Community Stakeholder Management in Wind Energy Development Projects

A planning approach
ACKNOWLEDGEMENTS

Firstly we owe our utmost gratitude to our supervisor, Professor Tomas Blomquist, for his unwavering guidance and support throughout the process of researching and writing this thesis, without which we will never be able to achieve the progress and results herewith. We would also like to thank our other course professors, Professor Anders Söderholm and Professor Ralf Müller for their additional guidance leading up to the research proposal and methodology while offering clarifications on our doubts whenever they arise. We are also sincerely indebted to the kindness of all our interviewees who willingly accorded their scarce time to us to provide comments and input to our research questions. Furthermore, all our fellow course colleagues are entitled a hearty and sincere ‘thank you’ for their peer support both academically and personally. Their advice, criticisms, discussions and good laughs will forever be embodied in the content and spirit of this thesis as well. This thesis and entire experience would also not be possible without the kind support of the Erasmus Mundus program. Last but not least, we would like to thank our respective family, loved ones and friends for being there for us throughout the period.

Umeå, January 2008
ABSTRACT

There often exist hard-to-identify or unforeseen external parties that emerge as indirect stakeholders of a project who can significantly influence its execution and outcome. The broader stakeholder landscape in both theory and practice recognizes the local community including other interest groups of a project site as such key stakeholders. However recent cases have revealed shortcomings in managing this category of stakeholders, leading to authoritative rejection of development permit applications and strong local opposition that consequently increase costs and delay to the project. There is indication that a weak community stakeholder management process in the planning stages can cause problems to the project, or worse, in some cases lead to project failure and abandonment by the developer. Wind energy development projects are not exempted from this condition and are possibly even more prone as they involve the erection of tall wind turbines across wide-open landscapes that are deemed controversial and unacceptable to a wider population. Endorsed by the persuasive rationale for wind energy especially in view of the environment and sustainable development, a more comprehensive and effective guidance for community stakeholder management in the planning stage is required to mitigate, if not eliminate, potential issues that can hinder the successful implementation of wind energy development projects. Hence this thesis primarily seeks to answer the research question of: “How should community stakeholders of wind energy development projects be managed in the planning stage prior to permit application?”.

Using a qualitative approach to research through interviews with several industry practitioners and reviewing secondary data of industry best practices, policies, literature and case studies, 16 community stakeholder management key conclusion points could be made from research data collected. These points are individually important while in aggregate form a broad and novel framework that serves to further raise the awareness and readiness of wind energy development project managers in their community stakeholder management initiatives. A baseline list of community stakeholders and their common concerns were identified, together with suggested approaches to identify community stakeholders in each project. Community consultation is key to the process and engaging the community as widely and early as possible is recommended. Furthermore, key principles and an array of common methods for community stakeholder management in the planning stages of the project are presented, while acknowledging that not all stakeholders can be satisfied at each instance. Ultimately these findings were consolidated in a community consultation checklist that serves as a more systematic and practical tool in guiding project managers in their community stakeholder management initiatives during planning.

The research findings herewith contribute valuable insights to the existing body of knowledge in this area and also provide enhanced practical guidance to project managers in achieving successful community stakeholder management during planning, facilitating higher acceptance for the proposal, carrying out a more efficient and effective planning process and improving the likelihood for project approval from both authoritative and judiciary standpoints.

Key words: stakeholder management, stakeholder identification, stakeholder analysis, community stakeholders, wind energy, wind farm development projects
# TABLE OF CONTENTS

1 INTRODUCTION ................................................................................................................................. 1

2 RESEARCH METHODOLOGY .................................................................................................................. 4
   2.1 RESEARCH PHILOSOPHY .................................................................................................................. 4
   2.2 RESEARCH APPROACH ..................................................................................................................... 5
   2.3 RESEARCH STRATEGY ....................................................................................................................... 6
   2.4 METHODS OF DATA COLLECTION .................................................................................................. 7
       2.4.1 Interviews with Wind Farm Developers .................................................................................... 7
       2.4.2 Literature Review & Secondary Data Research ......................................................................... 9

3 LITERATURE REVIEW ............................................................................................................................. 13
   3.1 THE STAKEHOLDER CONCEPT ......................................................................................................... 13
   3.2 HETEROGENEITY OF STAKEHOLDERS ............................................................................................ 15
   3.3 STAKEHOLDER MANAGEMENT FRAMEWORK ................................................................................. 15
       3.3.1 Stakeholder Identification and Analysis .................................................................................... 17
       3.3.2 Stakeholder Prioritization ......................................................................................................... 20
       3.3.3 Stakeholder Strategies ............................................................................................................... 21
   3.4 RELEVANCE OF COMMUNITY AS STAKEHOLDERS ....................................................................... 25
   3.5 THE PERSPECTIVE OF WIND ENERGY PROJECTS ............................................................................. 27
   3.6 THE HOT AIR FROM COMMUNITY BASED STAKEHOLDERS ON WIND ENERGY PROJECTS ............. 28

4 RESEARCH DATA & FINDINGS ............................................................................................................... 33
   4.1 DEFINING COMMUNITY STAKEHOLDERS ....................................................................................... 33
   4.2 IDENTIFYING COMMUNITY STAKEHOLDERS ............................................................................... 35
   4.3 POLICIES AND GOVERNANCE OF COMMUNITY CONSULTATION ............................................... 37
   4.4 COMMUNITY CONCERNS & OPPOSITION ...................................................................................... 40
   4.5 KEY PRINCIPLES OF COMMUNITY STAKEHOLDER MANAGEMENT ............................................. 45
   4.6 COMMUNITY CONSULTATION PROCESS ....................................................................................... 51
   4.7 METHODS & TECHNIQUES FOR COMMUNITY CONSULTATION .................................................. 57

5 SUMMARY OF FINDINGS & DISCUSSION ............................................................................................. 73

6 CONCLUSION ........................................................................................................................................... 90

APPENDICES .............................................................................................................................................. 92

APPENDIX 1: THESIS RESEARCH QUESTIONS FOR PRACTITIONER (PROJECT MANAGER / DEVELOPER) ............ 92
APPENDIX 2: PROJECT STAKEHOLDERS MANAGEMENT FRAMEWORK .......................................................... 93
APPENDIX 3: A STAKEHOLDER FRAMEWORK FOR DEVELOPMENT PROJECTS .............................................. 94
APPENDIX 4: STAKEHOLDER TABLE ........................................................................................................ 95
APPENDIX 5: STAKEHOLDER-ISSUE INTERRELATIONSHIP DIAGRAM .......................................................... 96
APPENDIX 6: PROBLEM-FRAME STAKEHOLDER MAP ............................................................................... 97
APPENDIX 7: GENERIC STAKEHOLDER STRATEGIES ............................................................................... 98
APPENDIX 8: STYLES OF STAKEHOLDER MANAGEMENT ........................................................................... 99
APPENDIX 9: STAKEHOLDER TYPOLOGY .................................................................................................. 100
APPENDIX 10: EUROPEAN COMMISSION WHITE PAPER PROPOSAL FOR RENEWABLE ENERGY ............... 101
APPENDIX 11: PROJECT PHASES OF THE FLADEN WIND PROJECT ............................................................... 102
APPENDIX 12: PROS AND CONS OF WIND ENERGY PROJECTS ..................................................................... 103
APPENDIX 13: PATTERN OF PUBLIC ACCEPTANCE OF WIND ENERGY ....................................................... 104
APPENDIX 14: APPROXIMATE SIZES OF TURBINES BY INSTALLED CAPACITY ........................................... 105
APPENDIX 15: CASE STUDY: ADDISON WIND POWER PROJECT ................................................................. 106
APPENDIX 16: LEVELS OF ENGAGEMENT .................................................................................................. 109
APPENDIX 17: SUMMARY OF INTERVIEWS ............................................................................................... 110
APPENDIX 18: OVERVIEW OF CONSULTATION METHODS AND THEIR POTENTIAL EFFECTIVENESS ............. 113

REFERENCES .............................................................................................................................................. 115
# LIST OF TABLES & FIGURES

<table>
<thead>
<tr>
<th>Table/Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: Quantitative vs. Qualitative Research Strategies</td>
<td>6</td>
</tr>
<tr>
<td>Table 2: List of Interviewees</td>
<td>8</td>
</tr>
<tr>
<td>Table 3: Referenced wind farm project cases</td>
<td>11</td>
</tr>
<tr>
<td>Table 4: Purpose for stakeholder analysis &amp; applicable techniques</td>
<td>18</td>
</tr>
<tr>
<td>Table 5: Stakeholder consultation process</td>
<td>51-52</td>
</tr>
<tr>
<td>Table 6: Consultation activities by project development phases</td>
<td>53-54</td>
</tr>
<tr>
<td>Table 7: Environmental &amp; community considerations during project planning</td>
<td>58</td>
</tr>
<tr>
<td>Table 8: List of potential community stakeholder issues to consider</td>
<td>63</td>
</tr>
<tr>
<td>Table 9: Consultation activities in the Awel Aman Tawe wind farm project</td>
<td>68-69</td>
</tr>
<tr>
<td>Table 10: Community stakeholders commonly identified from research</td>
<td>74</td>
</tr>
<tr>
<td>Table 11: Key principles for community consultation &amp; stakeholder management</td>
<td>81</td>
</tr>
<tr>
<td>Table 12: Methods &amp; actions for community stakeholder management in pre-application stages</td>
<td>85-86</td>
</tr>
<tr>
<td>Table 13: Community consultation checklist</td>
<td>87-89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1: Project stakeholder management framework</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2: Power/interest matrix</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3: Power/predictability matrix</td>
<td>21</td>
</tr>
<tr>
<td>Figure 4: Position/importance matrix</td>
<td>21</td>
</tr>
<tr>
<td>Figure 5: Stakeholder Strategy Formulation Process</td>
<td>22</td>
</tr>
<tr>
<td>Figure 6: Generic stakeholder strategies</td>
<td>23</td>
</tr>
<tr>
<td>Figure 7: Styles of stakeholder action</td>
<td>24</td>
</tr>
<tr>
<td>Figure 8: A wind farm development project’s pre-application phases &amp; key activities</td>
<td>83</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

There often exist hard-to-identify or unforeseen external parties that emerge as indirect stakeholders of a project who can significantly influence its execution and outcome. Evidently, large-scale infrastructural construction projects that intrude structurally into communities or affect the environment such as altering the landscape or changing the activities of the area are especially prone to increased local and environmental issues. Experience from many countries demonstrates that the siting of facilities including waste disposal, transport infrastructure and energy generation is a highly contested issue, which often gives rise to conflicts between citizens, municipalities, industry, environmental organizations, public agencies and parliament (Lidskog, 2005). Encounters by recent project proposals such as the offshore wind energy project at the Fladen shoal bank in the Kattegatt Sea in Sweden (Rönnborg, 2006), the US’ first offshore wind energy facility off the southern coast of Cape Cod, Massachusetts (Kempton et al, 2005) and worse still, a project that is already underway: the Botnia cellulose pulp mill in Uruguay (see Wikipedia, 2007) – all demonstrate how local community and environmental opposition can significantly affect planning and even derail the implementation of a project.

Hence management of these type of projects is now not restricted to only the basic planning, executing, controlling and monitoring of the project, but also management of many stakeholder groups and factors that are relevant but may reside outside the conventional boundaries of a project. Unfortunately these groups and related issues are not always clear. Regardless of the underlying reasons, organizations that ignore their stakeholders are in for big trouble, sooner or later (Freeman, 1984:165). Studies and various evidences also reveal that failure to anticipate and respond to stakeholder concerns can generate significant costs (Post et al., 2002). Bryson (2004:23) even terms this failure as ‘a kind of flaw in thinking or action’. Thus it is imperative for project managers to develop and incorporate a heightened awareness, systematic and rigorous identification process, and also the appropriate strategic approach to adequately manage stakeholders accordingly with regards to the project at hand.

However, Nicholas (2004:496) bleakly claims that usually no one associated with the project will know all the stakeholders. Given accuracy behind this statement, then coupled with the warnings above it surely represent an ominous prospect for project managers. This thesis does not aim to describe nor prescribe a holistic method or model to identify and manage all stakeholders relevant to a large construction project (with wind energy projects as proxy), but loosely and broadly focuses on one generic stakeholder group we have identified as critical to the project but yet may not have been granted sufficient attention to in practice – being the local community, including those having an interest in the site such as environmentalists. This category of community stakeholders will be further defined in subsequent sections.

The concern for climate change and reduction objective of carbon dioxide emission has resulted to the current state of strong support for the development of renewable energy sources. “Of the renewable energy options, wind energy is considered as one of the most technologically viable and cost-effective options” (Morthorst & Chandler, 2004 in McLaren Loring, 2007:2648). However, the erection of wind turbines is often found to significantly interfere with the existing landscape and could polarize the stance for and against the wind energy developments, especially in the local context. These groups with varying interests and expectations on the project are referred to as stakeholder. Freeman (1984) defined the stakeholder as any group or individual who can affect, or
is affected by, the achievement of the purpose of the project. Stakeholders can be internal or external to the project (Gardiner, 2005). Those actively involved in the project are internal stakeholder while those whose interest may be positively and negatively affected by the project are external stakeholder.

Many wind energy projects encounter obstacles from local community opposition in the planning stages leading to higher costs and delay, with some resulting in the rejection of their development application and are forced to abandon the project. The opposition arises from various reasons, but they most commonly spawn from an initial community consultation process that was not adequately conducted nor take into consideration the criteria for proper community stakeholder management. Meanwhile the acceptance (and thus achievement of the objective for community stakeholder management) of wind energy projects seems to be highly dependent on the site location and on the planning process that involves direct interaction between the affected community and project developer (Berg, 2003). This planning process that entails public involvement or community consultation is part of the overall project stakeholder management process. Acknowledging the common concepts of stakeholder management both academically and practically, the key principles for community consultation and a base knowledge of the range of applicable methods to develop approaches to appropriately manage each community are hence important to all project managers not only in the wind energy industry but all infrastructural development projects as well. These issues form the basis for our research herewith. In the following sections we provide a background to our research, re-emphasize the importance of community stakeholder management and the key community consultation process in the planning stages of wind farm projects prior to development application, and explain our research methodology, before presenting our findings and conclusion.

**Research Question**

This research is initially inspired by our prior case study of the aforementioned Botnia cellulose pulp mill in Uruguay which encountered strong local opposition and other community stakeholder-related issues during construction, mainly due to what seemed to be the developer’s inadequate management of community stakeholders in the planning stages of the project. The relevance and applicability to wind energy development projects call for the need to answer the question through this research of:

“How should community stakeholders of wind energy development projects be managed in the planning stage prior to permit application?”

**Aims of the study**

The objectives of this research are to:

- Better understand the concept and impact of external stakeholders, especially those in relation to and with interest in the local community of the proposed project site, in large infrastructural development projects. Due to their relevance and persuasive importance, we investigate this subject in the specific context of wind energy projects which encompass erection of tall wind turbines usually spanning over a hundred meters and involving a large area in wide, open landscapes.
- Find the common key principles and techniques for achieving the objectives of community stakeholder management, in which the community consultation process is key.
• Provide practitioners with more comprehensive and practical guidance to better recognize and manage the community as stakeholders in a wind energy project, with a focus on the initial community stakeholder identification and consultation process in the planning stages prior to development permit application.

The underlying aims are to smoothen the planning process of a wind energy project prior to permit application, lessen community stakeholder opposition to the project, increase fit and benefit of the project to the community concerned and increase likelihood of application approval, leading to project planning and implementation success.

**Organization of the thesis**

*Chapter 1: Introduction*
This chapter presents the general background of the broader research area. The research question and aims of the study are also clarified in this chapter.

*Chapter 2: Research Methodology*
This chapter describes the general approach and research process employed in the study and highlights activities that were carried out in conducting the research. It also discusses the justification of the processes and choices made, while acknowledging limitations to our research methods.

*Chapter 3: Literature Review*
In this chapter we set the theoretical background for this research. Both sources of academic and practitioner literature encompassing books, journals and online publications are reviewed. Academic concepts and practitioner guidelines on stakeholder management with emphasis on the community as stakeholders in the project context are explained. In the end we provide a brief overview of the wind energy industry and make the justification for our research question.

*Chapter 4: Research Data & Findings*
This chapter presents the data collected from the various sources according to our research methods. The data is organized to provide a flow that supports the line of understanding and facilitates discussion. Realizing the broad scope of the research topic, effort is made to keep the presentation and discussion of findings topical and with each preceding and succeeding paragraphs arranged in as much logical context as possible.

*Chapter 5: Summary of Findings & Discussion*
This chapter summarizes the key findings in the preceding chapter. We also make inferences from our findings to form theories and conclusive points here, in accordance to our research methodology. Further discussion and opinions of the researcher based on research data are presented following each point made.

*Chapter 6: Conclusion*
This chapter concludes the thesis by recapping the conclusion points made and relating them back to the research question and objectives of the study to ensure that the results or findings have met the purpose of the research. Some limitations are acknowledged and recommendations for further studies conclude this chapter and main content of the thesis.
2 RESEARCH METHODOLOGY

The research is composed of three streams of data source:

- A literature review that provides the theoretical background relating to the analysis and management of stakeholders, the relevance of the community as stakeholders in an organizational / project context, and the application to issues concerning wind energy development projects
- A search and review of industry-specific secondary data sources, such as governmental policy documents, industry best practice guidelines and case highlights / studies of wind farm projects and developer companies in connection to the consultation and management of community stakeholders (predominantly from Internet sources)
- Interviews with project managers in the wind energy industry with experience in managing the community in their projects

Multiple sources are selected for conducting the research in order to provide triangulation (Bryman & Bell, 2003; and Trochim, 2006) of data to affirm findings and eliminate error and bias as much as possible. The succeeding section discusses in more detail the research philosophy, approach, strategy and methods employed to achieve the above research objectives.

2.1 Research Philosophy

The research philosophy guides the development of knowledge during a research. There are two main views about the research process which describes how knowledge is developed and judged as being acceptable: positivism and interpretivism (Saunders, 2003:83). The researchers’ view about the development of knowledge shapes the way of conducting the research and determines the choice of research approach adopted for the study.

Positivism is a position that holds that the goal of knowledge is simply to describe the phenomena that we experience (Trochim, 2006). The end-product of positivism research can be law-like generalization similar to those produced by physical and natural scientist (Remenyi et al., 1998:32). The researcher following the positivism stance is objective and detached about the collected data and put emphasis on the structured methodology to facilitate replication and statistical analysis (Saunders, 2003:83). In positivism, knowledge develops by investigating the social reality through observing objective facts (Blumberg et al., 2005). Theory developments starts with hypothesis and deducing what kind of observations support or reject the hypothesis. Interpretivism on the other hand holds the view that disciplines like business and management are too complex to follow definite laws in the same way as the physical sciences. Researchers adopting the interpretivism stance to research acknowledge that rich insights in a complex world cannot be generalized, particularly in business and management research where situations are unique and vary on circumstances and individual (Saunders, 2003:84). In interpretivism, knowledge is developed and theory is formed through developing ideas inducted from the observed and interpreted social constructions (Blumberg et al., 2005). It is not uncommon that the researcher’s emphasis on “making sense” on what is happening generates findings that are beyond the existing scientific knowledge (Blumberg et al., 2005).
While the positivism view seeks to simply describe the phenomena, interpretivism seeks to discover the “details of the situation to understand the reality or perhaps a reality working behind them” (Remenyi et al., 1998). In this study, we have adopted the interpretivism epistemology to research. The authors believe that the answer of the research question is context dependent and cannot be generalized to all projects in similar or the wider industry. We found it necessary to learn and interpret the subjective meanings behind the actions of different community stakeholders in order to infer implications and conclusion in the pursuit of achieving our research objectives and ultimately answering our research question.

### 2.2 Research Approach

Methodology links a particular philosophy to the appropriate research methods and bridges philosophical notions to practical and applicable research strategies (Byrne, 2001). The deductive approach is usually attached to positivism while the inductive approach to interpretivism. However, Saunders (1998) argues that such labeling is potentially misleading and has no practical value. An important consideration concerning the design of the research study is the existence of clear theory at the beginning of research. The deductive approach is used in study wherein the researcher develops a theory and hypothesis and designs a research strategy to test the hypothesis (Saunders, 1998). On the other hand, in inductive approach, the researcher collects data and develops theory as a result of data analysis.

Deductive reasoning works from the more general to the more specific. Sometimes this is informally called a "top-down" approach. The researcher begins with thinking of a *theory* about the topic of interest. Then, the theory is narrowed down into more specific *hypotheses* that can be tested. Then narrow it down even further when *observations* were collected to address the hypotheses. This ultimately leads to testing of the hypotheses with specific data -- a *confirmation* (or not) of the original theories.

Inductive reasoning works the other way, moving from specific observations to broader generalizations and theories. Informally, it is sometimes called a "bottom-up" approach. In inductive reasoning, the researcher commences with specific observations and collecting data, interprets them, starts to detect patterns and regularities, formulates some tentative hypotheses that can be explored, and finally ends up developing some general conclusions or theories.

It is incumbent upon researchers to seek methods that fit with the philosophy and methodology of their research question and to choose methods congruent with the research topic and assumptions (Byrne, 2001). For this research, we have adopted the inductive approach in the effort to discover a more comprehensive and effective framework for community stakeholder management in wind energy projects as inferred from the research data we collect. In connection with the interpretivist philosophy, we are of the opinion that data from our research, either from primary or secondary sources, remain subjective and perceptive from the perspective of the source to the understanding and interpretation of the researchers. After developing a broad and informed base of theoretical knowledge on the areas of stakeholder management and the wind energy industry from the literature review, we proceed to search for related governmental policy documents and industry best practice guidance specific to community stakeholder management as released by wind energy associations around the world. These secondary data sources set the basis to juxtapose against more practical data from factual case descriptions and interviews with relevant project managers. We hence seek to ‘triangulate’ the data collected from the various sources and infer conclusions based on this
premise. In analyzing our findings we also consider community stakeholder behavior as a consequence to the way in which they perceive how the proposed wind power project will affect them, rather than assuming that community stakeholders will respond in a mechanistic way to each project.

2.3 Research Strategy

The research strategy is a general plan of how to go about answering the research question (Saunders, 1998). Such plan takes into consideration the objectives of the research, the sources of data and the constraints that may be encountered in the course of the research. According to Remenyi et al. (1998), having a clear research strategy is an important step in research as it provides the following benefits: (1) it facilitates communication and allows shares of common experiences among researchers; (2) it ensures that an acceptable logical structure is being used; and (3) it institutionalizes conceptual frameworks for communication, rules of reasoning, procedures and methods for observation and verification.

There are two clusters of research strategy as distinguished by Bryman & Bell (2003), being quantitative and qualitative research. The former emphasizes quantification in the collection and analysis of data while the latter emphasizes words (rather than quantification) in the collection and analysis of data (Bryman & Bell, 2003:25). The fundamental differences between the two clusters of research strategy are presented below:

<table>
<thead>
<tr>
<th>Research Approach (role of theory in relation to research)</th>
<th>Quantitative</th>
<th>Qualitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Philosophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positivism</td>
<td>Interpretivism</td>
<td></td>
</tr>
<tr>
<td>Nature of social entities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objectivism (social reality is independent of social actors)</td>
<td>Constructionism (social reality is developed through interaction and is constantly emerging)</td>
<td></td>
</tr>
</tbody>
</table>

Source: Bryman & Bell (2003)

Considering the above fundamental differences and the discussion in Section 2.1 and Section 2.2, it is apparent that our research follows the qualitative strategy.

As an initial step, it is imperative that the researchers gain a better understanding of the research area and surrounding issues. This was done through literature review of theoretical knowledge on the areas of stakeholder management and wind energy industry. In addition, we also searched for related governmental policy documents and industry best practice guidance specific to community stakeholder management as released by wind energy associations around the world. Case studies on wind energy projects were also examined. Then, interviews with wind farm developer were conducted. The secondary data sources set the basis to juxtapose against more practical data from factual case descriptions and interviews with project managers. We hence seek to ‘triangulate’ the data collected from the various sources and infer conclusions based on this premise.
Details for collecting data from various sources (literature, policy & best practice documents, case studies and interviews) are discussed in the following section.

2.4 Methods of Data Collection

Collection of evidence is the cornerstone of research strategy and the essence of empirical research relies on the production and accumulation of evidence to support its findings (Remenyi et al., 1998:140). Several approaches to the collection of evidence are available to researchers and the choice depends upon the research strategy being followed as well as the research question itself (Remenyi et al., 1998:141).

For the present research, data were collected from primary and secondary sources. Primary sources relate to the data that were collected by researcher by going directly to the originator of the evidence. In this case, interviews were conducted with project managers of wind energy projects. Secondary sources on the other hand are information that are already published. In this case, we obtained secondary data from academic literature, industry documents published on the Internet and websites of related companies / organizations.

2.4.1 Interviews with Wind Farm Developers

The primary empirical component of this research is the interviews with wind farm developers.

Interview is a commonly used method of data collection in interpretivist research. For our research, semi-structured interviews were conducted wherein we use an interview guide or questionnaire when doing the interview. This way we are flexible to change the order of the questions according to the flow of the interview and to probe particular issues more as well. This approach allows flexibility for the interviewers to explore all areas of interest and gives opportunity for the interviewee to discuss specific issues that they think are particularly important. Our aim in the interview is to get insights into the thoughts and experience of the interviewees in relation to the broader research area.

The questions were formulated based on the authors’ discussion in reference to previous knowledge (including literature review and industry publications such as policies and best practice guidance) and grounded on the research objectives and question. To ensure reliability of the interview guide, we sought comments from our thesis supervisor who provided feedback on the clarity, appropriateness, and validity of the questions. Based on our supervisor’s feedback, we revised the questionnaire by deleting and/or rephrasing some questions. The questionnaire is enclosed as Appendix 1.

The interview with wind farm developers is aimed at obtaining information on three main themes. The first theme is to gain an understanding of who the respondent thinks are community stakeholders and identification methods. The second theme is the community consultation process involving the respondent’s recommendations of key principles, methods and practical examples. The third theme is to explore how important the respondent views community stakeholder management to be in the project context.

Our interviews were conducted either in person, via telephone or email. In securing respondents for interview, we first identified prospective wind farm development companies through the Internet.
search engine and wind energy associations with the appropriate email contact address and sent an email for introduction and briefly explaining the nature of the research. Due to initial unfavorable responses, we sought advice from our thesis supervisor who provided further information from relevant local press releases and also obtaining some other developers’ contact information from the Swedish Wind Energy Association. Clearly, interview relies on the availability and cooperation of respondents. Subsequently we changed our strategy following the advice of our supervisor and began with calling potential respondents directly. We sent the questionnaire to those who responded positively and expressed willingness to help in the research (both through either the earlier introductory email or initial telephone contact) for their perusal and confirmation of whether they would next opt for responding to the questions via telephone or email. One interview was conducted in person in Umeå University for reason of coincidence and convenience to both respondent and researchers. Please refer to Table 2 below for a list of the respondents we successfully interviewed. Note that those respondents preferring anonymity were respected, hence explaining the nature of the descriptions of positions only rather than names and some company names not indicated. When quoting or referring to the responses obtained from interviewees in our research findings, we make every effort to indicate the position, company and base country of each interviewee respectively.

Table 2: List of Interviewees

<table>
<thead>
<tr>
<th>No.</th>
<th>Position</th>
<th>Experience</th>
<th>Company / Project</th>
<th>Base country</th>
<th>Interview method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Manager</td>
<td>Since 2002</td>
<td>Svevind AB</td>
<td>Sweden</td>
<td>Face-to-face</td>
</tr>
<tr>
<td>2</td>
<td>Project Manager</td>
<td>Part owner, company started in 1990</td>
<td>Siral</td>
<td>Sweden</td>
<td>Telephone</td>
</tr>
<tr>
<td>3</td>
<td>Development Project Manager</td>
<td>Since 2002, currently manages 7 ongoing wind farm projects</td>
<td>RES Skandinavien</td>
<td>Sweden</td>
<td>Telephone</td>
</tr>
<tr>
<td>4</td>
<td>Project Leader</td>
<td>1 year, currently handling 3 projects in planning / pre-application stages</td>
<td>Wind farm developer company</td>
<td>Sweden</td>
<td>Telephone</td>
</tr>
<tr>
<td>5</td>
<td>Project Manager</td>
<td>4 months, replacing a colleague on parental leave</td>
<td>A large offshore wind farm</td>
<td>Sweden</td>
<td>E-mail</td>
</tr>
<tr>
<td>6</td>
<td>Director of Projects</td>
<td>3 years</td>
<td>Wind farm developer company</td>
<td>United Kingdom</td>
<td>E-mail</td>
</tr>
<tr>
<td>7</td>
<td>Environmental Engineer</td>
<td>1 year, involved in 15 projects, managing 5</td>
<td>Wind farm developer company</td>
<td>Sweden</td>
<td>E-mail</td>
</tr>
<tr>
<td>8</td>
<td>Planning &amp; Development Manager</td>
<td>18 months, managed 3-5 projects</td>
<td>Wind farm developer company</td>
<td>Australia</td>
<td>E-mail</td>
</tr>
</tbody>
</table>

We are aware of the biases in the interviews that might affect the quality of the data collected. Firstly, we only identified prospective respondents through matches obtained from our search in the Internet and also recommendations by the Swedish Wind Energy Association who our thesis supervisor assisted in contacting. Hence wind energy practitioners with no online presence or not
mentioned by the aforementioned association are excluded. Meanwhile, due to language and locality of where the research is conducted, we focused mainly on sources that provided information in English, mostly those originating from the United Kingdom (UK), United States (US), Australia and Sweden. There may also exist the common self-selecting bias in the sense that respondents who replied and agreed to the interview request represented only a very small sub-section of the entire population relevant to our research. In the Swedish context, the interviews were conducted in English because the researchers cannot communicate in Swedish. Though all respondents in Sweden are proficient in English, they could feel more comfortable in delivery and expression by using their native language. In addition, the researchers’ comprehension and line of questioning may constrain the responses of the interviewee. To lessen the possibility of bias throughout the interview, the researchers obtained general information about the company mainly from the Internet prior to interview so as to better understand the background of the interviewee. Further, the question guide that was provided to the respondents before the interview could have helped set the context of the interview and prepared them in answering the questions. We also recorded the face-to-face and telephone interviews after gaining their prior approval in order to ensure accuracy in interpreting the responses. After the interview, all recorded conversations were transcribed, analyzed and any further clarification needed is referred back to the interviewees by telephone or email. For those interviews where responses were made through email, we acknowledge the lost of flexibility to probe deeper into certain issues of interest and also restricted the amount of comments from the respondent. To counter these, the researchers discussed the responses received and made follow-up emails to enquire deeper into required points made in the first response. All related respondents subsequently accommodated to our follow-up questions, to our satisfaction. We also bear in mind the importance for accuracy of representation of each interviewee’s comments and will clearly distinguish between what is said and what we interpret or infer when presenting and discussing the research findings. Moreover the results will be indirectly validated as all interviewees have requested that a copy of the final thesis be sent to them upon successful submission and acceptance by the grading committee.

Our coverage (being the quantity of respondents) can certainly be increased given more time but the need for this is balanced with the sufficiency of data collected for the purpose of this research. Moreover, the data collection period trespassed on the year-end holiday period when many practitioners would be unavailable to facilitate our requests. We have taken this into account when planning our schedule and building our expectation and research strategy. Upon attainment of what we believe to be the sufficient number of respondents and corresponding feedback obtained in line with scope and requirements of our research aims, we ceased our interview requests and proceeded with compilation, analysis and discussion of the data.

2.4.2 Literature Review & Secondary Data Research

Search was undertaken for conducting the academic and practitioner literature review (Chapter 3) to form the general theoretical framework for research, and subsequently other more industry and research topic-specific secondary data sources including governmental policy documents, industry best practice guidance and case studies (Chapter 4). The vast secondary sources were selected based on the following limiting categories:

- Peer-reviewed literature on stakeholder analysis and management and the wind energy industry with focus on issues relating to wind energy acceptance, consideration of the local
community as stakeholders, and approaches during the planning process prior to permit application

- Publications of policy documents from governments or planning authorities and industry best practice guidance, mainly by wind energy associations around the world
- Company websites, news articles and other online information on actual wind farm development cases

Regulations and local policies (e.g. LPAs in the UK are required by law to prepare and impose policies set in their respective Statement of Community Involvement or SCI) set the minimum requirements that the developer must meet with regards to community involvement and consultation in order to be granted approval for the proposed project. The following policies, mainly for the UK, have been selected in our research (country of publication or origin indicated in brackets):

(i) The Office of the Deputy Prime Minister (ODPM)’s Community Involvement in Planning: The Government’s objectives (England)
(iii) ODPM’s Planning Policy Statement 22 Companion Guide (England)
(iv) Scottish Government’s Planning Advice Note PAN 81: Community Engagement (Scotland)
(v) Department of the Environment, Heritage and Local Government of Ireland’s Wind Farm Planning Guidelines (Republic of Ireland)

Besides these statutory requirements and both local and national policies, some countries with a relatively more mature industry of wind energy development have guidance from local wind energy associations with membership comprising of industry practitioners such as project developers, product manufacturers, utility companies, consultants, researchers and other relevant and interested parties. These associations’ role is to promote the growth of the industry while leveraging on information sharing, networking and addressing research areas and issues surrounding the industry. In line with their objectives, some of these associations have issued best practice guidelines for the development of wind energy projects based on consultation of their members.

The following noteworthy documents containing guidelines and recommendations for wind energy development were examined, primarily from the aspect of community stakeholder management in the planning or pre-application stage (country/continent of publication or origin indicated in brackets):

(i) British Wind Energy Association (BWEA) Best Practice Guidelines for Wind Energy Development (UK)
(ii) BWEA Best Practice Guidelines for Consultation for Offshore Wind Development (UK)
(iii) European Wind Energy Association (EWEA) Best Practice Guidelines for Wind Energy Development (Europe)
(iv) Australian Wind Energy Association (Auswind) Best Practice Guidelines for Implementation of Wind Energy Projects in Australia (Australia)
(v) The protocol for public engagement with proposed wind energy developments in England: a report for the Renewables Advisory Board and DTI (England)
(vii) Delivering Community Benefits from Wind Energy Development: A Toolkit - A report for the Renewables Advisory Board and DTI (UK)
(viii) 'Consulting communities: A renewable energy toolkit' by Hinshelwood, & McCallum for the DTI (UK)
(ix) 'Examining approaches to renewable consultation: Lessons from Awel Aman Tawe community wind farm project', by Hinshelwood, & McCallum (Wales/UK)
(x) Irish Wind Energy Association (IWEA) Wind Energy Development Best Practice Guidelines (Republic of Ireland) (Republic of Ireland)
(xi) National Wind Coordinating Committee (NWCC) Permitting of Wind Energy Facilities – A handbook (revised Aug 2002) (United States)

In addition, we are also led to the existing literature exemplifying actual cases of wind energy development projects through the review of relevant literature and the preceding secondary data sources. The selection of cases to present was influenced by both the projects’ publicity and some instances controversy, and also relevance to this research, often serving as support to a point being inferred from other data under analysis. Table 3 below lists the referred cases in our research:

Table 3: Referenced wind farm project cases

<table>
<thead>
<tr>
<th>England</th>
<th>Wales</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Clyde wind farm, South Lanarkshire (Airtricity)</td>
<td>(1) Awel Aman Tawe community wind farm, Mynydd Uchaf (Awel Aman Tawe)</td>
<td>(1) Addison wind farm, Washington County (FPL Energy)</td>
</tr>
<tr>
<td>(2) London Array offshore wind farm, Thames Estuary (Shell / E.ON)</td>
<td>(2) Afan Valley wind farm, near Glyncorrwg (Eco2)</td>
<td>(2) Cape Wind project, Nantucket Sound (Energy Management)</td>
</tr>
<tr>
<td>(3) Kentish Flats offshore wind farm (Elsam / Vattenfall)</td>
<td></td>
<td>(3) Horse Hollow wind farm Texas (FPL Energy)</td>
</tr>
<tr>
<td>(4) Scroby Sands offshore wind farm, Great Yarmouth (Powergen / E.ON)</td>
<td></td>
<td>(4) Long Island offshore wind park, off the south shore of Jones Beach (FPL Energy)</td>
</tr>
<tr>
<td>(5) Burton Wold wind farm, Kettering (Your Energy)</td>
<td></td>
<td>(5) Fenner wind farm, New York (Enel North America)</td>
</tr>
<tr>
<td>(6) Milton Keynes wind farm, Milton Keynes (Your Energy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) West Wight wind farm, Isle of Wight (Your Energy)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition, wind energy companies we incorporate in our research include E.ON (UK), FPL Energy (US) and Your Energy (UK).

In presenting any data from the above sources, we ensure that every effort is made to clearly refer and identify the specific resource.
We are aware of the possible limitations that may have occurred in our literature review and secondary research data search. First, by imposing only certain selection criteria to identify and extract information from the secondary data sources, other sources and aspects that may further or better contribute to the research may have been overlooked. Second, some documents are not publicly available due to propriety and confidentiality such as corporate and internal documents. There could also be more sensitive cases that can be very relevant to our research that may not be publicly available too. We are also limited in our search for literature and other secondary data sources based on the resources we have such as our University library, access to available electronic business and industry journal databases, and the Internet. Perhaps the most constraining element is our proficiency in English as the sole European language, which would undoubtedly limit the amount of data we can collect based on this method. However, we believe that the sources in English we have collected data from and utilized in our research represent a fair view of the research background, industry and topic adequate to the requirements, scope and level of this thesis.


3 LITERATURE REVIEW

In this chapter we review existing knowledge found in academic literature and also prescriptions from practitioner literature regarding the general background of our research topic. The areas primarily include understanding the background of the stakeholder concept, the stakeholder management process entailing identification and analysis, prioritization, and strategies. We then review the relevance of the community as stakeholders from a common organizational / project perspective, before emphasizing the rationality for wind energy, its relevance for this research and the issues of community stakeholders in such wind energy projects that provides the motivation and also justification for this research.

3.1 The Stakeholder Concept

The stakeholder concept can be traced back to the Stanford Research Institute (SRI)’s first use and definition of the word “stakeholder” back in 1963, as ‘those groups without whose support the organization would cease to exist’ (SRI, 1963 in Freeman, 1984:31). Since then the definition of stakeholder has grown in a myriad of interpretations and scope (see Mitchell et al, 1997:858 and Rowley, 1997 for numerous other definitions by various authors). While there is no universally accepted definition of stakeholder, the organization is required to identify its stakeholders in order to address a set of stakeholder expectations. The decision therefore about how to define stakeholder is consequential as it affects who and what counts (Mitchell et al, 1997). For this thesis, we adopt the broader definition of stakeholder as most precisely given by Freeman (1984:46), as ‘any group or individual who can affect or is affected by the achievement of the organization’s objectives’. This is basically in line definition used in PMBOK Guide (2000) which states that stakeholders are individuals and organizations that are actively involved in the project, or whose interests may be positively or negatively affected as a result of project execution or project completion. Thus they include both winners and losers, and those involved or excluded from decision-making processes (DFID, 1995).

Attention to the interests and well-being of those who can assist or hinder the achievement of the organization’s objectives is the central admonition of stakeholder theory (Phillips et al., 2003:481). Indeed, Cooper (2004:5) defines stakeholder concept as a pluralist conception of society where multiple factions are identified and their needs and relative welfare considered. Donaldson & Preston (1995) significantly contributed to understanding stakeholder theory by highlighting the three aspects of stakeholder theory, being descriptive (describes the corporation as a constellation of cooperative and competitive interests possessing intrinsic value), normative (stakeholders are identified by their interest in the affairs of the corporation and that the interests of all stakeholders have intrinsic value) and instrumental (connections between stakeholder management and the achievement of traditional corporate objectives such as profitability and growth). The authors conclude that stakeholder theory has a normative base and is managerial in the sense that it does not simply describe or predict but also recommends attitudes, structures and practices that constitute stakeholder management (Donaldson & Preston, 1995). In alignment, Stoney & Winstanley (2002 in Cooper, 2004:3) claim that there are ‘intrinsic’ and ‘instrumental’ reasons for adopting a stakeholder approach. Cooper (2004) explains this by highlighting those who see the stakeholder concept as a way to improve performance (usually measured financially) and then those who it as an ethical approach to management, corresponding to the instrumental and normative aspects respectively as propounded by Donaldson & Preston (1995).
One of the earliest stakeholder theorists, Ansoff (1965, in Flagestad, 2001:6-14) divided stakeholders into two groups, primary and secondary, depending on how important they were for the core economic performance of the company. Evidently the broader view of stakeholder theory has pushed the scope out of the boundaries of the firm and its economic performance to also include what Post et al. (2002) call the “social-political arena”. Local communities and citizens of the particular host environment are the main constituents in this arena. Depending on the nature of the business or project, this stakeholder group may more often move out of their conventionally assumed secondary status to primary, especially in the current times of heightened socio-political awareness and activism.

PMBOK Guide (2000) stresses the importance for project management team to identify the stakeholders, determine their requirements, and then manage and influence those requirements to ensure a successful project. The traditional view of measuring project success is the so-called golden triangle of time, cost and quality. Recent studies have expanded project success criteria to include stakeholders’ satisfaction, among others (Wang & Huang, 2006). Bryson (2004) agrees by saying that attention to stakeholders is important throughout the strategic management process, as success of the project depends on satisfying key stakeholders.

There are varying degrees of how stakeholder management is pursued by organizations. Freeman (1984:73) refers to this as the Stakeholder Management Capability, comprising of elements such as understanding or conceptual map of stakeholders, the process for dealing with these stakeholders, and the transactions used to carry out the achievement of organizational (or project in this context) purpose with stakeholders. This capability may reside at one of three levels of increasing sophistication (Freeman, 1984 in Carroll & Buchholtz, 2000):

- **Level 1: Rational level** – stakeholders are identified together with their power, interest and urgency (as per Mitchell et al., 1997);
- **Level 2: Process level** – goes on from Level 1 to actually develop and implement processes for environment scanning and receiving information from stakeholders which is then used for decision-making and strategic management purposes.
- **Level 3: Transactional level** – refers to the extent to which managers actually engage in transaction and relationships with stakeholders, encompassing communication, responding and spending resources on stakeholder transactions.

On a project level, many would be operating on the process level but there is evidence that not all may progress into the action-oriented transactional level, which would be advisable and necessary especially for large, multi-stakeholder projects such as construction. The Botnia cellulose pulp mill project in Uruguay as aforementioned as our initial inspiration for this research is an example of an external stakeholder management process that failed in the transactional level as its communication efforts were ineffective and the project did not adequately account for certain community and environmental groups’ concerns before starting, leading to the disruptions and inconveniences it faces up until now with regards to problems from all political, social, environmental and economic arenas.

The above may all sound logical but straightforward it is definitely not. This is due to the diverse characteristics and attributes between different stakeholder groups. What makes stakeholder management more ambiguous and complex is this heterogeneity of stakeholders, that leads to the
challenges of stakeholder identification, analysis, prioritization and overall management. The following sections address these respective areas.

3.2 Heterogeneity of stakeholders

Stakeholders will have different levels of interest, different motivations and different levels of power and influence (World Bank, 2007b). This heterogeneous characteristic inherent across stakeholders of a given organization or project is one of the main (if not the main) challenge to the stakeholder management process. The UK Department for International Development or DFID (1995) notes that projects fail because the various stakeholders have different and conflicting expectations about their roles. Even within a seemingly homogenous group of stakeholders, there can exist subtle differences or idiosyncrasies among the constituents that can manifest into unique issues to the project depending on time, project phases or certain triggers. DFID (1995) cautions that although stakeholders can be generally categorized into groups of people who share a common interest, there are sub-categories of stakeholders with differing interests within, which may or may not be prepared to subsume in the general collective interest. Despite the same locality, communities can be visualized as lots of overlapping clusters of groups of varying levels of interaction, interests and motivations, forming a web of different boundaries (Hinshelwood & McCallum, 2001:15).

To exacerbate matters, the heterogeneity increases intrinsically as well when considering the dynamics of stakeholders. The temporal and dynamic nature of stakeholder analysis has been highlighted by Mitchell et al (1997). At any stage in the project cycle, new stakeholders may arise or different stakeholders may wish to participate in different ways, depending on the discrete project activity, milestones and outcomes (DFID, 1995). Concerns and priorities change over time; new classes and configurations of stakeholders appear in response to changing circumstances (Post et al., 2002:23-24). The stakeholder management framework presented in the next section acknowledges the process as cyclical, periodical and continuous.

3.3 Stakeholder Management Framework

By not effectively identifying and managing the hidden and oftentimes conflicting agendas of project stakeholders early in the project management process, many projects are exposed to suffer costly impediments and even failures. This highlights the need for a general framework on which managers pursuing stakeholder management can be guided on. Sutterfield et al (2006) offer a 9-steps continuous and dynamic project stakeholder management (PSM) strategy framework to aid project managers in managing project stakeholders and their various agendas, as per Figure 1. Please refer to Appendix 2 for more details on each step.
The use of this strategic PSM framework will enable project managers to assess each project, each project stakeholder, and the situational factors to minimize the potential conflicts with the various project stakeholders while capitalizing on the strengths of the project team and the opportunities presented by the various project stakeholders (Sutterfield et al., 2006). Using this framework as the basis for the stakeholder management process, we make the following segregation:

Steps 1-3: Stakeholder identification and analysis
Step 4: Stakeholder prioritization
Steps 5-9: Stakeholder strategies (formulation, execution and evaluation)

These stages will be discussed in more detail below.

For substantiation, some other frameworks have been reviewed as well. Freeman (1984) proposes a stakeholder audit process to create and certify a roadmap of the external environment of the firm. It consists of four main strategic tasks: stating the mission (includes stakeholder mapping and stakes, and subsequently constructing a stakeholder/business success matrix with scores assigned), identifying stakeholder issues and concerns (by building a stakeholders/issues matrix with scores assigned), assessing strategies for stakeholders (through a stakeholder strategy matrix) and adjusting to stakeholder priorities (including loops back to adjusting mission or particular programs).

We find similarities of the concepts in Sutherfield et al. (2006)’s framework to those put forward by Freeman (1984) and Bailur (2006), and opt to adopt Sutherfield et al.’s for this thesis’ purpose as it is more detailed, holistic and systematic while the reiteration from the cyclical loop gives the model higher rigor and practical value, since stakeholder management is a dynamic and continuous process throughout the project life cycle as mentioned earlier. While it is recommended that stakeholder analysis be conducted always at the beginning of a project, even if it is a quick list of stakeholders and their interests, it should also be repeated at intervals throughout the project cycle considering the dynamics of stakeholders as stated earlier above (DFID, 1995).

3.3.1 Stakeholder Identification and Analysis

Identifying all stakeholders relevant to the project is the first and arguably most important but unwarily difficult step towards stakeholder management to carry out. On the generic level, stakeholders can be categorized as primary or secondary (Ansoff, 1965, in Flagestad, 2001:6-14) and internal or external (Freeman, 1984). Stakeholder analysis is the identification of a project's key stakeholders, an assessment of their interests, their relationships and also the ways in which these interests affect project riskiness and viability (DFID, 1995). Stakeholder analysis is the first diagnostic tool and step in the Asian Development Bank (ADB)’s design and monitoring framework (DMF) approach to structure the project planning process. It helps clarify which people and organizations are directly or indirectly involved in or affected, and identify which groups are supportive and which groups may oppose the project strategy and subsequently obstruct project implementation. This provides a sound basis for taking appropriate actions to gain the support of opponents and to get key supporters more involved (ADB, 2007:5-6).

Bryson (2004:47) considers education of stakeholder identification and analysis techniques as limited, and practitioners similarly appear to have a more limited knowledge of stakeholder identification and analysis techniques than they should. Due to this, Bryson (2004) prescribes and describes an array of fifteen stakeholder identification and analysis techniques grouped into four distinct categories based on the purpose for stakeholder analysis, as different techniques will be needed for different purposes. Although catering to the policy setting in the public sector, we find the recommendations applicable for project planning and implementation as well. Table 3 overleaf summarizes the four purposes and suggested techniques correspondingly.
### Table 3: Purpose for stakeholder analysis & applicable techniques

<table>
<thead>
<tr>
<th>Purpose for stakeholder analysis</th>
<th>Stakeholder identification and analysis technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizing participation</td>
<td>(1) A process for choosing stakeholder participants (sieving from small planning group to full group of stakeholders through common techniques as below, and Mitchell et al (1997)’s power, interest and urgency typology as well); (2) the basic stakeholder analysis technique (brainstorm list of stakeholders and identify level of satisfaction); (3) the power versus interest grids (see Figure 2); (4) stakeholder influence diagram (connect stakeholders mapped in power/interest matrix); and (5) participation planning matrix (inform/consult/involve/collaborate/empower)</td>
</tr>
<tr>
<td>Creating ideas for strategic interventions</td>
<td>(6) Bases of power and directions of interest diagrams (to identify commonalities and provide background info); (7) finding the common good and the structure of a winning argument (derives from (6); a map that shows common themes or “supra-interests” and their relationships) (8) tapping individual stakeholder interests to pursue the common good (linking individual interests from (6) to “supra-interests”); (9) stakeholder-issue interrelationship diagrams (see Appendix 5); (10) problem-frame stakeholder maps (see Appendix 6); and (11) ethical analysis grids (a scorecard on a list of factors to fulfill deontological and teleological obligations)</td>
</tr>
<tr>
<td>Proposal development review and adoption</td>
<td>(12) Stakeholder support versus opposition grids (developing specific proposals or tactics against (10)), (13) stakeholder role plays (planning group workshops based on (10) or (12)); and (14) policy attractiveness versus stakeholder capability or capacity grids</td>
</tr>
<tr>
<td>Policy implementation</td>
<td>(15) Policy implementation strategy development grid (draws on results from above techniques to prepare action plans for both supporting and opposing stakeholders as identified and characterized)</td>
</tr>
</tbody>
</table>

**Source:** Bryson (2004)

Bryson (2004) notes that such an array is offered as there is not a single technique that can resemble the do-all, end-all for effective stakeholder management. The purpose of stakeholder analyses is to better help or facilitate managers to think, plan and act strategically with regards to managing stakeholders, and is not meant to directly solve stakeholder issues. Stakeholder analyses must be undertaken skillfully and thoughtfully, with a willingness to learn and revise along the way (Lynn, 1996; and Bardach, 1998 in Bryson, 2004:46).
Due to the nature of their projects, developmental agencies such as the World Bank, DFID and the Asian Development Bank have established guidelines for identifying, analyzing and managing community-based stakeholders, since the local communities resemble the primary stakeholders in these developmental projects. Hence it is worthwhile to consider some of their practices in this aspect given its likely relevance to how large construction projects should account for their community-based stakeholders.

DFID (1995)’s stakeholder analysis framework prescribes lesser techniques but higher focus on brainstorming and facilitated discussions between stakeholders themselves. It involves drawing up a ‘stakeholder table’ (see Appendix 4 for an example), assessing each stakeholder's importance to project success and their relative power/influence (mapping) and identifying risks and assumptions that will affect project design and success. The most crucial aspect in this process is completing the stakeholder table as rigorously as possible, which includes identifying stakeholders, their interests, impact of those interests on the project and prioritization for meeting each stakeholder’s interests. This is done usually through brainstorming in a series of facilitated workshop environment comprising of initially identified key stakeholders (ADB, 2007). The overall analysis can be more rigorous and substantial if some of the techniques such as bivariate mappings and stakeholder role-plays as highlighted by Bryson (2004) above can be integrated in the process.

DFID (1995) cites one of the key issues for partnership with primary stakeholders as being their lack of political power or institutional means for their views to be taken into account. Thus the principal output of a project's first phase may be the development of representative, decision-making institutions, such as user groups or village or neighborhood committees in order to receive, analyze and respond to communal concerns regarding the project.

However, it is important to realize that interests of all types of stakeholders may be difficult to define, especially if they are ‘hidden’, or in contradiction with the openly stated aims of the organizations or groups involved (DFID, 1995). Moreover, each stakeholder can have several interests. The World Bank (2007a) suggests key informant interviews and group workshops, and secondary political economy analysis in the academic and journalistic media as sources of information for identifying stakeholder interests. Subsequently, stakeholders are analyzed using a forcefield analysis with quantification of the force of identified stakeholders’ respective opposition or support, by multiplying a score based on a standardized scale that is assigned to the power, and the degree of opposition or support to the project (World Bank, 2007c). Through this analysis, supporting and opposing stakeholders are placed graphically on two opposing sides and can be easily discerned by project managers and other stakeholders for a better understanding of the project environment. Meanwhile, DFID (1995) publishes a checklist for drawing out stakeholder interests by asking several key questions, including: what are the stakeholder's expectations of the project; what benefits are there likely to be for the stakeholders; what other interests does the stakeholder have which may conflict with the project; and how does the stakeholder regard others in the list; among others.

DFID (1995) also suggests that persons with ‘on-the-ground’ experience can best define the interests of primary stakeholders. Thus social analyses and community concerns and sentiments cannot be fully collected and comprehended from the armchair of the project management office. It entails mobilizing skilled, experienced and informed staff, expert consultants, insiders or the project manager him/herself to the host environment of the project in order to better assess and understand the situation.
3.3.2 Stakeholder Prioritization

The priority of addressing a myriad of stakeholder interests which may even conflict the group’s, between each other or against the project become the next step in the stakeholder management framework after stakeholder identification and analysis. Barney (1997 in Flagstad, 2001) accentuates the necessity to decide which stakeholder interest should be emphasized over other stakeholders. The need for prioritization is emphasized as the development of stakeholder management strategy and resource allocation decisions are guided by the outcome, being stakeholder priorities. Freeman (1984) stresses the importance of an explicit process of fitting the appropriate and roughly proportionate of strategic budget or resource allocation (that is separate from the operational budget) according to the degree of importance of stakeholders. This has what Emshoff and Saaty (1978 in Freeman, 1984:159) term as “prioritized hierarchies”. Freeman (1984) further proposes for overspending on attention and resources beyond that warranted by considerations of efficiency, to those groups who are critical for the long term success of the firm, in order to achieve high stakeholder management capability.

Stakeholder mapping techniques, usually based on two variables on a two-dimensional grid such as the power/interest matrix, or on stakeholder attributes such as Mitchell et al (1997)’s power, legitimacy and urgency typology of stakeholders, can help managers determine the priority of identified stakeholders. According to Johnson et al (2006:181), stakeholder mapping identifies stakeholder expectations and power and helps in understanding political priorities. The authors propose a power/interest matrix (Figure 2) for classifying stakeholders in relation to the power they hold and the extent to which they are likely to show interest in supporting or opposing a particular strategy, and thus guides the general managerial approach required to manage each.

![Figure 2: Power/interest matrix](Source: Johnson et al., 2006:181)

Alongside the power/interest matrix, Newcombe (2003) proposes a power/predictability matrix (Figure 3) for stakeholder mapping, by which the onus is on project managers to consider repositioning certain stakeholders or pursue efforts to maintain their respective power, predictability and interest in order to ensure the successful implementation of project strategies.
Meanwhile, drawing on the works of Nutt & Backoff (1992) and Bryson (1995), Gardiner (2005:121) presents the position/importance matrix (Figure 4), categorizing stakeholders according to their level of support or opposition to the project and their relative importance to the project sponsor.

### Figure 3: Power/predictability matrix

<table>
<thead>
<tr>
<th></th>
<th>High Predictability</th>
<th>Low Predictability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Power</td>
<td>A Few problems</td>
<td>B Unpredictable but manageable</td>
</tr>
<tr>
<td>High Power</td>
<td>C Powerful but predictable</td>
<td>D Greatest danger of opportunity</td>
</tr>
</tbody>
</table>

(Source: Newcombe, 2003)

Note that there are many other variants of stakeholder mapping matrices depending on the purpose and understanding that managers seek to gain. This paper will not try to showcase all but rather highlight some basic and common matrices for managers to generally grasp the function of the technique, towards encouraging their development or customization of further matrices suiting their respective purposes.

### Figure 4: Position/importance matrix

<table>
<thead>
<tr>
<th>Importance</th>
<th>Least</th>
<th>Most</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oppose</td>
<td>A Problematic</td>
<td>B Antagonistic</td>
</tr>
<tr>
<td>Position on project</td>
<td>C Low priority</td>
<td>D Supporter</td>
</tr>
</tbody>
</table>

(Source: Nutt & Backoff, 1992; and Bryson, 1995 in Gardiner, 2005:121)

3.3.3 **Stakeholder Strategies**

After identification, analysis and prioritization, the project team now knows who are the stakeholders, their groupings and characteristics, and also who among them to focus on more or first. The next logical step then is to formulate strategies in order to best manage these stakeholders.
and this can range from leveraging on their support, quelling the threat of their opposition or simply maintaining their optimal position with regards to the project. As Freeman (1984:179) advises organizations to proactively anticipate stakeholder concerns and try to influence the stakeholder environment, it is hereby assumed that stakeholders can be consciously and strategically influenced by appropriate managerial strategies or approaches. Thus the urgency then weighs on formulating and implementing the right strategies to manage each stakeholder that has been identified and analyzed in prior stages, towards the facilitation of increasing the chances of project success or at least minimal project disruption from stakeholder issues.

An overall stakeholder strategy formulation framework is proposed by Freeman (1984:131) in Figure 5.

**Figure 5: Stakeholder Strategy Formulation Process**

Through stakeholder identification and analysis techniques the first three activities at the top of the process would have been completed, leading to the formulation of generic strategies for different stakeholder groups. We find two separate streams of classic literature that propose almost the same matrix for developing specific stakeholder strategies based on stakeholder’s cooperative or threat potential, being those of Freeman (1984) and Savage et al. (1991). The two similar matrices are integrated as one in Figure 6, showing four generic stakeholder strategies that depend on where respective stakeholders plot on the bivariate matrix.
For more explanation on each generic stakeholder strategy, please refer to Appendix 7.

After individual strategies are developed, it is necessary to look at the “big picture” of all these strategies at this stage in order to ensure overall coherence and direction of the stakeholder management process with project objectives. As making the situation “win-win” for one stakeholder group can make it “win-lose” for another, it is important to integrate the strategic programs for multiple stakeholders by either discerning common thread among stakeholder groups by recognizing commonalities in behaviour and objectives, or searching for common threads among the strategic programs developed for individual groups (Freeman, 1984).

It is also useful to understand how stakeholders may act in particular circumstances in order to formulate strategies for managing them. Mattingly & Greening (2002) present a pathway of influence/outcome orientation matrix to classify four styles of stakeholder action and seek to predict stakeholder behavior with the joint consideration of stakeholder salience, involving power, legitimacy and urgency as conceptualized by Mitchell et al. (1997). Depending on whether stakeholder’s influence is direct or indirect and whether an integrative (maximize joint outcomes) or distributive (win-lose) orientation is applicable, the four action styles identified are coercion, collaboration, subversion and mediation (see Figure 7). Please further refer to Appendix 8 for details on each style and how salience relates. Mattingly & Greening (2002) go on to propose that the firm’s response can be similarly described by this same model and based on the reciprocity principle, the stakeholder group will tend to respond to the firm in the same way that the firm responded to the stakeholder’s initial action. Understanding stakeholder behavior and this reciprocity principle can greatly help guide managers to anticipate stakeholder action and formulate appropriate strategies in response.

(Source: Freeman, 1984:143; and Savage et al., 1991:65)
Having identified the strategy to adopt for managing certain groups of stakeholders is not the complete process. There forth lies the challenge of executing the strategy, which entails actual communication, transactions and meetings with the stakeholders. Successful transactions with stakeholders are built on understanding the “legitimacy” of the stakeholder and having processes to routinely surface their concerns. However the transactions themselves, must be executed by managers who understand the “currencies” in which the stakeholders are paid (Freeman, 1984:73). According to Freeman (1984), transaction processes, or ways of interaction with stakeholders, can typically be listed as: ignore, the PR approach (incites stakeholder groups to action), implicit negotiation (take stakeholder concerns into account upfront to mitigate objections) and explicit negotiation (two-way communication processes with stakeholders). With strategy in hand and mind, dealing with community-based stakeholders such as local residents and environmental groups would involve a mixture of the latter three. As earlier commented, ignoring stakeholder concerns will only lead to potential trouble and failure for the project. Attention should also be given to the skills and values of those managers who are engaging different stakeholder groups, by undertaking a process of matching managers with the stakeholders for which they are responsible (Freeman, 1984).

As noted by DFID (1995), stakeholder participation should reduce the risk of failure but it is not a guarantee of project success. Careful consideration should be given to venue, timing, organization, and likely participants before a meeting takes place. The venue and timing can influence who is able and willing to attend (DFID, 2005). Setting and turf can be intimidating if used incorrectly, and they can be destructive of meaningful negotiation (Freeman, 1984:169). To ensure effective stakeholder participation, a good communication strategy with clarity regarding the message, the audience, mechanisms for stakeholders to see how they can feed their views into policy options and carefully designed products for different audiences is required (DFID, 2005).

Meanwhile, Gardiner (2005:123) suggests a transition from stakeholder management that emphasizes on identifying, monitoring and responding to stakeholders, to stakeholder collaboration that focuses on building stakeholder relationships that are reciprocal, evolving and mutually defined, and that are a source of opportunity and competitive advantage. This is in line with Wheeler & Sillanpaa (1997 in Carroll & Buchholtz, 2000:87)’s concept of “stakeholder corporation” that strives on stakeholder inclusiveness, which involves the development of loyal relationships with stakeholders and cultivating support of all who may influence the organization’s importance. We believe such transition and strategy are applicable for firms with a long business

---

**Figure 7: Styles of stakeholder action**

<table>
<thead>
<tr>
<th>Pathway of influence</th>
<th>Outcome orientation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Distributive</td>
<td>Intergrative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COERCION</td>
<td>COLLABORATION</td>
<td></td>
</tr>
<tr>
<td>Indirect</td>
<td>SUBVERSION</td>
<td>MEDIATION</td>
<td></td>
</tr>
</tbody>
</table>

*Source: Mattingly & Greening (2002)*
history and relationship with its numerous stakeholders. For projects, the identification, understanding and strategic management of stakeholders through appropriate strategies in line with meeting overall project objectives remain most pertinent given the relatively short life cycle, nature and operating environment of projects.

3.4 Relevance of Community as Stakeholders

As earlier emphasized, this thesis seeks to focus on community-based stakeholders with regards to large infrastructural construction projects, mainly due to some of the highlighted issues that can arise from this group of stakeholders. Being external and indirect to the organization or project, the local community and similar sub-groups such as environmentalists represent a group of stakeholders that can be assumed to be irrelevant to project implementation and success, but in practice often prove not to be. They have been neglected not only in practice (as exemplified to be at the expense of the undertaking) but in theory as well. Phillips et al. (2003) highlight the scant literature about the role of “community” as stakeholder despite its high controversy.

However, we still managed to come across some literatures that support the importance of the community as stakeholder to firms and projects. Post et al. (2002) credits Penrose (1959) for formularizing the “resource-based view” in management literature, according to which stakeholders are identified within the internal sphere of the firm (e.g. investors, employees and customers). The authors then cite Porter (1980) for introducing the “industry-structure view” which correspondingly enlarged the sphere of stakeholders to encompass suppliers, alliances and regulatory authorities as well, among others, and subsequently point out the shortfall of each before putting forth the “stakeholder view” which embraces both views while taking into account local communities and citizens as stakeholders in a social-political arena. This latter view recognizes the existence of critical stakeholders in a firm (or project)’s resource base, industry structure, and social and political setting.

Mitchell et al. (1997) introduced the term of stakeholder salience, being the degree to which managers give priority to competing stakeholder claims based on managers’ perception of the stakeholder attributes of power, legitimacy and urgency. Based on these three attributes, Mitchell et al. (1997) identified 8 stakeholder groups (see Appendix 9). Local residents and environmental activists are grouped as dependent stakeholders with urgent legitimate claims but may become definitive if they gain power through immense support, increase in numbers or allying with a dominating stakeholder such as the municipality or government. DFID (1995) notes that sometimes these primary stakeholders, who believe their interests or livelihood is threatened by the project outcome, may win the support of secondary stakeholders, such as NGOs, media or a government representative. Worse, they can turn dangerous if they resort to illegitimate actions such as strikes and sabotage. Another classification of stakeholders is that by Clarkson (1994 in Cooper, 2004) who distinguished voluntary and involuntary stakeholders. Local communities who did not choose nor can they easily withdraw from the relationship represent a group of involuntary stakeholders who would with high probability be given low priority as they have no power or urgency following Mitchell et al. (1997)’s stakeholder salience model. However, a normative approach to stakeholder management imposes a ‘moral obligation to minimize the risks and potential harm these involuntary stakeholders face, and to internalize any potential costs such risks may incur’ (Cooper, 2004:40).
Post et al. (2002) refer to a “social license to operate” that is granted by local communities and citizens as stakeholders. In opposing the controversial Botnia pulp mill in Uruguay, Taillant (2007) similarly mentions the lack of "social building permit" by the developer in the area, being the approval of the people. This informal license draws importance to the local community as stakeholders to a firm or project before it can operate towards meeting its objectives. Gaining this approval or “license” from the community in particular to the proximity of where a project is to operate is vital for subsequent smooth project implementation, but involves the undertaking of many intricate and subjective managerial and ‘relational’ undertakings. We believe that these steps can be taken at a more preliminary stage prior to project execution given a systematic and rigorous stakeholder management approach or process is adopted. We foresee that through the course of our research, there will be opportunities to gain further insight and validation of this notion from practice.

According to a report published by the Centre for Sustainable Energy in the UK, research often distinguishes between community of locality (based on a geographical location) and community of interest (i.e. with a shared outlook with regard to faith, politics, social interaction, ethnicity or common interests). There can therefore clearly be communities of interest within communities of locality (Centre for Sustainable Energy et al., 2007b:4). For this thesis we focus on communities of locality, with attention directed to sub-communities of interest as well within the locality, such as local environmental activist groups. We consider environmentalists (including animal welfare groups) as being a subset of community-based stakeholders due to their nature, composition and influence. Wheeler & Sillanpaa (1997 in Cooper, 2004) recognize and categorize them as secondary non-social stakeholders. Environmental groups have exhibited their ability to move governments, businesses and publics in the direction of environmental responsibility through a host of activities, including demonstrations, boycotts, public education, lobbying and research. Decisions to avoid engaging in cooperative negotiations with environmental groups may risk involvement in unproductive adversarial relationships with these organizations and their dedicated constituencies (Carroll & Buchholtz, 2000). Activist groups can both cause higher public relation and other expenses in addition to the “opportunity costs” associated with management’s time and attention; but these groups can also be helpful to the project by enabling the identification of legitimate issues and responses to them in order to improve its performance and reputation (Post et al., 2002). As Wood (1994 in Flagestad, 2001) also notes, local interest stakeholders as allies can strongly support a company whereas local interests as adversaries may create serious problems for company management. In an instrumental manner, Carroll & Buchholtz (2000) state that there are also motivations for businesses to be responsive to community needs deriving from self-interest or self-preservation due to investments made in the area, direct or indirect benefits such as infrastructural support services, and reputation and image of the organization.

Industry-specific literature also lends credence to the importance of the community to be considered as a key stakeholder. In terms of construction projects, the emergence of the concept of project ‘stakeholders’ also extends the traditional definitions of the client to include parties such as end users and the community at large (Newcombe, 2003). Meanwhile, Whyte (2000 in Bailur, 2006) identifies community as one of the stakeholder groups for telecenter projects. In the context of developmental projects, DFID (1995) advises that those directly affected, for example people living on the site of a hydroelectric dam should be at the very least consulted about the design of the resettlement program.

Organizations can also take general approaches to create positive impacts and relationships with communities such as supporting volunteerism of managers and employees in community action
programs, and engaging in corporate philanthropy (Carroll & Buchholtz, 2000). However this approach may not fit projects as well due to the temporary nature of projects. Conscious and proactive stakeholder management strategies remain most practical for projects in addressing stakeholder-related considerations surrounding the project.

3.5 The Perspective of Wind Energy Projects

Wind energy has become a sound proposition for renewable or “clean” energy generation as other sources have started to reveal some apparent weaknesses: solar power is much more expensive in comparison (Hertzog, 2001 in Kempton et al., 2005), the environmental impact of large dams generating hydroelectric power, the low capacity of geothermal or tidal power, and others which are still undeveloped in their technologies, economics, and/or understanding their environmental impacts (Kempton et al, 2005). According to Kempton et al. (2005:122), the short answer to “Why wind?” is: the technology is mature, reliable generators are available, it is already cost-competitive; it produces essentially no pollution or greenhouse gases, and it is a very large resource. Wind energy developments, especially on-shore, are amongst the most technically proven and commercially viable renewable energy technologies and its prospect can be considered tremendous over the coming years (Centre for Sustainable Energy et al., 2007b). Wind energy facilities have also been reported to create more long-term employment at the local level than other power sources (Kempton et al., 2005:122).

Technological development and increased demand have affected the wind power industry which is currently one of the fastest growing industries in the world (Rönnborg, 2006:34). At the end of 2005, the 2010 target set by the EC of 40,000MW installed wind power capacity has been surpassed five years in advance. The 40,504 MW installed in the EU at the end of 2005 will, in an average wind year, produce some 83 TWh of electricity, equal to 2.8% of EU electricity consumption in 2004 (EWEA, 2006). In a White Paper on renewable energy released by the EC, wind energy have been identified as the source of renewable energy warranting the highest investment and increase in capacity towards the targeted 12% total renewable energy share in the EU, due to its economic and technological viability (European Commission, 1997). This push for wind is also estimated to result in the highest reduction in total fuel costs and CO2 emissions relative to other endorsed renewable energy sources (see Appendix 10 for overview). The EC now expects a total 70,000MW wind power capacity to be installed by 2010 (European Commission, 2007).

Following suit, the initiatives in some specific countries are no less intense. For example, the UK Government has set a target that 10% of UK electricity production should be met from renewable sources by 2010 and further aspiring to increase to 20% by 2020. A key support mechanism to help deliver this target is the Renewables Obligation, which came into force in April 2002 and which will remain in place until 2027. This is an obligation the Government has placed on electricity suppliers that a certain percentage of their electricity supply each year should come from renewable sources. In 2005/06 this percentage was 5.5% and it will increase to 15.4% by 2015 (Centre for Sustainable Energy et al., 2007a:24).

In line with the current state of immense support and persuasive rationalities for wind power as an alternative and renewable energy source, we intend to examine how external community-based stakeholders are considered and managed in practice, from the perspective of wind energy projects.
that encompass construction of tall and possibly obstructive wind turbines over both acres of land and also vast offshore sea locations.

As an example of how the pre-application stages of a wind farm development project may be, Appendix 11 shows the project phases of an offshore wind project before execution, as illustrated by Rönnborg (2006) for the proposed wind project at Fladen, Sweden.

### 3.6 The Hot Air From Community Based Stakeholders On Wind Energy Projects

Despite its benefits and advocates, the realization of any wind power project is a hazardous and uncertain activity and entails the interaction between multitudes of different actors (Rönnborg, 2006:11). It is not well recognized that achieving successful implementation of renewable energy projects needs the acceptance of the local community (Broome, 2000 in Hinshelwood & McCallum, 2001:13). This is in spite of the claim by Hinshelwood & McCallum (2001:89) that greater emphasis on community involvement at all levels in the development of renewable energy represents a strategic move and is both ethically important and cost-effective in the long run. While the earlier mentioned classic definition of stakeholders by Freeman (1984:46) remain applicable and overarching to this thesis, the relationship between a wind farm project and its community based stakeholders can further be narrowed by the definitions of Evans and Freeman (1988 in Mitchell et al, 1997:861), being a moral claim since stakeholders ‘benefit or are harmed by, and whose rights are violated or respected by, corporate actions’, and also more generally by Savage et al. (1991 in Mitchell et al., 1997:862) being merely having ‘an interest in the actions of an organization and have the ability to influence it’. Whyte (2000 in Bailur, 2006) lists the following constituents in the community stakeholders group: civic authorities and leaders, institutions (police, hospital, schools, etc.), business associations, chambers of commerce, community action groups and NGOs, sectoral interests (students, women, teachers, etc.) and individuals. While we believe these sub-groups to be representative of communal stakeholders for wind energy projects as well, one distinct and crucially important sectoral group should be added, being landowners. Landowners’ approval to conduct environmental and feasibility studies and subsequently use their land for erecting wind turbines is a prerequisite to such projects. Usually compensation varying from a percentage of sales of electricity produced to a fixed-fee lease agreement would be required by owners to agree to wind energy projects to be implemented on their land (Smith, 2004). How and when such payments to landowners are appropriate is subject to debate as well (Kempton et al., 2005).

Local community or residents (including landowners) and environmental groups resemble the most common groups of stakeholders having no direct economic or political motivations but rather more of environmental and social concerns regarding wind power projects. Public acceptance of wind energy has been found to be high in many European countries including Sweden (e.g. Dudleston, 2000 in Ek, 2005a; Ek, 2005a; Krohn & Damborg, 1999 in Ek, 2005a). However, this general acceptance does not seem to be valid when it comes to actual local projects due to the occurrence of local resistance (Ek, 2005b). Though the ‘Not In My Backyard’ (NIMBY) syndrome in this context, of people’s opposing behavior to wind turbines siting in their vicinities though being generally in favor of wind power, has been cited as the source of local resistance, Wolsink (2000 in Ek, 2005a) claims that it is at most a secondary issue to the main reason, being institutional factors such as opposition against the electricity utility, energy policy or the project process rather than the wind turbines or energy in itself. If all opposition is labeled as NIMBY protests, the multitude of
underlying motivations is missed and an opportunity to learn about the problems that anger people is lost (Pendall, 1999 in Olander & Hansson, 2006). Ek (2005a) also found no support for the NIMBY hypothesis in a survey involving 1,000 Swedish households. Following this finding, Ek (2005a) recommends investments in institutional capital in the form of promoting a more collaborative approach with the community (such as early involvement of local residents in the planning and implementation stages of projects) as the resolution for reducing local resistance while boosting the rate of installed wind power capacity. We will seek to use data from our research (in the later part of this thesis) to to some degree validate this recommendation.

A more extreme variation of NIMBY is identified by Markley (2002 in Berg, 2003) as BANANA, meaning “build absolutely nothing anywhere near anything”. BANANAs are opposition groups with no intention of considering any factual information and is simply against the development. Furthermore, opposition groups no longer limit their actions to a project in their community, but extend their activities in support in other regions in order to protect valued natural and cultural heritage sites (Berg, 2003). The coupling of such disruptive behavior and the blurring of community boundaries can result in many additional problems for project managers to face, not limited to just wind energy projects. Satisfying all needs and concerns of stakeholders is an enormous task, as Weller (1998 in Berg, 2003) likewise argues that influencing all opposing stakeholders is not feasible and recommends focusing on those parties whose attitudes can be most efficiently changed. Although there may be little solutions to eliminate the BANANA threat, it is still worth identifying such groups, anticipate their actions and formulating strategies to mitigate their impact on other stakeholders and to the project.

The permitting of sites for new wind energy projects near urban areas and/or known environmentally sensitive areas has been reported to be very challenging, particularly due to the aesthetic impact of large wind turbines on the landscape (Smith, 2004). The most common reason cited for rejecting new wind turbine proposals is “reduction in the value of existing landscapes” (Hoppe-Klipper & Steinhauser, 2002 in Kempton et al., 2005:123). Public reaction to landscape obstruction is based on cultural influences and individual preferences (Berg, 2003). To worsen matters, many wind industry experts did not anticipate environmental opposition to wind power (Righter, 2002 in Kempton et al., 2005:123). Taking more than the frequently cited reasons for opposition such as aesthetic impact, wildlife and marine life destruction, and noise pollution into account, Lidskog (2005) surmises that a siting conflict basically arises out of a clash between different kinds of interest at the same geographical level. Weller (1998 in Berg, 2003) additionally identifies some “hidden” personal objections as follows:

- Traditionalism – because wind projects have never been before approved in the area;
- Loss business – because objectors feel excluded from financial benefits;
- Envy – because a neighbor may earn money as a result of the project;
- Personal conflicts – because they oppose everything the neighbor wants to achieve.

These reasons could be contributory to why many wind farm projects have been reported to be halted at the planning application stage, especially in the UK. This is in addition to a third of all applications being refused (DTI, 2007c). Local planning disputes concerning noise and visual disruption, and grid connectivity issues are among the reasons reported to be holding back approvals of applications for wind farms capable of producing the equivalent of 11 gigawatts electricity (Jowitt, 2007). Quoting figures from British Wind Energy Association (BWEA), Hinshelwood & McCallum (2001) claim that obtaining planning permission for wind farms is getting progressively more costly and time-consuming, taking over 2 years and cost over
GBP100,000 without considering appeal if this initial application is rejected. Jowitt (2007) even further cites the BWEA that some projects have been stuck for six years and many for four or five years. Given the urgency for renewable energy in safeguarding the environment and the rationale for wind energy, it is doubly important that effective measures be developed, recommended and undertaken to ensure that local community-related issues that now seem to be blocking full progress of wind energy dissemination do not continue to impede future wind farm applications. This underlies the aim of this thesis.

Berg (2003) claims that acceptance of wind energy projects seems to be highly dependent not only on the site location but on the planning process that allows direct interaction with the affected community and project developer as well. The planning process that allows public involvement or community consultation is one way to managing communal or societal stakeholder interest. Wolsink (2000 in Berg, 2003) argues that stakeholders’ attitudes towards a project are highly influenced by how the planning process is organized and carried out. Resistance to project could occur from stakeholders slighted by the planning process itself rather than the proposed wind energy project. Similar to Ek (2005a)’s recommendation above, Wolsink (2000 in Berg, 2003) suggests involvement of relevant stakeholders including local community in the planning process through participation, transparency and high information flow. Although there are no simple way to resolve siting conflicts especially when hidden motivations as highlighted above exist, researchers seem to agree that an open dialogue between all parties who feel they have an interest in the question can lead to solutions where all see themselves as winners (Richards, 1992 in Lidskog, 2005). The basis should be that every siting decision requires an open debate, transparent decisional processes, mechanisms for public influence, a spatial trans-boundary monitoring program, and structures for political accountability (Lidskog, 2005). This may mean increasing public involvement in the siting of wind farms to accommodate measures for reducing the likelihood of substantial opposition and increasing community buy-in (Berg, 2003). Please see Appendix 12 for an exhibit of main local community views regarding wind energy.

The trend and potential for wind farms in the EU being located offshore are formally recognized (European Commission, 1997; EWEA, 2003 in Rönnborg, 2006; Greenpeace, 2004 in Rönnborg, 2006). As a local example, Ek (2005b) also found in her study that offshore wind power is favored more by the Swedish public. However, despite such governmental and environmental support for such initiative, offshore wind farm projects are not exempted from the same evaluation and criteria imposed by communal stakeholders as for onshore projects. An example is the case of the Fladen offshore wind farm project in the Kattegatt Sea in Sweden (full case study in Rönnborg, 2006). The project was rejected by both the Regional Environmental Court and the Swedish Government due to the pressure of ecological protests by various parties (mainly marine-related). This was in spite of the developer was a municipally owned energy producer and extensive siting evaluations were conducted prior to proposal. Rejections came from external stakeholder groups indirectly related to the project such as the Swedish Environmental Protections Agency, the National Board of Fisheries and the National Board of Housing. This project reveals a paradox as it represents a struggle for improved environment where environmental considerations in the end knocked the project over (Rönnborg, 2006). It seems that the criteria to a successful wind farm project may lie not only with demand, supply nor regulatory or governmental support, but communal and environmental approval as well. This enhances the importance to consider communal issues and community-based stakeholders of similar projects, as even less powerful (local) actors can deploy means or halt implementation (Klijn & Koppenjan, 2003 in Breukers & Wolsink, 2007).
One of the difficulties cited by Rönnborg (2006) is the lack of a useful or predetermined evaluation method to assess the societal costs (such as environmental damage) and benefits associated with the project. Thus a question that arises is: would it be enough to just use a systematic evaluation method or model for these projects, or should a more systemic approach be developed to identify and involve the relevant stakeholders in order to gain knowledge of their concerns and adequately address them in order to reach the “enough” decision to proceed without subsequent encumbrances from such communal issues? There is evidence that people’s sentiments and interests may not be based on rational economic aspects only, implicating that project managers relying on a quantitative assessment only may risk encountering many problems later that can prevent the achievement of project objectives.

A relevant case in point is Kempton et al. (2005)’s study of the first US offshore wind energy development in Nantucket Sound, off the Southern coast of Cape Cod, Massachusetts. A well-financed organization was formed by local environmentalists, business groups, media and legislative leaders to oppose this project on environmental grounds. The research that the authors conducted found that the visual-aesthetic impact of wind turbines was a deficient explanation. In the case of offshore wind energy projects, it was found implicit in the objection an emotional core of people attaching special values to the ocean and the feeling that people should not intrude permanently there. It is be apt to interject here to note that Hills & Jones (1992) pin the concern of local communities being stakeholders as related to the incidental effect on their quality of life. The case represents an inconsistency with the reported trend and public favor of offshore wind projects as quoted above, but what both the Fladen and Nantucket Sound cases highlight is the need for local community involvement in the decision-making process for new wind energy projects, and not just at formal legislative (such as state and federal) levels only. Breaukers & Wolsink (2007) note that wind power projects are increasingly confronted by local opposition despite high and stable level of general public support. There is a widespread sense that the wind proposal should be decided by a vote of nearby residents, which is not always the case in practice and also for which no legal basis exists (Kempton et al., 2005:144).

As small consolation, Kempton et al. (2005:123) quote several studies that have found that support for local wind projects often increases once the projects are built. Gipe (1995 in Berg, 2003) also observed the same pattern of public acceptance of wind projects in his study of European survey and opinion polls. He added that acceptance of wind farms often grows as communities have time to adjust and find out that many of their perceived fears were unfounded. Please see Appendix 13 for the depiction of this trend found. The European Wind Energy Association also found supporting evidence through public surveys that most opposition occurs before a project begins and once the public is suitably informed about wind energy and the wind farm is built, support increases (EWEA, n.d.). However, permits may not be issued for starting the project given strong communal oppositions while projects such as the Botnia pulp mill described earlier reveal the risk and possible problems of going ahead with building the project when communal stakeholders are not appeased, i.e. the “social license to operate” has not been granted yet. We do not see how differently wind projects in general can be exempted from such conditions. This forms a stream connected to our research as well.

It is only balanced that successful wind energy projects be illustrated as an example here as well. Robb (2003) describes the 30MW Fenner wind farm in New York as a successful project in terms of schedule and community acceptance. The project acknowledged the importance of the latter in relation to achieving project objectives and involved the community at early stages through extensive information sessions and negotiations with farm owners, neighbors and the town planning
board. Creating open forums to inform, collect and address community concerns was the underlying activity to the process. A simulation using superimposition of wind turbines onto photographs of the landscape made accurate to scale was performed and provided to residents and all interested parties by the wind turbine manufacturer GE Wind Energy in order to raise any concerns and form appropriate expectations. Furthermore, revenue-sharing agreements were drawn up with farm owners where turbines will be planted on. Later, a dedication ceremony was held involving the developers, investors, students, community members, local and state government officials, related agencies and the media where any subsequent issues and feelings about the project were addressed. The success of the Fenner project was attributed to the effective partnership between local residents and the developers, focusing on a long-term view of environmental and economic advantages of wind energy (Robb, 2003). Through our research we will seek to affirm from industry recommendations and primary sources if these similar community stakeholder management principles are promoted as well.
4 RESEARCH DATA & FINDINGS

In this chapter we hereby present the research data collected according to the described research methodology in Chapter 2. Data sources encompass both secondary data from related governmental policies, industry best practice documents and case studies, and also primary data from interviews with industry practitioners, in order to produce strong and ‘triangulated’ data and findings on areas with regards to our research question and aims. Some general comments and opinions are made where relevant based on findings from the data collected. Thus in many instances herein we do not consolidate the findings and implications to form conclusions (which will be addressed in the following chapter) but rather it is intended hereby to present the data collected and offer some initial thoughts and opinions to facilitate the summary of findings and discussion in Chapter 5, in a broad-to-narrow approach considering the voluminous qualitative data to be managed.

The data and findings are thus organized in the following identified areas in connection to our research:

4.1 Defining community stakeholders
4.2 Identifying community stakeholders
4.3 Policies & governance on community consultation
4.4 Community concerns & opposition
4.5 Key principles of community stakeholder management
4.6 The community consultation process
4.7 Methods & techniques for community consultation

We believe that data and findings on the above listed areas will be appropriate in addressing our research question of “how should community stakeholders of wind energy development projects be managed in the planning stage prior to permit application?” and also the objectives of this research, being: (i) better understanding the concept and impact of community stakeholders in the context of wind farm development projects; (ii) discovering the common key principles and techniques applicable for effective community stakeholder management; and (iii) providing practitioners with more comprehensive and practical guidance for community stakeholder management in the planning stages of wind farm projects, while contributing to the theory of this area. In the process we also address stakeholder management on all three degrees as put forward by Freeman (1984 in Carroll & Buchholtz, 2000), namely the rational, process and transactional levels. Emphasis will be dedicated to the last recommended level, which refers to the extent to which managers actually engage in transaction and relationships with stakeholders, encompassing communication, responding and spending resources on stakeholder transactions (Freeman, 1984 in Carroll & Buchholtz, 2000).

4.1 Defining community stakeholders

We reiterate from the literature review that for this thesis, Freeman (1984:46)’s broad definition of stakeholder, being ‘any group or individual who can affect or is affected by the achievement of the organization’s objectives’, is adopted. Based on this definition and also in accordance to Cooper (2004)’s pluralist concept of stakeholders, the local community and related community-based groups have been widely acknowledged in literature as stakeholders in an organization or project.
(Mitchell et al., 1997; Wheeler & Sillanpaa, 1997 in Cooper, 2004; Carroll & Buchholtz, 2000; Whyte, 2000 in Bailur, 2006; Flagestad, 2001; Post et al., 2002; Cooper, 2004; and Centre for Sustainable Energy et al., 2007b). In this section we seek to find out how and who the wind energy industry defines and explicitly identifies as community stakeholders.

The Australian Wind Energy Association (Auswind) recognizes community groups and the general public as key stakeholders in wind farm development projects. Within a given area, the ‘community’ is likely to be made up of many different interest groups, which will come together for a whole variety of reasons. Community groups may focus on ‘place’—the area where they live and work; or may focus on interests, principles, issues, values or religion; and both types of groups may have an interest in planning issues (ODPM, 2004a:9).

BWEA’s best practice guidelines split stakeholders into three main groups: statutory consultees/regulators, non-statutory/strategic stakeholders and community stakeholders. Strategic stakeholders (non-statutory consultees) can be defined as people who represent organizations, whether at a national, regional or local level whose support of or opposition to a development would be significant, or who have particular information or expertise to offer. Examples in the UK context include the Royal Society for the Protection of Birds (RSPB), commercial fishermen and their representative bodies, the Ramblers Association for walking and hiking, Friends of the Earth and the Royal Yachting Association (BWEA, 2002:9). Community stakeholders include individuals or organisations who are interested because they live in the community the development will affect, interested individuals, representatives of residents associations, clubs, church groups and others. The BWEA advises herein that is better to involve too many than to miss out some who are crucial. Developers are usually well aware of their statutory consultees. Community and strategic stakeholders, however, may sometimes be harder to identify (or at least it is easier to miss one or two out) (BWEA, 2002).

Across the Atlantic, nearby landowners, community leaders and environmental groups are among the few community-based stakeholders mentioned by the National Wind Coordinating Committee’s Siting Subcommittee (NWCC) for consultation during the pre-application stage. The development project manager from RES Skandinavien whom we interviewed also mentions landowners as the primary community-based stakeholder due to their importance of being site owners. Then came the people living in and around the community. Recognizing this, RES establishes close relationships with community societies where local residents gather. As soon as talks with landowners start, the company will be in contact with these community groups. There are usually quite a few environmental groups to engage as well, such as bird watchers, hunters, fishermen and recreational users.

With regards to interviews conducted, the response we received from the environmental engineer of a Swedish wind farm developer specified the LFV (responsible for all civil air traffic), airport authorities, businesses involved in the site’s telecommunication and tourism, Swedish Defense Forces, local residents, interest groups such as bird watchers and other environmentalists as community-based stakeholders to their wind farm development projects. Another interviewee working in Sweden, a Project Leader with a Norway-based wind farm developer, added the government and other interest groups such as the reindeer herders, indigenous people and others who bear interest in national parks if the site is designated as such.

Meanwhile, another respondent working with an Australian wind farm developer identifies local neighbors, catchments management authorities, county fire authority, governmental agencies,
environmental bodies, aviation authorities and telecommunication companies as relevant community-based stakeholders in a wind farm development. These groups of stakeholders are generally after a project has passed through the early internal feasibility stages. However, the responding manager notes that some stakeholders such as governmental bodies and telecommunication companies, whose activities may influence turbine layout or exclude any infrastructural development on the site whatsoever, are generally consulted earlier.

According to feedback from the Director of Projects in a UK-based wind farm developer, the following are considered as potential non-statutory or community stakeholders in a wind farm project: public in the vicinity of site, resident associations, landowners (including adjacent ones from those directly affected), environmental bodies, community groups and societies, councils, unions and shops or businesses, among others. More informal networks are also recognized as important stakeholders, such as friend, families, colleagues and neighbors.

When asked if the management and satisfaction of community stakeholders is critical to the success of a wind farm development, the aforementioned Director regards it as being very important as it can sway local politicians. According to him, the support of local politicians is very important as they are generally very well connected individuals and can be influential, particularly at planning meetings. The support of local councilors can also help to engage with the public by facilitating impartial meetings. Hence these local figures of influence seem to factor prominently as stakeholders within the local community.

4.2 Identifying community stakeholders

Given experience in managing wind farm development projects and prior knowledge of the characteristics of a particular or similar site, it is straightforward for industry associations and practitioners to explicitly identify a preliminary set of major stakeholders in the community, as found above. Though greatly helpful, this only goes to serve as the minimum baseline of community stakeholders to involve in planning the project. It is hence important to also learn about the process or techniques that are applicable to identify community stakeholders, as this will further facilitate project developers to identify the more site-unique or uncommon/obscure stakeholders, establish a common and effective procedure for every case and hence guiding new project managers as well, and ensure that the community stakeholder management program is more complete and no scenario is taken for granted for each and every project.

The UK’s ODPM acknowledges the difficulties of identifying and reaching the different groups within a community as one of the barriers to involving the community in planning. According to the BWEA, experience shows that one of the most inclusive ways for drawing out stakeholders is to advertise in the local media (BWEA, 2002:10). However, in practice the effectiveness of advertising in the newspaper has been doubted by one of the project managers we interviewed from the company RES Skandinavien as usually not everyone reads the newspapers or read in sufficient detail to notice the advertisements.

The BWEA lists the following questions in helping to find the right people to consult regarding offshore wind farm development (BWEA, 2002:10):
- Who will be affected, positively or negatively, by the development?
- Who supports or opposes the changes the development will bring?
- Who holds official positions in the area likely to be affected by the development?
- Who is influential in the local community?
- Who runs local organizations with economic, environmental or social interests?
- Who has been involved in any similar issues in the past?
- Who may not be affected by any immediate development, but may be if there are other similar developments in the area?

Local community groups can often provide a quick indication of the value of the site (Auswind, 2006:24). This indicates bilateral communication methods such as public meetings, staffed exhibitions and establishment of local contact person or number would be required at the early stages to draw out views and concerns of the local community and interested parties, including gaining better clarity of the various groups of stakeholders and the unique elements of the proposed site area.

Beside from being stakeholders themselves, the sources listed below can lead to a better understanding of the locality and in the process facilitate the identification of relevant stakeholders in the community and in developing the methods and strategy to approach them (Hinshelwood & McCallum, 2001a:29-30):

- Population area: e.g. population figures by area; maps (street and road maps, ordinance survey maps, boundaries), electoral registers, local public transport networks
- Other renewable energy projects in the area, current & previous planning applications for proposed projects
- Audits: community groups: e.g. youth groups, sports clubs, voluntary groups (including contact names and addresses, when, where they meet and what is the focus/interest of the group)
- Community facilities: e.g. community halls, education facilities, clubs, churches, sports venues (including contact details, activities and schedules, general availability for use)
- Shops and businesses
- Media contacts: e.g. press, radio, TV including contact details and correspondents
- Key organizations / individuals in the area: community development organizations in the area, landowners, environmental networks, community councils, local political figures, large employers

The Director of Projects in a UK-based wind farm developer constructs the list of both formal and informal stakeholders through a desk-based study on the community. The desk-based study generally provides information on the local political and advisory bodies including local councilors and community groups. Further information can be gained on clubs, sports facilities and other groups of people and liaison with these groups will help a developer to understand local issues and needs while identifying other relevant stakeholders. For the development project manager with RES Skandinavien, the best method for identifying relevant stakeholders from the community is by talking with people themselves. Meanwhile according to the environmental engineer at a Swedish wind farm developer, the company usually invites the residents and other local interest groups to some kind of information meeting in an early stage. The interest groups are mostly identified with help of the LPA and by asking the residents directly. Another respondent who is a project manager with Swedish wind farm planner and developer Svevind AB identifies community stakeholders by investigating who the landowners are, who lives in the area, for what purposes are the land used for and who works or derives source of livelihood in the proposed site. To identify and reach out to all potential community stakeholders, Svevind forms ‘reference groups’ consisting of local people, usually from village association, who know and have access to the general community.
We also obtained reply on our research questions from the project manager of a large offshore wind farm in Sweden, primarily in charge of communications and consultation with the public, authorities and media. Acknowledging the demand of extensive consultation with the local community and authorities in the process of obtaining the necessary permissions, the project first identified neighbors (residents, interest groups and NGOs) in the early stages in order to invite them to public informative consultation meetings. The project manager did not specifically oversee the identification process but pointed to national registration records as a possible avenue. Invitations to the public meetings were made in the newspapers. In addition, consultation meetings were held with the local authority as well.

4.3 Policies and governance of community consultation

In this section we seek to examine a selection of national or governmental policies that have been issued with regards to considering the local community and community stakeholder management in developmental projects. Usually in each country there are regulations which can be statutory or non-statutory, to govern the application and permitting of wind farm developments, similarly to other infrastructural projects. We investigate this aspect by focusing on the policies issued for community consultation both in particular to wind farm projects and also in general to other similar developments. The findings herewith would provide some insight to the overarching governance framework or ‘landscape’ applicable to wind farm development projects, to which related project managers would need to be aware of in developing the community stakeholder management approach and strategy. It is worth knowing what the local government thinks before applying what the project manager him/herself believes or reckons would be appropriate to managing community stakeholders in a project according to own experience and knowledge.

The UK is particularly well placed to utilise wind power, having access to something like 40% of the entire European wind resource (ODPM, 2004c:155). For this reason it is worth examining some regulations and policies governing wind energy development in the UK as an example. All renewable energy developments in the UK must take place within the formal planning procedure, which allows all relevant stakeholders to have their say and assess all relevant impacts on the environment, local community and other aspects. Under Section 36 of the Electricity Act 1989, all proposed onshore renewable energy developments of 50 megawatts or below are handled by local planning authorities (LPAs) following the Office of the Deputy Prime Minister’s Planning Policy Statement 22 (PPS22) guidelines for renewable energy, while proposals greater than 50 megawatts onshore and 1 megawatt offshore are referred to the Secretary of State (England and Wales) or the Scottish Executive (Scotland). At the same time, the public are consulted on the proposal, and statutory bodies such as English Nature are asked for their views. (DTI, 2007a). Within the English planning system, local planning authorities (LPAs) are now required to produce ‘Statements of Community Involvement’ (SCI) that describes how LPAs will engage with local communities within their areas in relation to planning policy, and also provide general guidance to developers on the public engagement – or ‘community involvement’ – which they are encouraged (but cannot be required) to undertake (Centre for Sustainable Energy et al, 2007a). A developer of a proposed offshore wind farm with a capacity above 1 megawatt has to comply with the requirements of the Electricity Works (Environmental Impact Assessment, England and Wales) Regulations 2000 or the Electricity Works (Environmental Impact Assessment, Scotland) Regulations 2000. This means that when developers are applying for consent for a project, they must provide a comprehensive
assessment of its likely impact on a wide range of factors, including the marine environment and birds, visual impact, fishing and shipping. The license from the Crown Estate being owners of the seabed needs to be granted beforehand as well (DTI, 2007b). The government has the discretion to call for a public inquiry if any statutory bodies consulted or a large and legitimate section of the public oppose the proposal. A public inquiry is a formal appeal procedure ordered by the government to investigate matters of public concern (BBC, 2007).

In some jurisdictions, the project developer is required to hold public meetings or submit a public notice regarding the project during the pre-application phase (NWCC, 2002:14). There are also government policies that advise and encourage (but not require) developers and planning authorities with regards to local community considerations and planning principles in general, although the failure by developers to adhere to the policies could cause the dissatisfaction of the planning authority, motivating the reasons for rejection of the application. The Office of the Deputy Prime Minister (ODPM) in the UK warns that although engagement cannot be legally required, failure by the developer to consult could lead to objections being made which could be material to the determination (ODPM, 2004a). UK government policy calls for developers of renewable energy projects to engage in active consultation and discussion with local communities at an early stage in the planning process, and before any planning application is formally submitted (ODPM, 2004b). The aim of the process should be to encourage discussion before a formal application is made and therefore to avoid unnecessary objections being made at a later stage (ODPM, 2004a:15). The Scottish Government’s Planning Advice Note 81 recommends applicants to view pre-application consultation as an opportunity to consult with people to develop proposals which have minimal adverse impacts on communities. For developments in Scotland, the applicant is required to submit a Pre-Application Consultation Report alongside the planning application setting out: a list of all parties consulted, notes of discussions with pre-application consultees and details of any amendments made to the proposal as a consequence of the pre-application discussions; failing which the planning authority may refuse to register the application until certain steps have been carried out (Scottish Government, 2007b). Thus community involvement improves the quality and efficiency of decisions by drawing on local knowledge and minimizing unnecessary and costly conflict (ODPM, 2004a:4).

In their wind farm planning guidelines, the Department of the Environment, Heritage and Local Government of Ireland recommends the developer to work with the local community on the format of any future consultation to allow for the free flow of information between the community and the wind energy developer at all stages in the project, with an individual who is accessible to the local community appointed and a local contact number established. While it is not a mandatory requirement, it is strongly recommended that the developer of a wind energy project engages in active consultation and dialogue with the local community at an early stage in the planning process, ideally prior to submitting a planning application (Department of the Environment, Heritage and Local Government, n.d.:19). This is supported by the Irish Wind Energy Association (IWEA) in their best practice guidelines. Despite the lack of such an explicit regulatory requirement, relevant planning approval committees or authorities do seem to still expect a satisfactory degree of preliminary local community engagement and its general findings to be detailed in the application in considering its approval, and given none the application would have a lesser chance for approval than if it had.

Early community engagement prior to application can result in many changes but in the end fits the local context more, minimizes adverse impact to community and hence their opposition, and ultimately results in development application approval, lower costs and a more successful project.
For example, wind energy developer Airtricity's proposal to develop the Clyde wind farm in South Lanarkshire, England included a program of consultation and discussion with the relevant statutory bodies, members of the public and those wider social, economic and environmental interests. The consultation process resulted in 50 changes and 12 new layouts generated prior to the submission of the planning application. The proposed number of turbines has been reduced and some turbines have been resited to avoid and mitigate environmental impact, including visual impact. The consultation included a series of roadshow exhibitions, a number of direct mail drops, door-to-door discussions, meetings, a trip to the existing Ardrossan windfarm and ongoing liaison with the local media. This program ensured that the local community was well informed and had opportunities to participate and influence the development (case from Scottish Government, 2007a). If the developer did not keep plans flexible or was not as receptive and committed to local community consultation, the project would almost certainly encountered more issues that increases time, costs and perhaps cause application rejection or harsher communal retaliation during or after construction.

Among the other related UK government policies include Planning Policy Statement (PPS) 1: Delivering Sustainable Development, PPS 12: Local Development Frameworks and PPS 22: Planning for Renewable Energy. Although aimed at planning and permitting authorities, these principles are likewise relevant to developers as these are best practice guidelines for community involvement and a cause-effect connection can exist whereby a properly planned community involvement strategy helps in satisfying the planning authority’s consideration for development approval. However most of these policies are prescribed broadly and lack the detail and specifications required for pragmatically guiding developers in such planning matters. The most relevant UK planning policy for our purpose would be PPS 22 regarding planning for renewable energy developments. With visual and landscape effects being one of the main specific issues to wind turbine developments highlighted, PPS 22 advises planners and developers alike to recognize that the impact can be varied according to the size (please refer to Appendix 14), number and layout of the turbines. Furthermore these impacts may be considered temporary if considering future decommissioning. However, the life cycle of wind turbines can last to 20 years or more, notwithstanding renewal, thus greatly diminishing the argument for this point.

With regards to protected areas or of special environmental values, the UK government policy’s overriding criteria is stated as follows: “If the renewable energy development would have an adverse effect on the integrity of an internationally designated nature conservation site, planning permission should only be granted by planning authorities where there is no alternative solution and there are imperative reasons of overriding public interest, including those of a social or economic nature (ODPM, 2004b:10). Hence it would require a rather rare occasion where public interest can be so overwhelmingly in favor of the development that it overrides the environmental values held for the site. LPAs are also advised to satisfy themselves that developers have addressed any potential impacts, taking account of Civil Aviation Authority, Ministry of Defense and Department for Transport guidance in relation to radar and aviation, and the legislative requirements on separation distances, before planning applications are submitted (ODPM, 2004b:14).
4.4 Community concerns & opposition

Having a baseline awareness of the common important stakeholders in a community and also the identification processes of doing this in practice outlined, it is relevant hereby to gain insight to what community stakeholders commonly regard as issues or raise as concerns. In this section we investigate from the wind energy industry’s point of view through both primary and secondary sources of the common community concerns including cases where opposition was found. This can enable project developers to better plan their community stakeholder management approach even before engaging or consulting with the community. The prior knowledge of the common community concerns in wind farm development projects will help project managers anticipate the outcome from community consultation and also have strategies to mitigate or address each concern, leading to a smoother community stakeholder management process.

The most commonly cited community concerns regarding wind farm developments is the visual impact, noise and impact on birds. These concerns are affirmed in practice by the Planning and Development Manager of an Australia-based wind farm developer. Another respondent also specifically cited visibility as the main concern, potentially taking away the value of unspoilt nature. According to Swedish wind energy developer RES Skandinavien’s development project manager, such concerns on landscape value disruption and noise arise from people’s worry which in turn is caused by people being unfamiliar with wind energy or wind turbines. According to him, the more important essence is to see past the conflicts and mitigate or work around it rather than turning it into a problem. There would be instances that there will be stakeholders who would just simply oppose wind farms without legitimate reasons, and this is not a significant issue to the project manager we interviewed as he thinks that it is common with almost all similar activities as well. Perhaps as capping note with regards to visual effect, the WWEA advocates that sound community consultation and participation, with appropriate representations of the future appearance of the wind farm are often effective although avoidance of areas with high scenic or recreational value is generally required (WWEA, 2005:16).

Three respondents in Sweden mentioned economic activities in the area such as hunting and fishing. As an example of mitigating issues rather than treating them as problems in this context, a group of hunters expressed concerns over the impact a proposed wind farm in their area may have on their hunting activities, with regards to access roads to be constructed. Thus through consultation, RES amended the project based on their feedback, by changing where roads are built to not affect the areas where the group hunts. The development project manager who we spoke to is adamant that RES would still get the relevant permits to build the wind farm even if they did not talk to the hunters or change the plans according to their views, but RES’ agreement to change the plans relate to their wish to keep a positive relationship with the community and improve the project in order for it to be seen as a good and successful development from all stakeholders’ perspectives. However, this can only be done as long as the plans are not finalized or “frozen” for application.

The Swedish wind farm environmental engineer who we contacted cites that the main concerns from various groups of community stakeholders with regards to their project/s are:

- That the project will ruin the local residents living environment (noise, shadow, view and value of real estate)
- That the project will interrupt or damage the local natural and cultural values
- That the project will constrain the interest of other businesses (air traffic, telecommunication and eco-tourism)

The respondent adds that bird watchers are often worried that a planned wind farm will interrupt or damage the existing bird life in a site. What his company usually does then is to engage an impartial investigator to investigate these concerns before they continue the process. If possible, the company will adjust the project plan or design so that it will suit the opinions of various stakeholders. These adjustments could for example be relocating one turbine that was planned close to an area of special value to the local residents. If there is no room for adjustments, the developer would have to choose to either continue the process or to terminate it. The basis of the decision depends on cost, time and reputation to the company.

Without a working management of community stakeholders, the environmental engineer said that it could be almost certain that someone will appeal issued permissions from the authorities. This will cause severe time losses, high costs and sometimes a lot bad will as well. For example, in some projects the local residents are asking for lower towers, so that the impact on the landscape would not become that big. In some projects this is doable, but in some it is not due to the expected loss in production due to for example a forestry environment close to the turbines. Because the real difference in impact on the landscape probably would be rather small, the developer would continue the project anyway. In some projects, there is no room for adjustments of the localization and design of a project at all. If, for example, the Swedish Defense Force then objects to the proposed localization and design of the project, the developer would probably terminate the project. This relates back to Mitchell et al (1997)’s stakeholder salience theory, especially regarding power and legitimacy. Perhaps in consideration of this concept as well, the respondent is of the opinion that the proper management and satisfaction of community-based stakeholders is not critical but surely very important. For one, he says that it often takes a lot longer time to finish a project without a functioning management of community stakeholders. This statement is supported by the comments made by another respondent who we contacted, being the project manager for Siral which mainly develops wind farms in the island commune of Gotland, Sweden, who is of the view that community opposition can cause delay of the project. For an extreme example, one of Siral’s projects took 12 years to be granted the permit to build, which according to the project manager normally takes 3-4 years only to obtain.

However such delays directly caused by local community issues may result in the failure of the project depending on a particular stakeholder’s perspective, such as the developer if banking finance is involved. For this reason, the project manager at Svevind regards the management and satisfaction of community-based stakeholders as critical to the success of a wind energy project. He mentioned that the planning phase could range from one to six years to completion depending on the degree of resistance to the project. While it does not cost anything for the landowner to complain, it could cause delay for the approval of license or permit to build the wind farm. From his experience, opposition usually comes from landowners who no longer reside permanently in the area. Therefore, whatever benefits that the wind farm will bring to the landowner and the community is not important to the landowner for the simple reason that he/she no longer resides there. The project manager notes that examples of benefits that Svevind offers to the host community include free electricity and ownership by the host community of one of the wind turbines.

Meanwhile the project manager also recognizes that Svevind cannot satisfy all the concerns of various stakeholders. The fact that wind turbines are very visible, there will always be opposition to
any wind energy project. Main concerns of the community according to the respondent are noise disturbance, flickers, bird kill and road construction. For noise disturbance, he says that Svevind or any other wind developer has to comply with industry sound regulation that requires wind turbines to be located at least 1,200 meters away from houses. Impact of flicker, road construction and study on bird kill have to be included in the EIA report. The project manager further notes that the company could not start construction of the project without obtaining the right to build – which process can be dragged over a long time by community resistance. Once the right to build is obtained, Svevind starts with the construction even with some prevailing opposition by the community. Such opposition is then managed by the company reactively, based on urgency and on case-to-case basis.

The project manager with Siral relays the same conditions, although people in Gotland where the company predominantly operates in general has a positive attitude toward wind energy projects and there are seldom oppositions. Nonetheless, information about wind energy project, its benefits and impact on the environment is explained to the landowners and to the community. Siral tries as best possible to address the concerns of landowners. If issues cannot be resolved through dialogues between Siral and landowners, the matter is brought to local authorities. If local authorities fail to resolve the issue, the Swedish court decides whether or not to grant Siral the permit to build, upon which if granted the company would proceed with construction.

Regarding a particular large Swedish offshore wind farm, the project manager from whom we received feedback claims there were no significant issues from the authorities on the proposal, but there were concerns from a neighboring municipality and some people living along the coastline to whom the wind turbines would be visible to varying degrees. Concern of light obstruction was also cited. Fishermen are also worried about not being able to fish in the area but there are yet to be any certain prohibitions on fishing in the area. There have been several appeals regarding the project, from both the neighboring municipality and from a private individual. While it is not yet decided if the authoritative Supreme Administrative Court will bring up any of the appeals or not, the project manager is of the opinion that the company could not have been avoided the objections given that they have communicated about the project and the opponents are simply “not at all at the same wavelength”. We were not given privy to the specific methods or techniques applied in the consultation process, but in epilogue the project manager ponders if perhaps more common knowledge about the general surrounding society would have helped prevent the appeals. This general preliminary knowledge can be obtained through surveys and visiting the relevant communities and informally talking with the people much before any formal planning or testing suitability of the site.

Some other main concerns cited by a UK-based wind farm developer in their response to us regarding wind farms are house prices, wildlife, TV reception, tourism, low frequency noise (impact on health), transport (impact on health), traffic and impact on village life or community divide. Their Director of projects state that it can be very difficult to prevent all objections, and thus is sometimes unavoidable. It is more intimidating to know that since the public often prefer to listen to their peers than to a developer, objection groups often use unprofessional tactics to create myths and concerns that are difficult to address. He further laments that sometimes community stakeholders will never be satisfied with a project and only terminating the project would be satisfactory to them. On receipt of concerns from individuals, the company often tries to take on board these concerns in the design of the project. The respondent exemplifies with one of their projects in Wales which saw two turbines closest to properties deleted to reduce the visual impact of the project. To be preemptive, the respondent says that their projects are carefully selected and are designed to avoid significant impacts. However he disclaims, “Some objectors, no matter what you do to please them
will not change their mind - in these situations a planning application could be made and the decision made according to the local democratic process”.

The preceding comments from respondents indicate a general acknowledgement that not everyone can be satisfied in the community stakeholder management process. Such a premise leads on to the discussion of the legitimacy attribute following Mitchell et al. (1997)’s stakeholder salience model, which can be affirmed by the response we received from the Planning and Development Manager in Australia. She believes that it is very important for the consentability of a project, but added that the extent to which the ‘satisfaction of the community’ impacts on project success generally depends on the legitimacy of their concerns. She further elaborated that many of the concerns of neighbors turn out to be unfounded, or are based on effects which in reality are either non-existent or much more minor than they think they are or profess them to be. One example cited is that of a local objector claiming that he would be unable to move his stock due to shadow flicker, which turned out to be untrue. According to the respondent, these kinds of claims may go to court in some instances. If such concerns are indeed found legitimate then they would be taken into account and mitigated as best possible by the developer, either by the developer's free will or, less often, through the courts.

The manager adds that they would proceed with the project once the permit is obtained even if there is still opposition. She further elaborated that if a permit has been approved for a development, then generally strong local opposition is not significant enough to stop the project, as it would mean that the opposition is not a genuine enough concern to have prevented consent of the project. Generally such opposition dies down somewhat after consent, or more significantly, after construction when the locals can see that the impacts of the turbines are not as severe as they had feared. Therefore she is of the opinion that community stakeholder management and satisfaction is very important but stops short of affirming it as critical to the success of a wind farm development project. Nevertheless she notes that the developer may however walk away from a project pre-consent if community opposition is seen to be too arduous.

On the other hand, the Project Leader with a Norwegian wind farm developer working in Sweden whom we interviewed regards community satisfaction as critical as his perspective is that the permit may not be granted if major issues with community stakeholders are not resolved. The interviewee says that the developer might have to find a compromise with stakeholders especially if they have an economic interest in the same area of proposed development. This compromise can only be achieved of an effective consultation process.

The impact of a local opposition group can influence local opinion substantially, and their networks in the area support them in achieving their objective, particularly since they have many advantages over the external developer such as local knowledge, relationships and legitimacy from their locality (Hinshelwood & McCallum, 2001a:34). In dealing with opposition, Hinshelwood & McCallum (2001b) note that it is important to acknowledge their impact, recognize their tactics in order to address them appropriately, manage them calmly and ensure that word does not get out about the proposed scheme prior to the start of the consultation, as this can lead to their influence to rally support and form general first impressions against the project with misleading information (the onset of which will prove more difficult to change later by the developer). Drawing on the example of the Awel Aman Tawe community wind farm project in Wales, one of the villages surrounding the site, Tai’rgwaith, was clearly identified as the main opposition to the project judging from the feedback from questionnaires and public meetings conducted there. Some reasons were attributed to the cause of rumors spreading in the village first before any official announcements due to the pre-project development being discussed there by three community initiators living in the village,
misleading media coverage by frequently referring the project as the Tai’rgwaith wind farm, the close social network of the village and unfavorable past experiences with structural developments there (especially the coal industry). Within a few months after the start of consultation, the Tai’rgwaith Action Group was formed by nine residents to gain power in opposing the project and supported the opinion of many villagers, much due to their lobbying and coercing activities around the village. They also aligned themselves to anti-windfarm environmental groups such as the Country Guardian and the Council for the Protection of Rural Wales (CPRW). Their strategy for opposition focused on the same criteria that people base their judgment of the project on, as found and presented above.

But aside from the problems caused by the Tai’rgwaith Action Group, there were positive impacts from the opposition as well. The consultation process needed to become more transparent and rigorous due to the scrutiny and force of opposition and it kept up debate and interest on the project, while helping to further define project priorities by defining certain boundaries, clarifying conditions and identifying a more appropriate process (Hinshelwood & McCallum, 2001b:65).

The project manager of the large offshore wind farm in Sweden suggests that any massive opposition from a large number of people can probably be determined from one of the public consultation meetings. Given moderate opposition, she as project manager would recommend continuing with the planning and development process. However, she also cautions that it does not always depend on size as even one individual opposing the project can be sufficient to bring it down, perhaps based on power and legitimacy of the opposition. She further says that if given a low turnout at the meetings, it can be assumed that the proposed development is “not such a big thing for most residents/neighbors”. However, from our previous literature review events such as the communal and environmental objections to the Botnia pulp mill in Uruguay as earlier described in this report shows initial consultation meetings that fail to generate sufficient attendance may not necessarily mean the correspondingly low interest. Identifying and reaching the different interest groups, their routines, availability, apprehension of public engagements, and preferred method to communicate, and invitation methods can all affect people’s turnout at the meetings, other than just lack of interest or concern.

A recent case of relevance is UK-based wind farm developer Eco2’s 4-turbine 12MW Afan Valley wind farm plan application near Glyncorrwg in Wales as well, which its planning application has been rejected by the LPA. The Glyncorrwg Action Group (GAG) is one of the main opponents to the proposed project, citing the creation of ‘unacceptable impacts upon the character and appearance of the countryside which are not outweighed by the benefits of providing renewable energy’ being the prime reason for the rejection (Nicholls, 2007). Prior to this, the GAG handed in a 1,230-name petition of objection to the council’s planning department (Pugh, 2007). The local council has further received numerous letters of objection while local politicians spoke against the plans as well (Westall, 2007). Thus a community action group’s strong opposition has evidently proved that a single community group can block the entire project, mainly depending on power and legitimacy.

On this note, we present in detail as Appendix 15 the Addison wind farm in the US as a relevant case study showing how a suboptimal initial community stakeholder management process led to community opposition that ultimately forced the commercial developer to withdraw the proposal and abandon the project. In summary, the negative result and problems caused to the township was due to the developer not properly and sufficiently conducting a community consultation process before making their application. This is in spite of the company’s claims in their website of their
principles and policies in engaging in community dialogue, establishing a cooperative relationship with the community, listening to neighbors, sharing information and ensuring fit of project to the local context (Lawton, 2002).

4.5 Key principles of community stakeholder management

It is imperative that community stakeholder management initiatives, including the key community consultation process, be driven by underlying key principles appropriate for the motivation and objectives of undertaking such a process in the first place. This will also guide the formation of a community stakeholder management approach and strategy that are effective and appropriate to the relevant site context. Therefore in this section we set out to explore the related principles as propounded by governmental policies, industry guidelines and practitioners.

The UK government sets out the following operational principles for community involvement:
- Community involvement that is appropriate to the level of planning
- Front-loading of involvement - community involvement policies should provide opportunities for participation in identifying issues and debating options from the earliest stages
- The methods used to encourage involvement and participation should be relevant to their experience
- Clearly articulated opportunities for continuing involvement - the process should allow local communities to continuously see how ideas have developed at the various stages, with effective feedback. A ‘tick box’ mentality, which regards community involvement as simply a process step to be ticked off, is not acceptable.
- Transparency and accessibility
- Planning for involvement - community involvement should be planned in from the start of the process for plan preparation

(Source: ODPM, 2004a)

The BWEA has issued best practice guidelines tailoring to consultation for offshore wind energy developments. According to the BWEA, some onshore wind energy developments have attracted significant opposition for a range of reasons, and inadequate consultation with stakeholders may have been a factor in some cases (BWEA, 2002). The main purpose of these guidelines is to prevent this from happening to offshore developments. In summary, these guidelines explain that:
- Early, transparent, comprehensive and well-prepared consultation with a wide range of stakeholders (including those immediately affected by developments, those with wider strategic interests, and those involved by virtue of their statutory roles or political positions) is essential to identifying generic and site specific issues raised by offshore wind energy developments
- Interactive dialogue with stakeholders is the best way to find lasting and widely acceptable solutions to any concerns, to disseminate information, to identify gaps in current understanding and further research requirements, and to explain how stakeholders’ concerns may have already been recognised by developers. The end result should be to establish areas of common agreement and understanding, and to prevent, as far as possible, future conflict between developers and local communities or other interest groups
- Effective consultation can contribute to the success of developments by tapping the ideas and local knowledge of stakeholders, and also give them a sense of the positive benefits they can bring.
- The use of independent professional facilitators should be considered for stakeholder consultation.

Auswind acknowledges the importance of consulting with community groups at the earliest possible stage to ensure the local community is well informed about the project and is able to provide input into its development. A key feature of a well-developed project is the provision of opportunities for a timely and meaningful public involvement, realizing that there will inevitably be a range of public attitudes towards any wind energy development and these views should be considered in the design and development of wind energy projects (Auswind, 2006:18).

Auswind also proposes that a consistent approach to arrangements and communication strategies with landowners should be adopted by developers to appropriately manage the expectations of landowners and other stakeholders (Auswind, 2006:26). Prescriptions of how such strategies can be best developed in the various circumstances are not delved into. As a responsible and accountable corporate citizen, any changes to the original design during the evolution of the project should be regularly communicated and discussed with stakeholders in a timely fashion, including any plan to withdraw from the development (Auswind, 2006:39).

According to the World Wind Energy Association (WWEA), developers should demonstrate that their proposed development as a recommended renewable energy initiative is sustainable and of a net benefit to the community. To facilitate this, early engagement with relevant stakeholders on the comparative benefits of feasible options is recommended (WWEA, 2005:7). WWEA proposes that the reason for a comprehensive stakeholder consultation and participation process is to mitigate the risk of community opposition or loss of support for the project. Broad community acceptance of a wind farm project, particularly in its early phases, will greatly assist in its successful implementation (WWEA, 2005:21).

Broadly, WWEA recommends in their Sustainability and Due Diligence Guidelines the following principles for the developer to achieve community acceptance (WWEA, 2005:21):
- providing affected communities with identifiable benefits, such as local ownership
- stakeholders and impacted communities should be identified and provided with the opportunity to have informed input into the decision making process
- minority and/or vulnerable groups should be specifically identified and steps taken to ensure that they are adequately represented in any consultation process
- utilize local knowledge of communities and stakeholders
- utilize local resources in the development and operation of the project
- communities that will be affected should be compensated for their loss
- developer should be open and transparent
- a process should be developed to effectively deal with community queries and complaints

WWEA’s guidelines do not outline specific methods to achieve project objectives according to the principles above. Hence there is also no overall guidance on the strategy to manage the various groups of community stakeholders.

According to the NWCC, a key feature of a successful permitting process is providing opportunities for early, significant, and meaningful public involvement. The public has a right to have its interests
considered in permitting decisions, and without early and meaningful public involvement there is a much greater likelihood of subsequent opposition and costly and time-consuming administrative reviews and judicial appeals. Developers are advised to consult with potentially affected or interested persons (including all relevant permitting agencies or authorities early during planning) and giving them the opportunity to comment before proposals are submitted for permit approval (NWCC, 2002:15).

The Planning and Development Manager of an Australian wind farm developer considers keeping stakeholders informed of the facts in order to dispel myths regarding wind which are still widespread, as the key principle in managing community stakeholders. It is also vital to keep stakeholders happy with the consultation being undertaken, such as by addressing and incorporating their views or concerns into the project plan or design. In the same vein, based on our interview with the development project manager at RES Skandinavien it is mentioned that the basic principle is to give what the community requires as determined through the consultation process and incorporating their views on the project to the point that is still feasible and flexible. He suggests keeping an open dialogue to get stakeholders to understand what the developer is conveying. On the other hand, it gives the developer the opportunity to incorporate local knowledge and expertise that are valuable to the project (e.g. where they should build roads considering weather conditions in particular seasons). Therefore community consultation should be broadly undertaken at an early stage so that project plan and design remain adjustable.

There could be many motivations for planning for a project that is as beneficial to all stakeholders as possible, but RES’ development project manager summarizes his motivation by the following statement: “When you are working with a good thing, you should work in a good way”. Academically, this comment is highly related to the normative aspect of stakeholder theory as propounded by Donaldson & Preston (1995). However, he also says that it is interesting that such an environmentally friendly endeavor such as wind farms are subjected to more stringent application considerations compared to other infrastructures that are more harmful or damaging to the environment in general. On one hand the stringent planning requirements are constructive in ensuring a well-planned project is delivered in line with its financial, environmental and social objectives, but on the other hand other infrastructure developments should be made to comply with such requirements as well, if not more stringent ones. This sentiment is also shared by another interviewee, being the Swedish Project Leader with a Norwegian wind farm developer. According to him, official industry guidelines are available from cooperation of wind power producers and the local and national government. In addition, there are also guidelines towards the protection of indigenous people and the stringent Swedish environmental regulations that may be relevant. But he says other than that, there is a lack of specific laws and thereby wind energy projects are considered as harmful to nature and treated like mining and other major industrial projects. Being classified as harmful, wind energy projects face considerably high demand of considerations from environmentalists and permitting authorities. Moreover, the Project Leader also offers that one of the key principles is to take all considerations to make the project design less “harmful” but still economically viable to undertake the investment, suggesting a normative stance to stakeholder theory as well, referring back to Donaldson & Preston (1995)’s propositions in the literature review.

Meanwhile the environmental engineer at a Swedish wind farm developer states that the key principles in managing stakeholders are to include them in the planning process at an early stage, maintaining flexibility to change project plans and accommodate community requests, and providing opportunities for those who are interested in owning a part of the project.
As a key principle to the Director of Projects with a UK-based wind farm developer from whom we also received feedback from, there must be informed consultation with the community, as consulting too early without the necessary answers can cause concern and make consultees lose trust in the developer. This opinion is similar to BWEA’s recommendation on delayed widespread community consultation until after affirming internal preliminary feasibility studies, conducive initial environmental assessments, discussions with LPA and settling land agreements.

Interestingly, the protocol on public engagement for wind farm development projects in England prescribes that an effective public engagement process should ensure that debate focuses on the issues which are principally matters of opinion (e.g. the balance between the project’s benefits vs. landscape impact) rather than those where there are testable facts (e.g. noise above background at various distances from the proposed site, or shadow-flicker impacts) (Centre for Sustainable Energy et al, 2007a:26). Regulations that govern these verifiable parameters would normally exist in each country’s infrastructural development framework, and any opposition against legally accepted measurements of these criteria would usually be deemed illegitimate even if judicial appeals were made. In support of this circumstance, we have feedback from project managers predominantly speaking in the Swedish context that given that government and court approvals (given appeals are made) are obtained, they would proceed with construction despite prevailing local community opposition.

According to the development project manager at RES Skandinavien, a large project they were proposing incurred the concerns of a local group of hunters over the effect of access roads on their hunting activities and area. Although the project design was changed in order to take into account their concerns, this was done only from the motivation of being a good corporate citizen and also for the general improvement of the proposal. The project manager notes that RES would still get the relevant permits to build the wind farm even if they did not talk to the hunters or change the plans according to their views. Therefore the project manager surmises that the local community’s point of view alone cannot affect the permit decision, as it is made upon “reality”, being technical facts such as grid connection, wind speed suitability and noise limits (rather than what the community would think about whether it is noisy or not). This is in line with the English protocol on public engagement’s stand above. In light of the local community protests faced by the Botnia pulp mill case in Uruguay, the project manager is of the opinion that occurrences where permit authorities reject the application due to community opposition or more dramatic protests such as roadblocks and demonstrations would not happen in Sweden. Hence he regards the satisfaction and proper management of community stakeholders as very important to the success of the project, but not critical. This is similar to the response we received from the Director of Projects of a UK-based wind farm developer.

On the other hand, another respondent, the project manager of a large offshore wind farm Sweden thinks that the management and satisfaction of community stakeholders is a critical element to the success of a wind farm development project. Therefore she suggests that the first and most important principle is to be open about the project right from the start. The underlying technique to act on this principle is by open dialogue where every person gets to express his/her views and providing a forum to respond to peoples’ wishes, questions and/or demands. She believes that if all stakeholders can feel that their points of view are acknowledged, then any problem tends to get easier to overcome. This recommendation for open dialogue is in line with that of Richards (1992, in Lidskog, 2005) in the literature review.
The recommendation for focusing the community consultation process on matters of opinion rather than testable facts is best exemplified by the Horse Hollow wind farm case with US-based FPL Energy as developer. The Horse Hollow Wind Energy Center is located on approximately 47,000 acres 20 miles southwest of Abilene in Taylor County and Nolan County, Texas. The facility consists of 421 wind turbines developed in three phases during 2005 and 2006 for a total wind farm capacity of 735 MW. A lawsuit filed by 11 plaintiffs representing a total of 18 landowners claimed that the wind farm would result in a condition that would substantially interfere with the plaintiffs’ private use and enjoyment of their property. Noise from the wind turbines was cited as one aspect of the nuisance condition. To investigate the claims, a comprehensive sound monitoring program was to determine the sound levels associated with the wind turbines at the plaintiffs’ houses. Results from the program were presented as part of expert witness testimony during the trial. Through the use of applicable noise criteria, the program demonstrated that sound from the Horse Hollow Wind Energy Center does not create a noise nuisance condition. Following Texas law, the judge in the case threw out plaintiffs’ claims that the turbines were a visual nuisance. Texas case law states: “The law will not declare a thing a nuisance because it is unpleasant to the eye, because all the rules of propriety and good taste have been violated in its construction nor because the property of another is rendered less valuable, nor because its existence is a constant source of irritation and annoyance to others.” The ruling left jurors to question only whether sound generated by the turbines amounted to a nuisance. A 12-person jury heard the evidence and agreed, finding in favor of the developer (case from Cox, 2007; and O’Neal & Lampeter, 2007).

The controversial Cape Wind offshore wind farm project in Nantucket Sound, consisting of 130 turbines with total generation capacity of 450 MW, remain plagued with both strong support and opposition from the local and wider community. Whether the same outcome following the Horse Hollow case would arise from the debate or battle between both sides here would remain to be seen. Even if given all approvals obtained authoritatively and judicially, the risk of continuing retaliation and protests that can hinder the project as it moves into construction and operations, such as experienced in the mentioned Botnia cellulose pulp mill plant case in Uruguay, remain prevalent. Moreover, Cape Cod where the project is sited contains a relatively high emotional, visual and touristic value (as found in the empirical study by Kempton et al., 2005) and this could prove a difference in outcome especially if it falls into a category of overriding criteria (with others such as national defense objection or special nature or historical conservation value sites) that should disqualify the site upfront from development. In such case, the developer in consultation with the LPA should have identified this or at least foreseeable issues from this aspect from the start.

E.ON is the world’s largest investor owned electricity and gas company and already operates more than 20 wind farms across the UK, both offshore and onshore (E.ON, 2007a). The company is involved in the planning and development of what would be the world's largest offshore wind farm, which will consist of 341 turbines and occupy a site of 90 square miles off the coast of Kent in southeast England. The project has been given the go-ahead by the government and should be ready to provide clean power for a quarter of London's homes by 2010. However, costs have soared while the London Array project has been delayed 18 months because of local opposition to an electricity sub-station near Faversham. The developing consortium led by energy giants Shell and E.ON admit that the biggest hurdles have been overcome after it gained permission for the offshore side of the scheme and also for it to proceed with the construction of a sub-station that was subject to a challenge and a protracted planning inquiry. The local Swale borough council, backed by local residents, voted against the scheme, but a planning inspector recommended to the government that it should get the go-ahead. The London Array also had to overcome earlier opposition from the RSPB by making changes to a scheme which could have threatened the red-throated divers that
occasionally winter in that part of Kent (Macalister, 2007). Thus despite the opposition from the local council and residents, the project still gained approval and will seemingly proceed with the next phase. How the project will fare moving forward remains an interesting case for observation.

There are two comprehensive studies done by Hinshelwood & McCallum based on the Awel Aman Tawe community wind farm project in Wales. Recommendations by the authors from this case, although not accurately reflecting the developer-led model per our thesis focus, are applicable to developers in managing the local community as stakeholders in planning and implementing a wind farm project.

The underlying issues with regards to community management relate to the effective and efficient dissemination of information to the community, structuring for community involvement, determining the criteria on which people judge the project, checking if people’s opinions have changed over the course of the consultation and ultimately, whether there are enough support and conditions satisfied for the wind farm to go ahead (Hinshelwood & McCallum, 2001b:8).

Whether the project is favored or not is determined by how it measures according to the set of criteria used by people to judge it. Different people use different criteria, and have different levels of expectation from projects. It was found from interviews with the community that the people’s main sets of criteria in assessing the Awel Aman Tawe project were (from Hinshelwood & McCallum, 2001b:37):

- the potential threats of the wind farm to local livelihood, such as:
  - Threat to local environment: Noise; visual impact; negative effects on wildlife (mainly birds)
  - Threat to local economy: Drop in house prices; threat to farming (loss of land / damage to livestock); loss of tourism, loss of businesses moving out as a result of the turbines
  - Threat to recreation and leisure: Loss of access to the mountain; interference with TV reception; danger to horses; potential to hit people as they walk on the mountain
  - Threat to health: Trigger epilepsy; mechanical safety; electro-magnetic radiation; psychological problems
  - Threat to community: Wind farm could divide community; people may leave the area; people may not move into the area
- whether the people involved are trustworthy
- opportunities for the wind farm to benefit the local area
- environmental factors
- the consultation process itself

Hinshelwood & McCallum (2001a:21) have outlined the following key aspects in defining a consultation strategy:

1. Integrate the social and technical aspects from the start
2. Involve experienced community practitioners in the development and implementation of the strategy
3. Identify the objectives for the consultation
4. Identify the main activities and methods for the consultation
5. Identify the informational requirements
6. Identify the logistics for the consultation
7. Identify the constraints and obstacles to the consultation process
8. Identify the process for feeding ideas into the RE scheme itself
9. Identify the indicators for evaluating and monitoring the consultation
10. Develop a schedule

In choosing a combination of methods for approaching and addressing the community as stakeholders in the development, Hinshelwood & McCallum (2001a) call for these basic principles to be adhered to:
- Ensure range of methods contribute to the three directions of communication flow: i.e. downwards (dissemination by developer), horizontal (facilitate discussion amongst people with their peers) and upwards (participation from community)
- Ensure combination of methods can meet objectives both in terms of who is consulted with and what information is fed into the overall project
- Ensure methods are achievable both logistically and financially, and within planned time period
- Tailor use of methods carefully to the needs of the project, local context and different groups

4.6 Community consultation process

Community consultation is a key process for community stakeholder management in projects. At this point of the research it is appropriate to clarify on the stages and activities encompassing the community consultation process in the early stages of a typical wind farm development project prior to permit application, from the perspective of industry guidelines, policies and practitioners’ feedback from interviews conducted. These findings will facilitate the strategizing and selection of appropriate consultative methods and techniques (to be studied in the next section) bearing in mind the key principles of community stakeholder management as earlier discussed.

Table 5 below outlines BWEA’s proposed stakeholder consultation processes as published in their best practice guidelines:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Process / activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I: Starting the consultation process</td>
<td>• Identify those who will lead the consultation process: usually one contact from the developer. If possible, however, (and taking into account constraints on time and resources) it is much better to create a core group of key stakeholders (who will vary from place to place but need to be able to reflect local and regional opinion) and project managers to meet regularly throughout the consultation process and make the key process decisions required • Identify stakeholders and do an initial scoping of the issues, probably also clarifying which issues are important to which stakeholders • Plan and design the consultation process, agreeing objectives and outputs, techniques, key events, timing, resourcing (including budgets) and co-ordination with other statutory or non-statutory processes • If and when meetings are required, draft invitations and indicate an individual with whom stakeholders can liaise. Who sends the invitations and ‘hosts’ events may vary: it may be the developer,</td>
</tr>
<tr>
<td>Stage</td>
<td>Process / activities</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>the local council, a local coastal partnership, or sometimes an independent body such as a local college</td>
</tr>
<tr>
<td></td>
<td>• Decide and prepare presentations and documents for distribution before or during meetings, and agree administrative and logistical preparation: efficient logistics helps build confidence in the process</td>
</tr>
<tr>
<td></td>
<td>• This stage may take several meetings or it may be done by telephone and e-mail. Invitations to meetings need to go out 3-6 weeks before events; notices of public meetings need to be published about 3 weeks ahead and then repeated a day or two before the event. All stakeholders who respond to invitations or notices of meetings need to be re-contacted before meetings.</td>
</tr>
</tbody>
</table>

**Stage II: Listening and learning**

|       | • Some consultation processes involve no more than one or two meetings; others last much longer and involve sequences of large, main group meetings and several working group processes: it all depends on what the situation and the stakeholders require. |
|       | Stakeholder input to the EIA process should: |
|       | • Identify strategic and local sources of information on which the developers can draw, remembering that locals can have traditional but sound and valuable knowledge that may be unavailable from formal sources |
|       | • Confirm or amend the environmental description of the development: stakeholders should be consulted about what is being assessed and whether they agree with the conclusions reached |
|       | • Agree the baseline studies: local as well as strategic stakeholders should be invited, to ensure that issues of local interest or importance, of which the developers may not be aware (such as traditional rights or historic sites), are included |
|       | • Evaluate possible mitigation and compensation measures – whether they think the developers’ proposals will be effective in the local situation |
|       | • The methods used at this stage should be as interactive as possible, and developers will need to supply stakeholders with detailed information about proposals. The information must be presented in a way that is accessible to non-technical people, but does not sacrifice accuracy for accessibility. |

**Stage III: Monitoring of the consultation process, evaluating, and maintaining contacts**

|       | • Identify techniques that ensure the consultation objectives have been met |
|       | • Some sort of core group or even a wider group of stakeholders will continue to meet periodically during the entire lifetime of the project, so that if any new concerns or fresh opportunities should arise there is immediately a forum in which to discuss them. All consultation processes need to be cyclical and iterative rather than linear |
|       | • Regardless of method, ask stakeholders open questions so that they can define the issues as they choose. |

(Source: BWEA, 2002:13-15)
We feel that the stages of the stakeholder consultation process above are generic and logical enough to represent most similar processes. Regardless of the specific description or activity of each stage, the UK’s ODPM asserts that at each of these stages the community must be kept informed and given opportunity to participate in debating options and help mould proposals before they are settled (see the Clyde wind farm case brief above). The Companion Guide to PPS 22 recommends that in order to maximize the use of resources, the LPA and umbrella groups can be contacted in the first instance, who can then allocate resources and disseminate information to their members (ODPM, 2004c).

Meanwhile, there is a high emphasis by the protocol on public engagement for wind farm development in England jointly commissioned by the Renewables Advisory Board and DTI (now the Department for Business Enterprise & Regulatory Reform or BERR), on preparing a stakeholders engagement plan in discussion with the relevant LPA. It includes identification of relevant stakeholders, their point of contact, setting engagement milestones and processes including range of methods to deployed, clarifying the nature and scale of local and wider benefits, EIA requirements, and the reporting and review process of the engagement plan (Centre for Sustainable Energy et al, 2007a). The protocol also asserts that the contents of the engagement plan and examination of local benefits in consultation with those who are locally relevant should be conducted at an early stage, while maintaining a high level of communication, information dissemination and feedback with the local community and other stakeholders. ‘Early’ refers to the period of time when the design of the development is being evolved and when it is still possible to address valid issues raised by stakeholders. In other words, well before the planning application is submitted and before the completion of any Environmental Statement (ES) (Centre for Sustainable Energy et al, 2007a:39). The developer should also make clear that participation with these processes is in no way an indication of support for any application in order to draw out opposition and concerns (Centre for Sustainable Energy et al, 2007a:10).

Meanwhile, arising from the Awel Aman Tawe experience, Hinshelwood & McCallum (2001a) exemplifies with following illustration of consultation activities and methods matching with the phases of a wind farm project (could involve a community consultant in activities):

<table>
<thead>
<tr>
<th>Phase</th>
<th>Consultation activity</th>
</tr>
</thead>
</table>
| 1: Identification of a site | • Identification of local community  
• Development of consultation strategy  
• Community audit of facilities, services, boundaries, factions, etc. |
| 2: Intermediate (unlabelled) | • Initial information dissemination and awareness raising throughout the area (e.g. leaflets, posters, information packs and letters to community groups and facilities). Key groups and local figures identified are approached  
• Press release in local papers  
• Prepare the ground for a full consultation |
| 3: Project feasibility | • Full consultation (e.g. press release, series of presentations, open days, establishment of local base to respond to queries)  
• Define majority views regarding location, size and power output  
• Identify main concerns (e.g. maintain contact book, database of residents and concerns) and disseminate further information regarding these  
• Development of community committee and identification of role |
### Phase Consultation activity

<table>
<thead>
<tr>
<th>Phase</th>
<th>Consultation activity</th>
</tr>
</thead>
</table>
| 4: Preparation of statutory documents for planning application | • Continued contact with interested parties, community committee and key personnel  
• Dissemination of plans to community (e.g. via newsletter) |
| 5: Planning application | • Continued contact with interested parties, community committee and key personnel  
• Dissemination of status and results of planning application  
• If appropriate: develop strategy for appeal or public inquiry |

(Source: Hinshelwood & McCallum, 2001a:23-25)

In the Irish Wind Energy Association (IWEA)’s best practice guidelines, during site identification and preliminary assessment in the feasibility studies stage, IWEA advises that county development plans and national planning policies should be studied, and informal discussions held with local planning officers at an early stage as the elimination of unsuitable sites at this stage can avoid the spending of time and money on sites which have little chance of obtaining planning permission or may involve foreseeable opposition that will be too impractical or costly to manage. Initial environmental considerations are hence important at this stage to assess site feasibility and assist proper planning of the project. Regarding visual impact of wind turbines, whether they are visually obtrusive or not depends on the location, size, number, layout, design and color of the turbine, as well as the subjective perceptions of the viewers. It indicates that the preparation of photomontages and polling for the general opinion of the local and nearby community including interest groups such as frequent tourists through some form of survey technique is useful to gain insight on this aspect from an early stage (we interject here to highlight the potential issues of polling for public opinion too early or prematurely, as raised in the EWEA discussion above). The IWEA even claims that proper wind energy development may significantly increase tourism in an area (IWEA, n.d.:5). Turbines should be sited far enough from houses for noise emissions and possible shadow flicker from revolving blades not to be a nuisance and the appropriate distance can be guided by reference to local planning regulations, legal noise tolerance limits, noise measurement tests and asking for the opinions of surrounding dwellings. Ecological effects such as existence of sensitive habitats and species should be considered. Any interference on telecommunication channels are generally predictable, and usually easily avoided by measures such as considering the existence of nearby telecommunications facilities and informing the air and sea navigation authorities about the development (IWEA, n.d.:6). Bird migration routes and mitigation of any risks should be taken into account until the risks are reduced to an acceptable level.

Given the expense of a full, formal Environmental Impact Assessment (EIA), a less detailed environmental impact report produced by the developer should suffice for smaller developments in locations where no serious environmental effects are anticipated, provided that it is also acceptable to the local planning authority (IWEA, n.d.). EIA is a process intended to ensure that permissions for developments which are likely to have significant effects on the environment are granted only after prior assessment of the likely significant environmental effects has been carried out (Centre for Sustainable Energy et al, 2007:a). However, the Centre for Sustainable Energy et al (2007a:9) notes that significance is not necessarily linked to size, so LPAs and local communities are likely to consider even quite small wind energy projects to be ‘significant’ and push for involvement. Thus the right balance through wide consultation and also not taking small developments for granted would be recommendable for developers in new proposed sites.
Auswind separates a wind farm project into two general phases, being site planning and site operations. Within site planning, each of the four stages of site selection, project feasibility, project detailed assessment and development application are generally explained in terms of technical, environmental, and communication and consultation aspects. In the site selection stage, proponents (being the project manager or developer) should take particular notice of important public viewpoints and areas such as roads, lookouts and townships that will potentially have a view of the development, and should anticipate the impact that the project will have on these. Early dialogue with the community and interest groups should enable the proponent to become aware of the local landscape values that members of the community and special interest groups value, while reducing many visual amenity issues that may arise during subsequent stages of the development. Initial assessments of dwellings surrounding the site should be undertaken either by aerial imagery or by driving around the area and recording house locations with a hand-held GPS, for later assessing any potential noise, shadow flicker and visual impacts of the wind farms (Auswind, 2006:23). Discussion with existing landowners and planning authorities should also involve future developments in the area as wind farms usually can have lifetimes greater than 20 years. The rural fire service is a community-supported organization that should be consulted early in the development process to determine agreed fire management actions (Auswind, 2006:18).

According to the protocol on public engagement for wind farm development in England; being similar to the protocol for Wales, the development of a wind energy project can be delineated to four phases: site selection, pre-application, post-application and post-consent (encompassing construction, operation and decommissioning). In order to effectively plan an engagement process, it will be necessary for the developer to have already identified a potential site. It is only at this stage that the dimensions of the development and the range of stakeholders can be identified and consequently an appropriate engagement process designed (Centre for Sustainable Energy et al, 2007a:36). Again, there arises an ambiguity here as to when exactly a full initial community engagement process should be carried out – after internal site identification?; after initial discussion with LPA?; before or after initial environmental assessment?; before or after testing of site conditions? As mentioned, this first contact step has the potential to create many issues and goes as far as determining the support and opposition to the project later on as opinions and feelings build on the local front without sufficient information and official channels for communication and discussion. The protocol does not explicitly recognize this potential issue.

At the onset of developing the engagement plan with the LPA, the protocol on public engagement for wind farm development projects in England advises developers to:

• Consider what networks will be most effective for disseminating information:
  - which local papers are well read
  - which local notice boards are always looked at
  - the availability of parish newsletters
  - whether there are local leaders
  - whether there are groups that are particularly hard to reach and if so how best to reach them

• Consider community structures, geography of the area, the economic climate and the current concerns of local communities

• Consult local intermediary bodies such as Parish Councils and Rural Community Councils (RCC’s) that can help the developer to understand the various interests in the area and to find other community organizations
• Establish a clear and well-linked contact to liaise with public and other stakeholders, while encouraging identified stakeholders to do so as well
• Consider, with statutory stakeholders such as the LPA, the need for independent facilitation (‘honest brokers’), and who and how best to engage such services if needed in consideration to costs involved (usually to be borne by the developer).
(Source: Centre for Sustainable Energy et al, 2007a:37-39)

This is similarly put forward by the UK’s South West Renewable Energy Agency’s protocol.

Meanwhile, the NWCC has also outlined some responsibilities for the relevant permitting agency (local, state or federal) with regards to public involvement, including addressing complaints and notifying potentially affected persons (e.g. adjacent landowners and the community at large) at the time of filing to inform them that a permitting process is beginning and describing how they can participate, through convening public information meetings at the beginning, workshops and sending copies of any analyses or pre-decision documents to affected or interested persons and requesting formal comments. In planning for potential wind energy development or reviewing a proposed project, the NWCC highlights that permitting considerations may include impacts and benefits associated with any or all of the following: land use, noise, birds and other biological resources, visual resources, soil erosion and water quality, public health and safety, cultural and paleontological resources, solid and hazardous wastes, and air quality and climate (NWCC, 2002:21). Thus the onus on local community engagement or consultation does not only lie with the developer but to some degree with the responsible planning authority as well, although the LPA usually delegates most of these activities as requisites to the developer, while the ultimate reputational and financial costs that may arise from highly opposed, rejected or problematic proposals are borne mainly by the developer.

A key finding or validation from the Awel Aman Tawe wind farm project in Wales’ consultation process was that people’s opinions were formed substantially by their awareness of renewable energy and wind farms, by their confidence in the project’s ability to provide opportunities for the area, and by their own local context and informal networks (Hinshelwood & McCallum, 2001b:iv). The authors further assert that the importance of local context and past experiences (with similar industries or structural developments) should be recognized, and that social and informal networks can be a valuable route for information dissemination and forums for discussion, while the failure to properly manage this can result in fast widespread unfavorable opinions and opposing alliances forming regardless of being based on comprehensive and accurate information or not (Hinshelwood & McCallum, 2001b).

It should be noted that the broader assessment of public opinion than that measured by written representations and public meeting attendance should be taken into consideration and if it is found that the majority of the local community are still strongly opposed to the development, it should not go ahead (IWEA, n.d.:12). From this concluding point, it seems that the IWEA is of the opinion that community acceptance or support of the development is critical to the successful implementation of the project and it should not proceed further beyond consultation during the planning stage if there is found to be general opposition from the local community to the proposal. The World Wind Energy Association (WWEA) echoes this point from the other perspective of initial internal evaluation of the situation and corporate social responsibility, by asserting that projects that present significant threats to vulnerable social groups should be avoided if the threats cannot be mitigated
(WWEA, 2005:10). Threats to society and the opposition that manifests may be connected, although not always necessarily depending on the legitimacy of the opposition.

Though an inclusive approach is needed for effective involvement with all the different groups, it is however not about giving a free hand to unrepresentative vocal groups to block development irrespective of the case for it, nor is it about talking to a few, favored organizations. However, it would be unrealistic to think that all sections of the community will be completely satisfied by all plans and planning decisions all of the time (ODPM, 2004a:5).

4.7 Methods & techniques for community consultation

To recap, in the preceding sections we have discovered more from research about who industry guidelines and practitioners view explicitly as the common community stakeholders, the processes to identify them in each project context, the overarching policy and governance regime applicable to wind farm developments (usually country-centric), learned about the common community concerns and cases of opposition, common key principles of community stakeholder management prescribed in practice and what industry sources explain as the stages and activities within the community consultation process. Perhaps at the most practical level now, we hereby study the methods and techniques applicable for community consultation, as found and recommended by industry sources including best practice guidance, case studies and several practitioners’ direct input.

On a strategic level, there are four degrees of public engagement based on the level of participation to be accorded to the public, being inform, consult, involve, collaborate or empower. Please refer to Appendix 16 for a graphical depiction of these levels of engagement. These details are also proposed by the South West Renewable Energy Agency in their public engagement protocol, to be examined later. Meanwhile, in studying the experience learned from the Awel Aman Tawe community wind farm project in Wales, Hinshelwood & McCallum (2001b:83) describe the levels of local community involvement as consultation, benefits, decision-making and ownership & management. The increasing levels of participation are found to be similar despite the different associated descriptions. More importantly, the authors assert that care should be taken when developing a consultation strategy to be clear about the level of involvement and the process by which that involvement should take place.

Table 7 overleaf shows the typical planning phases of a wind energy development project and corresponding considerations with regards to the local environment and community as put forward by the BWEA in their Best Practice Guidelines for Wind Energy Development.
Table 7: Environmental & community considerations during project planning

<table>
<thead>
<tr>
<th>Wind energy development phases</th>
<th>Environmental considerations</th>
<th>Dialogues / consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Site selection</td>
<td>Initial environmental analysis covering: planning framework, landscape classification, visual effects, ecology, archaeology, recreation and telecommunications</td>
<td>Preliminary consultation: local planning authority and major consultees</td>
</tr>
<tr>
<td>(2) Project feasibility</td>
<td>Agreement with local planning authority the scope of the environmental assessment to be conducted in Phase 3</td>
<td>Start of public consultation: introduction of project to local communities and interest groups.</td>
</tr>
<tr>
<td>(3) Assessment</td>
<td>Preparation of statutory environmental assessment (if required by local planning authority)</td>
<td>Continuing consultation: local planning authority, statutory consultees, local communities and other interest groups</td>
</tr>
<tr>
<td>(4) Planning application</td>
<td>Submission of planning application and Environmental Statement (if required by Local Planning Authority)</td>
<td></td>
</tr>
</tbody>
</table>

(Source: BWEA, 1994:3)

Each phase leading up to planning application is hereby further examined in detail. For the **first phase of site selection**, BWEA (1994) lists the following initial activities to assess the environment of the potential site:

- Assisted by studies of existing data e.g. relevant published information from the local planning authority and other organizations
- Looking at reports and maps of the area in order to determine specific technical or environmental issues
- Have regard to existing and emerging national, regional and local planning policies
- Landscape classification e.g. protected natural habitats, special interest areas, heritage areas, national parks
- Proximity to dwellings, in consideration of noise, shadow flicker, visual domination or reflected light
- Ecology, considering existence and mitigation of impact to seasonal or all-year round protected species
- Identify listed buildings, conservation areas and archaeological sites information from district councils
- Telecommunications e.g. microwave, TV, radar or radio transmissions. In most cases, technical problems can normally be resolved.
- Civil and military airports. For sites close to airports, the CAA or relevant airport authority should be consulted.
- Consider Ministry of Defence firing ranges, radar or communications

The Irish Wind Energy Association (IWEA)’s best practice guidelines present similar recommendations for site selection and preliminary assessment. Additionally, IWEA suggests that informal discussions should be held with local planning officers at an early stage as the elimination of unsuitable sites at this stage can avoid the spending of time and money on sites which have little chance of obtaining planning permission or may involve foreseeable opposition that will be too
impractical or costly to manage (IWEA, n.d.). Interestingly, IWEA claims that proper wind energy development may even significantly increase tourism in an area (IWEA, n.d.:5).

Meanwhile, Auswind recommends that the impact on local ecology including protected species of flora and fauna and migratory bird routes be investigated through enquiry to the relevant state agency, by search of state databases, literature search, initial field survey or by use of an appropriate consultant. The potential engagement of relevant consultants during the site selection and feasibility stages should be considered, including for the purpose of peer reviewing work undertaken in-house (Auswind, 2006:24). Most of the other environmental considerations such as recreational and conservation areas, telecommunications, aircraft safety and restricted areas have been considered by BWEA’s best practice guidelines.

During this site selection phase, the preliminary internal research on the technical, social, environmental and infrastructural characteristics of an area from various sources of published data such as the LPA, other organizations, maps, reports and other documents are termed desk-based study by two respondents we interviewed.

Initial community consultation involve initial discussions with officers of the local planning authority and statutory consultees to identify and agree potential issues to be addressed, and consider approaching other consultees such as those suggested by the local planning authority. The level of consultation is kept high and restricted to mainly the planning authority as the BWEA cautions that “at this speculative stage, it would not be appropriate for developers to start a broad process of local public consultation as this may cause unnecessary concern or excitement about a proposal which may transpire not to be practicable” (BWEA, 1994:5). This is supported by the European Wind Energy Association (EWEA) as well.

Most of the European Wind Energy Association (EWEA)’s recommendations in their best practice guidelines are in line with those of the BWEA’s. However EWEA prescribes for public opinion surveys to be conducted early in the project and thereafter regularly through operation to assess public sentiments regarding the proposal or project. This is said to lead to the development of more appropriate and effective strategies to manage community stakeholder groups. However, we are uncertain about the effect of taking such an early point to conduct the public opinion survey without sufficient general wind energy and project information being disseminated yet. On one hand it is useful indeed to know the baseline opinion, but however these opinions may be prematurely formed from the sudden prospect and based on insufficient information as well. Worse still, the effect on first impressions can lead to sentiments being ‘concretized’ unnecessarily and unfavorably at the start, which is the scenario developers would want to avoid. As stated by the Director of Projects of a UK-based wind farm developer whom we received comments from, ‘informed consultation’ is a key principle to for successful community engagements.

Though on one hand there are advices (e.g. BWEA and EWEA) to not begin full community consultation whilst the project remain at a highly speculative stage in order to avoid unnecessary concern or excitement about a proposal which may or may not proceed, Auswind recommends that discussions with local landowners and the community begin at the earliest possible stage, including formal written arrangements with landowners and visiting immediate neighbors. When and what conditions that this ‘earliest possible stage’ represents are not explained in the guidelines. All our interview respondents also support early community consultation, with varying or unelaborated definition of when and what conditions would constitute their meaning of “early”. One interviewee in particular says that his company starts approaching the community and disseminating
information about the project once preliminary assessment is finds the site feasible. The methods to enable this include sending letters to all stakeholders they have identified to invite them for public meetings and engaging third party consultants for specific priority groups or consideration areas (such as economic activities, biology, archaeology and culture) if necessary.

Meanwhile, the findings from the Awel Aman Tawe wind farm project in Wales specifically advised against the possibility of leakage of information on the project before the start of community consultation. Moreover, how people hear about the project and their first impressions formed factor greatly in either the support or opposition to the project subsequently. According to FPL Energy (the U.S. leader in wind energy generation), “Once we have found the right location, we share information with landowners and others in the community to explain the process and listen to their comments” (FPL, 2007). This gives us the impression that widespread community engagement is only launched after successfully accessing site environment and wind speed, instead of before. Once again in our opinion this could be risky and potentially lead to unfavorable initial impressions conceived by residents and interest groups without sufficient information, leading to stubborn opposition later for the project. Thus managing the seemingly paradoxical aspect of when to start community consultation at the beginning thus seems to be an ambiguous and tricky aspect for developers of potential wind farm projects to properly manage.

The IWEA recommends the local community and other interested parties to be informed about the proposed development before submission of a planning application through means of notices, leaflets, mailings, exhibitions, or others. People to be consulted should include planners, local residents, statutory bodies, environmental groups and others who may have an interest in the proposed development. In addition, there should be a sign on site giving basic information on the proposal. Developers should work with local planning authorities in considering how public consultation may be conducted, particularly the holding of public meetings (IWEA, n.d.). After preliminary discussions and permission from the local planning authority to install a wind measurement mast, the developer should inform the local community about the mast and its purpose before it is installed, by means of notices, leaflets or other means. In addition, the name of a contact person who can provide information on the development should be made available (IWEA, n.d.:7). It is important to tell that at this point it does not mean that a wind farm will be developed and if indeed a planning application for the development is subsequently sought based on favorable site conditions, a consultative process with the community to collect and address their views and concerns will be conducted. Nevertheless general information on wind energy and its potential benefits on the community and environment should be propagated (IWEA, n.d.).

For the **second phase being project feasibility**, the primary environmental consideration entails preparing a scoping document of the environment based on the earlier phase’s assessments and undertaking preliminary survey work to identify environmental sensitivity if little or no published data is available for the site.

Dialogue and consultation with non-statutory stakeholders including the local community and other interest groups are commenced and become most intensified in this phase of development. Activities encompass the following (BWEA, 1994:7):

- Start dialogue with the local community about the project early, just prior to erection of the anemometer masts (to establish if study site has sufficient wind for commercial development).
- Identify companies involved for detailed discussions on feasibility of wind energy in specific areas
- Nominate a representative for regular contact during these preliminary studies and a point of contact with a telephone number and/or address
- Notify the local planning authority of intention to study the feasibility of the selected site. Seek details of environmental assessment requirements.
- Work with the local planning authority to consider how the informal public consultation should be conducted and how its results should be taken into account, for example: non-statutory groups (e.g. amenity groups, community organizations, environmental societies, wildlife trusts) and other interested individuals (local councilors, MPs)
- Provide general background information on wind energy to the local community before/during erection of anemometer masts. Describe the purpose of the wind monitoring masts, the likely period for which they will be needed, the environmental and planning studies to be undertaken for the project, and when the results of such studies are likely to be made available.
- Use a variety of methods for getting the info across effectively. Indicate the anticipated size of the proposed project.

Through interview with its project manager, we learn that for the Swedish wind farm planner and developer Svevind AB reference groups serve as the company’s primary contact in the community. There can be one or more reference groups depending on the communities surrounding the proposed development site. On their own, the reference group would convene meetings with the local community to give information about the proposed project on behalf of Svevind, at the same time, the reference group is also tasked to articulate the concerns of the community to Svevind. This is in addition the company’s information drive campaign of handing out flyers, newsletters (including soft copies and other updates on website), and articles in the newspaper.

It is recommended by Ireland’s Department of the Environment, Heritage and Local Government that information on the proposal be circulated to the immediate population whose properties are within approximately 1km of the proposed wind energy development, and to community groups, churches and clubs within approximately 10km radius (Department of the Environment, Heritage and Local Government, n.d.).

During this phase the EWEA contributes that there should be acceptance that there is a range of options for the proposed wind energy project itself (EWEA, n.d.). In principle, the public information provided should give a clear indication of the future stages of the consultation and development process so that individuals will know what opportunities are available for commenting on issues of concern to them. In addition, EWEA recommends that the purposes and plan for wind monitoring tests including the erection of masts should be communicated to the public, while general background information on existing wind energy projects should help answer many of the early local community questions at this stage (EWEA, n.d.:11).

According to the BWEA (1994), for the third phase of detailed assessment, the need for submission of an Environmental Statement (ES) is considered and done if affirmative. The ES should contain sufficient information and discussions on policy framework, site selection (why), designations, visual and landscape assessments, noise assessment (with local environmental health officer), ecological assessment (consider flora and fauna habitats and seasons), archaeological and historical assessment, hydrological assessment, aircraft safety, safety assessment (liaise with Health and Safety Executive or Ministry to identify hazards and assess risk), traffic management and construction, interference with telecommunication systems, electrical connection, economic effects on the local economy (temp or permanent jobs created, value of local contracts), global
environmental effects (estimates of the amount of electricity the project will produce compared to sources causing polluting emissions), tourism and recreational effects, decommissioning, mitigating measures and includes a non-technical summary (NTS). The developer should also be prepared to explain the way in which comments from the consultation process have been evaluated. In addition the WWEA (2005) highlights the option for visitor centers to enhance public acceptance while building on the visitor experience at the facilities towards development of local tourism.

At this point the EWEA also suggests continuing dialogue with both statutory and non-statutory consultees including the public throughout the environmental assessment process, while changes to the original project design should be regularly discussed with the involved parties (EWEA. n.d.:15).

At phase four of submitting the planning application, upon submission to the local or state planning authority the developer is usually required to undertake a formal public notification or advertising process. BWEA and Auswind recommend that the developer co-operate with the local planning authority in printing and circulating, or making available sufficient copies of the application and ES to the public free of charge (e.g. by lodging in the local public library), including a non-technical summary. Depending on the level of community interest, public events should be organized as a constructive forum for the local community to acknowledge support, voice concerns and raise questions. The developer should address any issues raised as adequately as possible and facilitate authorities on further questions and consultations.

BWEA additionally presents a list of potential issues for developers to consider when approaching community stakeholders, as shown in Table 8 overleaf.
Table 8: List of potential community stakeholder issues to consider

<table>
<thead>
<tr>
<th>ECONOMIC</th>
<th>ENVIRONMENTAL</th>
<th>SOCIAL ISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>- effects on employment and the local economy</td>
<td>- Offshore habitats and benthic (seabed) communities</td>
<td>- effects on employment (other than the purely economic)</td>
</tr>
<tr>
<td>- effects on leisure pursuits</td>
<td>- Bathymetry, sediment transport paths, bedforms, scouring, mixing, turbidity. Changes in wave and tidal current characteristics</td>
<td>- effects of environmental changes on local residents (including visual, noise and traffic)</td>
</tr>
<tr>
<td>- effects on marine fisheries and other users of the sea.</td>
<td>- Water quality and pollution incidents during installation and maintenance</td>
<td>- health and safety of the workforce (both at sea and associated land areas), other users of the sea, and local communities and members of the public</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onshore</th>
<th></th>
<th>- sea and air navigation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Coastal habitats and species</td>
<td>- Designated areas and proximity of protected areas</td>
<td></td>
</tr>
<tr>
<td>- Sediment transport, longshore drift, geomorphology, disturbance due to cable landfall</td>
<td>- Fish resources, migration patterns, nursery areas</td>
<td></td>
</tr>
<tr>
<td>- Designated areas and proximity of protected areas</td>
<td>- Birds – distribution, disturbance, displacement</td>
<td></td>
</tr>
<tr>
<td>- Birds – distribution, disturbance, displacement</td>
<td>- Archaeological heritage</td>
<td></td>
</tr>
<tr>
<td>- Archaeological heritage</td>
<td>- Visual impact</td>
<td></td>
</tr>
<tr>
<td>- Visual impact, landscape and amenity value</td>
<td>- Noise, vibration, lighting</td>
<td></td>
</tr>
<tr>
<td>- Noise, vibration, lighting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(For reference: BWEA, 2002:16)

Various techniques and methods that can be applied for stakeholder consultation are listed in the BWEA’s best practice guidelines but no further guidance is provided on the effectiveness and appropriateness of each method or their combinations as strategy to engage and manage community stakeholders in the varying conditions and circumstances along with each unique site. As an overriding criterion for choosing techniques, the more complicated or controversial the situation, the more participative and interactive stakeholder consultation needs to be. However, over-consultation or consultation fatigue and duplication of efforts should be avoided by asking whether identified stakeholders are widely already talking about the issues (i.e. between themselves, different groups and feeding back to authorities and the developer). An interactive stakeholder consultation process may not be suitable when there is no real commitment to it; when all the key decisions have already been made (dressing up as a public relations exercise will only frustrate and antagonize stakeholders); and when there is not enough time or resources (BWEA, 2002:21).

The Kentish Flats offshore wind farm development team held two open public meetings, attracting audiences respectively of 350 and 200, to introduce the project to the local community. The team found this a valuable tool to initiate dialogue, convey progress and inspire support for the project. Although useful for meeting supporters and addressing specific concerns, opponents of the project did tend to dominate question and answer sessions and overall meetings tended to be a poor way to get specific feedback. The team identified leaflets distributed locally and meetings with stakeholder groups such as fishermen and sailors as being more effective at targeting groups with specific

63
concerns. 700 questionnaires returned from 35,000 circulated helped establish key issues for the local community (BWEA, 2002).

Meanwhile, a public exhibition held by the Scroby Sands development team attracted between 350-400 visitors over the two days. The most popular features were the wind farm photomontages and the two large videos projectors that showed footage of installation work at Blyth Offshore and the Danish Tunø Knob offshore wind farms. Many visitors took the opportunity to read the five-volume Environmental Statement in full detail. The development team chose to hold a public exhibition rather than a meeting principally because they wanted people to feel at ease and able to read material at their leisure; the majority of visitors stayed for 40–50 minutes. Another consideration is that it is far easier to organise an exhibition and it also makes it easier for more people to attend than a one-off meeting. A survey carried out among visitors indicated that the majority found the exhibition to be helpful in making their minds up about the project (BWEA, 2002).

The IWEA suggests that the preparation of photomontages and polling for the general opinion of the local and nearby community including interest groups such as frequent tourists through some form of survey technique is useful to gain insight on this aspect from an early stage (we interject here to highlight the potential issues of polling for public opinion too early or prematurely, as raised in the EWEA discussion above).

According to the protocol on public engagement for wind farm developments in England, throughout the development process regular communication should be provided through dedicated newsletters and articles in existing outlets like parish newsletters to effectively secure a wide coverage. Information provided could include the latest information on the proposed development, potential for local benefits, approach to public engagement, response to concerns raised, opportunities for participation, how to get involved and others. Progress of the engagement can be monitored by using brief evaluation forms at organized events and/or checking back with the original aims for any event after its completion. By adopting a ‘no surprises’ policy when dealing with stakeholders, any changes such as technical difficulties, delay or change in scope must be fully communicated together with reasons (Centre for Sustainable Energy et al, 2007a:41).

In its annexure (Centre for Sustainable Energy et al, 2007a:49-51), the protocol lists several methods on public engagement but do not prescribe how the various methods can be combined or utilized in different strategies or approaches customized for different circumstances depending on the site and local community present. Similar to other sources, it seems to support the view that different methods, combination of techniques, and strategies or approaches suit different sites, depending on local site uniqueness and circumstances. This is supported by the development project manager from RES Skandinavien. According to him, different initial approaches for community engagement differs very much from project to project. He says that for some projects that are in rural environments with very few people, it is easy to talk with everybody living there and in the surroundings; while for others such as sites with higher recreational values such as summer cabins will involve different approaches. He as the project manager will determine the strategy to approach each case to create positivity for the project across as many people as possible. For example, public meetings can work for sites with a large community or interest such as in one of their project proposal of 48 wind turbines in a populated commune in Sweden, but in smaller areas this would not be appropriate. Nevertheless, the project manager says that public meetings are usually held to disseminate information, receive views and address concerns. Publicity and invitation to meetings can be achieved by sending letters to nearby residents, putting up posters around the neighborhood.
at some locations, and publishing a note in the newspapers (although he comments that people often do not notice them in newspapers).

In planning the methods appropriate to an area, Hinshelwood & McCallum (2001a:29) suggests the project manager to ask the following questions:
- What will each method achieve?
- Who is likely to participate?
- What can be achieved through the method?
- How will this method contribute to the overall objectives?
- How does it fit into the overall strategy?

When asked if Svevind follows standard guidelines or common best practices in managing stakeholders, the project manager says that they have to abide to Swedish laws and regulations on wind energy development. In addition, the company with the help of its consultant has developed a system for community engagement. This essentially involves approaching people at the very start of the project, formation of reference group/s and “working with feeling” or being sensitive to the will of the people. Aside from involving the community in the planning phase of the project, the project manager also attributes successful stakeholder management to having a good project team. Svevind’s project team that deals with community stakeholder management is a multi-disciplinary team consisting of the project manager, lawyers (for judicial matters), ecologists/other scientist (for environmental assessments) and engineers (for infrastructure/electrical and other technical aspects).

Although being in one of Scandinavia’s largest generator of wind energy, the project manager of the large offshore wind farm in Sweden replied that she is not aware of any standard guidelines or common best practices that the utility company she works at employs for wind farm development projects. Only legal requirements of involving neighbors and authorities are followed. This response indicates that even a large and experienced wind farm developer may realize the unique circumstances of each project and the important role of the project manager in managing it from pre-planning to handover or operations, thus not prescribing any specific rules that would not be universally applicable other than adhering to regulations and the company’s values and principles.

This is similarly explained by the environmental engineer for a Swedish wind farm developer. The way they deal with stakeholders varies a lot between different projects, that is depending on the kind of project and community stakeholders involved. The respondent says that after the initial information meeting, they can get a good idea of where to put their resources. Tailoring to the situation they develop a strategy to manage these different stakeholders after the meeting. As one project is not similar to any other, there is no “standard” solution. Based on the company’s experience, it has been proven that flexibility is crucial when it comes to planning of wind power turbine establishments. This view is shared by the project manager at RES Skandinavien as previously mentioned.

We also learn from the Director of Projects of a UK-based wind farm developer that the company refers to BWEA for general guidance on consultation as it does not maintain a specific internal protocol. In concurrence, the development manager at the Australian wind farm developer also provided similar feedback as she referred to industry guidelines found at http://cleanenergycouncil.org.au/, which in turn directs to Auswind’s best practice guidelines which we have reviewed. This situation could stem from the acknowledgement that methods and strategies on community consultation differ from case to case. Nevertheless, in general the UK developer’s Director of Projects states that when a site has been identified and initial environmental assessments
undertaken, they hold exhibitions in the locality of the project. These exhibitions can be publicized through local papers, shops and other public building as well as invite the people identified earlier in the desk study described above. The respondent opines that these exhibitions allow individuals to enquire about the project on a one to one basis so there is no embarrassment and allows the developer to provide information without being lobbied, which can happen at public meetings.

The South West Public Engagement Protocol and Guidance for Wind Energy (2004:53) presents a chronological checklist for preparing the community engagement plan with the following key milestones:

- Relevant stakeholders identified
- Expected timescales of key phases identified
- Main contact person within company identified, with contact details
- A range of methods of community engagement proposed
- Approach to local and wider benefits clarified
- Timescales for responding to information requests outlined
- Feedback mechanism to stakeholders outlined
- Scope of consultation made clear
- Proposed development plans outlined
- Consultation scheduled to be undertaken at an early stage in the process

The above chronology of milestones thus encompasses several key principles earlier found and also provide guidance towards the formulation of a framework encompassing the main pre-application phases of a typical wind farm development project and related activities contained in each phase identified (please refer to our proposition in Chapter 5, heading 14).

Meanwhile, utility giant E.ON believes in involving local residents and trying to gain their support before beginning to plan building a new infrastructure project. They disseminate information to residents and other interested parties by starting with a public exhibition about the project, then later send brochures and newsletters to residents, place advertisements in local newspapers, inform the media, set up a hotline, and launch a project website. The company also holds intensive discussions with local and regional political leaders. Outside mediators are engaged to facilitate discussions if the community has unsettled concerns about the project. E.ON Hanse has set up an information center with guided tour provided at their Westküste ("West Coast") wind farm that conveys information about wind energy in general and features a walk-in nacelle of a decommissioned turbine for familiarizing visitors to the technology and real thing. There is also another visitor center for their Scroby Sands offshore wind farm that holds events like exhibitions and workshops regarding promotion and awareness-raising for renewable energy (E.ON, 2007b).

Community benefits are often suggested for developers to allocate consideration and resources on. In addition to good corporate social responsibility by directly or indirectly delivering benefits to the local community due to the wind farm development in the area, it can also be used as a means to garner community support for the proposal and thus minimizing opposition as well. It also serves to compensate for social and environmental disruptions such as the landscape and local amenities, and sharing the reward from use of the locality and a free, common commodity such as wind (Centre for Sustainable Energy et al, 2007b).

In a report on delivering community benefits from wind energy development by the Centre of Sustainable Energy in the UK, four types of community benefits that can accrue from wind farm
developments are identified: community fund (lump sum or regular payments into a fund for local community development), benefits in kind (direct contribution to a local community development initiative such as education), local ownership (profit-sharing through local share ownership in projects) and local contracting (for businesses and employment relating to the project) (Centre for Sustainable Energy et al, 2007b). In support, the WWEA (2005:10) claims that wind projects with full or partly local ownership will more easily obtain local acceptance. However formal planning procedures have yet to specifically provide for such community benefits to be delivered by wind farm developers. On discussing which segments of community should be entitled to benefits from the development, the report lists the following as factors that can lead to the identification and consideration of relevant stakeholders in the community (Centre for Sustainable Energy et al, 2007b:19):

- Proximity to the development;
- Visual impact from the development (since the nearest residents may have less of a view of the wind farm than those living further away but with more direct sight lines);
- Level of disruption and nuisance caused by construction activity and traffic; and
- How the location is used for work or recreation by the wider community.

In our interview, the development project manager at RES Skandinavien says that the community actually can do so much to benefit themselves, their commune and the developer. For example, the community was very active and involved in the company’s 48-turbines project in a large commune in Sweden, in a way that they wanted to make it “their project”. In collaborative arrangements still novel to similar developments in Sweden, local benefits are agreed and provided by RES as part of the plan, such as road connections, broadband connections and some other initiatives that the community wants to pursue. This has an effect of garnering support from the local community for the project.

The Awel Aman Tawe project in Wales was initiated and developed by a group of local volunteers with some community support. The aim is to develop a small community-owned and managed wind farm, which will act as a major community asset to support a program of local regeneration. The potential site, Mynydd Uchaf, is a mountain common to approximately 14 villages in the upper Amman and upper Swansea Valleys. Finances were raised from in-kind contributions, grants and funds from individuals, community groups, interested organizations, development agencies, research bodies and corporate programs. Its consultation process has been described as successful as it generated support from the people and tailored the project to fit the local context. The Participatory Assessment Process that was followed adopted three main iterative aspects of consultation: information dissemination, discussion & debate and community decision-making (Hinshelwood & McCallum, 2001b:ii). Despite it being a project commissioned by certain members of the community, the purpose of the consultation process was to involve all relevant local people in making the decision as to whether or not the idea of developing the wind farm be pursued by the developer (Hinshelwood & McCallum, 2001b:67).

The following table exhibits the main activities undertaken by the developer in the community consultation process of Awel Aman Tawe, split in three stages:
Table 9: Consultation activities in the Awel Aman Tawe wind farm project

<table>
<thead>
<tr>
<th>Stage</th>
<th>Consultation process activities / techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stage I</strong> (Apr-May 2000)</td>
<td>• Local base established (central location, annex of a local primary school, a sign prepared and erected, create mobile display, equipment such as computers, internet, telephones and fax), an A5 leaflet on the project produced, open 5 days a week during office hours)</td>
</tr>
<tr>
<td></td>
<td>• Establishment of monitoring systems (project progress diary, a press cuttings file, contact book, a minutes and events file, a comments book for people’s comments at displays and events, design evaluation forms, install SPSS computer program on the computer to analyze data collected during the structured interviews, and Front Page website maintenance program was installed),</td>
</tr>
<tr>
<td></td>
<td>• Training (2 local people undertook a course at the Center for Development Studies in the use of Participatory Methods (PM), followed up by using the methods in a 3 day assessment of local SWOT with 15 other trainees in PM, 8 local people trained in carrying out structured questionnaires with the University of Wales Swansea’s Research Development Support Unit, 3 local people undertook an 8-week course in writing HTML and website design, 3 AAT staff continued a course in Welsh language),</td>
</tr>
<tr>
<td></td>
<td>• Limited press coverage (10 articles and 3 letters written in the local press, featured in 1 TV and 1 radio program, 3 AAT members attended the NATTA conference on Local Renewables and gave a presentation on AAT’s plans and objectives, subsequently printed in full in the NATTA conference report, 6 AAT members attended the Valleys Forest BioCluster event with a display about AAT),</td>
</tr>
<tr>
<td></td>
<td>• Structured interviews part one (design and pilot of structured questionnaire, disseminated randomly using the electoral registers within three local authorities, 259 people involved)</td>
</tr>
<tr>
<td></td>
<td>• Community group audit (an audit was undertaken of all the community and special interest groups in the area. Just over 60 were identified, contacted and added to a database. Letters were sent to Celtic Energy (the landowners) and Commoners Association (with rights over the land), a further meeting with Celtic Energy)</td>
</tr>
<tr>
<td><strong>Stage II</strong> (June 2000 – February 2001)</td>
<td>In-depth consultation including:</td>
</tr>
<tr>
<td></td>
<td>• Leaflets to all households (bi-lingual, A3 with an overview of the project delivered to households, with notice of forthcoming public meeting and open days, recommend to utilize Post Office for distribution. Leaflet packs and posters situated in 8 shops and community spaces),</td>
</tr>
<tr>
<td></td>
<td>• Bi-lingual video was made for showing at presentations of the views from the proposed site.</td>
</tr>
<tr>
<td></td>
<td>• Website – <a href="http://www.awelamantawe.co.uk">www.awelamantawe.co.uk</a> (bi-lingual, comments page, hits counter to monitor accessibility and effectiveness)</td>
</tr>
<tr>
<td></td>
<td>• Development of information resource (impact on bird, wild life, shadow flicker, telecommunications effects, noise, information sheets, photomontages, badges and postcards promoting wind energy and the project given out at events)</td>
</tr>
<tr>
<td></td>
<td>• Coach trips to wind farms (every month, meet people living or businesses operating near the wind farm)</td>
</tr>
<tr>
<td></td>
<td>• Focus group discussion (17 community / organizational groups and 9 small groups by residence, age, gender and interest such as recreational and environmental. In order to identify people for the groups, appropriate)</td>
</tr>
</tbody>
</table>

68
<table>
<thead>
<tr>
<th>Stage</th>
<th>Consultation process activities / techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>organizations were contacted, advertised in the local press)</td>
</tr>
<tr>
<td></td>
<td>• Displays in public spaces (10 permanent displays in libraries, community centers, adult education centers, clubs, schools)</td>
</tr>
<tr>
<td></td>
<td>• Press coverage (61 articles and letters by or about AAT were published in the local press. 1 television item and 2 radio items were broadcast, documentary made on the project)</td>
</tr>
<tr>
<td></td>
<td>• Semi-structured interviews (8 people received training in carrying out in-depth interviews. 38 interviews of between 60-90 minutes long were conducted with people both for and against the project in Welsh or English as requested by interviewee)</td>
</tr>
<tr>
<td></td>
<td>• Public meetings (7 public meetings held in community halls, advertised in local press, Q&amp;A, participants were asked to fill in evaluation forms, OHP presentations, speakers from RE industry, take-home materials on wind energy and the project)</td>
</tr>
<tr>
<td></td>
<td>• 5 Open days for neighboring villages closest to proposed site (use participatory methods such as mapping, timelines, Venn diagrams to look at institutions involved and appropriate partnerships, SWOT analyses, brainstorming conditions for the wind farm)</td>
</tr>
<tr>
<td>Stage III (February – March 2001)</td>
<td>• Structured interviews part two, to monitor change in opinions (same set of questions with additional questions about the opinion on the consultation, directed at respondents from part one)</td>
</tr>
<tr>
<td></td>
<td>• Further limited consultation</td>
</tr>
<tr>
<td></td>
<td>• Referendum to determine whether the project should go ahead. (Electoral registers obtained from three relevant local authorities, registration process taken with advertisement in local press and posters for those above 16 not yet registered. Publicity for the vote: 2 additional displays were put up on local pubs, A2 posters were printed showing the three photomontages, 100 posters were put up throughout the area in key community spaces. Electoral Reform Services were commissioned to administer the referendum over 3 weeks of voting by post or by telephone using individual security numbers to avoid multiple voting, 4,252 people or 48.26% voted)</td>
</tr>
<tr>
<td></td>
<td>• Dissemination of the results to the local community (positive)</td>
</tr>
<tr>
<td></td>
<td>• Analysis of data and preparation of final report and consultation guide.</td>
</tr>
</tbody>
</table>

(Source: Hinshelwood & McCallum, 2001b:12-20)

Among the various consultation methods adopted in Awel Aman Tawe’s consultation process, in particular coach visits, leaflets to all households, use of the press and media, community presentations and referendum are recommended to form part of an overall strategy that enables information to flow in all three directions - downwards information dissemination from developer to residents, horizontal between peers, and upwards input back to the developer for consideration and incorporation into project design and plans (Hinshelwood & McCallum, 2001b:v). For informal groups, Hinshelwood & McCallum (2001b) found in the Awel Aman Tawel project that press, leaflets and posters are among the various ways suggested for getting information across to them. Thus it is important for developers to focus on allocating resources and developing timely and appropriate consultation strategies (acknowledging the range of different kinds of groups and networks, with sufficient emphasis to informal networks as well) to manage the information surrounding these avenues.
During the consultation process, it became clear that some information that was planned for a later phase had to be produced as best and accurate possible in order to meet community demands. Photomontages that were to be produced after environmental assessment studies were completed had to be produced from strategic viewpoints, open days held for those who could not make the scheduled coach visits and public meetings and issues such as the distribution of profits from the community wind farm.

In summary, the authors found that main constraints to the consultation are organized opposition, local media misrepresentation of the project and the lack of open support from local politicians. On hindsight, possible suggestions as to how the project may have done more to reassure the local people and quell opposition include:

- Ensuring that word didn’t get out about the wind farm prior to the start of the consultation
- Making it explicitly clear to the media from the start that the wind farm was not attached to any one village
- To approach the Old Age group in the objecting Tai’rgwaith village (a large respected organization) at the start requesting a representative for the steering group
- To hold an open day instead of a public meeting at the beginning
- To print up the series of photomontages early in the project

The reflections on retrospect above again reinforces the importance of the timing and choice of community consultation techniques, as the wrong method and/or the inappropriate time at carrying out the activity may result in undue opposition, concerns and other community issues that could have been avoided.

We hereby conduct some case studies to highlight and further support the findings above.

Your Energy is an independent UK based renewable energy company, established in 2001. The company offers services based on their professional experience across all the key disciplines including planning, environmental services, wind turbine technology, contract law and project financing. In their website, they advertise their proven ability to plan, build and operate wind farms in the UK, whilst always engaging with and listening to the voice of the community. In considering the environment, pre-planning environmental studies that can take up to two years to complete are conducted, listing several aspects of consideration including examples of relevant guideline or stakeholder/s to be consulted, such as noise (government standards ETSU-R-97); ecology (Natural England); birdlife (RSPB); electronic interference (over 20 consultees for each potential site); civil and military aviation (Civil Aviation Authority, Ministry of Defence); and cultural heritage (Natural England, local archaeological groups) (Your Energy, 2007c).

In addition to other similar projects, Your Energy has completed the Burton Wold Wind Farm in the UK in March 2006, being Northamptonshire’s first wind farm consisting of 10 turbines with a maximum wind farm output of 20 megawatts. The company as developer and operator agrees to contribute £40,000 upon construction of the wind farm and then £10,000 every year thereafter over the life of the project, for the implementation of energy efficiency and education projects in the vicinity, to be administered by the borough council (Your Energy, 2007a).

From its website, it appears to be the company’s strategy to set up informative consultation websites prior to application, for disseminating information such as general wind farm information, project description, planning documents, environmental assessment results (e.g. photomontages, ES), answers to FAQs, links to BWEA and other relevant organizations and downloads, project news
and channel for contacting the developer. For their Milton Keynes wind farm, in addition to the online platform the developer conducted an environmental impact assessment and published it online, held a public meeting, a public exhibition attended by 100 people from the public, presented to the parish council, provided photomontages and traffic assessments which are then incorporated into the ES and consultation website, distributed them to the parish council and nearby residents, and ran two free bus trips to the nearby operational Burton Wold wind farm while providing continuing opportunities to do so based on request of nearby residents. The application has just been approved on 17 December 2007 (Your Energy, 2007b).

However, we juxtapose this success with the rejected application for another project under Your Energy, namely the West Wight wind farm. In May 2006 Your Energy submitted a planning application for a 9.9 megawatts wind farm comprising six turbines 100-110m tall, near Wellow, West Wight, an island south of England. The project has been in development for over five years with extensive studies and design work undertaken. Similar to the Burton Wold project, this wind farm proposal also includes funds to be set aside for worthwhile community projects, particularly those relating to energy efficiency and education. Over 60 consultees ranging from regulatory agencies and community and environmental groups to telecommunication companies were identified and contacted for their views. But perhaps the warning signs could have been earlier adhered to if a more thorough and perhaps realistic assessment of the surrounding environment was to be undertaken. The local community opposition group The Wight Against Rural Turbines (ThWART) cites various reasons for rejecting the proposal, among them being (ThWART, 2006):

- Lack of community consultation (claims only two public meetings have been held over 7 years, while both did not allow serious discussion of the project)
- Landscape effects that threatens recreation and tourism on the island (purportedly would cost over £100 million in lost tourism income over five years)
- Insufficient consideration to migratory birds, resident bird species and bats
- Unacceptable separation distance of turbines from public rights of way
- Failure to recognize or address impact on the special environmental status of the site
- Many other cited failures or insufficiencies of assessment e.g. noise, wild life, hydrology, grid connection, aviation and community benefits.

In particular, the environmental body English Nature has advised the Isle of Wight Council (IoWC) that the proposal could have a significant impact on sites in the Solent area, designated under European law for their nature conservation value. The council’s decision to reject their application was based on the proposed wind farm’s insufficient mitigation of visual and landscape effects on the island, unacceptable impact on public rights of way and failure to fully consider or mitigate risks to the nature conservation status of bats (IoWC, 2007). Perhaps in realization of the obstacles and unsuitability of the site, Your Energy has announced that they will not be appealing the decision (Your Energy, 2007c). Moreover, if the claims by ThWART of the community consultation process are legitimate, the failure of this proposal would be an almost expected result. This is then in clear contrast to the consultation efforts and consequential result achieved by the company for their Milton Keynes wind farm proposal as outlined earlier above. It highlights the fact that the same developer that achieves success in one development can fail in another.

The US-based leading wind energy developer FPL Energy as mentioned earlier before has also experienced a similar predicament with their forced withdrawal from the Addison wind farm proposal (presented in Appendix 15) compared to their other successes such as their Long Island Offshore Wind Park. Though on one hand all the wrong starts and inadequate community consultation were attributed to the failure of the Addison wind farm case, the Long Island project
met with no significant opposition, with polls taken by local news organizations showing more than 80 percent of respondents favoring the project. The community consultation process was highly commended in this case. "It's important for proponents to engage with communities early, before there's a lot of opposition," says Ashok Gupta, director of the air and energy program at the Natural Resources Defense Council relating to the project (Weeks, 2005). Even before a site had been selected, the Long Island Offshore Wind Initiative started to build support, organizing more than 70 public meetings to address residents' concerns. As a result, says Dan Zaweski, director of energy efficiency for Long Island Power Authority, "The project is not a surprise to anyone. There has been a tremendous grassroots effort to get the word out" (Weeks, 2005). It is interesting how the same developer being FPL Energy in this circumstance can achieve such different results arising from their community consultation process in two of their projects in the same country. It indicates that a community stakeholder management technique, strategy or approach that is successful in one project may not be so in another.

(Please refer to Appendix 17 for the summary of interview responses to the main research questions we posed to our respondents)
5 SUMMARY OF FINDINGS & DISCUSSION

In the preceding chapter we have presented the data collected from our research involving both secondary sources such as governmental policies, industry guidelines and case studies, and primary input from industry practitioners. We are not in the position and it is also not the aim of this paper to recommend which data source or recommendation is relatively better, nor do we seek to disqualify any. The fundamental stance taken herein is to accept all recommendations and information from the data collected as credible and applicable to the question and aims of this research. Thus along this basis, through further analysis of the data presented in Chapter 4 and making further inferences on the findings (with reference back to the literature review in Chapter 3 where applicable), we are able to make conclusive key points based on the following headings in addressing our research question of “How should community stakeholders of wind energy development projects be managed in the planning stage prior to permit application?” and the accompanying objectives of this thesis:

1. Community consultation, a key process in community stakeholder management, is a non-mandatory but necessary process
2. Baseline of community-based stakeholders to be considered as a minimum
3. Approaches for identifying community stakeholders
4. Call for improved governance and regulatory facilitation for wind energy development projects
5. Main community concerns regarding wind farm developments
6. Need for further practical clarity to when to commence “early” community consultation
7. Community opposition leads to project delay
8. Not all community stakeholders can be satisfied
9. Proceed with project once approvals are obtained, despite prevailing community opposition
10. Community stakeholder management and satisfaction is generally more important than critical
11. Cause-effect relationship between project planning and community acceptance/opposition
12. Consistency of industry prescriptions and practice, but no one-size-fits-all standard solution due to each site’s uniqueness
13. Key principles of community stakeholder management
14. Phases and corresponding main activities prior to development permit application
15. Methods for community consultation and community stakeholder management
16. Community consultation checklist for project managers

Taken as a whole the findings above represent a broad and novel framework that we believe serves to better raise the awareness and readiness of project managers in their community stakeholder management efforts, while contributing to the existing body of knowledge on this area. We shall further discuss and elaborate on each point below.

1. Community consultation: A non-mandatory but necessary process

It is found that the community consultation is a key process in community stakeholder management to developmental projects such as wind farms, with particular importance in the planning stages prior to development permit application. Though not mandatory, a preliminary community engagement process and the resultant findings are expected in
applications for wind farm developments, failing which the chances for authoritative approval would be severely diminished while the likelihood of local opposition and judicial appeals increases. As stated by the NWCC, community consultation is a key feature of a successful permitting process.

2. **Baseline community stakeholders as a minimum to consider & involve**

Across the research data that we have collected, the following community stakeholders have been commonly highlighted. They encompass both locality-dependent and interest-related community stakeholders, as noted by the Centre for Sustainable Energy et al. (2007b). Hence we propose these parties in Table 10 below to form the baseline stakeholders or minimum of who should be considered and involved in the consultation process on any proposed wind farm project, with more to be added based on each site’s relevance and specifics, if any.

**Table 10: Community stakeholders commonly identified from research**

<table>
<thead>
<tr>
<th>Locality-dependent</th>
<th>Interest-related</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Residential:</strong></td>
<td><strong>Authorities:</strong></td>
</tr>
<tr>
<td>- Landowners</td>
<td>- Military and Defense Ministry</td>
</tr>
<tr>
<td>- Neighbors to landowners</td>
<td>- Airport authorities</td>
</tr>
<tr>
<td>- Nearby residents</td>
<td>- Catchments management authorities</td>
</tr>
<tr>
<td><strong>Authorities:</strong></td>
<td><strong>Environmental/Leisure Groups:</strong></td>
</tr>
<tr>
<td>- Local government/ LPA/ local council</td>
<td>- Environmental/nature conservation groups</td>
</tr>
<tr>
<td>- Local fire services</td>
<td>- Bird watching groups</td>
</tr>
<tr>
<td><strong>Local community figures:</strong></td>
<td>- Hunters</td>
</tr>
<tr>
<td>- Councilors, politicians, celebrities</td>
<td>- Yachting/boating associations</td>
</tr>
<tr>
<td><strong>Local community societies:</strong></td>
<td>- Walking/hiking associations</td>
</tr>
<tr>
<td>- Neighborhood security</td>
<td>- Tourists/tourism associations</td>
</tr>
<tr>
<td>- Employee unions</td>
<td><strong>Economic Groups:</strong></td>
</tr>
<tr>
<td>- Resident cooperatives</td>
<td>- Telecommunication companies</td>
</tr>
<tr>
<td>- Religious groups</td>
<td>- Tourism agencies</td>
</tr>
<tr>
<td>- Sport clubs</td>
<td>- Aviation companies</td>
</tr>
<tr>
<td><strong>Economic Groups:</strong></td>
<td>- Shipping companies (for offshore)</td>
</tr>
<tr>
<td>- Local shops/businesses</td>
<td></td>
</tr>
<tr>
<td>- Commercial fisherman (for offshore)</td>
<td></td>
</tr>
</tbody>
</table>

(Note: Interest-related groups can be locality-dependent as well, and vice versa. Classification is made based on the stakeholder’s predominant characteristic).

For all the data sources including respondents, community stakeholders primarily include people who own or live in or near the proposed site. Stakeholders then extend to those who derive their livelihood from the property and pursue activities in the area. Then the group
expands to encompass community groups, environmental bodies, local shops and businesses, and local figures such as councilors and politicians. Often cited are also bodies which come across as statutory stakeholders such as the military and defense ministry, aviation authorities and the LPA. These groups are important as they bear high power and legitimacy. Based on these findings, two points can be made: First, while all agree to the primary groups of community stakeholders, ‘inclusivity’ differs among the respondents especially in the extension to less common parties. There is tendency for respondents to include as many people than to leave one or two out, as recommended by the BWEA. Hence each unique site context would result in more or lesser community-based stakeholders to be involved. Second, stakeholders such as aviation groups and other governmental agencies identified as community stakeholders are classified as statutory consultees by the BWEA. This reaffirms BWEA’s guidelines that while wind power project developers will need to ensure they follow the correct statutory processes for these consultees/ regulators, they can also be included in non-statutory or community consultation as their influence on the latter may exist as well.

3. Approaches for identifying community stakeholders

There are basically two approaches to identifying community stakeholders in the context of wind farm proposals (though applicable to other similar large infrastructural development projects): ‘inside-out’ (by internal processes such as desk study, questioning and brainstorming, and consultation with LPA, visible community groups and other umbrella and influential parties) and ‘outside-in’ (through consultative methods such as media advertising, notices at strategic locations, website, local base and public information events such as meetings, exhibitions, open days, etc. to draw out interested parties to the forefront). Note that the level of effort in community consultation may not commensurate with the size of the project as even small developments can concern many parties and draw even more views.

In between the two approaches, personally visiting and talking to residents and identifiable community groups as a start was found to be the common recommendation by interview respondents in the industry. One respondent proposes setting up reference group/s comprising of local people (can be supporters/volunteers or incentivized hires) with access to the community to disseminate information and also collect feedback from all interested or concerned parties.

There was no explicit indication that the more formal and structured academic approaches for stakeholder identification and prioritization as presented in our literature review are systematically applied in practice. This is particularly the case for diagrams or bivariate matrixes such as those suggested by Nutt & Backoff (1992) and Bryson (1995) as cited in Gardiner (2005), Anderson et al. (1999) cited in Bryson (2004), Newcombe (2003), Bryson (2004) and Johnson et al. (2006). Neither are stakeholder strategy analysis frameworks (such as those suggested by Freeman (1984) Savage et al. (1991) and Mattingly & Greening (2002)) explicitly applied on paper as part of a structured program for developing stakeholder approaches found as well. However, more pragmatic, intangible and interactive processes revolving around project manager’s competence and experience, brainstorming relevant questions and utilizing ‘on-the-ground’ strategies to gain more probing and accurate insights on the site environment were noticed from our research. These have consistencies with the recommendations of DFID (1995) and the World Bank (2007a) and also the
similarly ‘softer’ stakeholder analysis methods as prescribed by Bryson (1995) such as brainstorming and role-playing workshops, as previously outlined in our literature review. Hence the implication of this finding is that it seems a focus on the process, experience and human interaction of analyzing community stakeholders is more prevalent in practice than the more static methods in academic literature such as bivariate matrices. However we cannot refute that there could be mental models that project managers operate with at a subtler or more intrinsic level beyond our observation and knowledge based on our research methods and resultant data collected. These mental models or analytical processes through thought, judgment and experience by practitioners could resemble or be representative of the more explicit and static academic models of stakeholder identification, analysis and prioritization. However, this hypothesis can only be tested on another occasion as it is beyond the scope of this study.

4. Call for improved governance and regulatory facilitation

Based on interviews with industry practitioners, it is common opinion that the planning and application process for developing a wind farm entails a tedious, resource-consuming and stringent process with regards to considering environmental and community matters, in addition to the technical aspect. This is a contributing reason to the report that many wind farm proposals with high potential in the UK are stuck in the planning system. One respondent in Sweden even states that there is irony in that wind farms being renewable energy initiatives are subjected to more stringent requirements in planning by regulations and authorities compared to other conventional extractive or infrastructural development industries. Though on one hand many subjective aspects relying on opinion such as the trade-off between environmental benefits and landscape impact of wind farms can only be addressed as policies and non-mandatory guidelines, there are calls for a more robust and supportive regulatory framework to be enforced by the government in streamlining and facilitating the development process rather than restricting it. Meanwhile, there should be measures to instead restrict illegitimate voices in opposing and causing problems to the development effort, particularly during the consultative process. However this has to be balanced with respecting the democratic process and human rights, tricky as it may be.

5. Main community concerns regarding wind farm developments

Based on our respondents’ replies and secondary data research, main concerns about wind energy projects can be grouped into three categories: (1) impact on local residents (noise, shadow flicker, view, value of land, activities such as hunting and walking); (2) impact on natural and cultural values (landscapes, ecology such as birds, marine and existing flora and fauna, sacred or historical sites); and (3) impact on businesses (aviation, telecommunication, tourism, commercial fishing and shipping). On a more subtle level, one respondent also mentioned the long-term impact on health from low frequency noise and the effect of the development on village life, particularly social divide in the community.

Respondents have also commonly related community concerns to their legitimacy. It was pointed out that some of the concerns are unfounded, do not exist or very minor, such as a claim that shadow flickers would affect mobility of stocks. These claims arise due to fear and insufficient knowledge of what is to come. They also arise from the dissemination of myths regarding wind energy and win turbines. Most of these can be mitigated by consultative methods such as exhibitions involving information on wind energy and
photomontages, public meetings and site visits to other operating wind farms to experience the real thing. Nonetheless, all respondents voiced their willingness to accommodate as many concerns as possible and incorporate them into the project plan or design before they are finalized. Among the examples cited are relocating contentious wind turbines away from the river, reducing the number of turbines, and re-routing where roads are to be built so as not to affect local hunting activities. Although respondents believe that permits would still be issued by the authorities when concerns are deemed illegitimate, they still pursue considering adjustments to project plans when and if possible in order to maintain a high standard of corporate social responsibility and keep good relationships with the community where they operate. However, the industry also bears in mind that not all stakeholder concerns can be satisfied, as per conclusion point (8) below.

In cases of legitimate concerns, the developer has two options: (1) mitigation and adjustment in project plan/design either by developer’s free will or through court judgment; and (2) terminate the project if mitigation actions and adjustment in project plan/design are not feasible. There are certain instances where powerful and legitimate stakeholder opposition such as the national defense force and where the area is an internationally designated nature or historical conservation site (e.g. UNESCO World Heritage sites) that would almost immediately indicate the inappropriateness of the proposed site, so that developers do not spend further time, effort and cost to pursue the plan.

Please refer to conclusion point (9) regarding the decision-making by developers in the advent of community opposition to their project.

6. Timing to commence community consultation: Early, but when exactly?

We found overwhelming consensus from our research data on early community involvement in the pursuit of a more efficient and effective project plan subsequently leading to successful implementation. The findings herewith can validate the statement made by Ek (2005a) in the literature review that investments in institutional capital for more collaborative approaches with the community, such as early involvement of local residents in planning the project, can be the resolution for reducing local resistance while driving the growth of the wind energy industry. However, the timing and corresponding scope for launching consultation initiatives are not clearly defined. In the course of analysis we began to form a realization of the importance of people’s first impression in the forming of an opinion on the project proposal, and thus how early public opinion surveys (as recommended by EWEA) without sufficient information on the project can be counter-productive to the support or informed feedback that the developer wishes for. ‘Informed consultation’ has been put forward as a key principle to a successful community stakeholder management approach. As propounded by associations such as BWEA and EWEA, broadly engaging the community at a premature and speculative stage without full information of the proposal is not recommended, as it can create unnecessary excitement or concern at too early a stage. The lack of sufficient information may also create doubt and lose trust in people, turning into skepticism, fear and hence opposition of the subsequent proposal. It is also advised that information of the proposed scheme do not get disseminated before the launch of a proper community consultation process. However, we feel this is an area of high risk due to the fact that certain parties like the LPA and landowners would have been engaged earlier than the broad community, and informal networks can generate news and rumors resulting in a state not desired by the developer. On the other hand, certain sources
like Auswind recommends broad community consultation at the earliest possible stage. Moreover, transparency and high information flow are principles often found propounded by other industry guidelines and practitioners, in addition to academic literature such as studies by Ek (2005a) and Wolsink (2000 in Berg, 2003). Hence the need to balance the rollout of community consultation to appropriate stages in time and project conditions, against openness and transparency is an area of ambiguity especially in both theory and practice. Based on our research, we surmise that this paradoxical and tricky aspect is not properly addressed by best practices and other sources. On one hand it is not recommended to engage the wide community too early, while on the other, it is also not advised that information be withheld too long or to certain parties only. More practical guidance on determining the scope / level and timing in community consultation need to be developed and put forward.

7. **Community opposition leads to project delay**

According to several responses from project managers interviewed, among those being representatives of Siral, Svevind and another Swedish wind farm developer, local community opposition leads to delay of the project in all phases from building permit application and judicial appeals to construction and overall project completion. Whether the delay leads to project failure or not depends on the magnitude of the delay and the success criteria used for evaluating the outcome of the project by each respective stakeholder. On the other hand, all respondents agree that a functioning management of community stakeholders would hasten the process, which translates into savings in time and cost while improving the viability of the project. Although not specifically related to answering our research question, this finding reinforces the importance of community stakeholder management in wind farm development projects.

8. **Not all community stakeholders can be satisfied**

Following the opinion of bodies such as the UK’s ODPM and industry practitioners, there is general consensus or acceptance that in each project, it is usually difficult or even impossible to satisfy the concerns of all community stakeholders. There will always be inevitable cases of some quarters being unhappy with the project despite all efforts by the developer to address and mitigate their concerns, especially given that wind farms involve erection of tall and highly visible structures in open, natural spaces. Moreover, there were respondents who point to some parties who are simply “not at all at the same wavelength” or “no matter what you do to please them will not change their mind”, much alike the BANANA type of opposition as coined by Markley (2002 in Berg, 2003) in the literature review. Project managers should also bear in mind the dynamics of community stakeholders and their relevant concerns which can change, develop or diminish over time as noted by Mitchell et al. (1997) and Post et al. (2002) in our literature review. This leads on to the following point on decision-making on the project considering the legitimacy of community opposition.

9. **Proceed with approvals despite prevailing community opposition**

The decision to proceed or withdraw from a project at the planning stage considering local community support or opposition derives mixed results from our research data collected. The IWEA has proposed to not proceed with an application if a majority of local community is found to be in strong opposition as learned through the consultative process such as
through public meetings and surveys. A development manager from Australia commented that the developer may “walk away from a project pre-consent if community opposition is seen to be too arduous”. However, the legitimacy of such community opposition, rather than the power from size or magnitude seems to be more of the determining factor of whether to withdraw from the proposal or not. This is supported by a few of the project managers we have interviewed such as the respondents representing Swedish wind farm developers Svevind and RES Skandinavien and the respondent from the Australian wind farm developer, in that they would push through with the project as planned to the construction phase if all local planning or governmental and judicial approvals (if there are appeals) have been granted to the developer. At that stage it can be generally presumed that all valid concerns have been adequately addressed and remaining opposition can be regarded illegitimate, and seems to be the “enough” point for developers to proceed to the next phase. Thus it is found that this stance for authoritative and judicial approval to move on is taken by the majority of industry practitioners we interviewed will also be the approach taken in dealing with illegitimate or unreasonable opponents such as those of the BANANA nature as described by Markley (2002 in Berg, 2003) in the literature review.

Based on this consideration of stakeholder attributes such as power and legitimacy, this finding also reinforces the stakeholder salience model by Mitchell et al. (1997) as highlighted in our literature review (also in Appendix 9). Although the analytical process may not be formally conducted in substance, the conceptual thinking upon which decision-making is based on validates the model.

In consideration of these circumstances, protocols for public engagement in wind farm development for England and Wales suggest that an effective public engagement process should focus on learning and debating issues which are principally matters of opinion rather than testable facts. Thus in general, if the verifiable criteria (such as noise) are found to be within regulatory limits while the various public opinion has been collected, considered and mitigated to a degree acceptable to the developer and the authority or court levels (such as local benefits vs. visual impact) then it is sufficient conditions for the developer to seek for approvals for the proposed development and proceed if given the green light from all these governing parties regardless of prevailing community opposition then. Moreover, a respondent highlighted that the general acceptance of the wind farm project grows after subsequent stages such as construction, when people can see the structures and realize that their concerns do not fully materialize after all. This is also in line with the trend found by Kempton et al. (2005) and Gipe (1995, in Berg, 2003) in our literature review (see Appendix 13 for illustration).

In light of the finding above, the succeeding point on the degree of importance of community stakeholder satisfaction as indicated by practitioners through interviews we have conducted is closely related.

10. Community stakeholder management & satisfaction: Important, but not critical

It was found from the majority of interviewees’ views that the proper management and satisfaction of community stakeholders is considered important to the success of a wind farm development project, but not outrightly critical. Only three respondents from our interviews are of the opinion that this aspect is critical to the project. The difference in opinion may arise out of individual experience and perspective taken in considering the
influence and impact of community stakeholders, thus this cannot be treated as an objective finding. Nevertheless, the importance of this factor is unanimously agreed from our research data sources. When not considered critical, the respondents usually draw from opinion or experience that the project can and will still proceed given the relevant LPA / governmental and judicial (if there are appeals) approvals have been granted to the developer, regardless of prevailing community opposition to the project (as per preceding point (9) above). The problems faced by the Botnia cellulose pulp mill in Uruguay represent the worst-case scenario of what can happen when projects push through with approvals without properly quelling community opposition, resulting in higher costs and delays. It depends on the regulatory and justice system to support the developer and deal with any unlawful opposition in that case. However, since the majority of respondents who do not think that this aspect is critical to the project are based in Sweden, they also point out that such situations are uncommon in Sweden.

11. Cause-effect relationship between project planning and community reaction

There are indications of some cause-effect connection between properly considering and managing social and environmental effects from the wind farm development in the early planning or proposal stage, to the nature and outcome of community stakeholders’ subsequent response to the project. This is also led on by the above discussion on the importance of timing of community consultation in the early stages of the project. If these aspects are addressed as comprehensively as possible in the early planning stages, the reaction from interested parties such as the local community and associated stakeholders may possibly be more supportive or at least not as antagonistic. In one of our interviews, the respondent noted that personal feelings about wind farms in their area and hidden political and financial motivations could form the actual reasons for opposition although the common reasons of visual and environmental impacts are cited only. This supports the findings by Weller (1998 in Berg, 2003) on “hidden” personal objections in our literature review. It is in our opinion that although these elusive and personal motivations cannot be identified and addressed in every case, these particular stakeholders will have less reasons to use in pursuing their own interests if as many of the aforementioned concerns and considerations (usually common in general but unique from site to site) surrounding the project are well addressed. Overall this approach leads to the mitigation of opposition and issues that may arise from the various community-based stakeholders against the project.

12. Consistency of industry prescriptions and practice, but no one-size-fits-all solution due to each site’s uniqueness

We found general consistency between the recommendations prescribed in industry-centric policy and guidance documents with the responses from interviews with practitioners. There are no significant disagreements found. Moreover, all interviewees mention the lack of a standard set of community stakeholder management guidelines, while in many instances referring to industry guidelines as proffered by local wind energy associations. It further indicates support to the proposition that there is not a set of standard guidelines that can be prescribed to manage stakeholders in each different and unique case. This goes on to also support our summary finding in point (15) regarding community stakeholder methods below.
From the cases of FPL Energy and Your Energy, the same developer that achieves success in one development has been found to fail in another, thus emphasizing both the unique circumstances of each site and perhaps also the soft aspects of project management relating to individual project manager skills for each instance. Logically assuming similar basic principles and policies employed by the same company, it thus indicates that a community stakeholder management technique, strategy or approach that is successful in one project may not be so in another. Meanwhile, a further proposition is that different project managers or developers applying the same community stakeholder management technique, strategy or approach to the same site or project may not achieve the same results. However, besides acknowledging the unique circumstances of each site and each project manager or team in a particular time, there may also be the lack of a clear, structured and comprehensive approach to community stakeholder management in the industry. Acknowledging this finding, we propose a framework from collected primary and secondary data from industry practice in the pursuit of better guiding the execution of an effective community consultation and stakeholder management process in the context of wind farm development projects. This will be addressed in the conclusion section of this report.

13. Key principles of community stakeholder management

Based on our research using sources such as policy and guidance documents, case studies and interviews with practitioners, we summarize and list the common key principles of community consultation and community stakeholder management for wind farm developers to adopt in their projects in Table 11 below.

<table>
<thead>
<tr>
<th>Community engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear community engagement plan known to all at early stages (plan-in from the start)</td>
</tr>
<tr>
<td>Recognize the value of community involvement and local knowledge in planning</td>
</tr>
<tr>
<td>Plan and design consultation process with LPA and stakeholders</td>
</tr>
<tr>
<td>Use of inclusive approach to consider all the various different stakeholder groups</td>
</tr>
<tr>
<td>Use of consultation methods and techniques appropriate to the local context (determining strategic level of engagement: inform/consult/invoke/collaborate/empower; and ensuring 3 directions of communication flow: downwards, horizontal, upwards</td>
</tr>
<tr>
<td>Transparency and accessibility at all times and in all engagement activities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disseminating information &amp; receiving feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discuss matters of opinion, not testable facts</td>
</tr>
<tr>
<td>Interactive dialogue with stakeholders, explaining how their views have been addressed/incorporated into plan (plan must be kept flexible)</td>
</tr>
<tr>
<td>Continuing dialogue (not by tick-box or once-off manner) with changes to project design or plan communicated and discussed on a timely basis</td>
</tr>
<tr>
<td>Understand opposition's impact &amp; tactics in order to set expectations, mitigation plan and develop consultation strategy</td>
</tr>
<tr>
<td>Recognize importance of social and informal networks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collaborative relationship with community</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilize local resources if available (jobs, contracts)</td>
</tr>
<tr>
<td>Discuss mitigation and compensation measures with local community</td>
</tr>
<tr>
<td>Development should fit and benefit the local community, in line with good corporate citizenship and CSR (offer community funds, benefits-in-kind, ownership)</td>
</tr>
</tbody>
</table>
The key principles compiled above as put forward by research sources including industry guidelines and interviews with practitioners mainly considers the highest level of Freeman (1984)’s Stakeholder Management Capability proposition, being the transactional level which refers to the extent to which managers actually engage in transaction and relationships with stakeholders, encompassing communication, responding and spending resources on stakeholder transactions (Freeman, 1984 in Carroll & Buchholtz, 2000).

Relating back to Donaldson & Preston (1995)’s aspects of stakeholder theory, the key principles found above are primarily normative as stakeholder management is aligned to the benefit and improved welfare of all involved. Through feedback from our respondents, in addition to normative motivations stakeholder management is also carried out with the underlying objective of preventing problems to the project, avoiding additional costs and/or delay and the obtaining of required permits or approvals in order to progress the project as smoothly as planned, all towards achieving business aims. This would represent the instrumental aspect of stakeholder theory. Thus we find also support in our research for Stoney & Winstanley (2002 in Cooper, 2004)’s and also Cooper (2004)’s view that stakeholder management demonstrates both normative and instrumental values.

The key principles above as derived from industry sources also affirms the successful approach employed for the exemplary Fenner wind farm project in New York as described by Robb (2003) in the earlier literature review.

We hereby encourage every wind farm developer to adopt and apply the key principles listed in Table 11 above as a minimum standard for community stakeholder management in each phase of their projects (in particular planning).

14. Phases and main activities prior to permit application

From our review of best practices (especially BWEA’s best practice guidelines and the South West protocol) and interviews with industry practitioners, we highlighted the commonalities and identified key activities within each phase of the pre-application process of a wind farm development project. On this basis we formulated a general wind farm project’s course of development in Figure 8 overleaf.
The four main phases basically emulates that as identified by BWEA. When related back to literature, the phases and activities proposed above encompass steps 2 to 9 of Sutterfield et al. (2006)’s project stakeholder management strategy framework (see Appendix 2) and also resemble Rönnborg (2006:86)’s depiction of the Fladen offshore wind farm proposal phases as shown in Appendix 11. In addition, activities particular to the project feasibility studies stage and the continuing consultation effort would involve the development project stakeholder framework by Bailur (2007) as also presented in Appendix 3.
15. Methods for community consultation and community stakeholder management prior to permit application

A vast array of methods for community consultation and stakeholder management is available. The use of each method or any combination depends greatly on the unique circumstances of each site, its community-based stakeholders, the scale of the development and the developer or project manager’s competence. In developing the right approach and strategy based on the choices of methods available, the key principles in the point above must be kept in mind.

Table 12 overleaf present a compilation of the methods that the developer can undertake in the community consultation process, as prescribed in our research data collected from secondary data of policy and guidance documents, case studies and interviews. These include activities recommendable to be carried out by the developer that indirectly considers the management of other potential non-statutory stakeholders, such as informing telecommunication companies to assess potential effects on communication channels given wind turbines are erected on the site identified. Some methods can be subsumed to a more overarching activity listed, but can be separately carried out as well.

We hereby do not rank, grade, organize or sequentialize the methods as they vary depending on each site context as mentioned, nor do we recommend all to be carried out either. We also do not intend to further describe nor discuss the pros and cons of each method. Instead this list serves as an arsenal of consultative methods to choose from at each applicable stage or phase of pre-application (in similar fashion as Bryson (2004)’s recommendations). The phase indicated denotes when the method or activity can be applied, but not necessarily in every instance. Their respective customization and appropriateness depends on the context of the project and site, and the project manager. A detailed investigation is out of scope of this thesis and can be recommended for future research. As general guidance, Hinshelwood & McCallum have presented an overview of the characteristics and potential effectiveness of a list of consultative methods with respect to wind farm development projects (please see in Appendix 18). Inevitably a combination of the following undertakings deemed appropriate to the particular site would be most practical.
Table 12: Methods & actions for community stakeholder management in pre-application stages

<table>
<thead>
<tr>
<th>No.</th>
<th>Method / Actions</th>
<th>Project Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Internal Assessment</strong></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Perform initial environmental analysis (primarily existing conditions: special site value, landscape, ecology i.e. flora &amp; fauna species, birds, marine; archaeology, recreation, hydrology, proximity to dwellings)</td>
<td>S, F, D</td>
</tr>
<tr>
<td>2</td>
<td>Assess landscape and anticipate visual effect by aerial imagery or driving around to identify dwellings with handheld GPS</td>
<td>S, D</td>
</tr>
<tr>
<td>3</td>
<td>Study published information on site from LPA and other organizations, and maps</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>Find out about national, regional and local planning policies for the site area (including future development plans)</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>Conduct noise, shadow flicker &amp; vibration assessment</td>
<td>S, D</td>
</tr>
<tr>
<td></td>
<td><strong>Regulatory &amp; Infrastructural Consideration</strong></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Consult companies involved on suitability of site (e.g. suppliers)</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>Preliminary consultation with LPA</td>
<td>S, F, D</td>
</tr>
<tr>
<td>8</td>
<td>Obtain planning approval and issue press release on erection of mast to test wind speed</td>
<td>F</td>
</tr>
<tr>
<td>9</td>
<td>Agree scope of environmental assessment with LPA</td>
<td>S, D</td>
</tr>
<tr>
<td>10</td>
<td>Aviation: consult airlines, airport authorities, transport &amp; defense ministry (sea navigation as well if offshore)</td>
<td>S, D</td>
</tr>
<tr>
<td>11</td>
<td>Effect on telecommunications – consult telecoms &amp; broadcasting companies</td>
<td>S, D</td>
</tr>
<tr>
<td>12</td>
<td>Traffic management (for testing, planning for construction)</td>
<td>F, D</td>
</tr>
<tr>
<td>13</td>
<td>Discuss and agree formal arrangements with landowners</td>
<td>S, F</td>
</tr>
<tr>
<td>14</td>
<td>Consult local/rural fire services to agree on fire management actions</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td><strong>Dialogue &amp; Opinion Seeking</strong></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Visiting and talking directly to neighbors &amp; nearby residents</td>
<td>S, F</td>
</tr>
<tr>
<td>16</td>
<td>Personally inform local network groups e.g. community councils, societies</td>
<td>S, F</td>
</tr>
<tr>
<td>17</td>
<td>Utilize umbrella groups / local figures such as politicians</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>18</td>
<td>Public meetings</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>19</td>
<td>Private meetings</td>
<td>S, F, D</td>
</tr>
<tr>
<td>20</td>
<td>Targeted group talks / workshops / focus groups</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>21</td>
<td>Open day</td>
<td>S, F, D</td>
</tr>
<tr>
<td>22</td>
<td>Opinion surveys</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>23</td>
<td>Telephone / enquiry helpline</td>
<td>F, D, A</td>
</tr>
<tr>
<td>24</td>
<td>Use of independent facilitators for public consultation activities</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>25</td>
<td>Consultation committee / liaison group of key stakeholders &amp; PMs</td>
<td>F, D, A</td>
</tr>
<tr>
<td>26</td>
<td>Discuss, agree and provide community benefits (community fund, benefits in kind, local ownership and/or local contracting)</td>
<td>F, D, A</td>
</tr>
<tr>
<td>27</td>
<td>Set up local base</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>28</td>
<td>Nominate and make known key contact individual</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>29</td>
<td>Referendum</td>
<td>D</td>
</tr>
<tr>
<td>30</td>
<td>Use consultants (site selection, project feasibility studies, peer review)</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td></td>
<td><strong>Disseminating Information</strong></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Signage on-site with proposed project &amp; developer contact info</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>No.</td>
<td>Method / Actions</td>
<td>Project Phase</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------------------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>32</td>
<td>Direct leaflets / brochures / formal letter (with prepaid feedback form) to</td>
<td>S, F, D</td>
</tr>
<tr>
<td></td>
<td>households and common facilities</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Regular newsletters</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>34</td>
<td>Posters/ notices at public notice boards at visible and busy areas</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>35</td>
<td>Media e.g. newspaper adverts / articles / radio / TV</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>36</td>
<td>Public exhibitions <em>(can receive views too if staffed / supply comments box or book)</em></td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>37</td>
<td>Takeaway info documents or packs / brochures at public events</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>38</td>
<td>Public stalls e.g. at pedestrian streets, malls, market</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>39</td>
<td>Mobile info unit / roadshows</td>
<td>S, F, D</td>
</tr>
<tr>
<td>40</td>
<td>Advertising through badges, postcards, merchandise</td>
<td>S, F, D, A</td>
</tr>
<tr>
<td>41</td>
<td>Site visit to existing wind farms and proposed site</td>
<td>F, D</td>
</tr>
<tr>
<td>42</td>
<td>Visual aids e.g. photomontage, computer-aided images and models, video projection of installation work</td>
<td>F, D, A</td>
</tr>
<tr>
<td>43</td>
<td>Circulate proposal information to properties within approx. 1km of site and</td>
<td>D, A</td>
</tr>
<tr>
<td></td>
<td>community group/organizations within approx. 10km radius</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Pre-application consultation report to accompany planning application</td>
<td>A</td>
</tr>
<tr>
<td>45</td>
<td>Print, circulate and make available (e.g. public library) copies of</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>application, ES and NTS</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Internet (e.g. website, online conferencing, virtual workshops, email exchange)</td>
<td>F, D, A</td>
</tr>
</tbody>
</table>

**Phase legend (based on BWEA’s dissection and our proposal in point (14) above):**

- **S**: Site selection, **F**: Project feasibility studies, **D**: Detailed assessment, **A**: Planning application

### 16. Community consultation checklist for project managers

As per point (3) above in this chapter, it seems a focus on the process, experience and human interaction of analyzing community stakeholders is more prevalent in practice than the more static methods in academic literature such as bivariate matrices. As also claimed by Bryson (2004:47), the education of stakeholder identification and analysis techniques as limited, and practitioners similarly appear to have a more limited knowledge of stakeholder identification and analysis techniques than they should. Based on this implication and the other findings above, we create a community consultation checklist as presented in Table 13 overleaf, in the effort to capture the new insights from this research and to introduce a more systematic approach to community consultation for project managers in practice to counterbalance the current seemingly more subtle and intrinsic process applied based on experience and judgment. The checklist acts as a practical tool in guiding project managers at the onset of planning community consultation at the early stages of each wind energy development project. The initial list of community stakeholders (from point 2) serves as a minimum baseline for consideration and are presented in boxes for ease of marking off when satisfactorily considered and also making notes on. This is followed by several questions that encourage the project manager to think and perform a more thorough stakeholder identification process, in addition to the listed parties. A list of common methods for consulting and managing community stakeholders (from point 15) is then presented in similar box format, with a reminder to keep the key principles of community stakeholder management (from point 13) in mind. The checklist concludes with a page for noting and managing identified stakeholder concerns.
Table 13: Community consultation checklist

Project: ______________________________
Project Phase: ______________________________
Your Name & Role: ______________________________

(1) Have you identified and considered the following stakeholders? *(mark box when done)*

<table>
<thead>
<tr>
<th>Locality-dependent</th>
<th>Interest-related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landowners</td>
<td>Military &amp; Defense Ministry</td>
</tr>
<tr>
<td>Neighbors to landowners</td>
<td>Airport authorities</td>
</tr>
<tr>
<td>Nearby residents</td>
<td>Hunters</td>
</tr>
<tr>
<td></td>
<td>Local shops / businesses</td>
</tr>
<tr>
<td></td>
<td>Local fire services</td>
</tr>
<tr>
<td></td>
<td>(add)</td>
</tr>
<tr>
<td>(add)</td>
<td>(add)</td>
</tr>
</tbody>
</table>

(2) Further ask yourself and brainstorm in a team the following questions:

- Who will be affected, positively or negatively, by the development?
- Who may not be affected by any immediate development, but may be in the future or if there are other similar developments in the area?
- Who supports or opposes the changes the development will bring?
- Who is influential in the local community?
- What special or unique values exist in the area?
- What would be the reaction of a landowner, neighbor and nearby resident?
- What would be the reaction of an environmental group?
- What activities are carried out in the area?

(Source: Adapted from the British Wind Energy Association)
(3) Please consider and select the appropriate methods for community consultation and stakeholder management below (make note in box when selected).

<table>
<thead>
<tr>
<th>Internal Assessment</th>
<th>Regulatory &amp; Infrastructural Consideration</th>
<th>Dialogue &amp; Opinion Seeking</th>
<th>Disseminating Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial general environmental analysis (special site values, landscape, ecology, recreation, activities, residences, etc.)</td>
<td>Preliminary consultation with LPA</td>
<td>Opinion surveys (interview / questionnaire / comments book / etc.)</td>
<td>Direct leafleting / brochures / formal letter</td>
</tr>
<tr>
<td>Desk-based study of site (publications, internet, archives, organizations, maps, etc.)</td>
<td>Agree EIA assessment scope with LPA</td>
<td>Consultation committee / liaison group</td>
<td>Internet (website, etc.)</td>
</tr>
<tr>
<td>Noise, shadow flicker &amp; vibration assessment</td>
<td>Traffic planning</td>
<td>Key contact individual</td>
<td>Personally inform local network groups</td>
</tr>
<tr>
<td>Aerial imagery to assess landscape</td>
<td>Consult telecommunication companies</td>
<td>Telephone / enquiry helpline</td>
<td>Private meetings</td>
</tr>
<tr>
<td>Enquire national, regional and local planning policies</td>
<td>Obtain approval for wind speed testing &amp; issue press release</td>
<td>Utilize umbrella groups / local figures</td>
<td>Workshops / focus groups</td>
</tr>
<tr>
<td>Consult local fire services</td>
<td>Use of consultants / specialists</td>
<td>Use independent facilitators</td>
<td>Takeaway info documents</td>
</tr>
<tr>
<td>Consult aviation, sea and defense authorities</td>
<td>Set up local base</td>
<td>Community benefits (comm.fund, benefits in kind, local ownership, local contracting)</td>
<td>Visual aids (photomontage, etc.)</td>
</tr>
<tr>
<td>Discuss and agree formal arrangements with landowners</td>
<td>Visit and talk directly to neighbors &amp; nearby residents</td>
<td></td>
<td>Public exhibition</td>
</tr>
<tr>
<td>Referendum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In selecting individual and a combination of methods, the key principles and common community concerns should always be kept in mind and checked against each selection and overall strategy.
(4) Record stakeholder concerns and mitigation actions:

<table>
<thead>
<tr>
<th>Stakeholder name</th>
<th>Description of concern</th>
<th>Date &amp; channel of origination</th>
<th>Mitigation actions</th>
<th>Result &amp; Further recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 CONCLUSION

From the preceding summary discussion points, we have adequately answered our research question and also achieved the aims of this thesis. Despite being a predominantly non-mandatory requirement, community consultation as key to the project’s stakeholder management objectives is a necessary process in wind farm projects. We therefore inferred from our research a baseline list of stakeholders relevant to the site’s community as the minimum requisite parties to engage in the process. Both inside-out and outside-in approaches to identifying community-based stakeholders are proposed, in addition to personally visiting and talking with people at the site. The timing and corresponding scope of consultation seems unclear when examined specifically in the practical sense, although there is unanimous agreement that the process should start early. We support the recommendation that full-scale and all-inclusive community consultation be undertaken at the earliest possible juncture, with complete and sufficient information that corresponds to the particular stage of the project plan being available. The main common concerns of the community are identified from our research, and in doing so project managers are guided as to what to expect from the community and hence how to strategize their consultative methods and process. We laid out the common key principles found for community consultation and bearing these in mind and practice, we present an array of common methods and activities as prescribed by our research data sources that can be utilized as appropriate by the project manager in managing community stakeholders during the pre-application phases. These methods are matched with a proposed framework of pre-application phases and respective key steps to be undertaken by the wind farm developer. Additionally, we have consolidated these findings in a community consultation checklist to make it more systematic and practical in guiding project managers (please see Table 13). We believe that the combined results found and presented herewith will provide more comprehensive and insightful guidance overall than currently available to project managers in the wind energy industry, thus successfully contributing to the existing body of knowledge in this area.

These findings are also underlined by what we have came across as general acknowledgement that there will always be dissatisfied stakeholders despite developers’ best efforts and willingness to address all concerns. Bearing this in mind, we hence do not seek to claim that our proposed recommendations arising from our research will resolve all community stakeholder issues or ensure complete satisfaction of all relevant community stakeholders. Ultimately concerns are to be judged and managed according to an analysis of stakeholder salience attributes, in particular legitimacy. The common opinion of industry practitioners interviewed is that as developers they will proceed with the next phase of the project despite prevailing community opposition, given approvals are obtained from authorities and court (if appealed). For these approvals to be obtained, it reiterates around back to the need and importance for the developer to carry out a proper and adequate community consultation process for managing community stakeholders, as outlined above in this report. Based on this stance as well, the majority of interviewees view the satisfaction of community stakeholders to be important but not critical to the success of the overall wind farm development project.

It was also found that no standard guidelines or solution could be prescribed for each project due to respective site uniqueness. Moreover, there were instances where the same experienced developer who has achieved commendable success in managing the community as stakeholders in the pre-application stages of one project can make many mistakes and face overwhelming opposition from the community in another project. The recommendations as inferred from the research findings here
serve only as a guide and provide minimum consideration points that a project manager should take into account for community stakeholder management. They are not intended to be the complete, exhaustive, pre-application community stakeholder management program that is applicable effectively to all wind farm projects. Inevitably the competence, experience and judgment of the project manager play important roles in synthesizing, customizing and applying the proposed principles and methods for community consultation in each different case. Thus it is interesting to further examine in future studies the practical effectiveness and generalisability of the proposals made, including possible refinement and improvement. These would resemble natural recommendations for further research especially considering the inductive approach of this research. Furthermore, each of the key findings as listed under separate points in Chapter 5 can be formulated as topics for future research, especially in a deductive manner to further validate them empirically. In particular, the following findings are specifically worth highlighting for further research: (i) Since the more systematic and static models for stakeholder analysis (encompassing stakeholder identification, prioritization and strategy development) such as bivariate matrices were not explicitly found to be formally applied in practice through this research, the existence and degree of whether project managers apply these models intrinsically within their thought processes and the subsequent connection with decisions and actions undertaken can be studied. In relation, (ii) the comparison of the effectiveness between the application of static models and the looser process approach should be investigated. Meanwhile, (iii) the timing of exactly when and in what conditions that the much-lauded but too generic “early” community consultation process for wind farm development projects should start, including the scope and level at each stage, should be further examined and clarified through both theoretical and empirical studies. This research and its findings herein can also be further studied through (iv) applying a restriction by geographical location such as by country, and also by (v) extending to other similar developmental projects outside of the wind energy industry.
APPENDICES

Appendix 1: Thesis Research Questions for Practitioner (Project Manager / Developer)

Part 1: Participant Demography
1. Name (optional): Position:
2. Please give a general overview of your company and the major wind energy projects that the company has been involved in.
3. What is your role in the development of wind energy projects? Does it involve the identification and management of the local community (e.g. residents, organizations, interest groups)?
4. How long have you been working in this position?
5. How many projects have you handled? Would you be able to indicate the names of some of these projects?

Part 2: Managing Community-based Stakeholders
1. Drawing from experience, who do you consider as non-statutory or community stakeholders in your wind energy development project/s, if any?
2. How do you identify these community stakeholders for each project (if you do), and when during the project is this done?
3. What are the main concerns from the various groups of community stakeholders with regards to the project/s?
4. What would you consider as the key principles and success criteria in managing community stakeholders of a wind farm development project?
5. Do you have standard guidelines or common best practices to involve and manage community stakeholders of a wind farm development project? If yes, please describe.
6. Have these guidelines proved effective in previous projects? Do you have further recommendations based on your experience?
7. Have any of the projects you managed encountered significant issues with community stakeholder groups? Please describe, if any (incl. how it could have been avoided and how it was eventually resolved).
8. Would you and your company consider the management and satisfaction of community stakeholders as being critical to the success of a wind farm development project?
9. How and when would you know that overall community stakeholders are satisfied enough for the project to proceed for implementation (e.g. submission for approval / contracting supplies and construction)?

Part 3: Additional questions
1. Do you know any other wind energy development project managers or consultants with experience in this topic whom you can refer us to?
2. Would you like to remain anonymous, or you would not mind being quoted by name and/or position and/or company?
3. Would you like a copy of our final thesis upon completion by the end of January 2008?

Thank you for your time and valued contribution!
Appendix 2: Project stakeholders management framework

There are nine steps to the continuous and dynamic strategic PSM framework:

- Step 1 requires the project manager to identify and articulate the project vision and mission.
- Step 2 requires the project manager to conduct a project SWOT analysis.
- Step 3 is where the project manager identifies all project stakeholders and their goals and stake in the project.
- Step 4, the project manager determines his or her selection criteria and identifies alternative strategies or plans of action for managing each project stakeholder and his or her goals.
- Step 5 is where the project manager selects the project stakeholder management strategies that he or she will employ to aid the project stakeholders in achieving his or her goals while the project manager is able to attain his or her project goals.
- Step 6 requires the project manager to acquire and allocate the resources he or she needs to implement the selected PSM strategies.
- Step 7 is the actual implementation of the selected PSM strategies.
- Step 8 requires the project manager to evaluate the implemented PSM strategies, and to make corrective changes in the implemented PSM strategies where necessary.
- Step 9 requires the project manager to elicit feedback from the various project stakeholders on a regular basis. Given that change is a constant, it is important for project managers to not only elicit project stakeholder feedback on a continuous basis, but to also process the feedback and incorporate it into the strategic PSM process.

(Source: Sutterfield et al., 2006).
Appendix 3: A stakeholder framework for development projects

Stakeholder Identification - interviews, maps, diagrams

Stakeholder Behaviour Explanation

Coalition Analysis - how would they work together?

Stakeholder Management - who to inform, consult, give partnership or control?

Concessions / Bargains

### Appendix 4: Stakeholder Table

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Stakeholder's Interests</th>
<th>Perception of Problems</th>
<th>Resources</th>
<th>Mandate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Source: ADB (2007:7)*
Appendix 5: Stakeholder-Issue Interrelationship Diagram

Stakeholder-issue interrelationship diagrams help show which stakeholders have an interest in different issues, and how the stakeholders might be related to other stakeholders through their relationships with the issues (see Figure 6). The resulting diagrams help provide some important structuring to the problem area, in which a number of actual or potential areas for cooperation – or conflict – may become apparent. An arrow on the diagram indicates that a stakeholder has an interest in an issue, though the specific interest is likely to be different from stakeholder to stakeholder, and those interests may well be in conflict. The arrows therefore should be labeled to indicate exactly what the interest is in each case. In Figure 6, stakeholders A, B, C, D, E and F all have an interest, or stake, in Issue 1, while subgroups of stakeholder A have a further issue between them, Issue 2. Stakeholder A is also related to stakeholder E through their joint relationship to Issue 3, and to the other stakeholders on the map through their connection with Issue 3. In an actual case, the arrows should be labeled, so it is clear exactly what the interests are, and whether they are in conflict (Bryson, 2004:37-38).
Appendix 6: Problem-Frame Stakeholder Map

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Support</strong></td>
<td>Weak supporters</td>
<td>Strong supporters</td>
</tr>
<tr>
<td>Low</td>
<td>Weak opponents</td>
<td>Strong opponents</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Opposition</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Weak opponents</td>
<td>Strong opponents</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 7: Generic Stakeholder Strategies


Swing stakeholders have a strong ability to influence the outcome of the particular situation. These “mixed blessing” stakeholders could become supportive or non-supportive. Hence, strategic programs which seek to change the rules by which the firm interacts with those stakeholders are appropriate. The change should be toward a collaborative relationship in order to enhance the likelihood of cooperation and support from the stakeholder.

Defensive stakeholders can be of relatively little help, but can take steps (behaviors) to prevent the firm from achieving its objectives. Savage et al. (1991) calls this group “non-supportive” but Freeman (1984) is of the opinion that they often have current or actual behavior that is quite helpful. Hence the possibility for improvement or increased cooperative potential is limited but the management should form strategies to defend against their high threat potential if they turn non-supportive.

Offensive stakeholders can help greatly in achieving objectives but pose little relative threat, either because they are so eager in support or are possibly already doing all the harm they could. If there is relatively little downside risk, virtually any strategic program is worth a try, and opportunities for gain should be exploited. They are the ideal stakeholders and should be involved as much as possible in achieving business or project objectives.

Hold stakeholders can be of relatively little extra help or harm but they may currently be quite vital. They could be individuals who are not organized and should be monitored to make sure circumstances do not change or become problems later.
# Appendix 8: Styles of stakeholder management

<table>
<thead>
<tr>
<th>Pathway of influence</th>
<th>Outcome orientation</th>
<th>Outcome orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Distributive</td>
<td>Integrative</td>
</tr>
<tr>
<td></td>
<td>COERCION</td>
<td>COLLABORATION</td>
</tr>
<tr>
<td>Indirect</td>
<td>SUBVERSION</td>
<td>MEDIATION</td>
</tr>
</tbody>
</table>

*Source: Mattingly & Greening (2002)*

**Excerpts from Mattingly & Greening (2002:270-271):**

Direct paths of influence involve a stakeholder group interacting directly with a firm in order to redress its claim, whereas indirect action refers to the stakeholder group’s mediation of the claim through third party or parties. Integrative orientations seek to maximize joint outcomes, perceiving possible simultaneous gains for both parties, whereas distributive orientations imply a zero-sum game whereby one party’s gain necessarily is at the other’s expense (Walton & McKersie, 1965 in Mattingly & Greening, 2002: 270-271).

- **Collaboration:** High stakeholder salience and high firm salience encourages a direct, integrative response. A collaborative stakeholder intends to maximize outcomes relating to interests common to both it and the firm, instead of maximizing only its own interests. A superordinate goal that is shared by the parties and subordinates all other goals and agendas is key (Sherif, 1958 in Mattingly & Greening, 2002).

- **Mediation:** High firm salience and low stakeholder salience encourages a stakeholder to seek mediation. A non-salient stakeholder lacks the perceived power, legitimacy and urgency on the part of the firm to elicit its co-operation in addressing the stakeholder’s issue. Therefore, the stakeholder will seek an alliance with a third party or parties that may be able to get the firm’s attention. May involve lawsuits or coalescing with a betterorganized or resource-endowed organization that may be sympathetic to the stakeholder’s claim.

- **Coercion:** Low firm salience and high stakeholder salience encourages coercive approach of the stakeholder with the firm. In this case, the stakeholder perceives that it can defeat the firm through direct action – given the firm’s reliance on resources in the stakeholder’s possession.

- **Subversion:** Low firm salience and low stakeholder salience produces subversive stakeholder action. Neither firm nor stakeholder holds resources substantial enough to create dependence on the part of the other, yet the stakeholder takes issue with the firm’s actions. Assuming that the issue is important enough to the stakeholder to continue its resolution, the stakeholder will do so through indirect channels – perceiving that it warrants little priority in the eyes of the firm’s managers. Public protests, sabotage and terrorism are examples of actions the stakeholder might engage. Lacking dependence on the firm’s outcomes, stakeholders will seek to advance its own interests without consideration of the consequences to the firm.
Appendix 9: Stakeholder Typology

Appendix 10: European Commission White Paper proposal for renewable energy

<table>
<thead>
<tr>
<th>Campaign Action</th>
<th>Proposed New Installed Capacity</th>
<th>Estimated Total Investment Cost billion ECU</th>
<th>Suggested Public Funding billion ECU</th>
<th>Total Avoided Fuel Costs billion ECU</th>
<th>CO2 Reduction million tn/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1,000,000 PV systems</td>
<td>1,000 MWp</td>
<td>3</td>
<td>1</td>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td>2.10,000 MW Wind Farms</td>
<td>10,000 MW</td>
<td>10</td>
<td>1.5</td>
<td>2.8</td>
<td>20</td>
</tr>
<tr>
<td>3.10,000 MWth Biomass</td>
<td>10,000 MWth</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>16</td>
</tr>
<tr>
<td>4. Integration in 100 Communities</td>
<td>1,500 MW</td>
<td>2.5</td>
<td>0.5</td>
<td>0.43</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td><strong>20.5</strong></td>
<td><strong>4</strong></td>
<td><strong>3.3</strong></td>
<td><strong>40</strong></td>
</tr>
</tbody>
</table>

Source: European Commission (1997)
Appendix 11: Project phases of the Fladen wind project

Source: Rönnborg (2006:86)
# Appendix 12: Pros and cons of wind energy projects

<table>
<thead>
<tr>
<th>Pro Wind Energy (Benefits)</th>
<th>Against Wind Energy (Disadvantages)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Financial</strong></td>
<td><strong>Financial</strong>: subsidy misuse</td>
</tr>
<tr>
<td>profit for owner, manufacturer, community</td>
<td><strong>Safety</strong>: Availability concerns</td>
</tr>
<tr>
<td><strong>Safety</strong>: resource independency</td>
<td><strong>Environment</strong>: visual impact, noise, birds</td>
</tr>
<tr>
<td><strong>Ego</strong>: Pride of achievement, self-actualization</td>
<td><strong>Environment</strong>: visual impact, noise</td>
</tr>
<tr>
<td><strong>Financial</strong>: reduced land use options, lost opportunity for non-participants</td>
<td><strong>Ego</strong>: impact on traditional habits, envy, personal bias</td>
</tr>
<tr>
<td><strong>Safety</strong>: reduced nuclear power, indigenous resources</td>
<td><strong>Environment</strong>: visual impact, noise</td>
</tr>
<tr>
<td><strong>Environment</strong>: renewable resource, climate protection</td>
<td><strong>Ego</strong>: Pride of achievement, self-actualization</td>
</tr>
</tbody>
</table>

*Source: Berg (2003)*
Appendix 13: Pattern of Public Acceptance of Wind Energy

Appendix 14: Approximate sizes of turbines by installed capacity

Source: ODPM (2004c:157)
Appendix 15: Case Study: Addison Wind Power Project

Main sources: Lawton (2002); and McMahan (2007)

The Addison wind farm is unique in that it is one of the few examples of proposed wind farms to be abandoned during the permitting process.

Wind farm summary

The developer FPL Energy (FPLE) is the U.S. leader in wind energy generation with a portfolio capacity of 4,000 net MW. FPL’s Addison Wind Power Project was a response to Wisconsin Act 204 of 1998 that mandated that certain southeastern Wisconsin utilities either procure or construct a total of 50 MW of renewable energy by 31 December 2000 (Ozaukee-Washington Daily News, 2002). For this project FPLE has leased land from 16 active farms all located in the rural township of Addison, in Washington County. The proposed wind farm project will have 28 wind turbines for a total wind farm capacity of 25.2 MW, which will produce enough energy to meet the needs of 6,000 Wisconsin homes. The wind turbines will stand 235 feet tall (tower height) with blades a total of 325 feet. The wind turbines can withstand winds of 130 mph, and can be shut down in extreme weather conditions.

Controversy in the project

FPLE’s first windmill application for a conditional-use permit (CUP) to the Addison Township for a 33-turbine, 30-MW wind farm was submitted on 23 September 1999. In its application FPLE provided the following justification for the project (RENEW Wisconsin, n.d.):

- The wind farm's power is needed to meet the ever-increasing demand for electricity in Wisconsin. Wisconsin's utilities are committed and mandated by state law to obtain a portion of their electricity through renewable resources such as wind.
- The wind farm produces electricity from the clean, inexhaustible energy found in wind. This is a resource which can help meet Wisconsin's energy needs for generations, while reducing the pollution caused by fossil fuels.
- The construction, siting, design, and operational plans for the wind farm have been developed to protect the public health and safety of the town and its residents.
- The wind farm is designed to preserve the rural character of the Town of Addison by enabling the participating farmers to harvest a "double crop" of wind energy and traditional farm products.

The Public Hearing on 7 October 1999 was cancelled at the order of the Fire Marshall after more than 500 citizens attempted to attend the hearing. After a local newspaper published an article about wind turbine noise, FPLE withdrew its application on 14 October 1999 and decided to focus first on educating the community about wind farms (McMahan, 2007). To do this, FPLE held a series of public information meetings. However, project opponents, primarily residents of expensive new subdivisions built for Milwaukee commuters, were not swayed (McMahan, 2007). An opposition group, the Town of Addison Preservation Group (TAPG) was formed. FPLE however also found a group of project supporters called the Taxpayers for Addison Wind Farm who published a brochure containing support for and benefits from the wind energy project (Taxpayers for Addison Wind Farm (n.d.).
After conducting a series of public information meetings, FPLE’s second windmill application (29.7 MW, 33 turbines) was submitted on 22 December 1999. On 11 January 2000 FPLE withdrew this second application after learning that the Federal Aviation Administration had concerns about the location of some turbines. The Public Hearing that had been scheduled for 20 January 2000 was subsequently cancelled.

FPLE’s third application with only 28 turbines capable of producing 25 MW total capacity, was submitted on 11 October 2000. But several landowners, on whose property FPLE no longer planned to construct turbines, now joined the opposition (McMahan, 2007). Two contentious public hearings were held in December 2000 and January 2001 with hundreds of residents attending and both proponents and opponents were claiming to speak for the community. At the time, the main issues were alleged noise "pollution" and a concern that stray voltage could harm the area’s dairy cows. To address this concern, FPLE agreed to encase underground cables within 1,000 feet of a dairy barn in heavy vinyl covering and place all other cable in a thick bed of sand (McMahan, 2007).

The third application of FPLE was held pending for almost a year due to some instability in the local government that involved resignation of Town Board members and town attorneys. It was only in late 2001 when the local government had straightened itself out that FPLE’s CUP application was attended to. By this time main issues include noise pollution, the risk of ice being thrown onto county roads, and the health effects of sunlight reflected off turbine blades (shadow flicker). In January 2002, the Plan Commission preliminarily approved the CUP with the condition that no turbines be located within 1,000 feet of any residence, road, or the property boundary of an individual who was not leasing land to FPLE. FPLE responded that this restriction, which would allow only seven or eight turbines to be constructed would drastically affect the cost and efficiency of the project, to the point of making it uneconomical. FPLE ultimately decided to withdraw its application on 29 January 2002, after more than three years of fighting the opposition (Lynch-German, 2002). The turmoil within the community as a result of the Addison wind farm debacle cast such a long shadow over wind farm projects in Wisconsin that not one wind project came online in the next five years (McMahan, 2007).

What went wrong?

Lawton (2002) commented that FPLE’s proposed Addison wind farm was controversial as soon as it was first publicly announced, met fierce opposition and divided the community, particularly between the people who would be the “winners” and “losers.” Lawton (2002) illustrated this in the following examples:

- In the 22 October 22, 1999 issue of The Business Journal Serving Greater Milwaukee, Leigh Morris being Plan Commissioner on the Town of Addison Plan Commission stated:

  “... Yet, Addison is now a battleground that pits neighbor against neighbor, farmer against homeowner, old timer against newcomer... What happened? To be sure, FPL did a good job in presenting its plans to town officials and to those who own the land on which FPL Energy wants to locate 33 wind turbines. Unfortunately, that is as far as FPL Energy took the matter. Simply put, FPL Energy failed to apply a basic tenet of public relations—be open, be honest and be loud. Be open—address every aspect of an issue and solicit input. Be honest—never lie, never even fudge. Be loud—use every communication tool at your disposal... They should
have realized that those living within a mile or so of the proposed wind farm might, at the very least, have some serious reservations about the construction of 300-foot tall wind machines on the top of hills in a scenic portion of the state... They should have taken its case to these neighbors, addressing each issue openly, honestly and thoroughly... They should have spent at least as much time listening to people as talking to them... FPL Energy should have seized the initiative by taking its case to the news media -- and that means telling the media about potential problems rather than hoping the news hounds will never discover the warts.” (Morris, 1999)

- In the 13 October 2000 issue of the West Bend Daily News, under the headline “Uphill battle – Credibility may be a problem for wind farm proposal:” the Editorial Staff commented that:

  “...But so far, it appears that FPL has been its own worst enemy. The company and its supporters now face an uphill battle. False starts and substantial changes in the project itself are bound to have county residents questioning the viability of the project and the credibility of those proposing it.”

- On 24 October 2001, at a New England Wind Energy Siting Workshop, Steve Ugoretz of the Wisconsin Department of Natural Resources highlighted the project’s problems as including:
  - FPL’s early underestimation of the strength of the opposition;
  - Presence of an opponent with the resources and sophistication to exploit concerns and divide the community; and
  - Significant conflict between older, farm community residents, and newer, urban expats.
Appendix 16: Levels of Engagement


Also known as the International Association for Public Participation (IAP2) Public Participation Spectrum (South West Renewable Energy Agency, 2004:42).
## Appendix 17: Summary of Interviews

<table>
<thead>
<tr>
<th>Questions</th>
<th>Project Manager (Svevind)</th>
<th>Project Manager (Siral)</th>
<th>Development Project Manager (RES Skandinavien)</th>
<th>Project Manager (large offshore wind farm in Sweden)</th>
<th>Director of Projects (UK-based wind farm developer)</th>
<th>Environmental Engineer (Swedish wind farm developer)</th>
<th>Planning &amp; Development Manager (Australian wind farm developer)</th>
<th>Project Leader (Norwegian wind farm developer based in Sweden)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Who are community-based stakeholders?</strong></td>
<td>Landowners, who lives in the area, for what purposes is the land used for and who works or gets source of livelihood in the area</td>
<td>Landowners, residents of the community</td>
<td>Landowners, people living in and around the community, environmental groups, bird watchers, hunters, fishermen and recreational users.</td>
<td>Neighbors, residents (esp. by the coast), interest groups, NGOs, fishermen, LPA</td>
<td>Public in the vicinity of site, resident associations, landowners (including adjacent ones from those directly affected), local councilors and politicians, environmental bodies, community groups and societies, councils, unions and shops or local businesses, informal networks</td>
<td>LFV (responsible for all civil air traffic), airports, businesses within telecommunication and tourism, Swedish Defense Forces, local residents, interest groups such as bird watchers and other environmentalists</td>
<td>Local neighbors, catchments management authorities, fire authority, Government, environmental &amp; sustainability bodies, aviation groups and authorities, telecommunication companies and authorities</td>
<td>Swedish government, reindeer herders, indigenous people and other groups who have interest in national parks</td>
</tr>
<tr>
<td><strong>How to identify community-based stakeholders?</strong></td>
<td>Identify the above; form “reference groups”; use of consultants</td>
<td>N/A (usually in Gotland, the landowners would contact Siral and offer their piece of land.)</td>
<td>Directly talking with the people themselves; hold public meetings with sufficient pre-publicity</td>
<td>N/A (did not oversee this process), but indicated national registration records</td>
<td>Desk-based study, contacting clubs, sports facilities and other community groups</td>
<td>Engage help of the local authorities (LPA) and by directly asking the residents</td>
<td>Identified during the community consultation process, after early feasibility stages</td>
<td>Checks “planning document”; checks interest groups on tourism, reindeer and conversation; researches on and obtains list of landowners, inhabitants and organizations.</td>
</tr>
<tr>
<td><strong>Concerns of community</strong></td>
<td>Visual effect, noise disturbance, flickers, bird kill and road construction</td>
<td>Opposition seldom happens in Gotland, where the company operates</td>
<td>Visual effect, noise, disruption to activities such as hunting – all arise from people’s fear and</td>
<td>Visual effect, light obstruction, disruption to activities such as fishing</td>
<td>Visual impact, house prices, wildlife, birds, noise, TV reception, tourism, low frequency noise (impact on health), - That the project may ruin the local residents’ living environment (noise, shadow, view, value of real estate, etc.).</td>
<td>Visual impact, noise, and impact on birds. Generally less significant opposition dies down somewhat</td>
<td>Visual impact, robbing values of unspoilt nature, effect on hunting, fishing and other economic activities</td>
<td>Visual impact, robbing values of unspoilt nature, effect on hunting, fishing and other economic activities</td>
</tr>
<tr>
<td>Questions</td>
<td>Project Manager (Svevind)</td>
<td>Project Manager (Siral)</td>
<td>Development Project Manager (RES Skandinavien)</td>
<td>Project Manager (large offshore wind farm in Sweden)</td>
<td>Director of Projects (UK-based wind farm developer)</td>
<td>Environmental Engineer (Swedish wind farm developer)</td>
<td>Planning &amp; Development Manager (Australian wind farm developer)</td>
<td>Project Leader (Norwegian wind farm developer based in Sweden)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>-----------------------------------------------</td>
<td>---------------------------------------------------</td>
<td>--------------------------------------------------</td>
<td>--------------------------------------------------</td>
<td>--------------------------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Management &amp; satisfaction of community-based stakeholders: Critical or otherwise?</td>
<td>Critical</td>
<td>Community opposition causes delay (presumably important)</td>
<td>Very important, but not critical</td>
<td>Critical</td>
<td>Very important (in the sense of swaying local politicians and councilors who in turn can influence the consultation process and overall project)</td>
<td>Very important</td>
<td>Very important for the consentability of a project, but extent to which the ‘satisfaction of the community’ impacts on project success generally depends on the legitimacy of their concerns</td>
<td>Critical, as permit may not be granted if major issues with community stakeholders are not resolved</td>
</tr>
<tr>
<td>Key principles of community consultation</td>
<td>Approach the people at the very start of the project, formation of reference group and “working with feeling”</td>
<td>Try to address all concerns of landowners</td>
<td>- See past the conflicts and mitigate or work around it rather than turning it into a problem. - Open dialogue - Leverage on local knowledge and incorporate into project - “When you are - Be open right from the start. - Open dialogue where every person gets to express his/her views and providing a forum to respond to</td>
<td>Informed consultation with the community</td>
<td>-Include them in the planning process early - Be flexible and accommodating (flexibility is crucial) - Offer part ownership of project</td>
<td>- Keeping stakeholders informed of the facts in order to dispel myths regarding wind energy - Keeping stakeholders happy with the consultation they receive</td>
<td>- Go deep in the dialogue. - Visualize the consequences of the project. - Understand the concerns of the stakeholders and produce the right answer - Take all considerations to</td>
<td></td>
</tr>
</tbody>
</table>

worry

transport (impact on health), traffic and impact on village life or community divide

- That the project may interrupt/ damage local natural and cultural values. - That the project may constrain the interest of other businesses e.g. air traffic, telecommunication, eco-tourism etc. after consent or construction. A developer may however walk away from a project pre-consent if community opposition is seen to be too arduous.
<table>
<thead>
<tr>
<th>Questions</th>
<th>Project Manager (Svevind)</th>
<th>Project Manager (Siral)</th>
<th>Development Project Manager (RES Skandinavien)</th>
<th>Project Manager (large offshore wind farm in Sweden)</th>
<th>Director of Projects (UK-based wind farm developer)</th>
<th>Environmental Engineer (Swedish wind farm developer)</th>
<th>Planning &amp; Development Manager (Australian wind farm developer)</th>
<th>Project Leader (Norwegian wind farm developer based in Sweden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any standard consultation guidelines?</td>
<td>Abide Swedish laws and regulations on wind energy development; work with consultant to develop strategy case by case; form reference group/s</td>
<td>None indicated, if issues cannot be resolved through dialogues between Siral and landowners, the matter is brought to local authorities. If local authorities failed to resolve the issue, the Swedish court decides whether or not to grant permit to build</td>
<td>No, different initial approaches for community engagement differs very much from project to project</td>
<td>Not aware of any. Only legal requirements of involving neighbors and authorities are followed.</td>
<td>No company-specific guidelines, but refers to BWEA’s best practice</td>
<td>No “standard” solution, as the way to deal with stakeholders varies a lot between different projects. Initial information meeting can give a good idea of where to devote resources and develop stakeholder management strategy</td>
<td>N/A, pointing to industry guidelines found at <a href="http://cleanenergy.council.org.au/">http://cleanenergy.council.org.au/</a></td>
<td>No, but indicates guidelines from industry, local and national government, protection of indigenous people, Swedish environmental regulations.</td>
</tr>
<tr>
<td>Methods / techniques for community consultation</td>
<td>Information drive campaign of giving out flyers, newsletter, and publication in newspaper; reference groups; use of consultants; EIA; offer community benefits</td>
<td>Information about wind energy project, its benefits and impact on the environment is explained to the landowners and to the community</td>
<td>Public meetings, sending letters, put up posters, notice in newspapers, community benefits (roads, broadband access)</td>
<td>Preliminary surveys, visit and talk to the people, public informative consultation meetings, invite by newspaper notice,</td>
<td>Desk-based study, consult clubs and other community groups, utilize support from local politicians, public exhibitions with one-to-one consultation, publicity though local papers, shops and public facilities, offer community benefits (sponsorship for local events and facilities)</td>
<td>Use of consultants as impartial investigators, invite and hold initial interactive information meeting, offer part ownership opportunities</td>
<td>N/A</td>
<td>Desk-based study, study different aspects: technical (production capacity), environmental &amp; social (major interest groups), infrastructure (project design, buildings, road, grid,etc), letters, public meetings, engage consultants</td>
</tr>
</tbody>
</table>

"working with a good thing, you should work in a good way" peoples’ views -

"make the design less "harmful" but still economically viable"
### Appendix 18: Overview of consultation methods and their potential effectiveness

Source: Hinshelwood & McCallum (2001a:41)

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>**</th>
<th>***</th>
<th>****</th>
<th>*****</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of people potentially reached</td>
<td>&lt;50</td>
<td>50-100</td>
<td>100-1000</td>
<td>1000-5000</td>
<td>&gt;5000</td>
</tr>
<tr>
<td>Potential for generating discussion</td>
<td>Very poor</td>
<td>Poor</td>
<td>Average</td>
<td>Good</td>
<td>Very good</td>
</tr>
<tr>
<td>Potential for drawing in ideas from community</td>
<td>Very poor</td>
<td>Poor</td>
<td>Average</td>
<td>Good</td>
<td>Very good</td>
</tr>
<tr>
<td>Quantity of information able to disseminate</td>
<td>Very small amount</td>
<td>Small amount</td>
<td>Medium amount</td>
<td>Large amount</td>
<td>As much as possible</td>
</tr>
<tr>
<td>Costs involved (this does not include time)</td>
<td>Free</td>
<td>&lt;GBP100</td>
<td>GBP100-500</td>
<td>GBP500-1000</td>
<td>More than GBP1000</td>
</tr>
<tr>
<td>Time to administer – a one-off event</td>
<td>1 hour or less</td>
<td>Approx. half day</td>
<td>Approx. 1 day</td>
<td>1-3 days</td>
<td>More than 3 days</td>
</tr>
<tr>
<td>Time to administer - ongoing</td>
<td>1 hour or less per month</td>
<td>Approx. half day per month</td>
<td>Approx. 1 day per month</td>
<td>1-3 days per month</td>
<td>More than 3 days per month</td>
</tr>
</tbody>
</table>
Overview of methods and their potential effectiveness within a consultation process (Scale on previous page)

*Source: Hinshelwood & McCallum (2001a:42)*

<table>
<thead>
<tr>
<th>Methods</th>
<th>Numbers reached</th>
<th>Generate discussion</th>
<th>Draw in ideas</th>
<th>Quantity of info</th>
<th>Cost</th>
<th>Time one-off</th>
<th>Time ongoing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaflets</td>
<td>*****</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>*****</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>Displays and Posters</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>*</td>
<td>***</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>Local press</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>TV &amp; radio</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>Website</td>
<td>*</td>
<td>**</td>
<td>***</td>
<td>*****</td>
<td>**</td>
<td>*****</td>
<td>**</td>
</tr>
<tr>
<td>Community group contact</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>*****</td>
<td>**</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>Maps &amp; Photomontages</td>
<td>_</td>
<td>*****</td>
<td>**</td>
<td>***</td>
<td>****</td>
<td>***</td>
<td>_</td>
</tr>
<tr>
<td>Videos</td>
<td>_</td>
<td>****</td>
<td>**</td>
<td>****</td>
<td>**</td>
<td>-</td>
<td>_</td>
</tr>
<tr>
<td>Email updates</td>
<td>*</td>
<td>**</td>
<td>***</td>
<td>*****</td>
<td>**</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>Public meetings</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>*****</td>
<td>**</td>
<td>****</td>
<td>_</td>
</tr>
<tr>
<td>Community group presentations</td>
<td>**</td>
<td>*****</td>
<td>*****</td>
<td>****</td>
<td>**</td>
<td>*</td>
<td>_</td>
</tr>
<tr>
<td>Visits to existing RE sites</td>
<td>**</td>
<td>*****</td>
<td>*****</td>
<td>****</td>
<td>****</td>
<td>*</td>
<td>_</td>
</tr>
<tr>
<td>Open days</td>
<td>***</td>
<td>****</td>
<td>***</td>
<td>*****</td>
<td>****</td>
<td>*****</td>
<td>_</td>
</tr>
<tr>
<td>Education sessions</td>
<td>***</td>
<td>*****</td>
<td>***</td>
<td>****</td>
<td>**</td>
<td>***</td>
<td>_</td>
</tr>
<tr>
<td>Promotional materials</td>
<td>***</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>****</td>
<td>-</td>
<td>_</td>
</tr>
<tr>
<td>Focus group discussions</td>
<td>*</td>
<td>*****</td>
<td>*****</td>
<td>****</td>
<td>**</td>
<td>****</td>
<td>_</td>
</tr>
<tr>
<td>Semi-structured interviews</td>
<td>*</td>
<td>***</td>
<td>*****</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td>_</td>
</tr>
<tr>
<td>Questionnaires</td>
<td>****</td>
<td>**</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Community liaison committee</td>
<td>**</td>
<td>*****</td>
<td>*****</td>
<td>****</td>
<td>**</td>
<td>****</td>
<td>**</td>
</tr>
<tr>
<td>Leaflet with reply slip</td>
<td>*****</td>
<td>**</td>
<td>***</td>
<td>****</td>
<td>****</td>
<td>-</td>
<td>_</td>
</tr>
<tr>
<td>Participatory methods</td>
<td>**</td>
<td>*****</td>
<td>*****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>_</td>
</tr>
<tr>
<td>Evaluation forms</td>
<td>**</td>
<td>**</td>
<td>****</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>_</td>
</tr>
<tr>
<td>Referendum</td>
<td>*****</td>
<td>*****</td>
<td>***</td>
<td>**</td>
<td>*****</td>
<td>-</td>
<td>_</td>
</tr>
</tbody>
</table>
REFERENCES


Wikipedia (2007)  


