
Received: 14 November 2019 Revised: 20 May 2020 Accepted: 22 May 2020

DOI: 10.1002/qj.3844

R E S E A R C H A R T I C L E

Recent upgrades to the Met Office convective-scale
ensemble: An hourly time-lagged 5-day ensemble

Aurore N. Porson1 Joanne M. Carr2 Susanna Hagelin2,3 Rob Darvell2 Rachel
North2 David Walters2 Kenneth R. Mylne2 Marion P. Mittermaier2 Steve
Willington2 Bruce Macpherson2

1MetOffice@Reading, Department of
Meteorology, University of Reading,
Reading, UK
2Met Office, Exeter, UK
3Swedish Meteorological and Hydrological
Institute, Norrköping, Sweden

Correspondence
A.N. Porson, MetOffice@Reading,
Department of Meteorology, University of
Reading, Reading, RG6 7BE, UK.
Email: aurore.porson@metoffice.gov.uk

Abstract
In this article, we introduce a new configuration of the Met Office
convective-scale ensemble for numerical weather prediction, for the Met Office
Global and Regional Ensemble Prediction System over the United Kingdom
(MOGREPS-UK). The new version, which became operational in March 2019,
uses an hourly time-lagged configuration to take advantage of the hourly 4D-Var
data assimilation run in the deterministic UK model with variable horizon-
tal resolution, the UKV. An 18-member ensemble is created by running three
members every hour and time-lagging these over a 6 hr window. This config-
uration is compared against the previous operational configuration, a 6-hourly
convective-scale ensemble running 12 members. The main benefits of the
time-lagged ensemble are to increase the ensemble size, to add small-scale
uncertainties in the initial conditions and to generate more timely forecasts. The
time-lagged configuration is shown to objectively improve the forecast at all lead
times, with larger improvements in the first few hours. The improvement is seen
in the ranked probability scores and is mainly associated with the improvements
in the spread of the ensemble with an increase of about 5 to 10% in both sum-
mer and winter seasons. A larger ensemble size is necessary in the time-lagged
configuration for it to outperform or maintain as good a performance against the
previous 6-hourly configuration for all lead times. Alongside the update to an
hourly configuration, the forecast length is more than doubled to 120 hr. Objec-
tive verification shows that the time-lagged configuration performs better than
the high-resolution deterministic, UKV, and the global ensemble, MOGREPS-G,
up to T+ 120 hr. Increasing the size of the time-lagged ensemble through lag-
ging over additional cycles leads to small but significant improvements, larger in
most cases than those that can be obtained through neighbourhood processing.
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1 INTRODUCTION

Convective-scale ensembles are becoming increasingly
important for operational numerical weather prediction
(NWP) centres to help capture the uncertainty in forecasts
of severe weather or in cases with weak synoptic forc-
ing (Marsigli et al., 2001; Gebhardt et al., 2010; Kuhnlein
et al., 2014; Schwartz et al., 2015; 2019; Golding et al., 2016;
Hagelin et al., 2017; Raynaud and Bouttier, 2017; Klasa
et al., 2018; 2019; Frogner et al. 2019a; 2019b).

Recent studies have assessed the importance of dif-
ferent aspects of convective-scale ensemble design such
as neighbourhood processing and increase in ensem-
ble size (Raynaud and Bouttier, 2017; Schwartz and
Sobash, 2017), generation of perturbations to the initial
conditions (Kuhnlein et al., 2014; Raynaud and Bout-
tier, 2016; Zhang, 2019), perturbations to the physics or
stochastic physics (Schwartz et al., 2010; Schumacher
and Clark, 2014; McCabe et al., 2016; Keil et al., 2019;
Zhang, 2019), increase in horizontal resolution (Hagelin
et al., 2017; Raynaud and Bouttier, 2017; Schwartz
et al., 2017), use of multi-model ensembles (Beck
et al., 2016) and use of multiple cycles via time-lagging
(Raynaud and Bouttier, 2017).

The ideal perturbation strategy for convective-scale
ensembles is not yet understood and this may depend
on the synoptic forcing of the events (Flack et al., 2018;
Weyn and Durran, 2018; 2019; Keil et al., 2019). Review-
ing and intercomparing the characteristics of different
convective-scale ensembles can help inform the most
efficient and best performing system design for specific
high-impact weather events (Clark et al., 2018). However,
the choice of ensemble design is likely to depend on the
types of high-impact weather in which each NWP centre
is most interested, as well as the resources available to run
convective-scale ensembles.

Time-lagging of analyses has been seen as a theo-
retically grounded approach to generate ensembles from
deterministic forecasts, either for medium-range forecasts
(Brankovic et al., 1990) or short-range forecasts (Mitter-
maier, 2007), the data assimilation (DA) cycles adding
increments to the background that can be associated with
ensemble perturbations.

However, when used on its own, this approach is lim-
ited with regard to the number of ensemble members it can
generate by the cycling time.

Time-lagging of deterministic forecasts has been used
successfully to create a small ensemble (Mittermaier, 2007;
Yuan et al., 2009; Kuchera and Rentschler, 2019; Xu
et al., 2019). Extension to time-lagging of ensemble fore-
casts has also been shown to be a valuable option (e.g.
Raynaud and Bouttier, 2017), however it could benefit
from a more frequent time-lagging option than a 6-hourly

cycle. A few centres, such as the Danish Meteorological
Institute (DMI, Frogner et al., 2019b) and the MetCoOp
(personal communication, Ulf Andrae, 2019) are now
starting to explore the benefits of hourly time-lagging
within a convective-scale ensemble. Time-lagging intro-
duces newer forecasts by replacing older forecasts. Older
forecasts are important for the skill of the time-lagged
ensemble particularly at early lead times, because they
provide a larger sampling of the probability density dis-
tribution or pdf (Raynaud and Bouttier, 2017). Compared
to a 6-hourly cycle, using an hourly cycle results in
an ensemble of forecasts which are closer to their own
data assimilation cycles and so potentially as skilful as
each other, especially for fields which are less predictable
such as clouds, visibility or precipitation. Hence, sam-
pling an hourly pdf in comparison to a 6-hourly pdf
should result in sampling more uncertainty in the forecasts
whilst retaining the benefits of the latest data assimila-
tion cycles. Including successive data assimilation cycles
would also add different scales, that is, smaller scales, of
perturbations into the ensemble, compared to large-scale
perturbations from the parent ensemble, for example.
Therefore, unlike the previous ensemble time-lagging
study using 6-hourly time-lagging (Raynaud and Bout-
tier, 2017), the choice is made here to compare an hourly
cycling of time-lagging directly against the operational
non-time-lagged system.

An hourly time-lagged configuration is thus presented
for the Met Office Global and Regional Ensemble Predic-
tion System over the UK (MOGREPS-UK). MOGREPS-UK
(Hagelin et al., 2017) is centred on a deterministic anal-
ysis (Tennant, 2015) and takes its initial perturbations
and lateral boundary conditions from the global ensem-
ble MOGREPS-G (Bowler et al., 2008; Flowerdew and
Bowler, 2011; 2013; Brown et al., 2012).

The new configuration is introduced here as an attempt
to:

• Increase the ensemble size following Hagelin
et al. (2017), in an operational context, distributing
the required computational resources approximately
evenly over a period of 6 hr.

• Take into account the hourly update in the 4D-Var anal-
ysis of the high-resolution deterministic UKV model
(Milan et al., 2020) and therefore to improve the spread
in the initial conditions for the ensemble.

• Produce more timely forecasts.
• Release operational meteorologists from 6-hourly cycles

in information availability, allowing them to spread pro-
duction and produce guidance based on the latest infor-
mation to hand – and not be constrained to await the
next 6 hr cycle.
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• Reduce the jumpiness of the forecasts (i.e. for when
consecutive forecasts provide different information
about an event) as each new cycle introduces a new
small set of three ensemble members (thereby introduc-
ing slowly the impact of a new set of global perturba-
tions and high-resolution analysis).

• Help operational meteorologists to build up a trend in
the forecasts, for cases where the confidence about the
timing and location of a specific event increases with
the latest forecasts, helping to improve the definition of
severe weather warning areas.

In addition to the time-lagging configuration changes,
the forecast lead time is extended to 5 days. This is so that
MOGREPS-UK can be compared against its parent ensem-
ble (MOGREPS-G) and the deterministic model the UKV
in their capability to predict severe weather at longer lead
times.

In this article, our objectives are to describe the
new hourly configuration and compare it with the pre-
vious operational system, to understand how an hourly
time-lagging configuration compares to a 6-hourly config-
uration and to investigate the effect of different ensemble
sizes on the performance to provide future directions for
the development of MOGREPS-UK. Because the focus of
this work is the comparison with the 6-hourly configu-
ration, the full capability of the hourly cycling configu-
ration (such as to reduce jumpiness) is not studied and
this will be the subject of future work. In Section 2, we
describe the new ensemble configuration and our meth-
ods for verifying a time-lagged ensemble. In Section 3, we
focus on the objective verification to assess the skill, the
reliability, the discrimination and the spread of the new
time-lagged ensemble. In Section 4, we discuss the exten-
sion of the forecast range out to 5 days. To conclude, we
summarise our work and suggest ideas for further research
and improvements. A companion article will focus on
case-study analysis to highlight the benefits of the new
time-lagged configuration on product development and
spread analysis for precipitation.

2 DESCRIPTION OF THE
HOURLY CONFIGURATION AND
NEIGHBOURHOOD PROCESSING

2.1 The new hourly configuration:
Technical description

Up to March 2019, MOGREPS-UK was a 6-hourly ensem-
ble running 12 members four times a day at the data times
of 0300, 0900, 1500 and 2100 UTC (Hagelin et al., 2017)
up to 54 hr (i.e. T+ 54 hr). MOGREPS-UK is a variable

resolution ensemble with 2.2 km grid space in the inner
domain where the objective verification is calculated; the
grid stretches to 4 km along the edges and the corners have
a resolution of 4 km by 4 km (Hagelin et al., 2017). In all
the trials presented here, the model used is the midlatitude
Regional Atmosphere 1 configuration (RA1-M) of the Met
Office Unified Model (Bush et al., 2020).

The parent ensemble to MOGREPS-UK, MOGREPS-G,
is a global ensemble with approximately 20 km resolu-
tion at midlatitudes running 1 control and 17 perturbed
members every 6 hr out to a forecast lead time of 7 days.
For the atmosphere, MOGREPS-G uses the Global Atmo-
sphere 6.1 configuration of the Unified Model (Walters
et al., 2017), whilst the surface exchange scheme is based
on the Global Land 7 configuration of JULES described
in Walters et al. (2019), but with additional changes to
the growth of snow grains and the treatment of sea
ice; it also uses the aggregate tile approach to surface
exchange described in section 4.2.1 of Walters et al. (2017).
Prior to December 2019, MOGREPS-G used an Ensem-
ble Transform Kalman Filter (ETKF) scheme to gener-
ate its perturbations (Bowler et al., 2008; Flowerdew and
Bowler, 2011; 2013). Different sets of these perturbations
are used every 12 hr (the first 17 members are used on
the 0000 UTC and 1200 UTC, while the following 17
members are used on the 0600 UTC and 1800 UTC) in
order to increase the sampling of the pdf. The members
of MOGREPS-UK are also centred on the analyses from
the DA system of the UKV high-resolution deterministic
model (Tennant, 2015). The current 4D-Var DA system for
the UKV is described in Milan et al. (2020). Additional per-
turbations come from stochastic physics via the Random
Parameter 2 scheme (RP2: McCabe et al., 2016).

Since the upgrade to the operational NWP models at
the Met Office in March 2019, MOGREPS-UK has run
three ensemble members every hour. Figure 1 represents
the timeliness of the forecasts and how MOGREPS-UK
depends on the cycle times of the parent ensemble
MOGREPS-G (itself depending on the deterministic global
cycles) and the UKV deterministic model.

On the 0300, 0900, 1500 and 2100 UTC cycles, as in the
6-hourly configuration, one of the members is a control
member (member 0 in Figure 1) with unperturbed initial
conditions and the RP2 stochastic physics scheme turned
off. A given set of six consecutive hourly cycles there-
fore provides 17 perturbed members, with the RP2 scheme
employed and initial-condition (IC) perturbations sup-
plied by MOGREPS-G, and one control member. Whereas
the IC perturbations for the 12 members of the 6-hourly
configuration all came from the same MOGREPS-G fore-
cast range (perturbed-member forecasts at T+ 3 hr), a
range of MOGREPS-G forecast times from T+ 3 to T+ 8 is
required for the hourly cycling. For every hourly cycle, all
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F I G U R E 1 Diagram representing the timeliness of the time-lagged configuration of MOGREPS-UK. The blue boxes show the run
times of a single MOGREPS-UK cycle; the blue numbers show the ensemble members of MOGREPS-UK (where member zero is the control).
The black dots/grey arrows show the UKV analyses around which a given MOGREPS-UK cycle is centred. The red boxes, arrows and
numbers show the MOGREPS-G members that provide the initial-condition perturbations and lateral boundary conditions. The blue arrows
and green boxes show the members that are time-lagged into 18-member ensembles through post-processing

members are centred on the high-resolution deterministic
analysis.

The new model configuration allows, among other
possibilities, 18-member ensembles to be generated in
post-processing by time-lagging over six cycles. When pro-
cessing the ensemble, the forecast range and validity times
align with the newest members. After each hourly cycle, a
new time-lagged ensemble can be generated from the pre-
vious one by replacing the three oldest members with the
three most recent. For example, the 0800 UTC ensemble
comprises the three members from each of the 0800, 0700,
0600, 0500, 0400 and 0300 UTC model cycles, and is avail-
able by a wall-clock time of 1400 UTC. Then the 0900 UTC
ensemble uses the 0900, 0800, 0700, 0600, 0500 and 0400
UTC model cycles and is available by a wall-clock time of
1500 UTC, and so on. Since our latest operational release
(December 2019), these timings have now been improved
to deliver the ensemble forecasts at T+ 4 hr instead of
T+ 6 hr. In the context of this publication, whilst the tim-
ings are the same between the hourly time-lagged and the
6-hourly time-lagged configuration, it is worth keeping in
mind that the hourly time-lagged ensemble is also run for
longer lead times, albeit using more resources (T+ 54 hr
against T+ 120 hr).

Compared with the 12-member sets from the 6-hourly
configuration, a new 18-member time-lagged ensemble

incorporates information from five additional sets of
high-resolution initial conditions. See the post-processing
cycles in Figure 1 for more details. Also, an 18-member
ensemble will have used driving data from six different
MOGREPS-G forecast ranges, which for 20 out of every
24 such ensembles will have come from two different
MOGREPS-G cycles. This configuration comes at the cost
of using older MOGREPS-G cycles with longer forecast
ranges. The forecast length of the individual members is
such that an 18-member time-lagged ensemble covers a
range of 120 hr (5 days).

An advantage of the time-lagging approach is that the
size of the ensembles can be increased by adding older
members into the post-processing without any additional
computational costs in terms of the forecasts. For example,
a 24-member ensemble can be created by adding two
more sets of three members to the 18-member ensemble.
For some cycles, this 24-member ensemble would contain
two control forecasts (unperturbed members) from dif-
ferent MOGREPS-G cycles. Beyond 6 hr of time-lagging,
any further time-lagging will use the same set of pertur-
bations from MOGREPS-G but associated with different
cycles of the global ensemble; we denote the newest unper-
turbed member as the control forecast of the ensemble.
In the objective verification, 24 and 12 time-lagged mem-
bers from the hourly configuration are tested here for
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comparison against the operational 18-member ensem-
ble and the 6-hourly cycling. Further time-lagging, while
possible, was not tested for this study.

2.2 Neighbourhood processing
and verification metrics

Convective-scale models usually provide more realis-
tic features than coarser-resolution models. However,
verifying such nonlinear and sometimes rapidly evolv-
ing forecasts at a grid scale around the observation
sites may be challenging. In this article, neighbour-
hood processing is used in objective verification within
the “High Resolution Assessment” (HiRA) framework
(Mittermaier, 2014). The HiRA framework was devel-
oped for verifying kilometre-scale models at observ-
ing locations, providing the ability to compare deter-
ministic and ensemble forecasts (at different resolu-
tions) using a single-observation-neighbourhood-forecast
(SO-NF) approach. Even though neighbourhoods are used,
HiRA represents an assessment of local forecast accuracy.
It assumes that all grid points within a specified neigh-
bourhood size can be considered as pseudo-ensemble
members which are physically realistic and equiprobable
outcomes for the observing location located at the centre
of the neighbourhood. This method helps avoid the double
penalty problem due to the errors in both the spatial and
temporal distribution of the forecast fields (Ebert, 2008;
Roberts and Lean, 2008; Mittermaier, 2014). When used
with ensembles, the HiRA framework increases the
ensemble size to provide more information at the small
scales (Roberts and Lean, 2008; Dey et al., 2014; Raynaud
and Bouttier, 2017; Schwartz and Sobash, 2017). A neigh-
bourhood size of 3 by 3 grid points (i.e. a scale of 6.6 by
6.6 km) is used here to overcome the problems of double
penalty; such a scale was shown to perform best in Hagelin
et al. (2017). Mittermaier and Csima (2017) also showed
that the forecast skill of the ensemble was mostly sensitive
to an increase in neighbourhood scale from 1× 1 to 3× 3
grid points. Beyond this, the forecast skill of the ensemble
can deteriorate; for example, for temperature, cloud base
height and visibility, where the local orography may be a
strong influence or more generally the physical assump-
tions regarding the validity of a grid point at some distance
from the observing location are rendered invalid.

A range of verification scores are used here as in
Hagelin et al. (2017). The categorical scores used are the
Ranked Probability Scores (RPS: Epstein, 1969), Contin-
uous Ranked Probability Scores (CRPS: Hersbach, 2000),
Hinton diagrams (Hinton and Shallice, 1991; Bremner
et al., 1994), ROC (Receiver Operating Characteristic)
areas and reliability diagrams (Schwartz et al., 2014; 2017;

Beck et al., 2016; Mittermaier and Csima, 2017; Raynaud
and Bouttier, 2017). RPS and CRPS measure the skill of the
probability distribution and Hinton diagrams allow us to
summarise these differences in skill between two ensem-
ble forecasts for a range of fields such as temperature, wind
speed, cloud amount, cloud base and precipitation for a
given neighbourhood size. The lower the RPS or CRPS
the better. The CRPS is chosen here for the temperature
field as it is a continuous field and we are interested in
the whole distribution of the parameter, while the RPS is
used for other fields such as wind speeds, cloud amounts,
cloud base heights, visibility and precipitation, which fol-
low non-Gaussian distributions. The ROC area gives us
an indication of the ability of the forecasts to discrimi-
nate between events and non-events. The higher its value,
the better the discrimination. Reliability diagrams evalu-
ate how close the probability of an event is to the observed
frequency of this event so, the closer the points are to
the diagonal, the better the reliability. All these scores
are available in the HiRA framework. Finally, rank his-
tograms are also used here to depict how the observations
rank in comparison to the ensemble forecasts. A U-shaped
rank histogram indicates that the observations fall too fre-
quently outside the range/spread of ensemble members,
and so can be interpreted as a lack of ensemble variance.

Continuous scores such as mean error and mem-
ber deviation from ensemble mean are also used here.
Statistical significance at the 0.05 level was determined
using the Wilcoxon signed-rank test (Wilks, 2011, pp
163–164). All verification scores are produced using syn-
optic observations as truth, which come from a network
of 119 quality-controlled stations distributed over land in
the United Kingdom, that adhere to World Meteorolog-
ical Organisation (WMO) technical regulation standards
(WMO, 2018), referred to as LNDSYN stations.

3 COMPARISON OF THE
6-HOURLY AND HOURLY
CONFIGURATIONS: OBJECTIVE
VERIFICATION

3.1 Description of the trials

Two trial periods for each of the 6-hourly and hourly
configurations are used here to cover different types of
weather conditions. The winter trial runs from 2 Decem-
ber 2017 to 2 January 2018. The summer trial runs from
2 July to 2 August 2017. In these trials, forecasts from
the time-lagged system are produced out to T+ 54 hr only,
which allows a full comparison with the 6-hourly config-
uration but limits their computational cost. An additional
pre-operational trial of the hourly configuration is also
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used here as it provides information over a longer period
from 1 January to 10 March 2019. We note that because the
objective verification of the hourly time-lagged ensemble
is made here for comparison with the 6-hourly ensemble, it
is not the purpose here to demonstrate the skill of the new
configuration in delivering a specific product using the
most-up-to-date forecast of the hourly time-lagged ensem-
ble. In this section, all verification results are equalised
on the same lead times and validity times between the
6-hourly and hourly configurations, so we do only examine
four cycles a day. To compare the different configurations,
we have separated our analysis into different scores as
ranked probability scores, biases, reliability and ensemble
spread, as explained in Section 2.2. The analysis is detailed
per score rather than per field because, firstly, each of
these scores describes a particular feature of the ensem-
ble verification and it is important to assess whether the
new operational time-lagged configuration delivers some
robust improvements for each of these different character-
istics and, secondly, the same characteristics apply to most
fields.

3.2 Ranked probability scores

The Met Office uses Hinton diagrams to summarise the
comparison between the two configurations using the
RPS. A better (worse) performance for the trial vs. the con-
trol is depicted with green (purple) triangles. RPSs allow
us to capture the quality of the ensemble in satisfying a
set of specific thresholds. Being a distribution-based accu-
racy metric, it captures the performance of the complete
ensemble distribution, rather than focusing on a small
selection of fixed thresholds which usually only check for
exceedance of a single threshold (and therefore do not
check whether a forecast has just exceeded the thresh-
old or is potentially an outlier). As a result, the RPS is
a much stricter test for the ensemble distribution. In the
Hinton diagrams the area of the triangles is proportional to
the percentage of improvement/degradation in the scores
presented. The area of the plotted triangle is normalised
assuming a maximum difference between cases of 20%,
that is, the largest triangle indicates a difference of 20%
or greater. The black outlines on the triangles correspond
to statistical significance. Other verification metrics com-
paring the reliability, discrimination and biases of the
ensembles also add useful and specific information to this
comparison, as described later.

The new configuration is compared against the
6-hourly configuration with 12 members and against a
variant of the 6-hourly configuration run with 18 members
to test the sensitivity of the time-lagging to ensemble size.
Figure 2 illustrates these score cards for a summer month

and a winter month. Against the 12-member 6-hourly
configuration (Figure 2a,b), the new hourly configuration
described here shows good performance. A small nega-
tive impact is present in the CRPS for temperature up
to T+ 1 in the winter and T+ 3 in the summer (how-
ever, note from the operational schedule in Figure 1 that
forecast ranges out to approximately T+ 6 have expired
by the time the post-processed products become avail-
able). This is related to the sensitivity in the accuracy of
the temperature forecast to the use of older initial con-
ditions for the time-lagging configuration. This impact is
more pronounced in the summer than in the winter and
may be due to the benefits from data assimilation in cor-
recting the latest cycles for the larger error in the more
pronounced diurnal cycle in the summer (see bias results
in Section 3.3). Mittermaier and Csima (2017) also found
that MOGREPS-UK has poorer CRPS than the determin-
istic high-resolution UKV model at very short lead times
and attributed this to the lack of DA in the ensemble (more
specifically, in the perturbed members of the ensemble).

Another characteristic of this comparison is the fact
that the differences appear to be largest at short lead times,
but this varies with the variable and season. For example,
the benefit of the time-lagged configuration at longer lead
times (for example T+ 42) is larger in the summer than the
winter.

Compared to the 6-hourly configuration with 18 mem-
bers, the hourly configuration is usually better up to T+ 15,
but at the end of the forecast range we see a more neutral or
even negative performance for the winter season. The dif-
ferences are, however, not statistically significant (i.e. not
many triangles with a black outline, except for the CRPS
for temperature). This suggests that for an equal ensemble
size, the skill of the hourly configuration is mainly positive
in the early lead times and similar or negative in the longer
lead times due to the use of older forecasts. When the
18-member time-lagged ensemble is compared against the
12-member 6-hourly ensemble, the difference in ensem-
ble size contributes to the improved performance at longer
lead times.

Figure 3 displays a comparison of those different
ensemble sizes for hourly precipitation in the winter trial,
along with an additional hourly time-lagged configura-
tion of 24 members (i.e. eight cycles of time-lagging). As a
benchmark, the 18-member hourly configuration is used.
This shows that the 18-member 6-hourly set-up can per-
form better than the hourly configuration with 18 mem-
bers at some lead-times (differences again are not signifi-
cant), but that the hourly configuration with 24 members
is an even better configuration overall. These findings also
apply to other seasons and most variables except for the
CRPS for temperature: the skill of the hourly ensemble
with 24 members shows a significantly better performance
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(a)

(b)

(c)

(d)

F I G U R E 2 Hinton diagrams displaying
the CRPS for temperature (T_CRPS) and RPSs for
wind speed (W_RPS), cloud amount (CA_RPS),
cloud base (CB_RPS), visibility (Vis_RPS) and
precipitation (1hP_RPS) for a neighbourhood size
of 3 by 3. (a) 2 July to 2 August 2017 18-m(ember)
hourly against 12-m 6-hourly; (b) 2 December
2017 to 2 January 2018 18-m hourly against 12-m
6-hourly; (c) 2 July to 2 August 2017 18-m hourly
against 18-m 6-hourly; and (d) 2 December 2017
to 2 January 2018 18-m hourly against 18-m
6-hourly. Statistical significance (at the 0.05
level) was determined using the Wilcoxon
signed-rank test (Wilks, 2011); statistically
significant results are represented by a black
outline to the triangle. All data are equalised onto
the 6-hourly ensemble validity and lead times.

than the hourly configuration with 18 members and is a
better match to the 6-hourly configuration with 18 mem-
bers at longer lead times. The fact that a 24-member
ensemble (with its longer period of time-lagging) outper-
forms the 18-member ensemble agrees with Raynaud and
Bouttier (2017) who showed that time-lagging over 12 hr

improves the skill of the ensemble mainly for short lead
times.

The new finding here is that the performance of the
24-member time-lagged ensemble is useful to maintain
statistical significance not just at early lead times, but
mainly at the longer lead times. So, using older forecasts
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F I G U R E 3 RPS for hourly precipitation from 2 December
2017 to 2 January 2018, showing the 6-hourly configuration for 12
and 18 members as well as the hourly configuration for 12, 18 and
24 members for a neighbourhood size of 3 by 3. A black “S” on the
difference plot (lower panel) indicates statistical significance at the
0.05 level, calculated using the Wilcoxon signed-rank test (e.g.
Wilks, 2011). All data are equalised onto the 6-hourly ensemble
validity and lead times. All data are plotted every 3 hr.

and further time-lagging still improves the sampling of the
pdf at all lead times. Whilst it is accepted that increasing
ensemble sizes usually results in improvements in the skill
of ensembles at all lead times (e.g. Hagelin et al., 2017;
Raynaud and Bouttier, 2017), this is less intuitive when
the increase in ensemble size is associated with further
time-lagging and thus older forecasts.

3.3 Biases

The hourly configurations sometimes lead to better biases
at very short lead times for fields like precipitation or
clouds, but then, these biases either become worse or simi-
lar compared to the 6-hourly configurations at longer lead
times. So, the improvements in the RPS Hinton diagrams,

as in Figure 2, are not strictly related to improvements
in the biases. This is particularly true for the 18- and
24-member time-lagged ensembles against the 12-member
6-hourly ensemble for example (as these ensembles show
a better performance at all lead times). The temperature
bias follows a slightly different story because of a growing
bias with lead times in the winter as well as a strong diur-
nal cycle bias particularly in the summer. We focus on the
temperature problem in this section.

Figure 4 illustrates the impact of time-lagging on the
winter temperature bias with HiRA using a neighbour-
hood scale of 3× 3 grid points as for the RPSs. This provides
a mean bias calculation over the ensemble size as well
as the neighbourhood scale. As biases grow with fore-
cast time, we have included the bias associated with the
3-member ensemble (i.e. the set of members with the ear-
liest initialisation time, with no time-lagging). Following
Figure 2 and the impact of time-lagging on the tempera-
ture at short lead times, we think that representing this
3-member ensemble provides useful information. Indeed,
in comparison to the 6-hourly ensemble, it illustrates the
impact of all the large-scale perturbations. In comparison
to the hourly time-lagged ensemble, it illustrates the role
of the DA as well as the impact from the older forecasts.

The ensemble has a cold bias overall, with oscillations
showing the impact of the diurnal cycle (with a 6-hourly
frequency because of the equalisation onto the 6-hourly
cycles). The best performing group is the 3-member
ensemble, followed by the 6-hourly configurations with
first 18 members and then 12 members. The other hourly
configurations, involving time-lagging, have even more
negative biases, with the 18- and 24-member ensemble
biases slightly better than in the 12-member ensemble.
So, when using time-lagging over 4 hr (i.e. 12 members),
the greater age of the forecasts leads to larger temperature
biases. Beyond 4 hr, further time-lagging to 6 hr (i.e. 18
members) improves the bias whilst further time-lagging to
8 hr (i.e. 24 members) shows fewer improvements, sug-
gesting a complicated feedback between the impact of
time-lagging and the interaction of the DA cycle with the
diurnal cycle bias. Interestingly, even though the hourly
configurations have larger biases, the biases do not appear
to affect the shape of the ensemble distribution sufficiently
to have a detrimental impact on the CRPS and RPS (see
Figure 2b against the 12-member 6-hourly system).

For the summer, as the diurnal oscillations are
stronger, we focus here on a diurnal cycle plot (Figure 5).
Figure 5 illustrates the impact of the diurnal cycle on the
summer temperature bias for a 0300 UTC cycle only. This
shows that the two configurations have different roles to
play in this diurnal cycle: the 6-hourly configurations as
well as the 3-member ensemble, with all members start-
ing from a night-time DA analysis, have the smallest warm
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F I G U R E 4 Temperature bias for different
ensemble sizes from 2 December 2017 to 2
January 2018 as a function of forecast range,
displaying the 6-hourly configuration for 12 and
18 members as well as the hourly configuration
for 3, 12, 18 and 24 members. LNDSYN is a label
for the type of truth data used in the verification;
in this case synoptic observations based at UK
stations on land as defined in WMO technical
regulations volume I (WMO, 2018). All data are
equalised onto the 6-hourly ensemble validity and
lead times. All data are plotted every 3 hr.

night-time bias, but the strongest cold daytime bias. The
DA is able to address the temperature biases by removing
heat from the atmosphere. All members of the 6-hourly
and 3-member ensemble members are centred around the
0300 UTC analysis, where the DA is cooling the system
to reduce the night-time cold bias. This reduction in heat,
combined with too little warming through the day then
leads to a larger daytime cold bias. The same plot at 1500
UTC shows that the DA is able to add heat to the sys-
tem (not shown). The time-lagged ensembles behave in the
opposite way. As for the CRPS results in Figure 2, the role
of DA on the temperature bias and skill remains influential
and perhaps more so in the summer than in the winter.

So, with the current model performance, we see differ-
ent characteristics in the bias depending on time-lagging
and on the season. As the ensembles have an underly-
ing cold bias growing with lead time in the winter, the
time-lagged ensembles are seen to perform worse (which
may explain the worse performance in the winter CRPS
at longer lead times). For the summer, there may be some
links here between the bias in temperature and the CRPS
results at short lead times (up to T+ 3).These results do
not explain the improvements in CRPS for the hourly
configuration seen at other lead times in Figure 2 (i.e.
between T+ 3 and T+ 21, for example, in comparison to
the 12-member 6-hourly ensemble in both winter and
summer).

3.4 Reliability and discrimination

Reliability diagrams were examined at different lead times
to compare the hourly and the 6-hourly configurations.

Overall, except at short lead times, we see little evidence of
any improvement in the reliability between the two con-
figurations in most fields and for both summer and winter
trials. This may be due to a lack of events in the upper
bins. Larger neighbourhood sizes than a scale of 3 by 3 grid
points did not help in this regard.

Instead, the reliability part (Primo et al., 2009; Flow-
erdew, 2014; Beck et al., 2016) of the Brier score
(Brier, 1950) for a neighbourhood scale of 3 by 3 points is
used in Figure 6 to provide more information about the
reliability of the ensemble configurations. When there is
no sampling issue (i.e. lack of jumpiness with lead times),
the hourly ensemble with 18 members has better reliabil-
ity (mostly at short lead times but at all lead times for some
fields) than the 6-hourly ensemble with 12 members. The
hourly ensemble with 12 members has either compara-
ble or better reliability than the 6-hourly ensemble with
12 members, depending on the field, threshold or season.
The larger the time-lagged ensemble, the better the relia-
bility. Note however that these differences in the reliability
values of the Brier score are very small; except perhaps
at short lead times, for most fields these are negligible, in
agreement with the reliability diagrams.

Areas under the ROC curve were also examined (for
forecast discrimination potential) between the two ensem-
bles and for different ensemble sizes (not shown). This
comparison is similar to that for the Ranked Probability
and Brier scores. When sampling is not an issue, for all
forecast lead times, the hourly configuration with 18 mem-
bers performs better than the 6-hourly configuration with
12 members, with the 24-member ensemble performing
best. In other details, for most thresholds, the 12-member
time-lagged ensemble would show slightly higher areas



10 PORSON et al.

F I G U R E 5 Diurnal cycle of the
temperature bias, from a 0300 UTC cycle, for
different ensemble sizes from 2 July to 2
August 2017, displaying the 6-hourly
configurations for 12 and 18 members as well
as the hourly configuration for 3, 12, 18 and
24 members. All data are equalised onto the
6-hourly ensemble validity and lead times.
All data are plotted every 3 hr.

under the ROC than the 12-member 6-hourly ensemble
for the shorter lead times and more similar values for the
longer lead times, as in the RPSs. Again, these results apply
to all fields.

3.5 Ensemble spread and impact
of initial conditions on growth of errors

Various metrics are available to analyse the spread of an
ensemble depending on the field and application. Among
those, rank histograms are used to determine the degree
of dispersion in the ensemble pdf against the observa-
tions. Figure 7 compares the hourly and 6-hourly config-
urations for a size of 18 members using grid-point ver-
ification (rank histograms were not available within the
HiRA framework). For most variables (except precipita-
tion and the cloud fields) and for both seasons, the model is
underspread and the use of the hourly configuration helps
slightly to make the ensemble more dispersive. This result
is one of the first indications that the hourly configuration
increases the spread of the ensemble for variables such as
temperature, wind speed, cloud amount, cloud base, and
visibility. Note that this also applies when comparing the
12-member 6-hourly configuration with the 12-member
hourly configuration (not shown). Rank histograms for
precipitation show that the observations occur too fre-
quently in the highest bins, indicating that the ensemble
does not capture high enough rainfall, and that perhaps we
still do not have enough members (note however that this
relies on grid-point analysis).

The standard deviation between the ensemble mem-
bers is assessed next for the hourly and 6-hourly configu-
rations. As previously, Figure 8 illustrates the comparison
between the two configurations and different ensemble
sizes. For both the hourly and 6-hourly configurations, an
increase in the ensemble size results in a small increase in
the ensemble spread.

Between the 6-hourly configurations and the hourly
configurations, we see a larger increase of almost 15% at
the shorter lead times and approximately 5% at longer
lead times. The key point to note here is that this dif-
ference is not related to the ensemble size, but to the
difference in configurations: a 6-hourly ensemble with 18
members does not offer the same quality of spread as
the hourly one with 12, 18 or 24 members. The ensem-
ble is overall underspread, as illustrated in Figure 9a,b
where the standard deviation to the observations is higher
than the standard deviation between the members and the
ensemble mean. The time-lagged configuration improves
the ensemble spread and reduces the lack of dispersion
of the ensemble; these improvements in the spread con-
tribute to the improvements in the RPS presented in the
Hinton diagrams in Figure 2. Note here that no observa-
tional error or post-processing technique (apart from the
time-lagging itself) is considered in this overall assessment
of the convective-scale ensemble. This will be the subject
of future work.

Using the 24-member ensemble contributes to a fur-
ther increase in the spread of the ensemble (as illus-
trated in Figure 8 for the standard deviation between
the members) and a further reduction of the standard
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(a)

(b)

F I G U R E 6 Reliability part of the Brier score for (a) a low
precipitation threshold of 0.25 mm per hour from 2 July to 2 August
2017 and (b) a low wind threshold of 3.6 m⋅s-1 from 2 December
2017 to 2 January 2018 for a neighbourhood scale of 3 by 3. All data
are equalised onto the 6-hourly ensemble validity and lead times.
All data are plotted every 3 hr.

deviation against the observations (not shown here),
thereby further improving the dispersion issue of the
convective-scale ensemble. This is perhaps explained by
the systematic use of multiple global ensemble driv-
ing conditions in the 24-member time-lagged ensemble
for each cycle, compared to the 18-member time-lagged
ensemble. Indeed, as illustrated in Figure 9c,d, the cycles
of the hourly configuration associated with a 50–50%
mixture of MOGREPS-G cycles (e.g. 0500 UTC) do have
additional spread throughout the forecasts, compared to
the cycles of the hourly configuration with 100% forc-
ing from the same MOGREPS-G conditions (e.g. 0800
UTC). This is slightly more pronounced in the win-
ter than in the summer. So, mixing different cycles of
large-scale perturbations further helps with the spread in
the convective-scale ensemble. This suggests that further
mixing of MOGREPS-G conditions could be beneficial to
the spread.

Despite these improvements, the ensemble is over-
all underspread when using these metrics of standard
deviation, and this is a general issue for convective-scale
ensembles (Gebhardt et al., 2010; Schwartz et al., 2014;
Beck et al., 2016; Dey et al., 2016; McCabe et al., 2016;
Raynaud and Bouttier, 2017). Further efforts will need to
assess the characteristics of the spread as well as develop-
ing more tools to understand and quantify the ensemble
spread; metrics based on Fractions Skill Score (FSS), for
example, show promise (Dey et al., 2014; Weyn and Dur-
ran, 2018; 2019; Keil et al., 2019; Porson et al., 2019) or
other metrics such as correspondence ratios (Gebhardt
et al., 2010). A step towards understanding this impact on
the spread has been taken by separating the impact of the
initial perturbations from the large-scale and those intro-
duced by the hourly configurations, by sampling a range
of hourly DA analyses.

To understand which aspects of the system are lead-
ing to the increase in performance at which time-scales,
Figure 10 shows the decomposition of the error growth
depending on the type of perturbations used to initi-
ate the spread of the ensemble for the summer trial.
One by one, the perturbations help to reduce the growth
of errors or decay in quality by reducing the RPS (and
thus improving the accuracy of the ensemble forecasts).
These perturbations are: the boundary conditions from
MOGREPS-G (LBCs), the initial-condition perturbations
from MOGREPS-G (IPs) and the change from the 6-hourly
to the hourly configuration. The red line (“6-hourly stph”)
is an ensemble created only by the stochastic physics of the
ensemble (McCabe et al., 2016) as well as additional noise
in the boundary layer to initiate the diurnal cycle (Bush
et al., 2020). This ensemble forecast has the largest error.
Then, in the blue line (“6-hourly LBCs only”), the LBCs
perturbations from MOGREPS-G only are introduced, and
nothing from the initial perturbations. The impact on error
growth dominates in the longer lead times as expected.

From the blue line to the green line (6-hourly with
both IPs and LBCs), the IPs coming from MOGREPS-G,
that is, from the large scale, are introduced. These pertur-
bations dominate in the short lead times up to T+ 30. By
T+ 30, the perturbations from the LBCs are responsible for
the reduction in the error growth. Note that this impact of
the LBCs at longer lead times is consistent with previous
studies (Gebhardt et al., 2010; Porson et al., 2019).

The hourly configuration then adds another degree
of initial perturbations by using a mixture of small-scale
perturbations and (depending on the cycle and ensem-
ble size) large-scale perturbations as well. The pink line
(“hourly 12-m LBC only”) represents the error growth
associated with the hourly configuration with no IPs from
MOGREPS-G, but this configuration maintains the hourly
re-centring of the analysis in the initial conditions coming
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F I G U R E 7 Rank histogram for surface
temperature forecasts for 18 members for the
hourly and 6-hourly configurations from 2
July to 2 August 2017 at T+ 12. All data are
equalised onto the 6-hourly ensemble validity
and lead times.

from the UKV. So, this pink line includes the impact of
time-lagged small-scale perturbations (i.e. four successive
cycles here for the 12-member hourly ensemble).

The impact of including the multiple initial conditions
from these successive cycles of the UKV is measured by
comparing either the blue with the pink lines (for ensem-
ble configurations without any large-scale initial pertur-
bations) or the green with the yellow lines (representing
respectively the 6-hourly and hourly configurations with
all initial perturbations). The hourly time-lagged configu-
ration reduces the error at short lead times with or without
the initial perturbations from the large-scale ensemble,
highlighting the importance of the small scales as in Weyn
and Durran (2018; 2019).

Looking at the differences against the 6-hourly sys-
tem with no perturbations to the driving conditions (i.e.
“6-hourly stph”) in the bottom panel of Figure 10, the
impact of the hourly configuration “hourly 12-m LBCs
only” is nearly as large initially as the impact of the
6-hourly set-up with LBCs and IPs from MOGREPS-G.
This suggests that unlike the 6-hourly system, the hourly
configuration sees its error growth initially depending on
the use of time-lagging itself, with or without large-scale
perturbations.

All other variables follow the same pattern, except
for the temperature, consistent with the CRPS results in
Figure 2 and the bias analysis in Figure 4.

Overall, we have shown here that time-lagging con-
tributes to an improvement in the quality of the ensemble
(smaller RPS), due to the small scales entering the sys-
tem from the hourly update in the high-resolution UKV
deterministic model.

4 SKILL OF THE HOURLY
CONFIGURATION TO T +120

It is reasonable to assume that higher-resolution
convection-permitting ensembles will improve the real-
ism of rainfall forecasts, compared to coarser-resolution
ensembles. Kendon et al. (2012) have demonstrated this
in a climate sense by comparing a 1.5 km model with a
12 km model. At the same time as introduction of the new
hourly configuration, MOGREPS-UK was upgraded to run
to T+ 120 instead of T+ 54. At these forecast lead times,
MOGREPS-UK will then be compared to the other two
NWP systems covering 5 days, namely its parent ensemble
MOGREPS-G and the high-resolution deterministic UKV.
The main objective is to improve the prediction of severe
weather available from the global ensemble MOGREPS-G
(about 20 km grid space at midlatitudes) and to model the
uncertainty in location of severe weather predicted by our
deterministic UKV model (1.5 km grid space).

We do not attempt here to provide a full analysis of
the objective verification of these three NWP systems to
T+ 120, but instead assess the strengths and weaknesses
of our convective-scale ensemble against the other systems
already running to T+ 120. These experiments may not
provide robust results for high-impact weather. Sampling a
large number of high-impact rainfall cases through subjec-
tive evaluation would be needed to fully complement this
study, and this is ongoing work as the system is still in its
infancy.

Here, we use operational data from 1 Septem-
ber to 1 November 2019 (dates between 16 and 20
September are missing) to analyse the performance
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F I G U R E 8 Standard deviation for wind vector magnitude
between the ensemble members and the ensemble mean for the
different ensemble configurations and sizes from 2 July to 2 August
2017. A black “S” on the difference plot (lower panel) indicates
significance at the 0.05 level as calculated using the Wilcoxon
signed-rank test (Wilks, 2011). All data are equalised onto the
6-hourly ensemble validity and lead times. All data are plotted every
3 hr.

of our convective-scale ensemble to T+ 120 against
MOGREPS-G using the HiRA framework. A
pre-operational set of data from 1 January to 10 March
2019 was also tested to compare the pre-operational
MOGREPS-UK against the operational MOGREPS-G. We
finish this article by testing how we could further improve
MOGREPS-UK at these longer lead times over the same
pre-operational data from 1 January to 10 March 2019 as
well as additional trial data from 16 July to 16 August 2018.

4.1 Comparison with existing NWP
systems running to T+ 120

Mittermaier and Csima (2017) presented a 3-year com-
parison of the UKV and the 6-hourly 12-member

MOGREPS-UK. They showed that there are two options
when it comes to the choice of neighbourhoods for
comparing models equitably: equalising on the physi-
cal neighbourhood size or on the approximate ensemble
members. The former is appropriate when compar-
ing deterministic forecasts (or when comparing the
MOGREPS-UK control to the UKV for example, which
tests the quality of the configurations). The latter is for
comparing a deterministic model to an ensemble or one
ensemble to another ensemble.

Mittermaier and Csima (2017) went on to show
that, broadly speaking, there is an improvement in the
12-member MOGREPS-UK skill when using the smallest
3× 3 neighbourhood (compared to using no neighbour-
hood), but negligible benefit from larger neighbourhoods.
Hagelin et al. (2017) also showed that MOGREPS-UK
has better accuracy compared to the UKV and that the
increase in neighbourhood scale is more beneficial to the
deterministic model than to MOGREPS-UK. A compari-
son was made here between the UKV using 11× 11 (i.e. 121
pseudo-members) and 17× 17 (i.e. 289 pseudo-members)
against MOGREPS-UK with a 3× 3 neighbourhood scale
(i.e. 3× 3× 18 = 162 pseudo-members) and this still shows
better accuracy for MOGREPS-UK. This finding is consis-
tent with previous works and extends the applicability out
to T+ 120. Given the extensive previous research on this
comparison, this is not illustrated here.

For MOGREPS-UK and MOGREPS-G, the comparison
is based on an equalisation of ensemble members and a
3× 3 neighbourhood scale for each ensemble.

MOGREPS-G data are only valid at 0000, 0600, 1200
and 1800 UTC and only 6-hourly forecast ranges are shown
here. After T+ 48, the data only cover the 0000 and 1200
UTC validity times. Using the RPS for wind speed, visibil-
ity and precipitation and CRPS for temperature, we plot
the Hinton diagram summarising the comparison between
MOGREPS-UK and MOGREPS-G in Figure 11. We see
improvements in most fields, except for cloud amounts
at longer lead times. This comparison depends, however,
on the season. A comparison of the pre-operational data
from MOGREPS-UK against the operational MOGREPS-G
(not shown here) reveals that the cloud fields are not
improved in MOGREPS-UK; the regional ensemble is
worse for the cloud base heights, but again the differences
are not statistically significant. Understanding the reasons
for this would require a lot of additional work but cur-
rently the regional and global models do not use the same
parametrizations, and this is contributing to the signals
seen here. In future, there are plans to use consistent cloud
parametrizations between the global and regional models.

MOGREPS-UK and MOGREPS-G also show different
biases, changing with the seasons, as well as different
reliability characteristics.
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(a) (b)

(c) (d)

F I G U R E 9 Ratio of ensemble standard deviation over standard deviation of ensemble mean against observations for (a) temperature
and (b) wind speed, for the 6-hourly and hourly configurations. The summer trials run from 2 July to 2 August 2017 and the winter trials run
from 2 December 2017 to 2 January 2018. All data are equalised onto the 6-hourly ensemble validity and lead times. All data are plotted every
3 hrs. Ratio of ensemble standard deviation over standard deviation of ensemble mean against observations for (c) temperature and (d) wind
speed, for the 0500 UTC and 0800 UTC cycles for the hourly configuration only. The summer trials run from 3 July (as the 0500 cycle is not
available on 2 July) to 2 August 2017 and the winter trials runs from 3 December 2017 (as the 0500 cycle is not available on 2 December) to 2
January 2018. All the spread and skill data are equalised on the same validity times for the individual cycles as well as between the two cycles
for the common validity times. All data are plotted every 3 hr.

It is worth noting here that the biases from MOGREPS-
UK are closer to the biases from the high-resolution UKV
model than to the global ensemble MOGREPS-G, and this
is likely to be due to differences in formulation between
global and regional models.

Overall, MOGREPS-UK brings some improvements
over MOGREPS-G in the scores analysed here, but these
improvements become smaller with lead time (as in
Schwartz, 2019). It is worth noting that the details of this
comparison are likely to change with future upgrades in
the science of either model, as well as future changes to the

initial conditions and data assimilation techniques in both
ensembles. With this in mind, such a comparison has to be
regularly re-assessed and repeated over different seasons.

4.2 Future work on the design
and processing of the hourly configuration

Here, we explore how we could improve the ensemble
configuration to T+ 120 hr. When comparing against the
6-hourly ensemble, we showed that a further increase in
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F I G U R E 10 Decomposition of RPS for precipitation showing
impact of initial conditions and lateral boundary conditions for both
configurations for an ensemble size of 12 members from 2 July to 2
August 2017. A black ‘S’ on the difference plot (lower panel)
indicates significance at the 0.05 level calculated using a Wilcoxon
signed-rank test (Wilks, 2011). All data are equalised onto the
6-hourly ensemble validity and lead times. All data are plotted every
3 hr.

ensemble size from 18 to 24 members results in improve-
ments in RPS, reliability, discrimination and spread. Now,
we compare the impact of increasing the ensemble size
directly against the impact of increasing the ensemble size
using HiRA (and so a specific neighbourhood scale around
the nearest grid-point in the verification) for lead times up
to T+ 120 hr. Whilst it would be reasonable to use adaptive
neighbourhoods for post-processing to mitigate against the
growth of forecast errors and decreasing predictability,
this is not the case for verification of raw output, where
there is an inherent interest in quantifying the growth in
forecast error and loss of predictability. For this reason, a
fixed neighbourhood size for verification is appropriate.
For completeness it is worth noting here that using neigh-
bourhoods in verification would be inappropriate if the
forecasts had been post-processed using a neighbourhood
technique prior to verification. We expect the results to

depend on the field (Mittermaier and Csima, 2017) and the
season. These results may also be different if the type of
neighbourhood processing used could adapt to the local
terrain for example, but this is not investigated here.

The results here focus on two seasons: a winter
pre-operational trial from 1 January 2019 to 10 March
2019 as well as a shorter summer trial from 16 July 2018
to 16 August 2018. The accuracy of the hourly ensem-
ble up to T+ 120 hr is studied using RPS as in Figure 12.
Different sizes of neighbourhood scale are used to see
whether an increase in the number of “pseudo” ensemble
points can compete with a genuine increase in ensem-
ble members to 24 and a neighbourhood no larger than
3 by 3. A 24-member 3× 3 set-up provides 216 points.
The 18-member 3× 3 neighbourhood provides 162 points,
whereas a 5× 5 neighbourhood gives 450 points, 7× 7 gives
882 points and 11× 11 gives 2,178 points. The relative
impact of increasing the ensemble size and neighbourhood
scale not only depends on the field and season, but also on
lead time. For example, Figure 12 shows that increasing to
5× 5 for the 18-member ensemble provides some benefit at
early lead times but increasing to 24 members with a 3× 3
neighbourhood is better than the 18-member 3× 3, that
is, adding ensemble members is more beneficial. Further
increase in neighbourhood size is not beneficial.

The impact of increasing the ensemble size is depicted
in Hinton diagram scorecards in Figure 13a for the sum-
mer trial (the winter trial is not shown). For both the
summer and winter trials, increasing the size of the ensem-
ble leads to improvements at most lead times and for most
fields. The improvements are small, however (of the order
of 1%). We see again the impact of the DA with the age
of the forecasts in the CRPS for temperature. Increasing
the neighbourhood scale (Figure 13b,d) results in improve-
ments for precipitation, cloud amounts, and wind speeds
(although for the winter, this depends on the size of the
neighbourhood as in Figure 12, perhaps this is due to the
difference in predictability in wind patterns between the
winter and the summer). Again, at longer lead times, these
improvements are small. For visibility and temperature,
fields sensitive to the local terrain, no type of neighbour-
hood processing improves the configuration, which sug-
gests that an optimal ensemble size for MOGREPS-UK
is obtained with a neighbourhood scale of 3 by 3 points
(as in Mittermaier and Csima, 2017) at longer lead times
as well. Again, any change here is very small. Finally, in
Figure 13d, we show the comparison between increasing
the neighbourhood size and increasing the ensemble size.
Apart from very small detriments in cloud amount and
wind speed in the summer, increasing the ensemble size is
the best option overall.

This type of study reveals that future efforts should still
focus on increasing the ensemble size as well as improving



16 PORSON et al.

F I G U R E 11 Hinton diagrams to display the CRPS for temperature (T_CRPS) and RPSs for wind (W_RPS), cloud amount (CA_RPS),
cloud base (CB_RPS), visibility (VIS_RPS) and precipitation (6hP_RPS) from 1 September to 1 November 2019. Comparison of MOGREPS-UK
18-member hourly configuration for a neighbourhood scale of 3 by 3 points with MOGREPS-G for a neighbourhood scale of 3 by 3 grid points.
Green triangles indicate 18-member hourly MOGREPS-UK is better. A black outline to the triangle indicates statistical significance at the 0.05
level, calculated using the Wilcoxon signed-rank test (Wilks, 2011). All data are equalised onto the validity and lead times for MOGREPS-G.

and developing further types of post-processing with the
creation of smarter, more adaptive neighbourhood pro-
cessing and statistical methods. Additional time-lagging
may be beneficial for such long lead times as it increases
the use of different MOGREPS-G driving conditions. Fur-
ther investigations on the mechanisms controlling the
growth of errors at these longer lead times may also be
fruitful.

5 CONCLUSIONS

Convective-scale ensembles are now widely used and
developed in order to assess the uncertainty in the inten-
sity, location and timing of high-impact weather. They
increasingly constitute one of the primary sources of NWP
forecast data.

Here, we study the performance of a new opera-
tional configuration for the Met Office's convective-scale
ensemble: MOGREPS-UK. It relies on the hourly
cycling of the high-resolution deterministic UKV model
data-assimilation to generate a new set of initial condi-
tions at each hour for the convective-scale ensemble. An
hourly-updated 18-member ensemble now consists of six
hourly time-lagged sets of three members and produces
forecasts out to a lead time of 5 days.

This new hourly configuration is introduced to reduce
the jumpiness between successive ensemble forecasts, to
account for uncertainty in initial conditions by centring
around consecutive hourly UKV analyses, to help in iden-
tifying forecast trends as well as to improve the spread of
the ensemble.

Objective verification is used for a range of metrics
(such as RPS, reliability, ROC areas, biases, standard

deviation between members and the mean and rank his-
tograms) over different trial periods. Most of the results
found here apply to all fields and both winter and summer
seasons, except for the temperature which suffers from a
strong diurnal cycle bias in the summer and a growing bias
with lead times in the winter. For most fields, to ensure bet-
ter performance at all lead times, a larger sized ensemble
of the time-lagged configuration, compared to the 6-hourly
configuration, should be used. This is due to the use of
older driving conditions from MOGREPS-G as well as an
increase in forecast age in the time-lagged configuration.
We show that an 18-member time-lagged configuration
performs better at mostly all lead times compared to a
12-member 6-hourly configuration. An ensemble size of
24 members is needed in the time-lagging configuration,
in comparison to an ensemble size of 18 members in the
6-hourly configuration, in order to ensure better skill at all
lead times. In general, a 24-member time-lagged ensem-
ble also offers better discrimination and reliability than an
18-member time-lagged ensemble.

From the 6-hourly to the hourly configuration, the
ensemble spread (i.e. standard deviation between the
members and the mean) has increased by almost 15%
at short lead times and approximately 5% at longer lead
times. As well as increasing the ensemble spread, the
hourly configuration contributes to a reduction in the stan-
dard deviation against observations, and so overall par-
tially alleviates the lack of spread in the ensemble. Again, a
larger ensemble size of 24 members contributes to a larger
increase in ensemble spread as well as a reduction in the
standard deviation against observations. It is important
to note that, unlike the other metrics, the differences in
spread do not depend on the size of the time-lagged ensem-
ble, which gives better spread and better sampling of the



PORSON et al. 17

F I G U R E 12 RPS with the hourly
configuration to T+ 120 hr for wind speed
against synoptic observations from 1 January
to 10 March 2019. Different sizes of
neighbourhoods are used here (3 by 3 points,
5 by 5 points, 7 by 7 points, 11 by 11 points)
for the 18-member configuration and a 3 by 3
neighbourhood is used in comparison for the
24-member ensemble. A black ‘S’ on the
difference plot (lower panel) indicates
statistical significance at the 0.05 level,
calculated using the Wilcoxon signed-rank
test (e.g. Wilks, 2011) All data are plotted
every 6 hr.

pdf whether it uses the same number or a higher num-
ber of members than the 6-hourly configuration. However,
the ensemble is still underspread and further efforts are
needed to improve and assess its performance over a large
sample of cases and trials.

In addition to the change from the 6-hourly to the
hourly configuration, MOGREPS-UK was also upgraded to
run to T+ 120 hr. We therefore also assess the performance
of the convective-scale ensemble against the Met Office's
existing NWP systems running to T+ 120 hr, the global
ensemble MOGREPS-G and the high-resolution determin-
istic model UKV.

Against MOGREPS-G, MOGREPS-UK shows better
skill, especially at short lead times, and especially for wind.
For lead times as long as T+ 80 hr, the improvements in the
skill are smaller and lose statistical significance for some

fields. The benefits also relate more to improvements in
discrimination than in reliability.

This article has highlighted some points for future
research:

• More research is needed to quantify the spread of the
ensemble for other variables such as clouds or precip-
itation using spatial verification methods (such as Dey
et al., 2014; 2016).

• While the hourly time-lagging configuration improves
the spin-up of the forecasts, the same small-scale per-
turbations are applied to all three members running
at each hour. Further work may be required in the
data assimilation and stochastic physics to understand
better the role of the small-scale perturbations per
member on the spread and the skill of the ensemble.
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F I G U R E 13 Hinton
diagrams to display the CRPS
for temperature (T_CRPS) and
RPSs for wind speed (W_RPS),
cloud amount (CA_RPS),
cloud base (CB_RPS), visibility
(Vis_RPS) and precipitation
(1hP_RPS) for the summer
trial 16 July to 16 August 2018.
(a) Impact of increasing the
ensemble size to 24 members,
(b) impact of increasing the
neighbourhood scale to 7 by 7
grid points, (c) impact of
increasing the neighbourhood
scale to 11 by 11 grid points,
and (d) relative impact of
increasing the neighbourhood
scale to 7 by 7 grid points
against increasing the
ensemble size

(a)

(b)

(c)

(d)

Whatever the scales of the perturbations, the impact
of time-lagging will result in larger spread because of
the variability provided by these older forecasts. How-
ever, the impact of time-lagging may also depend to a
certain extent on the scales of the perturbations applied

to the ensemble: if only large-scale perturbations are
used, the impact of time-lagging may be larger because
of the introduction of small-scale perturbations by the
older forecasts (which could provide a better spin-up
of the active convection at early lead times). However,
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if smaller-scale perturbations are used (Raynaud and
Bouttier, 2016, for example), future work may need to
address the impact of spin-up and the benefits of hourly
time-lagging, depending on the variability and quality
of the hourly cycling data assimilation against a less
frequent cycling system.

• Further work is also required to assess the performance
of the model for each successive cycle (i.e. jumpiness) in
order to assess how the hourly refresh of the UKV anal-
yses contributes to the performance of the ensemble
forecast for high-impact cases. Weighting over ensem-
ble members may need to be considered in this respect.

• Using objective verification, we show that
MOGREPS-UK has better or similar skill to the
other NWP systems running to T+ 120 hr: the global
ensemble MOGREPS-G and the deterministic UKV
model. Future work is needed to sample a large set of
case-studies to understand the performance of all these
systems in high-impact weather.

• Compared to our operational configuration using six
cycles of time-lagging with 18 members, we also showed
that the skill of the ensemble is further improved by
increasing the size of the time-lagged ensemble to eight
cycles or 24 members. This may motivate the use of
further time-lagging operationally in the future. The lat-
est research at the grid scale shows that time-lagging
to even 30 members (i.e. 10 hr) is still beneficial.
Post-processing techniques are also valuable and could
be further improved for fields like temperature and
visibility.

• An investigation into the working practices of oper-
ational meteorologists would be useful. Whilst single
model systems such as UKV and MOGREPS-UK con-
tinue to contain significant systematic errors, there
is likely to be information missing that is available
through an overview of multiple independent models,
as are often used by operational meteorologists.

• Finally, whilst time-lagging improves the spread of
the ensemble, in common with many convective-scale
ensembles, the system is still believed to be
under-dispersed and this is a high priority area of
ongoing research.
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