facebook (NIPS)

Name Change p − value Verdict
BC/ARC −1.3643% − 0.7195% − 0.0268% p = 0.07 > 0.05 No change
BC/RC −1.7415% − 1.2031% − 0.5190% p = 0.00 < 0.05 Within threshold
BC/CC +0.0484% + 0.5529% + 1.0052% p = 0.05 < 0.05 Within threshold
BC/GC −0.1757% + 0.2004% + 0.5673% p = 0.32 > 0.05 No change
BC/ARENA +0.7431% + 3.8196% + 7.7448% p = 0.03 < 0.05 Within threshold
BC/EPOCH −2.4029% − 0.9809% + 0.0794% p = 0.17 > 0.05 No change
BFS/ARC −2.0379% + 1.8144% + 6.6472% p = 0.44 > 0.05 No change
BFS/RC −1.8713% + 1.6730% + 5.1996% p = 0.43 > 0.05 No change
BFS/CC −6.1069% − 1.8932% + 2.3787% p = 0.42 > 0.05 No change
BFS/GC −4.4773% − 0.8324% + 2.4796% p = 0.67 > 0.05 No change
BFS/ARENA −7.2876% − 2.6826% + 2.0575% p = 0.31 > 0.05 No change
BFS/EPOCH −3.3179% − 0.3427% + 2.7397% p = 0.84 > 0.05 No change
CC/ARC −1.0513% − 0.7003% − 0.3097% p = 0.00 < 0.05 Within threshold
CC/ARCmt −1.0465% + 0.0091% + 1.0497% p = 0.98 > 0.05 No change
CC/RC −1.2774% − 0.8447% − 0.4946% p = 0.00 < 0.05 Within threshold
CC/CC −0.3908% + 0.0179% + 0.4146% p = 0.94 > 0.05 No change
CC/GC −0.2308% + 0.1433% + 0.6128% p = 0.54 > 0.05 No change
CC/ARENA −1.2677% − 0.8675% − 0.2527% p = 0.00 < 0.05 Within threshold
CC/EPOCH −1.9917% − 1.2523% − 0.5431% p = 0.01 < 0.05 Within threshold
CC/EPOCHmt −1.4109% − 0.3823% + 0.8002% p = 0.53 > 0.05 No change
PR/ARC +0.1270% + 1.3913% + 2.8005% p = 0.06 > 0.05 No change
PR/ARCmt −1.4284% − 0.4187% + 0.5973% p = 0.44 > 0.05 No change
PR/RC −1.2205% − 0.4661% + 0.2205% p = 0.26 > 0.05 No change
PR/CC −0.6776% − 0.1837% + 0.3816% p = 0.55 > 0.05 No change
PR/GC −1.3423% − 0.9152% − 0.4289% p = 0.00 < 0.05 Within threshold
PR/ARENA −0.7646% − 0.1940% + 0.2908% p = 0.53 > 0.05 No change
PR/EPOCH +0.1539% + 0.8259% + 1.4983% p = 0.03 < 0.05 Within threshold
PR/EPOCHmt −0.9142% + 0.4433% + 1.7199% p = 0.53 > 0.05 No change
SSSP /ARC −1.3725% − 0.4428% + 0.3975% p = 0.39 > 0.05 No change
SSSP /RC +0.6325% + 1.6227% + 2.6263% p = 0.01 < 0.05 Within threshold
SSSP /CC −0.6050% + 0.6526% + 1.8235% p = 0.32 > 0.05 No change
SSSP /GC −1.6109% − 0.9018% − 0.1832% p = 0.03 < 0.05 Within threshold
SSSP /ARENA +0.3860% + 2.0042% + 3.6482% p = 0.03 < 0.05 Within threshold
SSSP /EPOCH −0.7858% + 0.1207% + 1.0935% p = 0.81 > 0.05 No change
TC/ARC −0.5312% + 0.8163% + 2.3594% p = 0.32 > 0.05 No change
TC/ARCmt −0.6663% − 0.0298% + 0.5951% p = 0.94 > 0.05 No change
TC/RC −12.738% − 4.0848% + 1.1888% p = 0.63 > 0.05 No change
TC/CC −0.2538% + 0.3748% + 0.9825% p = 0.28 > 0.05 No change
TC/GC +0.3750% + 1.2131% + 2.0651% p = 0.02 < 0.05 Within threshold
TC/ARENA −0.0487% + 0.5349% + 1.1198% p = 0.11 > 0.05 No change
TC/EPOCH −1.0881% − 0.1708% + 0.6827% p = 0.73 > 0.05 No change
TC/EPOCHmt −2.3554% − 1.0929% + 0.2088% p = 0.13 > 0.05 No change

For the benchmarking group Facebook (NIPS), the change in performance of the benchmark
can be seen in Table 4.10. The benchmarks often demonstrate a low p-value, but in these cases,
the measured change is very low, and falls well within the noise threshold.

36

4.4. Analysis

Table 4.11: Benchmarking group: Hamsterster Friendships

Name Change p − value Verdict
BC/ARC −3.3131% − 1.6202% + 0.0072% p = 0.09 > 0.05 No change
BC/RC −2.3531% − 1.0078% + 0.2705% p = 0.18 > 0.05 No change
BC/CC −3.1017% − 1.2975% + 0.6490% p = 0.22 > 0.05 No change
BC/GC −0.6968% + 1.1147% + 3.0516% p = 0.27 > 0.05 No change
BC/ARENA −0.5530% + 1.2564% + 2.7792% p = 0.16 > 0.05 No change
BC/EPOCH −1.0814% + 0.9981% + 3.1935% p = 0.41 > 0.05 No change
BFS/ARC −11.432% − 4.8710% + 1.4799% p = 0.19 > 0.05 No change
BFS/RC −2.8923% + 2.3614% + 8.8754% p = 0.47 > 0.05 No change
BFS/CC −11.374% − 6.1295% − 0.2775% p = 0.07 > 0.05 No change
BFS/GC −6.4481% + 1.2935% + 8.4995% p = 0.74 > 0.05 No change
BFS/ARENA −4.2669% + 3.7151% + 13.823% p = 0.46 > 0.05 No change
BFS/EPOCH −5.7366% − 0.2802% + 4.9466% p = 0.93 > 0.05 No change
CC/ARC −0.2429% + 0.5161% + 1.3409% p = 0.24 > 0.05 No change
CC/ARCmt −1.5207% − 0.0659% + 1.1746% p = 0.93 > 0.05 No change
CC/RC −3.5825% + 2.4090% + 8.6675% p = 0.48 > 0.05 No change
CC/CC −1.0973% − 0.5061% + 0.1184% p = 0.13 > 0.05 No change
CC/GC −1.7010% − 0.8512% + 0.2122% p = 0.17 > 0.05 No change
CC/ARENA +0.0828% + 0.9007% + 1.7685% p = 0.05 < 0.05 Within threshold
CC/EPOCH −0.8415% − 0.2521% + 0.3375% p = 0.44 > 0.05 No change
CC/EPOCHmt −1.4783% + 0.2193% + 1.9398% p = 0.81 > 0.05 No change
PR/ARC −0.8045% − 0.2782% + 0.2062% p = 0.31 > 0.05 No change
PR/ARCmt −0.7634% + 0.6361% + 1.8461% p = 0.39 > 0.05 No change
PR/RC −0.0032% + 0.5368% + 1.0868% p = 0.09 > 0.05 No change
PR/CC −0.8847% − 0.4298% + 0.1180% p = 0.15 > 0.05 No change
PR/GC +0.6293% + 1.0883% + 1.5384% p = 0.00 < 0.05 Within threshold
PR/ARENA +0.0771% + 0.3211% + 0.5281% p = 0.02 < 0.05 Within threshold
PR/EPOCH −0.7194% + 0.0692% + 0.7870% p = 0.87 > 0.05 No change
PR/EPOCHmt −0.7607% + 0.2695% + 1.3200% p = 0.63 > 0.05 No change
SSSP /ARC −0.3073% + 1.0720% + 2.4431% p = 0.17 > 0.05 No change
SSSP /RC −1.1838% + 0.1249% + 1.3019% p = 0.87 > 0.05 No change
SSSP /CC −1.0566% + 0.1699% + 1.4592% p = 0.81 > 0.05 No change
SSSP /GC −1.5820% + 0.6159% + 2.4570% p = 0.56 > 0.05 No change
SSSP /ARENA −3.3533% − 2.1100% − 0.8077% p = 0.01 < 0.05 Within threshold
SSSP /EPOCH −1.4532% + 0.1831% + 1.8017% p = 0.82 > 0.05 No change
TC/ARC −0.9707% − 0.3258% + 0.2473% p = 0.35 > 0.05 No change
TC/ARCmt −0.7945% + 0.2777% + 1.4069% p = 0.65 > 0.05 No change
TC/RC −0.0789% + 0.3795% + 0.8301% p = 0.12 > 0.05 No change
TC/CC +0.1069% + 0.5770% + 1.0675% p = 0.04 < 0.05 Within threshold
TC/GC −0.5531% − 0.1146% + 0.2993% p = 0.63 > 0.05 No change
TC/ARENA −0.7150% + 0.3249% + 1.4043% p = 0.57 > 0.05 No change
TC/EPOCH −1.8848% − 1.0558% − 0.4279% p = 0.01 < 0.05 Within threshold
TC/EPOCHmt −0.8873% + 0.2762% + 1.4754% p = 0.67 > 0.05 No change

The change in performance for the Hamsterster Friendships benchmark group can be seen
in Table 4.11. The most troublesome measurement is BFS/CC, which demonstrates a change
of more than 6%, along with a p-value of 0.07. However, the measurement still falls within
the criteria.

37

4.4. Analysis

Table 4.12: Benchmarking group: OPS 20/20/25/25/10

Name Change p − value Verdict
OPS/EPOCHmt −13.263% − 6.6609% + 0.0367% p = 0.10 > 0.05 No change
OPS/EPOCH −5.1610% − 1.0887% + 3.5009% p = 0.66 > 0.05 No change
OPS/ARC −2.0022% + 2.1388% + 6.8230% p = 0.37 > 0.05 No change
OPS/ARCmt −4.1750% + 2.6347% + 9.9514% p = 0.50 > 0.05 No change
OPS/RC −0.0306% + 9.5001% + 20.141% p = 0.07 > 0.05 No change
OPS/CC −6.2243% + 4.1997% + 15.152% p = 0.45 > 0.05 No change
OPS/GC −39.459% − 23.058% − 1.5049% p = 0.06 > 0.05 No change
OPS/ARENA −4.8206% + 1.3914% + 7.3909% p = 0.66 > 0.05 No change

The change in performance for the OPS 20/20/25/25/10 benchmark group can be seen in
Table 4.12. Here, the most notable change is for OPS/GC, which demonstrates a change of
more than 20%, with a fairly low p-value of 0.06.

Table 4.13: Benchmarking group: OPS 40/40/10/10/0

Name Change p − value Verdict
OPS/EPOCHmt −5.8080% − 0.3195% + 4.6192% p = 0.91 > 0.05 No change
OPS/EPOCH −1.9879% + 0.9409% + 4.1149% p = 0.57 > 0.05 No change
OPS/ARC −8.0630% + 2.0602% + 14.449% p = 0.75 > 0.05 No change
OPS/ARCmt −6.7197% − 1.1225% + 4.7703% p = 0.71 > 0.05 No change
OPS/RC −12.227% − 1.2963% + 11.142% p = 0.84 > 0.05 No change
OPS/CC −17.630% + 40.143% + 170.53% p = 0.63 > 0.05 No change
OPS/GC −24.473% − 2.5861% + 22.752% p = 0.85 > 0.05 No change
OPS/ARENA −11.054% − 3.5571% + 4.5223% p = 0.42 > 0.05 No change

The change in performance for the OPS 40/40/10/10/0 benchmark group can be seen in
Table 4.13. Here, the most notable change is for OPS/CC, which demonstrates a change of
more than 40%. The p-value however, is 0.63, which indicates that the change is insignificant
even though the performance change is large.

38

5 Results

This chapter presents the results. First, the result of GC Bench is presented, then the results
of the GAP Benchmark suite. Finally, some benchmarks including different distributions of
operations is presented. The results are later discussed in Chapter 6.

5.1 GC Bench

This section presents the result for both sequential and parallel versions of GC Bench. The
run was made with the stretch tree depth set to ten, long lived tree depth and maximum tree
depth set from eight to fourteen with a step depth of two, and a minimum tree depth of four.

39

5.1. GC Bench

10/8/4/8 12/10/4/10 14/12/4/12 16/14/4/14

0

500

1000

1500

2000

2500

3000

3500

Ex
ec

u
ti

o
n

 t
im

e
[m

s]

ARC ARENA CC EPOCH MSGC RC

Figure 5.1: GC Bench for sequential construction. The labels on the horizontal axis represent
the depth of the generated trees (Stretch Tree/Long Lived Tree/Min Tree/Max Tree).

As seen in Figure 5.1, for sequential construction, G ∶∶ EPOCH performs worst, which is
particularly eminent as the depth of the allocated tree increases. Slightly faster is G ∶∶MSGC,
which performs close to the reference counted versions G ∶∶ RC and G ∶∶ CC when the scale
is small. However, as the tree increases, the performance of G ∶∶ MSGC falls behind. When
it comes to G ∶∶ CC and G ∶∶ RC, they are similar in performance for all scales. Finally,
G ∶∶ ARENA demonstrates the best performance of them all.

40

5.2. The GAP Benchmark Suite

10/8/4/8 12/10/4/10 14/12/4/12 16/14/4/14

0

500

1000

1500

2000

2500

3000

3500

Ex
ec

u
ti

o
n

 T
im

e
[m

s]

ARC EPOCH ARC_mt EPOCH_mt

Figure 5.2: GC Bench for parallel and sequential construction. The labels on the horizontal
axis represent the depth of the generated trees (Stretch Tree/Long Lived Tree/Min Tree/Max
Tree).

For GC Bench with parallel construction, the performance rankings are the same as for
sequential construction, however, in Figure 5.2 we see that G ∶∶ EPOCH gains a more sig-
nificant increase from parallel execution, as opposed to G ∶∶ ARC, which only demonstrates
slightly increased performance when run in parallel.

5.2 The GAP Benchmark Suite

This section presents the results for the GAP Benchmark suite. The tables show an estimate
of the runs that is made by measuring the slope of the regression model. The lower bound
and upper bound show the upper and lower bound of the confidence interval.

41

5.2. The GAP Benchmark Suite

5.2.1 arXiv astro-ph
The results of the arXiv astro-ph benchmark group can be seen in Figure 5.3.

0

20

40

60

80

100

120

Es
ti

m
at

e
[m

s]

Betweenness Centrality (BC)

arXiv astro-ph

ARC RC CC GC ARENA EPOCH

(a) Betweenness Centrality

0

500

1000

1500

2000

2500

Es
ti

m
at

e
[m

s]

Breadth-First Search (BFS)

arXiv astro-ph

ARC RC CC GC ARENA EPOCH

(b) Breadth-First Search

0

10

20

30

40

50

Es
ti

m
at

e
[m

s]

Cyclomatic Complexity (CC)

arXiv astro-ph

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(c) Cyclomatic Complexity

0

2

4

6

8

10

12
Es

ti
m

at
e

[m
s]

PageRank (PR)

arXiv astro-ph

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(d) PageRank

0

10

20

30

40

50

Es
ti

m
at

e
[m

s]

Single-Source Shortest Path (SSSP)

arXiv astro-ph

ARC RC CC GC ARENA EPOCH

(e) Single-Source Shortest Path

0

500

1000

1500

2000

2500

Es
ti

m
at

e
[m

s]

Triangle Counting (TC)

arXiv astro-ph

ARC RC CC GC

ARENA EPOCH EPOCH_mt ARC_mt

(f) Triangle Counting

Figure 5.3: Estimated execution times for each kernel in the GAP benchmark suite for the
arXiv astro-ph dataset. The estimate is measured as the slope of the regression model. The
error bars display the lower and upper bound of the confidence interval.

42

5.2. The GAP Benchmark Suite

5.2.2 Euroroad
The results of the Euroroad benchmark group can be seen in Figure 5.4.

0

200

400

600

800

1000

Es
ti

m
at

e
[μ

s]

Betweenness Centrality (BC)

Euroroad

ARC RC CC GC ARENA EPOCH

(a) Betweenness Centrality

0

2

4

6

8

10

12

Es
ti

m
at

e
[m

s]

Breadth-First Search (BFS)

Euroroad

ARC RC CC GC ARENA EPOCH

(b) Breadth-First Search

0

200

400

600

800

1000

Es
ti

m
at

e
[μ

s]

Cyclomatic Complexity (CC)

Euroroad

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(c) Cyclomatic Complexity

0

200

400

600

800

1000
Es

ti
m

at
e

[μ
s]

PageRank (PR)

Euroroad

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(d) PageRank

0

100

200

300

400

500

600

Es
ti

m
at

e
[μ

s]

Single-Source Shortest Path (SSSP)

Euroroad

ARC RC CC GC ARENA EPOCH

(e) Single-Source Shortest Path

0

500

1000

1500

2000

Es
ti

m
at

e
[μ

s]

Triangle Counting (TC)

Euroroad

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(f) Triangle Counting

Figure 5.4: Estimated execution times for each kernel in the GAP benchmark suite for the
Euroroad dataset. The estimate is measured as the slope of the regression model. The error
bars display the lower and upper bound of the confidence interval.

43

5.2. The GAP Benchmark Suite

5.2.3 Facebook (NIPS)
The results of the Facebook (NIPS) benchmark group can be seen in Figure 5.5.

0

500

1000

1500

2000

Es
ti

m
at

e
[μ

s]

Betweenness Centrality (BC)

Facebook (NIPS)

ARC RC CC GC ARENA EPOCH

(a) Betweenness Centrality

0

10

20

30

40

50

Es
ti

m
at

e
[m

s]

Breadth-First Search (BFS)

Facebook (NIPS)

ARC RC CC GC ARENA EPOCH

(b) Breadth-First Search

0

500

1000

1500

Es
ti

m
at

e
[μ

s]

Cyclomatic Complexity (CC)

Facebook (NIPS)

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(c) Cyclomatic Complexity

0

500

1000

1500

2000
Es

ti
m

at
e

[μ
s]

PageRank (PR)

Facebook (NIPS)

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(d) PageRank

0

200

400

600

800

1000

1200

Es
ti

m
at

e
[μ

s]

Single-Source Shortest Path (SSSP)

Facebook (NIPS)

ARC RC CC GC ARENA EPOCH

(e) Single-Source Shortest Path

0

10

20

30

40

Es
ti

m
at

e
[m

s]

Triangle Counting (TC)

Facebook (NIPS)

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(f) Triangle Counting

Figure 5.5: Estimated execution times for each kernel in the GAP benchmark suite for the
Facebook (NIPS) dataset. The estimate is measured as the slope of the regression model. The
error bars display the lower and upper bound of the confidence interval.

44

5.2. The GAP Benchmark Suite

5.2.4 Hamsterster Friendships
The results of the Hamsterster Friendships benchmark group can be seen in Figure 5.6.

0

1

2

3

4

5

6

Es
ti

m
at

e
[m

s]

Betweenness Centrality (BC)

Hamsterster Friendships

ARC RC CC GC ARENA EPOCH

(a) Betweenness Centrality

0

10

20

30

40

50

Es
ti

m
at

e
[m

s]

Breadth-First Search (BFS)

Hamsterster Friendships

ARC RC CC GC ARENA EPOCH

(b) Breadth-First Search

0

500

1000

1500

2000

2500

Es
ti

m
at

e
[μ

s]

Cyclomatic Complexity (CC)

Hamsterster Friendships

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(c) Cyclomatic Complexity

0

500

1000

1500
Es

ti
m

at
e

[μ
s]

PageRank (PR)

Hamsterster Friendships

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(d) PageRank

0

1

1

2

2

3

Es
ti

m
at

e
[m

s]

Single-Source Shortest Path (SSSP)

Hamsterster Friendships

ARC RC CC GC ARENA EPOCH

(e) Single-Source Shortest Path

0

20

40

60

80

Es
ti

m
at

e
[m

s]

Triangle Counting (TC)

Hamsterster Friendships

ARC RC CC GC
ARENA EPOCH EPOCH_mt ARC_mt

(f) Triangle Counting

Figure 5.6: Estimated execution times for each kernel in the GAP benchmark suite for the
Hamsterster Friendships dataset. The estimate is measured as the slope of the regression
model. The error bars display the lower and upper bound of the confidence interval.

45

5.3. Operations

5.3 Operations

This section presents simple operations made on a graph with 256 vertices and an average
degree of ten. The number of operations for each benchmark was set to 1000.

5.3.1 Operations 20/20/25/25/10
This operation distribution targets edge operations, while also including expensive operations
such as inserting and deleting vertices. It performs 20% vertex insertion, 20% vertex deletion,
25% edge insertion, 25% edge deletion and 10% find vertex operations. The results can be
seen in Table 5.1, along with a violin plot in Figure 5.7.

Table 5.1: Benchmarking group: OPS 20/20/25/25/10

Name Lower bound Estimate Upper bound
OPS/ARC 218.75us 222.68us 225.54us
OPS/ARCmt 453.78us 500.51us 527.23us
OPS/RC 212.63us 223.73us 239.40us
OPS/CC 193.02us 203.35us 224.18us
OPS/GC 261.08us 306.73us 380.79us
OPS/ARENA 200.41us 205.04us 207.69us
OPS/EPOCH 580.75us 599.24us 611.89us
OPS/EPOCHmt 242.61us 246.26us 252.39us

OPS/RC

OPS/GC

OPS/EPOCH_mt

OPS/EPOCH

OPS/CC

OPS/ARENA

OPS/ARC_mt

OPS/ARC

0 100 200 300 400 500 600 700

In
pu

t

Average time (us)

OPS: Violin plot

PDF

Figure 5.7: Benchmark group: OPS 20/20/25/25/10

5.3.2 Operations 40/40/10/10/0
This operation distribution targets vertex operations. It performs 40% vertex insertion, 40%
vertex deletion, 10% edge insertion, 10% edge deletion and 0% find vertex operations. The
results can be seen in Table 5.2, along with a violin plot in Figure 5.8.

Table 5.2: Benchmarking group: OPS 40/40/10/10/0

Name Lower bound Estimate Upper bound
OPS/ARC 195.26us 214.42us 239.36us
OPS/ARCmt 439.30us 461.25us 477.20us
OPS/RC 158.51us 171.74us 186.20us
OPS/CC 167.51us 303.98us 605.38us
OPS/GC 293.00us 315.89us 359.42us
OPS/ARENA 164.51us 169.95us 173.14us
OPS/EPOCHmt 293.14us 296.61us 301.61us
OPS/EPOCH 738.23us 754.19us 767.05us

46

5.4. Usability

The negative average times observed in Figure 5.8 are an effect from resampling. Due to
the severe outlier of over 1000us for G::CC, the resampling suggests that if a sample can be
extreme in the positive direction, it should also be possible in the negative direction.

OPS/RC

OPS/GC

OPS/EPOCH_mt

OPS/EPOCH

OPS/CC

OPS/ARENA

OPS/ARC_mt

OPS/ARC

-500 0 500 1000 1500 2000

In
pu

t

Average time (us)

OPS: Violin plot

PDF

Figure 5.8: Benchmark group: OPS 40/40/10/10/0

5.4 Usability

Rust is flexible enough to allow the graph representations to expose a similar interface. This
means that for a graph representation Ga, the effort of operating the graph is the same as
for a any other representation Gb. Hence, as suggested by Section 3.7, the operability of the
graph representations is identical. There is however one exception of this, where both G::CC
and G::GC require the nodes and any data type that is stored within a node to be valid for
the static lifetime and implement a trait called Trace. The effort required to implement this
trait depends entirely on the complexity of the contained type.

In terms of user error protection, the graph representations are all very similar. As they
all expose the same interface, there is no need for quantifying e.g. the number of exposed
methods or the length of the parameter lists as mentioned in Section 3.7. However, there are
some differences between the models, where it is possible to encounter user errors. One possible
user error is for G::ARENA, where all graph models except for G::ARENA builds on pointers that
are guaranteed to point to valid objects. This means that it is safe to dereference any node
except for G::ARENA, where it might be possible to end up with an invalid node. When it
comes to memory safety, G::RC and G::ARC will both cause memory leaks if they contain any
cycle. Finally, the reference-count based solutions can lead to borrow hazards, and careless use
of G::ARC in multi-threaded environments can lead to deadlocks. A summary of the usability
can be seen in Table 5.3.

Table 5.3: Usability for the different graph representations.

Name Operability User error protection
G ∶∶ ARC + -
G ∶∶ ARENA - -
G ∶∶ CC - +
G ∶∶ EPOCH + +
G ∶∶ GC - +
G ∶∶ RC + -

47

6 Discussion

This chapter includes an analysis and discussion of the method and the captured results. First,
a discussion on the different benchmarks is presented. Second, a discussion on the performance
differences is held, followed by a section on usability. Then the chosen method is discussed,
along with eventual improvement suggestions. Finally, the work is placed in the industry
context, as well as a wider context.

6.1 Results

This section includes a discussion of the results for the different benchmarks.

6.1.1 GC Bench
The demonstrated performance for GC Bench offers no surprises. Region-based allocation
is the fastest, followed by the reference counting, garbage collection and EBR placing last,
as shown by Figure 5.1. The poor performance of EBR is likely imposed by the link-based
structure that is used to store vertices in the graph, as each insertion operation requires location
of its predecessor, which computationally takes linear time. The epoch-based model requires
a large amount of atomic operations to function, which results in it being even slower. Adding
to the poor performance is also the need for executing each operation in a transaction. For
GC Bench, each insertion was made by running a single operation in a single transaction. This
means that offering a lock-free transactional graph is unnecessary in this case, and the model
would demonstrate much better performance if the operations were instead executed directly
on the graph, or if all operations were executed in a single transaction.

In our implementation of G::EPOCH, we offer no raw execution of operations, as we deemed
the transactions necessary to achieve soundness and correctness. However, if a developer is
certain that no other entities will operate on the graph in parallel, it should be possible to
execute operations without the need for encapsulating them in a transaction. In Rust, this
could be done by offering unsafe bindings, which would indicate that developers using the
functions must do so with extra care.

As for the arena based allocator, we experienced some pause times as an effect of memory
running out of the arena and doubling in size during the early stages of our experiment. In
cases where the size of the graph is known preconstruction, it is possible to specify the size of

48

6.1. Results

the arena in order to avoid this issue. If only a size hint is available, that can also avoid the
pause times for the most part, with the worst-case scenario being that the size of the arena has
to be extended if the size exceeds the size hint. With graphs that heavily vary in size through
its lifetime, the issue of arena allocation can be that the initial allocation is either too small,
yielding more frequent pause times when the graph grows; or the initial allocation is too big,
resulting in an unnecessary amount of memory being occupied by the graph.

As for multithreading, G::ARC and G::EPOCH are both Send and Sync, meaning that they
can safely be sent and shared between threads. We noticed that the core utilization of the
epoch based variant is much higher than for G::ARC, which is shown in Figure 5.2. This is
most likely due to the underlying data structure. In G::EPOCH, we use a concurrent link-
based structure to store vertices, and a concurrent multi-dimensional array to store edges.
With these structures, every mutation works by performing a CAS-operation, in cases where
the CAS fails, the operation is put into a spinlock until it is successful. The operation is
thus scoped to at most one or two nodes, which means that CAS failure occurs rather seldom.
G::ARC instead uses a lock-based solution via a read-and-write lock. Due to possible deadlocks,
the granularity is kept fairly low, in the sense that eventual mutations must lock the entire
data structure that is holding the vertices. This means that core utilization will not be very
good for write-heavy workloads. In GC bench, we avoided storing the nodes in a separate
data structure to avoid this issue. Instead, each node stores two children. This way, the core
utilization is much higher, as we are able to mutate multiple nodes in parallel. A final note
is that GC Bench allocates many nodes with few edges. For G::EPOCH, operations on the
list of vertices takes linear-time, but operations on the edge list takes logarithmic time. It is
possible that the performance of G::EPOCH would exceed G::ARC if the vertex/edge-ratio was
dominated by edges.

6.1.2 GAP Benchmark Suite
The results for the GAP Benchmark Suite is quite peculiar, as the performance heavily depends
on the kind of graph that is operated on.

For sequential execution, the results indicate that either G::ARENA or G::RC offers best
performance. For example, G::ARENA excels at executing the CC-kernel, where it is the only
memory model performing under one millisecond for the Facebook (NIPS) dataset, shown in
Figure 5.5. There are two reasons for this. First, the CC-kernel requires several clones or
copies of the nodes. This is a cheap operation for G::ARENA, as it is only a matter of copying
indices, while for the reference counting graph models, cloning is far more expensive. Secondly,
the kernel includes few dereferences of the actual nodes, meaning that we do not have to pay
the price of looking up the index in the actual arena. However, in cases where the graph has a
high diameter such as the Euroroad dataset, G::EPOCH is even faster than G::ARENA, as seen
in Figure 5.4. The reason for this is that dereferencing is mainly done on edges, which is much
cheaper for G::EPOCH than it is for G::ARENA. With a high diameter, a larger amount of edges
need to be dereferenced.

An interesting observation is that the BC-kernel demonstrates the same performance rank-
ing for the different models as the CC-kernel, with the exception of G::EPOCH always being
slower than G::ARENA, as seen in Figure 5.3, 5.4, 5.5, 5.6. The reason for this seems to be that
the kernel frequently calls for the edges of a particular vertex. While it is cheap to get the
edges of an already located vertex for G::EPOCH, locating the vertex is actually quite expensive.
Whereas for G::ARENA, finding the vertex in the first place is just a matter of looking up the
index.

Surprisingly, the BFS-kernel showed a significant difference in performance for G::ARENA
for the Facebook (NIPS) network presented in Figure 5.5. The reason is not as clear as in
previous cases. Most likely is that a few nodes have a very high degree and cloning all the
edges of such a node is much more expensive than cloning a single reference to the container,
as is done by other implementations.

49

6.1. Results

The TC-kernel is by far the most computationally heavy kernel. For this kernel, G::ARENA
demonstrates very good performance. As the triangle count is quite small for both Euroroad,
and Facebook (NIPS), it is the most interesting to look at the results of Hamsterster friendships
and the arXiv astro-ph. As this kernel is much bigger, and takes a longer time to execute,
the multi-threaded versions actually gain a lot of performance as indicated by Figure 5.3 and
5.6. On our machine, the multi-threaded version of G::EPOCH performs nearly as good as
G::ARENA. It is possible that it would be even better if the benchmarks were run on a machine
with additional CPU cores. For the PR-kernel however, the multithreaded variants performed
worse for every graph model. The reason seems to be that the overhead of spawning the tasks
on separate threads exceeds the performance gain of parallel execution.

6.1.3 Operations Benchmark
When looking at executing operations in the graph, such as inserting or deleting vertices, the
epoch based graph is by far the slowest, as shown by Tables 5.1 and 5.2. The operations
benchmark was done using a relatively small graph of 256 vertices, so if we were to scale the
graph even further, it would be even slower as indicated by GC bench in Figure 5.1. An
important note here, is that the operations benchmark did not use an access map to avoid
looking up indices in the graph that have already been visited. This means that operations
that insert or delete edges have to first locate the parent vertex by traversing the link-based
structure that is holding the vertices, and then append the edge to the list of edges. Other than
this, an interesting observation in the operations benchmark, is that Tables 5.7 and 5.8 both
suggest that the multithreaded version of G::ARC performs worse than its sequential version.
The reason seems to be that the work done in each iteration is too small to justify spawning
the task on a separate thread, thus yielding overhead that exceeds the gained performance of
parallel execution. This issue can be seen in the results of the GAP benchmark suite as well,
especially for the PR-kernel. Additionally, almost all operations (90% or 100%) were write
operations, meaning that every thread required to access the graph exclusively – leading to
extensive resource contention.

6.1.4 Performance
It is clear that the most performance gains come from the type of data structure that we
are able to store the nodes in. For the reference counting-based graph models, it is possible
to use a BTreeMap. A BTreeMap offers the best possible performance in terms of look-ups,
meanwhile it is also sorted, which many of the kernels in the GAP benchmark suite require.
For G::EPOCH, the vertices must be stored in a linked-list in order for the lock-free transactional
theory to work properly, so any graph with a large set of indices, and where we are not able
to store a fast access map of some kind will suffer from poor performance. This issue does
not appear in the GAP benchmark suite, as we have used a fast access map for the indices,
but in implementations such as GC Bench, the poor scalability is quite noticeable. It would
be very interesting if it was possible to implement a lock-free transactional adjacency list that
does not require a link-based data structure. To the best of our knowledge, there is currently
no work that presents a way of achieving this. One solution to speed up vertex location in the
G::EPOCH graph could perhaps be to store the vertices in a multi-dimensional array as well,
or perhaps even a skiplist.

6.1.5 Usability
The graph models are quite similar in terms of operability, see Section 5.4, except for some
cases. For example, in G::CC and G::GC, each node must implement the Trace trait. This is
often a non-issue, as Rust offers procedural macros that makes it very easy to automatically
implement the trait. This can, however, be a problem in the case where we want to use

50

6.2. Method

generic types, as each type that is stored within the node also has to implement the Trace
trait. Additionally, as the collection is global, the objects must be alive for the static lifetime.
In the future, it should be possible to store the collector inside the graph itself, thus eliminating
the need for the static lifetime.

When it comes to user error protection, G::ARENA operates on the graph via indices. This
means that the underlying object may be deleted from the arena while an index is held by
some other entity. A developer must therefore be extra careful when deleting entries in the
arena.

For the reference counting-based implementations, interior mutability is achieved via
std::cell::RefCell, which means that borrow checking is done during runtime rather than
statically. This means that breaking eventual ownership rules would cause a panic during
execution. For the most part, this is a non-issue, as typical operations that operate on the
actual graph oftentimes are a matter of a few lines of code.

As one has to be careful when it comes to borrowing, it is extremely important to be
careful when working with G::ARC. This graph uses read-and-write locks for synchronization.
For example, the lock can be poisoned as a result of a thread panic, or we can end up with a
deadlock if a write-lock is acquired when holding a read-lock. This issue is mitigated in the
lock-free transactional graph G::EPOCH, where it is not possible to run into any concurrency
issues. In our experiment, we actually observed some deadlocks in the early stages of the
G::ARC graph model and some borrow hazards in the G::RC solution.

With the reference counting-based graphs, handling cycles is also a problematic issue. With
G::CC it is necessary to manually call the cycle collector. The most problematic part of this,
is to decide when and where to perform the collection. The most obvious choice is to trigger
collection once the graph is constructed, or when a mutation occurs on the graph. However,
with more frequent cycle collection comes larger performance penalties. For short lived graphs,
it would be feasible to allow leakage of memory while the graph is alive, and then invoke the
cycle collector in the destructor of the graph in order to clean up the leaks once it goes out of
scope. For long lived graphs, it might not be feasible to allow memory leaks, as they might
grow arbitrarily big. In this case, it would be more fair to invoke the collector after some
predefined set of operations, similar to the collector in G::EPOCH. G::ARC and G::RC on the
other hand require extra caution not to end up with memory leaks. A possible solution is
to store strong references to every node in some data structure, and then use weak reference
counting within the graph itself. This way, any cycle in the graph would not lead to memory
leaks. However, a new problem arises, where it is possible that the weak references point to
some invalid object. Additionally, it is possible that no reference at all exists in the graph for
some node, meaning that it is stored to no avail. The issue here becomes to manage the data
structure holding the true references and making sure that they match whatever is stored as
weak references within the graph.

6.2 Method

The lack of formalized evaluation methodologies for graphs and graph operations has been a
troublesome problem for this thesis. The GAP benchmark suite is one of few attempts that
tackles this shortcoming. The suite mainly targets evaluations for large-scale graph processing,
which means that its suggested graphs are larger than what a typical computer can handle
and the kernels do not include graph mutations. Given the circumstances and lack of work
in the area, compromises had to be made, and the GAP benchmark suite was chosen after
all. The suite enabled a good foundation for benchmarking different types of read operations
on the graphs, and by adding GC bench, we also enabled measurements for allocation and
deallocation. Finally, by adding the operations benchmark, we were also able to measure the
impact of mutations made in a graph.

51

6.3. Use in Industry

A big problem that we see in our measurements is the need for evaluating for more graph
topologies. The chosen graphs are diverse, but it would be favorable to run the benchmarks
on other types of graphs as well. Ideally, one would vary one factor at a time, to be able to
isolate that the result is actually an effect of that very factor. For example, it would have
been good to measure graphs with the same amount of vertices and edges and only vary the
diameter of the graph. This would be a time consuming task, but it would make the results
much easier to interpret and draw conclusions from.

Another problem that we ran into is the immaturity of the Rust ecosystem. For example,
when porting the GAP benchmark suite to Rust, we ran into problems regarding parallel
libraries and had to build some dependencies from source in order to get the functionality we
were after. In some cases, there was not an available solution and we ended up doing a lot of
hacks to make it work properly.

When it comes to the evaluation of usability, it would be possible to conduct a quantitative
analysis and measure e.g. the number of entry points that allow for user errors. We decided
to not use a quantitative approach, because of the very few differences there are between the
different models. For example, the reference-count based graphs are open to the possibility
of borrow hazards. The likelihood of these could probably be measured, but it would be a
very tedious task, which is not justified by the small contribution it would mean to the rest
of the thesis. Instead, we have focused on identifying what types of user errors the graphs are
susceptible for at large. This means that we rather discuss things such as what types of user
errors it is possible to run into, rather than evaluating the probability of a user error. The same
goes for measuring the operability, where the differences between the graph representations are
very few due to Rust allowing us to expose a similar interface for all graph representations.
This makes us believe that simply identifying the differences is a sufficient evaluation.

6.3 Use in Industry

The use-case for Configura mainly includes traversals of nodes in long-lived graphs. This means
that the graphs do not necessarily have to be fast to construct, but rather fast to traverse.
For small graphs, the performance is not that important, as the difference in performance
between the graph models is not that big. For large graphs however, it is important to have a
representation that offers good performance. For this reason, we suggest that Configura should
use G::ARENA for their application, as it offers best performance. However, in cases where it is
difficult to make sure the indices for G::ARENA are valid, we instead recommend to use G::CC,
as it does not leak memory and the performance is very similar to G::RC. Once multi-threading
is widely available on the web, we also suggest G::EPOCH to be a suitable candidate.

6.4 The work in a wider context

By providing an evaluation and approaches to graph representations in Rust, we have provided
guidance to developers who want to represent graph-like data structures. By looking at the
usability, we are able to provide guidance on which graph model to use when usability is
the main focus. This allows developers to pick graph models that enable use without fear of
runtime errors, which sometimes can be the sole reason for choosing Rust as the programming
language in the first place. This feature can be critical for some applications, where a deadlock
or a borrow hazard during runtime would lead to devastating outcomes.

As for performance, we have provided an evaluation that allows developers to pick the right
memory model for their use-case, thus enabling them to minimize the amount of work made
in graph-related operations. This can have large impacts on the ability to develop programs
in Rust that are fast enough to be suitable for critical applications.

52

7 Conclusion

There are multiple ways of representing graphs in Rust. As for memory models, we have iden-
tified reference counting, tracing garbage collection and region-based allocation to be suitable
candidates. For concurrent settings, EBR is a good fit for Rust.

When it comes to performance, there is no silver bullet covering every use case, but the
memory models rather exhibit properties that work well for some graph topologies and bad for
others. Reference counting for example, demonstrates very good performance in the general
case, but when many references are cloned outside of the graph, the overhead is rather large.
Reference counting with possible cycle collection demonstrates slightly slower performance
than plain reference counting and is probably the best alternative in terms of performance to
handling garbage cycles and mitigating eventual memory leaks. Tracing garbage collection is
slightly slower than reference counting, but has the benefit of being able to handle cycles.

A contribution of this thesis is that previous work within the Rust community has mainly
discussed reference counting, tracing garbage collection and arena allocation for representing
graphs. In this thesis, we present an alternative way via a lock-free graph data structure using
EBR, that for some operations and graph topologies demonstrates better performance than
any other representation. Meanwhile, it also offers fearless concurrency, which the G::ARC
representation does not. However, the G::EPOCH representation demonstrates poor scalability,
which is an effect of using a link-based data structure to store its vertices.

In terms of operability, G::GC and G::CC require some trait implementations for their nodes
in order to be traceable, which can be a hindrance for complex types. When looking at the
user error protection software quality, G::ARENA can easily lead to invalid indices, which makes
it harder to work with. With the reference count based solutions, it is possible to run into
runtime errors in the form of borrow hazards or deadlocks.

7.0.1 Future work
We were not able to create a working implementation of G::IMMIX, but the initial experiments
we did on the collector showed promising results. It would thus be interesting to see how
another garbage collector other than the one used in G::MSGC performs compared to the other
models. Another interesting idea for future work is to get rid of the linked-list in the lock free
transactional graph and instead use some data structure that offers less than linear complexity
for look-up.

53

Bibliography

[1] arXiv astro-ph network dataset – KONECT. Apr. 2017. url: http://konect.uni-
koblenz.de/networks/ca-AstroPh.

[2] David Bacon, C. Attanasio, Han Lee, Vadakkedathu Rajan, and Stephen Smith. “Java
without the Coffee Breaks: A Nonintrusive Multiprocessor Garbage Collector”. In: ACM
SIGPLAN Notices 36 (Aug. 2002). doi: 10.1145/378795.378819.

[3] David F. Bacon, Perry Cheng, and V. T. Rajan. “A Unified Theory of Garbage Collec-
tion”. In: SIGPLAN Not. 39.10 (Oct. 2004), pp. 50–68. issn: 0362-1340. doi: 10.1145/
1035292.1028982. url: https://doi.org/10.1145/1035292.1028982.

[4] David F. Bacon and V. T. Rajan. “Concurrent Cycle Collection in Reference Counted
Systems”. In: Proceedings of the 15th European Conference on Object-Oriented Pro-
gramming. ECOOP ’01. Berlin, Heidelberg: Springer-Verlag, 2001, pp. 207–235. isbn:
3540422064.

[5] Scott Beamer, Krste Asanović, and David Patterson. The GAP Benchmark Suite. 2015.
arXiv: 1508.03619 [cs.DC].

[6] Stephen M Blackburn and Kathryn S McKinley. “Immix: a mark-region garbage collector
with space efficiency, fast collection, and mutator performance”. In: ACM SIGPLAN
Notices 43.6 (2008), pp. 22–32.

[7] Stephen M. Blackburn and Kathryn S. McKinley. “Ulterior Reference Counting: Fast
Garbage Collection without a Long Wait”. In: Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and Appli-
cations. OOPSLA ’03. Anaheim, California, USA: Association for Computing Machin-
ery, 2003, pp. 344–358. isbn: 1581137125. doi: 10.1145/949305.949336. url: https:
//doi.org/10.1145/949305.949336.

[8] Hans-J. Boehm. “Reducing Garbage Collector Cache Misses”. In: SIGPLAN Not. 36.1
(Oct. 2000), pp. 59–64. issn: 0362-1340. doi: 10.1145/362426.362438. url: https:
//doi.org/10.1145/362426.362438.

[9] George E. Collins. “A Method for Overlapping and Erasure of Lists”. In: Commun.
ACM 3.12 (Dec. 1960), pp. 655–657. issn: 0001-0782. doi: 10.1145/367487.367501.
url: https://doi-org.e.bibl.liu.se/10.1145/367487.367501.

54

http://konect.uni-koblenz.de/networks/ca-AstroPh
http://konect.uni-koblenz.de/networks/ca-AstroPh
https://doi.org/10.1145/378795.378819
https://doi.org/10.1145/1035292.1028982
https://doi.org/10.1145/1035292.1028982
https://doi.org/10.1145/1035292.1028982
https://arxiv.org/abs/1508.03619
https://doi.org/10.1145/949305.949336
https://doi.org/10.1145/949305.949336
https://doi.org/10.1145/949305.949336
https://doi.org/10.1145/362426.362438
https://doi.org/10.1145/362426.362438
https://doi.org/10.1145/362426.362438
https://doi.org/10.1145/367487.367501
https://doi-org.e.bibl.liu.se/10.1145/367487.367501

Bibliography

[10] D. Dechev, P. Pirkelbauer, and B. Stroustrup. “Understanding and Effectively Prevent-
ing the ABA Problem in Descriptor-Based Lock-Free Designs”. In: 2010 13th IEEE In-
ternational Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing. May 2010, pp. 185–192. doi: 10.1109/ISORC.2010.10.

[11] L. Deutsch and Daniel Bobrow. “An Efficient, Incremental, Automatic Garbage Collec-
tor”. In: Communications of the ACM 19 (Sept. 1976), pp. 522–. doi: 10.1145/360336.
360345.

[12] Euroroad network dataset – KONECT. Apr. 2017. url: http://konect.uni-koblenz.
de/networks/subelj_euroroad.

[13] Facebook (NIPS) network dataset – KONECT. Apr. 2017. url: http://konect.uni-
koblenz.de/networks/ego-facebook.

[14] Daniel Frampton, Stephen Blackburn, Luke Quinane, and John Zigman. “Efficient Con-
current Mark-Sweep Cycle Collection”. In: (Jan. 2009).

[15] Hamsterster friendships network dataset – KONECT. Apr. 2017. url: http://konect.
uni-koblenz.de/networks/petster-friendships-hamster.

[16] Hadadji Hamza and S. Counsell. “Region-Based RTSJ Memory Management: State of
the art”. In: Science of Computer Programming 77 (May 2012), pp. 644–659. doi: 10.
1016/j.scico.2012.01.002.

[17] Thomas E Hart, Paul E McKenney, Angela Demke Brown, and Jonathan Walpole. “Per-
formance of memory reclamation for lockless synchronization”. In: Journal of Parallel
and Distributed Computing 67.12 (2007), pp. 1270–1285.

[18] Matthew Hertz and Emery D. Berger. “Quantifying the Performance of Garbage Col-
lection vs. Explicit Memory Management”. In: Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications. OOPSLA ’05. San Diego, CA, USA: Association for Computing Machinery,
2005, pp. 313–326. isbn: 1595930310. doi: 10.1145/1094811.1094836. url: https:
//doi.org/10.1145/1094811.1094836.

[19] T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.-P. Lesot, and F. Parain. “Region-based
memory management for real-time Java”. In: Fourth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing. ISORC 2001. May 2001, pp. 387–
394. doi: 10.1109/ISORC.2001.922863.

[20] Vojtěch Horký, Peter Libič, Antonin Steinhauser, and Petr Tůma. “DOs and DON’Ts
of Conducting Performance Measurements in Java (Tutorial Paper)”. In: Proc. 6th
ACM/SPEC International Conference on Performance Engineering (ICPE). New York,
NY, USA: ACM, 2015, pp. 337–340. isbn: 978-1-4503-3248-4. doi: 10.1145/2668930.
2688820. url: http://doi.acm.org/10.1145/2668930.2688820.

[21] Geneva International Organization for Standardization. and Geneva International Elec-
trotechnical Commission. “Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality mod-
els.” In: (2011).

[22] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El
Emam, and J. Rosenberg. “Preliminary guidelines for empirical research in software
engineering”. In: IEEE Transactions on Software Engineering 28.8 (Aug. 2002), pp. 721–
734. issn: 2326-3881. doi: 10.1109/TSE.2002.1027796.

[23] Jérôme Kunegis. “KONECT: The Koblenz Network Collection”. In: Proceedings of
the 22nd International Conference on World Wide Web. WWW ’13 Companion. Rio
de Janeiro, Brazil: Association for Computing Machinery, 2013, pp. 1343–1350. isbn:
9781450320382. doi: 10.1145/2487788.2488173. url: https://doi-org.e.bibl.
liu.se/10.1145/2487788.2488173.

55

https://doi.org/10.1109/ISORC.2010.10
https://doi.org/10.1145/360336.360345
https://doi.org/10.1145/360336.360345
http://konect.uni-koblenz.de/networks/subelj_euroroad
http://konect.uni-koblenz.de/networks/subelj_euroroad
http://konect.uni-koblenz.de/networks/ego-facebook
http://konect.uni-koblenz.de/networks/ego-facebook
http://konect.uni-koblenz.de/networks/petster-friendships-hamster
http://konect.uni-koblenz.de/networks/petster-friendships-hamster
https://doi.org/10.1016/j.scico.2012.01.002
https://doi.org/10.1016/j.scico.2012.01.002
https://doi.org/10.1145/1094811.1094836
https://doi.org/10.1145/1094811.1094836
https://doi.org/10.1145/1094811.1094836
https://doi.org/10.1109/ISORC.2001.922863
https://doi.org/10.1145/2668930.2688820
https://doi.org/10.1145/2668930.2688820
http://doi.acm.org/10.1145/2668930.2688820
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1145/2487788.2488173
https://doi-org.e.bibl.liu.se/10.1145/2487788.2488173
https://doi-org.e.bibl.liu.se/10.1145/2487788.2488173

Bibliography

[24] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. “Graph Evolution: Densification
and Shrinking Diameters”. In: ACM Trans. Knowledge Discovery from Data 1.1 (2007),
pp. 1–40.

[25] Yi Lin, Stephen M. Blackburn, Antony L. Hosking, and Michael Norrish. “Rust as a
Language for High Performance GC Implementation”. In: SIGPLAN Not. 51.11 (June
2016), pp. 89–98. issn: 0362-1340. doi: 10.1145/3241624.2926707. url: https://doi.
org/10.1145/3241624.2926707.

[26] Julian McAuley and Jure Leskovec. “Learning to Discover Social Circles in Ego Net-
works”. In: Advances in Neural Information Processing Systems. 2012, pp. 548–556.

[27] John McCarthy. “Recursive Functions of Symbolic Expressions and Their Computation
by Machine, Part I”. In: Commun. ACM 3.4 (Apr. 1960), pp. 184–195. issn: 0001-0782.
doi: 10.1145/367177.367199. url: https://doi.org/10.1145/367177.367199.

[28] M. M. Michael. “Hazard pointers: safe memory reclamation for lock-free objects”. In:
IEEE Transactions on Parallel and Distributed Systems 15.6 (June 2004), pp. 491–504.
issn: 2161-9883. doi: 10.1109/TPDS.2004.8.

[29] M. M. Michael. “Hazard pointers: safe memory reclamation for lock-free objects”. In:
IEEE Transactions on Parallel and Distributed Systems 15.6 (June 2004), pp. 491–504.
issn: 2161-9883. doi: 10.1109/TPDS.2004.8.

[30] Zachary Painter, Christina Peterson, and Damian Dechev. “Lock-Free Transactional Ad-
jacency List”. In: Languages and Compilers for Parallel Computing. Ed. by Lawrence
Rauchwerger. Cham: Springer International Publishing, 2019, pp. 203–219. isbn: 978-3-
030-35225-7.

[31] M. B. R. Pandit and N. Varma. “A Deep Introduction to AI Based Software Defect
Prediction (SDP) and its Current Challenges”. In: TENCON 2019 - 2019 IEEE Region
10 Conference (TENCON). 2019, pp. 284–290.

[32] Harel Paz, David F. Bacon, Elliot K. Kolodner, Erez Petrank, and V. T. Rajan. “An
Efficient On-the-Fly Cycle Collection”. In: ACM Trans. Program. Lang. Syst. 29.4 (Aug.
2007), 20–es. issn: 0164-0925. doi: 10.1145/1255450.1255453. url: https://doi.
org/10.1145/1255450.1255453.

[33] Girish Maskeri Rama and Avinash Kak. “Some Structural Measures of API Usability”.
In: Softw. Pract. Exper. 45.1 (Jan. 2015), pp. 75–110. issn: 0038-0644. doi: 10.1002/
spe.2215. url: https://doi.org/10.1002/spe.2215.

[34] Rifat Shahriyar, Stephen Michael Blackburn, Xi Yang, and Kathryn S. McKinley. “Tak-
ing off the Gloves with Reference Counting Immix”. In: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems Lan-
guages & Applications. OOPSLA ’13. Indianapolis, Indiana, USA: Association for Com-
puting Machinery, 2013, pp. 93–110. isbn: 9781450323741. doi: 10.1145/2509136.
2509527. url: https://doi.org/10.1145/2509136.2509527.

[35] Lovro Šubelj and Marko Bajec. “Robust Network Community Detection Using Balanced
Propagation”. In: Eur. Phys. J. B 81.3 (2011), pp. 353–362.

[36] Dan Tamir, Oleg V. Komogortsev, and Carl J. Mueller. “An Effort and Time Based
Measure of Usability”. In: Proceedings of the 6th International Workshop on Software
Quality. WoSQ ’08. Leipzig, Germany: Association for Computing Machinery, 2008,
pp. 47–52. isbn: 9781605580234. doi: 10.1145/1370099.1370111. url: https://doi-
org.e.bibl.liu.se/10.1145/1370099.1370111.

[37] Paul R. Wilson. “Uniprocessor Garbage Collection Techniques”. In: Proceedings of
the International Workshop on Memory Management. IWMM ’92. Berlin, Heidelberg:
Springer-Verlag, 1992, pp. 1–42. isbn: 354055940X.

56

https://doi.org/10.1145/3241624.2926707
https://doi.org/10.1145/3241624.2926707
https://doi.org/10.1145/3241624.2926707
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/1255450.1255453
https://doi.org/10.1145/1255450.1255453
https://doi.org/10.1145/1255450.1255453
https://doi.org/10.1002/spe.2215
https://doi.org/10.1002/spe.2215
https://doi.org/10.1002/spe.2215
https://doi.org/10.1145/2509136.2509527
https://doi.org/10.1145/2509136.2509527
https://doi.org/10.1145/2509136.2509527
https://doi.org/10.1145/1370099.1370111
https://doi-org.e.bibl.liu.se/10.1145/1370099.1370111
https://doi-org.e.bibl.liu.se/10.1145/1370099.1370111

Bibliography

[38] M. F. Zibran, F. Z. Eishita, and C. K. Roy. “Useful, But Usable? Factors Affecting the
Usability of APIs”. In: 2011 18th Working Conference on Reverse Engineering. 2011,
pp. 151–155.

57

A Glossary

A.1 Abbrevations

BC Betweenness Centrality.

BFS Breadth-First Search.

CAS Compare-And-Swap.

CC Connected Components.

EBR Epoch-Based Reclamation.

HPBR Hazard-Pointer-Based Reclamation.

KONECT the Koblenz Network Collection.

LFRC Lock-Free Reference Counting.

OLS Ordinary least squares.

PR Page Rank.

QSBR Quiescent-State-Based Reclamation.

RAII Resource Acquisition Is Initialization.

RTSJ Real-Time Specification for Java.

SSSP Single-Source Shortest Path.

TC Triangle Counting.

58

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Aim
	Research questions
	Delimitations
	Industry Context

	Background
	The Rust Programming Language
	Performance
	Usability
	Graphs
	Vertex and Edge Representations
	Garbage Collection
	Reference Counting
	Region-based allocation
	Concurrency and Parallelism
	Memory Reclamation in Concurrent Systems

	Related Work
	Reference Counting
	Tracing Garbage Collection
	Region-based Memory Management
	Memory Management in Concurrent Systems
	Graph representations
	Benchmarks
	Usability
	Measurements

	Method
	Measuring Performance
	Experiment Planning
	Execution
	Analysis

	Results
	GC Bench
	The GAP Benchmark Suite
	Operations
	Usability

	Discussion
	Results
	Method
	Use in Industry
	The work in a wider context

	Conclusion
	Bibliography
	Glossary
	Abbrevations

