
Master of Science Thesis in Computer Science and Software Engineering
Department of Electrical Engineering, Linköping University, 2020

A Comparison of Optimal
Scanline Voxelization
Algorithms

Tim Håkansson

Master of Science Thesis in Computer Science and Software Engineering

A Comparison of Optimal Scanline Voxelization Algorithms:

Tim Håkansson

LiTH-ISY-EX--20/5307--SE

Supervisor: Harald Nautsch
isy, Linköping University

Åsa Detterfelt
MindRoad

Jens Ogniewski
MindRoad

Examiner: Ingemar Ragnemalm
isy, Linköping University

Division of Information Coding
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2020 Tim Håkansson

Abstract

This thesis presents a comparison between different algorithms for optimal scan-
line voxelization of 3D models. As the optimal scanline relies on line voxelization,
three such algorithms were evaluated. These were Real Line Voxelization (RLV),
Integer Line Voxelization (ILV) and a 3D Bresenham line drawing algorithm. RLV
and ILV were both based on voxel traversal by Amanatides and Woo. The al-
gorithms were evaluated based on runtime and the approximation error of the
integer versions, ILV and Bresenham. The result was that RLV performed bet-
ter in every case, with ILV being 20-250% slower and Bresenham being 20-500%
slower. The error metric used was the Jaccard distance and generally started at
20% and grew up towards 25% for higher voxel resolutions. This was true for
both ILV and Bresenham. The conclusion was that there is no reason to use any
of the integer versions over RLV. As they both performed and approximated the
original 3D model worse.

iii

Acknowledgments

I would like to thank my supervisors at Mindroad, Åsa Detterfelt and Jens Og-
niewski, for guiding me through this thesis. I would also like to thank my col-
leagues at Mindroad for the great company during our breaks. A thanks also
goes out to my examiner Ingemar Ragnemalm, both for the help provided during
the thesis, but also for the great courses he provided during my studies. A special
thanks goes out to my family for all their love and support during my education.

Linköping, June 2020
Tim Håkansson

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aim . 2
1.3 Research Questions . 2
1.4 Delimitations . 2
1.5 Mindroad . 3

2 Background 5
2.1 GPU-Programming . 5

2.1.1 OpenGL . 6
2.1.2 CUDA . 6

2.2 Amazon Web Service . 7
2.3 Voxelization . 7
2.4 Raycasting . 8

3 Theory 9
3.1 Line Voxelization . 9

3.1.1 Real Line Voxelization . 10
3.1.2 Integer Line Voxelization . 11
3.1.3 3D Bresenham Algorithm 11

3.2 Model Voxelization . 12
3.2.1 Floating-Point Optimal Scanline 12
3.2.2 Integer Optimal Scanline . 14
3.2.3 Rasterization . 14
3.2.4 Depth Buffer . 15

3.3 Error Analysis . 15
3.3.1 Relative Error . 15
3.3.2 Jaccard Distance . 16

4 Method 17
4.1 Implementation . 17

4.1.1 CUDA-OpenGL Interoperability 17
4.1.2 Floating-Point Voxelization 18

vii

viii Contents

4.1.3 Integer Voxelization . 19
4.1.4 Bresenham Algorithm . 20
4.1.5 Voxel Rendering . 21

4.2 Evaluation . 22
4.2.1 Performance Analysis . 22
4.2.2 Error Analysis . 23

5 Results 25
5.1 Voxelization . 25
5.2 Performance Analysis . 25
5.3 Error Analysis . 30

6 Discussion 31
6.1 Results . 31

6.1.1 Performance of Models . 31
6.1.2 Performance Between RLV and ILV 32
6.1.3 Performance Between ILV and Bresenham 32
6.1.4 Performance Data . 32
6.1.5 Error Analysis . 33

6.2 Method . 34
6.2.1 Performance Analysis . 34
6.2.2 Error Analysis . 34

6.3 Future Work . 34

7 Conclusion 35
7.1 Research Questions . 35
7.2 Choice of Algorithm . 36

A Appendix 39
A.1 3D Bresenham Algorithm . 39
A.2 6-Connected Bresenham Algorithm Modification 40
A.3 CUDA-OpenGL Interoperability . 41
A.4 Voxelizations . 42
A.5 Performance Data . 45
A.6 Voxelization Error . 45

Bibliography 51

1
Introduction

This chapter gives the reader an introduction to voxels, its uses and ways to create
voxels from a model. It also serves the purpose of motivating the thesis, as well
as describing the problem it is out to solve. Finally, it defines the delimitations of
the thesis and presents the company, at which this thesis was conducted at.

1.1 Background

In computer graphics, a 3D model is built up of triangles which describes the sur-
face of the model. This means it does not store any information to represent the
inside of the model. In order to represent the inside, a volumetric data structure
is needed. Usually, this is done by storing voxels in a uniform 3D grid. A voxel
can be described as data at a position in a grid. This can be any form of data, such
as occupancy, color, material or density.

As voxels are just a way to represent volumetric data, they have been used in a
wide range of applications, such as global illumination [2], medical imaging [3, 4]
and collision culling [5]. These applications either store a voxel representation
of models (especially true for medical imaging) or need to convert models into
voxels. This process is called voxelization and has been widely studied in the past.
Some methods for voxelizations include triangle-box intersection [6], rasteriza-
tion [7] and depth buffer [20].

Recently, a study was published by Zhang et al. [9] proposing a new method to
voxelize a model. The basics of the method is to voxelize the model by performing
line voxelization at different stages. This method is the basis of this thesis and
will further be called the optimal scanline.

1

2 1 Introduction

1.2 Aim

This thesis aims to do an investigation of how the line voxelization algorithm
affects the performance of the optimal scanline. This includes both floating-point
and integer line voxelizations.

The thesis also investigates the approximation error caused by using the in-
teger versions of the algorithm. This was done in [9], but the authors only com-
pared the voxel count. Which means if a voxel is moved somewhere else, it would
not produce any error. As such, this thesis aims to measure this error in another
metric, which can describe those errors.

1.3 Research Questions

With the aim of the thesis defined, two research questions are formed as a base-
line of the thesis. These are presented below:

1. Which line voxelization algorithm performs best for the optimal scanline?

2. How great is the approximation error of the integer versions of the optimal
scanline?

A better performance in this case is defined as how fast the execution of the vox-
elization is. It is not a metric of the error or the memory usage of the algorithms.

1.4 Delimitations

The implementation of the thesis ran on Amazon Web Services (AWS), on a com-
puter running Ubuntu 18.04 with an NVIDIA Tesla T4 graphics card with driver
version 440.59.

The rendering of the voxelization was done using OpenGL. As the focus was
not on supporting older devices, the OpenGL version 4.6 was used.

The computing language of choice was CUDA, as such, other languages were
not considered for the implementation. Again, as there is no need to support
older devices, CUDA 10.2 was used.

The line algorithms that were evaluated were limited to a voxel traversal algo-
rithm by Amanatides and Woo [1], its integer version and Bresenham. As Bresen-
ham is predominantly a 2D line drawing algorithm, it was extended to 3D using
a method proposed by Liu and Cheng [10].

The evaluations were also limited to three different models and voxel grid
resolutions between 128-2048.

1.5 Mindroad 3

1.5 Mindroad

This master thesis was conducted on behalf of MindRoad. MindRoad is a soft-
ware company which specializes in embedded systems, web development and
mobile applications. They also provide courses in software development, such as
C++, Python, GPU-programming, Linux and driver development.

2
Background

This chapter serves the purpose of giving the reader a better understanding of
central concepts throughout the thesis. It will give an introduction to GPU-
programming, AWS, voxelization and raycasting.

2.1 GPU-Programming

In GPU-programming, there are two different subjects to discuss, rendering and
computing. Rendering is where the GPU performs calculations, which results in
some visual output. This most often means taking triangles, performing differ-
ent transformations on them and then drawing them to a screen. Computing is
similar, but instead of resulting in graphics on a screen, the results are stored in
video memory as data. This is useful when algorithms can make use of the GPU’s
parallelization.

In order for the GPU to do any form of calculations, an API is needed to
interact with it. For rendering, there are API:s such as OpenGL, DirectX and
Vulkan. API:s used for computing include CUDA and OpenCL. All the rendering
API:s above also support computing, but it is not what their general use is.

The chosen API:s for this thesis were OpenGL and CUDA, and are presented
in the next sections.

5

6 2 Background

2.1.1 OpenGL

OpenGL [11], short for Open Graphics Library, is technically not an API but an
open specification which defines functions used for 2D and 3D graphics. As it is a
specification, there are implementations for most platforms, including Windows,
Linux, MacOS1, Android and iOS1.

To render with OpenGL, shaders are used to transform and color primitives,
such as triangles. The shaders are, in a sense, programs which are executed on
the GPU. When rendering a model, the GPU can run these shaders in parallel
either per vertex, triangle or pixel, depending on the shader. These are coded in
GLSL, which supplies the developer with a wide range of vector math functions.

OpenGL requires two shader programs in order to operate, the vertex and
fragment shader. The input to the vertex shader is, of course, vertices. Often
these vertices contain a position, normal and texture coordinate, and define a
corner of a triangle. The vertex shader then performs transformations on the ver-
tices in order to move or in any way alter the triangles. The result is then sent
to a rasterizer, which turns these triangles into fragments. These fragments are
then the input of the fragment shader. In simplest terms, fragments are pixels
on the screen before they have been processed by the fragment shader. The frag-
ment shader is then able to perform calculations which changes the color of the
fragment. This can be based on normals, light positions, distance to the camera,
etc. The resulting color is then the color of the pixel on the screen.

There are two more programmable shaders in OpenGL, tessellation and ge-
ometry. These are not required to render to the screen and will therefore not be
discussed further in this thesis.

2.1.2 CUDA

CUDA is an API for performing general computing on a GPU. This API is be-
ing developed by NVIDIA and is only available on NVIDIA GPU:s. However, it
is cross-platform in terms of operating systems, as it is supported on Windows,
Linux and MacOS.

CUDA is designed as a C/C++ extension and compiles using NVIDIA CUDA
Compiler (NVCC). This compiler in turn makes use of a host compiler (such as
g++) in order to compile the C/C++ code [14]. As such, there should not be any
performance difference in the CPU code by using NVCC.

CUDA also has two different API:s which the developer can interact with,
the driver and the runtime API. The difference between them is minor, runtime
CUDA is higher-level and is able to link the CUDA kernels into the compiled ex-
ecutable. Kernels are basically CUDA programs, much like shaders are OpenGL
programs. The driver API on the other hand is lower-level and requires the pro-
gram to read the CUDA kernels from an externally compiled cuda binary.

1OpenGL is currently deprecated (but still works) on Apple devices in favor of Metal [12, 13]

2.2 Amazon Web Service 7

2.2 Amazon Web Service

AWS [15] is a set of cloud computing services provided by Amazon. These ser-
vices can provide the user with GPU computing, database management, cloud
storage and many more services.

To interact with these services the protocol SSh is used. This provides a way
of connecting to a server with a terminal interface. A problem with this, for the
thesis, is that rendering is required to test the voxelization results. In order to get
a graphical interface on an AWS, Thinlinc [16] was used. ThinLinc is a software
which runs a desktop environment on a server and transfers the display over a
network. However, ThinLinc in itself does not support 3D hardware acceleration,
which is needed by OpenGL. As such, VirtualGL [17] was used when running
the voxelization over ThinLinc. This enables ThinLinc to run OpenGL with 3D
hardware acceleration. To run a program with VirtualGL simply prepend the
program with vglrun. For example, run vglrun glxgears to run the Linux
GLX demo in ThinLinc.

2.3 Voxelization

In 2D, the process of turning triangles and other geometrical shapes into pixels
is called rasterization. Rasterization is required to render shapes onto a screen,
as monitors cannot handle continuous shapes and have to discretize them into
pixels. An example of rasterization can be seen in Figure 2.1. Voxelization is
the 3D version of rasterization, where instead of marking pixels in a 2D plane,
it marks voxels in a 3D space. Recall that a voxel can store any form of data, be
it color, material or density. What is stored is dependent on the use case of the
voxels. In this thesis, only occupancy is stored, that is if the voxel exists or not.

Figure 2.1: Rasterization of a triangle

With voxelization defined there are two other topics that need discussing. The
first of which is if the algorithm supports surface or solid voxelization. Surface
voxelization means the algorithm only voxelizes the outer surface of the model,
and therefore leaves the voxelization with an empty interior. Solid voxelization is
the opposite of that, filling the interior with voxels. In this thesis, only surface
voxelization will be considered, due to the optimal scanline only supporting it.

8 2 Background

The other topic is the connectivity of the voxelization. There are three types of
connectivity in a 3D voxelization, 6-, 18- and 26-connected. The number signifies
how many possibilities there are for two voxels to be considered connected. A 2D
example is seen in Figure 2.2, where it is either 4- or 8-connected. Similarly in
3D, two voxels are 26-connected if they share either a face, an edge or a corner be-
tween them. Two voxels are 18-connected if they share a face or an edge between
them. Finally, two voxels are 6-connected if they share a face between them. The
authors of the optimal scanline claim the method can produce any voxelization
connectivity, but mainly focuses on 6-connected. However, for the scanlines to
work, 6-connected line voxelization is required.

Figure 2.2: Connectivity in the 2D case, where the light gray squares are
connected to the dark gray square. The left figure is 4-connected, whilst the
right is 8-connected.

2.4 Raycasting

Raycasting is a rendering technique where lines, often called rays, are being sent
out from the camera. If these rays intersect with an object in the world, that part
of the object should be visible on the screen. Information such as color, depth and
material of the object can be retrieved by looking at where the ray intersected.

An early example of raycasting is its use in Wolfenstein 3D [18]. In this game,
a ray is being sent out for each column of the screen. If a ray hits a wall, the game
renders a vertical line with the height depending on the distance to the wall. The
color of the pixels in the line is then dependent on the texture of the wall.

Nowadays, raycasting can be performed for each pixel on the screen. That
is, for each pixel, send out a ray from the camera and color the pixel depending
on what its ray intersects with. As such, there is no need to perform any mesh
rendering and only objects that are visible are being rendered. For some use cases,
this might be an optimal solution. It is however an expensive operation if the use
case is to render highly detailed triangle meshes, since it is difficult to find which
triangle the ray intersects with. This is because there are potentially thousands of
triangles per model and millions of rays to test. Cases where raycasting is better
to use are voxel grids, as there are algorithms to traverse it without evaluating
every voxel. One such technique is called raymarching which marches through
all voxels the ray goes through. This is then terminated when a voxel is found or
when the ray exits the scene.

3
Theory

This chapter presents the literature used in order to answer the research ques-
tions. It starts off with defining line voxelization and the three algorithms used.
Then the optimal scanline is presented together with other voxelization tech-
niques. Finally, some error metrics are presented, one of which is used as part
of the final results.

3.1 Line Voxelization

Line voxelization is a way of generating voxels based on a 3D line. This is needed
for the optimal scanline method to work, as this is how the scanlines are gener-
ated. In this thesis, line voxelization defines all voxels in a grid being touched by
a line. This is similar to how lines are drawn to a screen in 2D. An example of line
voxelization can be seen in Figure 3.1. To determine which voxels are touching
the line, three algorithms are introduced in the upcoming sections.

Figure 3.1: Line voxelization, where all cells touching the line is marked as
voxel. This works the same in 3D, but with an additional axis.

9

10 3 Theory

3.1.1 Real Line Voxelization

Amanatides and Woo [1] proposed a method of ray marching voxels in a uniform
grid. This can also be used to voxelize lines and will further be called Real Line
Voxelization (RLV). The basis of the algorithm is the line equation

p = p0 + vt,

where p is a position on the line, p0 is the start position of the line, v is the
direction of the line (normalized) and t is how much the direction is scaled.

When the algorithm starts, it initializes t as

tx =
p1,x − p0,x

vx
,

where p1,x is the x-position of the next voxel in the x-axis, as seen in Figure 3.2.
This is calculated similarly for each component of t. Each iteration of the algo-
rithm evaluates tmin as min(tx, ty , tz). Let’s assume tmin = tx. This means the next
voxel is in the x-direction. Again, from Figure 3.2, p1,x is closer to p0 compared
to p1,y and therefore has a smaller t value. This means the next voxel would be
placed to the right of p0. The t for the next iteration is calculated by subtracting
all of its components by tmin.

Finally assign

tx =
|pi,x − pi−1,x |

vx
=

1
vx

,

where pi,x is the x-position of the i’th voxel in the x-direction. Here the grid
is assumed to have a voxel size of 1, meaning |pi,x − pi−1,x | = 1. After this the
iteration is restarted. The iteration is then terminated when the sum of all tmin
exceeds the length of the line.

v

p0

p1,x

p1,y

Figure 3.2: How p1,x and p1,y are defined given a start position, p0, and a
direction, v

3.1 Line Voxelization 11

3.1.2 Integer Line Voxelization

Integer Line Voxelization (ILV) follows the same structure as RLV except it avoids
the floating-point arithmetics and divisions. The changes needed to avoid floating-
points are adapted from Zhang et al. [9].

Having RLV as a basis, ILV requires three changes. Firstly, the initial t is
calculated from the center of the start voxel, which means

p1,x − p0,x =
1
2
,

and therefore 
tx =

1
2∆X

ty =
1

2∆Y

tz =
1

2∆Z

,

where ∆X denotes the length of the line in the x-axis. ∆Y and ∆Z are defined
similarly.

Secondly, since only the relative sizes of t’s components are needed, the equa-
tion can therefore be multiplied with

2∆X∆Y∆Z,

to avoid fractions. As such, the integer version of tx is denoted Tx and can be
described as

Tx = ∆Y∆Z. (3.1)

Ty and Tz are described similarly.
Lastly, the iteration of the algorithm follows RLV, replacing t with T , but the

assignment to tx in the end is instead

Tx = 2∆Y∆Z,

if Tmin = Tx. This follows Equation 3.1, but multiplied with 2. The reason is that
before T was calculated to traverse half a voxel, multiplying it by 2 then traverses
a whole voxel.

3.1.3 3D Bresenham Algorithm

The 3D version of the Bresenham algorithm presented by Liu and Cheng [10]
follows the original by Bresenham [19] rather nicely. The 3D algorithm starts off
with a few assumptions about the line, ∆X ≥ ∆Y ≥ 0 and ∆X ≥ ∆Z ≥ 0, these
are defined the same as in the previous section.

In the original Bresenham an error in the y-axis is initialized to

ey = 2∆Y − ∆X.

12 3 Theory

Then for each iteration, if the current x is greater than X1, terminate the iteration.
Otherwise set the current voxel and increment x by one. Following that, check if
the error of the line is greater than 0. If it is, increase y by one and decrease the
error, otherwise increase the error. Then restart the loop. The change in the error
is defined as e

′
y = ey + 2(∆Y − ∆X) , ey ≥ 0

e′y = ey + 2∆Y , ey < 0
.

To extend the algorithm to 3D, Liu and Cheng added another error, ez , which
kept track of when z should increase. This works the same way as ey and is
evaluated after ey . A pseudo code of the algorithm can be found in Appendix A.1.

3.2 Model Voxelization

As mentioned in the introduction, voxelization is a way of turning a 3D model or
scene into voxel data. This can be done in a wide range of ways and is still being
researched today. Four such techniques, two of which are based on the optimal
scanline, are presented in the following sections.

3.2.1 Floating-Point Optimal Scanline

One of the more recent works in voxelization include work done by Zhang et al. [9].
This algorithm, called optimal scanline, uses line voxelization as its core concept.
All its calculations are done for each triangle of the model. The algorithm first
sorts the vertices of a triangle based on its most dominant axis. This axis is de-
fined as the x-, y- or z-axis which most aligns with the triangle’s normal. It can be
determined by choosing the axis with the greatest absolute value of the normal’s
components. That is, choose the axis which matches max(|nx |, |ny |, |nz |), where n
is the normal of the triangle. The dominant axis will further be assumed to be
the z-axis.

With the vertices of the triangle sorted, it performs line voxelizations between
each of the vertices using RLV. This results in all the edges of the triangle being
voxelized.

In order to fill the interior of the triangle, it splits the edges into slices in
the z-axis. Where each edge has the same integer z-value. Then, for each slice,
perform 2D line voxelization between the edges of the triangle. This is shown
in Figure 3.3. The figure also shows that not every edge voxel needs to contain
a scanline endpoint. That is where the optimal keyword of the algorithm comes
in. The authors propose a theorem stating that, there exists a distance, l, where
there cannot exist a voxel between two parallel lines. This distance can be seen
in Figure 3.4. Intuitively, the distance can be seen to be the length of the voxel’s
diagonal projected onto the scanline direction, dsl . Furthermore, the length, l,
can be calculated as |dsl,x |+ |dsl,y |. To prove this the scanline can be classified into
four cases, all the combination of the signs of dsl . The result is the four following

3.2 Model Voxelization 13

Figure 3.3: Left figure shows a slice of the edges of the triangle together
with its voxelization shown in gray. The right figure shows how the optimal
scanlines are chosen and the resulting voxelization in light gray.

y

x

dsl

l

Figure 3.4: A voxel, in gray, being intersected with two parallel lines with a
distance l between them. The direction of the scanline is labeled dsl .

equations: 
l = ((0, 1) − (1, 0)) · dsl , dsl,x < 0 < dsl,y

l = ((1, 0) − (0, 1)) · dsl , dsl,y < 0 < dsl,x

l = ((0, 0) − (1, 1)) · dsl , dsl,x, dsl,y < 0

l = ((1, 1) − (0, 0)) · dsl , 0 < dsl,x, dsl,y

The values (0, 0), (1, 1), (1, 0) and (0, 1) are the corners of the voxel. They are used
to calculate the diagonal that aligns with dsl . Calculating the dot product of each
of the equations results in l = |dsl,x | + |dsl,y |.

14 3 Theory

3.2.2 Integer Optimal Scanline

The way integer voxelization of the optimal scanline is handled is a bit different
from the floating-point one. Since the scanline direction and the scanline length
are both floating-points, these cannot be used. Instead, it makes use of an iter-
ative approach, where it steps through the edge voxels of the triangle until the
voxel is too far away from the previous scanline. How exactly it was derived can
be found in [9], but the final theory is presented below (assuming z is the most
dominant axis).

To start off, two boundary variables are defined, called Clower and Cupper .
These are defined as{

Clower = ∆YXa − ∆XY a − |∆X | − |∆Y |
Cupper = ∆YXa − ∆XY a + |∆X | + |∆Y |

,

where (Xa, Y a) and (Xb, Y b) are the endpoints of the previous scanline and ∆X =
Xb − Xa, ∆Y = Y b − Y a. Each iteration, the algorithm steps the edge voxelization
by one voxel and calculate a variable called Ck to be

Ck = ∆YXk − ∆XYk ,

where (Xk , Yk) is the k’th voxel on the edge, with k=0 being the previous scanline
endpoint. If this variable is outside the boundaries, Clower and Cupper , the voxel
is too far away from the previous scanline and (Xk−1, Yk−1) is chosen as the next
scanline endpoint. This iteration is performed separately for both the edges. As
a triangle has three edges and not two, the voxels on the edge from v1 to v2 are
merged with the voxels on the edge from v2 to v3. Those two edges are therefore
counted as a single edge.

3.2.3 Rasterization

Another technique used for surface voxelization utilizes the GPU rasterizer in
order to optimize the voxel generation. One such technique was presented by
Crassin and Green [7]. The basic idea is that, for every triangle in the model, find
the triangle’s most dominant axis and render it from that direction. In practice,
this means swapping the dominant axis with the z-axis in a vertex shader. The
triangle is then sent to the rasterizer which outputs fragments of the triangle. The
voxel coordinate is then simply the position of the fragment and its depth value.
Then the axes are swapped back from before in order to place it correctly in the
scene. Finally it writes the coordinate to a 3D texture which stores the voxel
data. Note that all rasterization is done in a framebuffer with the same width
and height as the voxel grid resolution. There are however problems with the
algorithm creating holes in the voxelization in some instances. It can be resolved
by using a technique called conservative rasterization. This involves marking all
fragments which are touched by the triangle.

3.3 Error Analysis 15

3.2.4 Depth Buffer

One way of performing solid voxelization is to make use of the depth buffer [20].
This is done by rendering the entire model from six different directions, positive
x, y and z, and negative x, y and z. In these rendering steps, only the depth buffer
is needed. Then the voxelization is defined as all voxels which are within all the
depth buffers.

One way to do this, is to iterate through the entire grid and marking all voxels
which are within the buffers as occupied. This is however rather slow for higher
resolutions, as the complexity grows cubically. Another way would be to choose
one axis, let’s say the z-axis, and iterate through its buffer x- and y-coordinates.
Then for each coordinate, there is a minimum and maximum z-position which
is determined by the two depth buffers in the z-axis. This means the algorithm
only needs to iterate through these two values instead of all the z-values. As most
models do not fill the entire voxel grid, this reduces the runtime of the algorithm
in the average case.

One obvious problem of the algorithm is that it needs to render the object six
times to voxelize it. For convex shapes, this can be reduced to two, as the shape
can be fully described by rendering it from the front and back.

3.3 Error Analysis

Calculating the approximation errors can be done using several methods. The
choice of method depends on the use case. This thesis presents two different
methods to analyze the error. These are relative error, the one used in [9], and
the Jaccard distance.

3.3.1 Relative Error

The relative error can be described as

ere =
|x − y|
|x|

=
∣∣∣∣x − yx

∣∣∣∣,
where x is the actual value and y is the approximation. This was the method used
by Zhang et al. [9], where they set x to the total voxel count of the floating-point
version and y to the total voxel count of the integer version. A problem with this
is that if a voxel is moved to another location, the error would be considered 0.
This can be seen in Figure 3.5, where the relative error of the voxel count is 0.
Therefore, a different error metric is required in order to describe this error.

16 3 Theory

Figure 3.5: Difference between RLV and ILV. White voxels are only in RLV,
gray voxels are only in ILV and the dark gray voxels are in both. The voxel
count is the same for both.

3.3.2 Jaccard Distance

The Jaccard distance is an error metric which aims to measure differences in sets. It
is derived from the Jaccard similarity presented in [21], where it instead measures
how similar two sets are. The Jaccard similarity is defined as the size of the
intersection divided by the size of the union of the two sets. This results in a
value between zero and one, which can be interpreted as a percentage of how
similar two sets are. The Jaccard distance is defined as one subtracted by the
Jaccard similarity. It can also be defined as the symmetric difference divided by
the union of the two sets. Both of which are equivalent.

4
Method

This chapter describes the implementation and application of the theory in more
detail. As such, it will build upon the literature in order to more precisely de-
scribe how the project was implemented. The chapter will also give a description
of how the evaluation of the different algorithms was performed.

4.1 Implementation

The full source code of the project can be found at [22]. The implementation
was done in C++ with OpenGL and CUDA. CUDA handled the voxelization and
OpenGL was used to render the results of it. The project was implemented in
Linux, but can of course be ported to other platforms. The implementation de-
tails which were not covered in the literature will be explained in the following
sections.

4.1.1 CUDA-OpenGL Interoperability

During development, some form of visual feedback was required in order to ver-
ify and debug the results of the voxelization. As such, a CUDA-OpenGL inter-
operation had to be implemented. This meant creating a 3D texture in OpenGL
and binding it to CUDA in order to write to it. A simplified source code of this
can be seen in Appendix A.3, which is adapted from [23]. This method links the
memory of the 3D texture to a CUDA array, meaning no data is duplicated. This
is required, as texture sizes of up to 8 GB were used.

17

18 4 Method

4.1.2 Floating-Point Voxelization

The first implementation detail that needs to be explained is how the scanline
direction, dsl , as shown in Figure 3.4, was calculated. Let’s call the three vertices
of a triangle v1, v2 and v3, which are sorted in the most dominant axis (assumed
to be the z-axis). The scanline direction was calculated in two different ways, de-
pending on how the vertices were positioned. First, if all vertices were in the same
z-slice, any direction would sufficed. In the implementation, the edge between
v1 and v3 was chosen. If the vertices were not in the same z-slice, the gradient of
the triangle with respect to z was used. This was calculated by first solving the
plane equation for z:

D = nxx + nyy + nzz → z =
D − nxx − nyy

nz
,

where n is the normal of the triangle and D describes the position of the plane.
The gradient was then the partial derivatives of the equation with respect to x
and y:

d = (
−nx
nz

,
−ny
nz

)

Which was the resulting scanline direction.
In both cases, the direction also needed to be normalized, meaning the final

direction was

dsl =
d
|d|

.

Each iteration of the algorithm, two scanline endpoints were calculated by
reverse projecting the scanline direction onto the triangle’s edges. The scanline
direction was scaled by li , which was increased by l each iteration. Recall from
the theory that l = |dsl,x |+ |dsl,y |. Using the reverse projection, the endpoints were
calculated as

vp = v1 + de
li

de · dsl
, (4.1)

where de is the normalized direction of the edge it projects to. Note that this only
works with the edges from v1 to v2 and v1 to v3. So a special case was needed for
the edge from v2 to v3. This was solved by recalculating v2 such that{

0 = (v′2 − v1) · dsl
v′2 − v2 = (v3 − v2)t

.

That is, v′2 − v1 is perpendicular to dsl and v′2 − v2 is parallel with v3 − v2. An
example of this can be seen in Figure 4.1. Solving the equation resulted in

v′2 = v2 + (v3 − v2)
(v1 − v2) · dsl
(v3 − v2) · dsl

.

This was used instead of v1 in Equation 4.1, when projecting to the edge between
v2 and v3.

4.1 Implementation 19

v′2

dsl

v1

v2
v3

Figure 4.1: v′2 is calculated by finding the intersection between the edge’s
line and the perpendicular line of dsl

4.1.3 Integer Voxelization

In the integer version there were two edge cases which created holes in the vox-
elization. In order to solve these problems first recall the values Clower , Cupper
and Ck from the theory in Section 3.2.2.

The first problem occurred when a new slice was started and an example is
shown to the left in Figure 4.2. More specifically, it occurred when the next voxel
was behind the current scanline, meaning it should have been included in it. This
was resolved by checking if the value of C1 was on the other side of C0 relative to
Cend . That is, if C0 < C1 < Cend or Cend < C1 < C0. Here Cend is defined as the Ck
of the last voxel on the triangle’s edge. To test if the two values were on different
sides, following equation was evaluated:

(C1 − C0) ∗ (Cend − C0) ≤ 0.

If this condition was met, either Cupper or Clower was set to C0 depending on if
Cend was greater or less than C0 respectively. This was done in the same step as
when the next endpoint for the scanline is calculated.

The other case where holes occurred was when (X1, Y1) for both edges were on
different sides of the scanline. This sometimes happened for triangles which had
a very acute angle at v1. An example of this can be seen to the right in Figure 4.2.
This problem was similarly detected as before by

(Ca
1 − C0) ∗ (Cb

1 − C0) ≤ 0,

where Ca
1 and Cb

1 are C1 for the two edges. When this was the case, ∆X and ∆Y
were set similarly to how the scanline direction was chosen for the floating-point
version. That is, the gradient of the triangle was calculated, but the division by
nz was removed to avoid floating-point operations. However, this resulted in a
scanline direction and not a difference between scanline endpoints. So it was also
rotated by 90◦, as the scanline should always be perpendicular to the scanline
direction. The result was ∆X = Ny and ∆Y = −Nx, where N is the unnormalized
normal of the triangle. These values were then used when determining the next
scanline endpoints.

20 4 Method

Figure 4.2: Voxel being missed by the scanlines. The dark gray rectangles
are the edges of the triangle and the light gray rectangles are the voxels of
the scanlines.

4.1.4 Bresenham Algorithm

Worth noting is that Bresenham only works when ∆X is positive and greater than
∆Y and ∆Z. To allow for negative directions, three changes were required. First,
whenever x, y or z increased by one, they were instead decreased by one if the
difference was negative. Another change was to set ∆X, ∆Y and ∆Z to their
absolute value. Finally, the iteration was terminated when the x-position of the
voxel equals X1, where X1 is the last x-position on the line. This would however
miss the last voxel on the line, which was resolved by setting the last voxel after
the loop.

To solve the problem where ∆X has to be greater than the other differences,
a variable which keeps track of this axis was introduced. This variable will be
called A and was initialized to

A = 0 , max(∆X,∆Y ,∆Z) = ∆X

A = 1 , max(∆X,∆Y ,∆Z) = ∆Y

A = 2 , max(∆X,∆Y ,∆Z) = ∆Z

.

Then whenever the ∆X or x was needed, instead the variable was indexed using
A. For example ∆[A], would give the greatest difference. The indices of the other
two axes was calculated by increasing A by one and two respectively, and then
taking the modulus 3 of them.

Another thing missing from the theory is that Bresenham is not 6-connected.
This can be seen in Figure 4.4. As the optimal scanline requires 6-connected
lines in order to fill the interior, the Bresenham algorithm had to be modified to
support this. The first intuitive way to do this would be to add a voxel at (x, y, z)
whenever y or z increases in the algorithm. This however, caused the voxelization
to not follow the line correctly, as seen to the left in Figure 4.4. This was solved by
checking if the error in y was greater than ∆Y , then instead of voxelizing the right
voxel, voxelize the top voxel. The result can be seen to the right in Figure 4.4. The
same check was performed on the z-axis. This modification of the algorithm in
Appendix A.1 can be seen in Appendix A.2.

The final problem with the Bresenham algorithm was that the integer version
of the scanline algorithm required being able to get the next voxel in the line. The

4.1 Implementation 21

problem was that the 6-connected Bresenham could generate up to three voxels
each iteration. One way to solve the problem would be to run one iteration of
Bresenham and store all voxels generated in that iteration in a list. Then the next
time a new voxel is needed, return an unused voxel from the list. The way it
was solved for this thesis however, was to keep track of where the last voxel was
returned in the iteration. Then the next time a voxel was needed, the iteration
resumed where it left off last.

Figure 4.3: Original Bresenham algorithm which does not voxelize all voxels
touching the line

Figure 4.4: Wrong and correct 6-connected Bresenham algorithm to the left
and right respectivly. The light gray rectangles shows the added voxels not
in the original Bresenham algorithm.

4.1.5 Voxel Rendering

In order to test the results of the optimal scanline, some form of rendering was
needed. This thesis only considers rendering which results in cubes in a uniform
grid.

One approach would be to iterate through the 3D texture on the CPU and ren-
der a cube for every existing voxel. This would be bad for numerous reasons. First
off, the data created on the GPU would need to be copied over to the CPU, which
creates significant overhead. Especially since the data could get up towards 8 GB
in size for the highest resolution. Secondly, rendering all voxels (even occluded
ones) would slow down the rendering significantly.

Another way would be to write each voxel coordinate to a list on the GPU
when voxelizing the model. The data could then be used in a geometry shader,
where each coordinate is transformed into a cube. This avoids the copying to
the CPU and requires less data to store the voxelization, since only occupied
voxels are stored. It can, however, render the same voxel multiple times if the
voxelization does not keep track of which voxels are already occupied.

22 4 Method

Therefore, rendering the scene using raymarching was both deemed easier
and a potentially faster method. The data was not transferred between the CPU
and GPU and only the visible voxels were rendered.

To perform the raymarching, it used the RLV algorithm to traverse the voxels.
In this case however, the line was not terminated when it reached the endpoint
of the line segment, as it does not exist. Instead it terminated when the line
intersected with an existing voxel or when it had exited the voxel grid.

4.2 Evaluation

When performing the comparisons of the different line algorithms, several vari-
able changes were considered in the experiments.

Firstly, multiple models were tested on, with ranging levels of detail. The
models that were used included the Blender monkey (also called Suzanne) [24],
the Stanford bunny [25] and the Stanford dragon [25]. These can be seen in Fig-
ure 4.5. The triangle count of each model was 3936, 69451 and 871414 respec-
tively. Suzanne was also subdivided once in Blender [26], in order to increase the
triangle count to 3936.

Secondly, the resolution of the voxel grid was varied for each model. The
resolution varied between 128-2048, incremented by powers of 2. Due to GPU
memory limits, resolutions greater than 2048 were not possible.

Figure 4.5: Models used for evaluating the voxelizations

4.2.1 Performance Analysis

To profile the performance of the algorithms, CUDA events were used [27]. To
use the CUDA events, two timestamp events were created. One of them was ini-
tialized before the kernel ran using the CUDA function cuEventRecord. Then
after the kernel ran, another event was initialized. These timestamps were en-
tirely handled by the GPU, meaning the CPU would not wait for the timestamps
to be executed. The function cuEventSynchronize, was used in order to wait
for the events to be executed. The time between two timestamps was then deter-
mined by the CUDA call cuEventElapsedTime.

4.2 Evaluation 23

4.2.2 Error Analysis

The error was calculated for each of the resolutions, models and combinations of
line voxelizations. Meaning RLV was compared to both ILV and Bresenham, but
ILV was also compared to Bresenham.

The comparison was done by first voxelizing using the first algorithm with
the voxel value of 1. Then the voxelization ran again with the other algorithm
(with the same 3D texture). This time the voxel value was determined depending
on the current voxel value in that position. If the value at that position was 1
or 2, the value 2 was written, otherwise the value 3 was written. The result was
a voxelization where the intersection had value 2, the voxels only in the first
algorithm had value 1 and the voxels only in the second had value 3.

To calculate the error, a simple CUDA kernel was created which iterated
through the whole voxel space and summed up the amount of each of the values.
With these values the error could be calculated using the formulas in Section 3.3.

5
Results

Here the results of the thesis will be presented. This includes figures of the vox-
elization, graphs of the performance and data of the error analysis.

5.1 Voxelization

The result of the floating-point voxelization can be seen in Figure 5.1. The same
voxelization of the integer versions is shown in Figure 5.2 and Figure 5.3. The
figures show voxelizations between 16-512 resolution, but resolutions up to 2048
were possible. However, due to the aliasing in the rendering, showing the result
of such high resolution would be meaningless.

All the models in the voxelization were scaled to fit the voxel grid perfectly,
without changing the aspect ratio of them. More figures of the voxelizations can
be found in Appendix A.4.

5.2 Performance Analysis

The performance of each of the models can be seen in Figure 5.4. The same data
is plotted for each of the algorithms in Figure 5.5. Each data point is the average
time to voxelize the models in a total of 100 iterations. The raw performance data
can be found in Appendix A.5.

One unsolved problem about the performance data is that the timings im-
proved after iterating the voxelization multiple times. As an example, Figure 5.6
shows how the timings varied after a certain amount of iterations. The time for
a single voxelization decreased by around 50%. This will further be discussed in
the next chapter. Since the data seem to converge to a certain time, the average

25

26 5 Results

of the last 100 out of the 1000 iterations were used as the final measurement in
the previously mentioned graphs.

Figure 5.1: Floating-point voxelization using RLV of the Stanford bunny at
16, 32, 64, 128, 256 and 512 resolution

5.2 Performance Analysis 27

Figure 5.2: Integer voxelization using ILV of the Stanford bunny at 16, 32,
64, 128, 256 and 512 resolution

Figure 5.3: Integer voxelization using Bresenham of the Stanford bunny at
16, 32, 64, 128, 256 and 512 resolution

28 5 Results

128 256 512 1,024 2,048
10−1

100

101

102

Resolution

T
im

e
[m

s]

Blender monkey

RLV
ILV

Bresenham

128 256 512 1,024 2,048
10−1

100

101

102

Resolution

T
im

e
[m

s]

Stanford bunny

RLV
ILV

Bresenham

128 256 512 1,024 2,048
10−1

100

101

102

Resolution

T
im

e
[m

s]

Stanford dragon

RLV
ILV

Bresenham

Figure 5.4: Performance of the voxelization for a model with different algo-
rithms and resolutions

5.2 Performance Analysis 29

128 256 512 1,024 2,048
10−1

100

101

102

Resolution

T
im

e
[m

s]
RLV

Monkey
Bunny
Dragon

128 256 512 1,024 2,048
10−1

100

101

102

Resolution

T
im

e
[m

s]

ILV

Monkey
Bunny
Dragon

128 256 512 1,024 2,048
10−1

100

101

102

Resolution

T
im

e
[m

s]

Bresenham

Monkey
Bunny
Dragon

Figure 5.5: Performance of the voxelization for the algorithms with varying
models and resolutions

0 200 400 600 800 1,000

1

2

3

Iteration

T
im

e
[m

s]

RLV
ILV

Bresenham

Figure 5.6: Performance data of each iteration for a total of 1000 iterations.
This was performed using the Stanford bunny with 512 voxel resolution.
Similar data is given for different models and resolutions.

30 5 Results

5.3 Error Analysis

An example of the difference between RLV and ILV can be seen in Figure 5.7.
It shows a comparison where voxels are colored depending on if they exist in
both voxelizations or only one of them. More comparisons can be seen in Ap-
pendix A.6, where all models and resolutions between 16-512 are shown.

The Jaccard distance between the different versions of the voxelizations can
be seen in Tabel 5.1.

Figure 5.7: Difference between floating-point and integer voxelization. The
left-most figure uses RLV, the middle uses ILV and the right-most is the
union between them. The yellow voxels are in both versions. The red voxels
are only in the RLV version. The blue voxels are only in the ILV version.

Model Algorithm 128 256 512 1024 2048
RLV/ILV 21.63% 22.10% 22.51% 22.98% 23.53%

Monkey RLV/Bre 21.89% 22.30% 23.04% 23.67% 24.16%
ILV/Bre 4.72% 5.62% 5.58% 5.35% 5.21%
RLV/ILV 19.65% 20.62% 22.12% 22.59% 22.8%

Bunny RLV/Bre 19.66% 21.21% 22.30% 22.94% 23.21%
ILV/Bre 0.07% 4.57% 4.77% 5.59% 5.23%
RLV/ILV 9.42% 15.65% 21.28% 21.87% 22.75%

Dragon RLV/Bre 9.42% 15.67% 21.40% 22.52% 23.29%
ILV/Bre 0.00% 0.05% 1.09% 3.84% 5.22%

Table 5.1: The Jaccard distance between the different algorithms, with vary-
ing models and resolution. Bre in the table is short for Bresenham. All errors
are rounded to the nearest hundredth.

6
Discussion

This chapter discusses the results from the method. This includes explaining
the given data and how the data changes depending on models and resolution. It
will also give a critical view of the method and explain why certain methods were
used. Finally, a discussion will be had about future improvements and research
which can be done surrounding the thesis.

6.1 Results

This section discusses the results shown in the previous chapter. It serves the
purpose of explaining and evaluating the data gathered from the method.

6.1.1 Performance of Models

From Figure 5.5 in the results, it can be seen that the voxelization generally takes
longer with the increase in triangle count. This makes sense, as having more tri-
angles to process should increase the amount of time to voxelize. The timings
of the models do however seem to converge towards the same value as the res-
olution increases. This is likely due to the fact that even though there are less
triangles in the monkey compared to the dragon, the monkey needs to generate
more voxels per triangle. Meaning the GPU cannot utilize its parallelism when
less triangles are being voxelized. This can be seen in Figure 5.5 for RLV, where
even though the dragon has ten times more triangles, it outperforms the bunny
at higher resolutions.

31

32 6 Discussion

6.1.2 Performance Between RLV and ILV

Looking back at article of the optimal scanline [9], the authors claimed ILV was
around 3% faster than RLV. Again, the data was not published in the article. This
is however not consistent with the results of this thesis, where ILV was worse by
between 20-250%. There could be several reasons for this.

First of, the article never states anything about the edge-cases in the integer
version presented in Section 4.1.3. Fixing these edge-cases caused some overhead,
which they might not have had.

Secondly, much of the focus of the article was around the integer version and
few details were explained about the floating-point version. This meant a lot
of improvisation had to be done when implementing the floating-point version.
Therefore, it is possible it was implemented in a more efficient way.

Thirdly, there is of course a possibility that the authors skipped some opti-
mization steps in the article. This could be because they had a budget on the
amount of pages they could write, or the full optimization steps were deemed
too complicated for the article.

The results of my implementation are however reasonable considering the
different complexities of finding the scanline endpoints. In the floating-point
version, all that had to be done is increasing the scanline length and calculating a
reverse projection of the scanline direction. The integer version required iterating
through multiple voxels to find the endpoint. As such, it would make sense that
the floating-point version required fewer calculations to find the endpoints.

6.1.3 Performance Between ILV and Bresenham

Since ILV and Bresenham use the same integer version, the performance differ-
ence is solely based on the line voxelization algorithm. The original hypothesis
was that Bresenham would improve performance, but looking at the data, this is
not the case.

The big reason for this was the last problem described in Section 4.1.4, that
Bresenham could generate three voxels per iteration. This meant that additional
overhead was needed in order to get the next voxel in the Bresenham voxelization.
In ILV the same operations are performed no matter which direction the next
voxel is in, but in Bresenham different calculations are done at different stages.
This resulted in Bresenham causing more branch divergence on the GPU, which
caused a major slow down.

6.1.4 Performance Data

After analyzing the performance data, it was noted that the timings changed dras-
tically when iterating the voxelization many times. The reason for this is still
unknown, but it is somehow caused by AWS. This was discovered after testing
the voxelization on normal desktop computers, which had none of these issues.
There are two hypotheses as to why this could happen.

One reason could be that the program ran over a network. As described in
Section 2.2, to run the voxelization, ThinLinc together with VirtualGL was used.

6.1 Results 33

This could potentially cause extra overhead which brings down the performance.
It does however not explain why the CUDA performance is suffering from this,
as VirtualGL only enables OpenGL 3D acceleration. However as the implemen-
tation makes use of OpenGL textures, VirtualGL could still be the culprit.

The other hypothesis is that AWS allocates more resources as it is needed.
Meaning the program does not run at full power until it has run for a certain
amount of time. This could explain the distinct performance boosts seen in Fig-
ure 5.6 in the results.

Again, there is no conclusive answer as to why the performance increases, the
reasons above are just speculations as to why.

6.1.5 Error Analysis

Tabel 5.1 in the results shows all the error data between the different voxelization
algorithms. The error between RLV and ILV grew as the resolution of the voxeliza-
tion increased. The same was true between RLV and Bresenham. It seems like
the error converges around 25%, which is a considerable difference to the 2.5%
presented by Zhang et al. [9]. Again, the error presented in the article is a relative
error of the voxel count between the two voxelizations, which is different to the
Jaccard distance.

An interesting data point is the error for the Stanford dragon. In the lower
resolutions the error was a lot less than the error for the other models. This
is likely due to the fact that the triangle count was much higher. The result is
that a lot of triangles were fully inside a voxel, meaning there could not be an
error for those triangles. For the triangles which were not fully inside a voxel,
they generally spanned a total of 3-4 voxels and were therefore also prone to less
error. This is also consistent with the error increasing as the resolution increased.

Looking at Tabel 5.1, it can be seen that there was an error of up to 5% between
ILV and Bresenham. As they both used the same underlying integer algorithm, it
would seem odd that there was an error between them. The error occured when
the line touched more than two voxels. That is, the line did not pass through the
face of the voxels. This is shown in Figure 6.1. The ambiguity of which voxel
should be chosen caused the two versions to generate slightly different voxeliza-
tions. A potential fix for this would be to voxelize all the voxels touching the line,
but this would most likely cause more edge-cases when finding the next scanline
endpoint.

Figure 6.1: Line touching the corner of four voxels. This causes ambiguity
in wether the dark gray or the white voxel should be voxelized.

34 6 Discussion

6.2 Method

This section serves the purpose of motivating and critically analysing the meth-
ods used in the thesis.

6.2.1 Performance Analysis

To run the performance analysis, CUDA events were the choice for this thesis.
These events only measured the execution time of the kernel and did not include
the time it took to launch it. An alternative to this would be to use CPU timers.
This would give a more real depiction of how long the voxelization would take in
a real environment, as it would include the launch time of the kernel. However,
this thesis is set out to measure the performance of the voxelization and including
the launch time of the kernel was deemed unnecessary.

6.2.2 Error Analysis

There is also something to be said about how the error was measured. As the
Jaccard distance only calculates the amount of mismatched voxels, it is not a
measurement of how well the general shape of the voxelizations matches. As
such, it should not be used for comparing dissimilarity of voxelizations between
different models. It is more of a metric to compare already similar data sets.
The results of using this method could therefore be misleading when saying the
voxelization has an error of 20-25%. Such great error might leave the reader to
believe the integer version is unrecognizable to the floating-point version. This is
however not the case as the general shape is preserved very well, and it is hard to
visually see the error without a comparison figure.

6.3 Future Work

As always with a project like this there is still room for improvements. Some of
those improvements are described in the following paragraphs.

Firstly, modify the Bresenham algorithm to perform better when retrieving
the next voxel in the line. The problem is that it performs different calculations
depending on which axis it is currently evaluating. One solution could be to
add an additional error for the dominant axis. This would then result in all axes
performing the same calculations. Then to get the next voxel iterate the different
axes until a voxel is found. To determine which axis to evaluate, a variable can
be used to index the axes.

Secondly, analyze the error between the algorithms when performing a su-
percover line voxelization. A supercover avoids the ambiguity of which voxel to
voxelize when the line touches multiple voxels. This is done by voxelizing all the
voxels instead of choosing one of them. Doing this could fix the problem with
the integer versions generating different voxelizations due to the ambiguity.

7
Conclusion

This chapter answers the research questions by summarizing the results and dis-
cussions. It also gives a conclusive answer as to which algorithm one should use
when implementing an optimal scanline algorithm.

7.1 Research Questions

The research questions presented in the introduction are reiterated and answered
in the following paragraphs.

1. Which line voxelization algorithm performs best for the optimal scanline?

For all models and voxel grid resolution, the floating-point version, RLV, per-
formed better. ILV performed anywhere between 20-250% worse compared to
RLV. Bresenham performed anywhere between 20-500% worse compared to RLV.
Interestingly, ILV performed better than Bresenham in every case but two. Al-
though, the difference was not as dramatic as between RLV and ILV, except for a
few outliers which performed way worse.

The reason for the big difference between the floating-point and integer ver-
sions was due to the complexity of finding the scanline endpoints. For RLV, it was
simply a case of increasing the length of the scanline direction and performing
a reverse projection of the direction to the triangle’s edges. For ILV and Bresen-
ham, finding the endpoints required iterating through the edge voxelizations and
performing a boundary test based on the previous scanline and the current voxel.

The reason for ILV being faster than Bresenham had less to do with Bresen-
ham being worse in general. It had more to do with Bresenham not being able to
step the line voxelization by one voxel each iteration. This in turn required extra
overhead to overcome.

35

36 7 Conclusion

2. How great is the approximation error of the integer versions of the optimal
scanline?

The error for the integer versions of the optimal scanline was determined to be
around 20-25%. This was based on the Jaccard distance between RLV and IL-
V/Bresenham. One outlier of the data was the dragon model, with 871414 trian-
gles, where the error started at around 9% for a voxel grid resolution of 128. It
however gradually grew as the resolution increased. The reason was likely due to
the triangles of the model being mostly within a single or a few voxels. Making
it less likely to cause an error.

There also turned out to be a minor error (∼5%) between ILV and Bresenham,
even though they both used the same underlying algorithm. This was caused due
to cases where the scanline passes through multiple voxels, such that the choice
of voxel was ambiguous. An example of this was shown in Figure 6.1.

7.2 Choice of Algorithm

From the results given there is only one obvious choice as to which algorithm one
should use. This is of course the floating-point version using RLV. The algorithm
had the best performance in terms of runtime. It is also closer to the ground
truth, as it only voxelizes voxels touching the triangle. Due to approximation
errors, this is not the case for the integer versions. Given those results, there
should be no reason not to choose RLV.

Appendix

A
Appendix

A.1 3D Bresenham Algorithm

ey ← 2∆Y − ∆X
ez ← 2∆Z − ∆X
x← X0, y ← Y0, z ← Z0
while x ≤ X1 do

voxel ← (x, y, z)
SetVoxel(voxel)
x← x + 1
if ey ≥ 0 then

y ← y + 1
ey ← ey + 2(∆Y − ∆X)

else
ey ← ey + 2∆Y

end
if ez ≥ 0 then

z ← z + 1
ez ← ez + 2(∆Z − ∆X)

else
ez ← ez + 2∆Z

end
end

Algorithm 1: The Bresenham algorithm for calculating a straight line in 3D

39

40 A Appendix

A.2 6-Connected Bresenham Algorithm Modification

if ey ≥ 0 then
if ey ≥ ∆Y then

voxel ← (voxel.x, voxel.y + 1, voxel.z)
else

voxel ← (x, y, z)
end
SetVoxel(voxel)
y ← y + 1
ey ← ey + 2(∆Y − ∆X)

else
ey ← ey + 2∆Y

end
Algorithm 2: Modification for the y-axis of the Bresenham algorithm to vox-
elize a 6-connected line. The same modification is done for the z-axis.

A.3 CUDA-OpenGL Interoperability 41

A.3 CUDA-OpenGL Interoperability

1 // ================ DEVICE ================
2

3 surface<void, 3> voxelGrid;
4

5 __device__
6 void WriteToTexture(int3 voxel, unsigned char color)
7 {
8 surf3Dwrite(color, voxelGrid, voxel.x, voxel.y, voxel.z);
9 }

10

11 // ================= HOST =================
12

13 // Create OpenGL texture
14 glGenTextures(1, &glTex);
15 glBindTexture(GL_TEXTURE_3D, glTex);
16 glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
17 glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
18 glTexImage3D(GL_TEXTURE_3D, 0, GL_R8, size, size, size, 0, GL_RED,

GL_FLOAT, nullptr);
19

20 // Register the OpenGL texture as a CUDA texture
21 cuGraphicsGLRegisterImage(&cudaTex, glTex, GL_TEXTURE_3D,

CU_GRAPHICS_REGISTER_FLAGS_SURFACE_LDST);
22

23 // Bind the CUDA texture to a CUDA array
24 cuGraphicsMapResources(1, &cudaTex, 0);
25 cuGraphicsSubResourceGetMappedArray(&cudaArray, cudaTex, 0, 0);
26 cuGraphicsUnmapResources(1, &cudaTex, 0);
27

28 // Link the CUDA array to a CUDA surface
29 cuModuleGetSurfRef(&cudaSurfRef, module, "voxelGrid");
30 cuSurfRefSetArray(cudaSurfRef, cudaArray, 0);

42 A Appendix

A.4 Voxelizations

Figure A.1: Floating-point voxelization using RLV of the Blender monkey at
16, 32, 64, 128, 256 and 512 resolution

Figure A.2: Integer voxelization using ILV of the Blender monkey at 16, 32,
64, 128, 256 and 512 resolution

A.4 Voxelizations 43

Figure A.3: Integer voxelization using Bresenham of the Blender monkey at
16, 32, 64, 128, 256 and 512 resolution

Figure A.4: Floating-point voxelization using RLV of the Stanford dragon at
16, 32, 64, 128, 256 and 512 resolution

44 A Appendix

Figure A.5: Integer voxelization using ILV of the Stanford dragon at 16, 32,
64, 128, 256 and 512 resolution

Figure A.6: Integer voxelization using Bresenham of the Stanford dragon at
16, 32, 64, 128, 256 and 512 resolution

A.5 Performance Data 45

A.5 Performance Data

Model Algorithm 128 256 512 1024 2048
RLV 0.168047 0.360608 1.17848 4.18106 16.5649

Monkey ILV 0.213802 0.576965 1.84135 5.96018 21.9102
Bre 0.24961 0.636628 1.86863 5.72366 19.9131
RLV 0.193737 0.369392 1.76889 6.86508 21.5765

Bunny ILV 0.602098 1.22562 3.29431 9.25156 27.0328
Bre 0.988574 1.92251 4.5347 11.6089 31.9672
RLV 1.22597 1.50882 2.32364 4.89038 18.1659

Dragon ILV 3.86642 5.36262 8.12676 16.3983 42.3611
Bre 6.71438 9.32611 13.8366 26.5671 60.6166

Table A.1: The Raw performance data of the different algorithms, with vary-
ing models and resolution. Bre in the table is short for Bresenham. Timings
are in milliseconds.

A.6 Voxelization Error

In the following figures the yellow voxels are voxels in both algorithms. The red
voxels are only in the algorithm mentioned first and the blue voxels are only in
the algorithm mentioned last. For example, in Figure A.7, RLV is mentioned first
and therefore corrispond with red voxels, while ILV is mentioned last and are
blue voxels.

Figure A.7: Difference between RLV and ILV for the Blender monkey at 16,
32, 64, 128, 256 and 512 resolution

46 A Appendix

Figure A.8: Difference between RLV and Bresenham for the Blender monkey
at 16, 32, 64, 128, 256 and 512 resolution

Figure A.9: Difference between ILV and Bresenham for the Blender monkey
at 16, 32, 64, 128, 256 and 512 resolution

A.6 Voxelization Error 47

Figure A.10: Difference between RLV and ILV for the Stanford bunny at 16,
32, 64, 128, 256 and 512 resolution

48 A Appendix

Figure A.11: Difference between RLV and Bresenham for the Stanford bunny
at 16, 32, 64, 128, 256 and 512 resolution

Figure A.12: Difference between ILV and Bresenham for the Stanford bunny
at 16, 32, 64, 128, 256 and 512 resolution

A.6 Voxelization Error 49

Figure A.13: Difference between RLV and ILV for the Stanford dragon at 16,
32, 64, 128, 256 and 512 resolution

50 A Appendix

Figure A.14: Difference between RLV and Bresenham for the Stanford
dragon at 16, 32, 64, 128, 256 and 512 resolution

Figure A.15: Difference between ILV and Bresenham for the Stanford dragon
at 16, 32, 64, 128, 256 and 512 resolution

Bibliography

[1] J. Amanatides and A. A. Woo. A fast voxel traversal algorithm for ray tracing.
In Eurographics, volume 87, pages 3–10, 1987. Cited on pages iii, 2, and 10.

[2] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann. Interactive in-
direct illumination using voxel cone tracing. Comput. Graph. Forum, 30:
1921–1930, 09 2011. doi: 10.1111/j.1467-8659.2011.02063.x. Cited on page
1.

[3] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution
3d surface construction algorithm. ACM siggraph computer graphics, 21(4):
163–169, 1987. Cited on page 1.

[4] J. M. L. Guevara and D. R. Albrecht. From pixel to voxel in the clinical
diagnosis. In 2016 IEEE 36th Central American and Panama Convention
(CONCAPAN XXXVI), pages 1–5, 11 2016. doi: 10.1109/CONCAPAN.2016.
7942370. Cited on page 1.

[5] D. Zhang and M. M. F. Yuen. Collision detection for clothed human ani-
mation. In Proceedings the Eighth Pacific Conference on Computer Graph-
ics and Applications, pages 328–337, 10 2000. doi: 10.1109/PCCGA.2000.
883956. Cited on page 1.

[6] Michael Schwarz and Hans-Peter Seidel. Fast parallel surface and solid vox-
elization on gpus. ACM transactions on graphics (TOG), 29(6):1–10, 2010.
Cited on page 1.

[7] C. Crassin and S. Green. Octree-Based Sparse Voxelization Using the GPU
Hardware Rasterizer, pages 303–320. 07 2012. ISBN 978-1-4398-9376-0.
doi: 10.1201/b12288-26. Cited on pages 1 and 14.

[8] Y. Fei, B. Wang, and J. Chen. Point-tessellated voxelization. In Proceed-
ings of Graphics Interface 2012, GI ’12, page 9–18, CAN, 2012. Canadian
Information Processing Society. ISBN 9781450314206. Not cited.

[9] Y. Zhang, S. Garcia, W. Xu, T. Shao, and Y. Yang. Efficient voxelization using
projected optimal scanline. Graphical Models, 100:61 – 70, 2018. ISSN 1524-

51

52 Bibliography

0703. doi: https://doi.org/10.1016/j.gmod.2017.06.004. Cited on pages 1,
2, 11, 12, 14, 15, 32, and 33.

[10] X. Liu and K. Cheng. Three-dimensional extension of bresenham’s algo-
rithm and its application in straight-line interpolation. Proceedings of The
Institution of Mechanical Engineers Part B-journal of Engineering Manu-
facture - PROC INST MECH ENG B-J ENG MA, 216:459–463, 03 2002. doi:
10.1243/0954405021519979. Cited on pages 2, 11, and 12.

[11] The Khronos Group Inc. Opengl overview, 2020. URL https://www.
opengl.org/about/. Visited on 2020-02-11. Cited on page 6.

[12] Apple Inc. About opengl for os x, 2018. URL https:
//developer.apple.com/library/archive/documentation/
GraphicsImaging/Conceptual/OpenGL-MacProgGuide/opengl_
intro/opengl_intro.html. Visited on 2020-02-10. Cited on page 6.

[13] Apple Inc. About opengl es, 2018. URL https://developer.apple.
com/library/archive/documentation/3DDrawing/Conceptual/
OpenGLES_ProgrammingGuide/Introduction/Introduction.
html. Visited on 2020-02-10. Cited on page 6.

[14] NVIDIA Corporation. Nvcc, 2019. URL https://docs.nvidia.com/
cuda/cuda-compiler-driver-nvcc/index.html. Visited on 2020-
02-19. Cited on page 6.

[15] Amazon. Amazon web services, 2020. URL https://aws.amazon.com/.
Visited on 2020-05-11. Cited on page 7.

[16] Cendio. Thinlinc - a remote desktop server from cendio, 2020. URL https:
//www.cendio.com/thinlinc/what-is-thinlinc. Visited on 2020-
04-29. Cited on page 7.

[17] Virtual GL. The virtualgl project, 2018. URL https://www.virtualgl.
org/. Visited on 2020-04-29. Cited on page 7.

[18] id Software. Wolfenstein 3d, 2012. URL https://github.com/
id-Software/wolf3d. Visited on 2020-02-19. Cited on page 8.

[19] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM
Systems Journal, 4(1):25–30, 1965. ISSN 0018-8670. doi: 10.1147/sj.41.
0025. Cited on page 11.

[20] A. Karabassi, G. Papaioannou, and T. Theoharis. A fast depth-buffer-based
voxelization algorithm. Journal of Graphics Tools, 4:5–10, 01 1999. doi:
10.1080/10867651.1999.10487510. Cited on pages 1 and 15.

[21] P. Jaccard. Distribution de la flore alpine dans le bassin des dranses et dans
quelques régions voisines. Bull Soc Vaudoise Sci Nat, 37:241–272, 1901.
Cited on page 16.

https://www.opengl.org/about/
https://www.opengl.org/about/
https://developer.apple.com/library/archive/documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/opengl_intro/opengl_intro.html
https://developer.apple.com/library/archive/documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/opengl_intro/opengl_intro.html
https://developer.apple.com/library/archive/documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/opengl_intro/opengl_intro.html
https://developer.apple.com/library/archive/documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/opengl_intro/opengl_intro.html
https://developer.apple.com/library/archive/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/Introduction/Introduction.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://aws.amazon.com/
https://www.cendio.com/thinlinc/what-is-thinlinc
https://www.cendio.com/thinlinc/what-is-thinlinc
https://www.virtualgl.org/
https://www.virtualgl.org/
https://github.com/id-Software/wolf3d
https://github.com/id-Software/wolf3d

Bibliography 53

[22] Tim Håkansson. Master thesis, 2020. URL https://github.com/
thraix/MasterThesis. Visited on 2020-06-06. Cited on page 17.

[23] D. Sandler. gl_cuda_interop_pingpong_st, 2015. URL https://github.
com/nvpro-samples/gl_cuda_interop_pingpong_st. Visited on
2020-03-10. Cited on page 17.

[24] Blender Foundation. Primitives, 2020. URL https://docs.blender.
org/manual/en/latest/modeling/meshes/primitives.html. Vis-
ited on 2020-06-02. Cited on page 22.

[25] Stanford University. The stanford 3d scanning repository, 2014. URL
https://graphics.stanford.edu/data/3Dscanrep/. Visited on
2020-06-02. Cited on page 22.

[26] Blender Foundation. Blender 2.82a, 2020. URL https://www.blender.
org. Visited on 2020-06-02. Cited on page 22.

[27] M. Harris. How to implement performance metrics in
cuda c/c++, 2012. URL https://devblogs.nvidia.com/
how-implement-performance-metrics-cuda-cc/. Visited on
2020-03-24. Cited on page 22.

https://github.com/thraix/MasterThesis
https://github.com/thraix/MasterThesis
https://github.com/nvpro-samples/gl_cuda_interop_pingpong_st
https://github.com/nvpro-samples/gl_cuda_interop_pingpong_st
https://docs.blender.org/manual/en/latest/modeling/meshes/primitives.html
https://docs.blender.org/manual/en/latest/modeling/meshes/primitives.html
https://graphics.stanford.edu/data/3Dscanrep/
https://www.blender.org
https://www.blender.org
https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/
https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Background
	1.2 Aim
	1.3 Research Questions
	1.4 Delimitations
	1.5 Mindroad

	2 Background
	2.1 GPU-Programming
	2.1.1 OpenGL
	2.1.2 CUDA

	2.2 Amazon Web Service
	2.3 Voxelization
	2.4 Raycasting

	3 Theory
	3.1 Line Voxelization
	3.1.1 Real Line Voxelization
	3.1.2 Integer Line Voxelization
	3.1.3 3D Bresenham Algorithm

	3.2 Model Voxelization
	3.2.1 Floating-Point Optimal Scanline
	3.2.2 Integer Optimal Scanline
	3.2.3 Rasterization
	3.2.4 Depth Buffer

	3.3 Error Analysis
	3.3.1 Relative Error
	3.3.2 Jaccard Distance

	4 Method
	4.1 Implementation
	4.1.1 CUDA-OpenGL Interoperability
	4.1.2 Floating-Point Voxelization
	4.1.3 Integer Voxelization
	4.1.4 Bresenham Algorithm
	4.1.5 Voxel Rendering

	4.2 Evaluation
	4.2.1 Performance Analysis
	4.2.2 Error Analysis

	5 Results
	5.1 Voxelization
	5.2 Performance Analysis
	5.3 Error Analysis

	6 Discussion
	6.1 Results
	6.1.1 Performance of Models
	6.1.2 Performance Between RLV and ILV
	6.1.3 Performance Between ILV and Bresenham
	6.1.4 Performance Data
	6.1.5 Error Analysis

	6.2 Method
	6.2.1 Performance Analysis
	6.2.2 Error Analysis

	6.3 Future Work

	7 Conclusion
	7.1 Research Questions
	7.2 Choice of Algorithm

	A Appendix
	A.1 3D Bresenham Algorithm
	A.2 6-Connected Bresenham Algorithm Modification
	A.3 CUDA-OpenGL Interoperability
	A.4 Voxelizations
	A.5 Performance Data
	A.6 Voxelization Error

	Bibliography

