
COMBINING USER FEEDBACK AND  
MONITORING DATA TO SUPPORT  
EVIDENCE-BASED SOFTWARE EVOLUTION

Farnaz Fotrousi

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2020:04

Department of Software Engineering

Context: Companies continuously explore their 
software systems to acquire evidence for software 
evolution, such as bugs in the system and new 
functional or quality requirements. So far, manag-
ers have made decisions about software evolution 
based on evidence gathered from interpreting user 
feedback and monitoring data collected separately 
from software in use. These evidence-collection 
processes are usually unmethodical, lack a system-
atic guide, and have practical issues. This lack of a 
systematic approach leaves unexploited opportu-
nities for detecting evidence for system evolution.

Objective: The main research objective is to im-
prove evidence collection from software in use 
and guide software practitioners in decision-mak-
ing about system evolution. Understanding useful 
approaches to collect user feedback and monitor-
ing data, two important sources of evidence, and 
combining them are key objectives as well.

Method: We proposed a method for gathering 
evidence from software in use (GESU) using de-
sign-science research. We designed the meth-
od over three iterations and validated it in the 
European case studies FI-Start, Supersede, and 
Wise-IoT. To acquire knowledge for the design, 
we conducted further research using surveys and 
systematic mapping methods.

Results: The results show that GESU is not only 
successful in industrial environments but also 
yields new evidence for software evolution by 

bringing user feedback and monitoring data to-
gether. This combination helps software practi-
tioners improve their understanding of end-user 
needs and system drawbacks, ultimately support-
ing continuous requirements elicitation and prod-
uct evolution. GESU suggests monitoring a soft-
ware system based on its goals to filter relevant 
data (i.e., goal-driven monitoring) and gathering 
user feedback when the system requests feedback 
about the software in use (i.e., system-triggered 
user feedback). The system identifies interesting 
situations of system use and issues automated 
requests for user feedback to interpret the evi-
dence from user perspectives. We justified using 
goal-driven monitoring and system-triggered user 
feedback with complementary findings of the the-
sis. That showed the goals and characteristics of 
software systems constrain monitoring data. We 
thus narrowed the monitoring and observational 
focus on data aligned with goals instead of a mas-
sive amount of potentially useless data. Finally, we 
found that requesting feedback from users with a 
simple feedback form is a useful approach for mo-
tivating users to provide feedback. 

Conclusion: Combining user feedback and moni-
toring data is helpful to acquire insights into the 
success of a software system and guide deci-
sion-making regarding its evolution. This work 
can be extended in the future by implementing an 
adaptive system for gathering evidence from com-
bined monitoring data and user feedback.

2020:04

ISSN: 1653-2090

ISBN: 978-91-7295-402-1

C
O

M
B

IN
IN

G
 U

S
E

R
 F

E
E

D
B

A
C

K
 A

N
D

 M
O

N
IT

O
R

IN
G

 D
A

T
A

 T
O

 S
U

P
P

O
R

T
 E

V
ID

E
N

C
E

-B
A

S
E

D
 S

O
F

T
W

A
R

E
 E

V
O

L
U

T
IO

N
Farnaz Fotrousi

2020:04

ABSTRACT



Combining User Feedback and  
Monitoring Data to Support Evidence-Based 

Software Evolution

Farnaz Fotrousi





Blekinge Institute of Technology Doctoral Dissertation Series 
No 2020:04

Combining User Feedback and  
Monitoring Data to Support Evidence-Based 

Software Evolution

Farnaz Fotrousi

Doctoral Dissertation in  
Software Engineering

Department of Software Engineering
Blekinge Institute of Technology 

SWEDEN



2020 Farnaz Fotrousi
Department of Software Engineering
Publisher: Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden
Printed by Exakta Group, Sweden, 2020
ISBN: 978-91-7295-402-1
ISSN: 1653-2090
urn:nbn:se:bth-19397



 
 
 

 
  i 

 

 

 

 

 

 

 

To my parents, forever in my heart!  

 

 

 



 
 
 

 
  ii 

 

 

 

  



 
 

 
  iii 

 

Abstract 
Context: Companies continuously explore their software systems to 

acquire evidence for software evolution, such as bugs in the system 

and new functional or quality requirements. So far, managers have 

made decisions about software evolution based on evidence 

gathered from interpreting user feedback and monitoring data 

collected separately from software in use. These evidence-collection 

processes are usually unmethodical, lack a systematic guide, and 

have practical issues. This lack of a systematic approach leaves 

unexploited opportunities for detecting evidence for system 

evolution. 

Objective: The main research objective is to improve evidence 

collection from software in use and guide software practitioners in 

decision-making about system evolution. Understanding useful 

approaches to collect user feedback and monitoring data, two 

important sources of evidence, and combining them are key 

objectives as well. 

Method: We proposed a method for gathering evidence from 

software in use (GESU) using design-science research. We designed 

the method over three iterations and validated it in the European 

case studies FI-Start, Supersede, and Wise-IoT. To acquire 

knowledge for the design, we conducted further research using 

surveys and systematic mapping methods. 

Results: The results show that GESU is not only successful in 

industrial environments but also yields new evidence for software 

evolution by bringing user feedback and monitoring data together. 

This combination helps software practitioners improve their 

understanding of end-user needs and system drawbacks, ultimately 

supporting continuous requirements elicitation and product 

evolution. GESU suggests monitoring a software system based on its 

goals to filter relevant data (i.e., goal-driven monitoring) and 

gathering user feedback when the system requests feedback about 

the software in use (i.e., system-triggered user feedback). The system 

identifies interesting situations of system use and issues automated 

requests for user feedback to interpret the evidence from user 

perspectives. We justified using goal-driven monitoring and system-



  
iv Abstract  

 

triggered user feedback with complementary findings of the thesis. 

That showed the goals and characteristics of software systems 

constrain monitoring data. We thus narrowed the monitoring and 

observational focus on data aligned with goals instead of a massive 

amount of potentially useless data. Finally, we found that requesting 

feedback from users with a simple feedback form is a useful 

approach for motivating users to provide feedback.  

Conclusion: Combining user feedback and monitoring data is helpful 

to acquire insights into the success of a software system and guide 

decision-making regarding its evolution. This work can be extended 

in the future by implementing an adaptive system for gathering 

evidence from combined user feedback and monitoring data. 

 



 
 
 

 
  v 

 

Acknowledgments 
I would like to express my sincere appreciation to my supervisors; 

Prof. Dr Samuel A. Fricker, Prof. Dr Markus Fiedler, and Prof. Dr 

Jürgen Börstler for their continuous, invaluable, and helpful support 

and guidance in my research. Despite their busy schedules, they were 

always available to share their deep knowledge and provide me with 

their insightful feedback on my study. 

Thanks to my colleagues in DIPT and DIKO departments at BTH, and 

FHNW university for the enjoyable and educating conversations we 

have had. Especially, I would like to thank Deepika Badampudi for 

her continuous support and friendship. Also, Muhammad Usman and 

Melanie Stade for their supportive discussions and their kindness.  

I also use this opportunity to express my gratitude to partners 

involved in the FI-STAR, Supersede, and Wise-IoT projects 

collaborated kindly and provided me with the opportunity of 

running these studies.  

My deep appreciation goes to my family for being so encouraging and 

supportive. Especially, I am so grateful to my spouse, Shahryar, for 

his great emotional and technical support along the way. He was 

truly my invaluable consultant, who continuously shared with me his 

knowledge and insight. Arvid, my son, is responsible for some of the 

sweetest moments in my life in the past two and a half years, helping 

me to overcome the common frustrations along with my researches. 

Thank you, my son! 

At last, special gratitude to my parents, for the life-long devotion, 

love, and support they bestowed on me. They will always have a 

share in the bests that I will achieve through my life. 

 

 

 

 



 

 

 

 

 



 

  vii 

 

Preface 
Papers included in this thesis: The compilation thesis includes the 

following seven papers: 

Chapter 2. F. Fotrousi, M. Stade, N. Seyff, S. Fricker, M. Fiedler 

(2020). “How do Users Characterise Feedback Features of an 

Embedded Feedback Channel?” – Submitted to a Journal.  

Chapter 3. F. Fotrousi, S. Fricker, M. Fiedler (2018). “The Effect of 

Requests for User Feedback on Quality of Experience”, Software 

Quality Journal, 26(2), 385-415. DOI: 10.1007/s11219-017-9373-7. 

Chapter 4. F. Fotrousi, S. Fricker, M. Fiedler (2014). “KPIs in 

Software Ecosystem: A Systematic Mapping Study”, 5th International 

Conference on the Software Business (ICSOB), Paphos, Cyprus: 
Springer, pp 194-211. DOI: 10.1007/978-3-319-08738-2. 

Chapter 5. F. Fotrousi, S. Fricker (2016). “Software Analytics for 

Planning Product Evolution”, 7th International Conference of 

Software Business (ICSOB), Ljubljana, Slovenia: Springer, pp. 16-31. 

DOI: 10.1007/978-3-319-40515-5_2. 

Chapter 6. F. Fotrousi, S. Fricker, M. Fiedler (2014). “Quality 

Requirements Elicitation based on Inquiry of Quality-Impact 

Relationships”, 22nd International Conference on Requirements 

Engineering (RE), Karlskrona, Sweden: IEEE, pp: 303-312. DOI: 

10.1109/RE.2014.6912272. 

Chapter 7. M. Oriol, M. Stade, F. Fotrousi, S. Nadal, J. Varga, N. Seyff, 

A. Abello, X. Franch, J. Marco, O. Schmidt (2018). “FAME: Supporting 

Continuous Requirements Elicitation by Combining User Feedback 

and Monitoring”, 26th International Conference on Requirements 

Engineering (RE), Banff, Canada: IEEE. pp: 217-227. DOI: 

10.1109/RE.2018.00030. 

Chapter 8. F. Fotrousi, S. Fricker, M. Fiedler, D. Wüest (2020). “A 

Method for Gathering Evidence from Software in Use to Support 

Software Evolution”- Submitted to a Journal. 

 



 

  
viii Preface  

 

 

Contribution Statement: 

Farnaz Fotrousi was the main driver of the studies in Chapters 2, 3, 

4, 5, 6, and 8 in designing, executing and reporting the studies. In the 

study presented in chapter 7, Farnaz contributed by designing a 

feedback gathering system and lead a team of students to implement 

the design. She also proposed a technical solution for a combination 

of user feedback and monitoring data. Farnaz Fotrousi contributed 

in writing particularly for related works and the description of FAME 

Framework in the user feedback parts. She reviewed and 

commented on the final draft. 

   



 
 
 

  ix 
 

 

Other contributions related to this thesis: 

1. Contribution to deliverables of FI-STAR European project:  

     D6.2: Common test platform  

     D6.4: Validated services at experimentation sites  

2. Contribution to deliverables of SUPERSEDE European project: 

    D1.2: Direct multi-modal feedback gathering techniques, V1  

    D1.4: Comprehensive monitoring techniques, v1  

 

Related papers not included in this thesis: 

1. F. Fotrousi, S. Fricker (2016). “QoE probe: A requirement-

monitoring tool”, REFSQ Workshops, co-located with the 22nd 

International Working Conference on Requirements Engineering: 

Foundation for Software Quality (REFSQ), Gothenburg, Sweden: 

CEUR-WS. 

2. F. Fotrousi, N. Seyff, J. Börstler (2017). “Ethical Considerations in 

Research on User Feedback”, 25th International Requirements 

Engineering Conference Workshops (REW), Lisbon, Portugal: IEEE, 

pp. 194-198. 

3. D. Wüest, F. Fotrousi, S. A. Fricker (2019). “Combining Monitoring 

and Autonomous Feedback Requests to Elicit Actionable Knowledge 

of System Use”, 25nd International Working Conference on 

Requirements Engineering: Foundation for Software Quality 

(REFSQ), Essen, Germany: Springer: pp. 209-225. 

4. M. Stade, F. Fotrousi, N. Seyff, and O. Albrecht (2017). “Feedback 

Gathering from an Industrial Point of View”, 25th International 

Conference on Requirements Engineering (RE), Lisbon, Portugal 

IEEE, pp. 71-79. 

5. S. Fricker, K. Schneider, F. Fotrousi, C. Thuemmler (2016). 

“Workshop Videos for Requirements Communication”, 

Requirements Engineering Journal, 21(4), pp. 521-552. 

6. M. Stade, M. Oriol, O. Cabrera, F. Fotrousi, R. Schaniel, N. Seyff, O. 

Schmidt (2017). “Providing A User Forum Is Not Enough: first 



 

  
x Preface  

 

experiences of a software company with CrowdRE”, 25th 

International Requirements Engineering Conference Workshops 

(REW), Lisbon, Portugal: IEEE, pp. 164-169. 

7. N. Seyff, M. Stade, F. Fotrousi, M. Glinz, E. Guzman, M. 

Kolpondinos-Huber, R. Schaniel (2017). “End-user Driven Feedback 

Prioritization”, REFSQ Workshops, co-located with the 22nd 

International Conference on Requirements Engineering: Foundation 

for Software Quality (REFSQ), Essen, Germany: CEUR-WS, pp. 1-7.  

8. F. Fotrousi, K. Izadyan, and S. A. Fricker (2013). “Analytics for 

Product Planning: In-depth Interview Study with SaaS Product 

Managers.” Sixth International Conference on Cloud Computing 

(CLOUD), Santa Clara Marriott, CA, USA: IEEE, pp. 871-879. 

9. F. Fotrousi (2016). “Quality-Impact Assessment of Software 

Systems”. In Ph.D. Symposium of 24th conference on Requirements 

Engineering Conference (RE), Beijing, China: IEEE, pp. 427-431. 

10. S. Fricker, F. Fotrousi, M. Fiedler, P. Cousin (2013). "Quality of 

Experience Assessment based on Analytics", 2nd European 

Teletraffic Seminar (ETS), Karlskrona, Sweden. 

11. J. Molleri, I. Nurdiani, F. Fotrousi, K. Petersen (2019). 

“Experiences on studying Attention through EEG in the Context of 

Review Tasks”, Evaluation and Assessment in Software Engineering 

Conference (EASE), Copenhagen, Denmark: ACM. pp. 313-318.  

 

  



 

  xi 

 

CONTENTS 

Abstract  .................................................................................................................................................. iii 
Acknowledgments........................................................................................................................................... v 
Preface  ................................................................................................................................................. vii 

Part 1 - Kappa ................................................................................................. 23 

Chapter 1 : Overview ..................................................................................................................................25 

1. Introduction .....................................................................................................................25 
2. Background and Related Work..............................................................................29 

2.1. Evidence-Based Software Evolution ............................................................29 
2.2. Gathering Evidence from User Feedback...................................................30 
2.3. Gathering Evidence from Monitoring Data ...............................................31 
2.4. Combining Evidence from User Feedback and Monitoring Data ..32 

3. Research Objectives and Questions ....................................................................33 
4. Research Approach ......................................................................................................35 

4.1. Design Science ..........................................................................................................36 
4.2. Case Study ...................................................................................................................38 
4.3. Systematic Mapping Study.................................................................................40 
4.4. Survey Research ......................................................................................................41 
4.5. Descriptive Evaluation .........................................................................................43 

5. Chapters Overview .......................................................................................................44 
5.1. Summary of Results ...............................................................................................44 
5.2. Summary of Chapters ...........................................................................................47 

6. Discussion .........................................................................................................................54 
6.1. Contributions ............................................................................................................54 
6.2. Roadmaps ...................................................................................................................56 
6.3. Limitations .................................................................................................................58 
6.4. Future Work ..............................................................................................................59 

7. Conclusion.........................................................................................................................60 

Part 2 - Gathering of User Feedback ............................................................ 63 

Chapter 2 : How do Users Characterise Feedback Features of an Embedded Feedback 

Channel? ............................................................................................................................................................65 

 Abstract ..............................................................................................................................65 
 Keywords...........................................................................................................................66 
1. Introduction .....................................................................................................................66 
2. Background ......................................................................................................................68 

2.1. Feedback Features in Research and Practice ..........................................68 



 

  
xii Table of Contents  

 

2.2. Media Richness and Technology Acceptance Model as Underlying 

Theoretical Frameworks........................................................................................................71 
3. Research Design.............................................................................................................74 

3.1. Research Objectives ..............................................................................................75 
3.2. Research Questions ...............................................................................................75 
3.3. Research Method ....................................................................................................76 

4. Analysis and Results ....................................................................................................84 
4.1. Demographic Information .................................................................................84 
4.2. The Characteristics of Feedback Features in an Embedded 

Feedback Channel (Answer to RQ1) ................................................................................84 
4.3. Factors Affecting the Use of a Feedback Channel (Answer to RQ2)

 ...........................................................................................................................................90 
4.4. User-triggered vs System-triggered Feedback .......................................95 

5. Discussion .........................................................................................................................97 
5.1. Implications ...............................................................................................................97 
5.2. Validity and Reliability...................................................................................... 101 
5.3. Limitations and Future work ........................................................................ 103 

6. Conclusion...................................................................................................................... 103 
 Acknowledgements ................................................................................................... 104 
 Appendix ......................................................................................................................... 105 
Chapter 3 : The Effect of Requests for User Feedback on Quality of Experience .... 109 

 Abstract ........................................................................................................................... 109 
 Keywords........................................................................................................................ 110 
1. Introduction .................................................................................................................. 110 
2. Background and Related Work........................................................................... 113 
3. Research Methodology ............................................................................................ 117 

3.1. Objectives ................................................................................................................. 117 
3.2. Research Questions ............................................................................................ 118 
3.3. Study Design ........................................................................................................... 118 
3.4. Threats to Validity ............................................................................................... 128 

4. Results and Analysis ................................................................................................. 131 
4.1. Modelling of Feedback Requests ................................................................. 135 
4.2. The Effect of Disturbing Feedback Requests on the QoE of a 

Software Product .................................................................................................................... 139 
4.3. Feedback About Feedback Requests ......................................................... 145 

5. Discussion ...................................................................................................................... 146 
6. Conclusion...................................................................................................................... 149 
 Appendix ......................................................................................................................... 152 

Part 3 - Gathering of Monitoring Data ....................................................... 155 



 

 
  xiii 

 

Chapter 4 : KPIs in Software Ecosystem: A Systematic Mapping Study....................... 157 

 Abstract ........................................................................................................................... 157 
 Keywords........................................................................................................................ 157 
1. Introduction .................................................................................................................. 158 
2. Research Methodology ............................................................................................ 160 

2.1. Research Questions ............................................................................................ 160 
2.2. Systematic Mapping Approach ..................................................................... 160 
2.3. Threats to Validity ............................................................................................... 165 

3. Results: Ecosystem KPI Research...................................................................... 166 
3.1. Kinds of Ecosystems ........................................................................................... 166 
3.2. Types of Research................................................................................................ 167 

4. Results: Researched KPI Practice ...................................................................... 168 
4.1. Ecosystem Objectives Supported by KPI ................................................ 168 
4.2. KPI: Measured Entities ..................................................................................... 170 
4.3. KPI: Measurement Attributes ....................................................................... 173 

5. Discussion ...................................................................................................................... 175 
6. Conclusion...................................................................................................................... 176 
 Appendix ......................................................................................................................... 177 
Chapter 5 : Software Analytics for Planning Product Evolution ...................................... 181 

 Abstract ........................................................................................................................... 181 
 Keywords........................................................................................................................ 181 
1. Introduction .................................................................................................................. 182 
2. Background ................................................................................................................... 184 
3. Research Design.......................................................................................................... 187 
4. Analysis and Results ................................................................................................. 189 

4.1. A Model for Analytics-based Product Planning ................................... 189 
4.2. Validation of the Model..................................................................................... 192 

5. Discussion ...................................................................................................................... 193 
6. Conclusion...................................................................................................................... 195 
 Appendix ......................................................................................................................... 197 

Part 4 - Combining User Feedback and Monitoring Data from Software in 
Use .................................................................................................................. 205 

Chapter 6 : Quality Requirements Elicitation Based on Inquiry of Quality-Impact 

Relationships ............................................................................................................................................... 207 

 Abstract ........................................................................................................................... 207 
 Keywords........................................................................................................................ 208 
1. Introduction .................................................................................................................. 208 
2. Related Work ................................................................................................................ 209 



 

  
xiv Table of Contents  

 

3. Quality-Impact Inquiry ........................................................................................... 212 
3.1. Inquiry Process ..................................................................................................... 213 
3.2. Method Tailoring ................................................................................................. 218 

4. Real-World Example of Method Application ............................................... 218 
4.1. Example Application .......................................................................................... 218 

5. Lesson learned ............................................................................................................. 224 
6. Discussion ...................................................................................................................... 225 
7. Conclusion...................................................................................................................... 228 
 Acknowledgments ..................................................................................................... 230 
Chapter 7 : FAME: Supporting Continuous Requirements Elicitation by Combining 

User Feedback and Monitoring .......................................................................................................... 231 

 Abstract ........................................................................................................................... 231 
 Keywords........................................................................................................................ 232 
1. Introduction .................................................................................................................. 232 

1.1. Motivating Example ............................................................................................ 233 
1.2. Research Objective .............................................................................................. 235 

2. Related Work ................................................................................................................ 235 
2.1. Feedback Gathering for Requirements Elicitation ............................ 235 
2.2. Monitoring for Requirements Elicitation................................................ 236 
2.3. Combining Feedback and Monitoring Data for Requirements 

Elicitation .................................................................................................................................... 237 
3. FAME Framework ...................................................................................................... 238 

3.1. Data Acquisition ................................................................................................... 239 
3.2. Data Storage and Combination ..................................................................... 242 

4. Validation ....................................................................................................................... 244 
4.1. Deployment and Configuration of FAME ................................................ 244 
4.2. Validation Protocol and Execution ............................................................. 246 
4.3. Validation Results ................................................................................................ 248 
4.4. Threats to Validity ............................................................................................... 251 

5. Conclusion and Future Work ............................................................................... 252 
                            Acknowledgements .................................................................................................. 253 

Chapter 8 : A Method for Gathering Evidence from Software-in-Use to Support 

Software Evolution ................................................................................................................................... 255 

 Abstract ........................................................................................................................... 255 
 Keywords........................................................................................................................ 256 
1. Introduction .................................................................................................................. 256 
2. Gathering and Sharing Evidence: Background........................................... 259 

2.1. A Theory for Gathering and Sharing of Evidence ............................... 260 
2.2. Methods for Gathering Evidence ................................................................. 262 



 

 
  xv 

 

3. Research Problem ...................................................................................................... 264 
4. GESU: A Method for the Gathering of Evidence from Software-in-Use

 266 
5. Research Methodology ............................................................................................ 270 

5.1. Research Context ................................................................................................. 273 
5.2. Unit of Analysis ..................................................................................................... 273 
5.3. Research Process ................................................................................................. 273 
5.4. Threats to Validity ............................................................................................... 277 

6. Application of the GESU in the Smart Parking Case ................................ 278 
6.1. Data Collection ...................................................................................................... 279 
6.2. Results ....................................................................................................................... 282 

7. Evaluation ...................................................................................................................... 287 
7.1. Accuracy and Completeness of the GESU’s Conceptual Framework 

(Answering RQ1)..................................................................................................................... 287 
7.2. Applicability and Usefulness of the GESU in Practice (Answering 

RQ2) ........................................................................................................................................ 291 
8. Discussion ...................................................................................................................... 295 

8.1. Implications ............................................................................................................ 295 
8.2. Revisiting the Knowledge Base .................................................................... 296 
8.3. Future Work ........................................................................................................... 298 

9. Conclusion...................................................................................................................... 299 
 Acknowledgements ................................................................................................... 300 

References  .............................................................................................................................................. 301 

 



 

  xvi 

 

 

  



 

 
  xvii 

 

LIST OF TABLES 

 

Table 1-1. Research questions .......................................................................... 34 

Table 1-2. Evaluation of GESU in three iterations ........................................... 46 

Table 2-1. A taxonomy of user feedback. ......................................................... 72 

Table 2-2. Embedded feedback tools and supported feedback features. .......... 73 

Table 2-3. Evaluation of PLS-SEM path model (NA: Not Applicable) ........... 92 

Table 2-4. Summary of results PLS-SEM ........................................................ 98 

Table 2-5. Strength and limitation of feedback features ................................. 100 

Table 3-1. Distribution of participants: country (left) and gender (right). ...... 131 

Table 3-2. Number of submitted feedback...................................................... 132 

Table 3-3. Post-questionnaire ......................................................................... 152 

Table 4-1. Research questions ........................................................................ 161 

Table 5-1. Taxonomy of product planning decisions ..................................... 185 

Table 5-2. Taxonomy of measurements for SaaS-based applications ............ 186 

Table 5-3. Constraining analytics ................................................................... 198 

Table 5-4. Examples of analytics interpretation for product goals and the 
constraints that a product goal provides for analytics ..................................... 200 

Table 5-5. Examples of shifting from constraining analytics use to interpretation 
of analytics for product planning .................................................................... 202 

Table 6-1. An overview of variations ............................................................. 219 

Table 6-2. Estimated quality values for given quality impacts ....................... 224 

Table 7-1. Example of an elicited requirement after the first workshop phase
 ......................................................................................................................... 248 

Table 8-1. Categorised user feedback from the free-text answers. ................. 283 

Table 8-2. Agreement evaluation of the SECI and GESU presented in            
Figure 8-7. ....................................................................................................... 297 

 



 

  
xviii List of Tables  

 

  



 

  xix 

 

 

LIST OF FIGURES 

Figure 1-1. Research framework in the thesis................................................... 35 

Figure 1-2. Design science research method .................................................... 37 

Figure 1-3. Overview of gathering evidence from software in use (GESU) .... 45 

Figure 2-1. The study’s conceptual model ........................................................ 77 

Figure 2-2. Screenshots of a feedback channel shared in the questionnaire ..... 81 

Figure 2-3. Characteristics of Feedback Features (Respondents' rankings) ..... 87 

Figure 2-4. PLS-SEM path model of influential factors on Use ....................... 91 

Figure 2-5. User-triggered vs system-triggered feedback ................................. 96 

Figure 2-6. Comparison likelihoods for user-triggered vs. system-triggered 
feedback ............................................................................................................ 97 

Figure 3-1. Overview of the study design ....................................................... 119 

Figure 3-2. Feedback tool ............................................................................... 120 

Figure 3-3. Distribution of the participants’ ratings for the QoE of the feedback 

tool and the QoE of the software product according to the post questionnaire*
 ......................................................................................................................... 133 

Figure 3-4. Distribution of the participants’ ratings for the QoE of the feedback 

tool (top) and the QoE of the software product(bottom) ................................ 134 

Figure 3-5. Distribution of the QoE of the software product per each QoE of the 
feedback request (data series reflect the QoE of the software product) - Data is 
collected via the post-questionnaire. ............................................................... 141 

Figure 4-1. Kinds of ecosystems that were studied with KPI research. The label 
“software ecosystem” refers to those that are not considered a digital ecosystem 

(see main text). ................................................................................................ 167 

Figure 4-2. Map of research on SECO KPI and type of contributions. .......... 167 

Figure 4-3. Map of measured entities and measurement attributes in relation to 
ecosystem objectives. ...................................................................................... 172 

Figure 4-4. Merging classifications of measurement attributes ...................... 174 



 

  
xx List of Figures  

 

Figure 4-5. Map of measurement attributes in relation to the measured entities.
 ......................................................................................................................... 175 

Figure 5-1. A model for anlaytics-based product planning ............................ 190 

Figure 5-2. Suggested activities for product managers to support planning 
decisions and product evolution by analytics ................................................. 193 

Figure 6-1: Quality-Impact inquiry method .................................................... 215 

Figure 6-2. User interaction scenario with instrumented application and 
subsequent answering of the quality of experience questionnaire .................. 220 

Figure 6-3. Questionnaire. The last question can be replicated and adapted to any 
feature the requirement engineer is interested of. ........................................... 221 

Figure 6-4. Extract from the log file with timestamps and activities .............. 222 

Figure 6-5. Quality impact (MOS) as a function of quality value (response 
time(s)) ............................................................................................................ 223 

Figure 6-6. Quality value (Response time (s)) as a function of quality impact 
(MOS) ............................................................................................................. 223 

Figure 7-1. General overview of FAME supporting the requirements elicitation 
process. ............................................................................................................ 238 

Figure 7-2. FAME architecture ....................................................................... 240 

Figure 7-3. Excerpt of the ontology ................................................................ 243 

Figure 7-4. Feedback dialogue ........................................................................ 245 

Figure 7-5. Overview of feedback collected with FAME ............................... 250 

Figure 7-6. Excerpt of the clickstream of one end-user collected with FAME
 ......................................................................................................................... 250 

Figure 8-1. The knowledge creation SECI model (Nonaka and Toyama 2003)
 ......................................................................................................................... 261 

Figure 8-2. GESU method—dashed boxes identify knowledge transformation 
processes and solid boxes show their activities   ............................................ 268 

Figure 8-3. Positioning our design science research approach in relation with the 
environment and knowledge base ................................................................... 272 

Figure 8-4. Research methodology ................................................................. 272 

Figure 8-5. Screenshots of (a) the smart parking application and (b) a feedback 
form. ................................................................................................................ 280 

file://///Users/ffo/Dropbox/PhD-thesis-Farnaz/PhDBookCombining%20User%20Feedback%20and%20Monitoring%20Data%20to%20Support%20Evidence_V1.0.docx%23_Toc40738760


 

 
  xxi 

 

Figure 8-6. Parking spot feedback* ................................................................ 284 

Figure 8-7. Knowledge landscape. Identifying evidence for software evolution
 ......................................................................................................................... 293 

Figure 8-8. SECI model according to the smart city application of Santander.
 ......................................................................................................................... 298 

file://///Users/ffo/Dropbox/PhD-thesis-Farnaz/PhDBookCombining%20User%20Feedback%20and%20Monitoring%20Data%20to%20Support%20Evidence_V1.0.docx%23_Toc40738778
file://///Users/ffo/Dropbox/PhD-thesis-Farnaz/PhDBookCombining%20User%20Feedback%20and%20Monitoring%20Data%20to%20Support%20Evidence_V1.0.docx%23_Toc40738778


 

  22 

 

  



 

 
  23 

 

 

PART 1 
Kappa 



 

  

24 
Part 1: Kappa  
  

 

  



 

 
  25 

 

  

 

 

Chapter 1 :  Overview 

1. Introduction 

oftware companies’ products evolve by timely functionality 

changes, environmental adaptations, and performance and 

maintenance improvement (Rajlich and Bennett 2000; 

Taentzer et al. 2019). Software evolution brings products closer to 

customers’ desires and needs, addresses competition pressure, and 

generates value for software companies (Lehman and Ramil 2003; 

Thew and Sutcliffe 2018). Continuously observing software in use 

and collecting user opinions allows software practitioners, such as 

developers, testers, requirements engineers, and product managers, 

to collect evidence about unresolved issues and unsatisfied user 

needs. They may decide to add new features or even remove existing 

ones when the risks of keeping them are higher than their generated 

values (Fabijan et al. 2016). Such evolution decisions consider 

constraints such as market saturation and political and legal 

concerns (Godfrey and German 2008). 

Evidence is a body of facts and information that is interpreted to 

derive knowledge (Kitchenham et al. 2015). Evidence can reveal 

clues and guide software practitioners to seek hidden clues. 

Practitioners interpret evidence and merge it with their 

observations and experience to make evidence-based decisions 

about software evolution (Devanbu et al. 2016). Evidence is collected 

and organised hierarchically. The evidence for claims such as “the 

user did not like feature x” and “feature x has a response time of 10 

seconds” can aggregate and support the decision to “improve feature 

x”. For simplicity, this thesis refers to evidence for software evolution 

simply as evidence. Evidence can be gathered from several sources, 

including consultation with stakeholders, close observation of 

S 
 

1 



 

  

26 
Part 1: Kappa  
  

 

software and its environment, market research, and findings from 

the literature. 

The two forms of gathering evidence – consulting stakeholders and 

closely observing software in use – are the foci of the thesis. Many 

techniques exist for consulting stakeholders, including workshops 

(Phaal et al. 2007), focus groups (Krueger 2009), and surveys 

(Fowler 2009).  This thesis studies user feedback mainly via feedback 

forms embedded in software, which shortens the time between the 

feedback and the actual user experience and facilitates gathering 

immediate user perceptions. 

Gathering evidence from close observation of a software system in 

use is usually performed using monitoring tools that constantly 

record logs. Monitoring systems allows software practitioners to 

continuously determine the degree to which products are successful 

to meet requirements and generate value 

for their company (Carreño and Winbladh 

2013). Several monitoring tools and 

frameworks exist (Vierhauser et al. 2016) 

that make reports, including monitoring 

data in the form of measurements carried 

out over periods of time, which is 

sometimes referred to as analytic. Analytics 

is: the quantitative measurement of an 

entity relevant to a software product 

(Davenport and Harris 2007) that provides 

insight and actionable information (Zhang 

et al. 2011). This thesis mainly uses the 

term monitoring data but sometimes the 

term analytics to focus on the actionable 

characteristics of information.  

 
So far, approaches to gathering evidence from user feedback and 

monitoring data have been unmethodical, have lacked systematic 

guidance, and have some practical issues. Stade et al. (2017) found 

that software practitioners were aware of the importance of user 

feedback and provided feedback channels but did not fully exploit 

the potential of user feedback for development and evolution. They 

added that practitioners were not always satisfied with the quality 

“There is a lesson here. 

Extracting value from 
information is not 
primarily a matter of how 
much data you have or 
what technologies you use 
to analyze it, though these 
can help. Instead, it’s how 
aggressively you exploit 
these resources and how 
much you use them to 
create new and better 
approaches to doing 
business.” 
(Davenport and Harris 2007) 
 



 

 
  27 

 

and quantity of the feedback received; speculatively, perhaps their 

feedback-gathering approach did not motivate users to give feedback 

or most feedback did not address particular issues under 

investigation. Most practitioners collect user feedback traditionally 

(i.e., passively). For example, they do not usually solicit feedback 

from users about new features and only hope that users react and 

give feedback when problems emerge. Software practitioners also do 

not gather user feedback systematically or educate their users to 

provide helpful feedback (Pagano and Brügge 2013). These reasons 

motivate further studies to improve gathering evidence from user 

feedback. 

System monitoring also usually generates massive amounts of data 

that are not necessarily useful. Software practitioners often do not 

know how to find evidence in such data, perhaps needing a 

sophisticated data-mining approach to extract it. This motivates 

further studies to improve gathering evidence from monitoring 

systems by focusing, for example, on the process of gathering data 

instead of analysing them. 

Lacking a systematic approach to improving evidence-gathering 

from systems in use disables software practitioners to rely on 

evidence from user feedback and monitoring data. Instead, they must 

rely on their own observations and experience to make decisions 

regarding software system evolution. Therefore, practitioners 

cannot assure that user demands are satisfied. User dissatisfaction 

increases user churn, meaning that users discontinue using the 

software system, consequently endangering the software’s 

sustainability. 

This PhD thesis aims to improve gathering evidence from software 

in use. The thesis is organised in eight chapters. We use design 

science to develop and evaluate method GESU (Gathering Evidence 

from Software in Use). GESU focusses on the process and activities of 

collecting user feedback, monitoring data, and combining both 

sources. The method was designed in three iterations and validated 

in case studies from the European projects FI-Start, Supersede and 

Wise-IoT, which are presented in Chapters 6, 7, and 8, respectively. 

To understand how to design GESU, we investigated how user 



 

  

28 
Part 1: Kappa  
  

 

feedback and monitoring data should be gathered using embedded 

tools in a software system. 

Chapter 2 starts with reviewing embedded feedback channels, in a 

software system and their supported feedback features that allows 

giving feedback in different formats such as natural language text or 

spoken language. A feedback channel is referred as feedback tool or 

alternatively feedback form in this thesis. Then, Chapter 2 

investigates the perceived characteristics of feedback features, such 

as ease of use and the capability for explaining a complicated 

situation, and also studies whether the characteristics have an 

impact on the use of the feedback channel. End users have different 

needs when providing feedback  (Almaliki et al. 2014; Maalej et al. 

2009). Some prefer to send feedback in the form of text or star 

ratings, whereas others prefer recording their screens and audio as 

feedback. Some users initiate feedback communication by pushing a 

feedback button (Morales-Ramirez et al. 2015), and others provide 

feedback when requested (Dennis et al. 2008). The former approach 

is called push or user-triggered and the latter pull or system-triggered. 

In Chapter 3, we study the second. We model a user feedback request 

and investigate whether and under which conditions the request for 

user feedback would disturb users. 

Chapter 4 provides an overview of the literature to understand the 

main objectives of software managers in monitoring systems and the 

analytics they use to manage software ecosystems. Key performance 

indicators (KPIs) are those among the many important analytics, 

which are easily measurable and defined based on managers’ 

objectives. Chapter 5 focusses on product planning and studying the 

analytics that managers find useful, including what factors influence 

the choice of analytics. 

In summary, the thesis contributes to knowledge on improving 

gathering user feedback and monitoring data and combining them to 

support the evidence-based evolution of software systems. 

The remainder of this chapter is structured as follows. Section 2 

introduces the necessary background and related works. Sections 3 

and 4 present this work’s research questions and methods. Section 5 

provides an overview of other chapters and summarises the results 

and main findings while answering the research questions. In section 



 

 
  29 

 

6, we synthesise the findings by discussing this work’s contributions, 

roadmap, and future work. Section 7 concludes the chapter.  

2. Background and Related Work 

This section explores the literature to provide context for the thesis’s 

contributions. 

2.1. Evidence-Based Software Evolution 
Software evolution is a response to requests for new features, the 

existence of new platforms, and the desire to improve software 

quality and functionality while preventing issues such as market 

saturation, political and legal concerns, and software complexity 

(Godfrey and German 2008). Lehman and his colleagues have 

explored the software-evolution field, and formed a set of 

observations called the laws of evolution (Lehman 1980; Lehman and 

Ramil 2003). The laws are determined for software systems 

embedded in the real world, are produced by software teams for its 

users. Examples of the laws, indicating that systems become 

progressively more complex and less satisfying to users over time, 

reflect the need for continuous evolution, where feedback, either 

from humans or systems, is a driver (Lehman 1996). Additionally, 

Lehman et al. (1997) recommended exploiting observation of 

metrics and establishing baselines of key measures over time. 

Several studies (Madhavji et al. 2006; Pagano and Brügge 2013) have 

reinforced that data collected from observing systems and feedback, 

referred to here as evidence, connote the idea of evolution decisions 

within the system environment. Bringing evidence to decisions 

about software evolution is defined as evidence-based software 

evolution, borrowed from evidence-based software engineering 

(Kitchenham et al. 2004). 

Kitchenham et al. (2004) brought the concept of evidence-based 

decision-making from medicine and adapted it to software 

engineering to support decision-makers in both science and 

engineering fields. The way Kitchenham and her colleagues defined 

evidence-based focused on research evidence collected via primary 

studies through experiments and case studies as well as secondary 



 

  

30 
Part 1: Kappa  
  

 

studies through systematic literature reviews. The reviews 

aggregate primary studies and report objective summaries of 

evidence within the studies (Kitchenham et al. 2015). The research 

evidence fits software evolution for new technology and trend 

practices (Dyba et al. 2005). However, for feature- and quality-

related evolution, such as requests for new features and bug removal, 

the evidence from real use observation of a specific software system 

should replace such research evidence. 

Recent years have seen the practice of evidence-based software 

evolution emerge, such as the lean start-up approach (Blank 2013) 

and DevOps (i.e., software development and technology operations 

(Sjøberg et al. 2003). These practices are common in a build-

monitor-learn loop. In essence, in an iterative approach, a software 

system is built, evidence from testing and monitoring the system as 

well as user feedback about the system are gathered, analysed, and 

interpreted, and changes are applied in a new loop. Such a loop 

allows shortening product development cycles and releasing them 

faster with more reliability. A systematic approach to gathering user 

feedback, monitoring data, and combining user feedback and 

monitoring data is still missing, however. 

2.2. Gathering Evidence from User Feedback 
User feedback communicates information about users’ interests, 

needs, and how they are satisfied with a system (Knauss et al. 2009). 

User feedback can be provided either explicitly by users or implicitly 

by monitoring various user activities such as browsing, reading, and 

bookmarking (Lee and Brusilovsky 2009). The system users who 

provide feedback or are observed implicitly can be not only end-

users but also developers, testers, or any other companies’ 

stakeholders. 

Several feedback tools and approaches have been designed to allow 
communicating user feedback. Feedback tools are either standalone 
or are embedded into systems (Fotrousi and Fricker 2016; Seyff et 
al. 2014). The feedback tools trigger feedback forms either by user 
request, such as pressing a feedback button, or by system request, 
such as an automatic pop-up window. The terms push and user-
triggered refer to the former feedback approach and pull and system-
triggered to the latter (Maalej et al. 2009). Such feedback forms 



 

 
  31 

 

enable users to communicate bug reports, feature requests, and 
praise (Maalej and Nabil 2015). 

Feedback may be collected as a simple or a combination of free text, 
selected categories, ratings, and/or screenshots with annotations 
(Elling et al. 2012; Morales-Ramirez et al. 2015). In 
telecommunication domain Rating is a simple and common approach 
to measure quality of experience (QoE), defined as “degree of delight 
or annoyance” for evaluating services (Le Callet et al. 2012) with the 
scale called Mean-Opinion-Score (MOS)(ITU-T 2003). 

Regardless of the design of feedback forms, several studies have 
described the challenges of analysing and interpreting user feedback, 
especially when contextual information is missing (Gottesdiener 
2002). 

2.3. Gathering Evidence from Monitoring Data 
Monitoring a system use allows engineers to determine whether and 
to what degree the implemented system meets the requirements of 
its users during runtime (Carreño and Winbladh 2013). The 
insertion of code or sensors into a running system allows developers 
to continuously check the system’s health, observe users, record 
their activities, and study the system’s behaviour (Wellsandt et al. 
2014). Observing the system and its quality at runtime, such as 
system performance, and its availability allows engineers evaluating 
system health and improving quality of services (QoS) (Wang et al. 
2010). Observing user activities, such as sequences of feature usage, 
duration, and other contexts, enables requirements engineers to 
understand user needs better (Maalej et al. 2016). Such monitoring 
enables engineers to detect requirements violations, such as system 
failures, and react quickly to evolve the system (Leucker and 
Schallhart 2009). 

The terms monitoring data and analytics interchangeably refer to 

sources of information or evidence that guide managers in their 

decisions. It is known as the data-centric style of decision-making 

(Buse and Zimmermann 2010) that includes measurements to 

generate data and transform them into indicators for decision 

support. In other words, analytics is the use of statistics from 

measurement characteristics (Davenport and Harris 2007) to obtain 

insight and actionable information (Zhang et al. 2011) and make 

data-driven decisions (Buse and Zimmermann 2010; Buse and 

Zimmermann 2012). 



 

  

32 
Part 1: Kappa  
  

 

Several approaches have been studied to monitor systems or their 

requirements at runtime (Rabiser et al. 2017; Vierhauser et al. 2016). 

System use are monitored continuously or event-based (e.g., a user 

action like playing a song) and logs are recorded. (Fotrousi and 

Fricker 2016; Inzinger et al. 2014; Oriol et al. 2018; van Hoorn et al. 

2009), Matomo (www.matomo.org), and Google Analytics 

(accounts.google.com), Mixpanel (www.mixpanel.com) are 

examples of such monitoring tools. There are other studies in which 

the system use is monitored based on requirements or a goal model  

(Goldsby et al. 2008; Qian et al. 2018; Wang et al. 2009). The benefit 

of the second approach is that data gathering is more focused, and a 

lighter analysis is introduced to find evidence for changes when 

compared to the first approach.  

2.4. Combining Evidence from User Feedback and 
Monitoring Data 

A number of researchers have proposed using both user feedback 

and monitoring data. For instance, (Dzvonyar et al. 2016) combined 

feedback data with monitoring data from the same end users who 

provided the feedback (e.g., log data). However, using this approach, 

the authors could only capture the data of end users who provided 

feedback, not data from other end users (e.g., to identify how many 

end users experienced an issue reported in feedback) or other types 

of monitoring data (e.g., quality of service [QoS]). In contrast, another 

approach (Dąbrowski et al. 2017) used monitoring data from all end 

users and applied process-mining techniques to observe their 

behaviour and elicit new requirements. The authors suggested that 

such information could be combined with feedback to refine the 

requirements and help improve the requirements-prioritisation 

process. However, they did not explore this research direction in-

depth, leaving most to future work. MyExperience (Froehlich et al. 

2007) is another solution that combines monitoring data and user 

feedback, and it is used to support studies on human behaviour or 

health (e.g., monitoring health-related metrics through sensors and 

asking end users how they feel). However, to the best of our 

knowledge, no generic solution has advanced from the conceptual 

stage to a technically implemented framework that comprehensively 

combines feedback gathering and monitoring to support continuous 

software system evolution. 



 

 
  33 

 

3. Research Objectives and Questions 

The study aims to improve GESU by combining monitoring data (i.e., 

system analytics) and user feedback. To achieve this goal, the thesis 

has the following objectives: 

- OBJ1: Understanding approaches to gathering user feedback 

from software in use to support evidence-based software 

evolution 

o OBJ1.1: Understanding the characteristics of 

feedback features in an embedded feedback channel 

o OBJ1.2: Understanding how the characteristics of 

feedback features affect the use of its feedback 

channel 

o OBJ1.3: Understanding the strengths and limitations 

of various feedback features 

o OBJ1.4: Understanding the effect of requests for user 

feedback on experience of feedback senders 

- OBJ2: Understanding approaches to monitoring the use of 

software systems to support evidence-based software 

evolution 

o OBJ2.1: Understanding the software system analytics 

that product managers use to manage software 

systems 

o OBJ2.2: Understanding how system analytics are 

used to plan product evolution 

- OBJ3: Designing an effective method that combines user 

feedback and monitoring data from a software system in use 

to support evidence-based software evolution 

- OBJ4: Validating the proposed method in real-world practice 

o OBJ4.1: Identifying how the proposed method is 

applicable in real-world practice 

o OBJ4.2 Specifying whether the method can be useful 

for software engineers in gathering and sharing 

knowledge for evolving software systems 

o OBJ4.3 Identifying how the method can be used to 

explain knowledge creation 

  



 

  

34 
Part 1: Kappa  
  

 

Table 1-1. Research questions 

Research Questions Obj. Chapters Contrib. 

2 3 4 5 6 7 8 

RQ1. How can we gather user feedback of 

software systems in use to support 

evidence-based evolution? 

OBJ1 * *      C3, C4, 
C5, C6 

RQ1.1. How do feedback senders 

characterise various feedback features in 

an embedded feedback channel? 

OBJ 1.1, 

OBJ 1.3 

*       C3 

RQ1.2. What is the relationship between 

the characteristics of a feedback feature 

and the use of the feedback channel? 

OBJ 1.2 *       C3 

RQ1.3. Does a request for user feedback 
affect the perceived quality of software? 

OBJ 1.4  *      C4, C5 

RQ2. How can we gather monitoring data 

from software in use to support 

evidence-based evolution? 

OBJ 2   * *    C7, C8, 
C6 

RQ2.1. What monitoring data do 

companies collect from software in use? 

OBJ 2.1   *     C7 

RQ2.2. How are monitoring data used to 

plan product evolution? 

OBJ 2.2    *    C8 

RQ3. How can we effectively gather 

evidence from software in use to support 

software engineers in their evolution 

decisions? 

OBJ 3, 

OBJ 4 

    * * * C1, C6, 
C2 

RQ3.1. How can combining user feedback 

and monitoring data from software in 

use be applicable in real cases? 

OBJ 4.1     * * * C1, C2 

RQ3.2. To what extent is the proposed 

method useful for software practitioners 

in their decision-making? 

OBJ 4.1, 

OBJ 4.2 

    * * * C1, C2 

RQ 3.3. How well can the proposed 

method explain knowledge creation? 

OBJ 4.3       * C1 

*: Objectives **: Contributions. ***: The labels of the research questions (RQ) and 
objectives (OBJ) are independent from the labels used in the studied papers, where each 
paper follows its own numbering schema. 

 

Table 1-1 lists the study’s research questions mapped to the 

corresponding objectives and the chapters that answer them. We 

also map each research question and its objective(s) to the 

corresponding contribution(s) of this thesis, which will be discussed 

later in Section 6.1. 



35

4. Research Approach

This thesis follows a design-science approach (Hevner et al. 2004)

with the primary goal of designing a method for GESU. Figure 1-1

presents the research framework with references to this paper’s 

chapters. We iterated the GESU design and investigated the method’s 

performance in context (Wieringa 2014). We received requirements 

from the product teams in each case study (the box labelled 

Environment in Figure 1-1) and applied concepts and technical 

solutions from the acquired knowledge base (the box labelled 

Knowledge base in Figure 1-1). We summarise and elaborate on the 

requirements in Section 4.1 and then explain cases in Chapters 6–8. 

We built the knowledge base with the studies presented in Chapters 

2–5. We explain knowledge-creation theory as part of the knowledge 

base in Chapter 8. We present the GESU evaluation in Chapters 6–8. 

The first iteration relies on descriptive evaluation based on informed 

arguments and scenarios. For the second and third iterations, we use 

observational evaluation using case studies (Hevner et al. 2004). At 

a later stage, we use the same method to revisit the knowledge base 

in Chapter 8.

We explain our design-science approach in the next section (Section 

4.1). To evaluate the proposed method during the design process, we 

use case studies (Section 4.2). To build the knowledge base of the 

design, we use systematic mapping (Section 4.3) and survey (Section 

4.4) research methods.

Figure 1-1. Research framework in the thesis*

*: red circles refer to chapters where the parts are discussed



 

  

36 
Part 1: Kappa  
  

 

4.1. Design Science 
The core of this thesis is the use of design-science research to design 

and evaluate GESU over three iterations. In each iteration, we 

investigated problems from previous studies and designed the GESU 

method using our knowledge base. We then applied the method in a 

use case and conducted an empirical evaluation.  

In the first iteration, there was a gap in the literature on how to 

gather and combine knowledge from running software to determine 

appropriate levels of good-enough system quality that on one side 

satisfy users and on the other side utilizes resources efficiently. 

Meeting the right level of quality was the requirement of the Diabetes 

case owner to balance benefits and cost.  The right level of quality 

can guide the evolving quality requirements. 

In the second iteration, we were missing a generic framework for 

gathering user feedback and system monitoring to address the 

requirements of the Energy efficiency management app for the 

configurable and continuous gathering of user feedback and 

monitoring data. We designed and implemented the framework, and 

particularly used in the Energy app to support them for continuous 

requirements elicitation by combining user feedback and usage 

monitoring. 

In the third iteration, the case owner required to evaluate and 

improve the user adherence to the given recommendation for route 

and parking spots, in order to provide an insight on what and why 

should be changed. The solution needs to focus on monitoring the 

goal of users’ adherence, instead of collecting massive data that are 

not potentially usefulness, and also engage users to share their 

perspective. None of the previous studies had proposed technical 

and theoretical solutions. We designed the solution following the 

theoretical framework for creating and sharing knowledge while we 

combined the findings from another chapter of the thesis (Chapters 

2-5). The evaluation phase involved both evaluation of SECI and 

applicability and usefulness of the method for the case. 



F
ig

u
re

 1
-2

.D
es

ig
n

 s
ci

en
ce

 r
es

ea
rc

h
 m

et
h

o
d

*

*:
re

d
 c

ir
cl

es
 r

e
fe

rs
 t

o
 t

h
e 

ch
ap

te
rs

 o
f 

th
is

 t
h

es
is

 w
h

er
e 

th
e 

k
n

o
w

le
d

ge
 d

is
cu

ss
ed



 

  

38 
Part 1: Kappa  
  

 

Figure 1-2 provides an overview of  the research methodology, which 

slightly adapted the design-science model proposed by Peffers et al. 

(2007). We replaced the term demonstration with apply to avoid 

terminological confusion, and we merged the process define objective 

and solution with the design process.  

4.2. Case Study 
The studies in Chapters 3, 7, and 8 used the case-study research 

method. 

In Chapter 3, we evaluate how requests for user feedback about a 

software product affect the quality of experience of feedback 

senders. We recruited 35 software engineering students at the 

graduate level who were familiar with the concepts of requirement 

modelling. We sought a variation as large as possible among the 

participants and treated each student’s product use as a case in a 

multiple embedded case study (Yin 2014). 

For data collection, we assigned a requirement-modelling task to the 

students. The QoE probe feedback tool (Fotrousi and Fricker 2016) 

was used to request feedback randomly from participants while they 

were using the requirement-modelling tool Flexisketch (Wüest et al. 

2015). At the end of the product’s usage, we collected the students’ 

perceptions of the feedback requests and the experiences of using 

the product through a post-questionnaire. To answer the research 

question, we analysed the user feedback from the software in use 

(i.e., feedback about software) and the user feedback from the post-

questionnaire (i.e., feedback about software and the feedback 

request that the system triggered). 

The study in Chapter 3 used a mixed qualitative-quantitative 

analysis. For the qualitative analysis, we chose inductive and 

deductive content-analysis approaches (Elo and Kyngäs 2008). The 

inductive approach was based on free coding data to generate 

information, and the deductive approach was based on the use of 

initial coding categories extracted from the hypothesis with the 

possibility of extending the codes (Hsieh and Shannon 2005). The 

study also used the pattern-matching analytical technique (Yin 

2014) to test predicated patterns (hypothesis) in comparison with 



 

 
  39 

 

observed patterns. The study also performed a quantitative 

statistical analysis. 

We conducted two single case studies (Yin 2014) in Chapters 7 and 

8 to apply and evaluate GESU. We tested the technical applicability 

and usefulness of the method in a particular infrastructure, 

strengthened our theoretical understanding, and deepened our 

knowledge of the specific case (Ulriksen and Dadalauri 2016). 

Chapter 7 investigated how combining user feedback and data 

monitoring could support continuous requirements elicitation. We 

used FAME (feedback acquisition and monitoring events) 

framework that we designed for the combined and simultaneous 

collection of feedback and monitoring of data in web and mobile 

contexts. We deployed FAME in the web application of a German 

small-to-medium-sized enterprise (SME) to collect user feedback 

and usage data. 

To prepare the data-collection environment, we configured a 

feedback dialogue and included all the feedback mechanisms 

available in the FAME framework. We activated only a user-triggered 

mechanism: the users could trigger a feedback dialogue by pushing 

the feedback button available on every web page. We also configured 

the application to use only the monitoring tool relevant to usage to 

obtain the clickstream and navigation paths of end users. 

We collected user feedback and monitoring data for four months. 

Afterwards, we conducted a small requirements elicitation 

workshop in two phases involving a researcher and an employee 

from the SME. In the first phase, the SME representative had to elicit 

requirements considering only feedback data as had been done to 

that point. In the second phase, he had to elicit further requirements 

or refine the previously elicited ones. For this purpose, the 

researcher provided the SME representative the relevant feedback 

entries identified in the previous workshop phase combined with the 

monitoring data. The combined data covered the time between user 

logins and sending the feedback, and it included the actions of the 

end user who provided the feedback and the list of end users who did 

not provide feedback but took the same actions. The representatives 

went through the combined feedback and monitoring data to further 

elicit new requirements or update available ones. 



 

  

40 
Part 1: Kappa  
  

 

Chapter 8 proposes a method for GESU designed within the 

framework of knowledge-creation theory and proposes technical 

solutions to improve GESU. According to the proposal, the system 

monitors product goals to identify interesting situations of system 

use and issues automated requests for user feedback to gather 

evidence of software evolution from users’ perspectives. We 

evaluated the method in a smart parking case study using 

observations of record and interviews. The case benefitted from the 

use of thousands of IoT traffic and parking sensors deployed in the 

city of Santander that helped users find free parking. We integrated 

our method with a recommender system that generated 

recommendations of unoccupied parking spots and pathways to 

them for end users. 

Interviews combined with observation were the primary means of 

data collection. We ran a pilot study with citizens of Santander who 

volunteered because of intrinsic motivation to help the city’s 

evolution as a smart city. The pilot study lasted three months, during 

which our method ran, and we gathered monitoring data and user 

feedback. After finishing the data collection, we synthesised the user 

feedback and monitoring data and then planned four interviews with 

three developers and one decision-maker in the case. During the 

interviews, we presented the results of the user feedback analysis to 

the interviewee, including the synthesised list of user feedback, the 

frequency of each feedback, and a map showing user feedback 

associated with sensor locations on the map. We asked questions 

regarding actions the interviewees would have taken with that 

knowledge. We sought to identify how the knowledge was 

transferred and shared, in what format, and whether anybody else 

was involved in this activity. 

To analyse the interviews, we transcribed them and used a deductive 

content-analysis approach (Elo and Kyngäs 2008) to codify the 

transcripts. We then iteratively used explanation building (Yin 2014) 

to check the conformance of the interview data with the method. 

4.3. Systematic Mapping Study 
To learn about the analytics tools that product owners use, we 

conducted the systematic mapping presented in Chapter 4 for an 

overview of analytics and KPIs. We chose the software ecosystem 



41

context, a broader area than a software system, to ensure that the 

analytics product owners used for relations between the systems 

were included in the search. The research thus provided an overview 

of the KPIs used in a software ecosystem by classifying relevant 

articles and mapping the frequencies of publications over 

corresponding categories to build classification schemas and 

observe the current state of research (Petersen et al. 2008). A 

systematic literature review is an alternative method, but it differs in 

goals and depth. The aim of the study was not to find the best 

practices based on empirical evidence; a broad overview was 

sufficient and preferable to the time-consuming process of sifting 

through details in greater depth. 

We researched with the following four steps according to the 

guidelines introduced by (Petersen et al. 2008): searching databases, 

screening papers, building classification schemas, and systematically 

mapping each paper. In the database search, we defined the search 

string to include keywords relevant to the software ecosystem and 

KPIs. The search strings were entered into software engineering and 

computer science research databases, including Scopus, Inspec, and 

Compendex, which also includes IEEEXplore and the ACM Digital 

Library. In the screening step, we screened the identified papers to 

exclude studies unrelated to the use of KPIs for any ecosystem-

related purpose. In the classification step, we employed keywording 

(Petersen et al. 2008) to build the classification scheme in a bottom-

up manner. Extracted keywords were grouped under higher 

categories to make them more informative and reduce the number 

of similar categories. In the last step, when the classification was in 

place, we calculated the frequencies of publication for each category 

and used x-y scatter plots with bubbles at category intersections to 

visualise the generated map.

4.4. Survey Research
The studies in Chapters 2 and 5 used a survey research method.

In Chapter 2, we conducted a questionnaire-based survey to 
understand how feedback senders perceived the characteristics of a 
feedback feature in an embedded feedback channel in a software 
system, and how those characteristics influenced the use of the 
feedback channel. In the context of this research, we studied eight



42Part 1: Kappa

feedback features text, which are rating, emoji, category, screenshot,
audio recording, screen recording, and attachment. We investigated
six characteristics of the features, namely perceived usefulness, 
perceived ease of use, familiarity, explaining a complex situation, 
tailoring and transferring emotions.

We designed a questionnaire based on a conceptual model that we 
built on theoretical priors. We implemented the questionnaire and 
collected answers using QuestionPro. A known public panel (i.e., 
consumerfieldwork.com) helped us recruit respondents for 100 
completed questionnaires.

In the questionnaire, we asked about the familiarity of the 
respondents with giving feedback. We introduced an exemplary 
embedded feedback tool to ensure shared, equal understanding of 
the feedback features descriptions. We asked the respondents to 
evaluate whether the example feedback form in total, and each 
feedback feature separately was easy to use and useful and whether 
they were familiar with the feature and would intend to use it. We 
also asked the respondents to evaluate the capabilities of the 
feedback features to explain a complicated 
situation, transfer emotions, and tailor each feedback feature
separately. Meanwhile, in several open-ended questions, we asked 
the respondents about the reasons for their choices. We also 
designed three scenarios that explained situations (e.g., bugs, new-
feature requirement requests, and feature improvements) where the 
subjects chose their preferred feedback features.

We analysed the answers both quantitatively and qualitatively. We 

used descriptive analysis (e.g., Min, Max, Mean) to statistically 

explain the data, and significant analysis test (i.e., Krushkal-Walis H, 

independent t-test) to evaluate the significant differences between

the groups of independent variables (e.g., age-group, education-

group, and triggering approaches). We also used structural equation 

modelling analysis with a partial least-square algorithm (PLS-SEM) 

to find the structural relationships between the multivariable

investigated statistically. We used the SmartPLS software version 

3.2.9 for this purpose. For qualitative analysis, we performed an 

inductive content-analysis approach (Elo and Kyngäs 2008) to 

analyse and code the qualitative data provided in the questionnaire.



 

 
  43 

 

For Chapter 5, we conducted an interview-based survey to identify 

the relationship between analytics and product-planning decisions. 

We performed data collection using semi-structured phone 

interviews and asked a well-established consultancy company in 

software product management to introduce product managers 

experienced with software as a service (SaaS). SaaS products have 

the advantage of running applications in a cloud and could thus 

benefit embedded monitoring systems. We selected 17 product 

managers from three micro, four small, seven medium, and three 

large companies and conducted online semi-structured interviews 

with them. The interviews were piloted by two product managers 

and two students with product-planning knowledge. After initial 

testing and several refinements, the interviews with the product 

managers were scheduled. 

Questions about product planning formed the core of the interviews 

in two parts: planning decisions and analytics. In the first set of 

questions, the interviewees were asked to select a product that they 

had planned and were most satisfied with. Then questions were 

asked about the planning decisions that the interviewees had made 

for the selected product. Later, the interviewees were asked to rate 

the importance levels of measurement categories and measurement 

attributes for making those decisions and then to comment on their 

reasons for those selections. 

We used an inductive content-analysis approach (Elo and Kyngäs 

2008) to analyse and code the interviews. We recorded the 

interviews and transcribed them for coding. During the analysis, we 

iteratively tagged units of arguments with headings, grouped the 

headings, categorised them, and performed abstraction. The process 

led to a model for analytics-based product planning and further 

discussions about the findings. 

4.5. Descriptive Evaluation 
We evaluated GESU in its first iteration presented in Chapter 6 using 

a descriptive method (Hevner et al. 2004). A descriptive approach 

that Hevner et al. mentioned is constructing detailed scenarios 

around an artefact to demonstrate its utility. Our evaluation was also 

based on sample scenarios and provided arguments as proofs-of-



44Part 1: Kappa

concept. Wieringa et al. (2006) also considered such an evaluation 

method as part of a solution-proposal research category.

The novel solution proposed in Chapter 6 had the form of a technical 

approach that combined user feedback and monitoring data. We 

applied the solution (i.e., the method) to a diabetes smartphone 

application. To provide example data, we organized an inquiry 

workshop with representative stakeholders, including a 

requirements engineer, a product manager and a selected end-user.  

We used a prototype with software for monitoring the timing of user 

interactions and used a questionnaire to collect user perceptions. We 

finally explained through an example how the method’s activities

worked.

5. Chapters Overview

5.1. Summary of Results
We developed a method for GESU for software evolution that 

combines system monitoring with user-feedback collection and 

surface knowledge of the system subject to maintenance and 

evolution. As mentioned earlier, GESU was designed in three 

iterations in which various approaches to monitoring system data

and collecting user feedback were applied. Chapters 6–8 elaborate 

on each iteration, which used the knowledge gathered from the 

studies in Chapters 2–5.

Figure 1-3 demonstrates the third iteration of GESU as presented in 

Chapter 8. GESU-3 visualises two dimensions: knowledge 

transformation and its activities (answer to RQ3). The method 

addressed eight activities for evidence-based software evolution: 

preparing and running a software system (Activity 1), monitoring

system and usage (Activity 2), collecting user feedback (Activity 3), 

aggregating monitoring data and user feedback (Activity 4), 

collecting product team feedback (Activity 5), socializing (Activity 6), 

aggregating previous evidence with product team feedback (Activity  

7), and implementing changes (Activity 8). Since the first four 

activities were more data-intensive than the others, their automation 

would facilitate the evidence-gathering. Therefore, in all three 

iterations of GESU, the four activities were the focal points.



45

Figure 1-3. Overview of gathering evidence from software in use (GESU)

Table 1-2 summarises and compares Activities 1–4 of GESU along 
with its three iterations (GESU-1 to GESU-3). In the first iteration 
(GESU-1) presented in Chapter 6, we aimed to investigate the 
feasibility of combining evidence using the common requirements-
elicitation methods of user feedback and monitoring data. We 
integrated the QoE probe with a diabetes mobile application 
(Activity 1) to monitor three quality attributes from the software in 
use (Activity 2) and collect offline feedback through a questionnaire 
(Activity 3). Using correlation analysis, we aggregated the data 
(Activity 4) to help gather evidence to estimate the proper value of 
corresponding quality requirements.

In the second iteration (GESU-2) presented in Chapter 7, we aimed 
to develop and use a generic framework to improve gathering and 
combining user feedback and monitoring data. We implemented 
FAME and integrated it with an energy-management application. We 
set up the framework (Activity 1) to monitor usage (Activity 2) and 
gathered user feedback with user-triggered feedback (i.e., the users 
pressed a feedback button to give feedback) (Activity 3). We then 
aggregated the monitoring data and user feedback using descriptive 
graphs that could help requirements engineers gather evidence for 
new requirements or update available ones.



46Part 1: Kappa

In the third iteration (GESU-3) presented in Chapter 8, we aimed to 
improve gathering evidence. GESU-3 introduced goal-driven 
monitoring and system-triggered user feedback. We implemented 
this goal-driven monitoring approach in a smart-city application, 
configured FAME, and integrated it with the application to gather 
user feedback (Activity 1). We then monitored the goals defined for 
the application (Activity 2). When the measurements corresponding 
to the goals deviated from their accepted threshold values, the 
system automatically configured and triggered a feedback request to 
gather evidence about the deviation (Activity 3). Using goal-driven 
monitoring allows product teams to focus on those measurements, 
which facilitates software evolution. GESU-3 could complement the 
common approach of system monitoring and gathering user-
triggered feedback to find evidence for software evolution. We also 
integrated monitoring data and user feedback using a visualisation 
map (Activity 4), a tool that could reveal new evidence for evolving 
software systems.

Table 1-2. Evaluation of GESU in three iterations

Method
(Activity 1) (Activity 2) user 

feedback
(Activity 3)

(Activity 4)
Chapter

GESU-1 Set up QoE
probe, integrate 
it with a 
diabetes app, 
and prepare 
offline feedback 
forms

Limited 
(three) 
quality 
attributes 
monitoring

Offline 
feedback at 
the end of 
usage

Correlation 
analysis

6

GESU-2 Set up FAME and 
integrate it with 
an energy-
management 
app

Usage 
monitoring

User-
triggered 
feedback

Descriptive 
graphs

7

GESU-3 Set up 
monitoring app 
and FAME user 
feedback and 
integrate the 
tools with the 
smart-city app 

Goal-driven 
monitoring
+

system 
monitoring

System-
triggered 
feedback
+
user-
triggered 
feedback

Visualisation 
map

8



47

We use goal-driven and system-triggered feedback in GESU-3, as 

suggested by other findings described below.

Chapter 4 overviews and classifies the goals in a software ecosystem 

and relates them to KPIs. This classification contributes to taxonomy, 

which can help closer examination of the ecosystem or platform 

owners’ goals, making them more recognisable in designing the 

goals. As Chapter 5 shows, these goals can help decision makers such 

as product managers focus on observing particular analytics instead 

of collecting massive amounts of useless data.

In Chapter 2, we showed that perceived usefulness, ease of use and 

familiarity (with feedback features and giving feedback) are the most 

influential factors on the use of a feedback channel. And, the 

capabilities for explaining a complicated situation, tailoring and 

transferring emotions have the least impact on the use. We 

summarised the strengths and limitations of feedback features of an 

embedded feedback channel. The study could confirm text is the 

most preferred feedback feature that is perceived as useful and easy, 

and many users are familiar with that. However, there are other 

feedback features such as screenshot, and audio recording that have 

more influential contributions on explaining a complicated 

situation and tailoring the feedback to the needs. The study suggests 

considering both user-triggering and system-triggering approaches 

for gathering user feedback. However, the requests for user feedback 

in a system-triggering approach should not disturb users, as shown 

in Chapter 3, although the disturbance has a negligible impact on 

quality of experience. Having the two approaches enable the users 

who have the habit of giving feedback to give the feedback when 

intend, and motivates the users, who do not have the inclination, to 

communicate their input.

5.2. Summary of Chapters
Chapter 2 presents an exploratory study that investigated the 

characteristics of feedback features of an embedded feedback 

channel from the perspectives of feedback senders. It also studied 

how the feedback characteristics impact the use of the feedback 

channel. We chose six factors for evaluating feedback features by 

inspiration from technology acceptance model and media richness 

theory, namely usefulness, ease of use, familiarity level of users with 



48Part 1: Kappa

the feedback feature and giving feedback in addition to capabilities 

for explaining a complicated situation, tailoring feedback, and 

transferring emotions. In total, we selected eight feedback features 

including text, rating, emoji, category, screenshot, audio recording, 

screen recording, and attachment. The respondents of a 

questionnaire-based survey in the role of feedback senders 

evaluated the features for the chosen characteristics.

The results confirmed that perceived usefulness, ease of use, and 

familiarity (e.g., with giving feedback, and with feedback features) 

are essential factors affecting the use of a feedback channel. However, 

the study could not find strong evidence that feedback capabilities 

for explaining a complex situation, tailoring, and transferring

emotions for a significant impact on a use of a feedback channel

(answer to RQ1.2). Text, rating, emoji, category and attachment were 

perceived to be easy to use features while user was familiar more 

with text, rating and category. Those feedback features which are 

perceived to be easy to use, are not good in explaining a complicated 

situation. Although qualitative analysis of the quotes of feedback 

senders showed that the study could confirm text is the most 

preferred feedback feature, however, there are other feedback 

features such as screenshot, and audio recording that have more 

influential contributions on explaining a complicated situation and 

tailoring the feedback to the needs. The study could not find 

significant differences across categories of age for the preferences of 

feedback features (answer to RQ1.1).

Overall, the study suggests providing feedback forms with multiple 

feedback features to allow users when they push the feedback button 

to be able to choose among the features based on their preferences 

and needs. As a complementary approach, we also suggest 

companies to design simple feedback forms (with one or two 

feedback features such as text and rating), customized based on the 

situations that the users just experienced, and then use the form to 

request users for feedback. We expect that this approach would 

engage those users that do not have a habit of giving feedback. The 

findings imply that companies need to consider courses of action 

(e.g., tutorials) to make their users familiar with the feedback 

features, engage them to give feedback (answer to RQ1).



 

 
  49 

 

Chapter 3 presents empirical research that explores how requests 

for feedback affect users’ QoE. In this study, a QoE probe feedback 

tool (Fotrousi and Fricker 2016) was integrated with a mobile 

product. The feedback tool randomly prompted users for feedback 

about the product and collected users’ perceptions of their 

experiences during their interactions with the product. At the end of 

the experience, a post-questionnaire collected users’ feedback about 

the feedback tool and the software product. 

The analysis of the users’ feedback about the feedback tool identified 

categories of user disturbance. Users perceived disturbance when 

feedback requests interrupted their tasks, when they were too early, 

too frequent, or had unsuitable content. These findings helped 

parameterise the characteristics of feedback requests and a 

feedback-request model with four parameters referring to the 

experience space, the time frame within the space, the number of 

feedback requests in the time frame, and the content of the feedback 

request. This model implies that user disturbance may be avoided by 

a suitable configuration of these variables. 

The analysis of the users’ feedback about the software product 

showed that the disturbances generated by the feedback tool had a 

negligible impact on the QoE of the software product, however 

(answer to RQ1.3). Triangulating the study with three different 

analyses confirmed the finding: a pattern-matching analysis showed 

that the disturbance caused by the feedback tool did not always 

create a bad experience of the software product. Correlation analysis 

confirmed that the QoE of the software product was not statistically 

correlated with the QoE of the feedback tool. The content analysis of 

the users’ feedback showed that the QoE of the software product was 

essentially influenced by other factors. The quality of the software 

product and the context of the user experience, such as device 

characteristics, were the focal points of users’ justifications for their 

ratings. 

The negligible impact of feedback requests on QoE implies that 

software practitioners may trust the evidence that their feedback 

tools collect even if they disturb users. The feedback can be 

informative about software products or even about the disturbing 



 

  

50 
Part 1: Kappa  
  

 

feedback tool itself. These findings can guide designing system 

requests for user feedback to enhance the evidence they gather. 

The results of the study were limited to the experiences of students 

with the modelling requirements of a mobile software application. 

The contextual factors might also have affected the results. In the 

future, other studies with different types of products should 

complement the current study to confirm the reliability of its results. 

Another open question exists regarding how variations of the 

feedback-request parameters affect QoE. 

Chapter 4 gives an overview of the literature on the use of KPIs, 

which target product goals, for software-based ecosystems. A 

systematic mapping was followed and applied to 34 studies 

published from 2004 onwards. 

Two major kinds of ecosystems were researched: software 

ecosystems and digital ecosystems. Many application domains, such as 

software development, telecom, business management, logistics, 

transportation, and healthcare, were addressed, but most in only one 

or two studies. 

The mapping study showed that KPIs relate to a variety of objectives: 

improving business, the interconnectedness between actors, 

ecosystems, the quality of ecosystems, products and services within 

ecosystems, and ecosystem sustainability. 

The included primary studies described KPIs applied to whole 

ecosystems or parts of ecosystems, which consist of entities 

including actors, artefacts, services, relationships, transactions, and 

networks. They were identified in relation to the ecosystem 

objectives. To measure the entities, we classified the KPIs into the 

categories size, diversity, satisfaction, performance, finance, freedom 

from risk, compatibility, and maintainability (answer to RQ2.1). 

Among the primary studies, the most common objectives were 

improving the interconnectedness between individual actors, 

ecosystem subsystems, and the quality or business of the overall 

ecosystem. Satisfaction, performance, and freedom from risk were 

the most common KPI categories. 



 

 
  51 

 

The classification provided in this study can help ecosystem, 

platform owners, and even software system managers to more 

closely examine objectives and design relevant to KPIs (partially 

answer RQ2). The results of the mapping study indicate that more 

research is needed for a better understanding of KPIs for software-

based ecosystems. In particular, a deeper understanding is needed of 

how the application domain affects an ecosystem’s KPIs. Further 

research on the identification and analysis of KPIs can improve the 

understanding of which KPIs are best suited for which purposes. 

Chapter 5 describes whether and when analytics are valuable for 

product planning and how they can be used in a software product 

plan. The chapter reviews the existing literature on software product 

planning and analytics and proposes a conceptual model that 

connects software product analytics to product-planning decisions. 

This study initially introduced two taxonomies as inputs for the 

other parts of the study: the first was related to planning decisions 

taken in portfolio management, road-mapping, and release-planning. 

The second, which was a taxonomy for SaaS-based measurements, 

had two dimensions: product, feature/content, and GUI (graphical 

user interface) elements in the first dimension and health, usage, and 

context in the second. 

We conducted an interview-based survey with experienced product 

managers focussed on road-mapping decisions to show how 

analytics assist product managers in product planning. We asked the 

product managers to rank the analytics they used for their decision-

making. We then analysed their rankings and rationales. 

The results presented an analytics-based model (answer to RQ2.2) 

that indicates that both product characteristics and product goals 

constrain analytics and that analytics can be interpreted for product 

goals. The study also suggested activities for product managers to 

support planning decisions and product evolution with analytics: 

extracting product characteristics and preparing a list of product 

goals (Step 1), filtering lists of analytics based on product 

characteristics and goals (Step 2), measuring and analysing (Step 3), 

and making planning decisions while checking alignment with goals 

(Step 4). 



 

  

52 
Part 1: Kappa  
  

 

The results also revealed that some parameters, such as product 

maturity, users, network type, context, and technology, can change 

the value of analytics for product planning. Analytics can be 

motivators for product managers to achieve goals for market 

positioning, meeting quality-in-use, and improving product quality 

(e.g., usability, functional suitability, and reliability). Therefore, even 

a limited list of analytics supports decision-making based on actual 

evidence. If analytics show deviations from product goals, the 

product manager can make an informed decision (partially answer 

RQ2). 

Chapter 6 describes an approach to eliciting quality requirements 

based on inquiry into quality-impact relationships. The method is 

based on the quality of a product and subjective feedback from 

stakeholders about perceived quality to guide a requirements 

engineer in the systematic inquiry of good-enough software quality. 

Chapter 6 is a solution proposal that describes the method in detail 

and reports early experiences of applying it. 

The proposed method is performed in four 

steps: preparation, measurement, analysis, and decision-making. 

During preparation, the required materials are prepared, including 

the preparation and documentation of a prototype, the formulation 

of a questionnaire, the recruitment of stakeholders for participation 

in a workshop, and the scheduling of the 

workshop. The measurement step aims to collect quality 

measurements and user feedback. While stakeholders use the 

software, the quality attributes of the experience are measured. After 

using the software, a questionnaire is administered to collect 

stakeholder opinions about perceived quality. In the analysis step, 

quality measurements are correlated with stakeholder opinions. The 

analysis uses a regression function to estimate what stakeholder 

opinions would be for a given quality value. During the decision-

making step, the requirements engineer decides the acceptable and 

desired levels of quality for the investigated quality attributes and 

updates the SRS (software requirements specification) document if 

needed (answer partially to RQ3.2). The process concludes with 

decision-making about whether to add inquiry iterations. 

We applied the method to a real-world project in the healthcare 

domain and exemplified the steps using a diabetes smartphone 



 

 
  53 

 

application. Diabetes patients used the product to take blood glucose 

measurements, plan insulin injection, and send the collected 

observation history to a diabetes specialist for a consultation. The 

relationship between quantitative measures of user opinions and 

system measurements was evaluated for the features of 

authenticating user and sharing diabetes information. Chapter 6 

describes how the method was applied to the requirements 

engineering endeavours. The method combined evidence from the 

elicitation methods, particularly from questionnaires, monitoring 

prototypes, and workshops, into a structured process for creating 

and analysing evidence for decision-making about good-enough 

quality. 

Chapter 7 presents the FAME framework, which was designed and 

implemented for the combined and simultaneous collection of 

feedback and monitoring data in web and mobile contexts. FAME 

gathers user feedback, monitors data, and stores data. FAME uses an 

ontology that links user feedback and monitoring data via their 

shared schema elements, including user, timestamp, and application, 

to help practitioners find evidence for evolving software systems. 

FAME supports several feedback media, including text, rating, 

screenshot, audio, category, and attachment. It also supports both 

user-triggering (push) and system-triggering (pull) approaches to 

feedback dialogues and implements several monitoring approaches: 

user monitoring (e.g., clickstreams and navigation paths of end 

users), infrastructure monitoring (e.g., disk, memory, and central 

processing unit [CPU] consumption of a server), and QoS monitoring 

(e.g., monitor response time and availability of web services). The 

implementation is in the form of a library that a developer integrates 

into a host application. Gathering user feedback and monitoring data 

are fully configurable, allowing feedback dialogues to be created and 

monitors selected based on the stored configuration settings. 

We evaluated FAME in the context of continuous requirements 

elicitation. FAME was deployed in the web application of a German 

SME to collect user feedback and usage data. We received 31 

feedback entries from 24 end users, and 16 were considered 

relevant. FAME also gathered monitoring data from all 5,185 end 

users who logged in during the period, 957,260 clicks, and 160,888 

navigation actions. After the combined analysis of user feedback and 



 

  

54 
Part 1: Kappa  
  

 

monitoring data with the SME representative, we found evidence for 

one new requirement and four modified requirements that the 

representative had not mentioned earlier. 

These results suggest that FAME is not only successful in industrial 

environments but also that bringing feedback and monitoring data 

together helps company stakeholders improve their understanding 

of end-user needs, supporting continuous requirements elicitation 

and ultimately software system evolution (answer to RQ3.2). As 

future work, FAME should be validated with companies of different 

domains, sizes, and requirements elicitation processes as well as 

with more end users. 

Chapter 8 presents GESU in detail (answer to RQ3). GESU explains 

two dimensions: knowledge transformation (by adapting the SECI 

model) and its activities, the details of which were presented in 

Section 5.1. 

We evaluated GESU in a smart parking case, the results of which 

showed that GESU could effectively support decision-making for 

software evolution and that combining user feedback, monitoring 

data, and the product team’s knowledge could support software 

system evolution (answer to RQ3.2). The findings also confirmed 

that GESU could describe knowledge-creation theory, although it 

needed some adaptation for the specific case (answer to RQ3.3). 

Additionally, the results showed that goal-driven monitoring and 

system-triggered user feedback approaches could yield more 

contextual evidence and consequently help improve gathering 

evidence (answer to RQ3.1). For further contributions, the paper 

revisited the SECI model as the conceptual basis of gathering 

knowledge from software in use in the context of system 

maintenance and evolution. 

6. Discussion 

6.1. Contributions 
This dissertation makes the following eight contributions as follows. 

For each contribution we identifies which objectives (see Section 3) 

have been fulfilled. 



 

 
  55 

 

C1: Describing a method that guides practitioners and researchers 

with generic activities and their sequence defined. The method is 

framed based on processes for knowledge creation and 

transformation to support gathering and sharing evidence to evolve 

software systems. The method called GESU (gathering evidence from 

software in use) in this thesis (OBJ 3, OBJ4, OBJ4.2, OBJ 4.3).  

C2: A better understanding of goal-driven monitoring of a system in 

use for requesting user feedback relevant to the use context. A goal-

driven approach guides monitoring to observe particular analytics 

according to the goals. When the system detects a deviation of 

analytics from a threshold value, the system configures and triggers 

a request for user feedback (OBJ 3, OBJ 4.1, OBJ4.2). 

C3: A better understanding of gathering user feedback from software 

in use. We specified the characteristics of various feedback features 

of a feedback channel embedded in a software system, and the 

strengths and limitations of the feedback features. Perceived 

usefulness, perceived ease of use, and familiarity with the feedback 

form would improve the use of feedback channel. The embedded 

feedback channel, which contains several features (e.g., free text 

input, star rating, and taking and annotating a screenshot), is useful 

for collecting more information. However, requesting feedback in a 

simple feedback form that is relevant to the context of the users’ 

recent experience encourages more users to give feedback. The 

findings contribute to helping practitioners and researchers to 

design an embedded feedback channel while improving its use 

(OBJ1, OBJ1.1, OBJ1.2, OBJ 1.3).  

C4: A better understanding of the effect of requests for user feedback 

on QoE. We found that feedback requests have a negligible impact on 

users’ QoE of the software product as such. The quality of software 

products themselves has much more impact on QoE than the 

characteristics of the feedback tool, implying the importance of 

practitioners’ focus on product quality, although designing a proper 

feedback tool should not be neglected, since it contributes to 

collecting informative feedback about the software product. These 

findings contribute to helping researchers and practitioners design 

automatic user-feedback request systems (OBJ1, OBJ1.4) 



 

  

56 
Part 1: Kappa  
  

 

C5: A better understanding and modelling of the characteristics of a 

feedback request that may disturb users. The study parameterised 

the characteristics of feedback requests to inform researchers about 

the factors that disrupt users’ experiences and thus help them design 

feedback mechanisms that avoid disturbing users (OBJ1, OBJ1.4) 

C6: Implementation of the FAME framework and QoE probe tool. 

FAME provided a framework with fully configurable tools for 

collecting user feedback, monitoring data, and combining the two. 

The configurable user feedback tool was implemented in both the 

web and Android versions. The Android mobile QoE probe tool 

collected limited monitoring data as well as quantitative and 

qualitative user feedback. These tools can be used to develop 

feedback-based research projects and evaluate software products 

based on users’ feedback (OBJ1, OBJ2, OBJ3) 

C7: A better understanding of platform owners’ objectives and 

relevant KPIs that are measured, analysed, and used for decision-

making in a software ecosystem. From a researcher’s point of view, 

the study captures the state of knowledge and can be used to plan 

further research. From a practitioner’s view, the generated map 

refers to studies that describe how to use KPIs to manage a software 

ecosystem (OBJ2, OBJ2.1). 

C8: A better understanding of how analytics can be used for product 

planning. We found that analytics are used to interpret product goals, 

while analytics are constrained by both product characteristics and 

product goals (OBJ2, OBJ2.2). 

6.2. Roadmaps 
The thesis theoretically and practically targets gathering, sharing 

and aggregating evidence for software evolution in a systematic way. 

We proposed a theoretical framework of knowledge creation for 

companies to not only consider gathering evidence but also take 

actions for combining and sharing evidence for software evolution 

among their team. However, the thesis practically focused on the 

activities relevant to gathering evidence from monitoring data and 

user feedback, and combining them due to the data-intensive nature 

of these activities, which facilitates their automation.  



 

 
  57 

 

Although many companies are aware of the importance of user 

feedback, they are not aware of a suitable approach for gathering 

feedback and exploiting the feedback potentials (Stade et al. 2017). 

We believe that a success factor for the use of feedback forms by 

users is to match the capabilities of a feedback form to the users' 

needs for communicating their thought. We suggest companies 

design feedback forms while including multiple feedback features 

such as text feedback (popular feedback), rating (easy to use), audio 

recording (capable of explaining a complex situation), allows 

integrating diverse characteristics of the features. The feedback 

forms should be available for users to trigger, for example, by 

pushing the feedback button, when they have feedback to 

communicate. Furthermore, we suggest designing simple feedback 

forms, including one or two easy to use feedback features, such as 

text and rating, adjusted to the context of the recent experience of 

the users. The system triggers the feedback form to request feedback 

from the users. However, such system requests for feedback should 

not disturb the users (see Chapter 3). Combining the two approaches 

enable the users who have the habit, to give feedback when intend, 

and also engage other users, who do not have the inclination, to 

communicate their input just after experiencing it. However, for 

designing feedback forms, the researchers and practitioners need to 

consider ethical aspects and ensure that the stakeholders' rights and 

integrity are respected (Fotrousi et al. 2017). 

We suggested companies considering goal-driven monitoring and 

combining the monitoring with user feedback.  The approach steers 

the collection of user feedback on interesting situations of system use 

by basing the feedback requests on monitoring the fulfilment of user 

goals. This method avoids collecting volumes of unused data and 

reduces the number of disturbances of users due to feedback 

requests by collecting short feedback only when it is needed. 

However, unnecessary disturbances can also negatively impact the 

amount of feedback received, even when it has a negligible impact on 

the quality of the experience (Fotrousi et al. 2018). This supports 

practitioners and managers in gathering actionable evidence from a 

system and its users to support the iterative approaches of 

continuous product development and delivery. 



 

  

58 
Part 1: Kappa  
  

 

The method proposed in this thesis is particularly useful for 

continuous deployment and delivery (DevOps) as it can bring 

software development closer to operation (Sjøberg et al. 2003). 

Using the method, the practitioners act on evidence from system 

monitoring and user feedback to mitigate issues as quickly as 

possible. So, most users are no longer affected by the issues, and the 

practitioners can increase the frequency and quality of deployments 

while making the development lifecycle shorter. Developers can also 

cut work into small chunks and carefully iterate the flow of products 

to users, as followed in lean start-ups (Blank 2013).  

The method proposed in this research applies to software-intensive 

systems, such as IoT (internet of things) (Sanchez et al. 2014) and 

cyber-physical systems (Zheng et al. 2016). These systems are 

usually characterised as spatially distributed hardware and 

software, and time-sensitive, connecting the physical world to the 

cyber world through sensors and actuators (Esterle and Grosu 

2016). The method in this thesis can be used by introducing the 

concept of goal-driven to individual monitoring of the hardware and 

software components, aggregating the monitoring data, and 

combining them with autonomous user feedback. Such a system can 

benefit from a self-adaptive user-feedback to automatically detect 

problems and provide a feedback loop for automatic fixes. This self-

adaptive user feedback has been left for future research. 

We can apply our method in various other disciplines such as in 

transport, energy, healthcare, and agriculture domains. The method 

proposed in this thesis enables transferring knowledge from a 

laboratory and testing environment to a real environment (e.g., 

roads, hospitals, and farms), and open up opportunities for future 

research projects. 

6.3. Limitations  
This thesis does not aim to prescribe a solution for gathering 

evidence in a particular context. The thesis provides a procedure 

that, on the one hand, frames the processes relevant to GESU and, on 

the other, recommends goal-driven system monitoring and system-

triggered user-feedback gathering. This is alongside typical methods, 

such as continuously monitoring whole systems and gathering user 

feedback when users trigger feedback forms. Goal-driven monitoring 



 

 
  59 

 

is applicable only if software goals and corresponding KPIs (i.e., 

monitor analytics toward a goal) are defined; otherwise, 

practitioners should rely on typical system monitoring. 

GESU method suggests goal-driven user feedback gathering, which 

can rely on a variety of monitoring techniques and algorithms, for 

example, a techniques for managing the traffic overheads of 

monitoring in distributed system (Dilman and Raz 2002). However, 

the proposed method is agnostic about those techniques and 

algorithms and does not elaborate on them. 

Gathering evidence requires tools to monitor systems and collect 

user feedback. The current version of FAME does not support goal-

driven monitoring, so practitioners should either wait for an update 

of FAME or act on customising the current solution based on their 

particular needs. 

6.4. Future Work 
Building an adaptive user-feedback system would be a valuable 

future work. Such a system relies on parametric self-configuration of 

user-feedback forms. The system triggers a request for user feedback 

at an appropriate time while the user is experiencing the software. 

The model presented in chapter 3 parameterises a feedback request 

outline the task, timing of the task for issuing the feedback requests, 

user’s expertise-phase with the product, the frequency of feedback 

requests about the task, and the content of the feedback request. 

Content could refer to the selection of appropriate user-feedback 

features (see Chapter 2) with questions adjusted, for example, based 

on user behaviour in the running software and prior user feedback. 

So, monitoring data could also form other parameters. How to 

parameterise a user feedback system, and how to make it self-

configurable could be the subject of future research. 

An extension to the FAME framework (see Chapter 7) should be 

developed that, on the one hand, supports goal-driven monitoring 

and, on the other, makes the self-adaptive solution practical by 

configuring (self)-adaptive user-feedback forms in a controlled loop. 

A validation of the extension should also be planned. 

A systematic approach to designing and executing innovation 

experiments in iterative software development, such as in lean start-



 

  

60 
Part 1: Kappa  
  

 

ups, is also interesting future research. The method for proposed for 

gathering evidence in this thesis can inform problem detection and 

guide code changes to speed up production. What is still unknown in 

the literature is how to formulate hypotheses regarding software 

products and prioritise hypotheses using the collected evidence. We 

think that combining monitoring data and adaptive user feedback 

with users’ own reasoning about the causes of unfulfilled 

expectations could be a solution to the formulation of system 

hypotheses. 

When relevant hypotheses are formulated and prioritised, 

experimentation requires building prototypes for the hypotheses 

with the minimum viable product, observing user behaviours and 

feedback, and perhaps repeating the process with a new hypothesis. 

Once enough support is found for a hypothesis, the product is 

developed and released. Due to various conceptual factors and the 

manual effort of building prototypes, a solution for automatic 

experimentation does not seem feasible. However, research is 

needed to instruct practitioners about approaches to combining user 

feedback and monitoring data to support experiments. 

In such studies, trust plays an important role, especially when 

innovative autonomous demonstrators are introduced, such as self-

driving software. It would be interesting to investigate the impact of 

new software or its changes on human trust. The proposed method 

in this thesis should be helpful for measuring trust, in fact. Whether 

and how trust can be measured using user feedback and monitoring 

systems should also be researched in the future. 

7. Conclusion 

Companies must acquire evidence about situations in which their 

running software systems misbehave and generate undesirable 

impacts that users do not accept. Previous research has collected 

user feedback and monitoring data as two sources of evidence; 

however, the gathering of such evidence has not been systematic, 

resulting in overreliance on the passive reactions of users when a 

problem emerges and finding issues among massive amounts of 

monitoring data. This thesis aimed to improve this evidence-

gathering from user feedback and monitoring data to support 



 

 
  61 

 

practitioners in decisions regarding the evolution of software 

systems. 

The thesis proposed GESU using a design-science research method 

designed in three iterations and validated with the case studies of the 

European projects FI-Start, Supersede, and Wise-IoT. GESU was built 

on the results from other supportive studies of this thesis. We found 

that users characterise feedback features differently. Although some 

users have the habit of giving feedback, some others will 

communicate their feedback if the system solicits particular 

information about recent experiences. However, requests for user 

feedback should be infrequent or only occur after finishing feature 

usage to avoid disturbing users, even though the disturbance may 

have a negligible impact on the perceived QoE of the software 

system. We modelled analytics-based planning that showed analytics 

could support the interpretation of product goals but are constrained 

by both product characteristics and product goals. 

GESU was built within the framework of knowledge-creation theory 

and suggested goal-driven monitoring and system-triggered user 

feedback for gathering evidence from software in use. The evidence-

gathering relies on choosing analytics based on product 

characteristics and product goals, monitoring analytics, and 

requesting user feedback when the monitoring data shows 

deviations from accepted threshold values. Adding a joint analysis 

and presentation of the monitoring data and user feedback is 

recommended to discover evidence of problems or required 

changes. 

The results show that GESU is not only successful in industrial 

environments but that bringing feedback and monitoring data 

together helps practitioners improve their understanding of end-

user needs and system drawbacks, ultimately supporting continuous 

requirements elicitation and product evolution. 

Overall, combining user feedback and monitoring data is helpful to 

deepen insight into the success of software systems and guide 

decision-making regarding software maintenance and evolution. 

This work can be extended in the future to incorporate an adaptive 

system for gathering evidence from combined monitoring data and 

user feedback. Such an adaptive system may guide hypothesis 



 

  

62 
Part 1: Kappa  
  

 

formulation and testing to further bolster continuous system 

maintenance and evolution



 

 

PART 2 
Gathering of User Feedback 



 

  

64 
Part 2: Gathering of User Feedback  
  

 

  



 

 
  65 

 

 

 

 

Chapter 2 :  How do Users Characterise 
Feedback Features of an Embedded 
Feedback Channel? 
 

[The chapter is based on: F. Fotrousi, M. Stade, N Seyff, S. Fricker, M. 

Fiedler (2020). “How do Users Charactrise Feedback Features of an 

Embedded Feedback Channel?”, Submitted to a Journal.] 

Abstract 

Feedback from users is a valuable source of information for software 

evolution. The evolution can be informed using a feedback channel 

embedded in the software, to allow users communicating their 

desires, needs and experienced issues at runtime in the forms of text 

descriptions, annotated screenshots, ratings and even audio 

recordings. Different users have different needs when providing 

feedback. Although the provision of a suitable feedback channel for 

users is crucial to let them communicate their feedback as they need, 

little is known under which conditions users prefer to use the 

different available feedback features. Our study aims at 

understanding the characteristics of a feedback feature of an 

embedded feedback channel such as ease of use or transferring 

emotions, and whether the characteristics have an impact on the use 

of the feedback channel. A survey was conducted with 100 public 

respondents. In total, eight feedback features were evaluated by 

feedback senders with regard to the traits inspired by the media 

richness theory and the technology acceptance model. The results 

confirmed that perceived usefulness, ease of use, and familiarity (e.g., 

with giving feedback, and with feedback features) are essential 

2 



 

  

66 
Part 2: Gathering of User Feedback  
  

 

characteristics affecting the use of the feedback channel. The study 

showed that natural language text is the most preferred feedback 

feature, however there are other feedback features such as 

screenshot, and audio recording that have more influential 

contributions on explaining a complicated situation and tailoring or 

personalizing the feedback as they wish. Overall, the study suggests 

that providing feedback forms with multiple feedback features 

selectable by users based on their preferences and needs might be an 

ideal solution, when users trigger feedback forms. It also suggests 

providing a complimentary, simple feedback form to actively request 

feedback from users, for example, about the situations that the users 

just experienced. Asking for such immediate feedback could be 

triggered by the software system itself. Considering both triggering 

approaches allow software providers to keep users engaged in 

providing feedback regardless of whether they have a habit of 

providing feedback or not. 

Keywords 

User Feedback, Software Evolution, Feedback Features, Embedded 

Feedback Channel 

 

1. Introduction 

ive  decades ago (Lehman 1980) emphasized that the evolution 

of software is feedback driven because feedback, in general, 

promotes change processes. In particular, feedback from users 

(i.e., end-users) is an impetus for change (Godfrey and German 2008) 

and a valuable source for software evolution. Software companies 

learn about the real software usage and receive improvement ideas 

(Maalej and Pagano 2011) as user feedback can cover various topics 

including shortcomings, feature requests or bug reports (Pagano and 

Maalej 2013). Such learning can make the products closer to the 

users’ desires and needs, address the competition pressures, and 

generate values for software companies (Lehman and Ramil 2003; 

Thew and Sutcliffe 2018). 

F 



 

 
  67 

 

In order to benefit from user feedback for software evolution, user 

feedback needs to be properly managed in the multi-stage 

communication process between users and software providers 

(Gallivan and Keil 2003). The provision of suitable channels for users 

to communicate their feedback is a crucial step towards successful 

user-software provider communication. While some companies rely 

on generic communication channels such as phone, email or social 

media (Pagano and Brügge 2013; Stade et al. 2017) more and more 

companies integrate dedicated feedback tools into the actual 

software application. Such in-product implementations are seen as 

efficient means for users to provide feedback, incidentally while 

using the software. It can be argued that this increases the users’ 

willingness to provide feedback. 

The existing embedded feedback channels, sometimes referred to as 

feedback plug-ins or feedback tools, ranging from simple forms with 

free text fields, over pop-up windows with star rating requests to 

advanced screenshot-based plug-ins with manifold annotations 

options. Service providers of such feedback tools are competing with 

each other by providing (supposedly needed) new functionalities, 

up-to-date designs and the different feedback features supported. 

Feedback features belong to a feedback channel (also called elements, 

cf. (Schneider 2011)) and enable users to provide their feedback in 

different ways. This includes natural language text or spoken 

language, screen recordings, and emojis or star ratings. These 

different feedback features can be used to document and 

communicate feedback from the user (i.e., the feedback sender) to 

the software provider (i.e., the feedback receiver).  

While current research focuses on the analysis of user feedback to 

support the feedback receiver side, for example, by applying machine 

learning algorithms to automatically classify feedback into 

categories relevant for software evolution (Guzman et al. 2015), the 

feedback sender perspective is often neglected. So far, we only know 

that users have different needs when providing feedback in general,   

(Almaliki et al. 2014; Maalej et al. 2009) but it is unknown under 

which conditions and for what reason users prefer to use a particular 

feedback feature to communicate their feedback (Maalej et al. 2009). 



 

  

68 
Part 2: Gathering of User Feedback  
  

 

In this paper, we investigate how users rate and select the feedback 

features provided in embedded feedback tools to communicate their 

feedback. We focus on the feedback features available in research 

and industrial feedback tools, including text, screenshot, emojis and 

further features. In total, eight feedback features were evaluated by 

feedback senders with regard to various factors derived from the 

media richness theory (Daft and Lengel 1986) and the technology 

acceptance model (Davis et al. 1989). We explored how the 

perceived characteristics of feedback features and additional factors 

like feedback topic or device (e.g., mobile device, PC) affect what 

feedback feature(s) feedback senders choose to give their feedback 

to the software company. 

Our research results provide new and in-depth insights into the 

needs and preferences of feedback senders regarding the tool-

supported communication between users and software providers 

and are the basis for the adjustment of embedded feedback tools, 

ultimately supporting and motivating users to provide feedback for 

software evolution. 

The remainder of the paper is structured as follows. Section 2 gives 

an overview of the state of the art, including how previous research 

and practice use different feedback features to gather feedback from 

users. The section also overviews selected theories that address the 

capabilities of feedback features and their relations with the use of 

the feedback channel. Section 3 discusses the applied research 

methodology, including research questions and research design, and 

Section 4 illustrates the results to answer the research questions. 

Section 5 discusses the obtained results, including contribution, 

implications, and constraints. Section 6 summarizes and concludes 

the paper. 

2. Background 

2.1. Feedback Features in Research and Practice 
According to the user-to-developer feedback model by (Gallivan and 

Keil 2003), the feedback communication process between users and 

the software providers, in particular, the product development team 

including developers, requirements engineers and other internal 



 

 
  69 

 

stakeholders is characterized by four steps. First, the user (i.e., 

feedback sender) needs to become aware of a feedback issue she 

wants to communicate to the product team (i.e., feedback receiver) 

(Step 1). Second, she communicates (i.e., transmits) her message to 

the team (Step 2). For that, she needs to be aware of opportunities to 

communicate her message, select a feedback communication 

channel and finally transmit her message. The availability of the 

feedback communication channel but also the channel’s richness 

(see Section 2.2) might affect the choice. Third, the product team 

receives the information sent by the feedback sender and interprets 

the message (Step 3). Finally, the product team prioritizes the issues 

and decides on actions (Step 4). 

For Step 2, the user can communicate her feedback by using various 

feedback communication channels such as phone, ticket systems, 

personal meetings or dedicated feedback tools (Pagano and Brügge 

2013; Stade et al. 2017). Research and practice pay more and more 

attention to feedback tools that can be implemented as standalone 

(Heller et al. 2011; Wehrmaker et al. 2012) or embedded feedback 

tools. For latter, the feedback tool is integrated into the software 

application and can be activated by the user or the software 

application itself while the application is running (i.e., while the user 

is interacting with the software). Some users prefer to initiate the 

communication of feedback and push (Maalej et al. 2009; Schneider 

2011) the feedback to the software provider. In this case, the 

feedback sender triggers the feedback process (user-triggered). For 

that, many feedback tools provide a feedback button visible 

anywhere in the software, e.g., implemented as a floating button or 

as a button in the toolbar, that starts the feedback tool. Other users 

are fine to provide feedback when asked in system-triggered 

questions (Dennis et al. 2008), so it is the system following rules 

defined by the software provider who triggers the feedback process 

and pulls (Maalej et al. 2009; Schneider 2011) feedback from its 

users. This can for example be done with the help of the feedback tool 

that simply pops-up and asks the users for feedback following 

predefined rules, e.g., after the website was visited ten times. 

Users can communicate feedback as speech act or non-linguistic act 

(Morales-Ramirez et al. 2015)(see communication act in Table 2-1). 



 

  

70 
Part 2: Gathering of User Feedback  
  

 

Speech act refers to the communication of feedback in natural 

language and includes that the feedback sender expresses her 

feedback in a textual (i.e., written) or an audio (i.e., spoken) 

communication format (Morales-Ramirez et al. 2015), while non-

linguistic acts include visual communication formats such as 

drawings. For the context of feedback gathering and this paper, we 

introduce the term feedback feature. As Table 2-1 shows, each 

feedback feature is linked to one communication format, but is a 

more fine-grained description of a communication format and 

highlights how this format is supported in the feedback tool. One or 

more feedback features are used by the feedback sender to 

communicate her feedback issue to the software provider and to 

create a shared understanding of a situation or task, such as solving 

a problem for improving the software system. Examples of these 

feedback features are text typed, screen records or emojis. Feedback 

tool features support the feedback sender to create and document 

actual feedback. For example, if the user experienced a usability issue 

with the website, she can type some free text in a text input field or 

select a text snippet from a list of problem descriptions, both features 

provided in the feedback tool. Some feedback tools also ask the user 

to categorize her feedback and provide a selection feature. 

Depending on the answer categories, a selection feature can support 

a textual or visual communication format. If the categories to be 

selected are represented by words (like Problem or Feature Request), 

it is a textual format. A list of icons like a little red bug or a yellow 

light bulb supports the visual communication format. 

Table 2-1 provides an overview of feedback features and categorizes 

them by communication act and communication format. This table 

also highlighted the investigated feedback features in this study, 

including its short names. 

Over the past few years, various embedded feedback tools 

supporting some of the aforementioned feedback features were 

developed. Table 2-2 shows this variance. It is notable that none of 

the existing embedded feedback tools supports the screen record 

feedback feature although requested by research (Hartson and 

Castillo 1998; Yusop et al. 2015) and promising solutions from other 

domains already exist, like Loom (https://www.loom.com/) for user 

research or Lookback (https://lookback.io/) for unmoderated 



 

 
  71 

 

remote usability tests. Moreover, to the best of our knowledge, none 

of the existing research and commercial tools supports all the 

feedback features. 

Current research about user feedback mainly concerns the feedback 

receiver side (Step 3 and Step 4 in the user-to-developer feedback 

model). For example, the usage of machine learning algorithms to 

automatically classify feedback into categories relevant for software 

evolution (e.g., (Guzman et al. 2015), visualizations of feedback 

categorized by topic and sentiment (e.g., tool FAVe (Guzman et al. 

2014), approaches for feedback prioritization (e.g., (Kifetew et al. 

2017; Seyff et al. 2017)), as well as decision taking and planning (e.g., 

(Srewuttanapitikul and Muengchaisri 2016). Only a few studies have 

investigated the feedback sender perspective. While there is indeed 

research on users’ ability to identify and formulate feedback issues 

(e.g., (Elling et al. 2012; Oriol et al. 2018)) (Step 1), there is a lack of 

research on how and why users choose and use a particular feedback 

feature (Step 2). Previous research on embedded feedback tools 

investigated how often feedback tool features were used (e.g., (Elling 

et al. 2012; Oriol et al. 2018)) or which feedback tool features users 

expect (Stade and Seyff 2017), but neglected an in-depth analysis. 

Thus, we still do not know in which situations and for which feedback 

issues users prefer which feedback feature although such research is 

requested (Oh et al. 2016). 

2.2. Media Richness and Technology Acceptance Model 
as Underlying Theoretical Frameworks 

In this section, we give an overview on two theories namely media 

richness theory (MRT) and technology acceptance model (TAM) that 

address the capabilities of feedback features and their relations with 

the use of the features. 

Communication media, such as feedback forms vary in their 

capabilities to communicate information and develop a shared 

understanding of a situation (Watson-Manheim and Bélanger 2007). 

The degree of this capability is known as media richness. A rich 

media can transmit a sufficient amount of correct information, allow 

complicated interactions to reduce uncertainty and ambiguity of a 

situation (Ferry et al. 2001; Sun and Cheng 2007).  



  T
ab

le
 2

-1
. A

 t
ax

o
n

o
m

y
 o

f 
u

se
r 

fe
ed

b
ac

k
.  

C
o

m
m

u
n

ic
a

ti
o

n
 A

ct
 

(M
o

ra
le

s-
R

am
ir

ez
 

et
 

al
. 2

0
1

5
) 

Sp
ee

ch
 a

ct
 

N
o

n
-L

in
gu

is
ti

c 
a

ct
 

C
o

m
m

u
n

ic
a

ti
o

n
 

F
o

rm
a

t 
(M

o
ra

le
s-

R
am

ir
ez

 e
t 

a
l. 

2
0

1
5

) 

T
ex

tu
al

 (
W

ri
tt

en
) 

T
ex

tu
al

 

(S
p

o
k

en
) 

V
is

u
al

 

F
e

e
d

b
a

ck
 F

e
a

tu
re

s*
 

F
re

e 
T

ex
t 

T
yp

ed
1

 

T
ex

t 
S

el
ec

te
d

2 
Sp

ee
ch

 

R
ec

o
rd

3
 

Ic
o

n
s/

Sy
m

b

o
ls

 
Se

le
ct

ed
 

(e
.g

., 
E

m
o

ji
s,

 

St
ar

s)
4 

Sc
re

en
sh

o
t 

(A
n

n
o

ta
te

d
 

w
it

h
 

D
ra

w
in

gs
)5

 

Sc
re

en
 R

ec
o

rd
6 

F
u

rt
h

e
r 

m
at

er
ia

l 

at
ta

ch
ed

7 

In
v

e
st

ig
a

te
d

 

F
e

e
d

b
a

ck
 

F
e

a
tu

re
s 

in
 t

h
is

 s
tu

d
y

**
  

T
ex

t 
w

it
h

 

F
re

e 
T

ex
t 

In
p

u
t 

(A
) 

C
a

te
g

or
y 

w
it

h
 

Se
le

ct
io

n
 

of
 

T
ex

t 

C
a

te
g

or
ie

s 
(D

) 

A
u

d
io

 

R
ec

or
d

in
g

 

w
it

h
 

R
ec

or
d

in
g

 

of
 

V
oi

ce
 

(F
) 

R
a

ti
n

g
 

w
it

h
 

St
a

r 
R

a
ti

n
g

 

(B
);

  

E
m

oj
is

 
w

it
h

 

Se
le

ct
io

n
 

of
 

E
m

oj
is

 (
C

) 

Sc
re

en
sh

o
t 

w
it

h
 T

ak
in

g 
an

d
 

A
n

n
o

ta
ti

n
g 

a 

Sc
re

en
sh

o
t 

(E
) 

Sc
re

en
 

R
ec

or
d

in
g

 (
G

) 

A
tt

a
ch

m
en

t 
w

it
h

 

U
p

lo
a

d
 

of
 

a
n

 

A
tt

a
ch

m
en

t 
(H

) 

*:
 E

xa
m

p
le

s 
o

f 
fe

ed
b

ac
k

 f
ea

tu
re

s 
ar

e:
 1

U
se

r 
d

es
cr

ib
es

 h
er

 f
e

ed
b

ac
k

 m
es

sa
ge

 i
n

 h
er

 o
w

n
 w

o
rd

s 
b

y 
u

si
n

g 
a 

fr
ee

 t
ex

t 
in

p
u

t 
fi

el
d

 o
r 

a 
te

xt
 f

ie
ld

 o
ve

rl
ay

 /
 

co
m

m
e

n
t 

b
u

b
b

le
s 

to
 a

n
n

o
ta

te
 a

 s
cr

ee
n

sh
o

t.
 2

U
se

r 
se

le
ct

s 
w

o
rd

s/
p

h
ra

se
s 

e.
g.

, B
u

g
 o

r 
F

ea
tu

re
 r

eq
u

es
ts

 t
o

 c
at

eg
o

ri
ze

 h
er

 f
ee

d
b

ac
k

, s
el

ec
ts

 t
ex

t 
m

o
d

u
le

s 
th

at
 d

es
cr

ib
es

 h
er

 i
ss

u
e 

b
es

t,
 s

el
ec

ts
 a

 n
u

m
b

er
 o

n
 a

 r
a

ti
n

g 
sc

al
e 

to
 j

u
d

ge
 t

h
e 

o
ve

ra
ll

 d
es

ig
n

 o
f 

a 
w

eb
si

te
. 

3
U

se
r 

re
co

rd
s 

h
er

 s
p

o
k

en
 s

ta
te

m
en

t.
 4

U
se

r 
se

le
ct

s 
an

 E
m

o
ji

 t
o

 e
xp

re
ss

 h
er

 c
u

rr
en

t 
m

o
o

d
 o

r 
an

 o
ve

ra
ll

 j
u

d
gm

en
t 

o
f 

th
e 

ap
p

li
ca

ti
o

n
, u

se
r 

ch
o

o
se

 t
w

o
 o

u
t 

o
f 

fi
v

e 
st

ar
s 

fr
o

m
 a

 s
ta

r 
ra

ti
n

g 
sc

al
e 

to
 

in
d

ic
at

e 
h

er
 s

at
is

fa
ct

io
n

 w
it

h
 t

h
e 

ap
p

li
ca

ti
o

n
5
U

se
r 

cr
ea

te
s 

a 
sc

re
en

sh
o

t 
an

d
 p

ro
vi

d
e 

an
n

o
ta

ti
o

n
s 

li
k

e 
a 

fr
ee

 h
an

d
 d

ra
w

in
gs

 t
o

 h
ig

h
li

gh
t 

ar
e

as
 o

f 
th

e 
sc

re
en

 6
U

se
r 

re
co

rd
s 

h
er

 s
cr

ee
n

 t
o

 s
h

o
w

 d
y

n
am

ic
 e

le
m

en
ts

 o
f 

h
er

 s
cr

e
en

. 
7
U

se
r 

u
p

lo
ad

s 
a 

p
h

o
to

 s
h

e 
al

re
ad

y
 t

o
o

k
, 

a 
re

ce
ip

t,
 a

 f
il

e 
cr

ea
te

d
 b

y 
th

e 
ap

p
li

ca
ti

o
n

  
**

: P
ra

n
th

es
is

 in
 t

h
e 

la
st

 r
o

w
, r

ef
er

 t
o

 F
ig

u
re

 2
-1

. 

 



  

 

T
ab

le
 2

-2
. E

m
b

ed
d

ed
 f

ee
d

b
ac

k
 t

o
o

ls
 a

n
d

 s
u

p
p

o
rt

ed
 f

ee
d

b
ac

k
 f

ea
tu

re
s.

  

 
F

re
e 

T
ex

t 
T

yp
ed

 T
ex

t 
S

el
ec

te
d

 
Sp

ee
ch

 
R

ec
o

rd
 

Sc
re

en
sh

o
t 

(A
n

n
o

ta
te

d
 

w
it

h
 

D
ra

w
in

gs
) 

Sc
re

en
 

R
ec

o
rd

 
Ic

o
n

s/
Sy

m
b

ol
s 

Se
le

ct
ed

 
(e

.g
., 

E
m

o
ji

s,
 S

ta
rs

) 

A
tt

ac
h

m
en

t 
Im

p
le

m
en

ta
ti

o
n

 
an

d
 

T
ri

g
ge

rs
 

R
e

se
a

rc
h

 t
o

o
ls

 
F

A
M

E
 (

O
ri

o
l e

t 
a

l. 
2

0
1

8
) 

Y
es

 
Y

es
(C

at
eg

o
ri

es
) 

Y
es

 
Y

es
 

(A
n

n
o

ta
ti

o
n

s)
 

N
o

 
Y

es
 (

St
ar

s)
 

Y
es

 
(A

n
y 

fi
le

) 
M

o
b

il
e 

an
d

 
W

eb
 

ap
p

, 
P

u
sh

 
an

d
 

p
u

ll
 

C
A

F
E

(D
zv

o
n

ya
r 

et
 a

l. 
2

0
1

6
) 

Y
es

 
Y

es
 (

C
at

eg
o

ri
es

) 
N

o
 

N
o

 
N

o
 

N
o

 
N

o
 

M
o

b
il

e 
a

p
p

, P
u

sh
 

Q
o

E
 

p
ro

b
e 

(F
o

tr
o

u
si

 
an

d
 

F
ri

ck
er

 2
0

1
6

) 
Y

es
 

N
o

 
N

o
 

N
o

 
N

o
 

Y
es

 (
E

m
o

ji
s)

 
N

o
 

M
o

b
il

e 
a

p
p

, P
u

ll
 

In
fo

cu
s 

(E
ll

in
g 

et
 a

l. 
2

0
1

2
) 

Y
es

 
Y

es
 (

C
at

eg
o

ri
es

) 
N

o
 

Y
es

(A
n

n
o

ta
ti

o
n

s)
 

N
o

 
N

o
 

N
o

 
W

eb
 a

p
p

, P
u

sh
 

P
aD

U
 (

Y
et

im
 e

t 
al

. 2
0

1
2

) 
Y

es
 

N
o

 
N

o
 

Y
es

(A
n

n
o

ta
ti

o
n

s)
 

N
o

 
Y

es
 (

E
m

o
ji

) 
N

o
 

D
es

k
to

p
 

ap
p

, 
P

u
sh

 
N

o
 N

am
e 

(N
ak

h
im

o
vs

k
y 

et
 a

l. 
2

0
1

0
) 

Y
es

 
N

o
 

Y
es

 
Y

es
 

N
o

 
N

o
 

Y
es

 
(L

o
gf

il
e)

 
M

o
b

il
e 

a
p

p
, P

u
sh

 

O
p

en
P

ro
p

o
sa

l 
(R

as
h

id
 

et
 

al
. 

2
0

0
9

) 
Y

es
 

Y
es

 (
C

at
eg

o
ri

es
) 

N
o

 
Y

es
 

N
o

 
N

o
 

N
o

 
D

es
k

to
p

 a
p

p
 

P
u

sh
 

A
p

p
li

ca
ti

o
n

s 
M

ic
ro

so
ft

 O
ff

ic
e 

P
ro

d
u

ct
s 

(e
.g

., 
W

o
rd

 D
es

k
to

p
) 

Y
es

 
Y

es
 (

C
at

eg
o

ri
es

) 
N

o
 

Y
es

 
N

o
 

N
o

 
N

o
 

D
es

k
to

p
 

ap
p

, 
P

u
sh

 
G

o
o

gl
e 

P
ro

d
u

ct
s 

(e
.g

., 
K

ee
p

) 
Y

es
 

N
o

 
N

o
 

Y
es

 
(A

n
n

o
ta

ti
o

n
s)

 
N

o
 

N
o

 
Y

es
 

(L
o

gf
il

e)
 

M
o

b
il

e 
an

d
 

W
eb

 
ap

p
, P

u
sh

 
S

e
rv

ic
e

 p
ro

v
id

e
rs

 
U

se
rs

n
ap

 
(u

se
rs

n
ap

.c
o

m
) 

(f
o

r 
cu

st
o

m
er

 f
ee

d
b

ac
k

) 
Y

es
 

Y
es

*(
N

u
m

b
er

 
ra

ti
n

g)
 

N
o

 
Y

es
 

(A
n

n
o

ta
ti

o
n

s)
 

N
o

 
Y

es
*(

em
o

ji
s,

 
st

ar
s)

 
N

o
 

M
o

b
il

e 
an

d
 

W
eb

 
ap

p
, P

u
sh

 
U

sa
b

il
la

 (
u

sa
b

il
la

.c
o

m
 

(f
o

r 
A

p
p

s 
a

n
d

 W
eb

si
te

s)
 

Y
es

 
Y

es
*(

N
u

m
b

er
 

ra
ti

n
g,

ca
te

go
ri

es
) 

N
o

 
Y

es
 

(A
n

n
o

ta
ti

o
n

s)
 

N
o

 
Y

es
*(

E
m

o
ji

s,
St

ar
 

ra
ti

n
g)

 
N

o
 

M
o

b
il

e 
an

d
 

W
eb

 
ap

p
, P

u
sh

 
O

p
in

io
n

L
ab

(o
p

in
io

n
la

b
.c

o
m

) 
(f

o
r 

W
eb

si
te

 a
n

d
 A

p
p

) 
Y

es
 

Y
es

*(
N

u
m

b
er

 
ra

ti
n

g,
ca

te
go

ri
es

) 
N

o
 

N
o

 
N

o
 

N
o

 
N

o
 

M
o

b
il

e 
an

d
 

W
eb

 
ap

p
, P

u
sh

 
*:

 r
e

fe
rs

 t
o

 t
h

e 
p

ar
ti

cu
la

r 
co

n
fi

gu
ra

ti
o

n
 o

f 
th

e 
fe

ed
b

ac
k

 t
o

o
l 

http://www.usersnap.com/
http://www.usabilla.com/
http://www.opinionlab.com/


 

  

74 
Part 2: Gathering of User Feedback  
  

 

Media richness theory explains the richness capabilities (Daft and 

Lengel 1986). Daft and Lengel stated that a feedback feature is 

considered to be rich when it has the abilities to handle multiple 

information cues (i.e., The number of ways in which information could 

be communicated such as written text, voice), allows the sender for 

tailoring and personalizing the media to her needs, facilitates the 

provision of immediate feedback, and utilizes verbal and non-verbal 

language for communication (e.g., body language, facial expression, 

tones of voice). Studies show that not only the characteristics of a 

feedback feature, but also other factors may influence the degree that 

the feature is perceived to be rich. The familiarity of individuals with 

the media and with each other (Carlson and Zmud 1999), and social 

influences (Schmitz and Fulk 1991) are some influential factors studied. 

Moreover, Anandarajan et al. (2010) showed that not only media 

richness but also the usefulness of the media possibly influence the use 

of the instant messaging feature. 

In the context of communicating user feedback, we argue that a 

feedback tool is information technology. The technology acceptance 

model (TAM) is one of the most utilized models in studying system 

usage (Davis et al. 1989). As indicated by the TAM, the perceived 

usefulness and ease of use of the feedback tool and its features might 

influence the intention of users toward using and finally the actual use 

of the feedback tool. Researchers have already shown that perceived 

ease of use and usefulness are factors that affect the intention to use a 

software system (Robert and Dennis 2005).  

Although MRT and TAM have been confirmed in several studies, some 

studies could not fully support these theories (Suh 1999) Dennis and 

Kinney (1998); (Turner et al. 2010). In this study, we will investigate 

whether and how the theories discussed are applicable for feedback 

media in the context of user feedback. 

3. Research Design 

     In this study we are inspired by media richness theory and 

technology acceptance models to design our study’s construct. 

However, there exist differences in the user feedback context compared 

to regular communication media such as e-mail. As examples of such 

differences in the user feedback communication context, the embedded 



 

 
  75 

  

feedback channel in software generally provides one-way feedback 

communication (i.e., from sender to receiver only). However, media 

richness theory defines communication as a bi-directional relation. 

Furthermore, feedback sender and receiver might not have a shared 

understanding of the receiver’s task (e.g., prioritizing feedback, code 

changes). However, media richness theory assumes that such shared 

understanding exists, and the individuals are generally aware of the 

task. Therefore, it is not clear whether the differences may introduce 

other constraints in the theory, but it would be interesting to discuss to 

what extent the results of the current study may support the media 

richness, as a lesson learned from this study. 

3.1. Research Objectives 
The aim of the research is to understand how feedback senders perceive 

the characteristics of a feedback feature belonging to a feedback 

channel embedded in a software application, and how the 

characteristics impact the use of the feedback channel. By 

characteristics we refer to special capabilities or attributes of a feedback 

feature that distinguish the feature from others. In this regard, we intend 

to measure how feedback senders perceived usefulness, ease of use, 

explaining a complicated situation, tailoring, transferring emotions of 

feedback features, and how they are familiar with giving feedback and 

the feedback feature itself. We also intend to investigate to what extent 

each factor impacts the intention of the feedback sender to use the 

feedback channel. 

We have investigated the following feedback features: text, rating, 

emoji, category, screenshot, audio recording, screen recording, and 

attachment. These feedback features are provided in industrial and 

research feedback tools or are requested feedback features, as shown 

in Section 2.1.  

3.2. Research Questions 
To achieve the research objectives, the following two research 

questions are studied: 

 



 

  

76 
Part 2: Gathering of User Feedback  
  

 

RQ1: How do feedback senders characterise various feedback features 

in an embedded feedback channel? 

RQ2: What is the relationship between the characteristics of a feedback 

feature and the use of its feedback channel? 

In RQ1, we investigate how feedback senders perceive the 

characteristics of different feedback features namely ease of use, 

usefulness, explaining a complicated situation, tailoring, transferring 

emotions and familiarity in an embedded feedback channel. In RQ2 we 

study whether the characteristics impact the use of a feedback channel. 

We will measure either a past use of a feedback feature or an intention 

to its future use. 

3.3. Research Method  
We conducted the research using a questionnaire-based survey method 

(Gideon 2012). We designed the research as follows: 

3.3.1. Research Conceptual Model 

In the first step, we designed a conceptual model to guide data collection 

and analysis. Figure 2-1 presents the conceptual model that we studied 

in this research and clarifies how we answer each research question. 

According to the model, we measured how feedback senders perceive 

the main characteristics of the feedback features and also investigated 

how the characteristics are related to the intention to use the feedback 

channel, in general. In the following, we explain how the conceptual 

model has been formed. 

We measured ease of use and usefulness of the feedback features. Both 

have shown to be influential characteristics on the use of a feature 

(Anandarajan et al. 2010). We defined ease of use for the respondents 

as the degree to which you believe that using the feedback feature would 

be free of physical and mental effort. We defined the usefulness as the 

degree to which you believe that using the feature would enhance your 

performance for providing the feedback as you intend. We investigated 

the effect of ease of use and usefulness characteristics on the intention of 

users to use the feedback channel. 



77

We also measured the capabilities of the feedback features for tailoring

and transferring emotions as influential factors on media richness. 

Tailoring is defined as the degree that the user can customise and 

personalise her feedback using the feedback feature. We defined 

transferring emotions as the degree that the user can express her feelings 

and the feedback receiver understands her feelings. Additionally, we 

measured the capability for explaining complicated situations as the 

effect of a rich media that contributes to the reduction of uncertainty 

and ambiguity of situations. Since perceived media richness affects the 

intention to use the media (as discussed in Section 2.2), we expect that 

the capability for explaining a complicated situation can also influence 

the intention to use the feedback channel. Furthermore, we measured 

familiarity, among other factors discussed in Section 2.2, that may 

influence media richness (Carlson and Zmud 1999). We also expect that 

experience affects the intention to use. Therefore, we investigated both 

relations in the conceptual model presented in Figure 2-1. 

We ignored two factors discussed in the media richness theory: 

multiplicity of cues and immediacy of feedback. Each feedback feature 

has already known cues, for example, audio recording can support voice 

inflection and text can only support written words. Therefore, we did 

not investigate the multiplicity of cues. We also ignored the immediacy 

of feedback, as we found it irrelevant to the context of a single feedback 

feature.

Figure 2-1. The study’s conceptual model



 

  

78 
Part 2: Gathering of User Feedback  
  

 

3.3.2. Respondents 

In order to achieve an adequate sample size to answer our research 

questions, we decided on 100 participants. We used an international 

public panel (http://www.consumerfieldwork.com/) to recruit 

respondents, who were already registered in the panel. It is important 

to notice that the panel invites paid respondents randomly. The panel 

claims to have a high response rate and high answering quality due to 

its active panel management and rigorous quality control.  

We decided that as selection criteria, the respondents should have a 

good level of English knowledge and should be comfortable with 

reading and writing in English. Furthermore, we defined that one sub-

group of respondents (a maximum of 25%) should have seen a feedback 

form before but should not have provided feedback yet. Likewise, 

another sub-group (a maximum of 25% of respondents) should not 

have seen a feedback form yet. This means that at least 50% of 

respondents should have already provided feedback with a feedback 

form. The reason for the selection was that we needed to measure the 

effect of familiarity of the respondents with giving feedback. However, 

we expected that the users who have already provided feedback could 

have a better reflection on the rest of the questions. This motivated us 

to collect more answers from experienced users.  

3.3.3. Data Collection Methods  

We designed the questionnaire and collected answers using 

QuestionPro (https://www.questionpro.com/), a survey platform that 

allows flexible designing of the questionnaire, maintaining data, and 

generating some reports. For data collection, we created a 

questionnaire with the aim of identifying the characteristics of feedback 

features that the respondents perceived (RQ1) and checking whether 

the characteristics impact their past or intention to use a feedback tool 

in future (RQ2). The questionnaire is available online at 

https://bit.ly/2Vyk6Wd.  

We started the questionnaire with a short introduction and two 

questions for qualifying the respondents with English proficiency (see 

selection criteria above). The questionnaire described the 

communication of feedback and the overall goal of the study for those 



 

 
  79 

  

participants who qualified with the language criteria. It asked a 

question whether the respondents have provided feedback in the past 

(see selection criteria above). Those who indicated that they had 

provided feedback in the past (i.e., familiarity with giving feedback), 

were asked to mention the frequency of providing feedback, the 

relevant feedback context as well as their motivations for giving 

feedback. Those who had seen a feedback form before but had not 

provided feedback with such a feedback form were asked to explain 

why not. 

In the next section of our questionnaire, we introduced an exemplary 

embedded feedback tool. As highlighted in Table 2-2, none of the 

existing embedded feedback tools supports all the feedback features 

under investigation. Thus, inspired by existing feedback tools and 

considering their design (e.g., wording, order of feedback features, 

layout), we created a mock-up that illustrated all the eight features 

under investigation. Figure 2-2 presents the sketch that included the 

following feedback features: free text input (A), star rating (B), selection 

of emojis (C), selection of text categories (D), taking and annotating a 

screenshot (E), recording of voice (F), screen recording (G) and upload 

of an attachment (H). With the help of that screen we wanted to ensure 

a shared and equal understanding of the feedback features descriptions 

and the related questions in the online questionnaire. 

We designed the next questions according to the conceptual model 

presented in Figure 2-1. We asked the respondents to state their level 

of agreements whether the example feedback form (presented in Figure 

2-2) in total and for each feedback feature separately is easy to use, 

useful and whether they would intend to use it. The level of agreement 

asked in several questions ranged: strongly agree (5), agree (4), neutral 

(3), disagree (2), strongly disagree (1), no idea (0). We asked the 

respondents to state the level of agreement about the capabilities of 

each feedback feature for explaining complicated situations, transferring 

emotions and tailoring. Meanwhile, in several open-ended questions, we 

asked participants for the motivation of their choices.  

We designed three scenarios that each explained a situation relevant to 

fixing bugs, requesting a new feature, and feature improvement 

respectively. The first scenario was about a messaging service where 

sometimes the characters were wrongly displayed with question marks 



 

  

80 
Part 2: Gathering of User Feedback  
  

 

and sometimes the search functionality did not properly work. The 

users were supposed to report the problems. The second scenario was 

about a video streaming service, and the feature about marking 

watched episodes was missing. The users should report the request for 

the new feature. The third scenario was about an online shop where the 

users were supposed to give feedback for improving the user interfaces. 

The respondents were asked to choose their preferred feedback 

features (at least one), given that they intend to give feedback about the 

situation. The respondents should provide the answers for two cases; 

either when they are using a smartphone or tablet without a mouse or 

keyboard or a PC or laptop with a mouse and keyboard. We also asked 

about the familiarity with the context of the scenarios.  

In the next to last section of the questionnaire, we asked the 

respondents to describe in their own words in which situation they 

would prefer to use each of the feedback features. Also, we requested 

them to mention any other feedback feature that they would like to use 

to communicate feedback. Then we asked about their preferences of 

giving feedback in two triggering situations; when the respondent 

triggers (i.e., push) or when the system triggers (i.e., pull) the feedback 

communication process. Finally, a few questions asked demographic 

information such as education and skills. 



81

Figure 2-2. Screenshots of a feedback channel shared in the questionnaire

3.3.4. Data Analysis Methods

Research questions were answered using quantitative and qualitative 

analysis of the answers to the questionnaire. We used descriptive 

analysis to statistically explain data quantitatively and used PLS-SEM 

(Partial Least Square-Structural Equation Modelling) analysis (Hair Jr 

et al. 2016) to statistically find the relationships discussed in the 

conceptual model (see Figure 2-1). We used an inductive content 

analysis (Elo and Kyngäs 2008) for analysing and coding the qualitative 

answers to the questions. 

The descriptive analysis and content analysis of respondents’ 

comments regarding the characteristics of feedback features could 

answer RQ1. The model that we captured using PLS-SEM could answer 

RQ2. 

Descriptive analysis: We performed descriptive analysis statistics, 

including Min, Max, Mean, and Standard Deviation. We also used 

Kruskal-Wallis H test and independent two samples t-test for comparing 



82Part 2: Gathering of User Feedback

two means. Using the non-parametric Kruskal-Wallis H test, we 

compared the mean given for the evaluation of feedback features across 

age groups and educational groups in order to study the effect of age on 

the choice of feedback features. We chose Kruskal-Wallis H test rather 

than one-way variance analysis (ANOVA) due to lack of homogeneity of 

the variances. We used the parametric t-test, due to normal 

distributions of samples, for comparing the sampling distribution of the 

differences between system-triggered and user-triggered approach. 

Kruskal-Wallis H and t-test were done at the significance level p<.05. We 

used the tool IBM SPSS Statistics version 26 for performing the analysis. 

PLS-SEM analysis: We created a PLS-SEM path model using SmartPLS 

software version 3.2.9. PLS-SEM is one of the second-generation 

statistical methods since the early 1990s that is commonly used in 

social science research (Hair et al. 2019). This is a multivariate analysis 

to model and relate the set of multiple dependent and independent 

variables. The literature recommends PLS-SEM modelling is well suited 

for validating exploratory models (Hair et al. 2019). Therefore, the 

analysis technique fits well to model the constructs that we discussed 

in Figure 2-1 and consequently answer RQ2. The PLS algorithm does a 

sequence of regressions in terms of weight vectors. The weight vectors 

are obtained iteratively to convergence or reaching the stop criterion. 

We prepared the first model in the Smart-PLS tool and ran the algorithm 

using the default setting of the tool (300 maximum iterations and the 

stop criteria of 7). The model shows the strength of the relations 

between indicators and their latent variable, called outer loadings. An 

outer loading represents the absolute contribution of the indicator to 

the definition of its latent variable. The model also shows the constructs 

and the strengths of their relations, with a coefficient value. We 

evaluated the generated path model following Hair et al. (2019)’s 

guideline and tuned the model correspondingly. We evaluated two 

steps; evaluation of the measurement model, and evaluation of the path 

structural model.

Evaluation of the measurement model: As the first activity of evaluating 

the measurement model, we removed the indicators with outer 

loadings below 0.4 and kept the indicators with the loadings above 0.7, 

as suggested by (Hair Jr et al. 2016). For the loadings between 0.4 and 

0.7, we conceptually evaluated the importance of each indicator for the 

construct. For example, we kept the indicator relevant to the usefulness 



83

of text in the model although its loading was 0.516. The reason was that 

literature could confirm the usefulness of text and many respondents 

qualitatively mentioned its usefulness in their answers to the 

questionnaire. We were inclusive unless we needed to improve average 

variance extracted (AVE). We evaluated AVE for each construct in the 

second step of the assessment of the measurement model. The step 

addresses the convergent validity to explain the extent to which the 

construct converges to explain the variance of its indicators. An 

acceptable AVE value is 0.50 or higher. The third step was assessing the 

internal consistency reliability, using the composite reliability measure. 

The values between 0.70 and 0.95 range from satisfactory to good. The 

fourth step is to evaluate discriminant validity. It is used to identify the 

extent to which the construct is distinct from other constructs. For this, 

we measured heterotrait-monotrait (HTMT). The measure has a 

threshold value of 0.90.

Evaluation of the structural model: As the first activity, we assessed 

collinearity of the constructed model using VIF (Variance Inflation 

Factor) measure to understand whether redundant indicators are used 

to measure two (or more) constructs, and therefore eliminate the 

redundant indicators. VIF of 5 and higher indicates a potential 

collinearity problem. Then we evaluated the explanatory power of the 

model using the most commonly used measure called R-square. R-

square measures the variance of an endogenous construct (i.e., the 

construct that is explained in the model) explained by all the linked 

exogenous constructs (i.e., constructs that explain other constructs) to 

identify if different exogenous constructs predict the same endogenous 

construct. The R-square value ranges from 0 to 1, with higher values 

indicating higher levels of accuracy. Finally, we measured the indirect 

effect to understand the relevance of other constructors, particularly in 

explaining the Use construct. Indirect effects show the relation that has 

at least one intervening construct.

Inductive content analysis: We performed initial coding of the 

answers to the open-ended questions by underlining all relevant terms 

to the capabilities of features and motivations for the use of the features. 

We grouped the initial codes to form final codes considering meaning 

relevancies, being synonyms or having similar stems. Then we created 

categories and assigned each quote to a category. We, the first and 



 

  

84 
Part 2: Gathering of User Feedback  
  

 

second authors, developed the categories independently, and decided 

the final categories in a joint meeting. In the last step, we summarize the 

capabilities of the feedback features based on the provided categories. 

4. Analysis and Results 

4.1. Demographic Information 
A number of 231 respondents started the questionnaire and 100 forms 

were completed. The rest did not pass the attention checking questions 

or stopped intentionally. The respondents completed the questionnaire 

in an average of 23 minutes ([18.21, 27.6] minutes, 95% confidence 

interval).  

Among the respondents, 77% evaluated their English proficiency as 

very good, 20% as good and 3% as acceptable. The respondents were 

aged between 18 to 74 years old; 18-34 (20%), 35-54 (52%), and 55-74 

(28%) years old. The distribution of respondents’ educational degrees 

was as follows: No university degree (26%), Associate/Bachelor degree 

(47%), Master/professional degree (23%), PhD (4%). 82% of the 

respondents did not have knowledge or experience related to designing, 

coding, testing, selling, supporting, managing software applications or 

conducting research within the given topics. Among the respondents, 

77% had already experienced providing feedback in an embedded 

channel, 12% had seen such feedback forms but have not provided any 

feedback and 11% had never seen such feedback forms. 

4.2. The Characteristics of Feedback Features in an 
Embedded Feedback Channel (Answer to RQ1) 

4.2.1. Quantitative Analysis 

Figure 2-3 shows the capabilities of the feedback features perceived by 

the respondents. The figure presents the extent to which the 

respondents perceive the capability of each feedback feature (i.e., text, 

rating, emoji, category, screenshot, audio recording, screen recording, 

and attachment) for explaining complicated situations, tailoring the 

feedback as they intend, and transferring emotions. The respondents 

evaluated the capabilities in the range of strongly agree (5) to strongly 

disagree (1); 0 refers to having no idea. The detailed descriptive 



 

 
  85 

  

analysis of their evaluation (Min, Max, Mean, Standard deviation) has 

been presented in Table 2-7 in Appendix. 

Feedback Characteristics Analysis: Respondents evaluated each 

feedback characteristics as follows:  

Usefulness. The results indicate that the respondents perceived text 

(93%) and rating (84%) as useful features.  

Ease of use. They also agreed (i.e., rated strongly agree and agree) that 

text (93%) and rating (82%) are easy to use. Emoji (80%) was also 

recognized as easy feedback. Familiarity. Most of the respondents were 

familiar with text (93%) and rating (95%), while most of them were 

unfamiliar with audio recording (62%) and screen recording (52%). 

Explaining a complicated situation. Most of the respondents disagree 

(rated disagree and strongly disagree) that rating (52%), emoji (69%) 

and category (42%) are good feedback features for explaining a 

complicated situation. 

Tailoring. The results indicate that text is perceived to be the best 

method for tailoring the feedback. 93% of respondents strongly agreed 

or agreed for the tailoring capability of text. Emoji is not a proper feature 

for tailoring, among others as only 35% of respondents rated it strongly 

agree and agree.  

Transferring emotions. Apart from text that was found good for 

transferring emotions (89%), emoji (81%), rating (60%) and audio 

(59%) were also perceived good. However, the respondents did not find 

that screen recording, and screenshot are suitable for transferring 

emotions, as only 25% and 26% of respondents rated them very good 

and good respectively. 

The results illustrated in Figure 2-3 show that overall text is perceived 

to be the most capable feedback feature among the others. Text 

feedback is a good approach for explaining a complicated situation, 

transferring emotions and tailoring the feedback. 93% of respondents 

agreed that text is good for tailoring feedback. The results surprisingly 

showed 94% and 89% of the respondents found text suitable 

respectively for explaining a complicated situation and transferring 



 

  

86 
Part 2: Gathering of User Feedback  
  

 

emotions. 93% of respondents were familiar with text and found it an 

easy and useful feedback feature. 

Scenario-wise Analysis: As discussed earlier, we defined three 

scenarios. For each scenario, we asked the respondents what feedback 

features they would use considering the device: i) a smartphone or 

tablet, ii) PC or laptop. We presented the results in Table 2-6 in 

Appendix. The results show that for all three scenarios, text feedback 

was the most preferred feedback feature (98%, 95%, and 90% in 

scenarios 1-3 respectively). Audio recording and screen recording were 

the least preferred feedback feature (43% and 45% for scenario 1). The 

results indicate that when the respondents would use a PC or laptop, 

they preferred giving text, screenshot, screen recording, and attachment 

feedback. However, on a smartphone or tablet, emoji and audio 

recording are the preferred features.  

Age-wise Analysis: The results suggest that there are no significant 

differences across categories of age for most of the feedback features. 

We categorized the respondents into three age groups: (1) 18-34, (2) 

35-54, and (3) 55-74 years old. As an example, the analysis for 

usefulness was as follows: (Kruskal-Wallis: H(text)=2.09, p=0.35; 

H(rating)=0.049, p=0.98; H(emoji)=0.504, p=0.78;  

H(screenshot)=0.420, p=0.811; H(audio recording)=1.045, p=0.59; 

H(screen recording)=0.795, p=0.67; H(attachment)=7.535, p=0.02). 

Attachment was the only feedback feature that the results suggest a 

significant difference in usefulness, explaining a complicated situation 

and transferring emotions. For example, the Mean (M) that respondents 

assigned for usefulness of attachments was differently valued (age group 

1: M=3.5; age group 2: M=3.48; age group 3: M=4.11). We could not find 

a plausible way to interpret the differences.  

Education-wise Analysis: The results suggest that there are no 

significant differences across categories of education for the feedback 

features. We categorized the respondents into five educational groups: 

(1) Less than a high school diploma, (2) high school degree or 

equivalent, (3) Associate degree/Bachelor degree (4) Master 

degree/Professional degree and (5) Doctorate. As an example, the 

analysis for usefulness was as follows: (Kruskal-Wallis: H(text)=2.396, 

p=0.66; H(rating)=6.707, p=0.15; H(emoji)=7.849, p=0.10; 



87

H(screenshot)=5.016, p=0.29; H(audio recording)=3.908, p=0.42; 

H(screen recording)=4.405, p=0.35; H(attachment)=3.901, p=0.42). 

Figure 2-3. Characteristics of Feedback Features (Respondents' rankings)



 

  

88 
Part 2: Gathering of User Feedback  
  

 

4.2.2. Qualitative Analysis 

The qualitative analysis of the respondents’ free text comments 

indicates how the respondents characterise the feedback features. 

During the analysis we categorised the answers of the respondents to 

the open-ended questions, and summarised them as follows, while 

providing examples of respondents' quotes. 

The answers show that respondents usually use text when they intend 

to explain a situation in detail. Many of the respondents stated that they 

use text in most situations because it is easy and flexible and can 

support giving fast feedback. One respondent reasoned using text 

because this feature has flexibility to report short statements, using just 

a few words.  

“This is my preferred form of feedback for most scenarios 
where I can easily explain the issue and also use my words 
to demonstrate how I feel (my emotions) if that is relevant 
to the feedback I am providing. I just feel that free text 
allows you to express yourself and take the time to do so, as 
I am doing now!” 

Several answers mentioned that the respondents use text feedback if 

they have a keyboard while giving feedback. 

“I will use text feedback when I have the possibility to use a 
keyboard.” 

The answers show that rating is used to share feelings and suitable for 

giving a generic evaluation of the application when there is no need for 

sharing detailed information. Rating is perceived to be easy and a quick 

way of communication. Some respondents mentioned that they use 

ratings only if they are extremely satisfied or dissatisfied. Some 

respondents mentioned that they do not use rating because it may 

convey vague information. One respondent would use rating only 

together with text feedback. Rating feature is preferred on smartphones 

(when a physical keyboard is not available to write text). 

“Where I am being asked to rate the suitability/efficiency of 
existing applications - an instinctive approach rather than 
measured.” 



 

 
  89 

  

“Only a rating without text is just enough when everything 
is perfect, and I want to give let's say '5 stars' to just show 
how happy I am with an app for example.” 

The answers show that emoji is evaluated similar to rating; suitable for 

sharing feelings and emotions, a quick and easy way of giving feedback. 

However, many respondents believe emojis is not professional and 

conveys more fun characteristics. They believe that emoji feedback is 

subjective, the mood of respondents may affect the emoji choices and 

could be difficult for feedback receivers to interpret them. 

“Don’t really use the feature as it is a bit unprofessional 
when contacting a company, [we] use only with friends.” 

The respondents provide category feedback to respond to the 

company's inquiries regarding the classification of feedback that the 

feedback receivers found useful for the product development. The 

respondents found the category feedback easy and quick to use. On 

smartphones, the respondents chose to use the category feedback. 

“It is a very good possibility to narrow down the issues for 
the correct support department.” 

The answers show that screenshot is used to provide evidence for better 

and clear explanation and illustration of technical issues visible on a 

screen such as a notification or error message, a user interface issue or 

an unknown behavior of the software. Screenshot was recognised as a 

better way of giving feedback than text, when the problem is 

complicated to explain while making a screenshot makes it 

understandable for the feedback receiver like the helpdesk. One 

respondent referred to the privacy issue to motivate why she does not 

use the feature. 

“I have only ever used this to show a technical problem with 
a website or to prove an action I carried out on a website 
which went wrong/or which is being disputed by the 
website.” 

 

 



 

  

90 
Part 2: Gathering of User Feedback  
  

 

4.3. Factors Affecting the Use of a Feedback Channel 
(Answer to RQ2) 

We modeled the relationship between the feedback characteristics and 

the use of the feedback channel using the PLS-SEM analysis. The model 

is based on the conceptual model presented in Figure 2-1 where we 

measured the characteristics of feedback features including usefulness 

(i.e., perceived usefulness), ease of use (i.e., perceived ease of use), 

familiarity (i.e., previous experience), explaining a complicated 

situation, tailoring and transferring emotions using the choice questions 

discussed in Section 3.3.3. We also measured usefulness, ease of use and 

familiarity of the feedback channel presented in the questionnaire.  

Figure 2-4 shows the structural equation model, where the circles 

present a construct and rectangles show the indicators of the construct 

(i.e., the variables that make the construct). The name of the constructs 

starts with a capital letter. The model conveys two sub-models; A 

structural model in the context of PLS-SEM represents the constructs 

and the relationships between the constructs; and a measurement model 

of the constructs displays the relationships between the constructs and 

the corresponding indicators. We defined the measurement model 

reflective (the arrows are from constructs to indicators) as we think 

that logically we also could replace the indicators in the model (e.g., to 

consider other feedback features).  

The number presented on an arrow between two constructs shows the 

coefficient level of the relation indicating the strength of the 

relationship between the two constructs. The coefficient level is 

between 0 to 1. The closer this value is to 1 the stronger the relationship 

is. This also means that the value close to 0 indicates no relationship. 

The number on an arrow between an indicator and a construct 

identifies the loading of the relation (i.e. called outer loading) to identify 

the indicators’ contribution to the construct or in other words this value 

indicates how the construct is reflecting on its indicators. Similarly, to 

the coefficient level, valid values for loading are also in the range of 01. 

Values below 0.3 indicate that the indicator has no absolute 

contribution to building its assigned construct, which normally is not 

considered in the model. Values between 0.4 and 0.7 still indicate a 

weaker contribution and here literature suggests discussing whether to 

keep the indicators or not. 



F
ig

u
re

 2
-4

.P
L

S-
SE

M
 p

a
th

 m
o

d
el

 o
f 

in
fl

u
en

ti
al

 f
ac

to
rs

 o
n

 U
se



  

T
ab

le
 2

-3
. E

va
lu

at
io

n
 o

f 
P

L
S

-S
E

M
 p

a
th

 m
o

d
el

 (
N

A
: N

o
t 

A
p

p
li

ca
b

le
) 

C
o

n
st

ru
ct

s 
  

In
d

ic
a

to
rs

 v
a

ri
a

b
le

s 
M

e
a

su
re

m
e

n
t 

M
o

d
e

l 
A

ss
es

sm
e

n
t 

S
tr

u
ct

u
ra

l 
M

o
d

e
l 

A
ss

e
ss

m
e

n
t 

  
C

o
n

v
e

rg
e

n
t 

v
a

li
d

it
y

 
In

te
rn

a
l 

co
n

si
st

e
n

cy
 

re
li

a
b

il
it

y
 

D
is

cr
im

in
a

n
t 

v
a

li
d

it
y

 
 

 
 

1
-L

o
ad

in
g 

(>
0

.7
0

8
) 

2
-A

V
E

 
(>

 0
.5

0
) 

3
-C

o
m

p
o

si
te

 
re

li
ab

il
it

y
 

(>
 0

.7
0

) 

4
-H

T
M

T
 

(<
0

.9
0

) 
1

-V
IF

 
(<

3
) 

2
-R

-s
q

u
ae

 
(0

<
 , 

<
1

 )
  

3
- 

T
o

ta
l 

in
d

ir
ec

t 
e

ff
ec

t 
(o

n
 U

se
) 

U
se

 
(i

n
te

n
ti

o
n

 t
o

 
u

se
) 

u
se

F
ee

d
b

ac
k

fo
rm

 
1

.0
0

0
 

N
A

 
N

A
 

Y
es

 
1

.0
0

0
 

0
.5

5
4

 
N

A
 

P
er

ce
iv

ed
 

u
se

fu
ln

es
s 

u
se

fu
le

n
ss

F
ee

d
b

ac
k

fo
rm

 
1

.0
0

0
 

N
A

 
N

A
 

Y
es

 
1

.0
0

0
 

0
.4

9
8

 
0

.0
0

0
 

P
er

ce
iv

ed
 

u
se

fu
ln

es
s 

fe
at

u
re

 

u
se

fu
ln

es
sT

ex
t 

u
se

fu
ln

es
sS

cr
ee

n
sh

o
t 

u
se

fu
ln

es
sA

u
d

io
R

ec
o

rd
in

g 
u

se
fu

ln
es

sS
cr

ee
n

R
ec

o
rd

in
g 

u
se

fu
ln

es
sA

tt
ac

h
m

en
t 

0
.5

1
6

 
0

.7
8

6
 

0
.7

2
5

 
0

.7
7

9
 

0
.7

2
5

 

0
.5

0
9

 
0

.8
3

5
 

Y
es

 

1
.0

8
7

7
 

1
.9

0
5

9
 

2
.9

3
9

2
 

2
.2

2
4

1
 

1
.5

6
0

9
 

N
A

 
0

.0
4

7
8

 

P
er

ce
iv

ed
 

ea
se

 o
f 

u
se

 
ea

si
n

es
sF

ee
d

b
ac

k
fo

rm
 

1
.0

0
0

 
N

A
 

N
A

 
Y

es
 

1
.0

0
0

 
0

.3
0

4
 

0
.2

7
2

 

P
er

ce
iv

ed
 

ea
se

 o
f 

u
se

 
fe

at
u

re
 

 ea
si

n
es

sT
ex

t 
ea

si
n

es
sR

at
in

g 
ea

si
n

es
sE

m
o

ji
 

ea
si

n
es

sC
at

eg
o

ry
 

ea
si

n
es

sA
tt

ac
h

m
en

t 
  

0
.7

9
2

 
0

.8
0

0
 

0
.6

6
9

 
0

6
6

9
 

0
.6

3
6

 

0
.5

1
3

 
0

.8
3

9
 

Y
es

 

1
.8

3
5

8
 

1
.5

0
2

5
 

1
.6

3
5

1
 

1
.4

3
4

9
 

N
A

 
0

.2
8

8
 

F
am

il
ia

ri
ty

 
fa

m
il

ia
ri

ty
W

it
h

G
iv

in
gF

ee
d

b
ac

k
 

fr
eq

u
en

cy
G

iv
in

gF
ee

d
b

ac
k

 
0

.9
3

6
 

0
.9

3
7

 
0

.8
7

7
 

0
.9

3
5

 
Y

es
 

 2
.3

1
8

5
 

2
.3

1
8

5
 

 
0

.1
7

1
 

0
.0

1
6

 



   
 

C
o

n
st

ru
ct

s 
  

In
d

ic
a

to
rs

 v
a

ri
a

b
le

s 
M

e
a

su
re

m
e

n
t 

M
o

d
e

l 
A

ss
es

sm
e

n
t 

S
tr

u
ct

u
ra

l 
M

o
d

e
l 

A
ss

e
ss

m
e

n
t 

  
C

o
n

v
e

rg
e

n
t 

v
a

li
d

it
y

 
In

te
rn

a
l 

co
n

si
st

e
n

cy
 

re
li

a
b

il
it

y
 

D
is

cr
im

in
a

n
t 

v
a

li
d

it
y

 
 

 
 

1
-L

o
ad

in
g 

(>
0

.7
0

8
) 

2
-A

V
E

 
(>

 0
.5

0
) 

3
-C

o
m

p
o

si
te

 
re

li
ab

il
it

y
 

(>
 0

.7
0

) 

4
-H

T
M

T
 

(<
0

.9
0

) 
1

-V
IF

 
(<

3
) 

2
-R

-s
q

u
ae

 
(0

<
 , 

<
1

 )
  

3
- 

T
o

ta
l 

in
d

ir
ec

t 
e

ff
ec

t 
(o

n
 U

se
) 

F
am

il
ia

ri
ty

 
fe

at
u

re
 

fa
m

il
ia

ri
ty

T
ex

t 
fa

m
il

ia
ri

ty
R

at
in

g 
fa

m
il

ia
ri

ty
C

at
eg

o
ry

 

0
.9

2
1

 
0

.8
9

0
 

0
.4

6
7

 
0

.6
2

0
 

0
.8

2
0

 
Y

es
 

1
.9

5
3

8
 

1
.7

5
0

7
 

1
.2

1
3

9
 

N
A

 
0

.1
1

7
 

E
xp

la
in

in
g 

a
 

co
m

p
li

ca
te

d
 

si
tu

at
io

n
 

co
m

p
le

xi
ty

Sc
re

en
sh

o
t 

co
m

p
le

xi
ty

A
u

d
io

R
ec

o
rd

in
g

 
co

m
p

le
xi

ty
Sc

re
en

R
ec

o
rd

in
g 

co
m

p
le

xi
ty

A
tt

ac
h

m
en

t 

0
.7

5
6

 
0

.6
2

0
 

0
.8

0
3

 
0

.8
1

6
 

0
.5

6
7

 
0

.8
3

8
 

Y
es

 

1
.6

1
0

0
 

1
.2

0
3

0
 

1
.6

5
6

4
 

1
.6

1
5

3
 

0
.5

6
7

 
0

.0
0

0
 

T
ai

lo
ri

n
g

 

ta
il

o
ri

n
gS

cr
ee

n
sh

o
t 

ta
il

o
ri

n
gA

u
d

io
R

ec
o

rd
in

g 
ta

il
o

ri
n

gS
cr

ee
R

ec
o

rd
in

g 
ta

il
o

ri
n

gA
tt

ac
h

m
en

t 
 

0
.7

9
7

 
0

.6
7

0
 

0
.8

8
6

 
0

.7
9

6
 

0
.6

2
5

 
0

.8
6

9
 

Y
es

 

1
.7

6
2

9
 

2
.3

0
4

5
 

1
.3

6
6

2
 

1
.6

5
2

5
 

N
A

 
0

.0
9

8
 

T
ra

n
sf

e
rr

in
g

em
o

ti
o

n
s 

em
o

ti
o

n
sA

u
d

io
R

ec
o

rd
in

g
 

em
o

ti
o

n
sA

tt
ac

h
m

e
n

t 
0

.8
5

8
 

0
.7

6
0

 
0

.6
5

7
 

0
.7

9
2

 
Y

es
 

1
.1

1
2

7
 

1
.1

1
2

7
 

N
A

 
0

.0
0

8
 



 

  94 

 

All values higher than 0.7 indicate a strong contribution of an 

indicator to building its assigned construct and therefore keeping the 

indicator in the model.  

According to the model presented in Figure 2-4 the constructs 

Usefulness, Ease of use, and Familiarity show acceptable value for the 

relationships with Use construct. While the constructs Explaining a 

complicated situation and Transferring emotion have weak 

relationships with Use. The construct Tailoring could not establish a 

relationship with Use while showing a strong relationship with the 

construct Explaining a complicated situation. The relations between 

indicators and constructs reveal that particular feedback features 

are stronger in some characteristics than the others. As discussed 

above, the relations are called outer loading and simply referred to 

as loading in this report. The results show that text, screenshot, audio 

recording, screen recording, and attachment all contribute to the 

construct Perceived usefulness feature, and we interpret that 

respondents have perceived these features more useful rather than 

the others. Also, text, rating, emoji, category and attachment 

contributes to the Perceived ease of use, meaning that these features 

are perceived to be easy to use. The feedback features attachment, 

audio recording, video recording and screenshot contributes to 

constructs Tailoring feedback and Explaining a complicated situation 

referring that the features are more capable in explaining a complex 

situation and tailoring, while audio recording and attachment could 

relate more to transferring emotion capability. Text, rating, category 

were recognised as the feedback feature, which the users are more 

familiar with. 

The evaluation results of our PLS-SEM model are satisfying. Table 2-

3 shows the evaluation results. The evaluation for composite 

reliability (between 0.79 and 0.93) showed that the measurement 

has a good reliability level. We could not detect any collinearity 

problem, as the VIF values all were lower than 0.3. So, we could not 

detect redundant indicators in the constructs. R-square of Use 

(0.554), Perceived usefulness (0.498), Explaining a complicated 

situation (0.553), can be considered as high values, also considering 

that (user) behaviour measurements cannot be accurate (Hair Jr et 

al. 2016). The results show the R-square values of perceived ease of 

use (0.304) and familiarity (0.170) are lower than the other R-square 



 

 
95 

values. This means that these factors explain less variance in Use than 

other factors investigated. But indirect effect analysis confirms that 

most characteristics of features including its perceived ease of use and 

familiarity indirectly effect on Use. In this analysis we could also find 

a relation (0.364) for perceived ease of user to perceived usefulness, 

meaning that the easiness of a feedback feature affects its perceived 

usefulness. 

 

4.4. User-triggered vs System-triggered Feedback 
We asked respondents to choose the likelihood that they provide 

feedback if they have feedback to share in the following two 

approaches: 

i) User-triggered approach (i.e., push); the feedback senders press 

for example a button labelled feedback and ii) System-triggered 

approach (i.e., pull); the feedback senders give feedback when the 

system pops up a feedback form automatically to ask for feedback.  

The level of likelihood ranged: almost always (5), usually (4), 

occasionally not (3), usually not (2), almost never (1).  

The results as presented in Figure 2-5 show that the likelihood users 

trigger the feedback form to give feedback is slightly higher (48%) in 

comparison to when the system triggers feedback form and the users 

provide feedback (38%). However, more users occasionally give 

feedback in system-triggered approach (43%) in comparison to a 

user-triggered approach (30%). Also, the likelihood that the users 

usually do not give feedback in a system-triggered approach is 

slightly lower (19%) than the user triggered approach (22%).  



96Part 2: Gathering of User Feedback

Figure 2-5. User-triggered vs system-triggered feedback

The outcome of the independent t-test shows that on average, 

respondents indicated a greater likelihood to provide feedback given 

a user triggered approach (M=3.37, SD=1.04) than given a system 

triggered approach (M=3.29, SD=0.99). This difference was not 

significant (t(99)=0.56, p=.58). 

We found that (i) one third of respondents (38%) indicated the same 

likelihood that they provide feedback given a user or system 

triggered approach, (ii) one third of respondents (30%) indicated a 

higher likelihood for a system triggered approach compared to user 

triggering (mean average of deviation: +1.57), and (iii) one third of 

respondents (32%) indicated a lower likelihood for system 

triggering compared to user triggering (mean average of deviation:

-1.72). 

Figure 2-6 shows the crossed frequencies of likelihoods for both 

triggering approaches. For ten respondents who would almost never

or usually not provide feedback in a user triggered approach a 

system-triggering approach would increase their likelihood to 

provide feedback up to usually or almost ever. For 12 respondents 

who would usually or almost always provide their feedback in a user-

triggered approach, their likelihood would decrease to almost never

or usually not.



97

Figure 2-6. Comparison likelihoods for user-triggered vs. system-triggered 
feedback

5. Discussion

5.1. Implications
The path model analysis (PLS-SEM) of feedback characteristics, 

summarised in Table 2-4, revealed that perceived usefulness of a 

feedback channel has the strongest relationship with an intention to

use the feedback channel. When a feedback channel is perceived to 

be easy to use, on one side it will have a positive influence on 

perceived usefulness and on the other side on use. Therefore, ease of 

use directly and indirectly would improve the intentions to use the 

feedback channel, which hopefully leads to its actual use. Familiarity

with the feedback features reflects on familiarity with giving feedback 

and frequency of giving feedback. Our result could support the effect 

of familiarity on the use of a feedback channel that (Schmitz and Fulk 

1991) has already shown. The findings imply that companies need to 

consider courses of action (e.g., tutorials) to make their users 

familiar with the feedback features, engage them to give feedback 

that could start with simple feedback that only uses one or two 

feedback features. The familiarity will probably impact the perceived 



 

  

98 
Part 2: Gathering of User Feedback  
  

 

ease of use and consequently improve perceived usefulness, ultimately 

leading to more use of the feedback channel. 

Reflecting on our conceptual model the findings confirm that the 

technology acceptance model (Davis et al. 1989) is applicable to the 

context of user feedback, however, confirmation of media richness 

theory needs further investigation in the context of user feedback. 

Among the factors chosen to measure media richness, transferring 

emotions and familiarity have rather weak relationships with 

explaining a complicated situation, which is also weakly related to use 

of the feedback channel. It implies that either the feedback context 

does not have conformity with the principles of media richness 

theory, or we are missing some other factors for measuring 

explaining complicated situations. Or a rich feedback feature may 

show itself in other factors than explaining a complicated situation. 

 

Table 2-4. Summary of results PLS-SEM 

Constructs Coefficient Support Theory 

relevance 

Perceived usefulness → Use 0.412 Supported technology 

acceptance 

model (TAM) Perceived ease of use →Use 0.249 Supported 

Explaining a complicated situation 

→ Use 

0.138 Supported 

Weakly  

media 

richness 

theory (MRT) 

 Tailoring → Explaining a 

complicated situation 

0.711 Supported 

Expressing emotions → Explaining a 

complicated situation 

0.058 Supported 

Weakly 

Familiarity → Explaining a 

complicated situation 

0.113 Supported 

Weakly 

Familiarity → Use 0.268 Supported 

 

Table 2-5 summarises the strengths and limitations of feedback 

features for each feedback characteristic discussed in this paper. 



 

 
99 

Loading represents the absolute contribution of feedback features to 

the definition of the feedback characteristics and Mean shows the 

average ranking of users for the characteristic. The green boxes show 

the strength and the red boxes show the limitation of each feedback 

feature. The grey boxes represent the inconsistencies between the 

user ranking of a particular feedback feature for a particular 

characteristic and its contribution to using a feedback tool. We 

cannot have a proper judgement on this group of data, to categorise 

as strengths or limitations. 

We believe the a success for use of feedback features is to match their 

capabilities to the users' needs for sharing their feedback. Therefore, 

a feedback channel that includes several feedback features could be 

a solution, rather than including only one feature or a small set of 

features for users to give their feedback. For example, except 

attachment, those feedback features which are perceived to be easy 

to use, are not good in explaining a complicated situation. This gives 

the opportunity for users to switch between the feedback features 

depending on the issue that they need to communicate. However, 

what we still do not know is about how users choose when it comes 

to trade-off between the characteristics. In the above example, we do 

not know if the users intend to explain a complicated situation, 

whether they choose the feedback features that have the better 

capability for their explanation or the ones that are easier to use.  

The analysis of triggering approaches showed that the likelihood that 

the users give no feedback in a system-triggered approach is quite 

low but the same as in a user-triggered approach, given that the users 

are already aware of a feedback issue to communicate. This implies 

that companies can indeed request user feedback from their users as 

the chance that users will provide their feedback is quite high. 

However, the companies may not need to request those users who 

have the habit of giving feedback, otherwise the users likely reject 

their requests. We believe the requesting feedback from users with a 

simple feedback form is a useful approach for motivating more users 

to provide feedback. However, the request should not disturb users, 

although the disturbance has a negligible impact on users’ quality of 

experience (Fotrousi et al. 2018).   

  



T
ab

le
 2

-5
.S

tr
e

n
gt

h
 a

n
d

 li
m

it
at

io
n

 o
f 

fe
ed

b
ac

k
 fe

at
u

re
s*

U
se

fu
ln

e
ss

E
a

sy
 t

o
 u

se
F

a
m

il
ia

ri
ty

E
x

p
la

in
in

g
 

co
m

p
li

ca
te

d
 

si
tu

a
ti

o
n

T
a

il
o

ri
n

g
T

ra
n

sf
e

rr
in

g
 

e
m

o
ti

o
n

s

L
o

ad
in

g
M

ea
n

L
o

ad
in

g
M

ea
n

L
o

ad
in

g
M

ea
n

L
o

ad
in

g
M

ea
n

L
o

ad
in

g
M

ea
n

L
o

ad
in

g
M

ea
n

 

T
e

x
t

0
.5

1
6

4
.5

8
0

.7
9

2
4

.5
1

0
.9

2
1

4
.5

0
-

4
.5

8
-

4
.6

0
-

4
.3

3

R
a

ti
n

g
-

2
.6

5
0

.8
0

0
4

.5
8

0
.8

9
0

4
.5

9
-

2
.6

5
-

3
.6

9
-

3
.5

6

E
m

o
ji

-
2

.1
5

0
.6

6
9

4
.2

2
-

3
.3

9
-

2
.1

5
-

3
.0

6
-

4
.2

0

C
a

te
g

o
ry

-
2

.7
4

0
.6

6
9

4
.0

7
0

.4
6

7
3

.9
3

-
2

.7
4

-
3

.0
6

-
2

.9
3

S
cr

e
e

n
sh

o
t

0
.7

8
6

3
.1

8
-

3
.6

4
-

3
.2

0
0

.7
6

1
3

.1
8

0
.7

9
1

3
.5

3
-

2
.5

5

A
u

d
io

 

R
e

co
rd

in
g

0
.7

2
5

3
.8

3
-

2
.9

5
-

2
.2

8
0

.6
1

1
3

.8
3

0
.6

6
9

3
.2

2
0

.7
9

7
3

.6
0

S
cr

e
e

n
 

R
e

co
rd

in
g

0
.7

7
9

3
.3

3
-

2
.9

7
-

2
.2

9
0

.8
0

4
3

.3
3

0
.8

8
4

3
.1

3
-

2
.6

1

A
tt

a
ch

m
e

n
t

0
.7

2
5

3
.6

9
0

.6
3

6
3

.8
4

-
3

.4
9

0
.8

1
9

3
.6

9
0

.8
0

4
3

.5
7

0
.8

2
6

2
.9

5

*:
 g

re
en

: s
tr

en
gt

h
s,

 y
el

lo
w

: w
ea

k
n

es
se

s,
 g

re
y:

 in
co

n
cl

u
si

ve



 

  101 

 

In general, the study contributes to guiding practitioners and researchers 
to design an embedded feedback channel while improving its use. We 
suggest companies consider triggering approaches for collecting user 
feedback; A feedback form that has multiple feedback features, where the 
users trigger the form by pushing the feedback button, and a simple 
feedback form adjusted to the context of the recent use. Having the two 
approaches enable the users who have the habit of giving feedback to give 
the feedback when intended, and motivates the users, who do not have 
the habit, to communicate their feedback just after experiencing it. 

5.2. Validity and Reliability  
In this section, we evaluated the study to ensure that the survey 

instrument is measuring what we intended (validity), and the 

conclusions are reliable (reliability). We also added External validity 

as we think generalisation is an important aspect to discuss. We 

categorised the evaluation as (Kitchenham and Pfleeger 2008) 

defined. 

Content validity: The validity concerns appropriateness of the 

instruments. To check whether the questions are understandable, 

the third author who was not involved in designing the instrument 

reviewed the questionnaire. Then we organised a pilot study where 

seven respondents answered the questionnaire. The respondents 

were non-professionals and professionals in software engineering 

research and practice. We received feedback about 

understandability of the questions in a meeting, or via written and 

audio messages. We analysed the collected data to assure that the 

questions are answerable. We updated the questionnaire 

accordingly. 

We used a panel to recruit the respondents. Although a survey with 

public panels could introduce some threats (Oppenheimer et al. 

2009), we considered them while designing the questionnaire 

instrument. We introduced control questions for checking the 

English skills of the respondents and three trap questions. The trap 

questions are not easily detectable among other questions and asked 

respondents a particular choice (i.e., Please choose Neutral). When 

the respondents chose the wrong option, the survey was terminated. 

Two trap questions were in the middle of the questionnaire and one 

at the end. The trap questions allowed us to exclude the inattentive 



102Part 2: Gathering of User Feedback

respondents who did not focus on giving their answers. 

Furthermore, the panel claimed to have a rigorous quality control 

procedure. The respondents of the panel receive only a few 

invitations per month and also much better incentive per survey. As 

the panel promised, the panel filtered bad respondents after each 

survey they participated. The respondents mostly have learned to 

become good respondents and answer thoroughly as the panel 

silently blocks the respondents over time if they are not good.

Criterion validity: The validity concerns the ability of the 

instrument to distinguish respondents for different groups. The 

respondents belong to groups of different ages, education, and 

proficiency. We did not provide a filter while inviting the 

participants. Instead, we assured that the invitations introduced 

randomness to allow us to use analysis methods that require 

randomness. However, we classified the answers during the analysis.

Construct validity: The validity concerns the extent to which the

instrument measures the construct it is designed to measure. We 

prepared a conceptual model based on TAM and MRT theories and 

used the model to test data in PLS-SEM analysis. We collected 

sufficient samples (i.e., 100 answers to the questionnaire) for the

PLS-SEM analysis. The sample size should be at least ten times the 

largest number of arrowheads (indicators) at anywhere in the PLS 

path model (Barclay, Higgins, & Thompson, 1995). As we presented 

in Section 4.3, the largest indicator group used to measure a single 

construct is 4 now. Therefore 100 samples collected in the study are 

appropriate.

External validity: This concerns the extent to which the results of a 
study can be generalised for other studies. The population of the study 
was public mainly from the UK, Austria, and Germany. We categorised 
the responses based on different age and education. Despite the lack of 
homogeneity for some groups of samples (e.g., 52% of our sample aged 
from 35 to 54), our analysis could not detect any significant differences 
between groups. Therefore, we can generalise our results within the 
samples collected from these countries. People from other countries 
might have different cultures or attitudes toward using a feedback form. 
For example, emoji was not well received by the respondents and one 
even called the Emojis childish. Data from all around the word is needed 
to generalise this



 

 
103 

Inter-observer reliability: A threat to reliability is a biased 

observer during analysis. For the qualitative analysis, the first and 

second authors independently coded open-ended questions and 

interpreted the results. Then in a joint meeting discussed the 

conflicts and concluded the findings.  

5.3. Limitations and Future work 
In this study, we focused on known feedback features of embedded 

feedback tools; however, there are also other types of features, 

including video conferencing and screen sharing. Research can 

replicate this study and extend it for other feedback features and 

populations from other countries, particularly Non-EU citizens. 

Furthermore, this study focused on the characteristics of feedback 

features, but we did not study how the combination of different 

feedback features can be perceived, which can be studied in future. 

This study addresses the characteristics of feedback features from 

the feedback sender perspective. It is worthwhile to explore how the 

characteristics that impact the quality of information communicated 

are perceived and evaluated by feedback receivers. We collected a 

few data about combined feedback features, but our overall 

approach was to investigate the feedback features separately. This 

study can be extended in future to investigate how the combination 

of user feedback features influence the use of feedback features and 

consequently, the use of feedback tools. 

The study was limited to just three scenarios evaluated in the survey. 

Future studies can extend the scenarios and consider other contexts. 

Environmental factors like walking, having people around might also 

be candidates for future investigations.  

6. Conclusion  

In the context of software evolution, the provision of a suitable 
feedback channel for users is crucial to allow them to communicate 
their feedback as they need. However, little is known about the 
characteristics of the feedback features in an embedded feedback 
channel and how the characteristics relate to using the features. In 
this study, we aimed to understand i) the characteristics of feedback 



104Part 2: Gathering of User Feedback

features in an embedded feedback tool, ii) whether the 
characteristics impact the use of feedback features, and iii) 
strengths and limitations of feedback features. To achieve the aims, 
we surveyed 100 public respondents. We chose six factors for 
evaluating feedback features by inspiration from technology 
acceptance model and media richness theory, namely usefulness, 
ease of use, familiarity level of users with the feedback feature and 
giving feedback in addition to capabilities for explaining a 
complicated situation, tailoring feedback, and transferring 
emotions. In total, we selected eight feedback features 
including text, rating, emoji, category, screenshot, audio 
recording, screen recording, and attachment, in which the 
respondents of the survey in the role of feedback senders evaluated 
them. The results confirmed that perceived usefulness, ease of use, 
and familiarity (e.g., with giving feedback, and with feedback 
features) are essential factors affecting the use of a feedback 
channel. Although the study could confirm text is the most 
preferred feedback feature, there are other feedback features such 
as screenshot, and audio recording that have more influential 
contributions on explaining a complicated 
situation and tailoring the feedback to the needs. Overall, the study 
suggests providing feedback forms with multiple feedback features
to allow users when they push the feedback button to be able to 
choose among the features based on their preferences and needs. 
As a complementary approach, we also suggest companies design 
simple feedback forms (with limited feedback features such as text 
and rating), customised based on the situations that the users just 
experienced, and then use the form to request users for feedback. 
We expect that this approach would engage those users that do not 
have a habit of giving feedback.

Acknowledgements

This research has been conducted within SUPERSEDE project funded 

by the European Union’s ICT 2014 under grant agreement no 644



 

 
105 

Appendix 
Table 2-6. Use of feedback tools in different device 

 Smart phone use 
/PC use /no use 

Scenario 1 Scenario 2  Scenario 3 

Text Smart Phone 63 64 64 
PC 77 78 74 

total intention to 
use 

98 95 90 

No use  2 5 10 
Rating Smart Phone 51 46 32 

PC 48 45 41 
total intention to 

use 
68 65 57 

No use  32 35 43 
Emoji Smart Phone 47 39 27 

PC 27 27 20 
total intention to 

use 
56 50 38 

No use  44 50 62 
Category Smart Phone 40 35 36 

PC 58 55 49 
total intention to 

use 
70 65 62 

No use  30 35 38 
Screenshot Smart Phone 45 33 35 

PC 64 50 43 
total intention to 

use 
82 64 60 

No use  18 36 40 
Audio 

recording 
Smart Phone 35 26 24 

PC 19 23 21 
total intention to 

use 
43  40 35 

No use  57 60 65 
Screen 

recording 
Smart Phone 22 22 23 

PC 31 27 29 
total intention to 

use 
45 41 41 

No use  55 59 59 
Attachmen

t 
Smart Phone 20 17 21 

PC 55 43 36 
total intention to 

use 
64 42 47 

No use  36 48 53 

 



  

T
ab

le
 2

-7
. D

es
cr

ip
ti

ve
 r

es
u

lt
s 

fo
r 

a
n

al
ys

is
 o

f 
fe

ed
b

ac
k

 c
h

ar
ac

te
ri

st
ic

s 

E
xp

la
in

in
g 

co
m

p
li

ca
te

d
 s

it
u

at
io

n
s 

 
M

in
 

M
ax

 
M

ea
n

 
St

d
. D

ev
ia

ti
o

n
 

Te
xt

 
1

 
5

 
4

.5
8

 
.7

1
3

 

R
at

in
g 

1
 

5
 

2
.6

5
 

1
.4

0
3

 

Em
o

ji
 

1
 

5
 

2
.1

5
 

1
.2

9
0

 

C
at

eg
o

ry
 

0
 

5
 

2
.7

4
 

1
.1

9
4

 

Sc
re

en
sh

o
t 

0
 

5
 

3
.1

8
 

1
.2

5
8

 

A
u

d
io

 
re

co
rd

in
g

 
0

 
5

 
3

.8
3

 
1

.1
8

1
 

Sc
re

en
 

re
co

rd
in

g
 

0
 

5
 

3
.3

3
 

1
.3

1
9

 

A
tt

ac
h

m
en

t 
0

 
5

 
3

.6
9

 
1

.2
7

7
 

V
al

id
 N

  
10

0
 

 

T
ai

lo
ri

n
g

 
 

 
M

in
 

M
ax

 
M

ea
n

 
St

d
. D

ev
ia

ti
o

n
 

Te
xt

 
3

 
5

 
4

.6
0

 
.6

2
0

 

R
at

in
g 

1
 

5
 

3
.6

9
 

1
.1

3
4

 

Em
o

ji
 

0
 

5
 

3
.0

6
 

1
.2

8
6

 

C
at

eg
o

ry
 

0
 

5
 

3
.5

6
 

1
.1

1
3

 

Sc
re

en
sh

o
t 

0
 

5
 

3
.5

3
 

1
.2

2
6

 

A
u

d
io

 
re

co
rd

in
g

 
0

 
5

 
3

.2
2

 
1

.3
5

3
 

Sc
re

en
 

re
co

rd
in

g
 

0
 

5
 

3
.1

3
 

1
.3

3
8

 

A
tt

ac
h

m
en

t 
0

 
5

 
3

.5
7

 
1

.2
6

5
 

V
al

id
 N

 
1

0
0

 
 

 T
ra

n
sf

e
rr

in
g 

E
m

o
ti

o
n

s 
 

M
in

 
M

ax
 

M
ea

n
 

St
d

. D
ev

ia
ti

o
n

 

Te
xt

 
2

 
5

 
4

.3
3

 
.6

9
7

 

R
at

in
g 

1
 

5
 

3
.5

6
 

1
.1

7
5

 

Em
o

ji
 

1
 

5
 

4
.2

0
 

1
.0

1
5

 

C
at

eg
o

ry
 

0
 

5
 

2
.9

3
 

1
.2

6
5

 

Sc
re

en
sh

o
t 

0
 

5
 

2
.5

5
 

1
.3

4
4

 

A
u

d
io

 
re

co
rd

in
g

 
0

 
5

 
3

.6
0

 
1

.2
9

5
 

Sc
re

en
 

re
co

rd
in

g
 

0
 

5
 

2
.6

1
 

1
.3

7
0

 

A
tt

ac
h

m
en

t 
0

 
5

 
2

.9
5

 
1

.2
8

2
 

V
al

id
 N

  
1

0
0

 
 

 F
am

il
ia

ri
ty

 
 

M
in

 
M

ax
 

M
ea

n
 

St
d

. D
ev

ia
ti

o
n

 

Te
xt

 
1

 
5

 
4

.5
0

 
.7

8
5

 

R
at

in
g 

1
 

5
 

4
.5

9
 

.6
9

8
 

Em
o

ji
 

0
 

5
 

3
.3

9
 

1
.3

1
7

 

C
at

eg
o

ry
 

1
 

5
 

3
.9

3
 

1
.0

2
7

 

Sc
re

en
sh

o
t 

0
 

5
 

3
.2

0
 

1
.4

4
3

 

A
u

d
io

 
re

co
rd

in
g

 
0

 
5

 
2

.2
8

 
1

.3
6

4
 

Sc
re

en
 

re
co

rd
in

g
 

0
 

5
 

2
.2

9
 

1
.3

8
7

 

A
tt

ac
h

m
en

t 
1

 
5

 
3

.4
9

 
1

.2
1

0
 

V
al

id
 N

 
1

0
0

 
 

   

   



  
1

0
7

 

P
er

ce
iv

ed
 U

se
fu

ln
es

s 
 

M
in

 
M

ax
 

M
ea

n
 

St
d

. D
ev

ia
ti

o
n

 

Te
xt

 
2

 
5

 
4

.5
4

 
.7

1
7

 

R
at

in
g 

2
 

5
 

4
.3

2
 

.8
1

5
 

Em
o

ji
 

1
 

5
 

3
.3

9
 

1
.3

4
8

 

C
at

eg
o

ry
 

0
 

5
 

3
.8

7
 

1
.0

7
9

 

Sc
re

en
sh

o
t 

0
 

5
 

3
.6

6
 

1
.2

4
1

 

A
u

d
io

 
re

co
rd

in
g

 
0

 
5

 
2

.9
9

 
1

.3
9

6
 

Sc
re

en
 

re
co

rd
in

g
 

0
 

5
 

3
.1

1
 

1
.3

2
5

 

A
tt

ac
h

m
en

t 
0

 
5

 
3

.6
6

 
1

.2
0

8
 

V
al

id
 N

  
1

0
0

 
 

P
er

ce
iv

ed
 E

as
in

es
s 

 
M

in
 

M
ax

 
M

ea
n

 
St

. D
ev

ia
ti

o
n

 

Te
xt

 
2

 
5

 
4

.5
1

 
.7

1
8

 

R
at

in
g 

2
 

5
 

4
.5

8
 

.6
9

9
 

Em
o

ji
 

0
 

5
 

4
.2

2
 

1
.0

2
1

 

C
at

eg
o

ry
 

0
 

5
 

4
.0

7
 

1
.0

4
7

 

Sc
re

en
sh

o
t 

0
 

5
 

3
.6

4
 

1
.2

6
7

 

A
u

d
io

 
re

co
rd

in
g

 
0

 
5

 
2

.9
5

 
1

.3
1

3
 

Sc
re

en
 

re
co

rd
in

g
 

0
 

5
 

2
.9

7
 

1
.4

2
5

 

A
tt

ac
h

m
en

t 
0

 
5

 
3

.8
4

 
1

.1
5

2
 

V
al

id
 N

 
1

0
0

 
 

   
 



 

  108 

 

 

  



 

  
 

109 

 

 

 

 

Chapter 3 :  The Effect of Requests for User 
Feedback on Quality of Experience 

 

 [The chapter is based on: F. Fotrousi, S. Fricker, M. Fiedler (2018). 

“The effect of Requests for User Feedback on Quality of Experience”, 

Software Quality Journal, 26(2), 385-415. 

https://doi.org/10.1007/s11219-017-9373-7] 

Abstract 

Companies are interested in knowing how users experience and 

perceive their products. Quality of Experience (QoE) is a 

measurement that is used to assess the degree of delight or 

annoyance in experiencing a software product. To assess QoE, we 

have used a feedback tool integrated into a software product to ask 

users about their QoE ratings and to obtain information about their 

rationales for good or bad QoEs. It is known that requests for 

feedback may disturb users; however, little is known about the 

subjective reasoning behind this disturbance or about whether this 

disturbance negatively affects the QoE of the software product for 

which the feedback is sought. In this paper, we present a mixed 

qualitative-quantitative study with 35 subjects that explores the 

relationship between feedback requests and QoE. The subjects 

experienced a requirement-modelling mobile product, which was 

integrated with a feedback tool. During and at the end of the 

experience, we collected the users’ perceptions of the product and 

the feedback requests. Based on the users’ rational for being 

disturbed by the feedback requests, such as “early feedback,” 

“interruptive requests,” “frequent requests,” and “apparently 

inappropriate content,” we modelled feedback requests. The model 

3 



 

  

110 
Part 2: Gathering of User Feedback  
  

 

defines feedback requests using a set of five-tuple variables: “task,” 

“timing” of the task for issuing the feedback requests, user’s 

“expertise-phase” with the product, the “frequency” of feedback 

requests about the task, and the “content” of the feedback request. 

Configuration of these parameters might drive the participants’ 

perceived disturbances. We also found that the disturbances 

generated by triggering user feedback requests have negligible 

impacts on the QoE of software products. These results imply that 

software product vendors may trust users’ feedback even when the 

feedback requests disturb the users. 

Keywords 

Quality of Experience, QoE, user feedback, user perception, human 

factors 

1. Introduction 

ser feedback is essential for managing and improving software 

products (Pagano and Brügge 2013). User feedback informs 

software companies in identifying user needs, assessing user 

satisfaction, and detecting quality problems within a system 

(Fotrousi et al. 2014). User involvement is an effective means for 

capturing requirements, and, when feedback is considered in 

decisions about system evolution, it has positive effects on user 

satisfaction (Kujala 2003). 

A well-known indicator for measuring user satisfaction is Quality of 

Experience (QoE). QoE is defined as “the degree of delight or 

annoyance of the user of an application or service” (Le Callet et al. 

2012). The QoE indicator is sensitive to the fulfilment of user needs. 

High QoE values reflect users’ enjoyment in using a suitable system 

(“delight”). Low QoE values reflect users’ dissatisfaction in using an 

unsuitable system (“annoyance”). 

QoE is believed to be affected by three factors: the system, the 

context in which the system is used, and the software users (Reiter 

et al. 2014). System factors include the properties and characteristics 

of a system that reflect its technical quality, such as its performance, 

U 



 

  
 

111 

 

usability, and reliability (ISO/IEC 25010). System characteristics 

reflect the Quality of Service (QoS) of a product (Varela et al. 2014). 

The context reflects the user environment, which is characterized by 

physical, social, economical, and technical factors. The users, 

ultimately, are characterized by rather stable demographic, physical, 

and mental attributes, as well as more volatile attributes, such as 

temporary emotional attitudes. When interpreting user feedback, all 

three factors must be taken into consideration, since all of these 

factors, and not only the software system, affect human emotions 

(Barrett et al. 2011).  

Some studies have empirically evaluated the impacts of systems, 

their contexts, and human factors on QoE. Most of these studies have 

investigated the impact of the system factor, including, particularly, 

the QoS. For example, Fiedler et al. (2010) investigated a generic 

relationship between QoS and QoE and presented a mechanism for 

controlling QoE in telecommunication systems. Other studies have 

investigated the impact of the human factor (Canale et al. 2014) or 

the context factor (Ickin et al. 2012) on QoE. 

By nature, these impact evaluation studies necessitate frequently 

asking users for feedback on software products, software features, 

groups of features, or users’ actions (e.g., pressing a button). 

Especially in QoS-oriented studies, such feedback is necessary to 

interpret the recorded QoS data (Fotrousi et al. 2014). Automated 

support for feedback requests enables the quick and easy collection 

of data from a large number of users (Ivory and Hearst 2001). 

However, asking for user feedback may disturb users and introduce 

bias in their QoEs. Research has shown, for example, that users may 

be disturbed by badly timed (Adamczyk and Bailey 2004; Bailey et 

al. 2001) or overly frequent feedback requests (Abelow 1993). While 

research has objectively investigated the impact of feedback 

requests on users’ annoyance, no work has yet subjectively 

investigated this issue or explored how users rationalize their 

annoyance. Furthermore, the extant literature has not yet 

investigated whether the QoE of the product under evaluation is 

affected by users’ annoyance. As a result, we do not know whether 

the QoE of a software product may be trusted in cases involving 



 

  

112 
Part 2: Gathering of User Feedback  
  

 

nuisance (Jordan 1998). This uncertainty is particularly important if 

nuisances are created easily and rapidly. 

This paper evaluates whether disturbing feedback requests affect 

the QoE of a software product. We used a simple probe to collect 

extensive user feedback, including quantitative QoE ratings and 

qualitative user rationales. To generate a wide variety of feedback 

constellations, the probe was triggered randomly as users were 

implementing a variety of tasks. Some of the users’ tasks required 

little attention, while others required the users to concentrate. The 

random prompting of different concentration levels for different 

tasks generated a wide variety of situations in which the users were 

asked for feedback. At the end of the product usage, a post-

questionnaire was administered to collect each user’s overall 

perception of the feedback requests and experience of using the 

software product. We analysed the collected data to identify the 

users’ rationales for being disturbed by the feedback requests, to 

determine whether the feedback requests affected the quality 

judgment of the software product, and to discover whether the 

feedback mechanism implemented in the probe was used to provide 

feedback on the feedback requests. 

The main contribution of this paper is an understanding of the extent 

to which disturbing feedback requests affect users’ QoEs, which is an 

area that has been largely overlooked in previous research. 

Meanwhile, based on users’ subjective reasoning for being disturbed 

by the feedback tool, we propose a feedback request model, which 

parametrizes the characteristics of the feedback request. Finally, we 

discover whether feedback tools can be used to capture the 

disturbances of the feedback requests. The findings in this study will 

guide researchers and practitioners in designing user feedback 

mechanisms to collect informative user feedback, which will assist in 

enhancing software engineering activities, such as requirement 

engineering, user-based software development, and the validation of 

software products. 

The remainder of the paper is structured as follows: Section 2 

provides an overview of the study background and related work. 

Section 3 describes the research questions, the research 

methodology, and the threats to validity. Section 4 describes the 



 

  
 

113 

 

results and the analysis used to answer the research questions. 

Section 5 discusses the results. Section 6 summarizes and concludes 

the paper. 

2. Background and Related Work 

User feedback reflects information about users’ perception of the 

quality of a software product. Such perceptions can result in positive 

feelings such as delight, engagement, pleasure, satisfaction, 

happiness or negative feelings such as disengagement, 

dissatisfaction, sadness or even combinations of the feelings. The 

perception differs based on the users’ expectations (Szajna and 

Scamell 1993) in different social contexts (Van der Ham et al. 2014).  

User feedback is captured in written, verbal, audio and video formats 

directly from users or indirectly through the interpretation of users’ 

activities. A questionnaire is an example of methods gathering data 

in the written format by questioning user feedback. The user 

feedback can be collected through a long questionnaire (Herzog and 

Bachman 1981) capturing more data rather than a short 

questionnaire (Kim et al. 2008b) capturing fewer data but from many 

users. The short questionnaire can be paper-based or online-based 

forms. The short questionnaire may also be triggered (Froehlich et 

al. 2007) regularly or at a particular moment of experiencing a 

prototype or a released product. The annotating method is another 

example of written user feedback that users provide comments or 

rates for snippets of an image (Ames and Naaman 2007) or a video 

(Fricker et al. 2015) when the users have some opinions to share. The 

interview (Ahtinen et al. 2009) is an example of methods gathering 

verbal user feedback. The user feedback can also be recorded in the 

form of a multimedia such as an audio or a video. User sketch method 

(Tohidi et al. 2006) is an example of methods for collecting the 

activity-based user feedback. A user feedback tool includes one or 

multiple user feedback mechanism(s) implementing one or multiple 

user feedback methods respectively for collecting user feedback. 

The feedback is collected in the form of qualitative or quantitative 

measures. A qualitative measure provides a verbal and comparative 

description of the users’ opinions. A quantitative measure is a 



 

  

114 
Part 2: Gathering of User Feedback  
  

 

numerical form of data that is usually referred to a number. Mean 

Opinion Score (MOS) is a known quantitative metric usually scaled 

ordinal between 5 to 1 (Excellent, good, fair, bad, poor) that subjects 

assign to their opinion (ITU-T 2003) to measure Quality of 

Experience (QoE). 

Raake and Egger (2014) define Quality of Experience (QoE) as the 

degree of delight or annoyance of a user, who experiences a software 

product, service or system. QoE results from the evaluation of the 

user whether his or her expectations are fulfilled in the light of the 

user context, and personality. Quality of Experience combines the 

terms Quality and Experience. Quality is an attribute of a software 

product that refers to the goodness of the software product. 

Experience is an attribute of the user entity that refers to the stream 

of users’ perception including feelings. Quality of experiencing (QoE), 

as the combination of the two terms Quality and Experience, is the 

user’s judgment of the perceived goodness of the software as a 

cognitive process on top of the experience (Raake and Egger 2014).  

Along with the development of a user’s experience, the perceived 

quality of the experience is likely to change over time (Karapanos 

2013). During the experience development, the user initially gets 

familiar with the product and learns the product’s functionalities. 

The user excitement and frustration generated in the familiarization 

phase may affect the QoE of the software product. However, when 

the user establishes the functional dependency and is attached 

emotionally to the software product in the next phases (Karapanos 

2013), the judgment of the QoE would be more accurate. 

The system, the context, and the human factors may also impact on 

the judgment of users’ perception and affect QoE of a software 

product (Reiter et al. 2014; Roto et al. 2011). The three factors reflect 

the reason behind a particular perception of a user in an experience. 

Context and human factors can determine how the system factors 

impact on QoE (Reiter et al. 2014). As an example, the same software 

product may leave different quality perception when is used on a 

small-size touch screen phone in a car or on a personal computer at 

home. 



 

  
 

115 

 

The system factors point out to the technical characteristics of a 

software product or services. The functionality of a software product, 

delay in data transmission and a content of a media are examples of 

the system factors. Most of the system factors are relevant to the 

technical quality of the product or service referring as Quality of 

Service (QoS). The QoS factors are about the end-to-end service 

quality (Zhang and Ansari 2011), network quality (Khirman and 

Henriksen 2002) and suitability of service content (Varela et al. 

2014). The QoS factors tends to differ among application domains 

like: speech communication (Côté and Berger 2014), audio 

transmission (Feiten et al. 2014), video streaming (Garcia et al. 

2014), web browsing (Strohmeier et al. 2014), mobile human-

computer interaction (Schleicher et al. 2014), and gaming (Beyer and 

Möller 2014). As an example in speech communication (Côté and 

Berger 2014), the quality of the transmitted speech such as loudness, 

nearness, clearness may affect QoE. 

The context factors refer to the user environment characterized by 

physical, temporal, economical, social, and technical context factors 

(Reiter et al. 2014). We can exemplify the physical, temporal, social 

and economical factors respectively by an experience occurs in an 

indoor or outdoor physical environment, in a certain time of day, 

based on an individual or a group work experience and with a 

specific subscription type. The technical context factors are the 

system factors that contextually related to the software product or 

service. As an example of the technical context factors, we can 

mention the characteristics of the feedback tool and a device that the 

software product has interconnection with, such as the design layout, 

screen size, and resolution of the device (Mitra et al. 2011).  

The human factors characterize demographic, physical nature, 

mental nature as well as emotional attitudes of human users (Le 

Callet et al. 2012). The level of expertise and visual acuity of users are 

examples of demographic and physical factors respectively. Needs, 

motivations, expectations, moods exemplify the mental factors. 

Among the human factors, the emotion factor has the strongest 

relationship with experience (Kujala and Miron-Shatz 2013). For 

example, the user’s frustration in an experience may turn into anger, 

and the pleasant experience makes the user happy. The users’ 



 

  

116 
Part 2: Gathering of User Feedback  
  

 

perception of the product’s quality is influenced by a variety of 

emotions (Fernández-Dols and Russell 2003). Therefore, emotions 

are important factors to be considered while studying QoE. 

There are studies that have empirically evaluated the impacts of the 

system, context, and human factors on QoE of a product or service. 

Fiedler et al. (2010) investigate a generic relationship between 

system factors and QoE. The authors present a QoE control 

mechanism, where MOS is a function of QoS metrics such as response 

time in the telecommunication area. Ickin et al. (2012) investigated 

the factors that influence QoE in mobile applications. The study 

findings reveal the effect of context factors such as battery efficiency, 

phone features, and cost of application or connectivity on QoE. The 

study also showed the effect of human factors such as user routines 

and user lifestyle on QoE. Such impact studies are dependent on a 

frequent automatic collection of user feedback to interpret the 

quantitative analytics of the system quality that are also 

automatically collected. Automatic frequent asking for user feedback 

may disturb users and may bias the judgment of users for QoE of the 

software product.  

We found no work that evaluated whether the request for feedback 

would affect QoE of a software product. It is quite imaginable that a 

feedback request would be a part of the system, context and human 

factors that influence on QoE. Triggering the feedback requests, 

whose functionality may be perceived as a part of the product (i.e., 

system factor) interrupts the user’s task. The interruption that 

occurs in a certain context like mobile context (i.e., context factor) 

may disturb the user (i.e., human factor) especially when the user 

perceives performing the task as the primary and providing the 

feedback as the secondary task (Adamczyk and Bailey 2004). 

Disturbing the user by the feedback requests prompts user’s 

perception that causes a sensation or set of sensations toward a 

negative emotion (Solomon 2008). However, there is a gap in the 

literature whether the negative emotion caused by the feedback 

requests would be a factor that influences on users’ perception of the 

software product quality.  

Lack of understanding users’ rationale for being disturbed by the 

feedback requests and the relations between the feedback requests 



 

  
 

117 

 

and QoE of a software product would make the product owner 

unable to judge the appropriateness of the collected user feedback. 

In spite of appropriate feedback requests that motivate users to 

provide rich effective feedback (Broekens et al. 2010), inappropriate 

feedback requests may bias the collected user feedback that may 

affect the reliability and robustness of the decisions, which the 

product owner makes.  

3. Research Methodology 

3.1. Objectives 
The overall objective of this study is to evaluate whether the 

feedback mechanism affects the feedback obtained about the 

software product. We aim to determine whether a disturbing 

feedback request negatively affects users’ perceptions of the 

software product for which the feedback is requested. Therefore, we 

look for identifying the subjective disturbing aspects of feedback 

requests during the collection of feedback for a software product. We 

study whether the interruption is the only disturbing factor and, if 

not, seek to identify other possible disturbing factors of a feedback 

request based on users’ reasoning. Finally, we seek to discover 

whether the feedback mechanism that disturbs users is useful for 

collecting feedback about such disturbances. Feedback about the 

disturbances informs product owners of the problems that the users 

have experienced with the implemented feedback mechanism. 

We summarize the objectives as follows:  

OBJ1: Understanding users’ reasoning for being disturbed by 

feedback requests. 

OBJ2: Finding out the extent to which disturbing feedback requests 

affect users’ perceptions of a software product’s quality. 

OBJ3: Understanding whether user feedback is helpful for 

understanding the disturbances caused by feedback requests. 

 

 



 

  

118 
Part 2: Gathering of User Feedback  
  

 

3.2. Research Questions 
We designed the study to answer the following research questions 

(RQ1, RQ2, and RQ3), which we mapped to the above objectives 

(OBJ1, OBJ2, and OBJ3, respectively):  

RQ1: How do users rationalize the disturbance of feedback requests? 

RQ2: To what extent do disturbing feedback requests affect the QoE 

of software products? 

RQ3: Do users provide feedback about feedback requests? 

The overall research efforts help to discover whether the collected 

user feedback can be trusted even if the users are disturbed by the 

feedback collection process. The answer to RQ1 determines the 

aspects of feedback requests that could disturb users. Using these 

findings, we model feedback requests corresponding to a software 

product. The model guides the selection of a suitable feedback 

mechanism to assist researchers and practitioners in collecting 

unbiased feedback. The answer to RQ2 identifies the relationship 

between the feedback requests and the users’ perceptions of the 

quality of a software product. The answer to this question helps 

practitioners ensure that their feedback tools do not influence the 

quality of users’ perceptions of a software product’s quality. The 

answer to RQ3 identifies whether users provide feedback on 

feedback requests when they are asked to give feedback about the 

software product. This answer will guide researchers and 

practitioners in determining whether they can use the user feedback 

provided for a software product to evaluate the feedback requests 

generated by the feedback tool.  

3.3.  Study Design 
The study used a mixed qualitative-quantitative research approach, 

which was designed based on multiple embedded case studies (Yin 

2014). Figure 3-1 presents an overview of the study design to 

address the research questions. For the data collection, a feedback 

tool was used to request feedback randomly from participants while 

they were using a software product. At the end of the product’s 

usage, the users’ perceptions of the feedback requests and the 

experiences of using the product were collected through a post-



119

questionnaire. The user feedback about the software product during 

usage, as well as the user feedback that was provided in the post-

questionnaire about the feedback requests and the software product, 

were analyzed individually to answer the research questions.

Figure 3-1. Overview of the study design

A. Selection of the software product and the feedback tool

As the unit of analysis, we investigated individuals’ feedback to 

determine whether the feedback was about the software product or 

about the feedback requests. All participants in this study used the 

same software product and the same feedback tool with the same 

configuration for requesting feedback. 

The QoE probe described by (Fotrousi and Fricker 2016) was used 

as the feedback tool for collecting QoE data from a requirement-

modeling software called Flexisketch (Golaszewski 2013; Wüest et 

al. 2012; Wüest et al. 2015). We integrated the QoE probe into the 

Flexisketch tool. Figure 3-2 presents a user interface of the feedback 

tool. This tool generated requests for feedback continuously and 

randomly in the middle of users’ interactions with a software 

product. The feedback tool asked participants to rate their 

experiences with the feature that they had just used and to provide a 

rationale for their choice. Although the time and frequency of 

requests could be configured, in this study, a sample configuration 

was set up that allowed the user feedback to be collected randomly.



120Part 2: Gathering of User Feedback

Figure 3-2. Feedback tool

B. Participants 

The participants were 35 software engineering students at the 

graduate level, who familiar with the concepts of requirement 

modeling. Attempts were made to achieve as large variations as 

possible among the participants. The participants varied in age, 

requirement modeling knowledge and experiences with a 

requirement-modeling tool. 

C. Study procedure 

From the perspective of the participants, the primary goal of the 

assigned task was to evaluate hands-on requirement engineering 

practices. The participants were free to complete the assigned task 

at anytime and anywhere that they find suitable within the given 

deadline of two weeks. The assigned task in the course was not 

graded; however, if the students could pass the assignment, they 

were rewarded with better grades in their two other course 

assignments. The course assignment was not mandatory and the 

students who were not interested in this assignment, could skip that 

and choose alternative an assignment to receive the same reward. 

The participants, in their roles as requirement engineers, were asked 

to translate a real-world requirements walkthrough into a 

requirements model. The participants had to complete their tasks 



 

  
 

121 

 

individually by studying the provided workshop video of a Drug 

Supply Manager solution, analyzing the discussed requirements, and 

modeling the requirements.  

The video was captured from a requirement engineering workshop, 

where the participants were discussing the issues related to the 

distribution of drugs to patients. The issues could impact the safety 

of the patients. A requirement engineer, two pharmacists, a patient 

representative, a software developer, a solution architect, a medical 

device expert, and a barcode technology expert were attending the 

workshop. In the workshop video, the pharmacists, among other 

participants, were looking for a solution to be able to trace back the 

drug packages in the supply chain, using a globally unique barcode.  

In the current study, all participants received the same task to model 

the requirements defined during 15 consecutive minutes of the 

video. The participants could choose any 15 consecutive minutes of 

video that they intend to model. The desired models were modeling 

diagrams such as a use-case, activity and class diagram. Each 

participant could model the requirements using even more than one 

diagram. The participants were free to choose the modeling type and 

notations. They were told to ensure that the model specified what the 

stakeholders had defined during the chosen part of the video.  

The participants were asked to draw their models in the Flexisketch 

tool installed on their touch screen devices. Once they accessed an 

Android tablet, Android smartphone or a multi-touch screen PC, they 

needed to install the Flexisketch and QoE probes based on the 

provided guidelines. Alternatively, they were able to use one of the 

laboratory’s tablets to complete their task. The participants received 

an instruction document providing all required information.  

So, each participant used Flexisketch (i.e., a modeling tool), 

integrated with the QoE probe (i.e., a feedback tool), to model the 

requirements extracted from the video workshop. While the 

participants were modeling the requirements, a QoE questionnaire 

was automatically triggered by the completion of a feature to ask for 

user feedback. In the feedback tool, the probability of automatic 

triggering of the questionnaire was set to 10%.  



 

  

122 
Part 2: Gathering of User Feedback  
  

 

The user feedback was collected across different features of the 

modeling tool representing a range of complexities, since complexity 

is a factor affecting users’ concentration and task performance 

(Zijlstra et al. 1999). For example, “save” is a simple feature with low 

complexity: a user simply presses a button to save the model. By 

contrast, the “merge” feature for merging two objects of the model is 

not straightforward and is categorized as a high-complexity feature. 

When the participants completed the modeling, they were expected 

to save the model, export it as an image and then create a short 

requirement document including this image. The participants were 

free to complete the assigned task at anytime and anywhere that they 

find suitable within the given deadline of two weeks. 

In the last step, the participants were asked to fill in a paper-based 

post-questionnaire. The questionnaire included two groups of 

questions about the modeling tool and the triggered feedback 

requests. 

D. Data collection method 

The data collection was performed using open- and closed-ended 

questions in two steps of the study procedure:  

1- During the usage of software product: While the participants 

were using the requirement modeling tool, the feedback tool 

was triggered randomly (Figure 3-2) to collect the 

participants’ QoEs (i.e., ratings of their experiences) with the 

features that they had just used in the modeling tool. The 

feedback tool also collected the participants’ rationales, 

which justified the ratings.  

2- Following usage of the software product: After completing 

their work with the software (i.e., modeling tool), the 

participants were asked to answer a paper-based post-

questionnaire. In the post-questionnaire, we started with 

general questions about the users’ experiences including 

whether the participants had previous experience working 

with Flexisketch, similar requirement-modeling tools and 

Drug Supply Manager systems. Then, the participants were 

asked the starting time of the video that they had chosen for 

modeling as well as the time spent on the modeling tool. 



 

  
 

123 

 

Later, we formulated two questions asking for participant 

feedback. The first question underlined the disturbance 

term, as identified in the first research question, to determine 

users’ reasoning for being disturbed. In this question (Q12 in 

Appendix), we also sought to identify the negative influences 

of feedback requests on modeling activity disturbances. The 

second question (Q9 in Appendix), asked for the overall user 

feedback on the software product. The questions about the 

feedback requests and the software product were formulated 

as follows: 

 -- Feedback requests -- 

How good was the QoE probe in minimizing the disturbance 

of your modeling work?  

Bad (1) , Poor (2), Fair (3), Good (4), Excellent (5)  

Please explain why you feel that way: _________________ 

-- Software Product -- 

How good was Flexisketch as a tool for modeling 

requirements?  

Bad (1) , Poor (2), Fair (3), Good (4), Excellent (5)  

Please explain why you feel that way: _________________ 

To design the two questions, we used a five-point Likert scale, 

including a mid-point (i.e., Fair (3)), to avoid negative ratings in the 

absence of a middle point (Garland 1991).  

E. Data Analysis Method 

The questions RQ1 and RQ3 were answered using a qualitative 

content analysis approach. To answer RQ2, which is the core 

research question of this study, we triangulated the analysis using 

content analysis, pattern matching, and statistical correlation 

analysis methods. The statistical descriptive analysis was also used 

to support discussion.  

E.1 Content Analysis 

The analysis procedure followed inductive and deductive content 

analysis approaches (Elo and Kyngäs 2008). The inductive approach 



 

  

124 
Part 2: Gathering of User Feedback  
  

 

was conventional, with the objective of coding data freely to generate 

information, and the deductive approach was based on the use of 

initial coding categories, which were extracted from the hypothesis, 

with the possibility of extending the codes (Hsieh and Shannon 

2005). 

Inductive Content Analysis: Since prior knowledge on the 

phenomenon was limited, we performed an inductive content 

analysis to find answers for RQ1 and, partially, RQ2. The study 

started with the collection of qualitative feedback, which 

participants provided for the feedback requests (issued by the QoE 

probe) and the software application (Flexisketch) in the post-

questionnaires. The analysis was conducted in the following four 

steps: 

Step 1 – Perform initial coding: Participants’ quotes, which referred 

to their qualitative feedback, were analyzed separately. For each 

quote, we underlined all terms that could have some relation to 

reflections of participants’ experiences or the impact of the software 

product on the participants’ perceptions. We then read each quote 

again and wrote down all relevant codes. We repeated the process 

one by one for all quotes.  

Step 2 – Form final codes: We grouped the initial codes to form final 

codes based on shared characteristics, which put different codes in 

the same categories. For example, the vocabularies that were 

synonyms or had the same or similar stems, meanings or relevancies 

were organized in the same category of codes. Observations in other 

quotes also assisted in the creation and renaming of the final codes. 

Such groupings reduced the number of codes and increased our 

understanding of the phenomenon. As examples, the initial codes of 

“time-to-time,” “every tap,” “keep pop up,” “too often pop up” and 

“frequently” all referred to the frequency of the feedback requests; 

these formed the final code “frequent request.”  

Step 3 – Form categories: We created categories based on a general 

overview of the final codes. The categories were formed based on the 

patterns that we recognized within the quotes and, in some cases, 

our interpretations of the quotes’ meanings (Potter and Levine-

Donnerstein 1999). Categories merged into a higher level when the 



 

  
 

125 

 

merging made sense. The categories were developed independently 

by the first and second authors, and the final categories were decided 

in a joint meeting based on a “chain of evidence” tactic (Yin 2014). 

The correctness of the categories was later evaluated by the third 

author. Then, we organized the final categories in a matrix, 

comprising the connections between the participants’ quotes and the 

categories used by the final codes as elements. As explained in 

section 4.1, the content analysis concluded the matrix by including 

three categories: kind of user perception, consequence of disturbance, 

and characteristics of feedback requests. Characteristics of feedback 

requests was also divided into the sub-categories of task, timing, 

experience phase, frequency, and content.  

Step 4 – Perform abstraction: In the last step, based on the extracted 

categories, we performed an abstraction that led to a generic model. 

We interpreted and discussed this model based on the quantitative 

data of the given QoE ratings for the feedback requests and the 

software product. 

Deductive Content Analysis: To answer RQ3, we performed a 

deductive content analysis. The results of this section could also 

support RQ2. The research was initiated with the following 

hypothesis formulation: 

H: Participants provide feedback for the feedback requests during 

their usage.  

Then, initial categories of codes were organized. The qualitative 

feedback that participants provided during the usage was coded to 

test the hypothesis. The analysis was conducted in the following 

three steps: 

Step 1 – Development of an analysis matrix. We developed a matrix 

to connect the participants’ quotes and the initial categories of codes. 

The connections were filled with the coding data provided in step 2. 

We used an unconstrained matrix with the possibility to extend the 

categories during the data coding. We expected that participants 

would provide feedback in the categories for feedback request, 

software product attributes and device attributes. The first category 

was defined based on the hypothesis, and the next two categories 



 

  

126 
Part 2: Gathering of User Feedback  
  

 

were factors affecting the QoE of a product, as identified before 

through the inductive content analysis.  

Step 2 – Data coding: We reviewed all comments and coded in 

relevance to the defined categories in step 1. Although we aimed for 

an unconstrained matrix, no new categories were recognized during 

the coding. However, new sub-categories were identified. For 

example, for the software product attributes, we found a 

performance sub-category as a quality attribute that had not been 

identified during the inductive content analysis. 

Step 3 – Hypothesis testing: The coded matrix was a good tool for 

easily testing the hypothesis. Exploring the codes identified whether 

any feedback was available about the feedback requests. 

E.2 Pattern Matching 

Part of the analysis to answer RQ2 used a pattern-matching 

analytical technique (Yin 2014). In the pattern matching, a 

hypothesis to be tested—a so-called predicted pattern—was 

compared with the observed patterns that were concluded 

empirically. Section 4.2.1 shows the results of the pattern matching 

research. We performed the pattern matching in the following four 

steps:  

Step 1 – Formulate hypothesis: We formulated the research 

hypothesis in alignment with the research question. The research 

hypothesis is referred to as the predicted pattern during the study. 

This pattern was formulated as an if-then relation, where the if 

statement is the condition and the then statement is the outcome. We 

used an independent variable design with the “sufficient condition 

proposition” (Hak and Dul 2009), meaning that the outcome of the 

pattern is always present if the condition defined in the proposition 

is present. Therefore, if alternative patterns in the absence of the 

condition are confirmed, the hypothesis is disconfirmed. The 

hypothesis was, thus, formulated as follows: 

H-P: The Quality of Experience (QoE) of the software product is 

always perceived to be bad if the feedback request disturbs the 

participant.  



 

  
 

127 

 

The outcome (i.e., “The Quality of Experience (QoE) of the software 

product is perceived to be bad”) was always present if the condition 

(i.e., “if the feedback request disturbs the participant”) was present.  

Step 2 – Select appropriate cases: To investigate the hypothesis, we 

look for alternative patterns involving the outcome in the predicted 

pattern (i.e., “the QoE of the software product is perceived to be 

bad”). The absence of the outcome was the criterion for selecting 

cases. We chose cases in which the participants rated the QoE of the 

software product as good and then, from among these selected cases, 

looked for the presence or absence of the condition, as defined in the 

predicted pattern (i.e., “if the feedback request disturbs the 

participant"). 

Step 3 – Observe patterns to test the hypothesis: We observed the 

conditions in the selected cases and then formulated the observed 

patterns as the result of this step. We conducted our observation in 

a matrix with two dimensions for the QoE of the software product 

and the QoE of the feedback request. We also used the participants’ 

justifications in the qualitative feedback relevant to the selected 

cases to increase the reliability of the observations.  

Step 4 – Formulate test results. This step reported the confirmation 

or disconfirmation of the hypothesis. If the investigation could show 

observed patterns in the absence of the condition, it would be 

sufficient to disconfirm the hypothesis.  

E.3 Statistical Analysis 

We used a correlation analysis to measure the relationships among 

the observed variables. As part of RQ2, we used the Pearson and 

Spearman correlation coefficient methods to investigate the linear 

and monotonic relationships between the QoE of the software 

product and the QoE of the feedback request, respectively. 

Furthermore, throughout the study, descriptive analysis statistics, 

such as average and median, were used to provide supportive 

information for the discussion.  

 

 



 

  

128 
Part 2: Gathering of User Feedback  
  

 

3.4. Threats to Validity 
Following the classifications in the qualitative study (Yin 2014) and 

the content analysis (Potter and Levine-Donnerstein 1999), we 

analysed threats to validity. We also addressed the threats regarding 

student participation (Carver et al. 2003). 

Reliability: We interpreted reliability as the rigor and honesty with 

which the research has been carried out. Threats to reliability affect 

the repeatability of the study (i.e., the ability to run the study again 

and achieve the same results). To address potential threats to 

reliability, we developed a study protocol, collected all data in a study 

database, and used triangulation as the main strategy for answering 

the research questions (Golafshani 2003). We performed data 

triangulation by collecting data during and after the use of the 

application and considered both quantitative and qualitative data. 

We combined quantitative and qualitative approaches for the data 

analysis. The second and third authors of the study reviewed the 

results and the analysis performed by the first author. 

A key concern was the coding of the collected qualitative user 

feedback (Potter and Levine-Donnerstein 1999). To mitigate coding 

problems, the first author documented the design of the content 

analysis and developed detailed coding rules in a guideline that 

ensured that the other researchers would make the same decisions 

when selecting codes. The authors reviewed the coding and 

discussed conflicting coding results. Inaccurate punctuation and 

mistyped words sometimes changed the entire meaning and 

interpretation of a user’s feedback. In cases in which the user’s 

intended meaning was unclear, the quote was removed from the 

analysis.  

Internal validity: The threat is the extent to which the results may 

have been biased by confounding factors. One of the risks in this 

study was that the users might be disturbed by another stimulus, 

such as their devices or the physical environment, rather than by 

feedback requests. We captured the causes for such disturbances 

using the qualitative feedback received from the users during and 

after their experiences with the software product. Capturing these 

factors assisted us in distinguishing them during the analysis.  



 

  
 

129 

 

One factor that could have biased the entirety of the study results 

was the participation of students. The participating students could 

have felt incentivized to provide the results that their teacher(s) 

expected. To mitigate this threat, the first author, who executed the 

study, was not involved in the teaching of the concerned course. In 

addition, the assignment was optional for the students and not 

graded. The participants could voluntarily select either this 

assignment or another alternative assignment of comparable effort 

and difficulty. The participants could also opt-out at any moment and 

choose to do another assignment.  

Another potential confounding factor related to insufficient 

information for the participants, which could affect users’ 

disturbance. To mitigate this threat, we informed the participants 

that the task was part of a research project and explained the roles 

of the QoE probe and the Flexisketch. The participants also had 

access to the post-questionnaire in advance. Furthermore, we 

informed the participants about the monitoring of their usage data, 

which would be kept anonymous. Such monitoring data could be 

used to enhance internal validity and, to some extent, replaces the 

actual observation of the participants as they performed their tasks. 

External validity: External validity concerns the ability to 

generalize the results obtained from a study. In this study, fourth-

year software engineering students participated as subjects. They 

did not have knowledge of user feedback research, but they had been 

introduced and extensively trained in software engineering, 

including in theory and team projects. In a comparable rating and 

feedback study, Fricker et al. (2015) could not identify discernible 

differences between student ratings and ratings of industry subjects 

and noted that their positive and negative feedback were congruent. 

Similarly, Höst et al. (2000) could observe only minor differences in 

the conception, correctness, and judgment abilities of last-year 

students and professionals. Not only the number of analysis units 

(i.e., user feedback) but also the number and kind of case (i.e., 

modeling of Drug Supply Management requirements) are important 

for generalizability. 

The findings contribute towards generalization as they are 

applicable to the cases with similar characteristics. For instance, the 



 

  

130 
Part 2: Gathering of User Feedback  
  

 

findings can be applied to the cases where the users require a high 

level of creativity and interaction with the software (e.g., Adobe 

Photoshop modelling software) to perform their tasks. However, as 

Kennedy (1979) recommends for a single case, we leave the 

judgment for generalizability of the case to the practitioners, who 

wish to apply the findings, to determine whether the study’s case is 

applied to their own case. In the end, to corroborate further 

generalization of the research results to other settings, similar 

research studies with other types of subjects and different software 

products should be conducted. 

Construct validity: Construct validity reflects whether a study 

measures what was supposed to be measured. The risk in this 

research was that the participants might provide feedback without 

really experiencing the requirements modelling product or that, in 

the event of this experience, they might not provide sufficient 

evidence in their feedback to answer the research questions. To 

mitigate the threat of students providing feedback without 

experiencing the product, the study protocol forced the participants 

to report the results they had achieved with the software product. In 

this protocol, we also established a chain of evidence to ensure that 

the categories were defined correctly during the content analysis. We 

also reported the analysis by making explicit (e.g., by reporting 

quotes at appropriate places) how our answers to the research 

questions were based on the data we collected. 

Furthermore, in real environment users could perform such tasks 

within few hours. However, the time pressure on the participants for 

performing their tasks could be a risk that might result in reducing 

the quality of the answers (Sjøberg et al. 2003). The time pressure 

might make the participants more anxious and lead different 

judgment (Maule et al. 2000) on the given user feedback. To reduce 

the threats to validity, the design of our study allowed the 

participants to perform their task in a relax time within two weeks. 

The complexity of tasks is another threat to construct validity as 

different complexity might cause a different level of concentration 

and task performance (Zijlstra et al. 1999). Therefore, we considered 

several variations in our design to cover a wide spectrum of 

complexities from low-complexity (e.g., pressing a button, or 



 

  
 

131 

 

watching a simple and understandable video), to high-complexity 

(e.g., merging two objects) tasks. 

4. Results and Analysis 

The results show that the 35 study participants were from Europe 

(42.9%), China (42.9%), Africa (8.6%), and the Middle East (5.7%). 

Of the participants, 22.9% were female, and 77.1% were male. All 

were aged 23 to 37 years old, with the mean of 25.7 years. Table 3-1 

gives an overview. 

Table 3-1. Distribution of participants: country (left) and gender (right). 

 Country Gender 

 Africa China Europe Mid-
East 

Total Male Female Total 

Frequency 3 15 15 2 35 8 27 35 

Percentage 8.6 42.9 42.9 5.7 100.0 22.9 77.1 100.0 

 

None of the participants had previously experienced the 

requirement modeling tool and Supply Manager applications. To 

conduct the task, the participants used several models of Android 

tablet, Android smartphone, and no use of a multi-touch screen PC 

was reported. They participants reported their duration of using the 

requirement modeling tool. The responses ranged from two hours to 

four days. From the answers collected during the post-questionnaire, 

the participants rated the feedback requests and the software 

product in the range of Good (4) to Bad (1), with a median of Fair (3). 

No Excellent (5) rating was collected.  

Table 3-2 shows the number of submitted feedback on the software 

product or feedback tool. According to the usage log, 25 participants 

provided feedback on the software product during runtime. 

Although the 10 remaining participants had seen the feedback tool 

at least 2 times while performing their task, but they did not submit 

any feedback, i.e., They declined the feedback requests. Based on the 

instructions given to the participants, the participants were able to 

decrease the likelihood of triggered feedback requests or deactivate 

the feedback requests. Ten user feedback less on software products 



 

  

132 
Part 2: Gathering of User Feedback  
  

 

means we missed some qualitative feedback at the feature level, 

which was not critical of our analysis. 

Table 3-2. Number of submitted feedback. 

 Feedback on 
software product 
(Usage log) 

Feedback on 
software product 
(Post-
questionnaire) 

Feedback on 
Feedback tool 
(Post-
questionnaire) 

Usage log QoE 
rating 

Rationale QoE 
rating 

Rationale QoE 
rating 

Rationale 

Participants 25 25 35 33 35 33 
Total feedback 441 60 35 33 35 33 

 

The participants submitted a total of 441 QoE ratings and 60 valid 

feedback that justified these ratings during product usage (64 

feedback rationales were provided, which four were made of 

meaningless letters or symbols). The QoE ratings were distributed in 

the range of Excellent (5) to Bad (1) (i.e., Excellent (5): 70, Good (4): 

133, Fair (3): 77, Poor (2): 89, Bad (1): 72 feedback). The users 

provided rationales when they had both positive and negative 

perception (i.e., Excellent (5): 7, Good (4): 13, Fair (3): 8, Poor (2): 

22, Bad (1): 10 feedback). The Median of QoE ratings with Rationale 

and without Rationale (i.e., Poor (2) and Fair (3) respectively) shows 

that the participants have more justified the feedback ratings when 

they had a negative perception.  

All participants returned the post-questionnaire. 33 provided 

rationales for the ratings, while two did not. Figure 3-3 gives an 

overview of the QoE ratings of the software product and the QoE 

rating of the feedback requests that have been collected from the 

post-questionnaire. As presented in the top-left chart, the perceived 

quality of the feedback requests was less than the perceived quality 

of the software product. Since the scale defined for the QoE rating 

was the Opinion Score, an ordinal scale, we calculated the Median as 

the measure of central tendency: MedianQoE of feedback requests = 2, 

MedianQoE of software product = 3, equivalent to the Poor (2) and Fair (3) 

levels, respectively. The levels show that the participants were 

disturbed by the feedback requests. The software product was 

appreciated better, even though clearly not excellent. According to 5-

point Likert scale used in designing questionnaires as well as our 

non-parametric statistical test, levels 2 and 3 are significantly 



133

different. The level 2 refers to unsatisfactory perception, while 3 

shows the mid-point referring to uncertain perception. 

Figure 3-3. Distribution of the participants’ ratings for the QoE of the feedback tool 
and the QoE of the software product according to the post questionnaire*

*: The QoE scales reflect the Opinion Score from Bad (1) to Excellent (5).

Figure 3-4 shows an analysis of the influence of cultural diversity on 

QoE. For the majority of countries MedianQoE of feedback requests = 2. The 

Chinese participants differed with a median QoE rating of 3. In 

addition, MedianQoE of software product = 3, except for the participants from 

Middle-East, who rated the software product to be Good (4). No 

country reversed the results shown in Figure 3-4, suggesting that 

cultural differences had no effects that would reverse the study 

results. The participants were disturbed more by the feedback 

requests than by the software product, and the Good (4) ratings were 

likely due to the small number of participants.



134Part 2: Gathering of User Feedback

Figure 3-4. Distribution of the participants’ ratings for the QoE of the feedback tool 
(top) and the QoE of the software product(bottom)*

*: According to the post questionnaire. The QoE scales reflect the Opinion Score from 

Bad (1) to Excellent (5).



 

  
 

135 

 

4.1. Modelling of Feedback Requests 
Based on the qualitative analysis below, we modelled a feedback 

request according to the users’ reasoning for the disturbance level of 

the feedback tool. As presented in Equation 1, our model defines a 

set of feedback requests for each product (p) and user (u). Each 

product (p) and user (u) belongs to the set of available products (P), 

respectively users (U). The FRs are a set of five-tuple variables 

referring to the user task (ta), the timing of the feedback request 

within a task (ti), experience-phase (e), the frequency (f) of the 

feedback request, and the content (c) of the feedback request.  

FR = {(ta, ti, e, f, c) | pP, uU} 

Equation 1. Model for user feedback requests developed from the inductive 
content analysis. 

The user’s task (ta) refers to the type of activity the user was 

performing with the software product when a feedback request was 

issued. The important user’s tasks were modelling requirements and 

managing the model, e.g., by saving it. The timing (ti) is the moment 

within the user’s tasks when the feedback request has been issued. 

The expertise-phase (e) refers to the user’s stage of understanding 

and mastery of the product at the moment of the feedback request. 

For example, in a modelling tool, the experience-phase can refer to 

the learning period at the beginning of an experience. The frequency 

(f) of a feedback request refers to the maximum number of times that 

feedback is requested in a specific timing and expertise-phase 

relevant to the task. The content (c) refers to the questions included 

in a feedback request. The values for any of these variables might 

drive the perceived disturbances. 

The feedback request model is a result of the inductive content 

analysis described in section 3.3.E1. During the content analysis, we 

identified that the participants’ quotes referred to three main 

categories: kind of user perception, consequence of disturbance, and 

characteristics of feedback requests. Characteristics of feedback 

requests could be divided into the sub-categories of task, timing, 

experience phase, frequency, and content. Each of the variables ta, ti, 

e, f, and c reflect one of these identified categories. 



 

  

136 
Part 2: Gathering of User Feedback  
  

 

The categories were identified based on the users’ subjective 

reasoning for disturbing feedback requests. The following disturbing 

issues were identified: 

- a feedback request that was interrupting a user task; 

- a feedback request that was issued to the user too early 

before the user experienced enough and understood the 

product; 

- a feedback request that was issued too frequently; and 

- a feedback request with apparently inappropriate content. 

The first three factors were mapped to the timing within a task, the 

expertise-phase, and the frequency of the request for the task. The 

fourth factor concerned the content of the feedback request and the 

functionality provided to allow the user to give feedback. In the 

following, we show the users’ reasoning for the disturbance of 

feedback requests. These are supported by the participants’ quotes 

(written in italic fonts within quotation marks) to improve the 

credibility of the discussion.  

The participants perceived that the tasks were interrupted at the 

macro, meso, and micro levels. The participants provided their 

rationales for being disturbed in macro-level (e.g., modeling), meso-

level (e.g., drawing diagrams or working with features, such as 

locating UML elements), and micro-level (e.g., performing an action, 

such as a click). Although the interruption was generated at the 

meso-level (end of using features), however, some participants 

perceived the interruption in the micro-level. We argue that this 

incorrect perception could be due to less than a second delay of 

showing the feedback form. Also, another reason could be due to 

fragmentary user’s action, where the system recognizes it as the end 

of using the feature (e.g., releasing the mouse button in the middle of 

drawing a line that the system identifies a new line). The interruption 

was more disturbing when the task required concentration.  

“… Let me put an example, if I want to put down a 

square, add a text and put the text in the square, then 

I don’t want to be disturbed while doing that. I don’t 

mind if QoE Probe disturbs me after I’ve done this 



 

  
 

137 

 

few concatenated steps, but this was not the case. It 

kept interrupting me ...” 

“… sometimes you could lose a bit track of a thought 

process and when that happened it was quite 

annoying …” 

“It was annoying as it asked while I was drawing and 

then only half the line was finished.” 

A feedback request that came too early before the user had the 

chance to really understand the product disturbed participants. 

Because the user expertise of whom received early feedback 

requests was still in the learning phase and familiarization with the 

product. In response to an early feedback request, a participant was 

unable to judge a product, feature, or action, and the judgment risked 

not reflect sufficiently complete, accurate, or correct feedback. 

“I think it should leave at least a week for users to 

experience the app[lication], then they will have a 

better understand and experience of the 

Flexisketch.” 

The frequent feedback that was requested at multiple times during a 

task disturbed users. Frequent requests increased perceptions of 

disturbance when the same feedback requests were repeatedly 

asked for the same feature or action. Sometimes, the feedback 

request was issued so frequently that the participants perceived that 

the main goal of the study was to disturb them. 

 “Way too intrusive as it came up way too often.” 

 “I had to write feedback multiple times for some 

features, while for others – never.” 

 “It felt as if the entire purpose of the QoE Probe was 

to disturb my modeling work.” 

The feedback that was requested frequently encouraged participants 

to discover the mechanism behind triggering the feedback 

questionnaire. Due to the ambiguity of this mechanism, the users 

could even lose sight of the main objective of the feedback requests. 



 

  

138 
Part 2: Gathering of User Feedback  
  

 

“It was really disturbing, it disappears after a while, 

but again I don’t know it was on me or the system 

that solved it.” 

 “To be honest I do not know why I need to install it.” 

The content of a feedback request was also mentioned as a disturbing 

factor, although its impact level (relevant to participants’ ratings) 

was not considerable. The participants complained that the feedback 

requests had limited functionalities. 

“ The function [of feedback requests] is quite 

limited…” 

” … the functions [of feedback requests] are not as 

good as I wished. “ 

Not only did unsuitable feedback requests disturb the participants, 

but the participants also expressed feelings of annoyance and 

disengagement. 

“The interruptions were too many and not 

welcome.”  

Such feelings consequently affected the quality of the provided 

feedback and the quality of the participants’ performance on the 

main tasks in the experience. Disturbed participants might be 

discouraged regarding the provision of feedback, or they might 

provide inaccurate feedback. Furthermore, participants’ task 

performance was reduced when the participants lost track of their 

thoughts and forgot their next tasks due to the interruptions. Such 

disturbances encouraged participants to take action, such as 

uninstalling the feedback tool. 

“Since it pops up in the middle of working on a 

diagram, you don’t have much will and time to think 

truly carefully before answering. This probably 

means that the results aren’t as accurate as one could 

wish for.” 

 “…I felt it disturbing most when the QoE came up in 

the middle of me having an idea I needed to model. 

By the end of my feedback, I almost forgot what I was 

about to model, which was for me very annoying. …” 



 

  
 

139 

 

 “it disturbed my modeling quite a lot I was almost 

tempted to uninstall it.” 

The majority of participants who mentioned higher levels of 

disturbance or efforts to take give-up actions, such as uninstalling the 

feedback tool in their quotes, rated the QoE of the feedback tool as a 

1 or a 2. However, the participants rated the QoE of the feedback tool 

as a 3 or a 4 when they did not recall a high disturbance level; instead, 

these participants used occasional adjectives, such as “some” or 

“sometimes,” to describe their disturbances due to 

frequent/interruptive feedback requests.  

4.2. The Effect of Disturbing Feedback Requests on the 
QoE of a Software Product 

Disturbing feedback requests have a negligible impact on 

participants’ perceptions of the quality of software products. The 

QoE of a software product does not correlate with the disturbance 

ratings of the feedback requests. The results show that the QoE of a 

software product might not be degraded even by participant feelings 

of disturbance related to the feedback requests. Even though the 

feedback request characteristics discussed in Section 4.1 might 

disturb the participants, the quality of the software (i.e., 97% of the 

quotes) and the context such as the device quality (i.e., 42% of the 

quotes) served as the focal points of arguments to justify the QoE 

ratings. 

The study’s results were triangulated with three individual analysis 

methods to facilitate studying the phenomenon from different 

angles. This section details these analyses. 

4.2.1. Was the QoE of the software product bad when the 
feedback request disturbed participants? 

A disturbing feedback request did not necessarily indicate that 

participants would negatively evaluate the QoE of the software 

product. In other words, the disturbances caused by the feedback 

requests did not always result in a bad experience of the software 

product. This statement was concluded as the result of disconfirming 

the predicted pattern we identified for this study, as follows:  



 

  

140 
Part 2: Gathering of User Feedback  
  

 

P: The Quality of Experience (QoE) of the software product is always 

perceived to be bad if the feedback request disturbs the participant.  

The analysis showed that the QoE of the software product was 

perceived to be good even when the feedback requests disturbed the 

participants. As explained in E.2 in Section 3.3, to test the pattern P, 

we explored the following two possible alternative patterns within 

the participants’ quotes. 

AP1: The Quality of Experience (QoE) of software product is 

perceived to be good, if the feedback request disturbs the participant 

AP2: The Quality of Experience (QoE) of software product is 

perceived to be good if the feedback request does not disturb the 

participant 

We evaluated the alternative patterns AP1 and AP2 using the 

participants’ ratings that were collected via the post-questionnaire 

and the feedback tool after and during the usage respectively. Figure 

3-5 presents the participants’ ratings for the feedback requests and 

the QoE of the software product, collected from the post-

questionnaire. The x-axis indicates the ratings of the feedback 

requests, and the y-axis shows the quality ratings for the software 

product.  

The observation of the alternative patterns AP1 and AP2 in the matrix 

in Figure 3-5 showed that when the QoE of a software product was 

rated Good (4) (there were no Excellent (5) ratings), in 37% of the 

cases, the feedback requests disturbed the participants (i.e., rated 

Bad (1) and Poor (2)); these results aligned with AP1. In the same 

scenario of QoE rating, 63% of the feedback requests did not disturb 

the participants (rated Fair (3) and Good (4)); these results aligned 

with AP2. The observation of AP1 contradicted the predicted pattern 

and, thus, disconfirmed it.  

The similar observation was also found in the participants’ 

qualitative motivations. For example, one participant liked the 

product and rated as a 4 with this rationale: 



141

“It was fun in creating the diagrams because I was 

lying on my bed and creating the diagrams by using 

it. I like it.” 

However, the same participant was disturbed by the feedback 

requests, rating these as a 1, with the following rationale:

“I was just fed up from this QoE because it was disturbing a 

lot while making diagrams.” 

Figure 3-5. Distribution of the QoE of the software product per each QoE of the 
feedback request (data series reflect the QoE of the software product) - Data is 

collected via the post-questionnaire.

The pattern AP1 could also be seen within the feedback collected 

from the feedback tool. There was one case in which the QoE of the 

software product was perceived as Excellent (5), but the participant 

complained about the disturbing feedback requests. The observation 

of API disconfirmed the P1.

The examples and the descriptive statistics showed that a disturbing 

feedback request did not necessarily imply a bad QoE of the 

evaluated software product. 



 

  

142 
Part 2: Gathering of User Feedback  
  

 

4.2.2. Was the QoE of the software product statistically 
related to the QoE of the feedback requests? 

With the provided ratings, we could not find any evidence to show a 

dependency between the quality ratings of the disturbing feedback 

request and the software product. 

A correlation analysis was performed to measure the relationship 

between the participants’ ratings given to the feedback request and 

the quality of the software product, as collected through the post-

questionnaires. The results showed a very small, almost non-existent 

correlation (i.e., Pearson analysis [= -.056, n = 35, p > .001] and 

Spearman analysis [= -.032, n = 35, p > .001]). The analyses indicated 

a lack of linear and monotonic relationships between the participant 

ratings for the quality perception of the feedback request and the 

quality perception of the software product.  

4.2.3. Were the QoEs of the software product justified with 
arguments about disturbing feedback requests? 

The QoEs of the software product were justified with arguments 

about factors other than the disturbing feedback requests. The 

software characteristics and the experiencing context were the focal 

points of these arguments. 

The participants also provided arguments about the quality of the 

software product and the experiencing context (e.g., device 

characteristics) that respectively addressed 97% and 42% of all 

feedback for justifying the QoE of a software product in the post-

questionnaire. Among this feedback, no participant used any 

characteristics of a feedback request to justify poor QoE ratings for a 

software product. We could argue that the two separate 

questionnaires at the end of usage—one for the QoE of the feedback 

requests and one for the QoE of the software product—allowed the 

participants to distinguish the feedback tool from the software 

product. Therefore, the participants provided justifications for the 

QoE ratings of the software product regardless of the ratings they 

had given for the feedback requests.  



 

  
 

143 

 

However, the feedback collected by the tool during the usage could 

not provide enough evidence to justify the QoE ratings. Although four 

feedback quotes out of 64 were related to the feedback requests, 

these quotes did not include interpretations of the QoE ratings. For 

example, one participant, who complained about the interruptions of 

feedback request two times, gave Poor (2) and Excellent (5) ratings 

to the QoEs of the same feature.  

Software quality attributes were the most common factors that the 

participants used to justify their ratings. Functionality, usability, 

learnability, portability, and performance were the quality attributes 

that the participants most commonly used for these justifications.  

Functionality and usability of software features were the most 

common categories of feedback. Interestingly, of the 33 rationales 

provided for rating the software product in the post-questionnaire, 

19 feedback rationales addressed the software’s functionality and 16 

feedback rationales addressed its usability categories. Furthermore, 

out of 60 total feedback quotes, the feedback tool collected 36 and 16 

feedback quotes about the functionality and usability categories, 

respectively.  

The participants gave feedback about crashes and errors in product 

functionality. The participants were also disturbed by 

nonconformities with the expected functionality. They reported 

issues with some features that did not work properly or were not 

successful in fulfilling their expectations.  

“…The zoom function did not zoom text as I wanted, making 

the model very wired, and the lines which I draw between 

actor/stakeholder to circles did not connect properly, 

annoying me as well.” 

“Flexisketch seems to lack the following [functionalities]: 

Arrow heads for directions, copy and, paste mechanisms, 

screen resize functionality, Eraser functionality, Scrollbar 

functionality, code generation functionality,..” 

“Because the poor functionalities, and strong dependence on 

the device (for now it can only run in android system) that 

don’t flexible for the user.” 



 

  

144 
Part 2: Gathering of User Feedback  
  

 

The participants provided feedback on the usability of features, 

particularly with regard to their ease or difficulty of use. Some of the 

participants failed to recognize the software product as user-

friendly, while others admired its simplicity.  

“It was okay as it had all of the features as you need, 

but it wasn’t user-friendly at all at least not on my 

phone….” 

“It’s fair because the application is very simple and 

easy to use, but it also has many limitations.” 

“The program was literally unusable in horizontal 

view which was a huge set-back on my smartphone. 

Some options disappeared while being in horizontal 

view.” 

The participants also provided feedback on the performance of the 

product in relation to an overly long response time.  

“The response is too slow.” 

“It takes some time but maybe because of the touch 

screen quality.” 

Even when the participants watched or read the instruction 

guidelines, they still faced learnability issues.  

“I watched the instruction video, but I still don’t 

know how to draw specific items, like arrows.” 

From the participants’ points of view, the context was perceived to 

be a part of product attributes. The participants also provided 

arguments about device attributes (e.g., mobility characteristics, 

screen size, touch-based functionality, and the operating system of 

the device) as context factors to justify their ratings. The participants 

complained about using the product on small-sized screens. 

“I think it is useful when I watch the tutorials, but 

when I really use it, I found it is really not suitable for 

mobile phone.” 

“Too less kind of elements can be chosen to draw a 

diagram. Not easy to use on a small-screen mobile 

device.” 



 

  
 

145 

 

“Because the poor functionalities, and strong 

dependence on the device (for now it can only run in 

android system) that don’t [make it] flexible for the 

user.” 

“This app can be installed in mobile with Android 

system, which is easy to carry and edit.” 
 

4.3. Feedback About Feedback Requests  
Of the 64 feedback collected by the feedback tool, only four feedback 

rationales from two participants, representing 6% of the total 

qualitative feedback, concerned the feedback requests. The four 

feedback rationales represented only 0.9% of the total participant 

experience ratings. Most of the participants did not provide 

qualitative data (85%); instead, they only rated their experiences. 

A few participants gave feedback concerning disturbing feedback 

requests. Experience interruptions and inappropriate question 

timing were two categories of disturbing feedback that the 

participants mentioned. 

“Do not interrupt during drawing!”, “This forum 

really disturbs.” 

“Because I am getting the rating without even getting 

a chance to finish my sketch”,”The same as a 

previous comment.” 

Exploring all of the ratings and the feedback revealed that a majority 

of participants did not provide qualitative feedback; however, those 

that did provide such feedback primarily pointed to the quality of the 

software and the context (as discussed in Section 4.2.3). The 

feedback was provided both to complain about and to admire the 

quality of the software product. However, the feedback about the 

feedback requests was only issued in the case of disturbance. When 

no issue was found, the participants did not admire the feedback 

requests.  

Although the majority of the participants did not offer feedback on 

the feedback requests, the few received feedback was still useful for 



 

  

146 
Part 2: Gathering of User Feedback  
  

 

obtaining an accurate understanding of the problems that the 

participants experienced with the feedback tool. 

5. Discussion 

According to the findings of our study, feedback requests that are 

interrupting a user’s task, that are too early for what a user knows 

about the product, that are too frequent, or that are with 

inappropriate content may disturb users. The first factor is 

congruent with earlier research. The second and third factors are not 

surprising, although previous studies did not address them as the 

disturbing factors caused by feedback requests, but the latest factor 

is new. 

A request for feedback that interrupts a user during a task affects the 

user’s task and, as a consequence, the user’s experience negatively 

(Bailey et al. 2001). In our study, such interruption was particularly 

problematic during a modelling task, which required particular 

attention. The interruption generated frustration because the user 

has to remember the task and how to proceed toward completion of 

the task. As suggested by Adamczyk and Bailey (2004), it is crucial to 

find the best moment of interruption and thereby reduce the extent 

of disturbance. 

A feedback request that is issued to a user before he is familiar with 

the product is perceived to be disturbing. Such familiarization phase 

is important as a user needs to establish knowledge of the product 

and how the product is to be used. Some users do not accept the 

product initially, but they have better perception over prolonged use 

(Karapanos 2013). Also, the familiarization is accompanied by a 

change of thoughts, feelings, and expectations about the product 

(Karapanos 2013). An initially positive judgment of a product may 

become negative, or vice-versa. Thus, when confronted with a 

feedback request that is too early, the user may be unable to judge 

the product or may give feedback that is incorrect. According to our 

results, the knowledge about this inability if felt by the user as a 

disturbance. It is important to match the timing of a feedback request 

with the user’s knowledge about what the request is seeking 

feedback for. 



 

  
 

147 

 

A rapid re-occurrence of requests for feedback disturbs users. This 

insight is interesting because it extends the understanding of how 

temporal aspects of feedback requests affect the product user. Even 

well-timed requests for feedback may be disturbing if they are issued 

too frequently. Especially disturbing is the repetition of requests if 

the user has already submitted feedback that was well thought 

through and well formulated. It is a must for a feedback mechanism 

to consider the history of the feedback dialogue with a user.  

New is that a feedback request that offers too limited functionality in 

the eyes of the user can disturb as well. This insight is interesting 

because related work has focused on the aspect of timing feedback 

requests. According to our data, it is also important that the feedback 

request gives the user the ability to provide feedback in a way that is 

intuitive and desired by the user. Our chosen combination of a 

Quality of Experience rating and a text field for user feedback was 

perceived to be too limited by some users. Additional capabilities 

may be needed, such as screenshots, voice, video recordings, or 

photographs (Seyff et al. 2011). 

It is interesting to compare these results with the Qualinet definition 

of QoE (Le Callet et al. 2012) that we apply here for a feedback tool. 

According to that definition “Quality of Experience (QoE) is the 

degree of delight or annoyance of a person whose experiencing 

involves an application, service, or system. It results from the person’s 

evaluation of the fulfilment of his or her expectations and needs with 

respect to the utility and/or enjoyment in the light of the person’s 

context, personality, and current state”. A feedback tool annoys users 

if the parameters are not configured well. Users may feel delighted 

while giving feedback if the feedback has strong utility, such as the 

anticipated improvement of the product in a future release. The 

study has shown that the expectations and needs of the feedback tool 

are about the timing and content parameters that should be 

respected when issuing a feedback form. The user’s context, 

personality, and current state are reflected in the user’s expertise of 

using the product. We could not identify any other factors in the 

presented study, including cultural background, that would affect the 

QoE of the feedback tool. 



 

  

148 
Part 2: Gathering of User Feedback  
  

 

A feedback request that is disturbing causes negative emotions such 

as anger (Scherer 2005; Solomon 2008). Such emotions are visible in 

bad QoE ratings (Antons et al. 2014). The disturbances may also 

hinder sustained adoption of a product. A user may resist 

incorporating a product into his daily routines where usefulness and 

long-term usability are important (Karapanos 2013). Even though 

the software product may evoke positive emotions in a user, the 

negative emotions caused by the disturbance may prevent or delay 

development of emotional attachment to the product. Hence, in 

addition to offering an attractive product, it is important to present 

feedback requests satisfactorily, or to offer the possibility to disable 

the feedback tool. 

While feedback may disturb a product’s users, our study showed that 

this disturbance has a negligible impact on the users’ reported 

Quality of Experience for the software product. The users 

differentiated between a feedback tool they were providing feedback 

with and the software they were providing feedback for. The 

disturbance of a user was hardly reflected in that user’s QoE ratings 

for the product. As we could not find any prior study that 

investigated this perceived separation between product and 

feedback tool, we believe that this is an interesting new result. The 

negligible impact implies that software product vendors may trust 

the collected feedback even if the feedback requests disturb the users 

to some extent. 

In contrast to the perceived separation of a feedback tool and a 

software product, users blurred the boundary between the software 

product and the device on which the product was running. The user 

feedback mixed product and device factors. Perhaps the users could 

not distinguish the device and the product, or they considered the 

device to be a part of the product. Thus, a software vendor can 

receive informative feedback not only about the software product 

but also the devices the customers are using to run the product on. 

Although disturbing feedback requests did not show any significant 

impact on QoE of the studied software product, the disturbances 

might affect how well feedback requests are answered. Disturbances 

may demotivate users to provide rich feedback since the users would 

ignore disturbing feedback requests. This reaction was evident in 



 

  
 

149 

 

that many study participants cancelled feedback requests or 

switched the feedback tool off. The design of a feedback mechanism 

is possible through configuring the parameters of the feedback 

requests model.  

The above findings were achieved in a case study that was set up the 

environment close to reality with less pressure and control on the 

participants. A pressurized and controlled environment, on one side, 

could increase the sensitivity of users in response to the 

environment that might impact on users’ perception. On the other 

hand, such controlled situation could not affect the ability of users to 

evaluate the software or feedback. Putting users on a regime such as 

time pressure could amplify the anxiety leading to different 

judgment (Maule et al. 2000). 

Like any other study, also the here presented study has its 

limitations. For example, we did not research when users decide to 

decline feedback requests (e.g., cancelling feedback forms). The 

research could be interesting to investigate the consequence of being 

disturbed by the feedback requests in a future study. However, this 

limitation did not affect the presented result in Figure 3-3 that was 

achieved based on the post-questionnaire. Furthermore, approaches 

need to be evaluated for including the identified parameters of the 

user task, feedback request timing, expertise-phase, feedback 

request frequency, and feedback request content in the design of a 

feedback mechanism. Finally, users may have different thresholds 

for feeling affected by disturbance; depending on the situation, some 

are rapidly disturbed, while others can accept a lot of annoyance 

(Van der Ham et al. 2014). Therefore, categories of users, contexts, 

and products may need to be identified to allow investigation of 

feedback request parameters in each cluster separately. Such 

research will be future work. 

6. Conclusion 

Quality of Experience (QoE) is a measurement that is widely used to 

assess users’ perceptions when experiencing a software product. 

With knowledge about QoE, companies hope to make appropriate 

decisions to win and retain customers by evolving their products in 



 

  

150 
Part 2: Gathering of User Feedback  
  

 

meaningful ways. Collecting users’ QoEs requires automatic and 

frequent requests for feedback. However, automated requests for 

feedback may disturb users and perhaps degrade their QoE ratings.  

The current study investigated the candidate relationship between 

the characteristics of automatic feedback requests and the QoE of a 

software product. The study followed a mixed qualitative-

quantitative research method with 35 software engineering 

participants. We integrated a feedback tool into a mobile software 

product to prompt participants for feedback randomly in the middle 

of their experiences. At the end of the users’ experiences, we 

collected their perceptions about the feedback requests and their 

experiences of using the application through a post-questionnaire. 

We offer two contributions to the researcher and practitioner 

communities. First, we propose a feedback request model that 

parameterizes the characteristics of feedback requests. The 

parameters outline the task, timing of the task for issuing the 

feedback requests, user’s expertise-phase with the product, the 

frequency of feedback requests about the task, and the content of the 

feedback request. The findings may inform researchers of the 

parameters that disrupt users’ experiences, which may help them 

develop suitable feedback mechanisms to control users’ disturbance. 

The findings may also help practitioners design the feedback tool and 

the corresponding feedback mechanisms by adjusting the 

parameters.  

Second, the study showed that feedback requests have negligible 

impacts on users’ QoEs of a software product. Specifically, the quality 

of the software product has a greater impact on the QoE than the 

characteristics of the feedback request. For practitioners, this finding 

implies an ability to trust feedback collected from users, even when 

the requests for feedback are considered disturbing. The results also 

imply that the quality of a software product is the most important 

aspect for practitioners to focus on when examining user feedback. 

However, the design of suitable feedback mechanisms should not be 

neglected, since feedback mechanisms are useful for collecting 

informative user feedback about both software products and any 

disturbances caused by feedback requests. The informative user 

feedback assists in enhancing software engineering activities. An 



 

  
 

151 

 

informative user feedback assists requirement engineers to elicit 

new requirements and revise the current requirements for next 

releases of the software product (Carreño and Winbladh 2013). Such 

rich feedback also contains valuable information for developers to 

redevelop a functionality and validate the software product idea 

(Kujala 1 2008) toward the software evolution (Pagano and Brügge 

2013). 

The result was achieved based on constructing one situation. 

However, case variations in practice might stimulate users’ emotions 

differently and lead to new achievements. Therefore, it would be 

interesting to replicate the study considering several varieties of 

contextual and system factors in future. The materials for replication 

is available in http://bit.ly/2o89rO4. 

  



 

  

152 
Part 2: Gathering of User Feedback  
  

 

Appendix 

Post-questionnaire: Table 3-3 shows the questions that were used to 

collect user feedback after the participants performed modeling of 

the requirements.  

Table 3-3. Post-questionnaire 

=== About Yourself === 

Q1: Your Student ID: 

Q2: Did you use Flexisketch already before this assignment? [Yes/No] 

Q3: Do you have experience with applications like the Drug Supply Manager 

(DSM)? [Yes (describe your experience:/No] 

=== How You Did the Assignment === 

Q4: Did you install the QoE Probe before doing the modelling with Flexisketch? 

[Yes/No] 

Q5: What device did you use for modelling with Flexisketch (e.g. I would have 

done it on “Sony Z2 Tablet” – you might have used another one)? 

Q6: When in the workshop video did you start the modeling (e.g. “12 minutes 

after start”)? 

Q7: When in real-world time did you start the modeling (e.g. “December 14 at 

09:04”)? 

Q8: How much time did you spend for the modelling? 

=== Your Experience of modelling with Flexisketch === 

Note again: no grades are given for this assignment – please be honest 

Q9: How good was Flexisketch as a tool for modelling requirements? [Opinion 

Score Scale, rationale] 

Q10: Being a potential requirements engineer, would you use Flexisketch again 

for requirements modelling? [Yes/No, rationale] 

=== QoE Probe === 

Q11: Approximately, how many times did you see any QoE Probe feedback form 

while you were using Flexisketch? 

  



 

  
 

153 

 

Q12: How good was the QoE Probe in trying in minimizing the disturbance of your 

modelling work? [Opinion Score Scale, rationale] 

Q13: Any other comment? 

 

  



 

  154 

 

  



 

  
 

155 

 

 

PART 3 
Gathering of Monitoring Data 



 

  

156 
Part 3: Gathering of Monitoring Data  
  

 
 

  



 

  
 

157 

 

 

 

 

Chapter 4 :  KPIs in Software Ecosystem: A 
Systematic Mapping Study 
 

 [ The chapter is based on: F. Fotrousi, S. Fricker, M. Fiedler (2014). 

“KPIs in Software Ecosystem: A Systematic Mapping Study”, 5th 

International Conference on the Software Business (ICSOB), Paphos, 

Cyprus: Springer, pp 194-211. DOI: 10.1007/978-3-319-08738-2.] 

Abstract  

To create value with a software ecosystem (SECO), a platform owner 

has to ensure that the SECO is healthy and sustainable. Key 

Performance Indicators (KPI) are used to assess whether and how 

well such objectives are met and what the platform owner can do to 

improve. This paper gives an overview of existing research on KPI-

based SECO assessment using a systematic mapping of research 

publications. The study identified 34 relevant publications for which 

KPI research and KPI practice were extracted and mapped. It 

describes the strengths and gaps of the research published so far, and 

describes what KPI are measured, analysed, and used for decision-

making from the researcher’s point of view. For the researcher, the 

maps thus capture state-of-knowledge and can be used to plan 

further research. For practitioners, the generated map points to 

studies that describe how to use KPI for managing of a SECO. 

Keywords 

Software ecosystem, digital ecosystem, performance indicator, KPI, 

success factor, systematic mapping 

4 



 

  

158 
Part 3: Gathering of Monitoring Data  
  

 
 

1.  Introduction 

software ecosystem (SECO) is about “the interaction of a set of 

actors functioning as a unit and interacting with a shared 

market for software and services, together with the relationship 

among them” (Jansen et al. 2009 ). We include here any ecosystem 

that is based on or enabled by software, including pure software, 

software-intensive systems, mobile applications, cloud, 

telecommunications, and digital software ecosystems. The inclusion 

of telecommunications, for example, is important as many modern 

software services can only be realized with appropriate ICT 

infrastructure. Companies adopt a SECO strategy to expand their 

organizational boundaries, to share their platforms and resources 

with third parties, and to define new business models (Manikas and 

Hansen 2013b; Weiblen et al. 2012). 

A SECO is frequently supported by a technological platform or 

market that enables the SECO actors in exchanging information, 

resources, and artefacts. Ownership of such a platform gives 

strategic advantages over the other SECO actors. It allows satisfying 

ever-increasing customer demands with limited own resources. It 

also allows improving one’s own knowledge about the marketplace. 

Such knowledge is necessary for innovation, evolution of a product 

or service offering, and identification of revenue opportunities 

(Barbosa and Alves 2011; IBosch 2009). 

SECO platform ownership also brings responsibilities. These include 

the definition of SECO performance objectives and management of 

the SECO to achieve these objectives. A SECO is expected to be 

healthy (Costanza and Mageau 1999) and sustainable (Chapin et al. 

1996). It is healthy when it is productive for surrounding actors, 

robust, and niche-creating (Iansiti and Richards 2006). It is 

sustainable when it maintains its structure and functioning in a 

resilient manner (Costanza and Mageau 1999). Health and 

sustainability are closely linked performance objectives (Rapport et 

al. 1998) that are often found in complex systems (Costanza 1992). 

Managing a SECO involves definition of how actors, software, and 

business models play together to achieve the SECO objectives 

A 



 

  
 

159 

 

(Manikas and Hansen 2013a) in business, technical, and social 

dimensional perspectives (Santos et al. 2012). The platform owner 

uses performance indicators for benchmarking and monitoring the 

resulting ecosystem behavior. Key performance indicators (KPI) are 

those among the many possible indicators that are important, easily 

measurable quantitatively or with an approximation of qualitative 

phenomena (Parmenter 2010). The KPI serve as early warnings 

about potentially missed SECO objectives (Westin 1998) and to 

detect patterns that are useful for predicting health and 

sustainability of the SECO (Cokins 2009). Any deviation from success 

baselines are recorded and acted upon to ensure that the main 

ecosystem’s objectives are met.  

The here presented study gives an overview of literature on KPI for 

software ecosystems. A systematic mapping methodology was 

followed to identify and classify publications based on the reported 

research and based on KPI use. The dimensions used for classifying 

research were the type of ecosystem that was studied and the type 

of result that was delivered by the research. The dimensions used for 

classifying KPI use were the researched KPI types, the SECO 

objectives these KPI were used for. 

The knowledge gap for collecting evidences about KPI studies 

motivated to systematically evaluate distribution of studies and 

provide guidance for future improvement. For practitioners, the 

generated map describes how to use KPI in the management of a 

SECO. It enables the platform owner in understanding the indicators 

that are important to assess for given SECO objectives. For 

researchers, the generated map describes state of research and helps 

finding research gaps for understanding the definition and use of 

SECO KPI.  

The remainder of the paper is structured as follows. Section 2 

presents the research objectives and defines research questions, 

search strategy, study selection, and study quality assessment. 

Sections 3 and 4 present the results by giving an overview of SECO 

KPI research, respectively SECO KPI practice. Section 5 discusses the 

results. Section 6 summarizes and concludes.  

 



 

  

160 
Part 3: Gathering of Monitoring Data  
  

 
 

2.  Research Methodology 

The goal of this study is to provide an overview of the research 

performed to investigate the use of KPI for managing software 

ecosystems. The systematic mapping approach (Petersen et al. 2008) 

allows to map the frequencies of publications over categories to see 

the current state of research. It also exposes patterns or trends of 

what kind of research is done, respectively has been ignored so far. 

Mapping the research results, in addition to the type of research, 

reveals researchers’ current understanding of KPI-related practice. 

2.1. Research Questions 
To provide an overview on publications relevant to KPI use for SECO, 

two sets of research questions are defined in Table 4-1. With the first 

set of questions we mapped foci and gaps of research about SECO 

KPI. With the second set we mapped the state of practice that was 

reported by the research. 

2.2. Systematic Mapping Approach 
To answer RQ1, RQ3, we followed the systematic mapping guidelines 

proposed by Petersen (Petersen et al. 2008). We (i) conducted 

database search with a search string that matched our research 

scope, (ii) performed screening to select the relevant papers, (iii) 

built a classification scheme based on keywording the papers’ titles, 

abstracts, and keywords, and (iv) used this classification scheme to 

map the papers.  

To answer RQ2, we modified the mapping process by using the pre-

existing classification schemes already used in (Petersen et al. 2008; 

Wieringa et al. 2006). For RQ4, we built the classification scheme by 

extracting keywords from the main body of the papers and aligning 

the emerging scheme with the relevant software industry standard. 

The research steps are explained below. 

 

 

 



 

  
 

161 

 

Table 4-1. Research questions 

SECO KPI Research Rationale 

RQ1: What kinds of ecosystems 

were studied? 

The answer to this question shows the 

intensity of SECO KPI research across 

application domains and types of ecosystems. 

Skewedness, e.g. due to a focus on just a few 

types of application domains and ecosystems, 

indicates gaps where additional research is 

needed. 

RQ2: What types of research 

were performed? 

The answer to this question shows the 

maturity of SECO KPI research. The more 

disproportioned conceptual solutions and 

empirical validation research are, the more 

there is a need for research that compensates. 

Ecosystem KPI Practice  Rationale 

RQ3: What objectives were KPI 

used for? 

The answer to this question shows the 

purposes of SECO KPI. It allows 

understanding when a SECO is considered to 

be successful and when not. Correlation with 

the answer to RQ4 allows understanding how 

the satisfaction of these SECO objectives is 

measured. 

RQ4: What ecosystem entities 

and attributes did the KPI 

correspond to? 

The answer to this question gives an 

overview of relevant KPI that are used to 

assess achievement of SECO objectives. The 

KPI show how SECO objectives are 

operationalized and quantified. Skewedness, 

a focus on just one or a few KPI, may indicate 

the degree of universality the KPI have for 

SECO management. 

 

(i) Database search. The study defined the following search strategy. 

Search String. To get an unbiased overview of KPI use in SECO, the 

search string was created with keywords that capture population 

only. The first aspect used to define the population was the 

ecosystems that can be found in a software context: software, digital, 

mobile, service, cloud, telecommunication, and ICT ecosystems. We 



 

  

162 
Part 3: Gathering of Monitoring Data  
  

 
 

also included papers that focused on software supply by adding 

software supply to the search string. The second aspect used to 

define the population was the application or use of KPI. We used the 

terms indicators, metrics, measurements, success factors, key 

characteristics, and quality attributes as synonyms for KPI. To avoid 

bias about RQ3, we did neither constrain for what purpose 

information was gathered and used. To build a broad overview of the 

research area and avoid bias, no keywords were defined in relation 

to intervention (e.g. monitoring), outcomes (e.g. improvements to a 

SECO), or study designs (e.g. case studies). 

The search string was built by concatenating the two population 

aspects with the AND operator. The search string was formulated as 

follows: software OR (software-intensive) OR digital OR mobile OR 

service OR cloud OR communic* OR telecom* OR ict) PRE/0 

(ecosystem* OR "supply network*") AND (measur* OR kpi* OR metric* 

OR analytic* OR indicator* OR "success factor*" OR "quality attribute*" 

OR "key characteristic*". 

Search Strategy. The papers were identified using the important 

research databases in software engineering and computer science 

including Scopus, Inspec, and Compendex, which support 

IEEEXplore and ACM Digital Library as well. The search string was 

applied to title, author’s keywords and abstract of these papers. The 

search did not restrict the date of the publication. 

Validation. We validated the set of identified papers by checking it 

against the papers used in the SECO literature reviews performed by 

(Barbosa and Alves 2011; Manikas and Hansen 2013b). Each paper 

used by these studies that was relevant for our study had been found 

by following the above-outlined database search. 

(ii) Screening of papers. The inputs for this step were the set of papers 

identified with step (i). The first and second authors screened these 

papers independently We screened these papers to exclude studies 

that do not relate to the use of KPI for any ecosystem-related purpose 

and to ensure broad-enough coverage of the population. We describe 

here a complete set of inclusion and exclusion criteria. 



 

  
 

163 

 

Inclusion. We included peer-reviewed journal, conference, or 

workshop papers that were accessible with full text. The included 

papers describe the use of KPI in an ecosystem context or the effects 

of such KPI on properties of the ecosystem. Due to the importance of 

networking infrastructure and digital information exchange for a 

well-functioning software ecosystem we included 

telecommunication and information technology papers in addition 

to pure SECO papers. 

Exclusion. We excluded papers that focused on the use of KPI for 

managing a member of the ecosystem only. For example, papers 

about the use of indicators for managing a single company that 

participates in the ecosystem, or a product or process of that 

company, were excluded because of their too narrow focus. We 

excluded papers that focused on other ecosystems rather than a 

software ecosystem. For example papers focus on biology, 

environmental, climate, and chemical aspects were excluded. When 

the definition of software ecosystem did not fulfill in the papers, they 

were excluded. As an example, the paper that considered Bugzilla 

and email system as software ecosystems was excluded, since such 

systems do not address the shared market concept of a SECO 

definition. Papers that study qualitative indicators using qualitative 

approaches such as a structured interview were excluded. Also, we 

excluded papers that focused on ecosystem design in place of 

ecosystem management. For example, papers about the design of 

interoperability protocols or of products or services offered to an 

ecosystem were excluded. The papers that do not Finally, to avoid 

inclusion of papers that only speculated about KPI use or effects, we 

excluded papers that did not report any empirically-grounded proof-

of-concept. 

(iii) Building the classification scheme. To answer the research questions 

RQ1, RQ3, and RQ4 we employed keywording (Petersen et al. 2008) 

as a technique to build the classification scheme in a bottom-up 

manner. Extracted Keywords were grouped under higher categories 

to make categories more informative and to reduce number of 

similar categories. We built the ecosystem classification scheme by 

extracting the types and application domains of the studied 

ecosystems. We built the classification scheme for KPI practice by 



 

  

164 
Part 3: Gathering of Monitoring Data  
  

 
 

extracting KPI assessment objectives, entities and attributes used for 

measuring the KPI. 

The keywords were extracted from the papers’ titles, keywords, and 

abstracts. When the quality of an abstract was too poor, we used the 

main body of the paper to identify the keywords. Similarly, as most 

of the papers did not included sufficient information about entities 

and attributes measured with KPI inside the abstract, we used the 

main body of the papers for keyword identification. The keywords 

obtained from extraction were then combined and clustered to build 

the categories used for mapping the papers. The clustering of 

measurement attributes was aligned with the categories described 

in ISO/IEC FDIS 25010 as far as applicable. 

To answer RQ2, we used a pre-defined classification scheme 

(Wieringa et al. 2006) that was used by earlier systematic mapping 

studies (Petersen et al. 2008). It classifies research types into 

validation research, evaluation research, solution proposals, 

philosophical papers, opinion papers, and experience papers.  

 (iv) Systematic mapping of the papers. When the classification scheme 

was in place, the selected papers were sorted into the classification 

scheme. The classifications were then calculated the frequencies of 

publications for each category. 

To answer RQ1 and RQ2 we reported the frequencies of the selected 

papers for the categories in the dimensions of ecosystems types and 

application domains, respectively in the dimensions of research type 

and research contributes type. We used x-y scatterplots with bubbles 

in category intersections to visualize the kinds of ecosystems that 

were studied. The size of a bubble is depicted proportional to the 

number of papers that are in the pair of categories that correspond 

to the bubble coordinates. The visualized frequencies make it 

possible to see which categories have been emphasized in past 

research and which categories received little or no attention. 

To answer RQ3, we first described the categories identified when 

building the classification scheme and how these categories were 

expressed in the selected papers. This description resulted in a 

dictionary for interpreting the scatterplots used for describing how 



 

  
 

165 

 

SECO KPI are used in relation to these objectives. We again used x-y 

scatterplots for showing the frequency of pairs of categories. These 

pairs allowed us to describe the attributes measured for each type of 

ecosystem entity, the measurements used in relation to the SECO 

objectives, and how KPI are obtained for various kinds of entities 

found in a SECO. 

2.3. Threats to Validity 
This section analyses the threats to validity for the taxonomies of 

construct, reliability, internal and external validity. 

Construct validity reflects whether the papers included in the study 

reflect the SECO KPI phenomenon that was intended to be 

researched. The search string was constructed in an inclusive 

manner so that it captured the wide variety of software-related 

ecosystems and the many different names given to key performance 

indicators. The common databases, used for software and 

management-related literature research, were used to find papers. 

Only after this inclusive process, manual screening was performed to 

exclude papers not related to the research objectives. The list of 

included papers was then validated against two systematic studies 

on software ecosystem (Barbosa and Alves 2011; Manikas and 

Hansen 2013b) and found that the review covers all relevant papers.  

Reliability validity refers to the repeatability of the study for other 

researchers. The study applied a defined search string, used 

deterministic databases, and followed a step-by-step procedure that 

can be easily replicated. The stated inclusion and exclusion criteria 

were systematically applied. Reliability of the classification was 

achieved by seeking consensus among multiple researchers. 

Internal validity treats refers to problems in the analysis of the data. 

These threats are small, since only descriptive statistics were used. 

External validity concerns the ability to generalize from this study. 

Generalization is not an aim of a systematic mapping study as only 

one state of research is analyzed and the relevant body of research 

completely covered. In particular, the study results about the use of 

SECO KPI, reflects the practices studied in SECO KPI research and not 

SECO KPI practice performed in general. 



 

  

166 
Part 3: Gathering of Monitoring Data  
  

 
 

3. Results: Ecosystem KPI Research 

The database search resulted in a total of 262 papers, including 46 

duplicates. After screening and exclusion, 34 papers remained and 

were included in the study. These selected papers were published 

from 2004 onwards. This section gives an overview of the research 

described in the selected papers. Appendix A lists the selected 

papers. 

3.1. Kinds of Ecosystems 
To answer RQ1, Figure 4-1 gives an overview over the ecosystems 

that our study found KPI research for. The number embedded in a 

bubble indicates how many papers were devoted to a given 

combination of ecosystem type and application domain (multiple 

classifications possible). Empty cells indicate that no corresponding 

study was found. The number on the category label indicates the 

total number of papers in that category. 

Most of the papers used the term software ecosystem to characterize 

the studied ecosystems. Special kinds of ecosystems were cloud, 

service, mobile apps, and open source software ecosystems. Less 

frequent were digital ecosystems with 44% of the papers. They refer 

to the use of IT to enable collaboration and knowledge exchange 

(Boley and Chang 2007).  

The papers addressed a variety of application domains. Most 

common were telecommunications, business management and 

software development. None of the remaining application domains 

was addressed by more than one or two papers. Thus, research is 

rather scattered, and the specifics of the various application domains 

only little understood. 

 



167

Figure 4-1. Kinds of ecosystems that were studied with KPI research. The label 
“software ecosystem” refers to those that are not considered a digital ecosystem 

(see main text).

3.2. Types of Research
To answer RQ2, Figure 4-2 presents a map of the kind of research 

performed on KPI in software-related ecosystems. Papers with 

multiple research types and contributions were classified for each 

combination of research type and contribution they presented. 

Figure 4-2. Map of research on SECO KPI and type of contributions.

Experience report papers describe experiences in working with SECO 

KPI and usually describe unsolved problems. Opinion papers discuss 

opinions of the papers’ authors. Conceptual proposal papers sketch 

new conceptual perspectives related to SECO KPI. This category 

renamed philosophical papers category (described in iii of section 

2.2) to fit the SECO KPI study. Solution proposal papers propose new 



 

  

168 
Part 3: Gathering of Monitoring Data  
  

 
 

techniques or improve existing techniques using a small example or 

a good argumentation. Validation papers investigate novel solutions 

that had not been implemented in practice (e.g. experiment, lab 

working). Evaluation papers report on empirical or formal studies 

performed to implement a solution or evaluate the implementation.  

Metric papers describe KPI for SECO. Model papers describe 

relationships between KPI. Method papers describe approaches for 

working with SECO KPI. Finally, tool papers describe support for 

work with SECO KPI. 

Most research was found in the categories of validation and 

evaluation. Research contributed with metrics, models, or methods. 

For example, R17 proposes a model that explains how health can be 

measured with relevant indicators (conceptual proposal, model) and 

validates that model with a questionnaire (validation, model). R14 

proposes a method for assessing services based on Quality of Service 

indicators (solution, method). R19 evaluates factors that affect 

successful selling in e-markets (metric, evaluation). No paper was an 

experience report or an opinion paper. No paper contributed with 

any tool. 

4. Results: Researched KPI Practice 

The papers included in this study describe the use of KPI by a 

platform owner for achieving objectives with the ecosystem that was 

enabled by the ecosystem platform. This section gives an overview 

of these objectives and the KPI that were used. 

4.1. Ecosystem Objectives Supported by KPI 
KPI were used to enable or achieve a variety of objectives. Platform 

owners aimed, at improving business, at improving the 

interconnectedness between actors, at growing the ecosystem, at 

improving quality of ecosystem, product, or services performed 

within the ecosystem, and at enabling sustainability of the ecosystem 

(answer RQ3): 

Business improvement. Research has been performed on how to 

improve business at the ecosystem level. The studied business 



 

  
 

169 

 

improvements concerned the perspectives of ecosystem activity and 

of commercial success. Ecosystem activity related to the level of 

activity of participating actors, encouragement to participate in the 

ecosystem, and the transaction volume. Commercial success related 

to sales success, innovativeness and competitiveness of the 

participating actors, and the cost of the network that enables the 

ecosystem. The activity and commercial perspectives were mixed in 

the papers, thus could not be separated in the analysis of the 

literature. 

Interconnectedness improvement. Research has been performed on 

how to improve interaction in an ecosystem, for example to reduce 

cost, improve predictability of services that are provided in the 

ecosystem, and manage trust. Interaction improvement was studied 

between individual actors and between whole networks contained 

in the ecosystem. The research differed in terms of lifecycle stage of 

an interaction and covered supplier availability, discovery, ranking 

and selection, the resulting connectivity, interaction evaluation, and 

the impact of the interaction on the actors that participated in it. 

Interaction improvement was not always an end in itself but was 

considered essential for generating business activity and 

sustainability of the ecosystem. 

Growth and stability. Research has been performed on how to 

manage growth and stability of the ecosystem. Growth and stability 

were seen as two factors that need to be managed jointly. During 

growth flexibility and controllability need to be maintained. During 

stability, a continuous co-revolution must happen. Growth and 

stability again are not ends in themselves, but thus contribute to 

sustainability and survival of the ecosystem. 

Quality improvement. Research has been performed on how to 

manage quality of ecosystems. In particular, performance, usability, 

security, data reliability, extendibility, transparence, 

trustworthiness, and quality-in-use were investigated. Quality 

management was sometimes presented as an ends in itself, for 

example by allowing comparison among multiple ecosystems, 

enabling diagnosis, improving decision-making, and achieving long-

term usage of services. At the same time, however, quality 

management was considered to be a means to encourage adoption 



 

  

170 
Part 3: Gathering of Monitoring Data  
  

 
 

and growth, improve business performance, and achieve 

sustainability. 

Enable sustainability. Research has been performed on how to 

sustain an ecosystem. Two angles were taken: self-organization and 

resource consumption. Self-organization was approached through 

continuous rejuvenation of the ecosystem. Resource consumption 

was studied in relation of electrical energy. Throughout all papers 

found in this category, sustainability was considered to be desirable 

ends for software ecosystems. 

4.2. KPI: Measured Entities 
The included papers describe measurements applied to the 

ecosystem as a whole or the parts the ecosystem consists of: actor, 

artifact, service, relationship, transaction and network.  

Actors. Actors were measured and characterized as follows. They 

were human or artificial. Examples of human or legal actors were 

sellers and developers that provide products to buyers or groups of 

organizations and firms. Examples of artificial actors were nodes in 

a telecommunication network. An actor engages in transactions in an 

ecosystem and builds relationships to other actors or artifacts. The 

transactions the seller engages in generate profit and revenue for the 

cost the seller is willing to take. Effective actors have knowledge 

about other actors or the network and has good interestingness and 

reputation for other actors. Actors are also considered to be sources 

and sinks of data and have differing ranges for data transmission. 

Performance of individuals and groups in terms of fulfilled tasks and 

decisions as well as performance of firms and organizations in terms 

of profits are measured.   

Artifacts. Artifacts such as software, codes, plugins, books, music, or 

data were measured and characterized as follows. Artifacts had a 

location in the ecosystem. They evolve, may have reputation and 

popularity, and exposed their consumers to vulnerability. 

Services. Services were measured and characterized as follows. 

Services consume energy and other resources. Services have quality 

attributes such as quality of service, security, compliance, and 



 

  
 

171 

 

reputation. Metadata and service level agreements are used to 

specify the services. The services are not fixed but evolve: services 

emerge, change, and get extinct. A special service was provided by 

the platform that laid the fundament for the ecosystem. It was 

characterized in terms of attributes like stability, documentation, 

portability, and openness. 

Relationship. Relationships were measured and characterized as 

follows. Actors enter relationships with other actors, artifacts, or 

services. A relationship connects two or more such entities. 

Examples of relationships were business connections and 

telecommunication communication links. A relationship may be 

transparent and express a trust value of the connected entities. A 

relationship is the basis for transactions, thus is used for advertising 

and building alliances. The transaction, however, is constrained by 

cost and quality of the relationship. 

Transactions. Transactions were measured and characterized as 

follows. Examples of transactions are sales of services to customers, 

server requests, and commits of code files made by developers. They 

are initiated with an offer that is measured in terms of attributes like 

price and quantity. Transactions also have a price and quantity. 

Other attributes include time to negotiate the transaction, time to 

complete, energy consumption, transmission rate, and buyer 

satisfaction. 

Network. Networks were considered as sets of entities and 

relationships that were part of a whole ecosystem. Examples were 

local or application-specific networks. Networks were characterized 

as follows. Networks were vulnerable to security threats such as data 

availability, integrity, authentication, and authorization. Networks 

differed in the node density, degree of collaboration, provisioning 

cost, and hit rate for artifacts. 

Ecosystem. Full ecosystems were characterized as follows. They have 

quality attributes like size, performance, security and energy 

consumption that can also characterize networks contained in an 

ecosystem. In addition, ecosystems exhibited lifelines, diversity, 

stability, transparency, healthiness, and sustainability.  



172Part 3: Gathering of Monitoring Data

This section and next section collaboratively provide answer for 

RQ4. The map in the left part of Figure 4-3 shows the entities that 

were studied in relation to the ecosystem objectives. Most research 

studied the measurement of the overall ecosystem to enable quality 

or business improvement. For example, R17 describes how 

performance of the ecosystem affected user satisfaction, and R13 

shows how analytics applied to the ecosystem can be used to 

improve business. Considerable research was also devoted to 

improving the interconnectedness of the ecosystem, where 

attributes of the products and services played an important role and 

also to the role of platform measurements to grow the ecosystem and 

improve quality. For example, R6 described how to use a service 

similarity measurement was used to improve ecosystem 

connectivity. R2 described how growth, diversity, and entropy 

measurements of a SOA platform were used to increase growth. R4 

described how communication quality measurements were used to 

improve the quality of a telecommunication ecosystem.

The map also shows areas where no research was published. For 

example, no research studied the role of network measurements for 

objectives other than sustainability and quality improvement.

Figure 4-3. Map of measured entities and measurement attributes in relation to 
ecosystem objectives.



 

  
 

173 

 

 

4.3. KPI: Measurement Attributes 
To make the state and evolution of the ecosystem and of its elements 

visible, a broad variety of attributes were measured. 

The following attributes categories emerged when clustering the 

attributes described in the included papers. Figure 4-4 shows how 

classes of quality attributes were merged toward new categories. 

The size category includes attributes to measure size and growth. 

Diversity includes attributes to measure heterogeneity and openness 

for such heterogeneity. Financial includes attributes to measure 

economic aspects such as investment, cost, and price. Satisfaction 

includes attributes to measure satisfaction and the related concepts 

of suitability, interestingness, learnability, usability, accessibility, 

acceptability, trust, and reputation. Performance includes attributes 

to measure performance, including resource utilization, efficiency, 

accuracy, and effectiveness. Freedom from risk includes attributes to 

measure the ability to avoid or mitigate risks and includes the related 

concerns of security, reliability, maturity, availability, and other 

related guarantees. Compatibility includes attributes to measure the 

degree to which an entity can perform well in a given context, 

interoperate or exchange information with other entities, and be 

ported from one context to another one. Maintainability includes 

attributes to measure flexibility, respectively the ability to be 

changed.  

The right part of Figure 4-3 gives an overview of the attributes 

referred to by KPI. Most research studied measurements of 

satisfaction, typically to improve business or interconnectedness. An 

example of such research is R13 that describes the use of seller 

reputation to improve business. To support quality improvement, all 

measurement attributes that relate to quality were included in at 

least one research paper, except for maintainability and size. 

Similarly, size measurements did not play any role other than for 

growth and stability. 

 

 



 

  

174 
Part 3: Gathering of Monitoring Data  
  

 
 

 

• Diversity  
• Heterogeneity  
• Openness 

• Satisfaction  
• Satisfaction 
• Suitability 
• Interestingness 
• Learnability 
• Usability 
• Accessibility 
• Acceptability 
• Trust 
• Reputation. 

 

• Performance  
• Performance 
• Resource 

utilization 
• Efficiency 
• Accuracy 
• Effectiveness 

• Financial  
• Investment 
• Cost 
• Price 

• Size  
• Size 
• Growth 

• Freedom from risk  
• Risk mitigation 
• Security 
• Reliability 
• Maturity 
• Availability 
• Guarantees.  

• Compatibility  
• Interoperability  
• Exchangeability  

• Maintainability  
• Flexibility 
• Changeability 

 
 

Figure 4-4. Merging classifications of measurement attributes 

The left part of Figure 4-5 shows how the ecosystem elements were 

measured. Satisfaction was a common attribute that was measured 

for any entity except for rules. This shows that a same attribute can 

be measured or analysed for different ecosystem entities. Also, it is 

revealed that similar measurement attributes might be collaborating 

to measure different ecosystem elements. As an example, CCCI 

(correlation, commitment, clarity and importance) measurable 

attributes were used to measure trust as well as reliability. 

The overall ecosystem and actors were the most comprehensively 

measured or analyzed entities, with a special focus on satisfaction, 

freedom from risks and performance. Some examples of such 

satisfaction measurements are provided by R13 that measured usage 

and acceptability of an ecosystem. The service followed with the next 

largest variety of measurements. R2, for example, measured entropy 

and diversity to characterize platform complexity. Only narrow sets 

of measurement attributes were applied to the business partner, 

interactions, and business. 



175

Figure 4-5. Map of measurement attributes in relation to the measured entities.

5. Discussion

The study provides a classification of KPI relevant papers in 

understanding researches, relationship with the practice, and 

assessment of research outcomes. This classification contributes to 

taxonomy, which can help for closer examination of the ecosystem or 

platform owner objectives, making them more recognizable in 

designing KPI. New KPI can be extracted for an ecosystem using this 

taxonomy, and existing KPIs can be extended or restructured 

applying the generic structure of the taxonomy.

The literature map indicates that KPI for software-based ecosystems 

is a thin area with work at all maturity levels. Journal, conference, 

and workshop papers exist. However, the number of publications is 

not sufficient, and many application domains for ecosystems 

addressed with just one or two papers. Although formulation of KPI 

might be domain dependent and similarity of objectives is not the 

only factor to select a KPI, however due to insufficient study it is 

difficult to state whether characteristics of a domain, for example 



 

  

176 
Part 3: Gathering of Monitoring Data  
  

 
 

regulation of healthcare, affects the KPI of the ecosystem that targets 

that domain. 

The included research on ecosystem KPI mostly addresses 

ecosystem measurements or measurements of satisfaction, 

performance and freedom from risks. Measurements other than 

satisfaction that are applied on elements contained in the ecosystem 

are comparatively little researched. A broader understanding of KPI 

would increase a platform owner’s flexibility in measuring, 

analyzing, and using KPI for decision-support. The understanding of 

a greater variety of KPI would also contribute to increased 

transparency of status, evolution, and other aspects of the ecosystem. 

6. Conclusion 

The here presented study gives an overview of literature on the use 

of KPI for software-based ecosystems. A systematic mapping 

methodology was followed and applied to 34 included studies 

published from 2004 onwards.  

To respond to RQ1 and RQ2, research was broad but thin. Two major 

kinds of ecosystems were researched: software ecosystems and 

digital ecosystems. Many application domains were addressed, but 

most of them with one or two papers only. The published research 

was mature with journal, conference, and workshop papers that 

covered metrics, models, and methods. In response to RQ3 and RQ4, 

KPI research was skewed. Most research studied ecosystem KPI for 

improving the interconnectedness between individual actors and 

subsystems of the ecosystem. Overall, most KPI were about 

satisfaction, performance and freedom from risks measures.  

The results of the mapping study indicate that more research is 

needed to better understanding of KPI for software-based 

ecosystems. In particular, a deeper understanding of how the 

application domain affects an ecosystem’s KPI is needed. Also, an 

important research opportunity is the identification, analysis, and 

evaluation of KPI. Such research could make the work with KPI more 

flexible, because a greater variety of KPI would be known and 

available for the practitioner to use. 



 

  177 

 

Appendix 

The Selected Studies of the systematic mapping researc. 

ID References 

R1 
Sabry, N., Krause, P.: A digital ecosystem view on cloud computing. 
6th IEEE International Conference on Digital Ecosystems 
Technologies (DEST). Piscataway, NJ, USA (2012) 

R2 

Fiegler, A., Dumke, R.R.: Growth-and Entropy-Based SOA 
Measurement: Vision and Approach in a Large Scale Environment. 
Software Measurement,Joint Conference of the 21st Int'l Workshop 
on and 6th Int'l Conference on Software Process and Product 
Measurement (IWSM-MENSURA). Los Alamitos, CA, USA (2011) 

R3 

Pranata, I., Skinner, G., Athauda, R.: TIDE: Measuring and evaluating 
trustworthiness and credibility of enterprises in digital ecosystem. 
International Conference on Management of Emergent Digital 
EcoSystems. San-Francisco, USA (2011) 

R4 
Yang, Y., Xu, Y., Li, X., Chen, C.: A loss inference algorithm for wireless 
sensor networks to improve data reliability of digital ecosystems. 
Industrial Electronics, IEEE Transactions on 58, 2126-2137 (2011)  

R5 

Savola, R.M., Sihvonen, M.: Metrics driven security management 
framework for e-health digital ecosystem focusing on chronic 
diseases. International Conference on Management of Emergent 
Digital EcoSystems. Addis Ababa, Ethiopia (2012) 

R6 

Dong, H., Hussain, F.K., Chang, E.: A service concept recommendation 
system for enhancing the dependability of semantic service 
matchmakers in the service ecosystem environment. Journal of 
Network and Computer Applications 34, 619-631 (2011) 

R7 

Barolli, L., Yang, T., Mino, G., Durresi, A., Xhafa, F.: A simulation system 
for WSNs as a Digital Eco-System approach considering goodput 
metric. 4th IEEE International Conference on Digital Ecosystems and 
Technologies (DEST). Dubai, United Arab Emirates (2010) 

R8 

Nankani, E., Simoff, S., Denize, S., Young, L.: Enterprise university as a 
digital ecosystem: Visual analysis of academic collaboration. 3rd IEEE 
International Conference on Digital Ecosystems and Technologies, 
DEST'09. Istanbul, Turkey (2009) 

R9 

Fabregues, A., Madrenas-Ciurana, J., Sierra, C., Debenham, J.: Supplier 
performance in a digital ecosystem. 3rd IEEE International 
Conference on Digital Ecosystems and Technologies, DEST'09. 
Istanbul, Turkey (2009) 

R10 

van den Berk, I., Jansen, S., Luinenburg, L.: Software ecosystems: a 
software ecosystem strategy assessment model. Fourth European 
Conference on Software Architecture. ACM, Copenhagen, Denmark 
(2010) 



 

  

178 
Part 3: Gathering of Monitoring Data  
  

 
 

ID References 

R11 

Taghizadeh, M., Plummer, A., Aqel, A., Biswas, S.: Towards optimal 
cooperative caching in social wireless networks. Global 
Telecommunications Conference (GLOBECOM). IEEE, Miami, Florida, 
USA (2010) 

R12 

Dong, H., Hussain, F.K., Chang, E.: Semantic service retrieval and QoS 
measurement in the digital ecosystem environment. International 
Conference on Complex, Intelligent and Software Intensive Systems 
(CISIS). Krakow, Poland (2010) 

R13 
Tian, C.H., Cao, R.Z., Zhang, H., Li, F., Ding, W., Ray, B.: Service analytics 
framework for web-delivered services. International Journal of 
Services Operations and Informatics. 4, 317--332 (2009) 

R14 
Chen, W., Chang, E.: A method for service quality assessment in a 
service ecosystem. International Conference on Digital Ecosystems 
and Technologies Inaugural IEEE. Piscataway, NJ, USA (2007) 

R15 

Koendjbiharie, S., Koppius, O., Vervest, P., van Heck, E.: Network 
transparency and the performance of dynamic business networks.  
4th IEEE International Conference on Digital Ecosystems and 
Technologies (DEST). Dubai, United Arab Emirates (2010) 

R16 

Jansen, S.: How quality attributes of software platform architectures 
influence software ecosystems. International Workshop on 
Ecosystem Architectures. Saint Petersburg, Russian Federation 
(2013) 

R17 
Salem, A.M.B.H., Ghadhab, B.B.: Performance Measurement practices 
in Software Ecosystem. International Journal of Productivity and 
Performance Management. 62, 514 - 533 (2013) 

R18 

Goeminne, M., Mens, T.: A framework for analysing and visualising 
open source software ecosystems. Joint ERCIM Workshop on 
Software Evolution (EVOL) and International Workshop on 
Principles of Software Evolution (IWPSE). Antwerp, Belgium (2010) 

R19 

Pereira, A., Duarte, D., Meira Jr, W., Góes, P.: Assessing success factors 
of selling practices in electronic marketplaces. International 
Conference on Management of Emergent Digital EcoSystems. Lyon, 
France (2009)  

R20 
Dong, H., Hussain, F.K., Chang, E.: A QoS-based service retrieval 
methodology for digital ecosystems. International Journal of Web and 
Grid Services 5, 261-283 (2009) 

R21 
Fachrunnisa, O., Hussain, F.K.: A methodology for maintaining trust in 
industrial digital ecosystems. IEEE Transactions on Industrial 
Electronics 60, 1042-1058 (2013) 

R22 
La, H.J., Kim, S.D.: A model of quality-in-use for service-based mobile 
ecosystem. 1st International Workshop on the Engineering of Mobile-
Enabled Systems (MOBS). IEEE, San Francisco, CA, USA (2013) 

R23 
Ion, M., Danzi, A., Koshutanski, H., Telesca, L.: A peer-to-peer 
multidimensional trust model for digital ecosystems. 2nd IEEE 



 

  
 

179 

 

ID References 
International Conference on Digital Ecosystems and Technologies 
(DEST). IEEE, Phitsanuloke, Thailand (2008) 

R24 

Enokido, T., Aikebaier, A., Takizawa, M.: An integrated power 
consumption model for communication and transaction based 
applications. International Conference on Advanced Information 
Networking and Applications (AINA). Biopolis, Singapore. IEEE 
(2011) 

R25 
Wright, J.L., McQueen, M., Wellman, L.: Analyses of two end-user 
software vulnerability exposure metrics (extended version). 
Information Security Technical Report 17, 173-184 (2013) 

R26 

Böhmer, M., Ganev, L., Krüger, A.: Appfunnel: A framework for usage-
centric evaluation of recommender systems that suggest mobile 
applications. International conference on Intelligent user interfaces. 
ACM, Santa Monica, CA, USA (2013) 

R27 
Eklund, U., Bosch, J.: Architecture for embedded open software 
ecosystems. Journal of Systems and Software - Article in Press (2014) 

R28 
Zhang, J., Liang, X.J.: Business ecosystem strategies of mobile network 
operators in the 3G era: The case of China Mobile. 
Telecommunications Policy 35, 156-171 (2011) 

R29 

Walden, J., Doyle, M., Lenhof, R., Murray, J., Plunkett, A.: Impact of 
plugins on the security of web applications. 6th International 
Workshop on Security Measurements and Metrics. ACM, Bolzano-
Bozen, Italy (2010) 

R30 

Straub, D., Rai, A., Klein, R.: Measuring firm performance at the 
network level: A nomology of the business impact of digital supply 
networks. Journal of Management Information Systems 21, 83-114 
(2004) 

R31 
Vasilescu, B., Serebrenik, A., Goeminne, M., Mens, T.: On the variation 
and specialisation of workload-A case study of the Gnome ecosystem 
community. Empirical Software Engineering - Article in Press (2013) 

R32 

Luna, J., Ghani, H., Vateva, T., Suri, N.: Quantitative Assessment of 
Cloud Security Level Agreements: A Case Study. 7th International 
Conference on Security and Cryptography. SECRYPT. INSTICC Press, 
Setubal, Portugal (2012) 

R33 

van Angeren, J., Blijleven, V., Jansen, S.: Relationship intimacy in 
software ecosystems: a survey of the dutch software industry.  
International Conference on Management of Emergent Digital 
EcoSystems. ACM, San Francisco, CA, USA (2011) 

R34 

Liu, Y., Fan, Y., Huang, K.: Service Ecosystem Evolution and 
Controlling: A Research Framework for the Effects of Dynamic 
Services. International Conference on Service Sciences (ICSS). IEEE, 
Shenzhen, China (2013) 

 
  



 

  

180 
Part 3: Gathering of Monitoring Data  
  

 
 

  



 

  
 

181 

 

 

 

 

Chapter 5 :  Software Analytics for 
Planning Product Evolution 

 

[The chapter is based on: F. Fotrousi, S. Fricker (2016). “Software 

Analytics for Planning Product Evolution”, 7th International 

Conference of Software Business (ICSOB), Ljubljana, Slovenia: 
Springer, pp. 16-31. DOI: 10.1007/978-3-319-40515-5_2.] 

Abstract  

Evolution of a software product is inevitable as product context 

changes and the product gradually becomes less useful if it is not 

adapted. Planning is a basis to evolve a software product. The 

product manager, who carries responsibilities of planning, requires 

but does not always have access to high-quality information for 

making the best possible planning decisions. The current study aims 

to understand whether and when analytics are valuable for product 

planning and how they can be interpreted to a software product plan. 

The study was designed with an interview-based survey 

methodology approach through 17 in-depth semi-structured 

interviews with product managers. Based on results from qualitative 

analysis of the interviews, we defined an analytics-based model. The 

model shows that analytics have potentials to support the 

interpretation of product goals while is constrained by both product 

characteristics and product goals. The model implies how to use 

analytics for a good support of product planning evolution. 

Keywords  

Analytics, Measurements, Product Planning, Software Evolution 

5 



 

  

182 
Part 3: Gathering of Monitoring Data  
  

 
 

1. Introduction 

oftware products are evolved throughout their life cycle through 

extension and adaptation of functionality and quality (Rajlich 

and Bennett 2000). Such evolution is inevitable as product 

context changes and a software gradually becomes less useful if it is 

not adapted (Lehman 1980). The flexibility of service-oriented 

approaches enables such evolution thinking (Gold et al. 2004). Early 

release of a minimal viable product followed by evolution is 

beneficial for the product organization because it allows increasing 

return on investment when compared with a late release of a near-

perfect product (Choudhary 2007; Denne and Cleland-Huang 2004). 

Also, early release of a product allows learning about actual 

customer wants and needs; and the use of such market information 

in later product evolution is determinant for product success (Ottum 

and Moore 1997). 

Mature companies plan how they intend to achieve their strategic 

objectives and satisfy market needs (Fricker et al. 2012; Kittlaus and 

Clough 2009). Planning concerns the product portfolio, the long-

term roadmap of each product, and the short-term release plans 

(Bekkers et al. 2010). Portfolio management is about the strategic 

choice of which markets, products, and technologies the product 

organization addresses and, consequently, how it intends to spend 

its scarce resources on marketing, engineering, and research 

(Cooper et al. 1999). Roadmapping supports strategic and long-

range planning for exploring evolving markets, products, and 

technologies and for coordinating the actions of the product 

organization to address opportunities and threats (Phaal et al. 2004). 

Release planning, finally, addresses the short-term time horizon by 

selecting an optimum set of features to be delivered in a release so 

that competing stakeholder demands, benefits for the product 

organization, and available resources are balanced (Svahnberg et al. 

2010). The impact of product planning, in comparison to the absence 

of such planning, are shorter projects, fewer delays, and improved 

quality (Ebert 2007). 

Product plans are based on information about company goals, 

market trends, product requirements, and stakeholder priorities 

S 



 

  
 

183 

 

(Bekkers et al. 2010). That information is collected and the resulting 

plans validated by consulting company-external stakeholders such 

as customers, partners, and consultants that monitor the market and 

company-internal stakeholders such as marketing, sales, research, 

development, support, sales, and company board representatives. 

Many techniques exist for such consultation of stakeholders, 

including workshops (Phaal et al. 2007), focus groups (Krueger 

2009), and surveys (Fowler 2009). Stakeholder consultation is 

essential for achieving clarity, support, and stability of the product 

vision and the plans that refine it (Lynna and Akgünb 2001). 

Even-though stakeholder consultation is widely established and 

considered good practice; the value of information obtained by this 

approach is limited, especially in a context with many users and 

customers. The consulted representatives are intermediaries to the 

real stakeholders. Non-probabilistic sampling, especially 

convenience sampling, tends to produce biased input (Robson 2002). 

Even if a representative set of stakeholders is identified, it is 

questionable whether their expressed opinion corresponds to the 

actual interest. An expressed customer wish does not necessarily 

translate to a buying decision (Howard and Sheth 1969). Finally, 

dependency on stakeholders exposes the product manager to power 

and politics. Stakeholders exert their power by telling the product 

manager what to do and by creating a reality in which the product 

manager has to act according to these instructions (Milne and 

Maiden 2012). The resulting political decisions risk benefiting the 

most powerful of these stakeholders, but not necessarily the product. 

This paper proposes the use of software analytics (Zhang et al. 2011) 

as a new source of information for product planning evolution. 

Analytics are the quantitative measures of an entity (Davenport and 

Harris 2007), which provide insight and actionable information 

(Zhang et al. 2011) for a data-driven decision making (Buse and 

Zimmermann 2010; Buse and Zimmermann 2012). Analytics have 

the potential to become useful decision-support for software made 

available to customers and users, but still is undergoing evolution. In 

contrast to stakeholder consultation, measurement of product use 

and quality provides evidence that is representative, unbiased, and 

free from power and politics. 



 

  

184 
Part 3: Gathering of Monitoring Data  
  

 
 

Based on a review of existing literature on software product planning 

and analytics, the paper introduces a conceptual model that connects 

measurements of the software product to product planning 

decisions. The study explores the connection by discussing it in 

interviews with 17 software product managers. The Inductive 

content analysis method (Elo and Kyngäs 2008) was used to identify 

how the measurements would be interpreted and used for product 

planning decision-support. The results provide insights for method 

and tool engineering (Brinkkemper 1996) and for research targeted 

at simplifying product planning and improving the reliability 

product planning decisions. 

This paper extends an earlier paper that presented the statistical 

analysis performed to understand product manager preferences for 

analytics (Fotrousi et al. 2013). The present paper gives an in-depth 

analysis whether and when analytics are valuable for product 

planning and how the interviewed product managers would use 

analytics for obtaining product planning decision-support for 

evolution. 

The remainder of the paper is structured as follows. Section 2 

reviews existing work in software analytics and introduces a 

conceptual model that describes how software analytics provide 

decision-support for product planning. Section 3 describes the 

research design used in the study. Sections 4 presents the empirical 

results and analyze the collected data. Section 5 discusses the results 

and their implications on practice and research. Section 6 

summarizes and concludes the paper. 

2. Background 

Software product analytics are the quantitative measures, collected 

during product use, giving actionable insight (Zhang et al. 2011) for 

deciding about product evolution (Buse and Zimmermann 2010). 

The actionable insight characteristics of analytics differentiate it 

from measures or metrics terms, which are used interchangeably in 

literature (e.g. ISO-9126 used the term metrics but replaced by 

measures in ISO 15393). Some literature refers to analytics as the 



 

  
 

185 

 

process of developing actionable insight (Cooper 2012). However, 

our definition emphasizes analytics as quantitative measures. 

In product planning context, analytics measures a product, feature, 

or quality attribute. A product consists of features (Gorchels 2000) 

and each feature is composed of a set of functional and non-

functional requirements (Fricker and Schumacher 2012). A product 

manager should deal with decision-making about creation, change, 

deletion, prioritization or allocation concerning product, features or 

requirements. Table 5-1 gives an overview of decisions that can be 

made during the planning of a software product. The decisions are 

distributed based on the practice areas including portfolio 

management, roadmapping, and release planning.  

Table 5-1. Taxonomy of product planning decisions 

Practice Area Decision Object Decision Alternatives 

Portfolio 

Management 

Products in the 

company’s portfolio 

C
re

at
e 

E
n

h
an

ce
, C

h
an

ge
 

P
ri

o
ri

ti
ze

 

R
em

o
ve

 

A
ll

o
ca

te
 R

es
o

u
rc

e 

A
ll

o
ca

te
 t

o
 R

el
ea

se
 

C
o

n
fi

rm
 T

ec
h

n
o

lo
gy

 

Product 

Roadmapping 

Features of a 

product 

Release Planning 

Requirement in a 

feature selected for 

release 

 

The decisions of product planning have a strong relationship with 

software product delivery. The trend of changing the software 

delivery from packaged product to SaaS (Software as a Service) 

delivery model (Cusumano 2008) implies faster and smaller release 

of new features (Choudhary 2007), ease of developing more features 

upon request (Choudhary 2007) in addition to facilitating data 

collection to support planning decisions. SaaS delivery model 

enables monitoring of software use and provides first-hand 

information about market, attractiveness of software and its 

features.   

 



 

  

186 
Part 3: Gathering of Monitoring Data  
  

 
 

Table 5-2. Taxonomy of measurements for SaaS-based applications 

Mapped 

Entities to 

product  

Entities  Attributes 

Health Usage Context 

Product Website Errors, 

Downtime, 

Response 

time, 

Throughput

, Attacks 

 

Use, Time between 

uses, Duration of 

use. 

 

Users, New users, 

Returning users, 

Referrers, 

Location/ISP per 

use, Search engines 

and keywords, 

Campaigns, 

Browsers, 

Operating systems, 

Languages, Plugins, 

Screen resolutions. 

Feature/ 

content 

Page Errors, 

Response 

time 

Use, Time between 

uses, Duration of 

use, Entrance, Click 

activity, Depth of 

use, Click 

stream/path, Exit, 

Bounce. 

Users, Search 

engines and 

keywords, 

Campaigns 

 

GUI  

Requiremen

t 

GUI 

Element 

- Use, Time between 

uses, Click activity, 

Click stream/path. 

- 

 

Table 5-2 illustrates a taxonomy of the measurement attributes in 

SasS based products. For such products, the measurement attributes 

belong to entities such as a product, feature/content or GUI 

requirement that can be mapped to entities of a website, page or GUI 

element in a general web application. Product managers 

conceptualize a web application as a product that consists of features 

instead of pages. Page is the definable unit of content. A feature can 

be one page, part of a page or distributed among pages. A request for 

the feature can be defined as a page request. Similar to a feature, a 

page can be conceptualized as a content, since it provides an 

additional information resource for the feature contributing to the 

end user knowledge. In a SaaS-based product, functional 



 

  
 

187 

 

requirements may belong to graphical elements of a feature (i.e. 

page) measurable for a GUI requirement entity.  

The second part of the taxonomy presented in Table 5-2 categorizes 

the corresponding measurement attributes based on the 

measurement purpose for products’ health, usage and context. The 

attributes corresponding to health of entities inform technical 

quality of services (Menasce 2002). The category of usage 

measurement attributes specifies the key data for understanding a 

traffic behavior of users (Srivastava et al. 2000) from the entity-use 

perspective. Context measurement attributes address the 

circumstances of users or sources in which entities’ requests are 

issued from (Clifton 2012). 

The taxonomy in Table 5-2 introduces the measurement attributes 

belong to web analytics context (Kohavi et al. 2002). The taxonomy 

excludes other attributes such as those discussed in business 

analytics (Holsapple et al. 2014), which support broader aspect than 

customer centric application. Business analytics provide better 

insights particularly from operational data stored in transactional 

systems to inform sales, marketing, price optimization and 

workforce analysis (Kohavi et al. 2002). The data are usually 

collected offline by the executive staff in a company (Shung and 

Junyu 2012) or an e-commerce platform (Kohavi et al. 2002).  

This section confirms the usage of software analytics for product 

planning, but that it is yet to be understood how the measurements 

would be used for product planning evolution. These are the aims of 

the current study. 

3. Research Design 

To achieve the discussed aims, we designed an inductive study based 

on product managers’ interpretations of analytics for product 

planning. We explored the following research question:  

RQ: How are analytics used for planning product evolution? 

To answer the research question, we conducted an interview-based 

survey with the purpose of identifying the relation between analytics 



 

  

188 
Part 3: Gathering of Monitoring Data  
  

 
 

and decisions of product planning. We performed data collection 

using semi-structured phone interviews. For the interviews, we 

initially designed the questionnaires, but we also asked the 

interviewees about their motivations for the provided answers. To 

avoid disadvantages of telephone survey related to lack of visual 

material and avoid complexity, the screen of the interviewer’s 

computer that presents the questionnaire was shared with 

interviewees through web-based screen sharing applications. 

Samples: We asked a well-established consultancy company in 

software product management to introduce experienced SaaS 

product managers in a wide variety of SaaS contexts. We selected 17 

product managers from 3 micro, 4 small, 7 medium, and 3 large 

companies. The product managers managed 7 new respectively 10 

already existing software products. All interviews were structured 

alike. The similarity of questions, homogeneity of interviewees and 

number of interviews could make the saturation of the interview 

results (Guest et al. 2006). 

Designing the instrument: We designed a questionnaire in which 

the taxonomy of measurement attributes discussed in section 2 was 

a base for asking product managers how they would use analytics. 

The questionnaire was started with questions about context facets of 

the product, organization (company size and development team 

size) and people (role and experience). Questions about product 

planning formed the core of the interview, in two parts: “Planning 

Decisions” and “Analytics”. In the first set of questions, the 

interviewees were asked to select a product that they have planned 

and are most satisfied with. Then questions were asked about the 

planning decisions that the interviewees usually take for the selected 

product. Later on, the interviewees were asked to rate the 

importance level of measurement-categories and measurement-

attributes for taking the decisions and provide comments for their 

reasons behind the selections.  

Interviews were piloted by two product managers and two students 

having product planning knowledge. After initial testing and several 

refinements, the interviews with the product managers were 

scheduled.  



 

  
 

189 

 

Selecting and presenting the results: We recorded the interviews 

by getting permissions from interviewees for the sake of future 

reference and transcribed for qualitative analysis of their 

argumentations. From the selected applications, 4 were “Business 

oriented”, 7 were “Consumer-oriented” software and 5 were 

“information display and transaction entry”. 41.2% of the products 

were new products, and 58.8% of the responses were evolutionary 

products. The distribution of interviews among different application 

magnifies the difference of product characteristics on interview 

results.   

Analysis method: We used inductive content analysis approach (Elo 

and Kyngäs 2008) for analyzing and coding the argumentations of 

the interviewees. In the first step of the analysis, we selected a unit 

of arguments, tagged with the headings describing the 

argumentations’ concepts for the role of analytics, and repeated the 

process for all arguments. In the next steps, we grouped the headings 

in two rounds to reduce the number of similar categories in each 

round. The categorization provided a mean of interpreting the 

phenomenon, increasing understandability, and facilitating decision 

making ability (Elo and Kyngäs 2008). At the end of the content 

analysis, we performed abstraction, which led to general 

descriptions and further discussions based on the categories. During 

the process, initial codes were gradually improved to form the final 

codes.  

4. Analysis and Results 

4.1. A Model for Analytics-based Product Planning 
By the analysis of interviewees’ argumentations, we could conclude 

that product managers use analytics to interpret the product goals 

while the analytics are constrained by both product characteristics and 

product goals. This relation has been illustrated in Figure 5-1.  

 



190Part 3: Gathering of Monitoring Data

Figure 5-1. A model for anlaytics-based product planning

For building and evolution of a product, product managers define 

product goals aligned with the companies’ business goals. The 

essential goal of a product is to ensure that a product is built to 

deliver business values to a specific set of customers and meet 

important business goals of companies.

The analysis of interviewees’ argumentations showed that product 

managers did not recognize some analytics useful for specific 

characteristics of a software product. In another word, product 

characteristics limit the scope of using analytics. Table 5-3 in 

Appendix provides a list of product characteristics and 

corresponding supportive quotes about constraining analytics. As an 

example, the application type filters and constrains the applicable 

measurements:

“For our specific product, error and response time 

could be used, but others healthiness 

measurements did not have a role in our intranet-

based product.”

Coding the argumentations clarified that analytics can be used to 

interpret products’ goal in terms of assisting product manager to 

evaluate how far product goals are achieved. These products’ goals 

might also constrain the analytics. Table 5-4 in Appendix outlines the 

interviewees’ interpretation of analytics for product planning. The 

extracted codes for product goal characteristics (i.e. the left column 

of Table 5-4) reveal that product managers mostly addressed a 

dimension of product quality as a goal. “User satisfaction”, “customer 

satisfaction”, and “freedom from risk” are quality in use attributes in 

ISO/IEC 25010. The usability, functional suitability, maintainability, 

reliability, and performance efficiency codes are static and dynamic 

properties of software products in the quality model of ISO/IEC 



 

  
 

191 

 

25010. Such analytics support product evolution decisions from the 

technical perspectives.  

Also, extracted code “market positioning” for product goal 

characteristics (i.e. the left column of Table 5-4), introduces a 

business goal (Clements and Bass 2010), to be interpreted by 

analytics. Such goals complement the technical evaluation of the 

product to give 360-degree view to the product manager for taking 

decisions (Ebert and Brinkkemper 2014).  

Product managers define product goals alongside with business 

goals considering inputs from stakeholders. So analytics can point 

out to the level that a product goal has been achieved. On the other 

hand, the product goals can constrain analytics and specify which 

measurements have more or less value to achieve the desired level 

of the goals: 

“For referral source measures, if I can find out in 

what segment the user belongs to, and then it is 

very important. If from the measures, I can find 

out from which country they use it, it is mostly less 

important.” 

The example indicates that extracting statistics about user’s segment 

from referral source attributes is valuable and can be interpreted 

toward a product goal, while other statistics of referral sources might 

not be valuable for this case. For all codes, although interviewees’ 

argumentations were not available to support both interpretations 

and constraints, the logical relations between interpreting product 

goals and constraining analytics can cover the argumentation 

shortage: 

“Click steam is important to see the sequence of 

clicking to track the usage and see do the users 

follow the pattern in a right way or not.” 

The example illustrates that high level of click streams might 

interpret a good level of user satisfaction for the feature and can 

strengthen the quality of the feature. Logically it is evident that 

achieving user satisfaction wishes to have information about click 

streams, which strengthen the constrained relations.  



 

  

192 
Part 3: Gathering of Monitoring Data  
  

 
 

4.2. Validation of the Model 
The model in Figure 5-1 was validated by examples of product 

managers’ experiences. We mapped argumentations of product 

managers (i.e. interviewees) for different groups of products to the 

model. The mapping helped us to check whether the chains of 

arguments can support the model. The products that interviewees 

selected during the interviews belonged to three product types: 

“Consumer-oriented software”, “Business oriented” and 

“Information display and transaction entry”. For each product type, 

one interview was selected to show how the shifting from 

constraining the analytics to interpretation of the product goal is 

performed. Table 5-5 in Appendix presents three examples of 

different products. The following example shows how 

argumentations of an interview (first row in Table 5-5) can support 

the proposed model. 

Based on the characteristics of a mobile application, “referral source 

is not important [analytics] because users are from all over the 

world”. “Dos and worm attacks are not important [analytics] in an 

iPhone application” but when the product is mature, the other 

“product healthiness statistics are extremely important because 

having errors and bad usability makes it hard [for users] to 

understand a feature”. By collecting data about product healthiness 

“The errors [analytics] can be seen very quickly and repaired in each 

month release”. So product manager will monitor analytics to find 

out error and take an action toward a healthy product. Having a 

healthy product will facilitate the customer benefit goal.  

In this example “mobile application” is the product with specific 

characteristics, “referral source, Dos attacks and worm attacks” are 

analytics and “customer benefit goal” is the product goal. The 

relations between product characteristics, analytics, and product 

goals could confirm the relations defined in Figure 5-1. Similarly, the 

other argumentations can also confirm the defined relations in the 

model. 

 



193

5. Discussion

In this paper, we contribute to creating a model for understanding 

how analytics are used for planning of a software product. The study 

introduces a new perspective for product planning by applying 

analytics. Analytics are filtered based on product characteristics and 

product goals. The analytics are interpreted to evaluate the level of 

product goals’ fulfilments. The evaluation enhances a product 

manager’s intuitions to help to find out the rationales for his 

decisions. Deviation from the product goal requires an action that 

reflects a new decision in the product plan (Kittlaus and Clough 

2009). 

The results have implications for research on understanding the 

relations between product characteristics, analytics and product 

goals for supporting product evolution. The results have also 

implications for product managers of software vendors on 

interpreting analytics to use data science as a basis for decision 

supports of product planning. In Figure 5-2, we propose a product 

manager to carry out a chain of activities to take planning decisions 

for product evolution by the supports of analytics.

Figure 5-2. Suggested activities for product managers to support planning 
decisions and product evolution by analytics

In step 1, the product manager prepares a list of goals corresponding 

to the candidate product. The study showed in a SaaS-based product, 

most of the product managers set quality goals with the focus on 

quality-in-use (ISO/IEC 25010). In this study product managers 

looked for acceptable perceived experience of use (efficiency), 

acceptable perceived results of use (effectiveness), acceptable 

perceived consequences of use (Freedom from risks) and the 



 

  

194 
Part 3: Gathering of Monitoring Data  
  

 
 

customer’s satisfaction in a particular context of use (Herrera et al. 

2010). Quality of services and marketing goals were also on the list 

of goals, with lower priority than the quality-in-use goals.  

In step 2, from the general list of analytics (i.e. created using a general 

list of measurement attributes such as Table 5-2), the product 

manager excludes those with less importance based on the defined 

product characteristics and goals. The study showed some of the 

factors that constrain the analytics for product planning. Product 

characteristics such as product’s context, features, users, platform, 

network type and maturity constrain the analytics for product 

planning. Also, product goals such as managing the quality of 

product, managing market positioning and organization grows can 

constrain the analytics. Although few goals were discussed by the 

interviewees, it is not a big deal to generalize to different goals such 

as growth and continuity of the organization, meeting financial, 

personal objectives, and etc. (Clements and Bass 2010).  

In step 3, the included analytics are measured, analysed, and 

interpreted to provide required information and inform the product 

managers’ decisions. The alignment of the decisions with the product 

goals is investigated in step 4. Argumentations of interviews showed, 

product managers usually benefit from analytics about product and 

feature usages, which supports goals corresponding to functional 

suitability and usability. Product healthiness analytics support 

performance efficiency, reliability and security goals. The result is in 

the same direction with the study that recognized feature use, 

product use, response time, users, error and downtime as the most 

preferred measurements for planning, despite planning decisions’ 

types (Fotrousi et al. 2013). To create, remove, or enhance a feature, 

the data trends provide a broad view of requirements or feature 

desirability in the current or even future time and clarify how these 

changes can impact the product’s goal. Comparing the corresponding 

measurements’ impacts on the defined goals can prioritize features. 

This impact can support both reactive and proactive planning for an 

evolution of the product. 

The chains of interrelated activities explained in step 3 are mapped 

to the measurement information model defined in ISO 15939. We 



 

  
 

195 

 

propose to enhance the model by adding a box for product goals with 

two outgoing arrows: One to constrain measurement attributes and 

one to support the information needs. The enhancement would adapt 

the ISO 15939 to support product evolution using analytics. 

The proposed model in Figure 5-1 is not specific to product planning 

of a traditional software development, but the model may support 

planning of products using modern development approaches 

(Olsson and Bosch 2014) such as an agile development, continuous 

integration, and continuous deployment. In such approaches instead 

of listing the product goals in the beginning (i.e. refer to step1), sub-

goals of the corresponding iteration are identified instead. However, 

for the iterations that do not release a software product or prototype, 

analytics approach is not applicable. Because the prerequisite for 

using runtime analytics for product planning is to have a software 

prototype or product. 

The study was limited to 17 answers of product managers 

experienced in SaaS-based products. However, the stratified 

sampling ensured the results are from the variety of product 

managers. Although the study focused on analytics of SaaS-based 

products, the model in Figure 5-1 could be generalized to the other 

application domains, by considering that meaningful analytics may 

vary in different categories of products. For example, Throughput 

measurement does only make sense in networked-based 

applications. Furthermore, another limitation was due to the choice 

of product managers for focusing on roadmapping decisions. More 

detailed study of portfolio management and release planning 

decisions may reveal other constraints on analytics in future. It is 

also valuable for researchers to know which measurements support 

each product goal and how the product manager may prioritize the 

measures, which we propose as future work.  

6. Conclusion 

Products are the artefacts to satisfy the customers' needs, and hence 

product managers require bringing the voice of market and 

customer to the product planning processes, where this happens 

effectively through a data-driven endeavour of sensing and 



 

  

196 
Part 3: Gathering of Monitoring Data  
  

 
 

understanding the requirements. Different types of analytics assist a 

product manager in product planning, where each might be gathered 

through a different channel and process. SaaS-based product 

delivery facilitates gathering a new range of detailed, usable and real-

time product-use data. Measuring and analysing the data to support 

product-planning decisions are targeted by analytics.  

This study introduced two taxonomies as inputs for the other parts 

of the study: A taxonomy of SaaS-based measurements in categories 

of two dimensions: “Product”, “Feature/content”, “GUI Elements” in 

the first dimension, and “healthiness”, “usage”, and “context” in the 

second dimension. The second taxonomy was related to planning 

decisions taken in portfolio management, roadmapping and release 

planning. 

To present how analytics assist product managers and contribute to 

product planning, an interview-based survey was conducted with 

professionals in the product management area by focusing on 

roadmapping decisions since the interviewees were experienced 

more. Through the interview-based survey, the justifications of 

interviewees for assigning a value to a measurement show that both 

product characteristics and product goals constrain analytics, while 

it is interpreted to product goals. In the other word, product 

characteristics and product goals specify which analytics can assist 

product managers in achieving the product goals. 

The findings helped us to propose an analytics-based model. Some 

parameters such as product maturity, users, network type, context, 

and technology change the scope of analytics usefulness for product 

planning. Analytics can be motivators for product managers to 

achieve goals for market positioning, meeting quality-in-use (i.e. 

customer and user satisfaction) and improving product quality 

(usability, functional suitability, maintainability, reliability and 

performance efficiency). Therefore, even limited list of analytics will 

be helpful to gain good support for taking planning decisions aligned 

with the product goals. In the case that analytics shows any deviation 

from the product goal, the product manager takes a constructive 

decision to prevent its occurrence or, at least, decrease negative 

effects. The analytics-based model can be used in various application 



 

  
 

197 

 

domains rather than SaaS, when collecting the customized analytics 

for a particular domain is applicable. 

Acknowledgments. Parts of this work have been done with the support 

of the SUPERSEDE project funded by the European Union’s ICT 2014 

under grant agreement no 644018. 

Appendix 
This section shows the detailed qualitative analysis.  

 

  



  

T
ab

le
 5

-3
. C

o
n

st
ra

in
in

g 
a

n
al

yt
ic

s*
 

P
ro

d
u

ct
 C

h
ar

a
ct

er
is

ti
cs

 
C

o
n

st
ra

in
ts

 

P
ro

d
u

ct
 m

at
u

ri
ty

 
“W

h
en

 y
o

u
 a

re
 c

re
at

in
g 

an
 i

m
m

at
u

re
 p

ro
d

u
ct

, i
t 

is
 h

ar
d

 t
o

 b
as

e 
yo

u
r 

d
ec

is
io

n
 b

as
ed

 o
n

 t
h

es
e 

k
in

d
s 

o
f 

st
at

is
ti

cs
. 

In
st

ea
d

 o
f 

an
al

yt
ic

s 
fo

r 
cr

ea
ti

n
g 

d
ec

is
io

n
 f

o
r 

an
 i

m
m

at
u

re
 p

ro
d

u
ct

, w
e 

cr
ea

te
 a

 p
ro

to
ty

p
e 

a
n

d
 t

es
t 

th
e 

p
ro

to
ty

p
e.

 

B
u

t 
fo

r 
tu

n
in

g 
fu

n
ct

io
n

al
it

y 
a

n
d

 e
n

h
an

ci
n

g,
 t

h
es

e 
st

at
is

ti
cs

 c
an

 h
av

e 
b

en
ef

it
s.

” 

“F
ro

m
 a

 s
ec

o
n

d
 r

el
ea

se
 t

o
 t

h
ir

d
 r

e
le

as
e,

 d
ef

in
it

el
y 

an
al

yt
ic

s 
ca

n
 b

e 
h

el
p

fu
l. 

P
ro

d
u

ct
-u

se
 [

m
ea

su
re

m
en

t]
 a

ff
ec

ts
 

th
ei

r 
al

lo
ca

ti
o

n
 o

f f
e

at
u

re
 in

 th
ir

d
 r

e
le

as
e.

 B
u

t n
o

t f
ro

m
 fi

rs
t r

e
le

as
e 

to
 s

ec
o

n
d

, b
ec

au
se

 fi
rs

t r
e

le
as

e 
is

 m
ai

n
ly

 a
b

o
u

t 

h
o

w
 t

o
 b

u
il

d
 a

 p
ro

d
u

ct
.”

 

P
ro

d
u

ct
 u

se
rs

 
“R

ef
e

rr
al

 s
o

u
rc

e 
at

tr
ib

u
te

 is
 n

o
t 

im
p

o
rt

an
t 

b
ec

au
se

 o
u

r 
u

se
rs

 a
re

 fr
o

m
 a

ll
 o

ve
r 

th
e 

w
o

rl
d

 a
s 

th
ey

 u
se

 t
h

ei
r 

m
o

b
il

e 

p
h

o
n

e.
” 

“E
n

d
 u

se
rs

 a
re

 w
it

h
in

 s
o

m
e 

sp
ec

if
ic

 o
rg

an
iz

at
io

n
s 

so
 s

ta
ti

st
ic

s 
ab

ou
t 

re
fe

rr
al

 s
o

u
rc

es
 a

re
 n

o
t 

im
p

o
rt

an
t.

” 

“S
ta

ti
st

ic
s 

a
b

o
u

t 
n

ew
 u

se
r 

ar
e

 n
o

t 
im

p
o

rt
an

t 
b

ec
au

se
 w

e 
ar

e
 d

ea
li

n
g 

w
it

h
 a

va
il

ab
le

 u
se

rs
, n

o
t 

n
ew

 u
se

rs
.”

 

B
ei

n
g 

W
eb

 b
as

ed
 

“T
ec

h
n

o
lo

gy
 a

n
d

 c
h

an
n

el
 [

m
ea

su
re

m
en

t]
 is

 v
er

y
 im

p
o

rt
an

t 
b

ec
au

se
 t

h
e 

p
ro

d
u

ct
 is

 a
 w

eb
-b

as
ed

 t
o

o
l.”

 

 “
T

ec
h

n
o

lo
gy

 a
n

d
 c

h
an

n
el

 d
at

a 
is

 le
ss

 im
p

o
rt

an
t.

 W
e 

n
ee

d
 t

o
 s

u
p

p
or

t 
al

l b
ro

w
se

rs
 a

n
d

 c
o

ve
r 

re
la

te
d

 t
ec

h
n

o
lo

gy
 a

s 

it
 is

 a
 w

eb
-b

as
ed

 p
ro

d
u

ct
.”

 

N
et

w
o

rk
 t

yp
e 

 “
F

o
r 

o
u

r 
sp

ec
if

ic
 p

ro
d

u
ct

, e
rr

o
r 

an
d

 r
es

p
o

n
se

 t
im

e 
co

u
ld

 b
e 

u
se

d
, a

n
d

 o
th

er
s 

[o
th

er
 h

ea
lt

h
in

es
s 

m
ea

su
re

m
en

ts
] 

d
id

 n
o

t 
h

av
e 

a
 r

o
le

 in
 t

h
e 

in
tr

an
et

-b
as

ed
 p

ro
d

u
ct

.”
 

P
ro

d
u

ct
 c

o
n

te
xt

 
“D

o
s 

an
d

 w
o

rm
 a

tt
ac

k
s 

ar
e

 n
o

t 
im

p
o

rt
an

t 
in

 a
n

 i
P

h
o

n
e

 a
p

p
li

ca
ti

o
n

.”
 



  

P
ro

d
u

ct
 C

h
ar

a
ct

er
is

ti
cs

 
C

o
n

st
ra

in
ts

 

P
ro

d
u

ct
 t

ec
h

n
o

lo
gy

  
 “

T
ec

h
n

o
lo

gy
 a

n
d

 c
h

an
n

el
 d

a
ta

 a
re

 le
ss

 im
p

o
rt

an
t.

 W
e 

h
av

e 
to

 s
u

p
p

o
rt

 a
ll

 b
ro

w
se

rs
 a

n
d

 c
o

ve
r 

re
la

te
d

 t
ec

h
n

o
lo

gy
 

as
 it

 is
 a

 w
eb

-b
as

ed
 p

ro
d

u
ct

.”
 

“I
n

si
d

e 
o

u
r 

o
rg

an
iz

at
io

n
 i

t 
is

 c
le

ar
 w

h
ic

h
 O

S 
o

r 
b

ro
w

se
rs

 t
h

e 
p

ro
d

u
ct

 h
as

 t
o

 w
o

rk
 w

it
h

, s
o

 w
e 

d
id

 n
o

t 
h

av
e 

to
o

 

m
an

y 
ch

al
le

n
ge

s 
ab

o
u

t 
it

 [
T

ec
h

n
o

lo
gy

 a
n

d
 c

h
an

n
el

s 
m

ea
su

re
m

en
t 

at
tr

ib
u

te
s]

” 

P
ro

d
u

ct
 f

ea
tu

re
s 

“L
an

gu
ag

e 
at

tr
ib

u
te

 i
s 

n
o

t 
im

p
o

rt
an

t.
 O

u
r 

p
ro

d
u

ct
 o

n
ly

 s
u

p
p

o
rt

s 
E

n
gl

is
h

 l
an

gu
ag

e,
 a

n
d

 t
h

er
e 

is
 n

o
 d

if
fe

re
n

t 
to

 

k
n

o
w

 w
h

at
 la

n
gu

ag
es

 h
av

e 
th

e 
u

se
rs

.”
 

*:
 W

o
rd

s 
a

re
 g

iv
en

 in
 b

ra
ck

et
s 

(i
.e

. [
])

 h
as

 n
o

t 
d

ir
ec

tl
y 

m
en

ti
o

n
ed

 in
 q

u
o

te
s 

an
d

 w
as

 a
d

d
ed

 t
o

 m
ak

e 
th

e 
in

te
rv

ie
w

ee
s 

q
u

o
te

s 
cl

ea
re

r.
 

 
  

  

 

  



   

T
ab

le
 5

-4
. E

xa
m

p
le

s 
o

f 
an

al
yt

ic
s 

in
te

rp
re

ta
ti

o
n

 f
o

r 
p

ro
d

u
ct

 g
oa

ls
 a

n
d

 t
h

e 
co

n
st

ra
in

ts
 t

h
at

 a
 p

ro
d

u
ct

 g
o

al
 p

ro
vi

d
es

 f
o

r 
an

al
yt

ic
s 

P
ro

d
u

ct
 g

o
al

 c
h

ar
ac

te
ri

st
ic

s 
In

te
rp

re
ta

ti
o

n
 

 
C

o
n

st
ra

in
t 

M
ar

k
et

 p
o

si
ti

o
n

in
g 

“S
ta

ti
st

ic
s 

ab
o

u
t 

ca
m

p
ai

gn
 a

re
 i

m
p

o
rt

an
t 

b
ec

au
se

 t
h

ey
 s

h
o

w
 

h
o

w
 e

ff
ic

ie
n

t 
va

ri
o

u
s 

m
ar

k
et

in
g 

ca
m

p
ai

gn
s 

ar
e

 i
n

 b
ri

n
gi

n
g 

vi
si

to
rs

 t
o

 b
e 

cu
st

o
m

er
s.

” 

“R
ef

e
rr

al
 s

o
u

rc
e 

m
ea

su
re

m
en

ts
 c

an
 b

e 
in

te
re

st
in

g 
as

 w
e 

ca
n

 

le
ar

n
 a

b
o

u
t 

th
e 

st
ru

ct
u

re
 o

f t
h

e 
m

ar
k

et
 a

n
d

 t
h

en
 t

h
ey

 c
an

 m
ap

 

it
 t

o
 t

h
e 

fe
at

u
re

 u
se

, b
y 

th
at

 m
ak

e 
it

 a
n

 i
n

p
u

t 
fo

r 
p

ri
o

ri
ti

zi
n

g 

fe
at

u
re

s 
fo

r 
fu

rt
h

er
 

d
ev

el
o

p
m

en
t.

 S
o

 i
n

 c
o

m
b

in
at

io
n

 w
it

h
 

o
th

er
 s

tu
d

ie
s 

o
f 

a 
m

ar
k

et
, 

it
 i

s 
im

p
o

rt
an

t 
b

u
t 

al
o

n
e 

an
d

 i
n

 

is
o

la
te

d
 m

an
n

er
.”

 

“O
u

r 
go

al
 i

s 
to

 i
n

cr
ea

se
 w

eb
 u

se
rs

, 
if

 p
ro

d
u

ct
 u

se
 i

s 
n

o
t 

to
o

 

m
an

y 
th

en
 a

ct
io

n
 s

h
o

u
ld

 b
e 

ta
ke

n
 t

o
 f

in
d

 t
h

e 
re

as
o

n
..”

 

“F
o

r 
re

fe
rr

al
 s

o
u

rc
e 

m
ea

su
re

s,
 i

f 
I 

ca
n

 

fi
n

d
 

o
u

t 
in

 
w

h
at

 
se

gm
en

t 
th

e 
u

se
r 

b
el

o
n

gs
 t

o
 t

h
en

 i
t 

is
 v

er
y

 i
m

p
o

rt
an

t.
 I

f 

fr
o

m
 t

h
e 

m
ea

su
re

 I
 f

in
d

 o
u

t 
fr

o
m

 w
h

ic
h

 

co
u

n
tr

y
 

th
ey

 
u

se
 

it
, 

it
 

is
 

m
o

st
ly

 
le

ss
 

im
p

o
rt

an
t.

” 

 “
R

ef
e

rr
al

 s
o

u
rc

e 
is

 n
o

t 
im

p
o

rt
an

ce
 s

in
ce

 

w
e 

se
ll

 p
ro

d
u

ct
 t

o
 a

n
 o

rg
an

iz
at

io
n

 n
o

t 

en
d

 u
se

rs
. S

o
 t

h
ey

 d
o

 n
o

t 
ca

re
 w

h
er

e
 t

h
e 

cu
st

o
m

er
s 

a
re

 c
o

m
in

g 
fr

o
m

.”
 

C
u

st
o

m
er

 S
at

is
fa

ct
io

n
 

“O
u

r 
m

ai
n

 r
o

le
 is

 to
 c

re
at

e 
cu

st
o

m
er

 b
en

ef
it

 to
 th

e 
p

ro
d

u
ct

 a
n

d
 

gi
ve

 th
em

 fu
n

ct
io

n
al

it
y 

th
at

 is
 u

se
fu

l. 
F

o
r 

ex
am

p
le

 b
y 

an
al

yt
ic

s,
 

fi
n

d
in

g 
er

ro
rs

 c
an

 b
e 

se
en

 v
er

y 
q

u
ic

k
ly

 a
n

d
 r

ep
ai

re
d

 i
n

 e
ac

h
 

m
o

n
th

 r
el

ea
se

.”
 

“I
n

 o
u

r 
p

ro
d

u
ct

, i
t 

is
 g

o
o

d
 t

o
 c

re
at

e 
m

o
re

 

cu
st

o
m

er
 b

en
ef

it
 w

h
ic

h
 a

re
 g

o
t 

fr
o

m
 a

n
 

in
te

rv
ie

w
 w

it
h

 c
u

st
o

m
er

s 
an

d
 c

u
st

o
m

er
 

fe
ed

b
ac

k
 

fr
o

m
 

th
ei

r 
se

rv
ic

e 

o
rg

an
iz

at
io

n
s.

 I
f w

e 
ag

re
e 

o
n

 p
ri

o
ri

ti
zi

n
g 

fe
at

u
re

, 
th

e 
st

at
is

ti
cs

 a
re

 n
o

t 
u

se
fu

l 
fo

r 

th
em

.“
 



  

P
ro

d
u

ct
 g

o
al

 c
h

ar
ac

te
ri

st
ic

s 
In

te
rp

re
ta

ti
o

n
 

 
C

o
n

st
ra

in
t 

F
u

n
ct

io
n

al
 S

u
it

ab
il

it
y 

“R
ef

e
rr

al
 s

o
u

rc
e 

m
ea

su
re

 a
tt

ri
b

u
te

s 
ar

e
 i

m
p

o
rt

an
t 

b
ec

au
se

 

yo
u

 c
an

 h
el

p
 t

o
 a

d
ap

t 
U

se
r 

In
te

rf
ac

es
.”

 

“S
ta

ti
st

ic
s 

in
 T

ec
h

n
o

lo
gy

 a
n

d
 c

h
an

n
el

s 
ar

e 
im

p
o

rt
an

t 
b

ec
au

se
 

w
e 

d
o

 n
o

t 
w

an
t 

to
 s

u
p

p
o

rt
 a

ll
 v

er
si

o
n

s 
an

d
 w

il
l 

su
p

p
o

rt
 

te
ch

n
o

lo
gi

es
 t

h
at

 a
re

 u
se

d
 m

o
re

.”
 

“T
ec

h
n

o
lo

gy
 

an
d

 
ch

an
n

el
s 

st
at

is
ti

cs
 

ar
e 

ve
ry

 
im

p
o

rt
an

t-
 

D
ep

en
d

in
g 

o
n

 w
h

ic
h

 m
o

b
il

e 
th

ey
 h

av
e 

ac
ce

ss
ed

 f
ro

m
 t

h
ey

 

h
av

e 
to

 p
ro

vi
d

e 
a 

se
rv

ic
e

 a
cc

o
rd

in
g 

to
 t

h
at

.”
 

“T
ec

h
n

o
lo

gy
 is

 a
 t

ri
ck

y 
ca

te
go

ry
, w

h
at

 d
o

 

yo
u

 
m

ea
n

 
b

y 
te

ch
n

o
lo

gy
? 

T
ec

h
n

o
lo

gy
 

th
at

 u
se

d
 fo

r 
d

ev
el

o
p

m
en

t,
 o

r 
te

ch
n

o
lo

gy
 

th
at

 is
 r

e
la

te
d

 to
 u

se
rs

. T
h

ey
 a

re
 d

if
fe

re
n

t 

w
it

h
 e

ac
h

 o
th

er
. 

F
o

r 
d

ev
el

o
p

m
en

t 
p

ar
t 

th
e 

an
al

yt
ic

s 
is

 n
o

t 
im

p
o

rt
an

t,
 a

lt
h

o
u

gh
 

fo
r 

u
se

r 
si

d
e 

th
at

 p
la

ys
 im

p
o

rt
an

t 
ro

le
.”

 

 

R
el

ia
b

il
it

y 
“P

ro
d

u
ct

 
h

ea
lt

h
in

es
s 

[a
n

al
yt

ic
s]

 
is

 
ve

ry
 

im
p

o
rt

an
t.

 
If

 
w

e 

ca
n

n
o

t 
ac

h
ie

ve
 d

es
ir

e
 r

el
ia

b
il

it
y 

an
d

 p
er

fo
rm

an
ce

 w
e 

ca
n

 g
o 

h
o

m
e.

” 

“A
ll

 h
ea

lt
h

in
es

s 
m

ea
su

re
s 

ar
e 

im
p

o
rt

an
t,

 

es
p

ec
ia

ll
y 

er
ro

r,
 p

eo
p

le
 d

o
 n

o
t 

ac
ce

p
t 

fa
u

lt
y 

p
ro

d
u

ct
 a

n
d

 e
rr

o
r.

” 

 

     



   

T
ab

le
 5

-5
. E

xa
m

p
le

s 
o

f 
sh

if
ti

n
g 

fr
o

m
 c

o
n

st
ra

in
in

g 
a

n
al

yt
ic

s 
u

se
 t

o
 in

te
rp

re
ta

ti
o

n
 o

f 
an

al
yt

ic
s 

fo
r 

p
ro

d
u

ct
 p

la
n

n
in

g
 

P
ro

d
u

ct
 

ch
ar

a
ct

er
is

ti
cs

 

C
o

n
st

ra
in

 
(b

y 
p

ro
d

u
ct

 

ch
ar

a
ct

er
is

ti
cs

) 

In
te

rp
re

ta
ti

o
n

 
P

ro
d

u
ct

 g
o

al
 

C
o

n
st

ra
in

t 
(b

y 

p
ro

d
u

ct
 g

o
al

) 

So
ci

al
 

E
R

P
 

(B
u

si
n

es
s 

o
ri

e
n

te
d

 p
ro

d
u

ct
) 

“E
xi

t 
an

d
 

en
tr

a
n

ce
 

fe
at

u
re

 
is

 

m
o

st
ly

 g
o

o
d

 t
o

 k
n

o
w

 w
h

en
 y

o
u

 

h
av

e 
a 

p
ro

d
u

ct
 li

k
e 

a
 w

eb
si

te
. F

o
r 

o
th

er
 

p
ro

d
u

ct
 

it
 

m
ig

h
t 

b
e 

d
if

fe
re

n
t 

en
tr

a
n

ce
s 

an
d

 e
xi

ts
 a

n
d

 

m
ig

h
t 

n
o

t 
so

 d
if

fe
r 

to
 e

ac
h

 o
th

er
.”

 

“R
ef

e
rr

al
 

so
u

rc
e 

m
ea

su
re

m
en

ts
 

ar
e

 n
o

t 
so

 in
te

re
st

in
g.

 I
 t

h
in

k
 t

h
ey

 

ar
e

 
m

o
st

ly
 

u
se

fu
l 

fo
r 

w
eb

si
te

s,
 

li
k

e 
o

n
li

n
e 

sh
o

p
p

in
g 

to
 k

n
o

w
 t

h
e 

so
u

rc
e 

o
f 

cu
st

o
m

er
s.

 F
o

r 
u

s,
 t

h
e 

cu
rr

en
t 

u
se

r’
s 

lo
ca

ti
o

n
 is

 c
le

ar
.”

 

“Q
u

al
it

y 
ad

d
s 

va
lu

e 
to

 
th

e 

p
ro

d
u

ct
. I

f 
n

o
t,

 y
o

u
 [

i.e
. y

o
u

r 

p
ro

d
u

ct
s]

 
ar

e 
d

ef
in

it
el

y 

d
ea

d
. F

au
lt

y 
p

ro
d

u
ct

 e
n

d
s 

in
 

n
o

 u
se

r 
sa

ti
sf

a
ct

io
n

. 
So

, 
It

's
 

go
o

d
 t

o
 k

n
o

w
 b

ef
o

re
 l

o
se

 a
ll

 

u
se

rs
. “

 

“F
ea

tu
re

 
m

ea
su

re
m

en
ts

 

P
ro

vi
d

e 
a 

go
o

d
 

p
ic

tu
re

 
o

f 

in
te

re
st

in
g 

fe
at

u
re

s”
 

   

“P
la

n
n

in
g 

a 
h

ig
h

-q
u

al
it

y
 

p
ro

d
u

ct
 

is
 

th
at

 
m

ak
es

 

u
se

rs
 

sa
ti

sf
ie

d
 

is
 

im
p

o
rt

an
t.

” 

“P
ro

d
u

ct
 u

se
r 

is
 v

er
y 

im
p

o
rt

a
n

t 
to

 

m
on

it
or

 
th

e 

p
o

p
u

la
ri

ty
 

le
ve

l 
of

 

p
ro

d
u

ct
 d

u
ri

n
g

 t
im

e 

p
er

io
d

.”
 



  

P
ro

d
u

ct
 

ch
ar

a
ct

er
is

ti
cs

 

C
o

n
st

ra
in

 
(b

y 
p

ro
d

u
ct

 

ch
ar

a
ct

er
is

ti
cs

) 

In
te

rp
re

ta
ti

o
n

 
P

ro
d

u
ct

 g
o

al
 

C
o

n
st

ra
in

t 
(b

y 

p
ro

d
u

ct
 g

o
al

) 

Sa
aS

-b
as

ed
 K

n
o

w
le

d
ge

 

M
an

ag
em

en
t 

 (
In

fo
rm

at
io

n
 

d
is

p
la

y 

an
d

 
tr

a
n

sa
ct

io
n

 e
n

tr
y

 

p
ro

d
u

ct
 t

yp
e)

 

“E
n

d
 

u
se

rs
 

ar
e

 
in

si
d

e 
so

m
e 

sp
ec

if
ic

 o
rg

an
iz

at
io

n
s,

 s
o

 r
ef

e
rr

a
l 

so
u

rc
e 

m
ea

su
re

m
en

ts
 

ar
e 

n
o

t 

im
p

o
rt

an
t 

fo
r 

u
s.

 A
ls

o
, i

n
si

d
e 

ea
ch

 

o
rg

an
iz

at
io

n
 i

t 
is

 c
le

ar
 w

h
ic

h
 O

S 

o
r 

b
ro

w
se

r 
ar

e
 a

va
il

ab
le

, s
o

 w
e 

d
o

 

n
o

t 
h

av
e 

to
o

 
m

u
ch

 
ch

al
le

n
ge

s 

ab
o

u
t 

it
.”

 

  

“L
ea

d
 

u
se

rs
 

h
av

e 
sp

ec
ia

l 

ro
le

s 
in

 p
at

te
rn

s 
re

la
te

d
 t

o
 

ga
th

er
in

g 
ta

ci
t 

k
n

o
w

le
d

ge
 i

n
 

th
e 

o
rg

an
iz

at
io

n
s.

 
So

, 
it

 
is

 

im
p

o
rt

an
t 

to
 

u
n

d
er

st
an

d
 

w
h

o
 

ar
e

 
th

e 
le

ad
 

u
se

rs
 

to
 

ta
rg

et
 s

p
ec

if
ic

 u
se

rs
. S

o
, u

se
r 

cl
as

si
fi

ca
ti

o
n

 b
as

ed
 o

n
 t

h
ei

r 

ac
ti

vi
ti

es
 o

n
 t

h
e 

p
ro

d
u

ct
 i

s 

u
se

fu
l.”

 

“D
ep

th
 o

f 
u

se
 a

n
al

yt
ic

 h
el

p
s 

u
s 

to
 u

n
d

er
st

an
d

 t
h

at
 u

se
rs

 

ar
e

 
in

vo
lv

ed
 

w
it

h
 

th
e 

p
ro

d
u

ct
 

an
d

 
d

o
 

n
o

t 
h

av
e 

ra
n

d
o

m
 v

is
it

in
g.

 “
 

“T
h

e 
p

ro
d

u
ct

 s
u

p
p

os
ed

 

to
 g

ra
b

 t
ac

it
 k

n
o

w
le

d
ge

 

in
 t

h
e 

o
rg

an
iz

at
io

n
 s

o
 i

t 

w
as

 
im

p
o

rt
an

t 
th

at
 

ad
eq

u
at

e 
n

u
m

b
er

 
o

f 

u
se

rs
 w

o
u

ld
 e

n
ga

ge
 i

n
 

d
if

fe
re

n
t 

p
ar

ts
 

o
f 

th
e 

sy
st

em
.”

 

“F
ea

tu
re

 u
se

 i
s 

ve
ry

 

im
p

o
rt

an
t 

b
ec

au
se

 it
 

sh
o

w
s 

w
h

ic
h

 
p

ar
ts

 

o
f 

th
e 

sy
st

em
 

th
e 

u
se

rs
 a

re
 e

n
ga

ge
d

.”
 

 
 



 

 

 



 

 

 

 

PART 4 
Combining User Feedback and Monitoring Data 

from Software in Use  



 

  

206 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

  



 

 
  207 

 

 

 

 

Chapter 6 :  Quality Requirements 
Elicitation Based on Inquiry of Quality-

Impact Relationships 
 

[This chapter is based on : F. Fotrousi, S. Fricker, M. Fiedler (2014). 

“Quality Requirements Elicitation based on Inquiry of Quality-Impact 

Relationships”, 22nd International Conference on Requirements 

Engineering (RE), Karlskrona, Sweden: IEEE, pp: 303-312.  

DOI: 10.1109/RE.2014.6912272.] 

 

Abstract 

Quality requirements, an important class of non-functional 

requirements, are inherently difficult to elicit. Particularly 

challenging is the definition of good-enough quality. The problem 

cannot be avoided though, because hitting the right quality level is 

critical. Too little quality leads to churn for the software product. 

Excessive quality generates unnecessary cost and drains the 

resources of the operating platform. To address this problem, we 

propose to elicit the specific relationships between software quality 

levels and their impacts for given quality attributes and 

stakeholders. An understanding of each such relationship can then 

be used to specify the right level of quality by deciding about 

acceptable impacts. The Quality-Impact relationships can be used to 

design and dimension a software system appropriately and, in a 

second step, to develop service level agreements that allow re-use of 

the obtained knowledge of good-enough quality. This paper 

describes an approach to elicit such quality–impact relationships and 

6 



 

  

208 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

to use them for specifying quality requirements. The approach has 

been applied with user representatives in requirements workshops 

and used for determining Quality of Service (QoS) requirements 

based the involved users’ Quality of Experience (QoE). The paper 

describes the approach in detail and reports early experiences from 

applying the approach. 

Keywords 

Requirement elicitation, quality attributes, non-functional 

requirements, quality of experience (QoE), quality of service (QoS) 

1. Introduction 

uality requirements are an important class of non-functional 

requirements (Glinz 2007). They concern software system 

attributes such as functional suitability, performance, 

reliability, usability, security, and portability that are important for 

achieving stakeholder goals (Boegh 2008). The satisfaction of these 

quality attributes determines whether the software system meets 

the goals of its stakeholders or whether the system has a negative 

impact for these stakeholders (Chung et al. 2000; Haigh 2010) 

Meeting the right level of quality is important to balance benefits and 

cost (Regnell et al. 2008). The quality of a software system needs to 

be at least as good as to make the software useful and competitive 

but should not be excessive to avoid cost and unnecessary use of 

resources. Insufficient quality leads to disappointment and 

consequent churn when stakeholders decide to abandon the 

software solution and adopt alternatives instead (Kilkki 2008). 

Excessive quality may lead to an unnecessarily expensive design of 

the software system (Bass et al. 2012), to unnecessary consumption 

of resources needed for operating the system (Jung et al. 2010), and 

to trade-offs where other quality attributes suffer (Braz et al. 2007). 

To address the problem of finding the level of good-enough quality, 

the relationship between software quality and the impacts of such 

quality for the stakeholders of the software system needs to be 

understood. As demonstrated for the Quality of Service (QoS) of a 

Q 



 

 
  209 

 

telecommunication network and the Quality of Experience (QoE) of 

the network users, a quality–impact relationship can be developed 

empirically by setting quality levels of a given quality attribute and 

measuring the reaction of the stakeholders that were exposed to 

these quality levels (Fiedler et al. 2010). 

This paper describes how to use quality–impact analysis for eliciting 

requirements about good-enough quality of a software system. The 

proposed method guides the elicitation of the quality–impact 

relationships and explains how to use the gained insights to specify 

quality requirements. The method delivers empirical evidence for a 

specific software system that is more reliable than generic expert 

opinion. The evidence pertains to the features that were investigated 

and the stakeholders that were participating in the requirements 

inquiry, thus is adequate and relevant for decision-making about that 

software system’s quality requirements. 

The paper describes the proposed quality–impact elicitation method 

in depth. It gives details about the key ideas of the method and 

explains how to tailor the method depending on the investigated 

quality characteristics, the stakeholder goals impacted by these 

quality characteristics, and the instruments that the investigator is 

able to apply. The paper provides an example of how the method is 

applied in practice by reporting about its use in a real-world software 

development project. 

The paper is structured as follows. Section 2 reviews existing work 

and motivates quality requirements elicitation based on quality–

impact relationship inquiry. Section 3 describes the method in-

depth. Section 4 describes how the method is applied and reports the 

lessons-learned from such method application. Section 5 compares 

the method and the obtained results with related work. Section 6 

concludes. 

2. Related Work 

According to ISO/IEC FDIS 25010, the quality of a system is the 

degree to which the system satisfies the needs of its stakeholders. 

The determination of whether a system exhibits the desired quality 

characteristics is not straightforward, however. In contrast to 



 

  

210 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

functional requirements, many quality requirements do not have a 

sharp boundary between satisfaction and non-satisfaction. Instead, 

they are gradually satisfied (Glinz 2005), thus called soft 

requirements (Irvine and Levin 2000). 

The softness characteristic of implies that the right level of desired 

requirements quality needs to be identified during requirements 

engineering (Regnell et al. 2008). Each such quality level has its own 

specific costs and benefits. High quality levels are considered more 

costly than low quality levels because more expensive designs or 

approaches to provision of the software service need to be chosen to 

implement the requirement. In a similar vein, increase of the quality 

level implies increase of the benefits generated by the requirement. 

A product that is considered useless because of too low quality 

becomes useful or even competitive with increased quality. Too 

much quality, however, is considered excessive thus not adding any 

value for stakeholders despite quality improvement. The trade-off 

between cost and value impacts is a basis to determine the desired 

quality level and specify the requirement in a quantified manner 

(Gilb 2005; Jacobs 1999). 

Goal models have been proposed to elicit quality requirements 

(Antón and Potts 1998; Chung et al. 2000). Such models allow 

identification of needs for improving, increasing, or keeping the level 

of the quality characteristics of a software. To support systematic 

identification of goals and qualities within a given domain, ontologies 

have been developed and used to support requirements elicitation 

(Souag et al. 2012; Wang et al. 2010). The means-ends relationships 

that are an inherent part of a goal model make the impact of such a 

quality requirements explicit (Cysneiros and Sampaio do Prado Leite 

2004; Herrmann and Paech 2008). The goals that are enabled by 

such a decision are used as a rationale that motivates the quality 

requirement. 

Unfortunately, goal models are of limited help eliciting appropriate 

levels of quality. Goal models help identifying the quality 

characteristics that are perceived relevant by stakeholders, and the 

means-ends relationships connect these qualities to the impact that 

is desired by the stakeholders. However, they do not guide a 

requirement engineer in how much of a desired quality is good 



 

 
  211 

 

enough. One of the key limitations is that the goal models do not 

relate a given quality level to a given level of impact beyond the 

coarse-grained levels of a requirement being denied, weakly denied, 

undecided, weakly satisfied, and satisficed. In addition, the 

application of goal models does not deliver the information needed 

to quantify a quality requirement, thus make its satisfaction 

measurable with attributes such as scale and meter (Jacobs 1999). 

Several supporting elicitation methods have been proposed for 

requirements elicitation (Pohl and Rupp 2011). These include the 

use of questionnaires, interviews, workshops, creativity methods, 

storyboards, use cases, role-plays, and prototyping. Review of 

prototypes has been particularly effective in identifying usability 

concerns and refining user interaction design to reach user 

acceptance (Rettig 1994). The construction of such prototypes 

allows a development team to capture assumptions about desired 

software characteristics and to validate these assumptions, for 

example by reviewing them as implementation proposals with 

concerned stakeholders (Fricker and Glinz 2010; Fricker et al. 2010). 

The supporting elicitation methods provide limited support for the 

determination of good-enough quality levels because of their 

generality. Any question can be asked in a questionnaire or 

interview, any topic explored in a workshop, and a multitude of 

design decisions be captured with storyboards, use cases, role-play, 

and prototypes. Guidelines that have been proposed to identify 

quality requirements (Hassenzahl et al. 2001; Kusters et al. 1999) 

target the discovery of quality, but do not help in determining 

measurable levels of quality. The requirements engineer is thus left 

with his intuition or experience for asking the right questions (Doerr 

et al. 2005). The use of experience, however, is risky as the levels for 

good-enough quality may change between different software 

products and product-usage contexts. 

To enable requirements engineers to determine appropriate levels 

of good-enough system quality, we were studying the field of 

telecommunication. In particular we were looking for approaches 

that allow the requirements engineer and the system stakeholders 

understand the meaning of a given level of quality, for example in 

terms of how the quality level affects the degree of stakeholder 



 

  

212 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

satisfaction. In the field of telecommunication, substantial work has 

been performed for understanding how to measure degrees system 

quality and how a given degree of system quality affects user attitude 

(Fiedler et al. 2010). 

For a telecommunication system, Quality of Service (QoS) 

requirements are stated that concern system performance, 

availability, and capacity (Wang et al. 2010). Often these 

requirements are agreed in a service level agreements (SLA) 

between the system customers and the supplier(Kittlaus and Clough 

2009). User satisfaction is expressed as Quality of Experience (QoE) 

and refers to the “degree of delight or annoyance of the user of an 

application or service” (Le Callet et al. 2012). It has been shown that 

a system’s Quality of Service affects the user’s Quality of experience 

(Fiedler et al. 2010). Too little user delight and too much user 

annoyance leads to churn, thus users that try to look for alternatives 

and try to avoid using the system under consideration. 

The knowledge of how QoS is related to QoE has not been translated 

into requirements engineering methodology yet. In particular, it is 

unclear how to exploit the relationship between QoS levels with QoE 

levels in the inquiry of software systems requirements. Also needed 

is an explanation of how to apply the specifics of the QoS-QoE 

relationship on the determination of good-enough quality for any 

system quality attribute and for any important stakeholder need that 

is impacted by the possible quality levels. 

3. Quality-Impact Inquiry 

This paper proposes a method that we call Quality-Impact Inquiry to 

address the so far unsatisfactorily solved problem of determining 

adequate levels of quality. As required from a solution proposal, we 

have explained why a novel method was needed, specify the 

principles and steps of the method, and describe how to apply it 

(Wieringa et al. 2006). To demonstrate that the method is sound, we 

go a step further than required from a solution paper and report 

about a preliminary validation that we performed with a real-world 

software development project. The paper describes the method in 

sufficient depth to enable replication in practice and further 

validation research. 



 

 
  213 

 

 The Quality-Impact Inquiry method is based on the principles 

outlined in our earlier work about the generic relationships between 

Quality of Service and Quality of Experience (Fiedler et al. 2010). 

These principles have been translated into a software requirements 

engineering context by integrating it into an inquiry-based 

requirements analysis process (Potts et al. 1994) and combined with 

prototyping, questionnaires, and workshops as supporting methods 

for collection of quality measurements and stakeholder opinions. 

During the workshop, stakeholders are exposed to requirements 

engineer-defined quality that has been implemented in the 

prototype and questioned about their perceived quality impact. The 

correlation between quality measurement and stakeholder opinion 

is analysed and used as decision-support to determine and then 

specify good-enough requirements quality. 

The Quality-Impact Inquiry method adapts the inquiry cycle of 

requirement analysis (Potts et al. 1994) as follows: the 

documentation phase is adapted to implement a prototype using a 

set of accepted requirements described the desired system and 

collects quality attributes during stakeholder actions. The three 

elements of requirement discussion phase including questions, 

answers and reasons are supported by the questionnaire elicitation. 

Finally, the results from the former phases contribute to either freeze 

or change requirements in the evolution phase.  

Figure 6-1 gives an overview of the Quality-Impact Inquiry process. 

The remainder of this section describes the generic Quality-Impact 

Inquiry method and how the method may be tailored. The ensuing 

section describes how the method has been applied in real-world 

projects and reports about early lessons learned. 

3.1. Inquiry Process 
Figure 6-1 gives an overview over the process that characterizes the 

Quality-Impact Inquiry method. The process contains four steps: 

preparation, measurement, analysis and decision-making. It is 

applied iteratively until enough evidence has been collected to 

decide about what good-enough quality should be for a quality 

attribute under investigation. 



 

  

214 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

1) Preparation: During the first step, Preparation, the materials 

needed for allowing stakeholders to experience the quality 

characteristics under investigation are prepared. The work includes 

the preparation and documentation of a prototype, the formulation 

of a questionnaire, the recruitment of stakeholders for participation 

in a workshop, and the scheduling of the workshop. 

In the proposed method, quality impact is measured subjectively 

through a questionnaire. The quality impact is also affected by a real 

value of quality that is measured objectively (Brooks and Hestnes 

2010) and automatically using a prototype. Therefore, a list of valid 

quality requirements is identified from SRS document that is 

relevant to one feature or a group of features (f) and presented as 

pairs of quality attribute and value: 

Q = { ( qatt , qval ) | f } (1)     

As an example, in SRS, a non-functional requirement can be stated as 

“response time should be less that 2 s”. “Response time” is the 

attribute and 2 s is the value. 

The software might be in a preliminary release (i.e. pre-alpha, alpha 

and beta testing), a candidate release close to a final product/service, 

or even a released product ready for an evolution. Preparation of 

artefacts including a prototype from a software feature(s) and a 

questionnaire about their quality is the pre-requisite to run the 

method. The stakeholders experience the software and then answer 

the questionnaire. Data that are collected from the software use and 

the questionnaire are analysed to evolve quality requirements in the 

software specification document (SRS) if needed.  

Based on the quality attributes, the prototype is tailored for the 

feature(s) f to support measurement of Q. The questionnaire will be 

tailored using Q to collect quality impacts of feature(s) f relevant to 

user list U: 

U = {u}   (2) 



215

Then, scenarios for data collection, and software guidelines to be 

followed by users are prepared in this step. Translating the 

questionnaire to the user’s mother tongue is another action that 

might be required.

2) Measurement: During the second step, Measurement, a 

workshop is performed with the aim of collecting quality 

measurements and user feedback. During the workshop the 

stakeholders experience predetermined qualities by utilizing the 

prototype according to a pre-defined script. During the use of the 

prototype measurements are taken about the quality that the 

stakeholders experienced. After the use of the prototype, the 

prepared questionnaire is administered to collect stakeholder 

opinions about the impacts of the perceived quality.

While the users are using the application through clients such as a 

smartphone or a PC, quality values qmsr (i.e. qmsr is a qval relevant to 

qatt for feature(s) f) are quantified by function m, automatically using 

analytical tools, server log generators or piece of codes embedded in 

the software.

qmsr = OP( m( qatt | u, f ) ) | OP  { MIN or MAX }  (3)

The function captures the worst value of measured quality attributes 

in different actions of a user for the given feature(s) f, depending on 

whether the quality has a success or failure measure characteristic 

Figure 6-1: Quality-Impact inquiry method



 

  

216 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

(Fiedler and Hoßfeld 2010). For a success measure such as 

availability, the higher value of the quality attribute shows better 

quality but for a failure measure such as response time, a higher 

value of the quality attribute shows worst quality. Therefore, 

minimum or maximum value of each case would be the candidate 

value for measured quality. 

Another source of measurement is the questionnaire designed to 

translate the quality impacts qimp (i.e. qimp is a qval relevant to qatt for 

feature f) into scored values provided by users. In the questionnaire, 

users are typically asked to provide ratings, 

qimp = s( qatt | u , f )  (4)  

and rationales in forms of comments that explain their ratings: 

comm = c( qatt | u , f  (5) 

Furthermore, the questionnaire asks users to rate “quality in use” 

attributes such as satisfaction as a sub list of quality attributes: 

QinUse    Q   (6) 

The quality impact is translated into a discrete value that is scaled 

using scores such as Mean Opinion Score (MOS) (ITU-T 2003). 

3) Analysis: During the third step, Analysis, the quality 

measurements are correlated with the stakeholder opinions about 

quality impact. This step involves application of statistical analyses 

based on data that has been collected during the measurement step 

in the ongoing and previous Quality-Impact Inquiry iterations. The 

analysis can also be enhanced through a-priori knowledge of the 

generic nature of the studied Quality-Impact relationships. 

The relation between the measured quality (qmsr) and quality impact 

(qimp) will be identified through a regression analysis, similar to 

correlation analysis between QoE and QoS (Kim et al. 2008a; Minhas 

and Fiedler 2013). The regression function is calculated for a feature 

f and quality attribute qatt: 

q̂imp( qmsr ) = r( qmsr | f , qatt )  (7) 

Different regression functions for the relationship including linear, 

logarithmic, exponential and power have potential to be candidate, 



 

 
  217 

 

however the analysis compares the regression function and matches 

the best one.  

Then, an estimation of quality value for a given quality impact is 

calculated by the inverse function of the regression model: 

q̂msr( qimp ) = r-1( qimp | f , qatt )   (8) 

The output of the analysis proposes a list of quality values for 

different quality impacts including maximum quality impact.  

If the Quality-Impact analysis does not provide enough data for a 

mature analysis, some changes on the prototype are applied to 

change the quality values artificially. The looped arrow from analysis 

box to prototyping box in Figure 6-1 provides possibilities to achieve 

enough data for investigating impact changes and perform more 

reliable analysis than the analysis of less data points.  

4) Decision-Making: During the fourth step, Decision-Making, the 

analysis results are used to decide about acceptable and desired 

levels of quality of the investigated quality attributes. The decisions 

are recorded in the software requirements specification. The step 

concludes with decision-making about whether to add inquiry 

iterations and how the parameters of these ensuing inquiries should 

be adapted for best improving the knowledge about good-enough 

quality. 

The decision-making process selects suitable quality value from the 

evidences and decides whether to evolve the value for the relevant 

quality requirement in the SRS document. 

This process identifies maximum applicable quality impact 

considering technical feasibility, product strategies, and limitation of 

resources to achieve the relevant quality value, and then applies the 

decision-making function. 

Decision-making is a function of parameters including estimated 

quality value for maximum impact (q̂msr) of a quality attribute, the 

value of relevant non-functional requirement (qSRS), the list of 

rationale for the quality attribute rating (comm) beside all quality-in-

use ratings (QinUse), to interpret whether the current quality fulfills 

the users acceptance. 



 

  

218 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

qnew = { g( q̂msr , qSRS , comm , QinUse | f , qatt ) } (9) 

This function defines a new value for the quality attribute. The 

decision-making will be performed for all quality attributes in Q.  

3.2. Method Tailoring 
There are a wide variety of variation points to adapt the generic 

Quality-Impact Inquiry process. The variations are needed to be 

flexible enough to adapt the process to specific requirements 

engineering constellations. Table 6-1 gives an overview. 

4. Real-World Example of Method Application 

4.1. Example Application 
To demonstrate how to implement the method in practical 

situations, we present here the results and lessons-learned of an 

early validation that we have done in a real-world project. We 

applied the method for a Diabetes Smartphone Application that will 

be used by diabetes patients to take blood glucose measurements, to 

plan insulin injection, and to send the collected observation history 

to a diabetes specialist for consultation. We evaluated the Quality-

Impact relationships for the features user authentication and 

observation sharing of diabetes information. 

As an input to the Quality-Impact inquiry we had used a prototype 

that was instrumented with software for monitoring the timing of 

user interactions. The inquiry was performed in a laboratory and 

with a smart phone from the application developers with pre-loaded 

data. The requirements engineer, the product manager, and selected 

end-users participated in the inquiry workshop. The inquiry was 

performed with one end-user at the time. 

During the inquiry, the end-user was introduced to the tasks he to be 

performed with the application, was given a short, tailored user 

manual, and then used the selected features first according to 

instructions and then without help. He opened the application, 

selected the data he wanted to share with his clinician, authenticated 

himself, and submitted the data. Then the authentication service 

requested username and password. When authenticated, the data 

was sent to the application server in the hospital. After the guided 



 

 
  219 

 

and unguided experiences were concluded, the end-user filled out 

the quality of experience questionnaire. Figure 6-2 gives an 

impression of the setup. 

Table 6-1. An overview of variations 

Variation Point Variants 

Software Features 

Stakeholders may be exposed to different 

features. Quality requirements may be specific to 

features or the impact of quality levels be 

perceived differently depending on the feature. 

Quality Attributes 

Stakeholders may be exposed to different quality 

attributes. Each feature or application may have 

its own set of prioritized quality attributes. 

Quality Levels 

For the selected quality attributes, different 

quality levels may be investigated. The selection 

of the quality level should be based on 

information need and be guided by statistical 

analysis methodology. 

Stakeholder 

Sampling 

Different individuals may be invited for 

participation in the inquiry workshops. The 

selected stakeholders should be as 

representative as possible. 

Impact Attributes 

Stakeholders may be questioned about different 

quality impacts. Each application or feature may 

aim at achieving its own specific impacts. 

Measurements 
Different measurements may be selected to 

record quality levels and stakeholder impacts. 

Prototyping 

Approaches 

The simulation of different quality characteristics 

may require different approaches of building the 

quality-simulating prototype. 

Impact Function 

Different impact functions may be chosen the 

represent the relationship between a given 

quality attribute and its impact. We were using 

linear and exponential functions so far. 

 

 



220
Part 4: Combining User Feedback and 
Monitoring Data

Figure 6-2. User interaction scenario with instrumented application and 
subsequent answering of the quality of experience questionnaire

The Quality-Impact inquiry processes was implemented for the 

Diabetes Smartphone Application as follows:

1) Preparation: The requirements engineer extracted relevant 

quality requirements from the software requirement specification 

document. Based on these extracts he instrumented the software 

with a time-stamp logger.

The requirements engineer created a short guideline to assist the 

end-user in using the application. It described the features to be 

evaluated and how the features should be used.

Based on the extracted quality requirements, the requirements 

engineer created a quality of experience questionnaire with generic 

questions about the experience, about the features and product, and 

about the perceived quality. For the Diabetes Smartphone 

Application, the quality questions were about performance, 

reliability, and availability. Figure 6-3 shows the questionnaire.

2) Measurement: The following steps describe the inquiry 

workshop that was performed once for each user separately.

In the beginning of the inquiry the requirements engineer welcomed 

the participants, defined the goals of the inquiry, and shared the 

agenda of the meeting.



 

 
  221 

 

The product manager explained the feature to be used and gave 

prepared guideline to the end-user. 

 

The Experience 

1. Please tell us the name you would give to the feature: 

 

The Features and Product 

2 Overall, how satisfied are you with the features you just have experienced? 

□ Excellent (5)   □ Good (4)   □ Fair (3)    □ Poor (2)   □ Bad (1) 

Please tell us why you feel that way: 

3. Overall, how good is the feature according to your opinion? 

□ Exceptional □ Better than comparable products and features 

□ Good-enough □ Insufficient 

Please tell us why you feel that way: 

4. Will you return to use the product again? 

□ Yes □ No 

Please tell us why you feel that way: 

The Quality 

5. The next question is about response time. With response time we mean the time 

when you press a button until the software does what it is supposed to do. 

How do you rate the response time of the feature? 

□ Excellent (5)   □ Good (4)   □ Fair (3)   □ Poor (2)   □ Bad (1) 

Please tell us why you feel that way: 

 

 

Figure 6-3. Questionnaire. The last question can be replicated and adapted to any 
feature the requirement engineer is interested of. 

 



222
Part 4: Combining User Feedback and 
Monitoring Data

Figure 6-4. Extract from the log file with timestamps and activities

The end-user used the application according to the instructions. He 

did so twice to allow us collecting data about the learning and 

knowledgeable use of the feature. The application generated logs 

automatically and captured information from the user interaction 

(see Figure 6-4 for an example). In all timestamp, the time from the 

internal clock on smartphone was used. Log entries were created 

when end user requests are received and when application 

screen/data have been displayed. The response time extracted from 

the example is the duration between two-time stamps taken from the 

starting to the ending of an activity. 

After application usage, the requirements engineer provided 

instructions for answering the quality of experience questionnaire. 

The user answered the questionnaire accordingly. The answers that 

were collected with quantitative scales provided data for calculating 

the Quality-Impact relationship. The qualitative rationale that the 

users gave for these values assisted us in interpreting the 

quantitative values.

At the end of the session, the requirements engineer debriefed the 

participants and thanked them for the participation.

3) Analysis: The filled-in questionnaires and time-stamp logs from 

all end users’ interactions were the inputs for the analysis process. 

The end-users were satisfied with the quality as they reflected in the 

questionnaire Therefore the analysis of this example did not identify 

any deviation to update quality attributes. However the similar study 

was conducted in our lab where users perception of response time in 

downloading a webpage containing an image were collected (Shaikh 

et al. 2010). The analysis of the data distributions concluded a close 

match for a regression formula on relations between MOS and 

response time excluding null opinion scores:



223

q̂imp( qmsr ) = 4.836 exp( -0.15 qmsr )   (10)

Figure 6-5. Quality impact (MOS) as a function of quality value (response time(s))

Figure 6-5 plots this regression function that shows quality (qimp) as 

a function of quality value (qmsr) (Shaikh et al. 2010). The response 

time collected from different experiments as well as collected 

relevant quality impacts will plot the Figure 6-6. Taking the reverse 

of this function estimates quality value (q̂msr) as a function of quality 

impact (qimp):

q̂msr ( qimp ) = -6.67 ln( qimp / 4.836 )s   (11)

Figure 6-6. Quality value (Response time (s)) as a function of quality impact (MOS)

As Figure 6-6 plots the inverse regression function, shorter response 

identifies the better perception of quality and user’s score. Table 6-2

estimates quality values for qimp in the range of between 3 and 4.5. 

This value identifies the best threshold value for a quality attribute 

such as response time that is sufficient for the user expectations.



 

  

224 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

Table 6-2. Estimated quality values for given quality impacts 

Quality impact (qimp) 
MOS  

Estimated quality value (q̂msr) 
for Response time 

4.5 0.48 s 

4 1.27 s 

3.5 2.15 s 

3 3.18 s 

 

4) Decision making: Decision making process involves choosing a 

threshold value for a quality attribute based on inputs from analysis 

including an estimated quality value for response time, user 

experiences and rationales, the list of quality-in-use as well as the 

value of response time defined in the SRS document.  

Selecting the good-enough quality level requires trade-offs between 

the reaching enough user acceptance level instead of maximum level 

in return for gaining technical feasibility by limited resources such as 

cost, time and effort. Identifying maximum applicable user 

perception (quality impact) in each analysis is the result of such 

trade-offs. If quality impact 4 is recognized enough, then the 

estimated quality value of 1.27s will be involved in decision making 

process to update SRS with a good-enough quality value. Typically, 

the critical value for quality impact is assumed to be 3. In 

telecommunication area, accepted quality impact in video streaming 

is considered as 3.5, although the quality impact of 4 is a good choice 

(Khan et al. 2010).  

5. Lesson learned 

As shown in the example, the inquiry workshop allowed us to collect 

the data necessary for analyzing the Quality-Impact relationship for 

response time and quality of experience. The workshop lasted about 

10 minutes per user. Data aggregation and analysis was concluded 

within a few hours. Thus the method was relatively efficient. 

Scalability can be achieved by working with multiple users in 

parallel, for example as part of a training workshop. 



 

 
  225 

 

From the users that participated in the inquiry workshops we 

received positive feedback about the experience and about most of 

the questions we asked. However, one of the users was puzzled about 

perceived reliability and availability. He stated that he expected the 

application to work and to be available in the laboratory situation he 

was invited to. This shows that usage context affects the relevance of 

quality attributes. Some quality attributes are relevant in some 

contexts only. We plan to account for this feedback by extending the 

Quality-Impact inquiry to prolonged pilot uses of the application in 

the real-world contexts of the users. 

 On little usages of the software product could not give the full 

impression to users. An issue relevant to a quality attribute such as 

availability might not be risen in a short period of use, this is what 

reflected by the stakeholder in the example stated in Section 4. To 

reach more accurate data, a prolonged usage should be planned.  

Not only quality attributes are identified in the proposed Quality-

Impact inquiry method, there might be some proposals for updating 

functional requirements extractable from the users’ comments given 

in the questionnaire. As an example, if the end-user could not find 

how to submit the blood glucose data, this could be reflected in the 

users’ perception rating as well as provided rationale.  

Training before and during the workshop provides knowledge and 

skills to mitigate the threats of biasing the user perception that 

occurred due to misuse of the feature. Distractions during the 

workshop should be removed to boost concentration of users in 

expressing their real unbiased perception.   

6. Discussion 

The Quality-Impact Inquiry method is a generic approach to 

collecting data about quality levels and how these quality levels 

impact stakeholder satisfaction. It builds on our earlier work that 

shows that a relationship between quality levels and quality impact 

can be established. The Quality-Impact Inquiry method extends such 

earlier work by describing a 4-step process that allows the 

requirements engineer to inquire how different levels of quality 

impact the satisfaction of stakeholder needs. The 4-step process is 



 

  

226 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

independent of the specific type of quality and independent of the 

specific kind of stakeholder need. Instead the method can be tailored 

to any pair of quality and impact measurement that are of interest 

for the system under consideration. A condition for such tailoring is 

that a relationship between quality level measurements and impact 

measurements can be established. 

The identified level of quality impact transforms the knowledge into 

a judgment of good-enough quality. Good enough quality can be 

decided considering cost and benefit views while exposing barriers 

and breakpoints (Regnell et al. 2008). Product strategy decisions, 

competitors and learning processes are other factors that assist 

requirement engineer to adjust the level of quality. 

The Quality-Impact Inquiry method complements existing quality 

requirements elicitation methods. Pairs of system quality and impact 

variables that should be investigated as part of requirements inquiry 

can be identified with goal-based inquiry methods (Chung et al. 

2000; Potts et al. 1994). Means-ends relationships of prioritized soft 

goals that relate to system qualities, respectively to stakeholder 

needs, are candidates for inquiry of the corresponding Quality-

Impact relationships. These candidates are used as an input to the 

tailoring of the Quality-Impact Inquiry method. 

The Quality-Impact Inquiry method utilizes supporting elicitation 

methods (Pohl and Rupp 2011), in particular the use of 

questionnaires, prototypes, and workshops. The method combines 

these supporting methods into a structured process for creating and 

analyzing evidence for decision-making about good-enough quality. 

Recommendations about good practice, e.g. of how to perform an 

effective workshop (Gottesdiener 2002), should be followed as long 

as they do not interfere with the objective of the inquiry of Quality-

Impact relationships that are under investigation. Side results from 

applying the method, e.g. the discovery of new needs or stakeholders 

during a workshop, should be embraced and handed over as an input 

to the main stream of requirements engineering work that is 

performed in the development project. 

In a larger scale validation of the proposed method in a real-world 

situation various stakeholders and experienced requirements 

engineers are involved. To achieve trustworthy results, a specific 



 

 
  227 

 

probability is identified for considering a confident interval in which 

the value of quality impact lies within a specific range. Smaller 

numbers of stakeholders that involve in the experiment method 

generate wider confidence intervals since there is an inverse square 

root relationship between the confidence interval and the sample 

size. It means that to cut error margin in half, number of involved 

stakeholders is assumed to be four times more. 

For practitioners, the Quality-Impact Inquiry method represents an 

extension of the requirements engineering toolset and is used for 

addressing the challenging problem of determining good-enough 

product quality. Once the relevant Quality-Impact relationships have 

been established, they can be reused while evolving and maintaining 

the application and for specifying the quality levels of comparable 

applications, for example in a software product line. 

Quality-Impact Inquiry is not a method that is easy to apply and 

should thus be used by requirement engineers that are experienced 

in experimentation with end-users. In many practical situations, this 

is unproblematic. It is common to use experienced requirements 

engineers for critical tasks such as the development of service level 

agreements of software-based services (Marilly et al. 2002).  

The Quality-Impact Inquiry method complements competitive 

analysis of product quality (Regnell et al. 2008). It allows a definition 

of thresholds for useful quality and excessive quality based on 

evidence gathered by analyzing the perception of stakeholders. In 

the example of QoS and QoE, the requirements engineer determines 

the service quality threshold by translating quality of experience 

judgments with the experimentally determined Quality-Impact 

relationship. In the real-world example described in this paper, the 

former was quantified with software reaction time and the latter 

expressed with the Mean Opinion Score. The questionnaire in Figure 

6-3 shows that the relationship can also be calculated for other 

impacts. For example, question 3 was used to collected data about 

the strategic positioning of the feature according to the Quper model 

(Regnell et al. 2008). Question 4 allowed collecting data about the 

risk of churn. Any prior knowledge about the nature of the 

relationship, e.g. as expressed by the exponential function in (Fiedler 



 

  

228 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

et al. 2010), reduces the need for measurements, thus reduces the 

effort of Quality-Impact inquiry. 

For research, an understanding of the generic relationships between 

levels of more types of software quality and impact is urgently 

needed. These generic relationships reduce the need for 

experimentation during real-world requirements elicitation by 

pointing to the functions that should be used during Quality-Impact 

inquiry. The characterization of the generic relationship between 

QoS and QoE as an exponential function (Fiedler et al. 2010) is an 

example of the research that is needed. Security and usability are 

examples of quality attributes that should be prioritized by research. 

The research may include investigation of what appropriate 

measurement scales are, e.g. of security or usability, and how a 

generic Quality-Impact relationship may be expressed and 

investigated based on scales other than the ratio scale that we used 

in Figure 6-5 and Figure 6-5. Also open is the development of an 

understanding of how the interaction of multiple quality variables, 

e.g. security and usability (Braz et al. 2007), can be expressed with 

Quality-Impact relationships, thus made amenable to requirement 

elicitation with the Quality-Impact Inquiry method we have 

presented. 

The study of Quality-Impact relationships would also allow building 

empirical evidence for checking deeply held beliefs in the 

requirements engineering field. One such belief is expressed with the 

KANO model (Sauerwein et al. 1996). That model states that the 

impact of quality on stakeholder satisfaction is expressed through 

exponential or linear functions that describe attractive 

requirements, which cause delight when implemented, one-

dimensional requirements, which are easily articulated, or must-be 

requirements, which are not obvious, but considered self-evident by 

stakeholders. The presented Quality-Impact Inquiry method enables 

practitioners to determine the exact relationships for the software 

products and features they are specifying. For researchers, it can be 

used to inform the design of empirical research studies that aim at 

investigating generic Quality-Impact relationships. 

7. Conclusion 



 

 
  229 

 

The paper has described an approach to quality requirements 

elicitation based on inquiry of Quality-Impact relationships. The 

method, called Quality-Impact Inquiry, guides a requirement 

engineer in the inquiry of good-enough software quality from the 

viewpoint of the appropriate stakeholders of the software system. 

When applying the method, stakeholders experience a prototype of 

a software system. The requirements engineer collects the real 

values of chosen quality attributes and subjective feedback from the 

stakeholders about perceived quality impacts. The analysis of 

Quality-Impact uses a regression function. The method can be 

tailored to pairs of qualities and impacts that are of interest for the 

specific software system. Systematic use of the method gives support 

for deciding about appropriate the quality levels. These can then be 

specified in a quantified manner for example by stating minimal, 

maximal, and expected quality in a software requirements 

specification (SRS) or service level agreement (SLA). 

The Quality-Impact Inquiry method was applied for requirements 

engineering in real-world development projects. One example was 

shown to describe how to apply the method in practice and to report 

on lessons learned. We reported how we have applied the method 

for these requirements engineering endeavors, shared early 

experiences from applying the method, and have given 

recommendations for practical use of the method.  

Future research should aim at validating and evaluating the method 

in further, large-scale requirement engineering situations. Moreover, 

future research should aim at expanding the understanding of the 

generic relationships between given combinations of software 

quality attributes and their impacts as well as how quality attributes 

interact with each other. The resulting knowledge will translate into 

a SLA and help to allow and to reuse the knowledge of appropriate 

quality levels. It will also help accelerating and simplifying quality 

requirements inquiry in real-world projects and enable research to 

check deeply held beliefs about how quality and impacts are 

interrelated. 

 

 



 

  

230 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

Acknowledgments 

This work has been co-sponsored by the European Commission 

through the FI-PPP integrated project FI-STAR under grant 

agreement number 318389. 

 

  



 

 
  231 

 

 

 

Chapter 7 :  FAME: Supporting Continuous 
Requirements Elicitation by Combining 

User Feedback and Monitoring 
 

 [The chapter is based on: M. Oriol, M. Stade, F. Fotrousi, S. Nadal, J. 

Varga, N. Seyff, A. Abello, X. Franch, J. Marco, O. Schmidt (2018). “FAME: 

Supporting Continuous Requirements Elicitation by Combining User 

Feedback and Monitoring”, 26th International Conference on 

Requirements Engineering (RE), Banff, Canada: IEEE. pp: 217-227. 

DOI: 10.1109/RE.2018.00030.] 

Abstract 

Context: Software evolution ensures that software systems in use 

stay up to date and provide value for end-users. However, it is 

challenging for requirements engineers to continuously elicit needs 

for systems used by heterogeneous end-users who are out of 

organisational reach. Objective: We aim at supporting continuous 

requirements elicitation by combining user feedback and usage 

monitoring. Online feedback mechanisms enable end-users to 

remotely communicate problems, experiences, and opinions, while 

monitoring provides valuable information about runtime events. It is 

argued that bringing both information sources together can help 

requirements engineers to understand end-user needs better. 

Method/Tool: We present FAME, a framework for the combined and 

simultaneous collection of feedback and monitoring data in web and 

mobile contexts to support continuous requirements elicitation. In 

addition to a detailed discussion of our technical solution, we present 

the first evidence that FAME can be successfully introduced in real-

world contexts. Therefore, we deployed FAME in a web application 

of a German small and medium-sized enterprise (SME) to collect user 

feedback and usage data. Results/Conclusion: Our results suggest 

7 



 

  

232 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

that FAME not only can be successfully used in industrial 

environments but that bringing feedback and monitoring data 

together helps the SME to improve their understanding of end-user 

needs, ultimately supporting continuous requirements elicitation. 

Keywords 

Feedback gathering, usage monitoring, requirements, user 

involvement, feedback acquisition, data collection, requirements 

elicitation, software evolution, user feedback. 

1. Introduction 

oftware systems face the need to continuously evolve and adapt 

to meet changing stakeholder needs. This requires continuous 

elicitation of stakeholder needs regarding the software in use 

(Forbrig 2017), a rapid understanding of requirements violation 

(Vierhauser et al. 2016), and an immediate reaction to evolve 

requirements (Carreño and Winbladh 2013). 

Traditional requirements elicitation methods such as interviews, 

workshops, or prototyping can be successfully applied to software 

systems where the stakeholders, including end-users, are within 

organisational reach but are more challenging in the context of 

software systems used by a heterogeneous crowd of end-users in 

different locations. The main challenges that requirements engineers 

face in this context is how to continuously elicit end-user needs for 

the software in use, and validate if the implemented requirements 

are aligned with their needs (Snijders et al. 2014). In this regard, 

continuous requirements elicitation demands an efficient approach 

to elicit end-user needs remotely and in a scalable manner. 

Academic literature suggests, amongst others, two suitable 

approaches to support continuous requirements elicitation. One 

approach, user feedback gathering, allows a vast number of end-

users to communicate their needs for a deployed software anytime 

and anywhere. This approach also involves end-users who are out 

the organisational reach (Seyff et al. 2015). The other approach is 

system monitoring. For example, monitoring the user behaviour, 

S 



 

 
  233 

 

combined with data mining techniques, have been proposed to 

support requirements elicitation and decision making (Guzmán et al. 

2017).  

Both approaches are the basis for the work done in our research. We 

have already evidence that they are useful to elicit new requirements 

(Brill and Knauss 2011b; Wellsandt et al. 2014). However, novel 

work argues that both approaches need to be combined to improve 

the requirements elicitation process(Milne and Maiden 2012). Some 

of this work has also included conceptual solutions and early 

architectural prototypes. However, to the best of our knowledge, 

none of the existing solutions is mature enough to be used by 

companies to support their continuous requirements elicitation 

process. Furthermore, little is known about the actual benefits of 

combing user feedback and monitoring in real-world scenarios. 

In this paper, we present a framework that provides advanced 

features for the combined collection and analysis of feedback and 

monitoring data. To show the validity of our technical solution, we 

applied FAME in a German software company, which successfully 

integrated the framework into its requirements engineering process 

and are using it to support continuous requirements elicitation for 

one of their software products. Early evaluation results suggest that 

the data gathered with the help of our framework supports the 

software company in better understanding the needs of their end-

users. 

1.1. Motivating Example 
In this section, we present the main challenges that a German SME 

(namely SEnerCon; https://www.senercon.de/) faced in the 

requirements elicitation process for one of their software products. 

To understand SEnerCon’s current situation, we conducted a case 

study (for a detailed method description see (Stade et al. 2017)). The 

company develops and maintains web applications for end-users in 

the domain of energy efficiency management. This iESA web 

application enables end-users to visualise their energy consumption 

and guides them in saving energy (www.energiesparkonto.de). 

To elicit requirements from their end-users, SEnerCon used to collect 

feedback from traditional feedback communication channels 



 

  

234 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

including email, contact forms, support hotline, and an online forum 

and did not use a dedicated software tool for feedback gathering. 

SEnerCon also had some monitoring software components installed, 

which were mainly used to assess the Quality of Service (QoS) and 

reliability of the web application, rather than helping in the 

requirements elicitation process. In particular, SEnerCon already 

obtained the QoS of its services through system logs and hardware 

statistics, but user feedback was the only source for SEnerCon to 

elicit requirements. In this situation, SEnerCon faced several 

challenges in their requirements elicitation process including: 

Understanding the Feedback. Before SEnerCon extracted information 

suitable for refinement or elicitation of a requirement, the company 

had first to understand the feedback message. In particular, when the 

user feedback was incomplete, inaccurate, or unstructured, this was 

a cumbersome step. Sometimes, SEnerCon needed to start further 

investigations. This included asking the end-user questions for 

clarification or testing various potential scenarios where the end-

user had struggled. Such additional investigations were time-

consuming and, in some cases, had even annoyed the end-user when 

SEnerCon contacted them. 

Consolidating and Prioritizing Requirements. Another challenge for 

SEnerCon was to estimate how many end-users might be affected by 

a feature request or problem, in particular, when only one end-user 

communicated this problem. The number of affected end-users could 

be a good indicator for SEnerCon to decide on the consolidation and 

prioritisation of a new or revised requirement. 

Identifying a Proper Satisfaction Criteria. The final challenge 

SEnerCon were faced with when eliciting a new requirement, was to 

identify a satisfaction criteria correctly. Usually, the satisfaction 

criteria were not explicitly stated by the end-user, or it was not clear-

cut in the feedback. This caused the SEnerCon team to define the 

satisfaction criteria based on their personal opinions. 

We expect that the combination of feedback and monitoring data 

could help SEnerCon to solve or mitigate some of these (and further) 

challenges. For instance, usage data about what the end-users did 

before they provided feedback could be useful to clarify the end-

users’ intention to provide feedback or the problems they faced. 



 

 
  235 

 

Monitoring how many end-users used a specific functionality would 

provide an indicator of the importance of a requirement related to 

that functionality. Finally, monitoring data could also provide 

measurements that could help to define satisfaction criteria that 

were not explicitly stated in feedback (e.g., the time end-users spent 

waiting for a task to complete before they leave the web application 

or provide negative feedback). 

1.2. Research Objective 
In this paper, we address the following research objective: To 

provide a unified framework capable of gathering and storing both 

feedback and monitoring data, as well as combining them using an 

ontology, to support the continuous requirements elicitation 

process. To achieve such a research objective we have developed a 

framework, named FAME, and have conducted the first evaluation 

together with SEnerCon, demonstrating the successful combination 

of feedback and monitoring data, and how such combined data can 

provide valuable information for the elicitation of new requirements. 

The remainder of the paper is structured as follows. Section 2 

presents the related work. Section 3 describes our proposed 

technical solution. Section 4 presents our validation in a real-world 

context, including a description of the execution of the validation, the 

results, and its discussion. Finally, Section 5 presents the conclusion 

and future work.  

2. Related Work 

2.1. Feedback Gathering for Requirements Elicitation 
Feedback acquisition approaches allow end-users to communicate 

problems, needs, and opinions while using a software product 

(Wellsandt et al. 2014). From such feedback data, requirements 

engineers can extract requirements (Seyff et al. 2015).  

Several dedicated feedback tools have already been developed, 

which can be designed as standalone (e.g., (Seyff et al. 2014)), 

embedded (e.g., (Rashid et al. 2009)), or cross-platform (e.g., (Hess 

et al. 2012)) solutions. These and further tools aim to support and 

motivate end-users in communicating feedback in linguistic (e.g., 

free text input, category selection) or non-linguistic (e.g., rating, 



 

  

236 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

annotated screenshot) formats (Morales-Ramirez et al. 2015). The 

communication of feedback can be initiated (pushed) by the end-

users (e.g., by pressing a feedback button) or by the requirement 

engineer who asks (pulls) for feedback (e.g., by triggering a feedback 

dialogue that appears to end-users in a pop-up window) (Maalej et 

al. 2009) but most of the research tools support only the first 

scenario.  

Although user feedback can be a valuable data source for the 

requirements elicitation process, several approaches have 

emphasised that feedback can be hard to understand and interpret 

when context information related to particular feedback is missing, 

or when the description is unstructured (Pagano and Brügge 2013; 

Stade et al. 2017; Zimmermann et al. 2010; Zowghi et al. 2015). 

Moreover, when every end-user can provide feedback anytime and 

anywhere, several challenges for requirements elicitation arise, for 

example, processing of fake and very subjective feedback (Dalpiaz 

2011; Johann and Maalej 2015). 

2.2. Monitoring for Requirements Elicitation 
Monitoring is commonly used to assess if the requirements are 

satisfied or violated during the execution of the system, i.e. 

requirements monitoring (Robinson 2009). Requirements 

monitoring comprises the analysis and evaluation of the stated 

requirements, tracing them to the metrics, observing and measuring 

the metrics of the system, and deriving the requirements status 

(Robinson 2009). Until recently, monitoring approaches have been 

focusing mainly on requirements assessment. 

However, with the emergence of data-driven decision-making 

methodologies, new monitoring approaches have been proposed to 

support the requirements elicitation process. For instance, some 

approaches propose to use behavioural data to better understand 

end-user needs in web-based applications. For this, various types of 

data can be measured, including the end-users’ action flow, their eye 

movements, and the length of time they spend on different features 

(Liu et al. 2017). In this direction, some approaches propose to 

specify the end-user goals accompanied with the expected end-user 

behaviour and then observe deviations on that behaviour to identify 

the need for a new requirement (Brill and Knauss 2011a).  



 

 
  237 

 

Other approaches propose to use not only behavioural data but also 

runtime data of the system (e.g., QoS) to identify when a high-level 

indicator (e.g., reliability) is being violated. Such violation would, 

ultimately, lead to a new requirement (Guzmán et al. 2017). 

2.3. Combining Feedback and Monitoring Data for 
Requirements Elicitation 

A number of researchers have proposed to use both feedback and 

monitoring data to elicit new requirements. For instance, to support 

requirements elicitation, some approaches  (Fotrousi et al. 2014) 

(Dzvonyar et al. 2016)combine feedback data with monitoring data 

coming from the same end-user who provided the feedback (e.g., log 

data). However, using this approach, the authors were only able to 

capture data of the end-user who provided feedback and were not 

able to capture data from other end-users (e.g., to identify how many 

end-users experienced an issue reported in feedback), or other types 

of monitoring data (e.g., QoS). In contrast, another approach 

(Dąbrowski et al. 2017) used monitoring data from all end-users and 

applied process mining techniques to observe end-users behaviour 

and elicit new requirements. In this work, the authors suggested that 

such information could be combined with feedback to refine the 

requirements and help improve the requirements prioritisation 

process. However, the research direction was not explored in-depth, 

and most of it was left as future work. 

In fact, few technical solutions that combine feedback and 

monitoring data exist for other purposes. For instance, QoE probe 

(Fotrousi and Fricker 2016) is a lightweight mobile application that 

combines user feedback and monitoring data for requirements 

verification and validation. The probe periodically requests for user 

feedback, while collecting and aligning continuously with usage logs. 

The tool records usage data including user-id, timestamps of 

requirement events in the feature level (e.g., starting or completing a 

feature) and user interaction level (i.e., user input or application 

output). In completion of user interaction, a feature or a group of 

features, a feedback dialogue is triggered based on a defined 

likelihood, to collect the level of users’ acceptance and user 

comments. The probe is only for gathering user feedback and 

monitoring data and does not include any analysis component. 



238
Part 4: Combining User Feedback and 
Monitoring Data

MyExperience (Froehlich et al. 2007) is another tool that combines 

monitoring data and user feedback, but it is used to support studies 

on human behaviour or health (e.g., monitoring health-related 

metrics through sensors and asking end-users how they feel). 

However, to the best of our knowledge, no solution has advanced 

from a conceptual solution to a technical implemented framework 

that comprehensively combines feedback gathering and monitoring 

to support continuous requirements elicitation.

3. FAME Framework

We have developed a framework named FAME (Feedback 

Acquisition and Monitoring Enabler). FAME (available in 

https://github.com/supersede-project/monitor_feedback) enables 

a requirements engineer to collect and analyse the combined 

feedback and monitoring data regarding a software system. FAME 

was developed as part of the SUPERSEDE EU project.

Figure 7-1 presents a general overview of FAME. This overview 

shows schematically how FAME can support the requirements 

elicitation process. As shown, the End-users provide their User 

feedback through a Feedback component, whereas Runtime events

from the Host Application are being monitored through a Monitoring 

component and stored in a Data Lake. The Combiner aggregates the 

data from both sources using an Ontology and presents the combined 

data to the Requirements Engineer who will elicit a New Requirement.

Figure 7-1. General overview of FAME supporting the requirements elicitation process.

Feedback 
component

User 
feedback

End-user

Host 
Application

Monitoring 
component

Runtime 
events

Requirements 
Engineer

Data Acquisition Data Storage and Combination

Combiner

Ontology

Data Lake
New

Requirement



 

 
  239 

 

A more detailed view of FAME is presented in Figure 7-2. The Data 

Acquisition components of FAME collect the user feedback and 

runtime events simultaneously (left side of Figure 7-2). The collected 

data is sent to the Data Storage and Combination components (right 

side of Figure 7-2), which store the data following a predefined 

structure. The data is then interpreted through an Ontology that 

integrates the semantics of both sources. In this sense, the 

requirements engineer has the combined information to assess the 

need for a new requirement and elaborate such new requirement. 

3.1. Data Acquisition 
The architecture of the Data Acquisition part of FAME is depicted on 

the left side of Figure 7-2. It is composed of three packages: (1) 

Feedback Management Node, (2) Monitoring Management Node, and 

(3) Orchestrator Node, where each package includes various 

components. User feedback is acquired using the Feedback 

Management Node package, which has been implemented for the 

Web and Android. The implementation is in the form of a library, 

which a developer integrates into a Host Application. For this, the 

developer inserts a few lines of code into the application code to 

invoke the functionalities of the user feedback acquisition. As an 

example for a web application, the piece of code includes a few links 

to stylesheets and scripts, as well as a hyperlink to the feedback 

button.  

Feedback Management is the main component that manages and 

configures the feedback dialogue and finally sends the collected 

feedback to the Data Storage and Combination components. The 

feedback dialogue consists of one or several so-called Feedback 

Mechanisms including (i) a text feedback mechanism for free text 

comments; (ii) a rating feedback mechanism for classifying 

experience usage (e.g., star rating, emoticons); (iii) a screenshot 

feedback mechanism for visualising the feedback issue with a 

screenshot that can even be annotated with marks; (iv) an audio 

feedback mechanism for spoken feedback documentation; (v) a 

category feedback mechanism for feedback classification (e.g., 

problem, praise) by using multiple selection boxes, and (vi) an 

attachment feedback mechanism for additional file upload. 

 



F
ig

u
re

 7
-2

.F
A

M
E

 a
rc

h
it

ec
tu

re



 

  241 

 

Each time that a feedback dialogue is shown to an end-user, Feedback 

Management requests the latest configuration from the Orchestrator 

Node package, specifically the Orchestrator CORE component. The 

Orchestrator CORE component provides APIs that allow a system 

administrator to define or update configurations of feedback 

dialogues. The configuration received defines what feedback 

mechanisms, including what features and in which order they should 

be presented to the end-user. The configuration also defines how the 

feedback dialogue should be triggered either by the end-user, for 

example by pressing a feedback button (push), or automatically 

under certain conditions (pull). As soon as the Feedback Management 

receives feedback data from end-users, it transfers the feedback to 

the Data Storage and Combination components. The details are 

explained in Section 3.2. 

Monitoring Data is collected through the Monitor Management Node 

package, which includes several Monitoring Tools following a 

Service-Oriented Architecture (SOA). The Monitoring Tool Manager 

is the main component of this package and manages the different 

Monitoring Tools. This component is a RESTful service that receives 

the instructions to run a particular monitoring task from 

Orchestrator CORE and dispatches the request to the specific 

Monitoring Tool, which can fulfil the required task. Examples of the 

Monitoring Tools include (i) a user events monitoring tool to obtain 

the clickstream and navigation path of end-users in web 

applications; (ii) an infrastructure monitoring tool to collect 

infrastructure related metrics (e.g., disk, memory, and CPU 

consumption of a server), and (iii) a QoS monitoring tool to compute 

the response time and availability of web services. 

The system administrator can deploy Monitoring Tools of interest. 

After deployment, a Monitoring Tool may require additional 

integration activities. For the Monitoring Tools, the user events 

monitoring tool requires the integration of a JavaScript code in the 

Host Application. The infrastructure monitoring tool requires 

credentials to access the server to monitor through SSH. Only the QoS 

monitoring tool does not require additional steps, as it follows an 

active monitoring approach (i.e., it periodically invokes the web 

service and computes the response time and availability). The 

system administrator can then activate or deactivate integrated 



 

  

242 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

monitors, as well as (re)configure them on demand (e.g., change the 

monitoring frequency, the metrics to collect). 

The system administrator can then activate or deactivate integrated 

monitors, as well as (re)configure them on demand (e.g., change the 

monitoring frequency, the metrics to collect).  

If needed, a new Monitoring Tool can be implemented and integrated 

with the Monitoring Tool Manager (e.g., to carry out a monitoring 

task that is not supported by any of the Monitoring Tools). To do so, 

the system administrator should implement a RESTful service 

embedding the new Monitoring Tool. Such RESTful service should be 

compliant with an API (available in: https://github.com/supersede-

project/monitor_feedback/blob/master/monitoring/src/main/jav

a/monitoring/controller/ToolInterface.java) that is common for all 

Monitoring Tools and is used by the Monitoring Tool Manager to 

configure and run Monitoring Tools. 

3.2. Data Storage and Combination 
The Data Acquisition components of FAME can produce large 

quantities of data. In particular, the Monitoring Tools provide a 

continuous data stream consisting of runtime events from the Host 

Application. Moreover, end-users can provide feedback within the 

Host Application, which can also result in high-data volumes. As a 

result, FAME needs to deal with Big Data, which is supported by the 

Data Storage and Combination components of FAME (see right side 

of Figure 7-2). These components instantiate a Software Reference 

Architecture for semantic-aware Big Data systems (Nadal et al. 

2017), which decouples Big Data processing into the Speed Layer (for 

real-time data processing) and the Batch Layer (for offline data 

processing). Its heart is the Semantic Layer, which enables data 

governance using Semantic Web technologies. 

To process feedback and monitoring data from different sources, 

FAME exploits an ontology stored in the Metadata Management 

System. The ontology provides a formal, machine-readable 

conceptualisation of the domain of interest as well as the key 

concepts of feedback (e.g., Rating, Message) and monitoring data 

(e.g., URL, ElementText). Figure 7-3 depicts a fragment of the 

ontology at the high abstraction level as used by SEnerCon (see 



243

Section 4), where feedback and monitoring data are linked via their 

shared schema elements (User, Timestamp, Application; bold framed, 

grey boxes in Figure 7-3). The feedback and monitoring data can also 

be related via one or more domain-specific concepts, which we 

generally depict as the DomainConcept element (bold framed box in 

the bottom centre of Figure 7-3). For instance, a feedback entry 

discusses an issue related to the domain concept invoice; thus we 

look for monitoring data also related to invoicing. The integration 

and mapping of different schema elements in the ontology are based 

on our approach for ontology-mediated queries (Nadal et al. 2019). 

We then detect that both feedback and monitoring data sources have 

shared schemas or domain-specific concept elements. This allows us 

to define a query that automatically joins both sources and presents 

an integrated result.

Figure 7-3. Excerpt of the ontology

In addition to data processing, FAME provides custom functions for 

data pre-processing, which can filter feedback relevant for 

requirements elicitation, such as feedback categorised as feature 

requests, or negative comments. To this end, FAME adopts machine 

learning techniques to automatically identify the feedback category 

(e.g., bug, feature request) and feedback sentiment (positive, 

negative, or neutral). We specifically employ Multinomial Naive 

Bayes classifiers for such predictive tasks (Guzman et al. 2017).

In the context of Data Storage and Combination components, data 

flows as follows. The Stream Ingestion receives data coming from 

Feedback Management and Monitoring Tools, which are then 



 

  

244 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

consumed by Event Dispatcher. The Event Dispatcher then checks and 

routes the data in the following way: Monitoring data is forwarded 

to and stored in the Data Lake - a massively distributed storage 

system - so that it can be retrieved for processing at a later stage. In 

parallel, the Event Dispatcher applies pre-processing techniques to 

the feedback data.  

This allows the automatic filtering out feedback that may not be 

relevant for the requirements engineer. For instance, they might be 

interested only in feature requests with negative sentiment. Next, the 

output of the filtering function integrated into the Event Dispatcher 

is forwarded to the Combiner, which retrieves from the Data Lake the 

monitoring data that is related to the feedback data. The Combiner 

joins both types of data via their shared schema elements (i.e., User, 

Timestamp, and Application identifiers). Once combined, Combiner 

forwards the data to the requirements engineer for further 

interpretation. 

It is worth noting that due to the flexible configuration features of 

FAME, several different options exist on how FAME can be 

implemented. Furthermore, the loosely coupled design of FAME 

enables the addition of more data sources and tools that the ones 

here presented. 

4. Validation 

4.1. Deployment and Configuration of FAME 
We tailored FAME to the characteristics of the iESA (Host 

Application) and the needs of SEnerCon and SUPERSEDE. As a result, 

decisions about the feedback dialogue configuration received from 

the Orchestrator Node (e.g., mechanism order, instructions) were not 

only taken together with SEnerCon but were also driven by research 

aims. To obtain as much information as possible from the user 

feedback, we decided that the Feedback Management Node be 

deployed and configured to include all the Feedback Mechanisms 

available in FAME. As a consequence, all these feedback mechanisms 

are presented to the iESA end-user once they press a visible feedback 

button (push) that is available from every page in the iESA in Figure 

7-4 (For the German feedback dialogue used in our validation, please 



245

see http://co2onl.in/5f21b50d). In this single-page feedback pop-

up, the iESA end-user must first provide their comment in a 

mandatory text field with a limitation of 1000 characters (text 

feedback mechanism). Second, they can use a star rating to express 

their experience with the feature they used (rating feedback 

mechanism). Third, by using the screenshot feedback mechanism, 

they can take and edit (e.g., draw arrows) a screenshot of the page in 

the background. As fourth input, they can record their voice (audio 

feedback mechanism). Next, they can indicate the category (or 

categories) of their feedback, e.g. “Bug”, “Feature Request”, “General 

Feedback”, “Other”; category feedback mechanism). Note that for the 

feedback type classification we have decided to allow the feedback 

sender to choose multiple categories because we have seen in 

previous feedback that SEnerCon has received that their end-users 

sometimes communicate more than one issue in the same feedback 

message (e.g., starting with general praise, followed by a problem 

description).

Figure 7-4. Feedback dialogue



 

  

246 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

As the last input, the iESA end-user can upload further files 

(attachment feedback mechanism). After providing all their input, 

they click on the “next” button, check the summary of their feedback 

in a second dialogue page, and finally press the “send” button. 

The Monitoring Management Node was deployed and configured 

with just one Monitoring Tool. In particular, SEnerCon was interested 

in monitoring the behaviour of its end-users, and hence, we deployed 

the user events monitoring tool to obtain the clickstream and 

navigation path of end-users in iESA. The infrastructure and QoS 

monitors were not deployed since SEnerCon was not interested in 

the metrics gathered by these Monitoring Tools. In the Terms of 

Service, which was included in the registration form end-users 

accept before using the iESA web application, end-users were 

informed they were being monitored. 

Data Storage and Combination components were deployed without 

configuring any filter for the feedback in the Event Dispatcher. This is 

because the amount of feedback expected by SEnerCon about iESA, 

based on their experience with their other feedback communication 

channels, was not large enough to justify a filter and SEnerCon 

wanted to analyse all the feedback obtained without any pre-

processing. Nevertheless, filters might be required in other cases, 

such as when there is a significant amount of feedback received that 

is not relevant for the generation of a new requirement. 

4.2. Validation Protocol and Execution 
The validation protocol distinguished two key stages: feedback and 

monitoring data gathering; and requirements elicitation using such 

data. 

The feedback and monitoring data were collected between October 

1st, 2017 until January 31st, 2018 (4 months). The requirements 

elicitation process was conducted through a workshop. The 

workshop involved a researcher and an employee from SEnerCon 

(both are authors of this paper). The employee who acted as 

SEnerCon representative was one of the leading developers in the 

production of the iESA. 



 

 
  247 

 

The workshop was divided into two phases. In the first phase, the 

SEnerCon representative had to elicit requirements considering only 

feedback data (as SEnerCon has done so far). In the second phase, 

they had to elicit further requirements or refine the previously 

elicited ones considering the combination of feedback and 

monitoring data. With this validation procedure, we were able to 

assess the benefits of combining feedback and monitoring data 

concerning using just feedback data as an information source in the 

requirements elicitation process. 

To execute the first phase of the workshop, the researcher presented 

the feedback obtained by FAME to the company representative who 

identified which feedback entries were relevant to elicit a 

requirement (as not all feedback might lead to a requirement). Then, 

for the feedback entries that were identified as relevant, they elicited 

the requirement and documented it by filling in a predefined 

template (see Table 7.1). This template included the following fields: 

the id of the requirement; the ID of the feedback entry that triggered 

the requirement; a description of the requirement (with an optional 

satisfaction criteria); the priority of the requirement (with five 

possible values from very high to very low); and a field to document 

other observations that the representative may consider relevant. An 

example of a requirement obtained in the first workshop phase is 

also depicted in Table 7.1. The execution of the first workshop phase 

lasted two hours and fifteen minutes with thirty minutes to identify 

which feedback entry was relevant, and one hour and forty-five 

minutes to elicit and document the requirements. 

To execute the second workshop phase, the researcher provided the 

relevant feedback entries, identified in the previous workshop phase, 

combined with the monitoring data to the company representative. 

The presented monitoring data included the clickstream and 

navigation path of the end-user who provided the feedback and how 

many end-users used the same functionality. While going through 

the combined feedback and monitoring data, the company 

representative identified further requirements and modified (some 

of) the previously documented requirements. The researcher 

annotated these changes. The execution of the second workshop 

phase lasted two hours and thirty minutes. 



248
Part 4: Combining User Feedback and 
Monitoring Data

Table 7-1. Example of an elicited requirement after the first workshop phase

4.3. Validation Results
FAME was successfully used in practice. In the defined period, FAME 

collected thirty-one feedback entries from twenty-four end-users. 

Figure 7-5 summarises how the end-users used the feedback 

mechanisms to communicate their feedback. 

End-users categorised the feedback as “Bug”, “Feature Request”, 

“General Feedback” (multiple categories were allowed per each 

feedback); the category “Other” was not chosen. Screenshots and 

attachments were used in seven cases, and star-ratings were 

provided in twenty-four cases.

In the same period, FAME collected user events from all 5.185 end-

users who logged-in during the period, regardless if they provided 

feedback or not. FAME collected 957.260 clicks in the clickstream 

(including 936.740 left-clicks, 6.547 right-clicks, and 13.973 double-

clicks), and 160.888 navigation actions (i.e., steps of the navigation 

path). As an example, an excerpt of the clickstream of one end-user 

is shown in Fig. 6 (translated from German). 

In the first workshop phase, sixteen out of thirty-one feedback 

entries collected with FAME were identified as relevant by the 

company representative and led to nineteen requirements (in three 

cases, the feedback entry led to two requirements). The fifteen 

feedback entries that were considered not relevant to elicit a 

requirement were bug reports and customer service related issues.



 

 
  249 

 

In the second workshop phase, the company representative analysed 

the combined feedback and monitoring data. The combined 

monitoring data covers the time span between user login and when 

the feedback is sent and includes the actions of the end-user who 

provided the feedback, as well as the list of end-users, who did not 

provide feedback but used the same actions as the feedback provider. 

It is worth noting that by applying the ontology-mediated queries, 

only the monitoring data related to the sixteen relevant feedback 

points were considered. From 957.260 clicks, only 2.164 were 

presented and analysed by the SEnerCon representative. 

During the analysis of the combined data, the company 

representative found one additional requirement and modified four 

requirements they had documented in the first workshop phase. 

Below we describe some examples of how those requirements were 

modified as well as how the additional requirement was identified. 

Monitoring data proved to be useful to either confirm or refute the 

priority of a requirement. For example, an end-user requested that 

an existing feature in the iESA web application should also be present 

in the Android application. Once the feedback was analysed, the 

requirement was considered “low priority” as the feature was not 

very relevant. Monitoring data confirmed such perceptions, as this 

feature was only used by 11 out of the 5.185 iESA end-users in the 

web application during this period.  

In another example, an end-user requested a new feature to transfer 

data from their old household to a new household. One feedback 

from another end-user seemed to be about something very similar. 

As a first impression, such feature request seemed very relevant, and 

the documented requirement was assigned with a “high priority”. 

Monitoring data, however, disproved such prioritisation as the 

number of end-users who looked for the data of their old household 

and had a new household in this period was just two, including the 

end-user who provided the first feedback in this example. For the 

second similar feedback, the monitoring data showed what the end-

user was trying to achieve and clarified that they were asking for 

something else; they wanted to enter data from previous years to the 

same household instead of transferring old data to a new household. 

Ultimately, this led to an entirely different and new requirement. 



F
ig

u
re

 7
-5

.O
ve

rv
ie

w
 o

f 
fe

ed
b

ac
k

 c
o

ll
ec

te
d

 w
it

h
 F

A
M

E

F
ig

u
re

 7
-6

.E
xc

er
p

t 
o

f 
th

e 
cl

ic
ks

tr
e

am
 o

f 
o

n
e 

e
n

d
-u

se
r 

co
ll

ec
te

d
 w

it
h

 F
A

M
E

(c
o

lu
m

n
s 

el
em

en
t 

ID
, t

ex
t 

a
n

d
 e

le
m

en
t 

v
al

u
e 

h
av

e 
b

ee
n

 t
ra

n
sl

at
ed

 h
er

e
 f

ro
m

 G
er

m
an

 t
o

 E
n

gl
is

h
).



 

  251 

 

Monitoring data was also used to decide among two possible variants 

of the same requirement. For example, an end-user requested that 

the system should describe what “conversion factor” meant and how 

it should be calculated when entering consumption data taken from 

the gas bill. Considering only the feedback entry, a first conclusion by 

the SEnerCon representative was that the iESA web application 

should compute this “conversion factor” automatically when the 

end-user enters other parameters of the gas service. However, 

monitoring data of this end-user showed that they did not struggle 

to understand and compute the needed “conversion factor” as they 

spent less than one minute to introduce the “conversion factor” and 

all the data from the gas bill. Moreover, such functionality was only 

used by 203 end-users and in total 332 times. This means that end-

users who use that functionality use it on average less than twice in 

a four-month period. With this information, the effort to implement 

a functionality to compute the “conversion factor” was not justified, 

and, the requirement was documented as “the term conversion 

factor should be explained when requested in the gas consumption 

form”.  

4.4. Threats to Validity 
Threats to Internal Validity. The first threat is a possible bias in the 

data analysis conducted by the company representative. SEnerCon is 

a partner in the SUPERSEDE research project and is aware of the 

effort the research partners spent on the development of FAME. As a 

result, we encouraged the representative to share any thoughts with 

us, including critiques or doubts. Moreover, the validation workshop 

was moderated by the main author, and they might have 

unconsciously guided the requirements elicitation process in the 

research authors’ desired direction. To limit the workshop 

moderator’s influence, the research authors had defined a protocol 

before the validation execution including a semi-structured 

workshop guideline. The workshop moderator was also not allowed 

to express their own opinions.  

A second threat is about the requirements elicitation expertise of the 

company representative. Although they are an expert in the iESA 

web application and knows the existing requirements, they are not 

an expert in requirements elicitation. In the workshop, this might 

have influenced the number of feedback points they indicated as 



 

  

252 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

relevant for requirements elicitation, the final number of elicited 

requirements as well as their modifications. 

Third, the low number of feedback points obtained is limiting our 

evaluation method. We have been able to prove the feasibility of 

FAME and provided an initial qualitative evaluation that 

demonstrated how FAME improves the requirements elicitation 

process. However, we could not conduct a quantitative evaluation as 

it would require a higher amount of feedback data points collected 

with FAME. 

Threats to External Validity. One limitation to the generalizability of 

our results is that only one member of one software company was 

involved in our validation study. Secondly, regarding the selected 

Host Application, we have focused on the integration of FAME in a 

web application in the domain of energy saving. Thirdly, we run our 

feedback and monitoring data collection with only one particular 

configuration of FAME. Finally, we could not investigate the support 

of FAME for requirements engineers with different expertise levels. 

5. Conclusion and Future Work 

In this paper, we have presented FAME, a framework for the 

combined and simultaneous collection of feedback and monitoring 

data in Web and mobile contexts to support continuous 

requirements elicitation.  

FAME proposes managing both acquired feedback and monitoring 

data through the same infrastructure as well as combining and 

structuring them employing an ontology. The FAME architecture is 

split into two main groups of components: Data Acquisition 

components, and Data Storage and Combination components. The 

Data Acquisition components integrate a feedback acquisition tool 

with multiple Feedback Mechanisms and a monitor manager with 

multiple Monitoring Tools that collect user feedback and runtime 

events respectively. The Data Storage and Combination components 

instantiate a Software Reference Architecture for semantic-aware 

Big Data systems that structure and combine the collected data via 

an ontology that maps the relationship between user feedback and 

runtime events. 



 

 
  253 

 

To validate our solution and assess in which situations the 

combination of monitoring and feedback data provided valuable 

information to elicit new requirements, we deployed FAME in a web 

application of a German SME and conducted a requirements 

elicitation process through a workshop using the data obtained by 

FAME. Results showed that FAME was deployed and used in an 

industrial context to combine feedback and monitoring data, also 

bridging a research gap in RE. Moreover, our first validation results 

identified a few examples where the combination of feedback and 

monitoring data could improve the requirements elicitation process 

in contrast to just considering only the feedback. Due to the small 

data set and the data fragments used in our study, conclusions 

regarding quantitative, situation-specific benefits of combined 

feedback and monitoring data cannot be drawn. However, we assess 

our presented flexible and extensible FAME framework as a robust 

tool solution to advance research on combined feedback gathering 

and monitoring as a mean to support continuous requirements 

elicitation. 

As future work, we plan to validate FAME with companies of 

different domains, sizes, and requirements elicitation processes, as 

well as with different amounts of end-users involved. This future 

validation will be on various configurations of FAME including both 

web and mobile Host Applications, more Monitoring Tools, and 

various filters for data pre-processing. Such future work will allow 

us to assess the benefits of combining user feedback and monitoring 

data and to derive recommendations and best practices, e.g., which 

amount of which data types in which aggregation level are most 

useful to combine feedback and monitoring data. 

We also plan to extend FAME in several directions. For example, we 

may use the monitoring data first to trigger a new requirement and 

then combine the monitoring data with the related feedback. 

Moreover, we may integrate further user feedback channels, such as 

social media into the FAME framework; and further Monitoring Tools, 

such as sensors embedded in mobile devices. Because FAME requires 

a continuous flow of feedback data to support continuous 

requirements elicitation, we also plan to investigate how we can best 

encourage end-users to provide feedback. This, in turn, might result 

in further extensions of FAME, for example, feedback-to-feedback or 



 

  

254 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

gamification components. Regarding the Data Storage and 

Combination components, we plan to incorporate automatic 

clustering of feedback data and advanced aggregation of monitoring 

data. This would improve how the information is presented to the 

requirements engineer to elicit requirements (e.g., grouping similar 

feedback, showing monitoring data with computed metrics instead 

of only runtime events). 

Acknowledgment 

The authors thank the anonymous reviewers. A special thanks goes 

to Colin Venters for his support. This work was supported by the 

European Commission within the SUPERSEDE project (Agreement 

No. 644018).  

  



 

 
  255 

 

 

Chapter 8 :  A Method for Gathering 
Evidence from Software-in-Use to Support 

Software Evolution 
 

[The chapter is based on: F. Fotrousi, S. Fricker, M. Fiedler, D. Wüest 

(2020). “A Method for Gathering Evidence from Software-in-Use to 

Support Software Evolution”, Submitted to a Journal.] 

 

Abstract  

Companies need to acquire evidence about situations where their 

running software product behaves inappropriately, which users 

often do not accept the software. Gathering and combining system 

monitoring with user feedback allows the company to acquire 

knowledge about the software product and find evidence that can 

support decisions for software evolution. So far, monitoring data and 

feedback have been collected passively, hoping that users become 

active when problems emerge. This approach leaves unexplored 

opportunities for software product evolution when massive amounts 

of monitoring data is collected and users do not provide feedback for 

matters of interest to the product development team, which we 

simply call product team in this article. Furthermore, the research 

literature does not provide a clear understanding of the conceptual 

process behind the gathering and organization of such knowledge. In 

this paper, using a design science research method, we propose a 

method for the gathering of evidence from software-in-use (GESU). 

The GESU method is designed within the frame of knowledge 

creation theory. We conceptualize the method and frame its 

processes using theoretical support. The method also addresses 

some technical issues by combining goal-based system monitoring 

with proactive, autonomous user feedback collection and surface 

knowledge of the system use that is relevant for system maintenance 

8 

 



 

  

256 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

and evolution. It monitors product goals to identify interesting 

situations of system use and issues automated requests for user 

feedback to interpret the product impact from the user’s perspective. 

The GESU was evaluated in a smart city case. The evaluation results 

showed that the GESU could effectively support decisions for 

software evolution in the case. The finding confirmed that the GESU 

could describe the knowledge creation theory presented using the 

SECI (socialization, externalisation, combination and 

internalization) model, although it needed some adaptation to the 

case. As further contributions, the paper revisited the SECI model as 

the conceptual basis of gathering knowledge from software-in-use in 

the context of system maintenance and evolution. 

Keywords  

Gathering Evidence, Knowledge Creation, System Monitoring, 
User Feedback, Software Evolution 

1. Introduction  

oftware maintenance and evolution constitute a large part of the 

work of software companies (Kittlaus and Fricker 2017). 

Professionals in these companies study the use of the software 

system and user feedback to identify user needs, software bugs and 

fixes that can be translated into requirements and software 

improvements (Olsson et al. 2012; Stade et al. 2017) for future 

software evolution (Lehman and Ramil 2003). The value of such 

studies is to identify evidence for evolution and validate the 

developers’ assumptions about user needs and system issues when 

the system behaves inappropriately, which is not desirable or 

acceptable for the end-users or other stakeholders. 

One of the challenge of software evolution is to identify and integrate 

evidence from a variety of sources such as bug reports, error logs, 

user reports, software processes and its architecture in order to 

study the product and determine required changes (Lehman and 

Ramil 2003).  

S 



 

 
  257 

 

A considerable amount of evidence for software evolution (which 

will simply be referred to as evidence in this article) can be gathered 

from software-in-use. Diverse methods and tools have been 

developed to study evidence, for example, by monitoring the 

product’s use (Chapin et al. 2001), gathering user feedback (Maalej 

et al. 2016), and checking whether a product meets the a user’s 

desires and needs (Fickas and Feather 1995). The systems are 

monitored at runtime (Fotrousi and Fricker 2016). The feedback is 

commonly gathered with hotlines, email, contact forms, ticket 

systems, feedback forms embedded in the software and with user 

feedback mechanisms in app stores (Stade et al. 2017). This data has 

been generated in the early stages of the development lifecycle when 

a product or its features are tested with prototypes (Ali et al. 2011) 

and in later stages when it undergoes evolutionary change (Bosch 

2012) or is being maintained (Carreño and Winbladh 2013). 

Approaches have also been developed to mine and analyse the data 

with the aim of extracting requirements (Guzman and Maalej 2014) 

and supporting decisions for system evolution (Kittlaus and Fricker 

2017). A systematic method for such decision-making about system 

evolution is the innovation experimentation method (Blank 2013; 

Edison et al. 2018). With innovation experiments, the organisation 

systematically prototypes ideas about changed product capabilities 

and collects feedback about their impact to understand whether the 

ideas are promising and should be fully developed and integrated 

into the product that is deployed in the market, or whether they 

should be abandoned. 

While each piece of gathered data may be useful in and of itself, it is 

in its combination that it is expected to offer the organization 

actionable knowledge of system use (Oriol et al. 2018). Isolated 

monitoring data may turn out to be difficult to interpret and 

irrelevant; also, badly timed requests for user feedback risk 

disturbing users and may result in feedback disconnected from the 

context to which it applies (Fotrousi et al. 2018). So far, to the best of 

our knowledge, no previous work (even that of (Oriol et al. 2018) 

provides a theoretical foundation and process description for how to 

approach the gathering and combination of evidence to offer support 

for decisions about system evolution.  



 

  

258 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

This article aims at addressing this gap by introducing a knowledge 

gathering and combining method and validating its practical use in a 

case study of product prototyping. The work is situated in a larger 

undertaking that follows design sciences research (Peffers et al. 

2007) and is shown as one iteration of implementing the method of 

“gathering evidence from software-in-use” (GESU) underlying the 

processes for a real-world product. The method has been developed 

based on Nonaka’s theory of creating knowledge (Nonaka and 

Takeuchi 1991) and adapted for the gathering, sharing and 

aggregating of evidence that can be used for decision-making about 

product evolution. Our method has been validated with an 

interpretive case study of an organization that developed a smart city 

application for city visitors. We collected and combined knowledge 

from system and usage measurements as well as user feedback. The 

knowledge was translated into evidence for software evolution to 

understand what and why to evolve. We then interviewed four 

members of the product development team related to the case to 

validate how they coped with the knowledge in order to validate our 

proposed model. The results showed how the method may be 

applied in a real-world software organization and how the 

organization may structure the collected data and work process to 

exploit the benefits of the method. 

This article extends our earlier paper on combining monitoring and 

autonomous feedback requests to gather actionable knowledge of 

system use (Wüest et al. 2019). We extended the paper by 

introducing the GESU method derived from Nonaka's model of 

knowledge creation (Nonaka and Toyama 2003) and further 

described the smart city case study for a more comprehensive 

validation of the method.  

The remainder of the article is structured as follows. Section 2 

introduces the knowledge creation model and describes how it is 

related to the theoretical background. Section 3 discusses the 

research problems, and Section 4 proposes the GESU to solve them. 

Section 5 explains the research methodology. Sections 6 and 7 

describes the application of the method to a smart city case study and 

its evaluation, respectively. Section 8 discusses the obtained results 

and future work. Section 9 summarizes and concludes this article. 



 

 
  259 

 

2. Gathering and Sharing Evidence: Background 

The evolution of software is done in response to requests for new 

features, the existence of new platforms and the desire to improve 

the software quality, while considering preventing factors including 

market saturation, political and legal concerns and software 

complexity (Godfrey and German 2008). The evolution is based on 

evidence that software practitioners have gathered, plus their 

personal experience (Devanbu et al. 2016). The gathering of 

evidence is usually performed through observation and 

measurements in laboratory experiments, real cases or a literature 

review of previous practices (Kitchenham et al. 2015).  

In recent years, a new software evolution practice has been seen; the 

lean start-up approach uses experimentation to achieve a product-

market fit (Blank 2013). Companies that embrace the lean start-up 

approach follow a highly iterative process of product development in 

which many opportunities are created to gather feedback for product 

testing, thus obtaining evidence for evolving the product concept. 

Even though the lean start-up movement is just a few years old, it has 

gained rapid acceptance in industry, both for start-ups as well as 

established companies (Edison et al. 2018). 

The lean start-up experiments are centred on hypotheses of value 

creation with a product that is under development (Eisenmann et al. 

2012). These hypotheses capture a capability of the product and the 

impact that this capability is expected to create on the environment 

in which the product will be used (Osterwalder et al. 2014). The 

process requires developing a vision, building a prototype (the 

“minimum viable product”), observing the user reactions, learning 

from the observations and deciding on whether to pivot by repeating 

the process with a new hypothesis. Once enough support is found for 

a hypothesis, the product concept is used for the development of the 

product and scaling the new product version in the market. 

While a hypothesis-driven approach is favoured in the lean start-up 

approach (Eisenmann et al. 2012), other ways of creating and 

sharing evidence from a product may be pursued as well. For 

example, in requirements elicitation, a rich body of knowledge exists 

on how to gather evidence from end-users and stakeholders and 



 

  

260 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

communicate them to the developers of a software product (Carrizo 

et al. 2014; Sutcliffe and Sawyer 2013). Still missing is an 

understanding of the essence of gathering and sharing product 

evidence. This section develops the theoretical background and 

suggests a way of operationalising the theoretical viewpoint in 

software engineering. 

2.1. A Theory for Gathering and Sharing of Evidence 
In general, evidence is “the available body of facts or information 

indicating whether a belief or proposition is true or valid” (Oxford 

2019). Evidence underpins knowledge, and we expect that 

knowledge is derived from evidence through some process of 

interpretation (Kitchenham et al. 2015). The literature and theories 

around the definition, gathering and sharing of knowledge that 

inspired us in this study were fairly mature. 

According to the theory of knowledge, or epistemology, knowledge 

is defined as “justified true belief.” In other words, knowledge is a 

belief connected with a fact known in the right way. Although the 

belief could be made based on knowledge acquired from external 

sources, personal experience plays an important role in forming 

personal knowledge (Devanbu et al. 2016). In our study, we consider 

knowledge as a “correct information sense” (Lehrer 2018) to 

highlight the essential role of knowledge in human reasoning about 

what is true and what is false.  

Knowledge is either tacit or explicit (Collins 2010): tacit knowledge 

exists in the mind of the human actors, and explicit knowledge is 

documented. Tacit knowledge is highly personal and difficult to 

articulate. The knowledge exists in the forms of subjective insight 

and intuitions and consists of mental models and perspectives. 

Explicit knowledge is expressible and readily sharable with others in 

the form of documents, manuals and specifications. 

Nonaka and Takeuchi (1991) have defined a theory of knowledge 

creation. The theory focuses on knowledge creation as a process of 

making tacit knowledge explicit. It indicates that knowledge is 

refined by passing through different modes of conversion from tacit 

to explicit knowledge and vice versa. Nonaka and Toyama (2015) 

later revisited their theory of knowledge and updated definitions in 



261

considering the theory as a synthesizing process. Figure 8-1 shows 

the updated theory of the knowledge creation model. The model 

defines the four knowledge processes (socialization, externalization, 

combination and internalization, or SECI) as follows:

- Socialization is sharing and creating tacit knowledge through 
direct experience, observation, imitation and practice. 

- Externalization is articulating tacit knowledge through 
dialogue and reflection to make it explicit. The explicit 
knowledge can be in the form of metaphors, analogies, 
concepts, hypotheses or even models. 

- Combination is taking explicit knowledge from different 
sources such as documents, user feedback, videos etc. and 
aggregating and systematizing it.

- Internalization is taking the combined knowledge and 
turning it into individual tacit knowledge in the form of 
mental models or technical know-how.

Figure 8-1. The knowledge creation SECI model (Nonaka and Toyama 2003)

Knowledge is created between individuals, individuals and the 

environment or among a group of individuals, and the SECI model 

describes how organizations create and share the knowledge. In 

Figure 8-1, individuals (i) and groups (g) are represented by circles 

marked with individual letters. Nonaka and Takeuchi (1991) argued 

that individuals initially create knowledge, and the knowledge 

becomes organizational knowledge through the knowledge creation 

process described by the theory. In socialization, individuals 

experience knowledge or share their knowledge through actions like 

face-to-face sharing. In externalization, individuals belonging to a 



 

  

262 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

group discuss a concept to come to a shared understanding and 

document it, while in combination, the explicit knowledge from 

groups is integrated. An individual learns the explicit knowledge by 

performing some action through internalization. 

Software engineering is knowledge-intensive work and several 

studies have considered the development of knowledge, 

management of knowledge and the use of knowledge (Bjørnson and 

Dingsøyr 2008). There are also studies that have adapted the SECI 

model to fit the context of software engineering. Hansen and Kautz 

(2004) used the model for identifying knowledge flows in a software 

organization. The study replaced the externalization process of the 

SECI model with codification strategy. Bider and Jalali (2016) took 

the SECI model for traditional business process development where 

adoption and embedment replaced socialization and internalization, 

respectively. They then adapted the knowledge transformation into 

agile process development by removing the combination process.  

To acquire evidence for software evolution, we selected to use the 

SECI model for framing the gathering. However, none of the previous 

adaptations of SECI in software engineering were appropriate to the 

context of this paper. Therefore, the original version of the SECI 

model was utilized in this study. In addition to the theoretical 

framework, it was also important to understand previous works 

regarding the technical dimension for gathering knowledge. These 

are described in the next section. 

2.2. Methods for Gathering Evidence  
There are various methods and tools to obtain knowledge about 

software products. Workshops and meetings are examples of 

approaches for gathering knowledge from participants. This 

knowledge can contribute to identifying evidence for evolving 

software systems. This section gives an overview of the approaches 

for gathering knowledge and evidence from a system at runtime or 

from a user. 

2.2.1. Gathering Evidence from a Running System  

Monitoring a system at runtime allows engineers to determine 

whether or not and to what degree the implemented system is 



 

 
  263 

 

meeting the requirements of its users (Carreño and Winbladh 2013). 

The insertion of code or sensors into a running system allows the 

developers to continuously check the system’s health, observe the 

users, record their activities and study the system’s behaviour 

(Wellsandt et al. 2014). Such monitoring enables engineers to 

monitor goals, detect requirements violations (e.g., system failures) 

and react quickly to evolve the system (Leucker and Schallhart 

2009). Furthermore, observing user activities, such as the sequence 

of features used, duration and other contexts, enables requirements 

engineers to understand user needs better (Maalej et al. 2016).  

Several approaches have been studied for monitoring a system and 

its requirements at runtime (Rabiser et al. 2017; Vierhauser et al. 

2016). Some rely on continuous observation of the system use and 

continuously analyse the recorded logs to identify evidence for 

changes (Fotrousi and Fricker 2016). There are other studies in 

which the system use is monitored based on a requirements or goal 

model (Goldsby et al. 2008; Wang et al. 2009). The benefit of the 

second approach is that the data gathering is more focused and a 

lighter analysis is introduced to find evidence for changes when 

compared to the first approach. (Qian et al. 2018) proposed a goal-

driven framework that monitors the adherence of user behaviour to 

the goals. It enables adaptive activation of the goals based on the 

behavioural information to reason about the fulfilment of the goals.  

2.2.2. Gathering Evidence from Users 

There are several approaches to gather user knowledge and 

therefore evidence for software evolution. Workshops for the 

gathering of requirements (Fricker et al. 2015), online games to 

gather user preferences (Hacker and Von Ahn 2009) and specific 

product reviews in an app store (Kurtanović and Maalej 2018) are 

examples of such approaches. 

Feedback given by users is another source of information to 

understand user needs and how satisfied the users are with the 

system (Knauss et al. 2009). Several feedback tools and approaches 

have been designed to collect such information with user feedback. 

Feedback tools are either offered as a standalone option or are 

embedded into the system (Fotrousi and Fricker 2016; Seyff et al. 



 

  

264 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

2014). The feedback tools trigger feedback forms either by a user’s 

request, such as pressing a feedback button, or by a system request, 

such as with an automatic pop-up window (Maalej et al. 2009). 

Feedback forms enable users to communicate bug reports, feature 

requests and praise (Maalej and Nabil 2015). The feedback may be 

collected as a simple combination of free text, selected categories, 

ratings and screenshots with annotations (Elling et al. 2012; 

Morales-Ramirez et al. 2015). Regardless of the dialogue design, 

several studies describe challenges of analysing and interpreting 

user feedback, especially when information about the context in 

which it applies is missing (Pagano and Brügge 2013; Stade et al. 

2017). 

2.2.3. Combining Evidence 

Combining monitoring data and user feedback can create new 

knowledge while mapping the feedback within the context in which 

it applies (Oriol et al. 2018). There are a few studies that have 

contributed to creating and using such combined knowledge. Seyff et 

al. (2014) proposed to connect user feedback with features of the 

user interface to improve usability. Fotrousi et al. (2014) proposed 

to correlate the users’ quality of experience with the system’s quality 

of service to elicit non-functional requirements. Oriol et al. (2018) 

proposed a generic framework for combining the collection of 

feedback and monitoring data and tested the framework for 

requirements elicitation. Furthermore, Mattos et al. (2018) 

presented an experimentation activity model where it was 

confirmed that user feedback along with monitoring data could 

contribute to an engineer’s knowledge. 

3. Research Problem 

The previous studies discussed confirm that the combination of 

monitoring data and user feedback contributes to creating new 

knowledge that could enhance the knowledge of a product 

development team. A product development team could not achieve 

some of this evidence with either monitoring data or user feedback 

alone. Prototypes have been developed to show the feasibility of 



 

 
  265 

 

gathering such knowledge in practice (Oriol et al. 2018; Seyff et al. 

2014). However, the prototypes had some drawbacks. 

First, the collected user feedback lacked sufficient information about 

the context in which the feedback was given. Oriol et al. (2018) only 

validated the solution with passively collected user feedback. An 

analysis of the passive user feedback could not describe the context 

if the user did not mention it in the feedback. Such a passive approach 

limits developers in targeting feedback collection on interesting 

situations of system usage and increases the risk of collecting 

irrelevant or even fake feedback (Dalpiaz 2011). 

Second, the monitored data turned out to be challenging to analyse 

and interpret in continuous monitoring, especially when the 

monitoring of the software use for years created a massive amount 

of data. Such large data sets with an amount of data interconnection 

may require complex analysis in order to extract some knowledge 

about the product (Jin et al. 2015). 

Third, the relevant studies have not provided a clear understanding 

of the conceptual process behind gathering and organizing evidence 

for evolving the software. The literature does not present how the 

evidence integrates into the stakeholders’ knowledge and enhances 

it for deciding about the next release of the system.  

To summarize, the study problem is to describe how software 

practitioners gather evidence from the use of a software system to 

support decisions about evolving the system, while ensuring the 

usefulness of the data gathered. 

This paper proposes a solution for the gathering of evidence from 

software-in-use (GESU) considering two perspectives. From one 

perspective, we will conceptualize the method and frame its 

processes using theoretical support. From another, we will address 

technical issues and identify opportunities to evolve the gathering of 

evidence from software-in-use.  

 



 

  

266 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

4. GESU: A Method for the Gathering of 
Evidence from Software-in-Use  

As discussed earlier, monitoring data and user feedback are two 

sources of evidence used for evolving a system. The issues discussed 

in Section 3 engaged us to extend the feedback acquisition and 

monitoring enabler (FAME) approach (Oriol et al. 2018) by 

combining system monitoring and user feedback with autonomously 

generated proactive requests for user feedback.  

We used the conceptual framework of SECI to justify the components 

needed for the method to guide data collection and to analyse the 

research. At first glance, none of the previous adaptations of the SECI 

model for software engineering (Bider and Jalali 2016; Hansen and 

Kautz 2004) worked for our concept, while the main SECI model fit 

it the best. The framework allowed us to explain the knowledge 

creation phenomenon while adopting the other researchers’ points 

of view on this concept. 

The SECI model was limited though. SECI only focuses on “human” 

individuals or groups and does not take the “machine” into account. 

However, the software product running on a machine is an important 

source of knowledge. We believe there is no critical difference 

between transferring tacit knowledge of an individual to another 

individual and transferring knowledge embedded in the software to 

an individual, or even to another piece of software. 

Figure 8-2 presents GESU method in two dimensions: the knowledge 

transformation process and activities involved in the process. The 

model presents four processes of knowledge transformation (i.e., 

experiencing the software product, articulating knowledge, 

combining knowledge and operationalizing the knowledge) that 

correspond one-to-one with the processes defined in the SECI model 

(i.e., socialization, internalization, combination and externalization). 

For clarity, we adapted the terminology that the original SECI model 

uses. The method contains the seven activities explained below. 

 

1- Preparing and running a software system. A company launches 

a software product or software system with a particular set of goals 



 

 
  267 

 

and lets its users, including end-users and stakeholders of the 

product, experience it. This is the first activity in transferring 

knowledge that exists within a software product (i.e., “the machine”) 

to users (i.e., “a human”). For example, when a software feature is 

broken, the user knows the problem as he or she experiences the 

feature for the first time.  

2- Monitoring the system and its usage. The goal-driven product 

monitoring occurs continuously behind the scenes. The occurrence 

of an internal event, such as a deviation in a measurement from its 

accepted threshold value, triggers an action. The accepted threshold 

is defined based on product goals. Using event-driven monitoring 

allows the product team to focus on those measurements that create 

an action for business growth. Tracking every single user click might 

not lead to generating actionable knowledge for the product team, 

while candidate measurements aligned with the product goal might. 

Goal-driven monitoring does not mean that one should collect only 

particular measures; it means that one should rely on the knowledge 

extracted from candidate measures. The other measures may help to 

reveal or explain a situation in the future. 

3- Collecting user feedback. During this activity, feedback from 

users about the running product is collected. The method suggests 

proactive, autonomous requests for user feedback (Wüest et al. 

2019) when an interesting situation in the use of a system is 

detected. Proactive requests for user feedback mean directly asking 

for feedback as through a pop-up feedback form. Autonomous user 

feedback means to customize the feedback form based on the 

observation of the system.  

When the monitoring system (i.e., goal-driven monitoring) detects a 

deviation in a measurement from the accepted threshold (defined 

based on the goals), the system triggers a request for user feedback. 

In response to the triggered request, users share their perceptions, 

experiences or needs via user feedback that may explain the 

measurement deviation. The users themselves may also trigger the 

feedback form and provide similar feedback. 

 



2
6

8

F
ig

u
re

 8
-2

.G
E

SU
 m

et
h

o
d

—
d

as
h

ed
 b

o
xe

s 
id

e
n

ti
fy

 k
n

o
w

le
d

ge
 t

ra
n

sf
o

rm
at

io
n

 p
ro

ce
ss

es
 a

n
d

 s
o

li
d

 b
o

xe
s 

sh
o

w
 t

h
ei

r 
ac

ti
vi

ti
es

 



 

  269 

 

Proactive user feedback allows the product team to connect user 

feedback with the context directly. An autonomous feedback request 

enables them to find explanations for a situation in a more 

straightforward manner. Also, a proactive feedback request allows a 

user to share an immediate perception rather than one that is 

delayed. Furthermore, this type of feedback request may increase the 

volume of received feedback as some users do not provide feedback 

unless requested. 

4- Aggregating (measurements and user feedback). This activity 

aggregates acquired knowledge from Activities 2 and 3. Software 

system measurements are translated into knowledge for the product 

team. The user feedback also contains more knowledge for the 

product team (i.e., users’ experiences, perceptions and needs). 

Combining the two knowledge sources generates new knowledge 

including evidence for software evolution. Previous studies 

(Fotrousi et al. 2014; Oriol et al. 2018) have provided technical 

solutions on how to match the corresponding measurements and 

user feedback. Supporting the proposed solutions, the GESU suggests 

forming the evidence which not only includes the individual pieces of 

knowledge and the matching information but also the aggregated 

forms of the knowledge. Creating the aggregated knowledge may 

need a level of human activity for synthesizing the prior knowledge 

(Nonaka and Toyama 2003). The aggregation can be in different 

formats such as a simple list of evidence, descriptive statistics 

(Fotrousi et al. 2014), a correlation analysis (Oriol et al. 2018) or a 

visualization map (which is presented in Section 6.2.2). 

5- Collecting product team feedback. In this activity, the product 

team receives the compiled evidence, including the user feedback, 

system measurements, and the combination of them. Each team 

member synthesizes the received knowledge together with personal 

observations and knowledge. Conclusions are made regarding the 

knowledge as a list of evidence for software evolution that is shared 

for decision-making. 

6- Socializing. Sometimes product team members need to share 

their perspectives and possibly discuss the evidence for evolving the 

software. This knowledge sharing is performed via socialization 

activities such as meetings. 



270
Part 4: Combining User Feedback and 
Monitoring Data

7- Aggregating (product team feedback with previous 

evidence). The decision-maker combines the synthesis of the 

product team with the existing knowledge. Activities 5, 6 and 7 are 

iteratively repeated to collect knowledge from the involved product 

team members, such as developers and their manager.

8- Implementing changes. The planning knowledge can guide the 

implementation of the new product evolution.

Activities 2, 3, and 4 involve identifying symptoms to explain the 

problems and clarify the reasons for particular changes to answer 

the question: why do we need this change? Activities 6 and 7 identify 

causes for the symptoms to answer what should be changed. Activity

7 is the only one that involves planning to identify who, when and 

how to evolve the system. The categories of knowledge define the 

kinds of changes that happen in the software evolution (Taentzer et 

al. 2019). In this research, we developed Activities 1–4 (grey boxes 

in Figure 8-2) to automatically collect knowledge from the end-users 

and the system.

5. Research Methodology

We followed a design science research approach (Hevner et al. 2004)

in which we designed the GESU method and evaluated it using a case 

study. Figure 8-3 positions our design science research in 

consideration of its relations with the environment and knowledge 

base. We applied the acquired knowledge from the SECI theory as 

well as the concepts and technical solutions that FAME proposed to 

design the GESU and later used the GESU to revisit the knowledge. 

Also, we received requirements from the case environment and 

evaluated the GESU by applying it to the case.

Figure 8-4 provides an overview of our research methodology 

process that slightly adapted the design science process-model 

proposed by Peffers et al. (2007). In the figure, we replaced 

“demonstration” with “Apply” to avoid confusion in the terminology. 

Also, we merged the process of “define objective and solution” with 

the “Design” process. In the research process, we investigated the 

problem from previous studies and designed the GESU method with



 

 
  271 

 

the support of various theories. We applied the method in a smart 

parking use case and evaluated the method with the case 

For applying and evaluating the GESU, we used a single case study 

method (Yin 2014). With single case study research, we can test the 

technical applicability and effectiveness of the artefact and also 

strengthen our theoretical understanding, while deepening our 

knowledge of the specific case (Ulriksen and Dadalauri 2016). Yin 

(2014) described that a single case is justified with a well formulated 

theory in which a clear set of propositions has been specified. A 

single case can confirm, challenge or extend a theory. 

We defined two evaluation research questions:  

RQ1: How accurately and completely does GESU explain the 

knowledge creation process in the smart parking case? 

RQ2: How applicable and useful is the GESU to support the 

gathering and sharing of knowledge by the product team for the 

evolution of the smart parking case?  

RQ1 aimed to evaluate whether the knowledge creation process in 

the smart parking case accurately and completely explained using 

the underlying concepts defined in the GESU.  

RQ2 aimed to evaluate the benefits of having the GESU method in 

practice. With RQ2, we investigated whether the GESU was an 

applicable and useful way of gathering evidence from stakeholders 

such as users and developers to support product evolution decisions. 

For applicability, we assessed whether the method could be 

integrated in the technical infrastructure of the case. For usefulness, 

we evaluated whether the method could constraint the problem it 

was meant to solve.  

  



2
7

2

F
ig

u
re

 8
-3

.P
o

si
ti

o
n

in
g 

o
u

r 
d

e
si

gn
 s

ci
en

ce
 r

es
ea

rc
h

 a
p

p
ro

ac
h

 in
 r

el
at

io
n

 w
it

h
 t

h
e 

e
n

vi
ro

n
m

en
t 

an
d

 k
n

o
w

le
d

ge
 b

as
e

F
ig

u
re

 8
-4

.R
es

ea
rc

h
 m

et
h

o
d

o
lo

gy



 

  273 

 

5.1. Research Context 
The study was conducted in the context of a European-Asian 

innovation project called Wise-IoT (www.wise-iot.eu), where IoT 

refers to the Internet of Things. The part of the project that we 

collaborated with in this study was aimed at understanding the 

problems of developed systems and identifying opportunities to 

evolve them to increase value creation and the quality of the 

experience. To achieve this aim, we implemented Activities 1–4 of 

the GESU to facilitate the gathering of knowledge existing in the use 

of the developed systems. 

For this study, we selected the smart parking software application 

(Sotres et al. 2018) that the University of Cantabria (UC) had 

developed for the city of Santander in Spain. The application made 

use of thousands of IoT traffic and parking sensors that were 

deployed in the city and helped users find open parking spots within 

the city when they were travelling by car. The application used a 

recommender system to generate an unoccupied parking selection 

and a route to it for end-users.  

5.2. Unit of Analysis 
The knowledge that was gathered, combined and shared through the 

GESU methods was the unit of analysis. Part of that knowledge 

formed the evidence for the software evolution. For example, from 

user feedback, a developer would learn that a user is happy about the 

application, but feature x was broken due to a particular action of the 

user. The second piece of knowledge may form evidence for changing 

the software in a future release, while the first one would not. The 

knowledge could be about the software system reflected in the 

monitoring data, feedback that users shared about the software 

product and synthesized knowledge from developers and managers 

that we captured via interviews.  

5.3. Research Process 
This section explains our research method process as presented in 

Figure 8-4. 

Problem investigation. We started the research with the problem 

identification step to understand the challenges regarding existing 



 

  

274 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

approaches and to identify the scope of the research. We also studied 

relevant theories to be used to support the design. In the beginning, 

we had several meetings and discussions within our team to 

investigate the problems and possible technical solutions. We 

explained the identified problems in Section 3. 

Design. In this study, we presented one iteration of designing the 

GESU for the problem. The GESU process and its foundations are 

explained in Section 4. 

Apply. We applied the GESU to a smart parking case piloted in 

Santander, Spain. The third author instrumented the GESU method 

(Activities 1–4 in Figure 8-2). The instrument was featured with 

goal-driven monitoring of user behaviours, autonomous collection of 

user feedback, and the creation of an insight stream combining the 

acquired knowledge. For gathering the user feedback, he adapted the 

user feedback framework from the Supersede Project 

(www.supersede.eu). The framework provided facilities to 

customize user feedback forms and configure the triggering 

mechanisms of the feedback forms. The UC team developing the 

smart parking application integrated the user feedback framework 

and the recommender system. They organized the pilot study in 

Santander. Public meetings for the citizens of Santander interested 

in the IoT were held. The UC team informed the citizens about the 

evolution of Santander as a smart city and gave an overview of the 

most relevant projects, including Wise-IoT. The smart parking 

application was presented, and the citizens could volunteer for the 

pilot study, given the prerequisite that they had an Android phone 

and a car. There was no renumeration for participants who agreed to 

test the application. A total of 41 citizens had registered and took 

part in the pilot study. The citizens volunteered because of intrinsic 

motivation to help the city’s evolution as a smart city. The pilot study 

lasted three months, from the end of February to the end of May, 

2018. Within that time, we recorded the insight stream aggregating 

data from the system monitoring and user feedback. Every month, 

we had an intermediate manual analysis of the insight stream to 

check on minor evolutions. When the pilot phase ended, we fully 

analysed the insight stream. 



 

 
  275 

 

Evaluation. The evaluation had two parts and each contributed to 

answer one of the RQs. Interviews in combination with observation 

were the primary means of data collection. To evaluate the design, 

we planned one interview each with three developers and one 

decision-maker of the smart parking application. 

The first interviewee was the developer of the smart parking 

application, who led the development at the UC. She actively 

participated in collecting user feedback and the monitoring data. The 

fourth author had an informal interview with her to capture her 

knowledge based on the user feedback and her knowledge about the 

sensors. The second interviewee was the developer of the 

recommender system. The third interviewee was an infrastructure 

manager, mainly for managing the sensor infrastructure in the city of 

Santander. He was sometimes involved in the development. The 

fourth interviewee was a decision-maker in Santander’s municipality 

who was involved in decisions at the Santander site (for example, 

whether and how a sensor should be changed). Each interview took 

around 30 minutes on average, and all the interviews were recorded 

after getting consent from the interviewees. We used semi-

structured interviews and engaged the interviewees in a dialogue. 

The first author was responsible for all except the first interview. 

The interviews (except for the first one) started with a brief 

explanation of the interview’s goal and current research. Then the 

interviewer received permission for recording the interview in order 

to transcribe it later. To reduce interviewee tension, she asked some 

warm-up questions regarding the experience and the role of the 

interviewee in the use case. The second and third interviews started 

by reviewing the purpose of the software application developed 

during the use case as well as how user feedback had been collected. 

The interviewer presented the results of the user feedback analysis 

to the interviewee, including the synthesized list of user feedback 

and the frequency of each feedback item. Two questions were 

formulated to ask whether the interviewees had learnt something 

from the feedback and whether the learning confirmed for them 

things they had suspected. Later, the interviewer presented a map 

showing user feedback associated with a particular sensor location 

on the map. She repeated the two questions above, asking whether 

the interviewees had learnt something extra from the map and 



 

  

276 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

whether the learning confirmed for them what they had suspected. 

Later, she continued with questions to understand what the 

interviewees had done with the knowledge. She also sought to 

identify how the knowledge was transferred and shared, in what 

format and whether anybody else was involved in the activity. The 

interviewer asked further questions for clarification in case the 

interviewee did not provide a clear answer. In the last interview, 

with the decision-maker, the interviewer recalled the purpose of the 

software application developed during the use case. The main focus 

of the interview was on understanding what knowledge was needed 

for making a decision, who was involved in the decision-making, how 

a decision was made, and in which format. Follow-up questions were 

asked when further clarification was needed. 

For the analysis of the interviews, we transcribed them and used a 

deductive content analysis approach (Elo and Kyngäs 2008) to codify 

the transcriptions. We used explanation building (Yin 2014) to 

iteratively check the conformance of the interview data with the 

method. The deductive approach uses initial coding categories, 

which were extracted from the theoretical concepts applied to the 

GESU with the possibility of extending the codes (Hsieh and Shannon 

2005).  

We conducted the deductive analysis using the three steps described 

below. 

Step 1 – Development of the analysis matrix. We developed a 

matrix to connect the participants’ quotes and the initial categories 

of codes. The connections were filled with the coding data provided 

in Step 2. We used an unconstrained matrix with the possibility to 

extend the categories during the data coding. We expected that the 

interviewee would provide data regarding the categories associated 

with the GESU’s underlying concepts: process (socialization, 

internalization, combination and externalization); knowledge (tacit 

and explicit); knowledge chain (old knowledge and new knowledge); 

knowledge category and spiral. 

Step 2 – Data coding. We reviewed all the quotes from the 

interviews and coded them in relevance to the defined categories 

from Step 1. Although we aimed for an unconstrained matrix, we did 

not recognize new categories during the coding.  



 

 
  277 

 

Step 3 – Conceptual testing. The coded matrix was a good tool for 

testing the GESU. Exploring the codes identified the extent to which 

the case could describe the underlying concepts of the GESU. 

5.4. Threats to Validity 
We identified and classified the threats to validity and the reliability 

in the case study (Yin 2014) as described in the following. 

The construct validity reflects whether a study measures what was 

supposed to be measured. To increase construct validity, we used 

two sources for collecting the data: observing the system at runtime 

with the direct participation of one developer in the data collection 

and interviewing other members of the product team. We performed 

triangulation of the interviewees’ perspectives with two developers, 

one infrastructure manager and one product manager to evaluate the 

method. Furthermore, for the analysis of the interviews, we used 

investigator triangulation in which the first and second authors 

analysed and reviewed the analysis, respectively. To increase the 

construct validity, during the content analysis of the interviews, we 

established a chain of evidence to ensure that the categories were 

defined correctly. We also reported the analysis by reporting quotes 

as appropriate. 

One limitation could be relevant to the short duration of the pilot 

period which limited the ability to observe actual steps in the 

product evolution. A longer testing period would have allowed for 

the ability to collect more evidence and include major software 

updates. This study did not intend to evaluate adherence of next 

evolutions with the collected evidence. 

Internal validity is a concern in an explanatory case study as to 

whether confounding factors bias the explanation and analysis of the 

relations. To avoid such threats, we used an explanation-building 

tactic that provided a pattern for considering the correct inferences 

and analysed the data accordingly. 

Another issue relevant to internal validity was the choice of 

participants in the case, who experienced the system and provided 

feedback. The case only engaged with participants who were 

interested in the innovative application. The participants could have 



 

  

278 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

been motivated to provide feedback just because they knew that they 

were part of a study. There is the possibility that the participants 

were friendlier than the average user. However, looking at the 

feedback ratings, we saw that they were not hesitant to give the 

lowest ratings (one star) when they encountered a problem with a 

recommendation. 

External validity concerns the ability to generalize the results 

obtained from a study to other situations and contexts.  

Generalization was not the goal of this study. A large number of 

software applications with a variety of product goals, contexts, 

stakeholders, and company policies for managing knowledge exist. 

The outcome with respect to applicability and usefulness of the 

method might differ in another context. However, we could discuss 

the context in which the product’s goal was defined based on the user 

behaviour, how the users at runtime were able to experience the 

product and the general benefits from the GESU. As such, the method 

can be applied in other contexts as long as there are users that have 

a positive attitude for giving feedback.  

Reliability is about the rigor and honesty of the research. Threats to 

reliability affect the repeatability of the study. To address these 

threats, we established a study protocol, collected all data in a 

database, transcribed the interviews and used triangulation as the 

primary strategy for answering the research questions. We 

developed detailed coding rules that ensured that the other 

researchers would make the same decisions. The first author 

extracted and analysed the codes, and the second author reviewed 

the analysis performed by the first author. 

6. Application of the GESU in the Smart Parking 
Case 

We applied the GESU to the smart parking prototype application for 

Android smartphones, created by the developers from the University 

of Cantabria (UC). 

 



 

 
  279 

 

6.1. Data Collection 
Figure 8-5a shows a screenshot of the Android application. The 

application used a recommender system to generate an unoccupied 

parking spot selection and a route to it for the end-users. The parking 

spot sensors provided data about the spots’ current states 

(open/occupied) and allowed the app to display the open spots. 

Some of the streets contained sensors to measure traffic load and 

allowed the app to recommend routes that avoided traffic jams. Each 

recommendation consisted of an open parking spot and a fast route 

to the spot. 

We instrumented the GESU and the UC team integrated it with the 

smart parking application. The instrument monitored user 

behaviour based on data from IoT devices to detect whether users 

were in a particular situation, such as having achieved a goal or 

having deviated from the pathway towards the goal. With this 

approach, requests for user feedback were issued, making the 

feedback requests relevant for the concerned users and reducing our 

dependency on luck for useful feedback to be received. The 

aggregated monitoring data and user feedback were recorded in an 

insight stream.  

The implementation of the GESU parametrized the insight stream to 
reveal issues with the smart parking application (e.g., usability 
problems, missing functionality), the parking and pathway 
recommender system (e.g., bad recommendations, slow 
performance), the behaviour of the physical IoT devices (e.g., sensors 
delivering wrong values) and third-party software systems (e.g., 
outdated street map data). 

 



280
Part 4: Combining User Feedback and 
Monitoring Data

Figure 8-5. Screenshots of (a) the smart parking application and (b) a feedback 
form.

To detect particular situations, our system mapped the 

recommendation to a goal tree and monitored the user’s adherence 

to the recommendation. The parking spot was the main goal, and 

each street segment of the route was a sub-goal. When the users’ GPS 

location matched with a street segment, the corresponding sub-goal 

was set to fulfilled. Previous sub-goals that were not already marked 

as fulfilled were marked as skipped. We specified the interesting 

situations as being those when sub-goals were skipped, the user 

achieved the main goal or abandoned it. In these situations, our goal 

monitor issued a feedback request tailored to the situation. 

Based on the situation, the recommender system selected the 

feedback to be gathered from the user. One of the following three 

feedback forms was then displayed:

- Type 1. The user deviated from at least 50% of the pathway.

The feedback form asked about the user’s satisfaction with 

the recommended route (star rating) and the reasons for the 

deviation (multiple choice and free text answer). See Figure 

8-5b.

- Type 2. The user adhered to the pathway but selected a 

parking spot other than the recommended one. The feedback 

form asked about the user’s satisfaction with the chosen spot 



 

 
  281 

 

(star rating) and the reasons for not taking the recommended 

parking spot (multiple choice and free text answer). 

- Type 3. The users took the recommended spot. The form 

asked about the user’s satisfaction with the recommended 

route and parking spot (star ratings) and requested a 

comment with a free text answer. 

For the users’ safety, we displayed the optional short feedback forms 

to the user only at the end of a session when the user stopped driving. 

The user could then rate the experience and provide reasons for the 

rating. If the user mainly followed the recommended route, the form 

asked about the user’s experience with the parking spot that was 

taken. Otherwise, the form asked about the user’s experience with 

the route and the reason for the deviation. 

For providing anonymity and control of the data collection to the 

end-user, user sessions were tracked only with a random ID. The 

user could decide to start the monitoring and whether she or he 

agreed to send GPS data during the monitoring. The session ended 

when the user parked the car or cancelled the monitoring. All events, 

such as the creation of a session, the start and stop of the monitoring, 

the user feedback and the monitoring result of each location 

comparison were augmented with a timestamp and written into the 

insight stream. The structure of the insight stream used the session 

objects as the top-level entities. This structuring allowed combining 

the user feedback with the events that occurred in the respective 

session. For example, when a user provided feedback about a route 

recommendation, we could compare the feedback with the actual 

route taken by that user.  

The UC managed a pilot study with the citizens of Santander. During 
the study, monitoring data and user feedback were recorded into a 
log file and in a database, respectively. The tool created the insight 
stream combining the acquired knowledge and logged it in one file 
per day. Once per month, we manually analysed the log files and 
shared the main findings with the developers of the smart parking 
application. The Spanish developers evolved the smart parking 
software and maintained the IoT-based smart city system. The 
application and its recommender system received two minor 
updates during the test phase. When the test phase ended, we 
analysed the insight stream. The developer who was involved in the 



 

  

282 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

development helped us to analyse it and discover potential 
problems, user needs, new requirements and suggestions. The 
developers evolved the smart parking application including its 
recommender and maintained the IoT-based smart city system 
based on the identified evidence.  

6.2. Results 
This section presents the results. The presentation of results was 

mapped to the process explained in the GESU method in Figure 8-4. 

Sections 6.2.1 to 6.2.3 address the processes of gathering evidence 

for software evolution, and Section 6.2.4 presents the evidence 

acquired during the processes. 

6.2.1. Monitoring the System and its Usage and Collecting 
User Feedback (Activities 2 and 3) 

A total of 303 sessions were created with recommendations for a 

parking spot and corresponding route to it. In 68 out of the 303 cases, 

users started the session monitoring after receiving a 

recommendation. In 26 out of the 68 monitoring sessions, users 

allowed the mobile app to send their GPS position to the system, 

enabling the system’s adherence monitoring functionality. In ten of 

these sessions (38.5%), the users adhered to the recommended 

route. 

In 16 out of the 26 adherence-monitoring-enabled sessions, users 

submitted a feedback form. Seven of these forms were of Type 1 

concerning route deviations; five were Type 2 concerning a parking 

spot deviation and four were Type 3 concerning a fulfilled 

recommendation. 

We could not track users over multiple sessions due to the session-

based privacy mechanism. We counted individual sessions instead. 

The users allowed the mobile app to send their GPS data in 38.2% of 

the monitoring sessions (26 out of 68). We considered this to be a 

good amount because some of the 68 monitoring sessions may have 

been started for testing the app functionality and not to go 

somewhere or seek a parking spot.  



 

 
  283 

 

Of the 26 sessions with user GPS data, we received 16 submitted 

feedback forms. Of the users who were presented a feedback form, 

61.5% decided to fill it out and submit it. If we consider all the 

sessions in which the monitoring was started, the ratio was 16/68 = 

23.5%. Again, some of the sessions may have been started for testing 

the app functionality. We consider the 23.5% feedback ratio to be 

high in comparison to the use of web surveys (Fan and Yan 2010). 

The reason for this result could be that we kept the forms small and 

simple, and they were presented to the users in situations and with 

content that was relevant to them. 

Table 8-1. Categorised user feedback from the free-text answers. 

User Feedback Number of Answers 

The parking spot was occupied 6 

There was a more direct or faster route 5 

The parking spot was too small or the sensor was in a bad 

location 

5 

The route or parking spot was blocked by construction 

work 

2 

The app was too slow or stalled 2 

Found a free parking spot before arriving at the 

recommended one 

1 

The average user satisfaction rating of the parking spots was 2.13, 
and the satisfaction of the recommended routes was 2.07 out of 5 
stars. We analysed the automatically collected user feedback for 
reasons why the scores were not higher and coded the free-text 
answers. Table 8-1 shows the resulting categories and the number of 
answers in each category. 

6.2.2. Combining User Feedback and Monitoring Data 
(Activity 4) 

To put the above feedback into context, we visualised the monitoring 
data on a map and added the feedback according to the GPS data from 
the users. Figure 8-6 shows the parking spots rated by the users, 



284
Part 4: Combining User Feedback and 
Monitoring Data

together with their feedback. It also shows one of the recommended 
routes and the corresponding route taken by the user.

Figure 8-6. Parking spot feedback*

*: red: negative, red with crown: discussed in the text, green: positive. Blue line: a 

route recommended to a user. Violet line: route taken by that user

Despite the few user feedback items received by the system, 

important issues could be identified with the analysis of the 

correlated monitoring and feedback data. One feedback item 

mentioned a blocked parking spot due to construction work and 

another a non-existent spot. When looking at the map, these two 

spots were close to each other (white crown markers). Also, a 

recommendation led to another spot nearby on the same street, and 

the user gave the feedback that the sensors on that street did not 

function because of construction work. The construction work in that 

street was an issue that was uncovered by combining the user 

feedback and monitoring data.

The second group of red markers shows an accumulation of parking 

spots that were either occupied or too small. However, because of the 

few data points, we could not say whether this was a condition

specific to that location or whether this was a more general problem 

with the parking spots in the city. For example, one of the positively 

rated spots also received negative feedback (stating that the sensor 

was between two cars, which means that it was not possible to park 

there). However, the green markers were both located in less 

crowded areas of the city, where the chance of finding an open spot 

was higher (whether it was the recommended one or another one 

close by).



 

 
  285 

 

Furthermore, one user stated that no parking spot was available at 
the recommended location. However, the user’s GPS data showed 
that the user never was in that location but went somewhere else 
instead. This observation is an example of how monitoring data can 
be used to verify the validity of user feedback. It seems that there was 
a different issue instead (e.g., the user may not have been able to read 
the map correctly). 

6.2.3. Collecting Product Team Feedback and Aggregating 
(with Previous Evidence) (Activities 5 and 6) 

The interviews with the product team revealed that developers used 

and combined knowledge from different sources to interpret a 

situation. The results showed that one source of knowledge was not 

sufficient to understand the problems and act accordingly. 

Sometimes, developers anticipated an event and therefore expected 

to receive the relevant user feedback. At other times, they were 

surprised by the new knowledge received from the user feedback. 

Combining the user feedback with sensor locations revealed some 

new knowledge for the interviewees.  

We found that interviewees did not necessarily document their 

explicit knowledge. Sometimes they performed an action based on 

their own reasoning without documentation. We also found that 

decision making could be a complex task where several factors could 

come into consideration. Managers received feedback from different 

individuals, then combined and compiled them toward a decision. 

Decision-making was sometimes as simple as confirming a small 

change in the code or needed detailed discussion of the changes with 

the municipality and other managers 

6.2.4. Evidence for Software Evolution 

The analysis surfaced findings with a significant effect on the 

maintenance and evolution of the smart city system and the Rich 

Parking application. Individuals in the product team provided a set 

of reasoning, but product evolution decisions need a combined form 

of this reasoning.  



 

  

286 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

Construction work. Increasing construction work blocked streets and 

parking spots during the test phase. The recommender used an 

external street routing framework that was not updated with the 

construction work information in a timely fashion. Therefore, the 

recommender sometimes proposed routes with blocked street 

segments. The effect of increasing construction work during the trial 

phase appeared to be larger than the effects of other factors that 

could have led to improved route recommendations over time. The 

38.5% route adherence seemed to be quite good, given the 

construction work problem as well as possible cases where users 

might have decided not to follow the proposed route for other 

reasons. However, this rationale must be taken with care due to the 

low number of sessions and the fact that the users were aware of 

participating in a test, which could have biased them to follow the 

proposed routes eagerly. Furthermore, construction work could also 

have had a negative effect on the parking spot ratings. If a user gave 

a bad rating to a parking spot because it was lying inside a 

construction zone and thus was not reachable, there was still a 

chance that in a future session, the system would propose a parking 

spot close to the badly rated spot and still located within the (same) 

construction zone. 

Based on the observations, the interviewees suggested some 

improvements in the system. One interviewee suggested keeping the 

information regarding the construction updated. Another interviewee 

proposed a technical suggestion for adding an exception to the code 

for the spots blocked by construction work. 

Parking sensors and fluctuations in parking spot availabilities. The 

system proposed parking spots to users that were unoccupied at the 

time when the user requested a recommendation. During high traffic, 

there was a good chance that another vehicle would park on the 

proposed spot before the user arrived. As a result, users may have 

experienced arriving at occupied spots and thus gave bad ratings. 

Vehicles were sometimes inaccurately placed with regard to the 

parking sensors (in the worst case, in the middle of two parking spots 

which did not trigger the parking sensors). The knowledge from the 

interviews implied that upgrading the hardware or updating the 

software was needed. An improvement to the software could be to let 



 

 
  287 

 

the recommender prioritise regions with large numbers of free 

parking spots or to introduce a reservation system.  

These issues pointed out by the insight stream could not be solved 

during the pilot phase. However, they provided developers with facts 

to think of how to improve the system. 

The ratio of user ratings to available parking spots. While we received 

nine user ratings about parking spots, the city of Santander 

contained hundreds of spots. The coverage of the city’s parking 

spaces was relatively low. A broader use of the smart city-generated 

IoT data is needed to generate insights for the totality of the city. 

7. Evaluation 

This section provides a detailed analysis to answer the research 

questions. 

7.1. Accuracy and Completeness of the GESU’s 

Conceptual Framework (Answering RQ1) 
The analysis of interviews confirmed that the GESU can completely 

and accurately describe all the processes the stakeholders gathered 

during elicitation and the use of the knowledge from the smart 

parking application. The analysis showed that the elicitation of 

evidence involved socialization, internalization, combination and 

externalization processes as the GESU suggested. Also, the analysis 

showed that the processes in the smart parking application could 

follow the knowledge conversion operators in the sequence as the 

GESU suggested. The following paragraphs specify how the support 

or disagreement was reported during the interviews. 

The analysis of interviews indicated that a diversity of individuals 
could contribute to enhancing knowledge about the product in use 
through the different GESU processes. 

Socialization. The new product impacted individuals while they 
were experiencing the product and socializing their experience. 
Evidence of feedback from end-users showed that they had gone 
through the experience of the product to acquire knowledge about 
the product. The developers also mentioned their experiences with 
the product and the development of the product:  



 

  

288 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

“I had to do two things. First, I had to provide a 
recommendation for a parking place based on a set of 
parking sensors, and secondly, I had to recommend a 
route based on the user’s current location. 

A developer mentioned that he had to report to the municipality as 
the decision-maker via a meeting. The meeting was done using the 
socialization process to transfer the developer’s tacit knowledge to 
the manager’s tacit knowledge in order to inform him of the 
situation. 

Externalization. The tacit knowledge acquired via experiencing had 
to be synthesised and documented. During the interviews, the 
developers demonstrated that user feedback and sensor data were 
two sources of knowledge that they used. Such knowledge was 
explicit and collected using externalization. The interviewees 
expected some of the user feedback, but some were new explicit 
knowledge for them: 

“I did not highly expect [the feedback], but I can agree 
now as sensors are not deployed in the whole of 
Santander. That is why it could happen.” 

“Yes [I know the user feedback], it has not happened 
before, but during last week, we realized that there was 
construction work in the area that parking spots were 
deployed.” 

The elicited knowledge might have different value for various roles: 

“The events in which the parking spot was occupied did 
not have much information for us as an IoT manager, but 
it is interesting for the application developer.” 

The results of the synthesis could be either tacit or explicit. For 
example, the developers had a list of suggestions in their minds. One 
developer communicated the suggestions via a meeting:  

“The infrastructure is owned by the municipality, and we 
need permission to do all the work. When sensors are not 
working, we need to direct this to the municipality. … we 
will have a meeting with the municipality team, and 
share a report (but it is not a document) to say whether 
the infrastructure is working properly or not.” 



 

 
  289 

 

The other developer articulated the suggestions via an 
email:  

“I was in contact with our local partner, [NAME]. She 
lives in Santander and knows much better than me. 
Normally, I contact her whenever I had some things to 
modify. I first see if she agrees whether it is the case and 
whether it is what I understood. 

After a developer met with the decision-maker, the decision-maker 

also had to synthesize his tacit knowledge together with his previous 

knowledge and decide on an action, while considering several other 

factors: 

“Decision-making in the municipality is quite a complex 
task. There are several factors affects our decision, for 
example, for changing a sensor. Citizens, the economic 
part, workers, technical parts of service providers, and 
others. The decision-maker has to look at all the factors 
and decide accordingly.”  

The second developer emailed the top developer, who was the 

decision-maker, and wrote about his suggestion for a change. The 

second decision-maker could integrate her tacit knowledge with the 

developer’s explicit knowledge and synthesize it through the 

externalization process in order to permit the developer to evolve the 

software. 

Combination. User feedback and sensor locations were two explicit 
pieces of knowledge; each of which served as input for the 
combination process. We combined these two knowledge pieces in a 
map using combination. The combination revealed new knowledge 
for developers that they were unaware of earlier: 

“With this feedback [on the map], we can see which spots 
are blocked with the construction work.” 

“The information regarding the placement of the sensor 
between cars helps us a lot when there are a lot of 
sensors between cars, as we can analyse the whole street 
as to how to enhance that behaviour.” 

Internalization. The results showed that in order to make the 
product operationalized, sometimes the planning decisions were 



 

  

290 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

taken by another authority and sometimes just confirmation from a 
higher developer was sufficient. Also, sometimes the planning 
decisions were well documented and sometimes, particularly for 
small changes, they were not. The documented planning decisions as 
a part of the knowledge were operationalized through the 
internalization process: 

“…The last decision is mainly taken by the mayor, 
although there is usually a management team and many 
discussions before the decision…. In Wise-IoT, he 
contacted [the UC responsible person] to allow changing 
a sensor… In reality, formal letters are prepared 
explaining all the details.”  

A developer also mentioned that he operationalized small changes 

based on his tacit knowledge: 

“When we both [me and the top developer] agreed upon 
anything, I usually simply implemented that and then 
later documented it in the deliverables. An example is the 
privacy-aware implementation of Rich Parking… When 
we agreed upon a protocol, I immediately implemented 
that and then later on documented this change in the 
deliverable.” 

Sequence of the knowledge processes. Below we explain how the 
relations between the processes were supported in the case. 
 

Socialization  Externalization. An end-user sent feedback based on 

their tacit knowledge achieved through experiencing the product 

(socialization  externalization). Also, the developer who had 

already synthesized knowledge and acquired relevant tacit 

knowledge, needed to report to the municipality decision maker via 

a meeting (externalization  socialization). 

Externalization  Combination. The analysis showed that the 

relation between externalization and combination was a bi-

directional relationship. A developer synthesized his tacit knowledge 

by consulting with other developers or aggregating with available 

explicit knowledge such as user feedback and monitoring data 

(combination  externalization). The developers synthesized 



 

 
  291 

 

knowledge to propose a solution for the problem and plan 

accordingly (externalization  combination). 

CombinationInternalization. The relation was established when 

the decision-maker sent planning decisions or confirmation 

decisions (i.e., explicit knowledge) to be operationalized and learnt 

by other individuals using internalization operators. The analysis 

showed that tacit knowledge could also be operationalized. For 

example, one of the developers applied the changes based on his tacit 

knowledge without any documented plan (externalization  

internalization). According to the GESU, the developer had skipped 

Activity 7 of the process model that is relevant to aggregating explicit 

knowledge (documented solutions and plans). 

The internalization  socialization relation was established when 
individuals such as a user or a developer accepted a new product to 
experience it. The individual was informed about an action (e.g., a 
new product version) in internalization in the sense that he was 
informed about the new version, accepted and took it for granted. 
The individual took its tacit knowledge to experience the product in 
socialization. 

Spiral cycle for knowledge creation. Our analysis confirmed that 

knowledge gathering was a continuous activity. The continuity 

regarded the repeating of each process in one cycle to enhance 

knowledge or repeating the whole cycle while evolving the product. 

For example, one interviewee highlighted the need for the 

continuous collection of user feedback: 

“We may need to have some verification to check 
whether the same problem occurred with multiple users. 
With ten users, for example, we see that it is a real 
problem to consider.” 

7.2. Applicability and Usefulness of the GESU in Practice 
(Answering RQ2) 

The analysis confirmed that the GESU method was applicable in 

principle in the smart parking use case, although some modifications 

were needed. Also, the GESU was found useful to address the 

problems discussed in Section 3. Using the GESU, we collected 

evidence for software evolution relevant to the use case as presented 



 

  

292 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

in Figure 8-7. The figure shows the explicit knowledge captured. It 

presents what knowledge was acquired by whom and belonging to 

which category of knowledge (i.e., goals, facts, symptoms, cause, 

evolution). We also identified the evidence that demonstrated the 

knowledge. 

The figure maps the acquired knowledge to the relevant conceptual 

elements of the SECI. Different knowledge can be grouped together 

to establish a chain of evidence for supporting the decisions 

regarding the software evolution. 

Applicability: We investigated the applicability of the GESU on the 

smart parking application following two goals: 

- The GESU could succeed to gather evidence from 
stakeholders to support decision-making in software 
evolution. 

- GESU was technically feasible within the settings of the smart 
parking application. 

 
Figure 8-7 provides support for the first goal by presenting the 

knowledge gathered from the stakeholders (users and developers). 

The knowledge was mainly the explicit knowledge that the 

stakeholders articulated and could relate to the categories indicating 

how to support the software evolution. The evidence of why the 

software evolution is needed demonstrates the symptom knowledge 

category, and the evidence of what should be evolved shows the 

cause category of knowledge. We only focused on the evidence that 

demonstrate the knowledge relevant to the software evolution and 

ignored other evidence that support knowledge of users or product 

team acquired in this process, not necessarily relevant to the 

evolution.  

The second goal was also achieved in the study. Our evaluation 

showed a successful integration of the artefact within the technical 

infrastructure. The process for monitoring the system, collecting 

user feedback and combining the data to generate the insight stream 

was successfully implemented and used in the smart parking use 

case. The settings for filtering the monitoring data based on goals and 

triggering the user feedback on the deviation of goals could be also 

implemented and applied in the case.  



Figure 8-7. Knowledge landscape. Identifying evidence 
for software evolution 



 

  294 

 

Usefulness. A design artefact is useful when it constraints the problem 

it was meant to solve. Below we have listed the problem-solution 

pairs. The analysis showed that the proposed solutions could solve 

the problems in practice: 

Problem. User feedback lacked enough information about the context 

in which the feedback was given. 

Solution. The method suggested proactive, autonomous requests for 

user feedback when an interesting situation in the use of a system 

was detected. 

The results clearly stated the context of each feedback. For example, 

it was clear for each feedback what recommended parking slot or 

route the user was following. Therefore, the sensors that the user 

faced on the way were also detectable, which guided finding 

problematic ones. 

Problem. Monitoring data turned out to be difficult to analyse and 

interpret. 

Solution. The method suggested event-driven monitoring based on 

detecting goal fulfilment. 

The results show that it was unnecessary to monitor every single 

user click in the application and collect volumes of data. The solution 

suggested monitoring goal deviation (i.e., user deviation from 

recommendations in the use case) and triggering autonomous 

feedback to collect more data to explain the user behaviour. The 

chain of fact extracted from the results and can support the 

statement. For example, deviation of a user from the recommended 

parking triggered a feedback form. A user provided the “2/poor” 

rating for the recommended parking slot and motivated the rating 

with the statement that “another car parked between two slots”. 

Problem. No clear understanding of the conceptual process was 

behind the gathering and organizing of the product knowledge. 

Solution. The method was successful in the conceptualization of the 

gathering and organizing of evidence for software evolution. 

The degree of success of this goal was discussed in Section 7-1. 



 

 
  295 

 

8. Discussion 

8.1. Implications 
The GESU method theoretically and practically targets gathering, 

sharing and aggregating evidence to support decisions for software 

evolution. The GESU provides several benefits. The method steers 

the collection of user feedback on interesting situations of system use 

by basing the feedback requests on monitoring the fulfilment of user 

goals. This technique avoids collecting volumes of unused data and 

reduces the number of disturbances of users due to feedback 

requests, by collecting short feedback only when it is needed. 

Unnecessary disturbances can also negatively impact the amount of 

feedback received even when it has a negligible impact on the quality 

of the experience (Fotrousi et al. 2018). Furthermore, in the 

presented use case, such disturbances could lead to accident. We had 

chosen to avoid dangerous disturbances and asked users for 

feedback when they were in a safe situation after the experience.  

The evidence that was revealed by combing monitoring data and 

autonomously gathered user feedback could inform system 

evolution with advice for new features and how to enhance existing 

features. For example, better parking sensors that can sense cars or 

obstacles that are not placed exactly on top of the sensors would be 

an improvement. This is a solution that takes into account the 

amount of fluctuation in the available parking spots. Another 

possibility is a better synchronization of the routing framework with 

the real-world situation, possibly by connecting the system to the 

city’s database with information about construction work or 

otherwise blocked streets. The evidence showed what should be 

changed (the object of the change) and why (the reason for the 

change). However, the decision-makers need to plan when the 

change should happen, who should change it and how the software 

should be changed (Taentzer et al. 2019).  

Despite the benefits of the combined analysis of user feedback and 

monitoring data for software evolution, the analysis also allowed for 

the identification of two invalid user feedback items for two users 

who gave feedback about parking spots they never visited. Without 

the monitoring data, it would not have been possible to distinguish 

this type of invalid feedback. This result shows that our proposed 



 

  

296 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

approach may be used to reduce the risk of collecting irrelevant or 

even fraudulent feedback (Dalpiaz 2011).  

The adaptation of the GESU to the real case shows that the knowledge 

creation and sharing processes are more interactive than the 

proposed SECI model in Nonaka’s theory (Nonaka and Toyama 

2003). There is an interesting implication that machines have a more 

linear process, while human reasoning needs more back and force 

interactions. Therefore, it is much easier to automate the process of 

gathering and combining evidence from user feedback and 

monitoring data (the upper part of Figure 8-2) as we did in this study, 

rather than the human reasoning and aggregation of the created 

knowledge (the lower part of Figure 8-2).  

More lightweight approaches, such as questionnaires, may be used 

as an alternative or complement to elicit requirements (Zowghi and 

Coulin 2005). With our approach, the real system may be observed 

in use in the real environment and by real users. This gives the 

advantage that elicited input such as a feedback may be connected to 

a specific context, such as a physical location, time or situation in 

which a system needs modification. Alternative elicitation 

approaches, such as surveys, would be too short in time, disturb 

many users and would not allow understanding the context to which 

the users’ feedback pertains. 

8.2. Revisiting the Knowledge Base 
The GESU method used the SECI model (Nonaka and Toyama 2003) 

as the theory basis and adjusted the concepts of knowledge sharing 

from this theory. The findings confirmed that the GESU successfully 

used the process that the SECI model introduced; however, there 

were some conceptual disagreements. Therefore, a tailored version 

of the SECI model was needed to describe the gathering of evidence 

more accurately. Table 8-2 presents the agreement evaluation of the 

SECI and GESU. 

 

 

 



 

 
  297 

 

Table 8-2. Agreement evaluation of the SECI and GESU presented in Figure 8-7. 

SECI 

Features/GESU 

 Agreement 

Evaluation 
GESU  

Socialization  Agreement Supported. 

Externalization  
Agreement 

 

Supported differently. Both tacit and 

explicit knowledge can be the 

outcome of the operator. 

Combination  Agreement Supported. 

Internalization 

operator 
Agreement 

Supported differently. Both tacit and 

explicit knowledge can be the input 

of the operator. 

Sequence of 

operators 
Disagreement  

Internalization was not necessary 

after combination, and socialization 

was not necessary before 

externalization. 

Knowledge 

conversion 
Disagreement 

Tacit and explicit knowledge 

between processes might differ. 

Spiral cycle  Disagreement 

For a product version, a spiral exists 

within the operators but not for the 

whole process as the SECI suggested. 

Knowledge 

creation concept 
Disagreement 

The theory considers internalization 

as the initial step of knowledge 

creation, but product impact 

knowledge was initially created with 

socialization. 

 

Our analysis confirmed that there was a conversion of tacit to explicit 

knowledge and vice versa, but in reality, we could not structure our 

process as Nonaka did (Nonaka and Toyama 2003). As an example, a 

developer combined the explicit knowledge of feedback with his own 

tacit knowledge but did not document or externalize the knowledge. 

Instead, he directly discussed his new undocumented knowledge 

with his manager.  

From the case support, we think that integrating tacit and explicit 

knowledge can be considered as a part of synthesis using the 

externalization operator. However, integrating two explicit 

knowledge sources (e.g., user feedback and location data) was 

performed by the combination operator. 

The individuals learned about a new version of the product through 

internalization. We started discussing the model from socialization. 



298
Part 4: Combining User Feedback and 
Monitoring Data

The analysis showed that gathering and organizing evidence could 

not follow the sequence of Nonaka’s model and the spiral cycle.

Figure 8-8 presents an update of the SECI model for gathering 

knowledge in the smart parking application of Santander to show the 

process sequence. The knowledge gathering and sharing flow in the 

GESU is relevant to the case and might differ for another case.

Figure 8-8. SECI model according to the smart city application of Santander.

8.3. Future Work
In the future, GESU should be applied to other cases in different 

contexts and architectures. The method is particularly helpful for 

distributed systems and embedded software systems. In such 

systems, the identification of issues and reasoning for them are more 

challenging due to the distribution of knowledge among several 

components in different physical locations (distributed systems) or 

in various physical devices like sensors (embedded systems). 

Therefore, the combination of system knowledge and knowledge of 

the corresponding stakeholders are important to evaluate the 

achievement of the system’s goals. 

Gathering evidence for software evolution is more effective if the 

product team gets in a loop with users: the users provide feedback 

on their experience of using the product at runtime, and the team 



 

 
  299 

 

requests more feedback on a particular question if needed. 

Alternatively, the product may self-adapt to improve its functionality 

in an unsupervised way. A self-adaptive user-feedback acquisition 

mechanism can trace the effectiveness of collected user feedback and 

create new feedback requests based on goals (Salehie and Tahvildari 

2012), corresponding analytics and perhaps personas (Almaliki et al. 

2015) in a timely manner. 

Furthermore, standardizing parts of the method allows 

disseminating the underlying ideas to be used with leading edge 

techniques. One way could be to implement the insight stream based 

on IEEE standards for an eXtensible Event Stream 

(XES_WorkingGroup 2016), which allows for achieving 

interoperability in event logs and event streams in different systems. 

9. Conclusion 

This study proposed the GESU method to support decisions for 

software evolution. The GESU was designed based on knowledge 

creation theory (SECI). The method combined goal-based system 

monitoring with proactive, autonomous user-feedback collection. 

The product system was monitored continuously behind the scenes. 

The occurrence of an internal event such as deviation of a 

measurement from its accepted threshold value triggered a request 

for user feedback. The accepted threshold was defined based on 

product goals. In response to the triggered request, users shared 

their perceptions, experience or needs via user feedback that could 

explain the measurement deviation. The users themselves could also 

trigger the feedback form and provide similar feedback.  

The system measurement was translated into knowledge for the 

product team. User feedback also contained some more knowledge 

for the product team (i.e., user’s experiences, perceptions and 

needs). The results showed that combining the two sets of 

knowledge, aggregated with the product team knowledge, could 

create knowledge that supported decision-making for system 

maintenance and evolution. 

We implemented the GESU method for a smart city prototype 

application and interviewed four members of its product team. The 



 

  

300 

Part 4: Combining User Feedback and 
Monitoring Data 

 
  

 

initial evaluation showed that the approach was valuable for system 

evolution: the results were helpful for the smart city Santander 

partners to adapt and improve their application as well as the IoT 

sensors deployed in the city. The method provides a systematic 

approach for gathering user needs, potential issues and new 

requirements. Such an approach can be especially helpful for 

distributed systems and the IoT where it is difficult to localize the 

reasons for potential issues and weaknesses of the system.  

Acknowledgement  

Part of this work has been supported by the European Union’s 

Horizon 2020 Research and Innovation Programme within the 

project WISE-IoT under the EU grant agreement No. 723156 and the 

Swiss SERI grant agreement No. 16.0062. 

  



 

  301 

 

References 
Abelow, D. 1993. Automating Feedback on Software Product Use, 

CASE Trends December, pp. 15-17. 

Adamczyk, P. D., and Bailey, B. P. 2004. "If Not Now, When?: The 
Effects of Interruption at Different Moments within Task 
Execution," SIGCHI conference on Human factors in 
computing systems, Vienna, Austria: ACM. 

Ahtinen, A., Mattila, E., Vaatanen, A., Hynninen, L., Salminen, J., 
Koskinen, E., and Laine, K. 2009. "User Experiences of Mobile 
Wellness Applications in Health Promotion: User Study of 
Wellness Diary, Mobile Coach and Selfrelax," 3rd 
International Conference on Pervasive Computing 
Technologies for Healthcare, London, UK: IEEE, pp. 1-8. 

Ali, R., Dalpiaz, F., Giorgini, P., and Silva Souza, V. 2011. 
"Requirements Evolution: From Assumptions to Reality," in: 
BMMDS/EMMSAD. London, UK. 

Almaliki, M., Ncube, C., and Ali, R. 2014. "The Design of Adaptive 
Acquisition of Users Feedback: An Empirical Study," 8th 
International Conference on Research Challenges in 
Information Science (RCIS), Marrakech, Morocco: IEEE, pp. 1-
12. 

Almaliki, M., Ncube, C., and Ali, R. 2015. "Adaptive Software-Based 
Feedback Acquisition: A Persona-Based Design," Research 
Challenges in Information Science (RCIS), 2015 IEEE 9th 
International Conference on: IEEE, pp. 100-111. 

Ames, M., and Naaman, M. 2007. "Why We Tag: Motivations for 
Annotation in Mobile and Online Media," SIGCHI conference 
on Human factors in computing systems, San Jose, California, 
USA: ACM, pp. 971-980. 

Anandarajan, M., Zaman, M., Dai, Q., and Arinze, B. 2010. "Generation 
Y Adoption of Instant Messaging: An Examination of the 
Impact of Social Usefulness and Media Richness on Use 
Richness," IEEE Transactions on Professional 
Communication (53:2), pp. 132-143. 



 

  

302 
References  
  

 
 

Antón, A. I., and Potts, C. 1998. "The Use of Goals to Surface 
Requirements for Evolving Systems," International 
Conference on Software Engineering, Kyoto, Japan: IEEE, pp. 
157-166. 

Antons, J.-N., Arndt, S., Schleicher, R., and Möller, S. 2014. "Brain 
Activity Correlates of Quality of Experience," in Quality of 
Experience. Springer, pp. 109-119. 

Bailey, B. P., Konstan, J. A., and Carlis, J. V. 2001. "The Effects of 
Interruptions on Task Performance, Annoyance, and Anxiety 
in the User Interface," IFIP International Conference on 
Human Computer Interaction (INTERACT), Tokyo, Japan, pp. 
593-601. 

Barbosa, O., and Alves, C. 2011. "A Systematic Mapping Study on 
Software Ecosystems," in: The 2nd International Conference 
on Software Business (ICSOB 2011). Brussels, Belgium: pp. 
15-26. 

Barrett, L. F., Mesquita, B., and Gendron, M. 2011. "Context in 
Emotion Perception," Current Directions in Psychological 
Science (20:5), pp. 286-290. 

Bass, L., Clements, P., and Kazman, R. 2012. Software Architecture in 
Practice, (3rd ed.). Addison-Wesley Professional. 

Bekkers, W., van de Weerd, I., Spruit, M., and Brinkkemper, S. 2010. 
"A Framework for Process Improvement in Software Product 
Management," in Systems, Software and Services Process 
Improvement. Springer, pp. 1-12. 

Beyer, J., and Möller, S. 2014. "Gaming," in Quality of Experience. 
Springer, pp. 367-381. 

Bider, I., and Jalali, A. 2016. "Agile Business Process Development: 
Why, How and When—Applying Nonaka’s Theory of 
Knowledge Transformation to Business Process 
Development," Information Systems and e-Business 
Management (14:4), pp. 693-731. 



 

 
  

303   
 

Bjørnson, F. O., and Dingsøyr, T. 2008. "Knowledge Management in 
Software Engineering: A Systematic Review of Studied 
Concepts, Findings and Research Methods Used," 
Information and Software Technology (50:11), pp. 1055-
1068. 

Blank, S. 2013. "Why the Lean Start-up Changes Everything," Harvard 
Business Review (91:5), pp. 63-72. 

Boegh, J. 2008. "A New Standard for Quality Requirements," IEEE 
Software (25:2), pp. 57-63. 

Boley, H., and Chang, E. 2007. Digital Ecosystems: Principles and 
Semantics. 

Bosch, J. 2012. "Building Products as Innovation Experiment 
Systems," in: International Conference on Software Business 
(ICSOB 2012). Cambridge, MA, USA. 

Braz, C., Seffa, A., and M'Raihi, D. 2007. "Designing a Trade-Off 
between Usability and Security: A Metrics-Based Model," in: 
11th IFIP TC 13 International Conference on Human-
Computer Interaction (INTERACT 2007). Rio de Janeiro, 
Brazil. 

Brill, O., and Knauss, E. 2011a. "Structured and Unobtrusive 
Observation of Anonymous Users and Their Context for 
Requirements Elicitation," 19th International Conference on 
Requirements Engineering (RE) Trento, Italy: IEEE. 

Brill, O., and Knauss, E. 2011b. "Structured and Unobtrusive 
Observation of Anonymous Users and Their Context for 
Requirements Elicitation," 19th International Conference on 
Requirements Engineering (RE) Trento, Italy: IEEE, pp. 175-
184. 

Brinkkemper, S. 1996. "Method Engineering: Engineering of 
Information Systems Development Methods and Tools," 
Information and software technology (38:4), pp. 275-280. 

Broekens, J., Pommeranz, A., Wiggers, P., and Jonker, C. M. 2010. 
"Factors Influencing User Motivation for Giving Online 



 

  

304 
References  
  

 
 

Preference Feedback," 5th Multidisciplinary Workshop on 
Advances in Preference Handling (MPREF'10), Lisbon, 
Portugal: Citeseer. 

Brooks, P., and Hestnes, B. 2010. "User Measures of Quality of 
Experience: Why Being Objective and Quantitative Is 
Important," Network, IEEE (24:2), pp. 8-13. 

Buse, R., and Zimmermann, T. 2010. "Analytics for Software 
Development," in: Foundations of Software Engineering 
(FSE)/SDP workshop on Future of software engineering 
research. Santa Fe, NM, USA: ACM. 

Buse, R., and Zimmermann, T. 2012. "Information Needs for Software 
Development Analytics," in: International Conference on 
Software Engineering, ICSE 2012. Zurich, Switzerland: IEEE 
Press, pp. 987-996. 

Canale, S., Facchinei, F., Gambuti, R., Palagi, L., and Suraci, V. 2014. 
"User Profile Based Quality of Experience," 18th Internation 
Conference on Computers (part of CSCC '14), Santorini 
Island, Greece. 

Carlson, J. R., and Zmud, R. W. 1999. "Channel Expansion Theory and 
the Experiential Nature of Media Richness Perceptions," 
Academy of management journal (42:2), pp. 153-170. 

Carreño, L., and Winbladh, K. 2013. "Analysis of User Comments: An 
Approach for Software Requirements Evolution," in: 35th 
International Conference on Software Engineering (ICSE 
2013). San Francisco, CA, USA. 

Carrizo, D., Dieste, O., and Juristo, N. 2014. "Systematizing 
Requirements Elicitation Technique Selection," Information 
and Software Technology (56:6), pp. 644-669. 

Carver, J., Jaccheri, L., Morasca, S., and Shull, F. 2003. "Issues in Using 
Students in Empirical Studies in Software Engineering 
Education," in: Ninth International Software Metrics 
Symposium. IEEE, pp. 239-249. 



 

 
  

305   
 

Chapin, N., Hale, J., Khan, K., Ramil, J., and Tan, W.-G. 2001. "Types of 
Software Evolution and Software Maintenance," Journal of 
Software Maintenance and Evolution: Research and Practice 
(13:1), pp. 3-30. 

Chapin, S. F., Torn, M. S., and Tateno, M. 1996. "Principles of 
Ecosystem Sustainability," American Naturalist), pp. 1016-
1037. 

Choudhary, V. C. 2007. "Software as a Service: Implications for 
Investment in Software Development," in: 40th Annual 
Hawaii International Conference on System Sciences, 
HICSS'07. Waikoloa, Big Island, Hawaii  

Chung, L., Nixon, B., Yu, E., and Mylopoulos, J. 2000. Non-Functional 
Requirements in Software Engineering. Boston, USA: 
Springer US. 

Clements, P., and Bass, L. 2010. "Using Business Goals to Inform a 
Software Architecture," in: 18th IEEE International on 
Requirements Engineering Conference (RE'10). Sydney, 
NSW, Australia. 

Clifton, B. 2012. Advanced Web Metrics with Google Analytics. Wiley. 
com. 

Cokins, G. 2009. Performance Management: Integrating Strategy 
Execution, Methodologies, Risk, and Analytics. John Wiley & 
Sons. 

Collins, H. 2010. Tacit and Explicit Knowledge. University of Chicago 
Press. 

Cooper, A. 2012. "What Is Analytics? Definition and Essential 
Characteristics," CETIS Analytics Series (1:5), pp. 1-10. 

Cooper, R. G., Edgett, S. J., and Kleinschmidt, E. J. 1999. "New Product 
Portfolio Management: Practices and Performance," Journal 
of product innovation management (16:4), pp. 333-351. 



 

  

306 
References  
  

 
 

Costanza, R. 1992. "Toward an Operational Definition of Ecosystem 
Health," Ecosystem health: New goals for environmental 
management), pp. 239-256. 

Costanza, R., and Mageau, M. 1999. "What Is a Healthy Ecosystem?," 
Aquatic ecology (33:1), pp. 105-115. 

Côté, N., and Berger, J. 2014. "Speech Communication," in Quality of 
Experience. Springer, pp. 165-177. 

Cusumano, M. A. 2008. "The Changing Software Business: Moving 
from Products to Services," Computer (41:1), pp. 20-27. 

Cysneiros, L. M., and Sampaio do Prado Leite, J. C. 2004. 
"Nonfunctional Requirements: From Elicitation to 
Conceptual Models," IEEE Transactions on Software 
Engineering (30:5), pp. 328-350. 

Dąbrowski, J., Kifetew, F. M., Muñante, D., Letier, E., Siena, A., and Susi, 
A. 2017. "Discovering Requirements through Goal-Driven 
Process Mining," 25th International Requirements 
Engineering Conference Workshops (REW): IEEE, pp. 199-
203. 

Daft, R. L., and Lengel, R. H. 1986. "Organizational Information 
Requirements, Media Richness and Structural Design," 
Management science (32:5), pp. 554-571. 

Dalpiaz, F. 2011. "Social Threats and the New Challenges for 
Requirements Engineering," in: 1st International WOrkshop 
on Requirements Engineering for Social Computing (RESC 
2011). Trento, Italy. 

Davenport, T. H., and Harris, J. G. 2007. Competing on Analytics: The 
New Science of Winning. Harvard Business Press. 

Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. 1989. "User Acceptance 
of Computer Technology: A Comparison of Two Theoretical 
Models," Management science (35:8), pp. 982-1003. 

Denne, M., and Cleland-Huang, J. 2004. "The Incremental Funding 
Method: Data-Driven Software Development," Software, 
IEEE (21:3), pp. 39-47. 



 

 
  

307   
 

Dennis, A. R., Fuller, R. M., and Valacich, J. S. 2008. "Media, Tasks, and 
Communication Processes: A Theory of Media 
Synchronicity," MIS quarterly (32:3), pp. 575-600. 

Dennis, A. R., and Kinney, S. T. 1998. "Testing Media Richness Theory 
in the New Media: The Effects of Cues, Feedback, and Task 
Equivocality," Information systems research (9:3), pp. 256-
274. 

Devanbu, P., Zimmermann, T., and Bird, C. 2016. "Belief & Evidence 
in Empirical Software Engineering," 38th International 
Conference on Software Engineering (ICSE): IEEE, pp. 108-
119. 

Dilman, M., and Raz, D. 2002. "Efficient Reactive Monitoring," IEEE 
journal on selected areas in communications (20:4), pp. 668-
676. 

Doerr, J., Kerkow, D., Koenig, T., Olsson, T., and Suzuki, T. 2005. "Non-
Functional Requirements in Industry-Three Case Studies 
Adopting an Experience-Based Nfr Method," 13th IEEE 
International Conference on Requirements Engineering, 
Paris, France: IEEE, pp. 373-382. 

Dyba, T., Kitchenham, B. A., and Jorgensen, M. 2005. "Evidence-Based 
Software Engineering for Practitioners," IEEE software 
(22:1), pp. 58-65. 

Dzvonyar, D., Krusche, S., Alkadhi, R., and Bruegge, B. 2016. "Context-
Aware User Feedback in Continuous Software Evolution," 
International Workshop on Continuous Software Evolution 
and Delivery (CSED), Austin, USA: IEEE, pp. 12-18. 

Ebert, C. 2007. "The Impacts of Software Product Management," 
Journal of Systems and Software (80:6), pp. 850-861. 

Ebert, C., and Brinkkemper, S. 2014. "Software Product 
Management–an Industry Evaluation," Journal of Systems 
and Software (95), pp. 10-18. 

Edison, H., Smørsgård, N. M., Wang, X., and Abrahamsson, P. 2018. 
"Lean Internal Startups for Software Product Innovation in 



 

  

308 
References  
  

 
 

Large Companies: Enablers and Inhibitors," Journal of 
Systems and Software (135), pp. 69-87. 

Eisenmann, T. R., Ries, E., and Dillard, S. 2012. "Hypothesis-Driven 
Entrepreneurship: The Lean Startup," Harvard Business 
School Entrepreneurial Management Case:812-095). 

Elling, S., Lentz, L., and Jong, M. d. 2012. "Users’ Abilities to Review 
Web Site Pages," Journal of business and technical 
communication (26:2), pp. 171-201. 

Elo, S., and Kyngäs, H. 2008. "The Qualitative Content Analysis 
Process," Journal of advanced nursing (62:1), pp. 107-115. 

Esterle, L., and Grosu, R. 2016. "Cyber-Physical Systems: Challenge of 
the 21st Century," e & i Elektrotechnik und 
Informationstechnik (133:7), pp. 299-303. 

Fabijan, A., Olsson, H. H., and Bosch, J. 2016. "Time to Say'good Bye': 
Feature Lifecycle," 2016 42th Euromicro Conference on 
Software Engineering and Advanced Applications (SEAA): 
IEEE, pp. 9-16. 

Fan, W., and Yan, Z. 2010. "Factors Affecting Response Rates of the 
Web Survey: A Systematic Review," Computers in Human 
Behavior (26:2), pp. 132-139. 

Feiten, B., Garcia, M.-N., Svensson, P., and Raake, A. 2014. "Audio 
Transmission," in Quality of Experience. Springer, pp. 229-
245. 

Fernández-Dols, J.-M., and Russell, J. A. 2003. "Emotions, Affects, and 
Mood in Social Judgements," in Handbook of Psychology, 
Personality and Social Psychology, T. Millon, M.J. Lerner and 
I.B. Weiner (eds.). Hoboken New Jersey: John Wiley & Sons, 
pp. 283-297. 

Ferry, D. L., Kydd, C. T., and Sawyer, J. E. 2001. "Measuring Facts of 
Media Richness," Journal of Computer Information Systems 
(41:4), pp. 69-78. 



 

 
  

309   
 

Fickas, S., and Feather, M. 1995. "Requirements Monitoring in 
Dynamic Environments," in: 2nd International Symposium 
on Requirements Engineering (RE'95). York, U.K. 

Fiedler, M., and Hoßfeld, T. 2010. "Quality of Experience-Related 
Differential Equations and Provisioning-Delivery 
Hysteresis," 21st ITC Specialist Seminar on Multimedia 
Applications-Traffic, Performance and QoE Miyazaki, Japan. 

Fiedler, M., Hossfeld, T., and Tran-Gia, P. 2010. "A Generic 
Quantitative Relationship between Quality of Experience and 
Quality of Service," IEEE Network (24:2), pp. 36-41. 

Forbrig, P. 2017. "Does Continuous Requirements Engineering Need 
Continuous Software Engineering?," Requirements 
Engineering: Foundation for Software Quality (REFSQ), 
Essen, Germany: Springer. 

Fotrousi, F., and Fricker, S. A. 2016. "Qoe Probe: A Requirement-
Monitoring Tool," 22nd Internation Conference on 
Requirement Engineering: Foundation for Software Quality 
(REFSQ), Gothenburg, Sweden: Springer. 

Fotrousi, F., Fricker, S. A., and Fiedler, M. 2014. "Quality 
Requirements Elicitation Based on Inquiry of Quality-Impact 
Relationships," 22nd International Conference on 
Requirements Engineering, Karlskrona, Sweden: IEEE, pp. 
303-312. 

Fotrousi, F., Fricker, S. A., and Fiedler, M. 2018. "The Effect of 
Requests for User Feedback on Quality of Experience," 
Software Quality Journal (26:2), pp. 385-415. 

Fotrousi, F., Izadyan, K., and Fricker, S. A. 2013. "Analytics for Product 
Planning: In-Depth Interview Study with Saas Product 
Managers," in: IEEE 6th International Conference on Cloud 
Computing. Santa Clara Marriott, CA, USA. 

Fotrousi, F., Seyff, N., and Börstler, J. 2017. "Ethical Considerations in 
Research on User Feedback," 25th International 
Requirements Engineering Conference Workshops (REW), 
Lisbon, Portugal: IEEE, pp. 194-198. 



 

  

310 
References  
  

 
 

Fowler, F. J. 2009. Survey Research Methods. Sage. 

Fricker, S., and Schumacher, S. 2012. "Release Planning with Feature 
Trees: Industrial Case," in Requirements Engineering: 
Foundation for Software Quality. Springer, pp. 288-305. 

Fricker, S. A., and Glinz, M. 2010. "Comparison of Requirements 
Hand-Off, Analysis, and Negotiation: Case Study," in: 18th 
IEEE International Requirements Engineering Conference 
(RE'10). Sydney, Australia. 

Fricker, S. A., Gorschek, T., Byman, C., and Schmidle, A. 2010. 
"Handshaking with Implementation Proposals: Negotiating 
Requirements Understanding," IEEE Software (27:2), pp. 72-
80. 

Fricker, S. A., Maedche, A., Botzenhardt, A., and Neer, L. 2012. 
"Software Product Management," in Software for People. 
Springer Berlin Heidelberg, pp. 53-81. 

Fricker, S. A., Schneider, K., Fotrousi, F., and Thuemmler, C. 2015. 
"Workshop Videos for Requirements Communication," 
Requirements Engineering), pp. 1-32. 

Froehlich, J., Chen, M. Y., Consolvo, S., Harrison, B., and Landay, J. A. 
2007. "Myexperience: A System for in Situ Tracing and 
Capturing of User Feedback on Mobile Phones," Proceedings 
of 5th international conference on Mobile systems, 
applications and services (MobiSys), San Juan, Puerto Rico. 

Gallivan, M. J., and Keil, M. 2003. "The User–Developer 
Communication Process: A Critical Case Study," Information 
Systems Journal (13:1), pp. 37-68. 

Garcia, M.-N., Argyropoulos, S., Staelens, N., Naccari, M., Rios-
Quintero, M., and Raake, A. 2014. "Video Streaming," in 
Quality of Experience. Springer, pp. 277-297. 

Garland, R. 1991. "The Mid-Point on a Rating Scale: Is It Desirable," 
Marketing bulletin (2:1), pp. 66-70. 



 

 
  

311   
 

Gilb, T. 2005. Competitive Engineering: A Handbood for Systems 
Engineering, Requirements Engineering, and Software 
Engineering Using Planguage. Butterworth-Heinemann. 

Glinz, M. 2005. "Rethinking the notion of Non-Functional 
Requirements," in: 3rd World Congress for Software Quality. 
Munich, Germany. 

Glinz, M. 2007. "On Non-Functional Requirements," in: IEEE 
International Requirements Engineering Conference 
(RE'07). New Delhi, India. 

Godfrey, M. W., and German, D. M. 2008. "The Past, Present, and 
Future of Software Evolution," 2008 Frontiers of Software 
Maintenance: IEEE, pp. 129-138. 

Golafshani, N. 2003. "Understanding Reliability and Validity in 
Qualitative Research," 1052-0147, pp. 597-606. 

Golaszewski, S. 2013. "Flexisketch." from 
https://play.google.com/store/apps/details?id=ch.uzh.ifi.re
rg.flexisketch&hl=en 

Gold, N., Mohan, A., Knight, C., and Munro, M. 2004. "Understanding 
Service-Oriented Software," Software, IEEE (21:2), pp. 71-77. 

Goldsby, H. J., Sawyer, P., Bencomo, N., Cheng, B. H., and Hughes, D. 
2008. "Goal-Based Modeling of Dynamically Adaptive System 
Requirements," 15th International Conference and 
Workshop on the Engineering of Computer-based Systems 
(ECBS), Belfast, Northern Ireland: IEEE, pp. 36-45. 

Gorchels, L. 2000. The Product Manager's Handbook: The Complete 
Product Management Resource. NTC Business Books Illinois, 
USA. 

Gottesdiener, E. 2002. Requirements by Collaboration: Workshops 
for Defining Needs. Addison-Wesley Professional. 

Guest, G., Bunce, A., and Johnson, L. 2006. "How Many Interviews Are 
Enough? An Experiment with Data Saturation and 
Variability," Field methods (18:1), pp. 59-82. 

https://play.google.com/store/apps/details?id=ch.uzh.ifi.rerg.flexisketch&hl=en
https://play.google.com/store/apps/details?id=ch.uzh.ifi.rerg.flexisketch&hl=en


 

  

312 
References  
  

 
 

Guzman, E., Bhuvanagiri, P., and Bruegge, B. 2014. "Fave: Visualizing 
User Feedback for Software Evolution," Software 
Visualization (VISSOFT), 2014 Second IEEE Working 
Conference on: IEEE, pp. 167-171. 

Guzman, E., El-Haliby, M., and Bruegge, B. 2015. "Ensemble Methods 
for App Review Classification: An Approach for Software 
Evolution (N)," 30th IEEE/ACM International Conference on 
Automated Software Engineering (ASE): IEEE, pp. 771-776. 

Guzman, E., Ibrahim, M., and Glinz, M. 2017. "A Little Bird Told Me: 
Mining Tweets for Requirements and Software Evolution," 
25th International Requirements Engineering Conference 
(RE): IEEE, pp. 11-20. 

Guzman, E., and Maalej, W. 2014. "How Do Users Like This Feature? 
A Fine Grained Sentiment Analysis of App Reviews," 22nd 
International Requirements Engineering Conference (RE), 
Karlskrona, Sweden: IEEE, pp. 153-162. 

Guzmán, L., Oriol, M., Rodríguez, P., Franch, X., Jedlitschka, A., and 
Oivo, M. 2017. "How Can Quality Awareness Support Rapid 
Software Development?–a Research Preview," International 
Working Conference on Requirements Engineering: 
Foundation for Software Quality (REFSQ), Essen, Germany: 
Springer, pp. 167-173. 

Hacker, S., and Von Ahn, L. 2009. "Matchin: Eliciting User Preferences 
with an Online Game," Proceedings of the SIGCHI Conference 
on Human Factors in Computing Systems: ACM, pp. 1207-
1216. 

Haigh, M. 2010. "Software Quality, Non-Functional Software 
Requirements and It-Business Alignment," Software Quality 
Journal (18:3), pp. 361-385. 

Hair, J. F., Risher, J. J., Sarstedt, M., and Ringle, C. M. 2019. "When to 
Use and How to Report the Results of Pls-Sem, European 
Business Review. 



 

 
  

313   
 

Hair Jr, J. F., Hult, G. T. M., Ringle, C., and Sarstedt, M. 2016. A Primer 
on Partial Least Squares Structural Equation Modeling (Pls-
Sem). Sage publications. 

Hak, T., and Dul, J. 2009. "Pattern Matching," in: Encyclopedia of case 
study research, A.J. Mills, G. Durepos and E. Wiebe (eds.). 
Thousands of Oaks, CA: Sage Publications, pp. 663-665. 

Hansen, B. H., and Kautz, K. 2004. "Knowledge Mapping: A Technique 
for Identifying Knowledge Flows in Software Organisations," 
European Conference on Software Process Improvement: 
Springer, pp. 126-137. 

Hartson, H. R., and Castillo, J. C. 1998. "Remote Evaluation for Post-
Deployment Usability Improvement," Proceedings of the 
working conference on Advanced visual interfaces, pp. 22-
29. 

Hassenzahl, M., Wessler, R., and Hamborg, K.-C. 2001. "Exploring and 
Understanding Product Qualities That Users Desire," 5th 
Annual Conference of the Human-Computer Interaction 
Group of the British Computer Society (IHm-HCI 01), Lille, 
France, pp. 95-96. 

Heller, F., Lichtschlag, L., Wittenhagen, M., Karrer, T., and Borchers, J. 
2011. "Me Hates This: Exploring Different Levels of User 
Feedback for (Usability) Bug Reporting," in Chi'11 Extended 
Abstracts on Human Factors in Computing Systems.  pp. 
1357-1362. 

Herrera, M., Moraga, M. Å., Caballero, I., and Calero, C. 2010. "Quality 
in Use Model for Web Portals (Qiuwep)," in Current Trends 
in Web Engineering. Springer, pp. 91-101. 

Herrmann, A., and Paech, B. 2008. "Moqare: Misuse-Oriented Quality 
Requirements Engineering," Requirements Engineering 
(13:1), pp. 73-86. 

Herzog, A. R., and Bachman, J. G. 1981. "Effects of Questionnaire 
Length on Response Quality," Public Opinion Quarterly 
(45:4), pp. 549-559. 



 

  

314 
References  
  

 
 

Hess, J., Wan, L., Ley, B., and Wulf, V. 2012. "In-Situ Everywhere: A 
Qualitative Feedback Infrastructure for Cross Platform 
Home-It," 10th European conference on Interactive tv and 
video (EuroiTV), Berlin, Germany, pp. 75-78. 

Hevner, A. R., March, S. T., Park, J., and Ram, S. 2004. "Design Science 
in Information Systems Research," MIS quarterly (28:1), pp. 
75-105. 

Holsapple, C., Lee-Post, A., and Pakath, R. 2014. "A Unified 
Foundation for Business Analytics," Decision Support 
Systems (64), pp. 130-141. 

Höst, M., Regnell, B., and Wohlin, C. 2000. "Using Students as 
Subjects—a Comparative Study of Students and 
Professionals in Lead-Time Impact Assessment," Empirical 
Software Engineering (5:3), pp. 201-214. 

Howard, J. A., and Sheth, J. N. 1969. The Theory of Buyer Behavior. 
Wiley New York. 

Hsieh, H.-F., and Shannon, S. E. 2005. "Three Approaches to 
Qualitative Content Analysis," Qualitative health research 
(15:9), pp. 1277-1288. 

Iansiti, M., and Richards, G. L. 2006. "Information Technology 
Ecosystem: Structure, Health, and Performance," Antitrust 
Bull. (51), p. 77. 

IBosch, J. 2009. "From Software Product Lines to Software 
Ecosystems," in: 13th International Software Product Line 
Conference (SPLC 2009). San Francisco, CA, USA: Carnegie 
Mellon University, pp. 111-119. 

Ickin, S., Wac, K., Fiedler, M., Janowski, L., Hong, J.-H., and Dey, A. K. 
2012. "Factors Influencing Quality of Experience of 
Commonly Used Mobile Applications," Communications 
Magazine, IEEE (50:4), pp. 48-56. 

Inzinger, C., Hummer, W., Satzger, B., Leitner, P., and Dustdar, S. 2014. 
"Generic Event‐Based Monitoring and Adaptation 



 

 
  

315   
 

Methodology for Heterogeneous Distributed Systems," 
Software: Practice and Experience (44:7), pp. 805-822. 

Irvine, C., and Levin, T. 2000. "Quality of Security Service," in: 2000 
Workshop on New Security Paradigms (NSPW'00). New 
York, NY, USA. 

ITU-T. 2003. "Itu-T P.800," in: in Mean Opinion Score(MOS) 
terminology, ed: Telecommunication Standardization Sector 
of ITU. 

Ivory, M. Y., and Hearst, M. A. 2001. "The State of the Art in 
Automating Usability Evaluation of User Interfaces," ACM 
Computing Surveys (CSUR) (33:4), pp. 470-516. 

Jacobs, S. 1999. "Introducing Measurable Quality Requirements: A 
Case Study," in: 4th IEEE International Symposium on 
Requirements Engineering (RE'99). Limerick, Ireland. 

Jansen, S., Finkelstein, A., and Brinkkemper, S. 2009 "A Sense of 
Community: A Research Agenda for Software Ecosystems," 
in: 31st International Conference on Software Engineering 
(ICSE 2009) Vancouver, Canada: IEEE, pp. 187-190. 

Jin, X., Wah, B. W., Cheng, X., and Wang, Y. 2015. "Significance and 
Challenges of Big Data Research," Big Data Research (2:2), pp. 
59-64. 

Johann, T., and Maalej, W. 2015. "Democratic Mass Participation of 
Users in Requirements Engineering?," 23rd international 
requirements engineering conference (RE), Ottawa, Canada: 
IEEE, pp. 256-261. 

Jordan, P. W. 1998. "Human Factors for Pleasure in Product Use," 
Applied ergonomics (29:1), pp. 25-33. 

Jung, G., Hiltunen, M., Joshi, K., Schlichting, R., and Pu, C. 2010. 
"Mistral: Dynamically Managing Power, Performance, and 
Adaptation Cost in Cloud Infrastructures," in: IEEE 
International Conference on Distributed Computing Systems 
(ICDCS 2010). Genoa, Italy. 



 

  

316 
References  
  

 
 

Karapanos, E. 2013. "User Experience over Time," in Modeling Users' 
Experiences with Interactive Systems. Springer, pp. 57-83. 

Kennedy, M. M. 1979. "Generalizing from Single Case Studies," 
Evaluation quarterly (3:4), pp. 661-678. 

Khan, A., Sun, L., Jammeh, E., and Ifeachor, E. 2010. "Quality of 
Experience-Driven Adaptation Scheme for Video 
Applications over Wireless Networks," IET communications 
(4:11), pp. 1337-1347. 

Khirman, S., and Henriksen, P. 2002. "Relationship between Quality-
of-Service and Quality-of-Experience for Public Internet 
Service," 3rd Workshop on Passive and Active Measurement, 
Fort Collins, Colorado, USA. 

Kifetew, F., Munante, D., Perini, A., Susi, A., Siena, A., and Busetta, P. 
2017. "Dmgame: A Gamified Collaborative Requirements 
Prioritisation Tool," 2017 IEEE 25th International 
Requirements Engineering Conference (RE): IEEE, pp. 468-
469. 

Kilkki, K. 2008. "Quality of Experience in Communications 
Ecosystem," Journal of Universal Computer Science (14:5), 
pp. 615-624. 

Kim, H.-J., Lee, D. H., Lee, J. M., Lee, K.-H., Lyu, W., and Choi, S.-G. 
2008a. "The Qoe Evaluation Method through the Qos-Qoe 
Correlation Model," Fourth International Conference on 
Networked Computing and Advanced Information 
Management (NCM'08) Gyeongju, Korea: IEEE, pp. 719-725. 

Kim, J. H., Gunn, D. V., Schuh, E., Phillips, B., Pagulayan, R. J., and 
Wixon, D. 2008b. "Tracking Real-Time User Experience 
(True): A Comprehensive Instrumentation Solution for 
Complex Systems," SIGCHI conference on Human Factors in 
Computing Systems, Florence, Italy: ACM. 

Kitchenham, B. A., Budgen, D., and Brereton, P. 2015. Evidence-Based 
Software Engineering and Systematic Reviews. CRC press. 



 

 
  

317   
 

Kitchenham, B. A., Dyba, T., and Jorgensen, M. 2004. "Evidence-Based 
Software Engineering," Proceedings. 26th International 
Conference on Software Engineering: IEEE, pp. 273-281. 

Kitchenham, B. A., and Pfleeger, S. L. 2008. "Personal Opinion 
Surveys," in Guide to Advanced Empirical Software 
Engineering. Springer, pp. 63-92. 

Kittlaus, H.-B., and Clough, P. N. 2009. Software Product Management 
and Pricing: Key Success Factors for Software Organizations. 
Springer-Verlag New York Inc. 

Kittlaus, H.-B., and Fricker, S. 2017. Software Product Management. 
Berlin, Germany: Springer. 

Knauss, E., Lübke, D., and Meyer, S. 2009. "Feedback-Driven 
Requirements Engineering: The Heuristic Requirements 
Assistant," in: 31st International Conference on Software 
Engineering (ICSE 2009). Vancouver, British Columbia, 
Canada. 

Kohavi, R., Rothleder, N. J., and Simoudis, E. 2002. "Emerging Trends 
in Business Analytics," Communications of the ACM (45:8), 
pp. 45-48. 

Krueger, R. A. 2009. Focus Groups: A Practical Guide for Applied 
Research. Sage. 

Kujala 1, S. 2008. "Effective User Involvement in Product 
Development by Improving the Analysis of User Needs," 
Behaviour & Information Technology (27:6), pp. 457-473. 

Kujala, S. 2003. "User Involvement: A Review of the Benefits and 
Challenges," Behaviour & information technology (22:1), pp. 
1-16. 

Kujala, S., and Miron-Shatz, T. 2013. "Emotions, Experiences and 
Usability in Real-Life Mobile Phone Use," SIGCHI Conference 
on Human Factors in Computing Systems, Paris, France: ACM, 
pp. 1061-1070. 



 

  

318 
References  
  

 
 

Kurtanović, Z., and Maalej, W. 2018. "On User Rationale in Software 
Engineering," Requirements Engineering), pp. 1-23. 

Kusters, R. J., van Solingen, R., and Trienekens, J. J. 1999. "Identifying 
Embedded Software Quality: Two Approaches," Quality and 
Reliability Engineering International (15:6), pp. 485-492. 

Le Callet, P., Möller, S., and Perkis, A. 2012. "Qualinet White Paper on 
Definitions of Quality of Experience," in: European Network 
on Quality of Experience in Multimedia Systems and Services. 

Lee, D. H., and Brusilovsky, P. 2009. "Reinforcing Recommendation 
Using Implicit Negative Feedback," International conference 
on user modeling, adaptation, and personalization: Springer, 
pp. 422-427. 

Lehman, M. M. 1980. "Programs, Life Cycles, and Laws of Software 
Evolution," Proceedings of the IEEE (68:9), pp. 1060-1076. 

Lehman, M. M. 1996. "Feedback in the Software Evolution Process," 
Information and Software technology (38:11), pp. 681-686. 

Lehman, M. M., and Ramil, J. F. 2003. "Software Evolution—
Background, Theory, Practice," Information Processing 
Letters (88:1-2), pp. 33-44. 

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., and Turski, W. 
M. 1997. "Metrics and Laws of Software Evolution-the 
Nineties View," Proceedings Fourth International Software 
Metrics Symposium: IEEE, pp. 20-32. 

Lehrer, K. 2018. Theory of Knowledge. Routledge. 

Leucker, M., and Schallhart, C. 2009. "A Brief Account of Runtime 
Verification," Journal of Logic and Algebraic Programming 
(78:5), pp. 293-303. 

Liu, L., Zhou, Q., Liu, J., and Cao, Z. 2017. "Requirements Cybernetics: 
Elicitation Based on User Behavioral Data," Journal of 
Systems and Software (JSS) (124), pp. 187-194. 



 

 
  

319   
 

Lynna, G. S., and Akgünb, A. E. 2001. "Project Visioning: Its 
Components and Impact on New Product Success," Journal of 
Product Innovation Management (18:6), pp. 374-387. 

Maalej, W., Happel, H.-J., and Rashid, A. 2009. "When Users Become 
Collaborators: Towards Continuous and Context-Aware User 
Input," 24th Conference Companion on Object oriented 
Programming Systems Languages and Applications, Orlando, 
Florida, USA: ACM, pp. 981-990. 

Maalej, W., and Nabil, H. 2015. "Bug Report, Feature Request, or 
Simply Praise? On Automatically Classifying App Reviews," 
in: 23rd International Requirements Engineering Conference 
(RE 2015). Ottawa, Ontario, Canada. 

Maalej, W., Nyebi, M., Johann, T., and Ruhe, G. 2016. "Toward Data-
Driven Requirements Engineering," IEEE Software (33:1), 
pp. 48-54. 

Maalej, W., and Pagano, D. 2011. "On the Socialness of Software," 
Ninth IEEE International Conference on Dependable, 
Autonomic and Secure Computing: IEEE, pp. 864-871. 

Madhavji, N. H., Fernandez-Ramil, J., and Perry, D. 2006. Software 
Evolution and Feedback: Theory and Practice. John Wiley & 
Sons. 

Manikas, K., and Hansen, K. M. 2013a. "Reviewing the Health of 
Software Ecosystems–a Conceptual Framework Proposal," 
in: International Workshop on Software Ecosystems 
(IWSECO 2013). Potsdam, Germany: pp. 33-44. 

Manikas, K., and Hansen, K. M. 2013b. "Software Ecosystems–a 
Systematic Literature Review," Journal of Systems and 
Software (86:5), pp. 1294-1306. 

Marilly, E., Martinot, O., Papini, H., and Goderis, D. 2002. "Service 
Level Agreements: A Main Challenge for Next Generation 
Networks," 2nd European Conference on Universal 
Multiservice Networks (ECUMN 2002) Colmar, France: IEEE, 
pp. 297-304. 



 

  

320 
References  
  

 
 

Mattos, D. I., Dmitriev, P., Fabijan, A., Bosch, J., and Olsson, H. H. 2018. 
"An Activity and Metric Model for Online Controlled 
Experiments," International Conference on Product-Focused 
Software Process Improvement: Springer, pp. 182-198. 

Maule, A. J., Hockey, G. R. J., and Bdzola, L. 2000. "Effects of Time-
Pressure on Decision-Making under Uncertainty: Changes in 
Affective State and Information Processing Strategy," Acta 
psychologica (104:3), pp. 283-301. 

Menasce, D. A. 2002. "Qos Issues in Web Services," Internet 
Computing, IEEE (6:6), pp. 72-75. 

Milne, A., and Maiden, N. 2012. "Power and Politics in Requirements 
Engineering: Embracing the Dark Side?," Requirements 
Engineering (17:2), pp. 83-98. 

Minhas, T. N., and Fiedler, M. 2013. "Quality of Experience Hourglass 
Model," in: International Conference on Computing, 
Management and Telecommunications (ComManTel). Ho Chi 
Minh City, Vietnam. 

Mitra, K., Zaslavsky, A., and Åhlund, C. 2011. "A Probabilistic Context-
Aware Approach for Quality of Experience Measurement in 
Pervasive Systems," 26th ACM symposium on applied 
computing, Taichung, Taiwan ACM, pp. 419-424. 

Morales-Ramirez, I., Perini, A., and Guizzardi, R. S. 2015. "An 
Ontology of Online User Feedback in Software Engineering," 
Applied Ontology (10:3-4), pp. 297-330. 

Nadal, S., Herrero, V., Romero, O., Abelló, A., Franch, X., 
Vansummeren, S., and Valerio, D. 2017. "A Software 
Reference Architecture for Semantic-Aware Big Data 
Systems," Information and software technology (90), pp. 75-
92. 

Nadal, S., Romero, O., Abelló, A., Vassiliadis, P., and Vansummeren, S. 
2019. "An Integration-Oriented Ontology to Govern 
Evolution in Big Data Ecosystems," Information systems 
(79), pp. 3-19. 



 

 
  

321   
 

Nakhimovsky, Y., Miller, A. T., Dimopoulos, T., and Siliski, M. 2010. 
"Behind the Scenes of Google Maps Navigation: Enabling 
Actionable User Feedback at Scale," in Chi'10 Extended 
Abstracts on Human Factors in Computing Systems.  pp. 
3763-3768. 

Nonaka, I., and Takeuchi, H. 1991. The Knowledge-Creating 
Company: How Japanese Companies Create the Dynamics of 
Innovation. Oxford university press. 

Nonaka, I., and Toyama, R. 2003. "The Knowledge-Creating Theory 
Revisited: Knowledge Creation as a Synthesizing Process," in 
The Essentials of Knowledge Management. Springer, pp. 95-
110. 

Nonaka, I., and Toyama, R. 2015. "The Knowledge-Creating Theory 
Revisited: Knowledge Creation as a Synthesizing Process," in 
The Essentials of Knowledge Management. Springer, pp. 95-
110. 

Oh, J., Lee, S., and Lee, U. 2016. "How to Report App Feedback? 
Analyzing Feedback Reporting Behavior," Proceedings of the 
2016 CHI Conference Extended Abstracts on Human Factors 
in Computing Systems, pp. 3173-3180. 

Olsson, H. H., Alahyari, H., and Bosch, J. 2012. "Climbing the" Stairway 
to Heaven"--a Mulitiple-Case Study Exploring Barriers in the 
Transition from Agile Development Towards Continuous 
Deployment of Software," 38th euromicro conference on 
software engineering and advanced applications, Cesme, 
Izmir, Turkey: IEEE, pp. 392-399. 

Olsson, H. H., and Bosch, J. 2014. "Climbing the “Stairway to Heaven”: 
Evolving from Agile Development to Continuous Deployment 
of Software," in Continuous Software Engineering. Springer, 
pp. 15-27. 

Oppenheimer, D. M., Meyvis, T., and Davidenko, N. 2009. 
"Instructional Manipulation Checks: Detecting Satisficing to 
Increase Statistical Power," Journal of experimental social 
psychology (45:4), pp. 867-872. 



 

  

322 
References  
  

 
 

Oriol, M., Stade, M., Fotrousi, F., Nadal, S., Varga, J., Seyff, N., Abello, A., 
Franch, X., Marco, J., and Schmidt, O. 2018. "Fame: Supporting 
Continuous Requirements Elicitation by Combining User 
Feedback and Monitoring," in: 26th IEEE International 
Conference  on Requirements Engineering (RE). Banff, 
Canada: IEEE, pp. 207-217. 

Osterwalder, A., Pigneur, Y., Bernarda, G., and Smith, A. 2014. Value 
Proposition Design: How to Create Products and Services 
Customers Want. John Wiley & Sons. 

Ottum, B. D., and Moore, W. L. 1997. "The Role of Market Information 
in New Product Success/Failure," Journal of Product 
Innovation Management (14:4), pp. 258-273. 

Pagano, D., and Brügge, B. 2013. "User Involvement in Software 
Evolution Practice: A Case Study," 35th international 
conference on Software engineering (ICSE 2013), San 
Francisco, CA, USA: IEEE Press, pp. 953-962. 

Pagano, D., and Maalej, W. 2013. "User Feedback in the Appstore: An 
Empirical Study," 21st IEEE international conference on 
requirements engineering (RE): IEEE, pp. 125-134. 

Parmenter, D. 2010. Key Performance Indicators (Kpi): Developing, 
Implementing, and Using Winning Kpis. John Wiley & Sons. 

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. 2007. 
"A Design Science Research Methodology for Information 
Systems Research," Journal of management information 
systems (24:3), pp. 45-77. 

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. 2008. "Systematic 
Mapping Studies in Software Engineering," in: 12th 
International Conference on Evaluation and Assessment in 
Software Engineering. p. 1. 

Phaal, R., Farrukh, C. J., and Probert, D. R. 2004. "Technology 
Roadmapping—a Planning Framework for Evolution and 
Revolution," Technological forecasting and social change 
(71:1), pp. 5-26. 



 

 
  

323   
 

Phaal, R., Farrukh, C. J., and Probert, D. R. 2007. "Strategic 
Roadmapping: A Workshop-Based Approach for Identifying 
and Exploring Innovation Issues and Opportunities," 
Engineering Management Journal (19), pp. 3-12. 

Pohl, K., and Rupp, C. 2011. Requirements Engineering 
Fundamentals: A Study Guide for the Certified Professional 
for Requirements Engineering Exam - Foundation Level - 
Ireb Compliant. Rocky Nook Computing. 

Potter, W. J., and Levine-Donnerstein, D. 1999. "Rethinking Validity 
and Reliability in Content Analysis," Journal of Applied 
Communication Research (27:3), pp. 258-284. 

Potts, C., Takahashi, K., and Antón, A. I. 1994. "Inquiry-Based 
Requirements Analysis," IEEE software (11:2), pp. 21-32. 

Qian, W., Peng, X., Wang, H., Mylopoulos, J., Zheng, J., and Zhao, W. 
2018. "Mobigoal: Flexible Achievement of Personal Goals for 
Mobile Users," IEEE Transactions on Services Computing 
(11:2), pp. 384-398. 

Raake, A., and Egger, S. 2014. "Quality and Quality of Experience," in 
Quality of Experience. Springer, pp. 11-33. 

Rabiser, R., Guinea, S., Vierhauser, M., Baresi, L., and Grünbacher, P. 
2017. "A Comparison Framework for Runtime Monitoring 
Approaches," Journal of Systems and Software (125), pp. 
309-321. 

Rajlich, V. c. T., and Bennett, K. H. 2000. "A Staged Model for the 
Software Life Cycle," Computer (33:7), pp. 66-71. 

Rapport, D. J., Costanza, R., and McMichael, A. J. 1998. "Assessing 
Ecosystem Health," Trends in Ecology & Evolution (13:10), 
pp. 397-402. 

Rashid, A., Wiesenberger, J., Meder, D., and Baumann, J. 2009. 
"Bringing Developers and Users Closer Together: The Open 
Proposal Story," PRIMIUM-Process Innovation for Enterprise 
Software pp. 9-26. 



 

  

324 
References  
  

 
 

Regnell, B., Berntsson Svensson, R., and Olsson, S. 2008. "Supporting 
Roadmapping of Quality Requirements," IEEE Software 
(25:2), pp. 42-47. 

Reiter, U., Brunnström, K., De Moor, K., Larabi, M.-C., Pereira, M., 
Pinheiro, A., You, J., and Zgank, A. 2014. "Factors Influencing 
Quality of Experience," in Quality of Experience. Springer, pp. 
55-72. 

Rettig, M. 1994. "Prototyping for Tiny Fingers," Communications of 
the ACM (37:4), pp. 21-27. 

Robert, L. P., and Dennis, A. R. 2005. "Paradox of Richness: A 
Cognitive Model of Media Choice," IEEE transactions on 
professional communication (48:1), pp. 10-21. 

Robinson, W. 2009. "A Roadmap for Comprehensive Requirements 
Modeling," Computer (43:5), pp. 64-72. 

Robson, C. 2002. Real World Research: A Resource for Social 
Scientists and Practitioner-Researchers. Blackwell Oxford. 

Roto, V., Law, E., Vermeeren, A., and Hoonhout, J. 2011. "User 
Experience White Paper- Bringing Clarity to the Concept of 
User Experience. Results from Dagstuhl Seminar on 
Demarcating User Experience.," Schloss Dagstuhl, Leibniz-
Zentrum for Informatik, Germany. 

Salehie, M., and Tahvildari, L. 2012. "Towards a Goal‐Driven 
Approach to Action Selection in Self‐Adaptive Software," 
Software: Practice and Experience (42:2), pp. 211-233. 

Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., 
Gutierrez, V., Ramdhany, R., Gluhak, A., Krco, S., and 
Theodoridis, E. 2014. "Smartsantander: Iot Experimentation 
over a Smart City Testbed," Computer Networks (61), pp. 
217-238. 

Santos, R., Werner, C. u., Barbosa, O., and Alves, C. 2012. "Software 
Ecosystems: Trends and Impacts on Software Engineering," 
in: 26th Brazilian Symposium in Software Engineering (SBES 
2012). IEEE, pp. 206-210. 



 

 
  

325   
 

Sauerwein, E., Bailom, F., Matzler, K., and Hinterhuber, H. H. 1996. 
"The Kano Model: How to Delight Your Customers," 
International Working Seminar on Production Economics, 
Igls, Innsbruck, Austria, pp. 313-327. 

Scherer, K. R. 2005. "What Are Emotions? And How Can They Be 
Measured?," Social science information (44:4), pp. 695-729. 

Schleicher, R., Westermann, T., and Reichmuth, R. 2014. "Mobile 
Human–Computer Interaction," in Quality of Experience. 
Springer, pp. 339-349. 

Schmitz, J., and Fulk, J. 1991. "Organizational Colleagues, Media 
Richness, and Electronic Mail: A Test of the Social Influence 
Model of Technology Use," Communication research (18:4), 
pp. 487-523. 

Schneider, K. 2011. "Focusing Spontaneous Feedback to Support 
System Evolution," 19th International Conference on 
Requirements Engineering (RE), Trento, Italy: IEEE, pp. 165-
174. 

Seyff, N., Ollmann, G., and Bortenschlager, M. 2011. "Irequire: 
Gathering End-User Requirements for New Apps," 19th IEEE 
International Requirements Engineering Conference 
(RE'11), Trento, Italy: IEEE. 

Seyff, N., Ollmann, G., and Bortenschlager, M. 2014. "Appecho: A User-
Driven, in Situ Feedback Approach for Mobile Platforms and 
Applications," 1st International Conference on Mobile 
Software Engineering and Systems (MOBILESoft), 
Hyderabad, India: ACM, pp. 99-108. 

Seyff, N., Stade, M., Fotrousi, F., Glinz, M., Guzman, E., Kolpondinos-
Huber, M., Arzapalo, D. M., Oriol, M., and Schaniel, R. 2017. 
"End-User Driven Feedback Prioritization,"). 

Seyff, N., Todoran, I., Caluser, K., Singer, L., and Glinz, M. 2015. "Using 
Popular Social Network Sites to Support Requirements 
Elicitation, Prioritization and Negotiation," Journal of 
Internet Services and Applications (JISA) (6:1), pp. 7:1–7:16. 



 

  

326 
References  
  

 
 

Shaikh, J., Fiedler, M., and Collange, D. 2010. "Quality of Experience 
from User and Network Perspectives," annals of 
telecommunications-annales des telecommunications (65:1-
2), pp. 47-57. 

Shung, K. P., and Junyu, M. C. 2012. "Application of Analytics in 
Business Strategy," Business Intelligence Journal (5:1). 

Sjøberg, D. I., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., 
Karahasanović, A., and Vokáč, M. 2003. "Challenges and 
Recommendations When Increasing the Realism of 
Controlled Software Engineering Experiments," in Empirical 
Methods and Studies in Software Engineering, R. Conradi and 
A.I. Wang (eds.). Berlin Heidelberg: Springer, pp. 24-38. 

Snijders, R., Dalpiaz, F., Hosseini, M., Shahri, A., and Ali, R. 2014. 
"Crowd-Centric Requirements Engineering," 7th IEEE/ACM  
International Conference on Utility and Cloud Computing 
(UCC 2014), London, UK: IEEE. 

Solomon, R. C. 2008. "The Philosophy of Emotions," in Handbook of 
Emotions, M. Lewis, Haviland-Jones, J. M. & Barrett, L. F. (ed.). 
New York: Guilford Press, pp. 3-16. 

Sotres, P., de la Torre, C. L., Sánchez, L., Jeong, S., and Kim, J. 2018. 
"Smart City Services over a Global Interoperable Internet-of-
Things System: The Smart Parking Case," 2018 Global 
Internet of Things Summit (GIoTS): IEEE, pp. 1-6. 

Souag, A., Salinesi, C., and Wattiau, I. 2012. "Ontologies for Security 
Requirements: A Literature Survey and Classification," in: 
Advanced Information Systems Engineering Workshops. 
Gdańsk, Poland. 

Srewuttanapitikul, K., and Muengchaisri, P. 2016. "Prioritizing 
Software Maintenance Plan by Analyzing User Feedback," 
2016 International Conference on Information Science and 
Security (ICISS): IEEE, pp. 1-5. 

Srivastava, J., Cooley, R., Deshpande, M., and Tan, P.-N. 2000. "Web 
Usage Mining: Discovery and Applications of Usage Patterns 



 

 
  

327   
 

from Web Data," ACM SIGKDD Explorations Newsletter (1:2), 
pp. 12-23. 

Stade, M., Fotrousi, F., Seyff, N., and Albrecht, O. 2017. "Feedback 
Gathering from an Industrial Point of View," 25th 
International Conference on Requirements Engineering 
(RE), Lisbon, Portugal: IEEE, pp. 71-79. 

Stade, M., and Seyff, N. 2017. "Features for Mobile Feedback Tools: 
Applying the Kano Method," Mensch und Computer 2017-
Tagungsband). 

Strohmeier, D., Egger, S., Raake, A., Hoßfeld, T., and Schatz, R. 2014. 
"Web Browsing," in Quality of Experience. Springer, pp. 329-
338. 

Suh, K. S. 1999. "Impact of Communication Medium on Task 
Performance and Satisfaction: An Examination of Media-
Richness Theory," Information & Management (35:5), pp. 
295-312. 

Sun, P.-C., and Cheng, H. K. 2007. "The Design of Instructional 
Multimedia in E-Learning: A Media Richness Theory-Based 
Approach," Computers & education (49:3), pp. 662-676. 

Sutcliffe, A., and Sawyer, P. 2013. "Requirements Elicitation: 
Towards the Unknown Unknowns," 2013 21st IEEE 
International Requirements Engineering Conference (RE): 
IEEE, pp. 92-104. 

Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S. B., and 
Shafique, M. U. 2010. "A Systematic Review on Strategic 
Release Planning Models," Information and software 
technology (52:3), pp. 237-248. 

Szajna, B., and Scamell, R. W. 1993. "The Effects of Information 
System User Expectations on Their Performance and 
Perceptions," Mis Quarterly (17:4), pp. 493-516. 

Taentzer, G., Goedicke, M., Paech, B., Schneider, K., Schürr, A., and 
Vogel-Heuser, B. 2019. "The Nature of Software Evolution," 
in Managed Software Evolution. Springer, pp. 9-20. 



 

  

328 
References  
  

 
 

Thew, S., and Sutcliffe, A. 2018. "Value-Based Requirements 
Engineering: Method and Experience," Requirements 
engineering (23:4), pp. 443-464. 

Tohidi, M., Buxton, W., Baecker, R., and Sellen, A. 2006. "User 
Sketches: A Quick, Inexpensive, and Effective Way to Elicit 
More Reflective User Feedback," 4th Nordic conference on 
Human-computer interaction: changing roles, Oslo, Norway: 
ACM, pp. 105-114. 

Turner, M., Kitchenham, B., Brereton, P., Charters, S., and Budgen, D. 
2010. "Does the Technology Acceptance Model Predict Actual 
Use? A Systematic Literature Review," Information and 
software technology (52:5), pp. 463-479. 

Ulriksen, M. S., and Dadalauri, N. 2016. "Single Case Studies and 
Theory-Testing: The Knots and Dots of the Process-Tracing 
Method," International Journal of Social Research 
Methodology (19:2), pp. 223-239. 

Van der Ham, W. F., Broekens, J., and Roelofsma, P. H. 2014. "The 
Effect of Dominance Manipulation on the Perception and 
Believability of an Emotional Expression," in Emotion 
Modeling: Towards Pragmatic Computational Models of 
Affective Processes, T. Bosse, Broekens, J., Dias J., & Zwaan, J. 
v. d (ed.). Springer, pp. 101–114. 

van Hoorn, A., Rohr, M., Hasselbring, W., Waller, J., Ehlers, J., Frey, S., 
and Kieselhorst, D. 2009. Continuous Monitoring of Software 
Services: Design and Application of the Kieker Framework. 
Department of Computer Science, Kiel University, Germany. 

Varela, M., Skorin-Kapov, L., and Ebrahimi, T. 2014. "Quality of 
Service Versus Quality of Experience," in Quality of 
Experience. Springer, pp. 85-96. 

Vierhauser, M., Rabiser, R., and Grünbacher, P. 2016. "Requirements 
Monitoring Frameworks: A Systematic Review," Information 
and Software Technology (80), pp. 89-109. 

Wang, T., Si, Y., Xuan, X., Wang, X., Yang, X., Li, S., and Kavs, A. J. 2010. 
"A Qos Ontology Cooperated with Feature Models for Non-



 

 
  

329   
 

Functional Requirements Elicitation," Proceedings of the 
Second Asia-Pacific Symposium on Internetware, Suzhou, 
China: ACM, p. 17. 

Wang, Y., Mcilraith, S. A., Yu, Y., and Mylopoulos, J. 2009. "Monitoring 
and Diagnosing Software Requirements," Automated 
Software Engineering (16:1), p. 3. 

Watson-Manheim, M. B., and Bélanger, F. 2007. "Communication 
Media Repertoires: Dealing with the Multiplicity of Media 
Choices," MIS quarterly), pp. 267-293. 

Wehrmaker, T., Gärtner, S., and Schneider, K. 2012. "Contexter 
Feedback System," 2012 34th International Conference on 
Software Engineering (ICSE): IEEE, pp. 1459-1460. 

Weiblen, T., Giessmann, A., Bonakdar, A., and Eisert, U. 2012. 
"Leveraging the Software Ecosystem-Towards a Business 
Model Framework for Marketplaces," in: Dcnet/ice-b/optics. 
pp. 187-193. 

Wellsandt, S., Hribernik, K., and Thoben, K. 2014. "Qualitative 
Comparison of Requirements Elicitation Techniques That 
Are Used to Collect Feedback Information About Product 
Use," in: 24th CIRP Design Conference. Milano, Italy. 

Westin, S. S. 1998. "Performance Measurement and Evaluation: 
Definitions and Relationships," GAO/GGD-98-26. 
Washington, DC: US Government Printing Office. 

Wieringa, R., Maiden, N., Mead, N., and Rolland, C. 2006. 
"Requirements Engineering Paper Classification and 
Evaluation Criteria: A Proposal and a Discussion," 
Requirements Engineering (11:1), pp. 102-107. 

Wieringa, R. J. 2014. Design Science Methodology for Information 
Systems and Software Engineering. Springer. 

Wüest, D., Fotrousi, F., and Fricker, S. 2019. "Combining Monitoring 
and Autonomous Feedback Requests to Elicit Actionable 
Knowledge of System Use," Cham: Springer International 
Publishing, pp. 209-225. 



 

  

330 
References  
  

 
 

Wüest, D., Seyff, N., and Glinz, M. 2012. "Flexisketch: A Mobile 
Sketching Tool for Software Modeling," International 
Conference on Mobile Computing, Applications, and Services: 
Springer, pp. 225-244. 

Wüest, D., Seyff, N., and Glinz, M. 2015. "Sketching and Notation 
Creation with Flexisketch Team: Evaluating a New Means for 
Collaborative Requirements Elicitation," 23rd IEEE 
International Requirements Engineering Conference 
(RE'15), Ottawa, Canada: IEEE, pp. 186-195. 

XES_WorkingGroup. 2016. "Ieee Standard for Extensible Event 
Stream (Xes) for Achieving Interoperability in Event Logs 
and Event Streams," in: IEEE Std 1849. 

Yetim, F., Draxler, S., Stevens, G., and Wulf, V. 2012. "Fostering 
Continuous User Participation by Embedding a 
Communication Support Tool in User Interfaces," AIS 
Transactions on Human-Computer Interaction (4:2), pp. 
153-168. 

Yin, R. K. 2014. Case Study Research: Design and Methods, (5 ed.). 
Thousands of Oaks, CA: Sage publications. 

Yusop, N. S. M., Grundy, J., and Vasa, R. 2015. "Reporting Usability 
Defects: Limitations of Open Source Defect Repositories and 
Suggestions for Improvement," Proceedings of the ASWEC 
2015 24th Australasian Software Engineering Conference, 
pp. 38-43. 

Zhang, D., Dang, Y., Lou, J.-G., Han, S., Zhang, H., and Xie, T. 2011. 
"Software Analytics as a Learning Case in Practice: 
Approaches and Experiences," in: International Workshop on 
Machine Learning Technologies in Software Engineering. 
Lawrence, Kansas, U.S.A. : pp. 55-58. 

Zhang, J., and Ansari, N. 2011. "On Assuring End-to-End Qoe in Next 
Generation Networks: Challenges and a Possible Solution," 
IEEE Communications Magazine (49:7), pp. 185-191. 

Zheng, X., Julien, C., Podorozhny, R., Cassez, F., and Rakotoarivelo, T. 
2016. "Efficient and Scalable Runtime Monitoring for Cyber–



 

 
  

331   
 

Physical System," IEEE Systems Journal (12:2), pp. 1667-
1678. 

Zijlstra, F. R., Roe, R. A., Leonora, A. B., and Krediet, I. 1999. "Temporal 
Factors in Mental Work: Effects of Interrupted Activities," 
Journal of Occupational and Organizational Psychology 
(72:2), pp. 163-185. 

Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A., and 
Weiss, C. 2010. "What Makes a Good Bug Report?," IEEE 
Transactions on Software Engineering (36:5), pp. 618-643. 

Zowghi, D., and Coulin, C. 2005. "Requirements Elicitation: A Survey 
of Techniques, Approaches, and Tools," in Engineering and 
Managing Software Requirements, A. Aurum and C. Wohlin 
(eds.). Berlin, Germany: Springer. 

Zowghi, D., Da Rimini, F., and Bano, M. 2015. "Problems and 
Challenges of User Involvement in Software Development: 
An Empirical Study," 19th International Conference on 
Evaluation and Assessment in Software Engineering (EASE), 
Nanjing, China: ACM, pp. 1-10. 

 





COMBINING USER FEEDBACK AND  
MONITORING DATA TO SUPPORT  
EVIDENCE-BASED SOFTWARE EVOLUTION

Farnaz Fotrousi

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2020:04

Department of Software Engineering

Context: Companies continuously explore their 
software systems to acquire evidence for software 
evolution, such as bugs in the system and new 
functional or quality requirements. So far, manag-
ers have made decisions about software evolution 
based on evidence gathered from interpreting user 
feedback and monitoring data collected separately 
from software in use. These evidence-collection 
processes are usually unmethodical, lack a system-
atic guide, and have practical issues. This lack of a 
systematic approach leaves unexploited opportu-
nities for detecting evidence for system evolution.

Objective: The main research objective is to im-
prove evidence collection from software in use 
and guide software practitioners in decision-mak-
ing about system evolution. Understanding useful 
approaches to collect user feedback and monitor-
ing data, two important sources of evidence, and 
combining them are key objectives as well.

Method: We proposed a method for gathering 
evidence from software in use (GESU) using de-
sign-science research. We designed the meth-
od over three iterations and validated it in the 
European case studies FI-Start, Supersede, and 
Wise-IoT. To acquire knowledge for the design, 
we conducted further research using surveys and 
systematic mapping methods.

Results: The results show that GESU is not only 
successful in industrial environments but also 
yields new evidence for software evolution by 

bringing user feedback and monitoring data to-
gether. This combination helps software practi-
tioners improve their understanding of end-user 
needs and system drawbacks, ultimately support-
ing continuous requirements elicitation and prod-
uct evolution. GESU suggests monitoring a soft-
ware system based on its goals to filter relevant 
data (i.e., goal-driven monitoring) and gathering 
user feedback when the system requests feedback 
about the software in use (i.e., system-triggered 
user feedback). The system identifies interesting 
situations of system use and issues automated 
requests for user feedback to interpret the evi-
dence from user perspectives. We justified using 
goal-driven monitoring and system-triggered user 
feedback with complementary findings of the the-
sis. That showed the goals and characteristics of 
software systems constrain monitoring data. We 
thus narrowed the monitoring and observational 
focus on data aligned with goals instead of a mas-
sive amount of potentially useless data. Finally, we 
found that requesting feedback from users with a 
simple feedback form is a useful approach for mo-
tivating users to provide feedback. 

Conclusion: Combining user feedback and moni-
toring data is helpful to acquire insights into the 
success of a software system and guide deci-
sion-making regarding its evolution. This work 
can be extended in the future by implementing an 
adaptive system for gathering evidence from com-
bined monitoring data and user feedback.

2020:04

ISSN: 1653-2090

ISBN: 978-91-7295-402-1

C
O

M
B

IN
IN

G
 U

S
E

R
 F

E
E

D
B

A
C

K
 A

N
D

 M
O

N
IT

O
R

IN
G

 D
A

T
A

 T
O

 S
U

P
P

O
R

T
 E

V
ID

E
N

C
E

-B
A

S
E

D
 S

O
F

T
W

A
R

E
 E

V
O

L
U

T
IO

N
Farnaz Fotrousi

2020:04

ABSTRACT


