
 Customer-Specific Teams for Agile Software Evolution

Helena Holmström Olsson
Dept. of Computer Science

Malmö University
Malmö, Sweden

helena.holmstrom.olsson@mah.se

Jan Bosch
Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden
jan.bosch@chalmers.se

Hiva Alahyari
Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden
hiva.alahyari@chalmers.se

Abstract—For more than a decade, agile methods have shown
successful for increasing responsiveness to customer needs. As
a major characteristic, agile methods advocate close customer
collaboration in the early phases of software development.
However, research on how to maintain agile ways of working
during software evolution is scarce. In this paper, we address
the need to establish and maintain agile ways of working
during software evolution. We direct our attention to large-
scale software development where development companies
struggle to meet the needs of a large customer base. The
contribution of this paper is two-fold. First, we propose
customer-specific teams as a way to reap the benefits of agile
methods in the evolution phase of large-scale software
development. Second, we confirm the use of these teams as
successful for improving customer responsiveness, customer
satisfaction and feature quality in the subsequent phases of
software evolution.

Keywords-agile methods, large-scale software development,
software evolution, customer-specific teams

I. INTRODUCTION
Market uncertainties, competitive pressures, and the

constant need for shortened development cycles call for
software development practices that are flexible, responsive
and adaptive. During the last decade, a variety of agile
methods designed to enhance development teams’ ability to
respond to change have emerged. In emphasizing the use of
iterations and development of small features, agile methods
have increased the ability for software development
companies to accommodate changing customer requirements
[1]. In particular, agile methods have shown their capacity in
involving customers during the requirements engineering,
design and development. As can be seen in previous
research, there are a number of techniques focusing on how
to efficiently involve customers in the daily practices of
software development [2, 3, 4], and in methods such as
Scrum and XP the customer is viewed as an important part of
the software development team.

However, while agile development methods, and
implementation and adoption of systems developed
according to agile practices are common [5], the notion of
software evolution, and how to maintain close customer
collaboration and responsiveness to customer requests after
product deployment, is not extensively studied in the agile
community. As noted in our previous research [6], despite
successful accounts on how to involve customers in the pre-
deployment phases, there is still the need for ways to

maintain this collaboration in the post-deployment phase in
which software systems develop, grow and change. As part
of this process, continuous corrections, adjustments and
improvements need to be made to the system in order to
address changing customer requirements, to address new
customer groups and to cater for new technological
innovations [7].

In this paper, we address the need to involve customers
and increase responsiveness in the software evolution phase.
In particular, we direct our attention to large-scale software
development where companies struggle to meet the needs
and desires of a large customer base. We see that while close
collaboration might be difficult to achieve with all
customers, advantages can be achieved by having customer-
specific teams, i.e. designated development teams that work
exclusively with one selected customer in order to quickly
respond to their particular needs and requests. As a result, the
company can benefit from the knowledge gained from this
collaboration when responding to other customers. Based on
interviews with three customer-specific teams, two customer
unit representatives and product, program, and integration
managers at the market leading company in global
telecommunication systems, we show that the use of
customer-specific teams is a promising way of working in
order to reap the benefits of agile practices in the post-
deployment phase of large-scale software development.

The contribution of this paper is two-fold. First, we
propose customer-specific teams as a way to involve
customers in the evolution phase of large-scale software
development. Second, our study confirms the use of these
teams as successful for improving (1) customer
responsiveness, (2) customer satisfaction and (3) feature
quality in the subsequent phases of software evolution.

The paper is organized as follows. In section 2, we
introduce agile methods. While outlining the advantages
with these methods, we recognize that benefits have not
necessarily been reaped in the software evolution phase. We
describe the software evolution phase, the importance of
customer involvement, and we introduce customer-specific
teams. In section 3, we describe our research site and
method. Section 4 presents the interview findings, and in
section 5 we discuss these findings. Finally, section 6
presents the conclusions.

II. BACKGROUND

A. Agile software development
During the last decade agile methods have dramatically

changed the way software development is performed. Unlike
traditional development methods characterized by sequential
phases and heavy upfront planning, agile methods deal with
unpredictability and change by relying on people and close
customer collaboration rather than formalized processes [8].
Agile methods are characterized by short development
cycles, collaborative decision-making, rapid feedback loops,
and continuous integration of code changes into the product
baseline [9]. Today, many different agile methods are in use
[10]. During the last decade, XP and Scrum have become
well established in small-scale, as well as large-scale
software development. While XP is basically a collection of
well-known software engineering practices taken to the
extreme [3], Scrum is a simple, low-overhead process for
managing software development [11, 12]. Although agile
methods differ in details and techniques, overall agile
principles such as ‘flexibility’, ‘working code’ and ‘customer
collaboration’ lie at the heart of all of them. In more detail,
the agile manifesto (http://agilemanifesto.org) presents
twelve principles that characterize agile software
development. While these principles were initially developed
for smaller software development organizations, evidence
indicate that large software-intensive organizations operating
in complex global development environments are in the
process of deploying agile methods as part of their de-facto
approach to software development.

B. Software evolution
Software evolution is concerned with the changes to a

software system after its deployment to a customer.
Although software engineering practices traditionally
focused on the pre-deployment phases in which rigorous
requirements engineering activities take place, it has become
clear that many relevant activities for a software system take
place after commercial deployment of the system. Cook et al
[13], describe all industrial software systems as systems that
co-evolve with its context over time. As recognized already a
decade ago [14], software evolution needs to be quick and
responsive in order for companies to stay competitive. For
example, large-scale businesses or governmental
organizations have to respond fast to changing
environmental or competitive conditions such as modifying
systems to support new products or services. Likewise, to
create systems assembled from different components and
allow for a successful co-evolvement of these have become
increasingly important in today’s software evolution
processes. Interestingly, the whole notion of software
development is moving away from being regarded as an
activity that takes place within the boundaries of an
organization [15]. Instead, software development is
becoming an activity that includes externally developed
components and applications, as well as external
stakeholders that increase the value of the core product.
From a software evolution perspective this notion calls for
mechanisms to include the surrounding environment in the

evolution process, and a need to embrace the innovative
capacity of a large customer base.

While there are a number of approaches to support
evolution of software [16], changing requirements still
constitute a challenge. Often, they are seen as problematic
and referred to as requirements volatility and requirements
creep [17]. Clearly, a paradigm shift is required towards
software evolution being the norm, rather than the exception
in software engineering [18]. Also, and based on the
shortcomings recognized in previous research, we need ways
in which to better involve customers in this continuous
modification and correction process where the majority of
the system’s functionality evolve.

C. Customer involvement
Customer involvement has been a prominent research

topic in the field of information systems (IS) and Human
Computer Interaction (HCI) for a long time, and there are
several techniques, e.g. prototyping techniques, focus
groups, face-to-face meetings, workshops, customer
segmentation and lead-user feedback etc., with which to tap
into customer knowledge. Recently, agile methods have
complemented already existing techniques with development
and management practices that emphasize customer
involvement and customer representation during
development [11]. Contrary to these fields of research,
customer involvement has not been a major research topic in
the software engineering (SE) tradition and even though
customers are considered critical for the success of a system,
methods and techniques for how to efficiently involve them
during development have not been the focus of attention
[19]. Instead, SE research provides a rich body of knowledge
on requirements engineering, and the involvement of
customers is recognized as critical mainly in the pre-
development phases. As can be seen in Davis [20], one
reason for the focus on requirements engineering is the fact
that detecting an error during pre-development phases is far
less expensive than detecting an error during the design and
coding phase of a system. In addition to research on
requirements engineering, verification and validation is
another characteristic of SE research. Verification and
validation is the process of checking that a software system
meets the specifications set by the customer, and that it
fulfills its intended purpose, i.e. a way to ensure and evaluate
the quality of a software system [21]. While the concepts are
tightly interrelated, they refer to different things. Boehm [22]
succinctly explained the difference between them by saying
that in validation you check if you build the ‘right product’,
while in verification you check if you build the ‘product
right’. Traditionally, these activities were placed at the end
of the systems development cycle when major parts of the
system were already built. However, and as a result of more
complex systems, fast-changing technology and the
increasing costs related to discovering errors late in the
process, verification and validation activities have become a
way to continuously involve customers in the checking of the
system that is being built.

As can be seen above, there is a number of ways to
involve customers in the pre-development and development
phases of software development, and the agile methods have

contributed to closer collaboration with customers [4, 11].
However, and as recognized both in SE research as well as in
other domains, the subsequent phase of software evolution in
which continuous modification and correction of the
software is made is not fully explored in terms of customer
involvement. In particular, knowledge on how to maintain
agile ways of working closely with customers also after
commercial deployment is lacking. Often, customer
feedback tend to concern the current system and its
weaknesses and hence, works as good input for correcting
errors and maintain functionality, but not necessarily as
rewarding input for extension, expansion and innovation of
new functionality. To achieve this, more direct customer
collaboration is needed to allow for development teams to
continuously learn about changing customer behavior and
expectations.

D. Customer vs. product needs
Successful software systems have a significant number of

customers and these customers tend to have many ideas on
how the product can serve their needs. As can be seen in
recent research, [23], management of ideas, and especially
management of innovation, is critical for the success of
software evolution. In this process, strategic customers are
looking to enforce the inclusion of requirements that are
important to them in the roadmap for the next release of the
system. Typically, this leads to a tension between two
conflicting interests. On the one hand, the development
organization seeks to achieve scale in terms of implementing
as many new features to as many customers as possible. On
the other hand, the development organization needs to show
responsiveness to its customers, especially the most strategic
ones, and seeks to minimize the delay between a customer
request and the deployment of a solution meeting that
request. In most organizations, the focus is on achieving
scale. Therefore, customers that ask for unique solutions are
viewed as problematic since it usually causes disadvantages
in terms of added complexity in product version control [24].
For the subsequent discussion in this paper, we introduce
two concepts, i.e. the notion of ‘customer-unique features’
and ‘customer-first features’. A customer-unique feature is a
feature that will only have relevance to one specific
customer, and the likelihood of any other customer
requesting the same feature is low. Most often, customer-
unique features are considered problematic and preferably
kept outside the main product baseline. A customer-first
feature, on the other hand, is a feature that is requested by
one customer, but that most likely will be requested by other
customers in the future. A customer-first feature presents an
excellent opportunity to develop a feature in close
collaboration with one customer and, through knowledge
gained in this collaboration, reduce the amount of re-work
needed when developing this feature to other customers.

E. Customer-specific teams
Customer-specific teams are designated teams that work

exclusively with one selected, and highly prioritized
customer, in order to quickly respond to their particular
needs and requests after product deployment. Customer-
specific teams have proven useful for improving long-term

relationships and for adding value to customers. As one
successful account, LaNasa reports on teams working closely
with customers to enhance customer value and strengthen
customer relationships [25]. These teams are organized as
cross-functional teams with competencies spanning
organizational boundaries. In particular, customer-specific
teams engage with customers in order to improve, modify
and enhance functionality in the post-deployment phase of
software development and hence, allow for a development
organization that can quickly respond to specific customer
needs during the evolution phase of the system. The
knowledge gained in working closely with one selected
customer can then be transformed into generic value for a
large customer base. Similar to agile teams [2] and to lean
software development practices [26], an important feature of
customer-specific teams is the close access to the customer
and the short feedback loop between the team and the
customer. With the opportunity for direct customer contact
on a daily basis, the use of customer-specific teams can
further reduce cycle time with the intention of having
significantly faster deliveries of improvements and new
functionality.

III. RESEARCH SITE AND METHOD

A. Research site
This study was conducted in close collaboration with the

world-leading provider of telecommunication systems. The
company offers end-to end solutions for mobile
communication and they develop telecommunication
infrastructure components. The company is transforming
their development organization into development units
including a number of agile, cross-functional teams
involving software architects, designers, developers, testers
etc. The intention is that the cross-functional teams are
accountable for developing a complete feature from the
formulation of requirements until release to the product
baseline and deployment at customer site. As a result of this
autonomous team structure, a team can be allocated to a
specific customer if needed, i.e. work as a customer-specific
team, for a period of time. From being more of an
experiment a few years ago, customer-specific teams have
become a natural part of the development organization and a
way to maintain close customer collaboration and
responsiveness to customer requests also in the evolution
phase of large-scale software development.

The development organization involved in this study has
about 30 cross-functional teams that are located at two
different development sites in different time zones. Each
team consists of 7-8 members. To compile and manage
releases, product and program management, feature
integration management and release verification support the
cross-functional teams. The teams are involved in
development of one of the nodes in the 3G networks that
includes a wide range of customer requested features as well
as advanced support for mobility management. Today, the
product contains about 5 million lines of code and its
customers are mobile operators all over the world.

B. Research method
Our paper reports on a six months (January – June 2012)

case study [27]. During this time, we studied three customer-
specific teams serving different customers, two customer
units with which two of the teams interact, and we involved
program, product, and integration management at the main
development site. The main data collection method used
was semi-structured interviews with open-ended questions
[28]. In total, 17 interviews were conducted. In the three
customer-specific teams we interviewed the team leader, the
system manager, the system designer and the function tester.
At each customer unit we interviewed the person with which
the customer-specific teams interact, and who has direct
contact with the customer. Finally, we conducted interviews
with a program manager, a product manager and an
integration leader at the main development site in order to
capture the context in which the customer-specific teams
operate. In our research, we explore the following questions:
- How can benefits of agile practices, i.e. close customer

collaboration and responsiveness to customer requests,
be established and maintained in the evolution phase of
large-scale software development?

- In what way do customer-specific teams (CST)
contribute to the evolution phase of large-scale
software development?

The research questions were formulated in close
collaboration with company representatives. All interviews
were conducted in English and each interview lasted for
about one hour. As part of our interview guide, we asked
questions related to the following themes: (1) software
evolution and introduction of CST’s, (2) customer
collaboration techniques and how CST’s contribute to these,
(3) customer feedback loops and responsiveness to emerging
requests, (4) customer satisfaction and understanding of
customer needs, and finally (5) feature quality and
prioritization of functionality. For each theme, we had 2-4
questions and sometimes we also asked follow-up questions
in order to clarify, or further explore, a particular topic.
While the major part of the interviews were conducted on-
site and face-to-face with the different team members and
managers, interviews with the customer unit representatives
were telephone interviews involving representatives in the
US and in Asia. During all interviews, we were two people
sharing the responsibility, i.e. one researcher asking the
interview questions and taking notes, and one company
representative from the main development site focusing on
taking notes and adding to the discussion if needed, i.e. if
there were misunderstandings in company specific
information and/or difficulties in understanding company
specific abbreviations etc. To address the risk of bias, and the
presence of a company representative having a negative
impact on the interviews, we made sure that all questions
were asked by the researcher and that the company
representative took a passive role. In retrospective, the
presence of the company representative was helpful in that
misunderstandings could be easily addressed and whenever a
problem occurred in terms of interpretation of content we
could have a direct dialogue. After each interview the notes
were shared among the three researchers as well as the two

company representatives involved in the study. This allowed
for further elaboration on the empirical material, as well as
any clarifications that were needed. In addition, two
workshop sessions were held with a larger group of company
representatives at the main development site in order to
share, discuss and confirm the interview findings. Finally, e-
mail correspondence was used as a follow-up in order to
clarify any misunderstandings in the analysis of the data.

In terms of data analysis, the open coding technique
originating from grounded theory was adopted [29].
Grounded theory is a method involving both inductive and
deductive thinking and typically, the researcher wants to
discover the participants’ main concerns, how they
understand a certain situation and how they try to resolve a
problem they encounter. In the open coding process, written
data from field notes or interview transcripts are
conceptualized line by line by identifying codes. During our
data analysis, the empirical material, i.e. the interview
transcripts, were read through several times by all
researchers. When reading, we looked for phrases,
expressions, words etc. that described a certain phenomenon,
a certain feeling or opinion, and we grouped those similar to
each other together in categories (using different colors to
keep different coding categories apart). For example, we
found ‘quality aspects’ to be a reoccurring theme in several
of the interviews, and there were many statements
concerning the challenge of maintaining high quality
code/architecture while also being fast and responsive to
customers. All these aspects, i.e. expressions, experiences
etc. around quality were noted in the margins of the
interview transcript, and later grouped together in a category
that we named ‘feature quality’. In similar, statements and
comments about interaction, response time and development
cycles were coded and later grouped together in categories
such as ‘customer collaboration’ and ‘customer feedback
loops’. After iterating the text among the researchers, and
after having grouped together expressions and statements
concerning similar phenomena, we had categories with
words and expressions describing ‘communication’,
‘coordination’, customer satisfaction’, ‘customer
collaboration’, ‘customer feedback loops’, and ‘feature
quality’. These categories emerged as a result of the data
analysis and as a result of working our way through the
interview transcripts. The codes and the categories highlight
the respondents’ concerns, their experiences and their
profound knowledge of the specific situation.

A problem that has been identified in relation to
qualitative research is that different individuals may interpret
the same data in different ways [30]. This problem was
addressed in two ways. First, the grounded theory method of
data analysis prescribes coding processes that provide a
traceable, documented justification of the process by which
conclusions are reached. Second, we used a ‘venting’
method, i.e. a process whereby results and interpretations are
discussed with professional colleagues [31]. The findings
were presented and discussed with academic colleagues and
expert practitioners in detail after each interview and at the
two workshop sessions.

C. Validity and generalizability of results
As noted by Maxwell [32], qualitative researchers rarely

have the benefit of previously planned comparisons,
sampling strategies, or statistical manipulations that control
for possible threats. Instead, qualitative researchers must try
to rule out validity threats after the research has begun by
using evidence collected during the research itself to make
alternative hypotheses or interpretations implausible. One
important aspect of validity is construct validity [28] that
reflects to what extent the operational measures that are
studied represent what the researcher has in mind and what is
reflected in the interview questions. To address this aspect,
we started each interview with an introduction in which we
shared our understanding of agile practices and software
evolution with the interviewee. In this way, the researchers
and the interviewee had a shared understanding of the topic
before the interview. With respect to external validity, i.e. to
what extent it is possible to generalize the findings, our
contribution is related to (1) the drawing of specific

implications and (2) the contribution of rich insight [27].
Based on our interviews, we present implications in a
particular domain of action. Our study brings together
empirical insight that allows for a deep understanding of the
domain, and the findings we present should be regarded as
insights valuable for other companies interested in how to
maintain agile ways of working during software evolution.

IV. CASE STUDY FINDINGS
In this section, we present our interview findings. We do

so by describing the experiences from the time before
customer-specific teams were introduced, and until today’s
situation in which these teams have become a natural part of
the development organization. We summarize our interview
findings in Table 1. In this summary, we confirm the use of
customer-specific teams as successful for improving
customer responsiveness, customer satisfaction, and feature
quality in the evolution phase of large-scale software
development.

 Customer responsiveness Customer satisfaction Feature quality

Team A Faster feedback and response
 Closer to a specific customer
 Direct communication with a specific

customer
 Easy to get in contact with the customer

 More frequent usability tests
 Strong support after delivery
 Regular meetings with customers and

customer units
 Close interaction with customer units

 Continuous discussion about requirements
 Opportunity to discuss what customers

really need
 More frequent acceptance tests

Team B Give important customers what they want
 Bypass the normal heavy process
 Meet special demands
 Extra attention to customer

 Better understanding of how features will
be used/not used

 Be pro-active, foresee and anticipate
problems

 Customers feel they are in control of what
they get

 Opportunity to test in advance and in direct
contact with a specific customer

 Test in field – learn more about specific
needs

Team C Flexibility
 Faster deliveries
 Customer get a feature that is requested

only by them
 Adapt faster to customer needs

 Special treatment
 Tailor features
 Understand customer use of a feature
 Customers get what they want when they

want it

 More adapted and flexible processes and
testing procedures

Customer
Unit A

 Closer to developers
 Direct communication
 Short feedback loops

 Customers get extra attention
 Customers feel special

 Test directly in the field with a specific
customer

Customer
Unit B

 Faster deliveries
 Customers decide when to get a feature

 Better understanding of how a feature will
be used/not used

 Learn what requirements mean instead of
having assumptions

Product
Manager

 Seamless interaction between developers
and customers

 Additional opportunities to understand our
customers

 Learn about specific needs
 Facilitate good testing

Program
Manager

 Closer and more responsive
 Less disruptive
 Focus on one customer

 Only value-adding development Bundle customer-specific features

Integration
Manager

 Special treatment for important customers
 Bypass traditional release cycles

 Better understanding of customers
 Develop the right things immediately

 Daily discussions
 Better understanding of quality

Table 1. Summary of the interview findings from the customer-specific teams, units, and managers included in the study.

A. Experiencing traditional practices
Our case company is involved in large-scale software

development with a distributed team structure. For the
purpose of this study, one development unit was involved
and we got the opportunity to interview members of three
customer-specific teams serving different customers. The
customer-specific team members we interviewed are
physically co-located, i.e. all team members work in the
same physical and geographical location. A few years ago,
the unit was involved in projects of a typically traditional
nature. At that time, project teams were large and
development cycles were long. The development

organization was separated into expert disciplines, e.g.
architecture, design, test, and maintenance, and the different
disciplines were usually kept apart, communicating mainly
via hand-overs of code or documentation. At that time,
development was sequential with a rigorous planning phase
in the beginning of each project and a major characteristic
was that customers were involved during requirements
engineering. In most cases, a separate organization took over
the responsibility for system evolution. The challenges the
organization experienced at that point were the following:

• Changes in requirements caused major re-work
resulting in an expensive evolution process.

• Considerable time was spent on communication and
coordination between different organizations,
disciplines and teams, which made the evolution
process slow.

• Evolution was concerned only with correcting errors
and bugs, i.e. things that could have been done right
if developers had closer collaboration with the
customer.

• Feedback loops were slow and by the time a request
or a bug report reached the development team this
team was already involved in another project.

• Teams had difficulties in responding to customer-
specific needs and requirements that emerged after
product deployment.

B. Adopting agile practices
 After experiencing the difficulties mentioned above, the

organization started adopting agile practices. A major change
was the introduction of cross-functional teams. Instead of
having separate disciplines, the company re-organized into
units in which a number of cross-functional teams operate.
Each cross-functional team includes system design,
development, test etc., allowing for each team to take full
responsibility for a feature. Even though there were problems
in the beginning, such as for example difficulties in adjusting
to working closely with other disciplines, challenges in
taking full responsibility of a feature, and uncertainties in
how to stay flexible while at the same time meet with project
milestones, the teams quickly got used to an environment
characterized by incremental delivery, minimal up-front
planning and continuous adjustment of plans. In taking full
responsibility for the features they developed, the team
members got the opportunity to stay involved during the
entire development cycle of a feature and the problems
associated with communication- and coordination in between
disciplines decreased. In adopting agile practices, the
company experienced a number of benefits such as shortened
development cycles, closer customer collaboration during
development of features, and more frequent deliveries of
features. However, despite the adoption of agile practices,
the company still experienced several challenges in relation
to software evolution:

• Even though development cycles were shortened, the
company had difficulties in maintaining short
feedback loops after product deployment.

• The adoption of agile practices did not resolve the
issue of how to maintain flexibility to changing
customer requests after product deployment.

C. Introducing customer-specific teams
After having experimented with agile practices and cross-

functional teams for a few years, the company decided to
introduce customer-specific teams. Customer-specific teams
are teams that work exclusively for a selected customer.
Although the initial plan was to have the existing cross-
functional team structure cater for both generic development
as well as customer-specific requests, the company decided
to introduce a number of designated teams that could be
allocated exclusively for one customer if there was a need for

improvement of functionality that was not part of the generic
product. While the customer-specific teams operate within
the existing structure and look as all other cross-functional
teams in terms of competence, they are intended to
significantly improve the company’s ability to respond to
customer-specific feature requests that emerge during the
evolution phase. The long-term goal is to transfer knowledge
gained from working closely with specific customers to the
development of generic functionality that serves the large
customer base. In this way, re-work efforts will decrease, the
evolution process will become less expensive, and customer-
first features will be efficiently transferred to the main
product as part of the continuous modification and correction
process. Our interviews show on a number of benefits
associated with customer-specific teams:

• Faster feedback and direct communication with
customers resulting in increased responsiveness.

• Flexibility to bypass planned release cycles allowing
for faster deliveries and deployment of functionality.

• Increased team and customer satisfaction, as teams
and customers have direct communication.

• Reduced disruption of work tasks, allowing team
members to focus on the needs of one customer.

• Seamless environment in which customers feel there
is room for their ideas and their feedback.

• Opportunity to learn about feature usage, allowing
development teams to anticipate customer needs.

• Flexible testing procedures directed towards one
customer.

• Continuous dialogue between customers and teams
about emerging and changing requirements.

As part of our study, interviewees were asked to confirm
the use of customer-specific teams (CST) for increasing
customer satisfaction, feature quality, customer
responsiveness etc., on a scale 0-6 (0 = completely disagree
and 6 = completely agree). In Figure 1, we summarize our
findings by showing the numbers assigned by the three
customer-specific teams as well as the management
representatives.

Figure 1. Team and management perspective on benefits with CST
use during software evolution.

0	
1	
2	
3	
4	
5	
6	

Customer	
responsiveness	

Customer	
satisfaction	

Feature	 quality	

Managers	 Team	 A	 Team	 B	 Team	 C	

V. DISCUSSION
In this study, we explore the way in which benefits of

agile practices can be established and maintained in the
evolution phase of software development. In particular, we
are interested in customer-specific teams and the way in
which they can contribute to fast and responsive customer
collaboration. Below, we present the findings related to agile
principles and the benefits they provide, as well as customer-
specific teams and the characteristics of these.

A. Reaping the benefits of agile practices
Traditionally, activities related to software evolution are

viewed as expensive, resource demanding and time
consuming [33]. There is significant research on cost
estimation, effort estimation models and ways in which the
different phases of software evolution can be efficiently
managed [34]. Often, the evolution process is pictured as a
‘re-active’ process in which software systems are adjusted in
accordance with customer needs, but in which there is
limited opportunities to embrace innovative ideas and
continuous customer feedback.

In our study, we explore a company in which traditional
practices was the norm for a long time. Large development
projects, long development cycles and difficulties in
handling changing customer requests after system delivery
were familiar problems [21]. Also, and as is common in the
area of software product lines [16], customer needs and
requests of similar kind were grouped together in product-
specific requirements, resulting in a number of different
‘product families’. As time went by, however, the situation
became too complex and the software evolution process was
considered inefficient as well as unsatisfactory from both a
developer, as well as from a customer perspective. At this
point in time, the evolution process was re-active in nature
with a focus on maintaining current functionality and only to
some extent improving the existing product. As can be seen
in our study, there are a number of problems associated with
this approach, i.e. long feedback cycles, slow response time
and difficulties in transferring customer-first features into
generic functionality that serves a large customer base.

To address this situation, the company adopted agile
development practices by introducing cross-functional teams
with full responsibility for the features they develop. Instead
of having separate disciplines and a complex organizational
structure for customer collaboration, the teams have access
to all competences needed as well as closer, and more
frequent, collaboration opportunities with the customers. As
can be seen in studies on agile development [2, 4], common
benefits include shortened development cycles, more
frequent delivery of features, and as a result of this,
opportunities for more frequent customer feedback. In our
study, we see that by introducing cross-functional teams with
full responsibility for feature development, a number of
benefits from agile development practices could be reaped,
and instead of a discipline-oriented team structure, the
company succeeded in establishing an autonomous team
structure that could better respond to emerging customer
needs during development as well as evolution of features.

B. Customer-specific teams for agile software evolution
While the adoption of agile practices addressed many of

the problems experienced with traditional development, and
significantly improved the overall situation at the company,
the evolution phase remained a challenge. Especially, close
customer collaboration was difficult to establish and
maintain while at the same time achieving scale and
responsiveness to requests from a large customer base. To
further address this situation, customer-specific teams, i.e.
teams that could be allocated to a specific customer for a
period of time, were introduced. Based on findings from our
study, we see that these teams significantly contributed to the
evolution phase in the company we studied. First, team
members and customer unit representatives highlight the
many advantages of having a direct contact that allows for
fast feedback loops once the system is deployed. The idea of
not being disrupted, and the opportunity to focus on only one
customer, is appreciated. The general feeling is that the way
in which customer-specific teams allow for a close relation
to a selected customer is satisfying, and with the opportunity
to bypass the planned release cycle in order to deliver
functionality more frequently, they add significantly to
improved customer responsiveness during software
evolution. Moreover, our interviewees recognize the
opportunity to get continuous customer feedback on how
functionality is used as a way for them to learn about feature
usage. Managers involved in our study recognize the extra
attention given to prioritized customers and they view this as
important to enhance customer satisfaction. Likewise, and as
critical in agile development [4], team members and
customer unit representatives mention regular meetings,
close interaction and continuous collaboration as vital for
customer satisfaction after product deployment.

Finally, the interview study reveals interesting findings in
relation to customer-specific teams and the opportunity to
improve feature quality. The interviewees mention the
frequency of acceptance tests, the opportunity to test in field,
and the possibility to adapt test processes as rewarding. Also,
both team members and customer unit representatives
acknowledge the increased opportunity to continuously
discuss and negotiate emerging requirements. While testing
and evaluation of functionality is often considered a bottle
neck in software development [35], and an activity that is
both complex and insufficient, the impression after having
heard customer-specific team members talk about it is that
testing, on the opposite, is highly rewarding and something
they appreciate if only circumstances allow for a
collaborative and customer-oriented process.

VI. CONCLUSIONS
In this paper, we address the need to involve customers in

the software evolution phase. In particular, we direct our
attention to large-scale software development where
companies struggle to meet the specific needs and requests
of a large customer base. The contribution of this paper is
two-fold. First, we propose customer-specific teams (CST)
as a way to establish and maintain agile practices in the
evolution phase of large-scale software development. By
having designated teams working closely with selected

customers many of the benefits characterizing agile practices
can be reaped. Customer-specific teams increase flexibility
and speed, and as a result, facilitate efficient knowledge
transfer between customer-first requests and generic
functionality of interest for the large customer base. In our
study, we identify a number of CST characteristics that lead
to positive effects during software evolution:

• CST’s have direct communication with
customer units and allow for short feedback
cycles and fast response to emerging requests.

• CST’s have the opportunity to bypass the
planned release cycle and adjust releases to one
particular customer.

• CST’s have the ability to focus on one task
without being disrupted by other customer
requests.

• CST’s allow for a creative environment in
which they continuously learn about customers
and feature usage.

Second, our study confirms customer-specific teams as
successful for improving (1) customer responsiveness, (2)
customer satisfaction and (3) feature quality in the
subsequent phases of software evolution.

REFERENCES
[1] N. D. Fogelström, T. Gorschek, M. Svahnberg, and P. Olsson, The

Impact of Agile Principles on Market-Driven Software Product
Development, Journal of Software Maintenance and Evolution:
Research and Practice, 2010, Vol: 22, pp. 53-80.

[2] J. Highsmith, and A. Cockburn, Agile Software Development: The
business of innovation, Software Management, September, 2001, pp.
120-122.

[3] K. Beck, Embracing Change with Extreme Programming. Computer,
1999, vol. 32, no. 10, pp. 70–77.

[4] C. Larman, C., Agile and Iterative Development: A Manager's Guide.
Addison-Wesley, 2004.

[5] D. Mishra, D., and A. Mishra, Complex software project
development: agile methods adoption, Journal of Software
Maintenance and Evolution: Research and Practice, 2011, vol. 23, pp.
549–564.

[6] H. H. Olsson, H. Alahyari, and J. Bosch, Climbing the “Stairway to
Heaven”: A multiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software,
In Proceedings of the 38th Euromicro Conference on Software
Engineering and Advanced Applications, September 5-7, Cesme,
Izmir, Turkey, 2012.

[7] K. H. Bennett, V. T. Rajlich, and R. Mohamad Mazrul, Legacy
System: Coping with success. IEEE Software, 1995, pp.19-23.

[8] A. Cockburn, Agile Software Development. Boston: Addison-Wesley
2002.

[9] J. Highsmith, The great methodologies debate: Part 2, Cutter IT
Journal, 2002, vol. 5.

[10] P. Abrahamsson, J. Warsta, M. Siponen, and J. Ronkainen, New
Directions on Agile Methods: a comparative analysis. In Proceedings
of the 25th International Conference on Software Engineering,
Portland, Oregon, 2003, pp. 244–254.

[11] K. Schwaber, and M. Beedle, Agile Software Development with
Scrum. Upper Saddle River, NJ: Prentice-Hall, 2002.

[12] B. Fitzgerald, G. Harnett, and K. Conboy, Customizing Agile
Methods to Software Practices. European Journal of Information
Systems, 2006, vol 15, no. 2.

[13] S. Cook, R. Harrison, M. M. Lehman, and P. Wernick, Evolution in
Software Systems: Foundations of the SPE Classification Scheme. J.

Softw. Maintenance & Evolution: Research. and Practice, 2006, vol
18, no. 1, pp. 1–35.

[14] N. Chapin, J. E. Hale, Md. K. Khan, F. Ramil, and W-G. Tan, Types
of software evolution and software maintenance, Journal of Software
Maintenance and Evolution: Research and Practice, 2001, vol. 13, pp.
3-30.

[15] J. Bosch, Software ecosystems; Taking software development beyond
the boundaries of the organization, Editorial in the Journal of Systems
and Software; Special issue on Software Ecosystems, 2012, vol. 85,
no. 7.

[16] J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach, Addison-Wesley, 2000.

[17] C. Jones, Strategies for managing requirements creep, IEEE
Computer, 1996, vol. 9, no. 6, pp. 92-94.

[18] V. Rajlich, Changing the paradigm of software engineering,
Communications of the ACM, 2006, vol. 49, no. 8, pp. 67-70.

[19] J. Iivari, H. Isomäki, and S. Pekkola, The User – the great unknown
of systems development: reasons, forms, challenges, experiences and
intellectual contributions of user involvement, Editorial in
Information Systems Journal, 2010, vol. 20, pp. 109-117.

[20] A.M. Davis, Software Requirements, Prentice-Hall: New Jersey,
1993.

[21] I. Sommerville, Software Engineering, 6th Edition, Pearson
Education: Essex, England, 2001.

[22] Boehm, B.W. (1989). Software Risk Management. IEEE Computer
Society Press.

[23] M. Neumann, A. Riel, and D. Brissaud, IT-supported innovation
management in the automotive supplier industry to drive idea
generation and leverage innovation, Journal of Software Maintenance
and Evolution: Research and Practice, 2011, July.

[24] J. Bosch, Maturity and evolution in software product lines:
Approaches, artefacts and organization, In Proceedings of the Second
Software Product Line Conference (SPLC2), 2002, pp. 257-271.

[25] J.M. LaNasa, Building customer teams to deliver on your company’s
value proposition, Velocity, 2002.

[26] M. Poppendieck, and T. Poppendieck, Lean Software Development;
An agile toolkit, Addison-Wesley, 2003.

[27] G. Walsham, Interpretive case studies in IS research: Nature and
method, European Journal of Information Systems, 1995, vol. 4, pp.
74-81.

[28] P. Runesson and M. Höst, Guidelines for conducting and reporting
case study research in software engineering, Empirical Software
Engineering, 2009, vol, 14.

[29] J. Corbin and A. Strauss, Basics of Qualitative Research: Grounded
Theory Procedures and Techniques, Sage, California, 1990.

[30] B. Kaplan and D. Duchon, Combining qualitative and quantitative
methods in IS research: A case study, MIS Quarterly, 1988, vol, 12,
no, 4, 571–587.

[31] J. Goetz and D. LeCompte, Ethnography and Qualitative Design in
Educational Research, Academic Press, Orlando, 1984.

[32] J.A. Maxwell, Qualitative research design: An interactive approach,
Sage: Los Angeles, 2013.

[33] B. P. Lientz and E. B. Swanson, Software Maintenance Management,
A study of the maintenance of computer application software in 487
data processing organizations. Addison-Wesley, Reading MA, 1980.

[34] A. De Lucia, E. Pompella and S. Stefanucci, Effort estimation for
corrective software maintenance, In Proceedings of the International
Conference on Software Engineering and Knowledge Engineering,
Ischia, Italy, 2002.

[35] S. McConnell, Code Complete (2nd ed.). Microsoft Press, 2004, p.
29.

