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In this thesis, results from four empirical studies and a re-analysis are synthesized with 
what can constitute a structural approach to teaching and learning additive part-whole 
relations among learners aged four to eight years. In line with a structural approach to 
additive relations, the relations of parts and whole are in focus from the outset and are 
seen as the basis for addition and subtraction (Davydov 1982; Neuman, 1987). This 
approach was introduced by the researches in two intervention studies across different 
contexts. The researches collaborated with teachers in planning part-whole activities, 
teachers teaching them in their own settings, and then reflecting on them together with 
the research team. The empirical material consists of video-recorded lessons (Grade 3), 
small-group teaching (preschool) and individual video-recorded task-based learner 
interviews (with preschoolers). The teaching episodes and interviews were analyzed on 
a micro-level, using analytical tools and concepts from variation theory (Marton, 2015). 
To deepen the knowledge, a re-analysis was also conducted with the purpose of identi-
fying qualitative differences in teachers’ enactments of mathematical ideas and princi-
ples associated with a structural approach to additive relations.  
 
Looking at the articles and the re-analysis, the results suggest that, for learning, it mat-
ters which representations are offered to the children. Some representations seem to 
facilitate the discernment of the parts and whole, and their relations. The results suggest 
that it matters which examples are offered. A systematic sequence of examples has the 
potential to bring to the fore relations between different part-whole examples, which 
offer the children opportunity to learn mathematical principles such as commutativity. 
Furthermore, the results indicate that what is made possible to learn about additive 
part-whole relations is associated with what aspects are opened up as dimensions of 
variation (Marton, 2015). Foremost, though, the results reveal the importance of mak-
ing connections to highlight number relations and key features associated with the struc-
tural approach to additive relations. The results suggest that how variation is offered, 
and whether and how the teacher explicitly (verbally and gesturally) draws attention to 
relations, ideas and aspects, is crucial for the learning of additive part-whole relations. 
Moreover, through the separate articles and the re-analysis, the outcomes indicate that 
the structural approach to additive part-whole relations and conjectures from variation 
theory are possible to implement in different contexts and for different ages of chil-
dren. 
 



   
	  

Preface 
 
Working on this thesis has been a challenging process, and now I’m at the 
end of it. The thesis is framed in two research projects from two different 
contexts, and reports on selected findings from these projects. Being in-
volved in these projects from start to finish – designing, planning, analyzing 
and discussing research findings in close collaboration with teachers and 
research colleagues – has been a worthwhile way for me as a doctoral stu-
dent to develop various abilities, I think. Being close to practice has been 
inspiring and has suited me fine. Even though the projects are now com-
plete and the thesis is written, I still have an interest in further exploring the 
teaching and learning of mathematics.  
 

However, my curiosity for teaching and learning started a long time ago, 
when I got my first job as a primary teacher at a school in Nynäshamn. 
From the first day, I was encouraged by experienced colleagues to put into 
practice my new ideas from the teaching training program. In this open and 
friendly atmosphere, pedagogical questions were constantly on the agenda. 
Thank you, Sunnerby girls, for all the trust you had in me from the start, and 
for inspiring me to continuously reflect on the children’s learning and my 
teaching. When I first met Anita Sandahl at a course at Högskolan för 
Lärande och Kommunikation, some of the key ideas I had developed in 
regard to teaching mathematics were turned upside-down. Thank you, Anita 
– you made me frustrated and inspired me to further study and explore the 
teaching and learning of mathematics. Also, thank you for entrusting me 
with the task of lecturing at HLK and thereby starting my Master’s studies. 
Anita, you believed in me! 
 

A decade later I met you, Professor Ulla Runesson! You became my super-
visor, and have supported me on this journey towards a PhD degree. In 
2013, when you invited me to a join a research project in Johannesburg, an 
intensive and fantastic research journey started. Thank you, Ulla, for letting 
me participate in the project from the start and for trusting in my skills! 
Your knowledge of variation theory, experience working with teachers in 
practice, and engagement in trying to improve teaching, inspired me from 
the start. We have traveled together to Johannesburg eight times, I think, 
and have analyzed thousands of worksheets and discussed questions related 
to teaching and learning, sometimes accomplished along with a glass of 
South African red wine. Ulla, you’ve always believed in my ideas and appre-
ciated my practice-based experience as a primary school teacher. Even 
though it’s sometimes been quite challenging working with you, your sharp-



	  

ness and constructive criticism have led to a qualitative improvement in my 
work. Ulla, thank you for always believing in my competence! 
 

Professor Hamsa Venkat, my second supervisor, I’m so grateful for getting 
to know you and collaborating with you. I’m also grateful for your generosi-
ty in sharing your vast knowledge as an expert in the research field of math-
ematical educations. I admire your having such great patience with me, try-
ing to understand my English, my ideas, and my arguments. Thank you also 
for all your valuable feedback on my writing! You’ve always believed in my 
competence, you as well, and you’ve become my friend. Professor Camilla 
Björklund, my third supervisor, thank you for letting me participate in the 
FASETT project from the start, and for sharing your knowledge in early 
childhood mathematics. You’ve also helped me become a better writer, and 
have guided and supported me even though I sometimes doubted myself. 
You’ve also become a dear friend. And you, too, have always believed in 
me. 
 

My gratitude goes to all the teachers who participated in the two projects: 
Thank you for opening your classrooms to us! It has been so fascinating to 
be a part of your practice and listen to your reflections on teaching and 
learning! Thank you to all the children I interviewed and met in the class-
rooms: You’ve taught me so much and deepened my understanding of how 
children of your age can reason about numbers and number relations! 
 

During my time as a researcher I’ve been involved in different research 
groups. Thank you, MER-gruppen (the Mathematics Education Research 
group) – Ulla, Robert, Pernilla, Jesper, Birgitta, Klara, Per, Andreas, and 
new and old members! – for recurring fruitful discussions and for providing 
me with constructive feedback. Also, to the research group at Wits Univer-
sity, thank you for the meaningful sessions and for your kindness and hospi-
tality. The research team of the Wits Maths Connect Primary project – 
Hamsa, Mike, Corin, Sam, Lawan, Marie, Herman, Samira – you’re amazing! 
And I love your craziness! Also, thanks for driving me around and for let-
ting me visit suburban and township schools and be involved in ongoing 
projects! The time I’ve spent in Joburg has given me perspective on my 
situation as a researcher, mother and teacher, as well as on the world around 
me; thank you! Special thanks to Mike Askew, who wanted to be a coauthor 
of the “weaving article”. Mike, you and Hamsa have inspired me! Wits Uni-
versity, I look forward to further collaborations – keeping my fingers 
crossed! 
 

I also wish to thank Ference Marton! It’s been stimulating and inspiring 
working with you in the FASETT project – I loved those Gothenburg 



   
	  
meetings! And of course, thanks also to the other members of the FASETT 
group: Angelika, Maria, Maria, Ulla and Camilla. I really enjoyed working 
and discussing things with you as well. 
 

Angelika Kullberg, Eva Björk-Åkesson, Martin Hugo, Åke Ingerman, Jesper 
Boesen, Gunvie Möllås: Thank you for your valuable viewpoints and con-
structive criticism at my 50% and 90% seminars. Joakim Öberg, thank you 
for the final assistance with the formatting! 
 

I am grateful for the funding support from Högskolan för Lärande och 
Kommunikation, the Swedish Research Council and the University of 
Gothenburg, and from the Wits Maths Connect-Primary project via the 
FirstRand Foundation, Anglo American, Rand Merchant Bank, the 
Department of Science and Technology and administered by the National 
Research Foundation. These funds have supported this research and sup-
ported my travelling to Johannesburg as well as conferences in different 
places around the world. 
 

I also want to thank Rebecka, Pia, Birgitta, and Maria for being great friends 
and listeners, Bo for fixing the “af-bas”, ALL my lovely colleagues and 
friends “inside and outside HLK”, and my relatives who have followed my 
research journey, offered kind thoughts, and asked interesting questions. 
THANK YOU! 
 

Foremost, I’m most grateful to my husband, Mikael. Thank you for sup-
porting me! You’ve always been there for me when I’ve been frustrated, 
happy, or “on the move”. When I’ve sometimes despaired, you’ve constant-
ly encouraged me and believed in my competence to complete this work. 
To our children, Lisa and William: I’m so grateful that you’ve always been 
there supporting me! At the same time, you’ve reminded me about other 
more important things in life. Mikael, Lisa, and William, you’re the most 
important of all to me! All my love to all three of you! 
 

Kvarnängen, Ölmstad, October 2019 

Anna-Lena Ekdahl 
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1	  Introduction
 
This thesis explores the teaching of additive part-whole relations, grounded 
in a structural approach. Also studied is how this teaching can bring to the 
fore mathematical ideas and principles that can facilitate the learning of 
part-whole additive relations among young learners. This structural ap-
proach to additive part-whole relations stands in contrast to more common 
descriptions of children’s development of arithmetic skills. Many research-
ers within the field of mathematics education have studied children’s strate-
gies for solving additive relation problems, frequently describing them in 
terms of stages of development (e.g. Carpenter, Hiebert & Moser, 1981; 
Fuson, 1982; Nesher, 1982; Steffe, Thompson & Richard, 1982; Vergnaud, 
1982). This research largely suggests that sequential counting procedures 
form the basis of a natural pathway to solving additive relation problems in 
a larger number range (Fuson, 1992).  
 

However, some researchers have raised questions about the children who 
do not develop efficient counting strategies and instead rely on single-unit 
counting (Cheng, 2012; Ellemor-Collins & Wright, 2009; Hoadley, 2007; 
Schollar, 2008). Neuman (1987), whose work was an inspiration for this 
thesis, infers that those children who get stuck counting by ones forward 
and backward run the risk of not developing effective strategies for solving 
addition and subtraction problems. She suggests that children are to be 
taught strategies based on numbers’ part-whole relations. This kind of 
teaching emphasizes the part-whole relation from the outset, with the rela-
tion of the parts and the whole seen as the basis for addition and subtrac-
tion, characterizing the structural approach to additive relations. Furthermore, 
a key feature associated with a structural approach to additive relations en-
tailing the ability to see items as composite sets of units, also involves how 
some representations and organizations of items might support this ability. 
Therefore, the idea of teaching to see numbers as composite sets of units, is 
further explored in this thesis.  
 

The conjecture that a structural approach to teaching and learning additive 
relations1, whereby an awareness of numbers’ part-whole relations2 is essen-
tial for children’s development of arithmetic skills (Marton, 2015; Neuman, 

                                                             
1 In this thesis, including all four articles, part-whole relation concerns the additive, not the 
multiplicative, relation. 
2 The part-whole relations of numbers are the focus of this thesis. While the term part-
whole relation is most often used to describe this, part-part-whole relation is also used. Thus, 
even if the terms are not used consistently, they have the same meaning.  
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1987, 2013), is the point of departure in this thesis. The structural approach 
to numbers also stems from Davydov’s (1982) curriculum, in which num-
bers are introduced as labels for measured quantities and then part-whole 
relations are introduced as representations of the sizes of quantities, without 
a trajectory beginning in counting single units.  
 

Researchers in the field of mathematics education (Baroody, 1987; Ching & 
Nunes, 2017; Clements & Sarama, 2009) further argue that it is important 
that children learn to master certain mathematical principles in order to develop 
flexible strategies for solving additive relation problems, for instance the 
commutativity of addition (irrelevant order of the addends) and the com-
plement principle (the inverse relation between addition and subtraction). A 
consequence of taking the structural approach to part-whole relations, with 
the focus on additive part-whole relations of numbers is that it offers the 
possibility to introduce these principles earlier in the instructional sequence 
than the more common counting operation-based approaches typically do. 
As regards learning on the side of the trajectory from counting operations 
to additive relations, some have argued that it is challenging for preschool-
ers to understand the part-whole relations of numbers (Piaget, 1965; Res-
nick, 1983). In contrast, other researchers argue that children of preschool 
age can achieve knowledge about the part-whole relations of numbers be-
fore lower primary school (Fischer, 1990; Jung, Hartman, Smith & Wallace, 
2013). 
 

The facts that it is possible to learn the part-whole relations of numbers in 
preschool, that children can learn to see part-whole relations as a composite 
set of units, that important mathematical principles are linked to part-whole 
relations, and that relational reasoning might support young learners’ devel-
opment of arithmetic skills support the further exploration of “teaching 
from a structural approach” – and, more specifically, what can constitute a 
structural approach to teaching additive part-whole relations that facilitates 
learning among young learners. The intent in the four empirical studies (Ar-
ticles I-IV) associated with this thesis is to answer the framing question. 
Results from these studies are re-analyzed and synthesized to further en-
hance the knowledge regarding how it is possible to introduce mathematical 
principles and ideas in additive relation teaching. 
 

Variation theory (Marton, 2015; Marton & Booth, 1997) forms the theoreti-
cal basis of this thesis. According to the theory, learning something means 
discerning aspects of what is to be learned (the object of learning). When 
new aspects are discerned, the way the object of learning is experienced 
changes. As the theory sees the discernment of difference as a necessary 
condition for learning, the teacher can help the learners experience the ob-
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ject of learning in a new way by offering variation within the aspects. In this 
thesis, variation theoretical principles enable me to study “part-whole rela-
tion teaching”, with a focus on how the teachers handled this content and 
what learning opportunities were offered. Principles from the theory were 
also used in the design of activities and examples.  
 

From this theoretical basis, in this thesis teaching relates specifically to how 
the mathematical content, additive part-whole relations, is handled by the 
teachers. The term enactment is also used here to describe the teaching on a 
detailed level, especially in Article III and in the re-analysis. There is no 
essential difference between these two terms or how they are used. Howev-
er, in the detailed re-analysis, enactment is used with the purpose of drawing 
distinctions between enactment that includes the teacher’s linking actions 
and that which does not.  
 

The data that form the basis of this thesis have been collected from two 
projects, both using a structural approach to part-whole teaching: the Wits 
Maths Connect Primary project and the FASETT project3. Wits Maths 
Connect aimed to develop intervention programs to improve teaching and 
learning mathematics in the Foundation Phase4 at ten government primary 
schools in South Africa. FASETT aimed to generate knowledge about Swe-
dish preschoolers’ ability to learn addition and subtraction, and how de-
signed pedagogical activities can contribute to preschool children’s devel-
opment of these arithmetic skills. The children who participated in the two 
projects were four to eight years old. A structural approach to additive rela-
tions forms the basis of both projects, with part-whole relations of numbers 
seen as central to early number learning. The projects had in common that 
the participating teachers were relatively unfamiliar with the idea of struc-
tural approaches to additive relations. In both interventions, the research 
group and the teachers worked in close collaboration. Finally, principles 
from variation theory (Marton, 2015) were used in the interventions as well 
in the data analysis.  
 

In summary, given the importance of the part-whole relations of numbers 
in early number education, my intention is to deepen the understanding 
regarding the teaching and learning of additive part-whole relations, and to 
contribute knowledge to the field of mathematics education research with 
an orientation towards early childhood and early primary mathematics, with 

                                                             
3 The ability to discern the first ten numbers as a necessary ground for arithmetic skills. In Swedish 
Förmågan Att Sinnligt Erfara de Tio första Talen som nödvändig grund för aritmetiska färdigheter. 
The project was funded by the Swedish Research Council (grant no. 721-2014-1791). 
4 Foundation Phase consists of Reception class to Grade 3, with students aged five to 
eight years.  



CHAPTER	  1   
	  

 14 

pedagogical implications for practice. Variation theoretical ideas are used to 
expand the knowledge regarding the teaching of additive part-whole rela-
tions and to study the learning opportunities offered. The key data sources 
for this thesis consisted of video-recorded lessons (Grade 3), video docu-
mentation of small-group teaching (preschool), and individual video-
recorded task-based learner interviews. 
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2	  Literature	  review
	  
This section provides background on the structural approach to additive 
relations. The literature review looks at the research from a learning and a 
teaching perspective. 
 
Structure	  in	  (early)	  mathematics	  teaching	  and	  learning	  
In mathematics education research, structure has been an object of attention 
for several decades. Increasing focus has been on preschoolers’ and young 
students’ understanding of mathematical structure (Lüken & Tiedenman, 
2019; Mulligan & Mitchelmore, 2009, Warren, 2003). Several studies indi-
cate that an understanding of the structure in arithmetic and spatial patterns 
is important in early mathematics learning (Mulligan & Vergnaud, 2006; 
Papic, Mulligan & Mitchelmore; 2011). For example, in a longitudinal study 
with five- to eight-year-olds, Lüken (2012) assessed children’s structure sense 
using pattern and structure-oriented tasks (e.g. spatial dot patterns and ten 
chain) as well as standardized tests. The results pointed to children’s struc-
ture sense as a predictor of arithmetical competences in Grade 2. Other 
mathematical education research asserts that structure in mathematics is to 
be emphasized in teaching, arguing that it supports learners’ understanding 
of, for instance, relations between quantities, the partitioning of numbers, 
composite units, relations between operations, and multiplicative reasoning 
(Mulligan, Mitchelmore, English & Crevensten, 2013). Many researchers see 
mathematical structure is as a bridge between arithmetic knowledge and 
algebraic reasoning (Carraher, Schliemann, Brizuela & Ernst, 2006; Kieran, 
2007; Warren, 2003). 
 

Even though structure is described as important in the teaching and learn-
ing of mathematics, structure in mathematics is defined, discussed, and ar-
gued for in slightly different ways. For example, Freudenthal (1991) consid-
ers structure in mathematics in a wide sense: “Structuring is a means of 
organising phenomena, physical and mathematical, and even mathematics as 
a whole” (p. 20). Doing mathematics, he proposes, is a way to organize 
concepts, numbers, shapes, etc. into more formal or abstract structures, 
preferably in realistic learning situations. In his didactical work, he discusses 
structure within different areas of mathematics as well as in materials, envi-
ronment, and instruction. Mulligan and Mitchelmore (2009) give a narrower 
definition of the term: an awareness of mathematical patterns and structure. This 
definition builds on their empirical work with preschoolers’ and young stu-
dents’ performances across number, measurement, and space tasks. They 
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argue that this awareness of structure can be measured and is correlated 
with general mathematical understanding. In Mason, Stephen and Watson’s 
(2009) work, structure in mathematics is defined as “… the identification of 
general properties which are instantiated in particular situations as relation-
ships between elements or subsets of elements of set” (p. 10). They suggest 
that mathematical structure is an awareness, which is to be emphasized in 
teaching by drawing attention to adequate relations and properties and 
opening up for generalizing to other cases. This kind of instruction, they 
argue, will develop students’ mathematical thinking.  
 

In recent years, Venkat, Askew, Watson and Mason (2019) have discussed 
the term structure and made the clarification that, in a wider sense, structure 
consists of mathematical relations between elements. Further, they draw a 
distinction between emergent and mathematical structure. Emergent structure is 
an arrangement of “…elements – symbols or images – in some particular 
organisation that serves to stress a mathematically appropriate relationship” 
(p. 14), based on the local relation that arises within a specific case. Mathe-
matical structure5, in contrast, involves more general relations – those that 
go beyond one case, are linked to each other (generic), and can include gen-
eral properties that are applicable across classes of examples. In teaching, 
examples can be worked with as a particular case (the even number 6), a 
generic case (an even number like 6), or a general case (any even number) 
(Mason & Pimm, 1984).6 
 

In summary, there is an increasing body of research indicating that structure 
is important in early mathematics learning. It is also known that preschool-
ers’ and young students’ ability to discern structure differs, implying that it 
is important to emphasize structure in teaching. Whereas Freudenthal 
(1991) considers structure in a wider sense, the definition of structure in the 
focal studies associated with this thesis is much narrower. Mulligan and 
Mitchelmore’s (2009) definition associates mostly with spatial patterns, but 
also with number relations. Since the focus in this thesis is on number – and 
specifically additive – part-whole relations, their definition would have cor-
responded with that of a structural approach in this thesis. However, the 
closest alignment is with the definition by Venkat et al. (2019), in terms of 
structure as both local relations (emergent structure, seen in the formatting 
of quantities in particular examples into a mathematically appropriate rela-
tionship) and more general ones (mathematical structure, seen when par-
ticular relationships start to be seen as generic or general in nature). In the 

                                                             
5 Mason, Stephen and Watson’s (2009) definition of mathematical structure aligns with 
that of Venkat et al. (2019). 
6 Venkat et al. (2019, p. 15). 
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context of additive situations, structure is therefore associated with additive 
part-whole relations specifically. 
 
Structural	  and	  counting	  operations	  approaches	  to	  additive	  relations	  
Given the attention to structure in mathematics and its central point in this 
thesis, structural approaches will be further emphasized, with a narrower 
focus on additive relations. A way to distinguish the approaches from each 
other might be to say that in a structured approach to additive part-whole 
relations, the parts and whole of quantities are focused on simultaneously, 
compared to the operational counting operations approach in which the 
quantities are handled in sequence. 
 
Structuring as basis for additive relations  
A structural approach to additive relations is taken in Davydov’s work 
(Schmittau, 2004). Davydov (1982) criticized the dominant research in the 
80s that focused on young children’s counting strategies, instead arguing 
that measurement serves as an introduction to number knowledge. Initially, 
children are to be given the opportunity to “recognize the multiple relation-
ship that can exist between a continuous or discrete object (as expressed by 
its numerical measure) and some part of that object that has been used as 
the unit of measure” (pp. 226–227). Then, by starting to compare quantities 
(physical and abstract) rather than emphasizing counting single units, chil-
dren are taught to express relations between quantities using literal symbols 
(e.g. A>B). Thereafter, they are encouraged to explore the part-whole rela-
tions of numbers and the algebraic structure of a “…composition by which 
the relation between two elements determines a unique third element as a 
function” (p. 229). The plus and minus symbols were introduced in this way 
in order to describe relations between elements and quantities. Polotskaia 
and her colleagues (Polotskaia, 2017; Polotskaia & Savard, 2018) have de-
veloped Davydov’s (1982) theoretical ideas of relation reasoning between 
quantities focusing on additive word problems in early primary years. They 
argue for what they call a relational paradigm7, whereby the underlying addi-
tive relations in the problem first need to be understood in order to then be 
able to identify the operation for calculating the unknown quantity (part or 
whole) in the part-whole relation. 
 

In Swedish research, the structural approach to additive relations takes its 
departure in Neuman’s (1987) and Ahlberg’s (1997) studies on children’s 
different ways of solving additive relation context problems. Children who 
                                                             
7 The authors describe in detail what characterize the relational paradigm and how it 
contrasts with the operational paradigm (cf. counting operational approach, used in this 
thesis). 
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successfully solved the problems structured the numbers in the problems in 
parts and whole, without counting on the number sequence. Neuman 
(1987) found that seven-year-olds who failed to solve additive problems 
used single-unit counting, with or without their fingers. They had to keep track 
of how many units they had counted or when to stop counting, in contrast 
to the children who succeeded in solving the tasks by structuring their fin-
gers into numbers as patterned part-whole relations. Hence, Neuman (1987; 
2013) and Björklund, Kullberg and Runesson Kempe (2018), in contrast to 
most researchers in early mathematics, draw a distinction between different 
ways of using one’s fingers, not simply whether or not to use them, for 
solving addition and subtraction problems. They argue that structured finger 
patterns unify the ordinal aspect (the order of the fingers) and the cardinal 
aspect (each number refers to a certain group of fingers) of numbers. When 
structured finger patterns are used successfully, for instance in solving a 
subtraction problem, the cardinal and ordinal aspects are discerned simulta-
neously and the finger pattern provides an understanding of the numbers’ 
part-whole relations. This argumentation supports the promotion of struc-
tured finger patterns in early childhood mathematics.  
 

Ellemor-Collins and Wright (2009) also argue for structuring numbers 
based on Freudenthal’s (1991) work, as previously mentioned. Focusing on 
the number range 1–20, they define structuring numbers as “…organizing 
numbers more formally, establishing regularities in numbers, relating num-
bers to other numbers and constructing symmetries and pattern in num-
bers” (Ellemor-Collins and Wright, 2009, p. 53). They present a program 
including ten topics, for instance partitioning of small numbers, complements to 10, 
automatizing the doubles, adding two numbers…, in order to develop students’ 
skills in structuring numbers and solving tasks without counting by ones. 
They also argue that seeing numbers in relation to multiples of 10 and 5 as 
key benchmarks is particularly useful for developing number structure. In 
early number learning, this begins with seeing representations of 10 consti-
tuted by two 5s. Compared to Ellemor-Collins and Wright’s (2009) program 
focusing on number structure by learning to organize the numbers, the fo-
cus in this thesis is primarily on the within relations of numbers, which in-
clude the semi-decimal structure of 10 as two 5s, associating with the part-
whole relations of numbers (Davydov, 1982), the relation reasoning be-
tween three quantities (e.g. Baroody, 2016), and the connection between 
addition and subtraction. 
 
Counting as basis for additive relations 
Most often, the dialogue about young children’s development of whole-
number arithmetic (addition and subtraction) takes a cognitive perspective 
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on learning (Carpenter & Moser, 1984; Fuson, 1982; 1992; Steffe, Cobb & 
von Glasersfeld, 1988). Steffe et al. (1988) give a detailed description of the 
development stages of counting types, whereby children initially rely on 
concrete objects for counting, moving towards Figural Unit Items, when ob-
jects can be counted even if they are not within the child’s range of immedi-
ate perception, by for instance using fingers as a replacement for the count-
ing of the perceptually inaccessible collections. In the steps that follow, 
children start using more abstract counting types, and are not dependent on 
perceived items. This is in line with Carpenter and Moser’s study (1984) in 
which first-graders most commonly solved addition and subtraction word 
problems through direct modelling with their fingers or physical objects, or 
by counting on the number line. Most often, the mathematics literature 
takes its departure in Fuson’s (1992) definitions outlining the progression of 
young children’s ability to solve addition and subtraction situations in terms 
of developmental levels. The first level is called counting all, for example solv-
ing the task 3 + 5 = _ by counting the first addend (1, 2, 3), then the second 
addend (1, 2, 3, 4, 5), and then counting all together in a final sum count (1, 
2, 3, 4, 5, 6, 7, 8). The second level is called counting on. On this level, the 
child counts forward by ones from the first addend (from the example 
above 3 …4, 5, 6, 7, 8), or in subtraction backward by ones, solving 8 – 5 = 
_ by counting backward from the starting number by ones (8…7, 6, 5, 4, 3). 
Counting on is a more sophisticated strategy than counting all. On both levels, 
though, children may use manipulatives such as counters or fingers. Using 
increasingly abbreviated counting procedures, the children, according to the 
operational approach, will develop their ability to use more efficient count-
ing procedures for solving addition and subtraction problems, eventually 
truncating into knowing number combinations as recalled facts or by using 
derived number facts (Fuson, 1992), for instance knowing that for 3 + 4 “3 
+ 3 = 6 and one more is 7”. By retrieving various combinations of num-
bers, children may solve different problems within a larger number range. 
 
Counting versus structuring 
A way of further comparing the counting operational approach with the 
structural approach to additive relations can be done through an illustration 
of a girl solving an additive relation problem within the number range of 10 
(Neuman, 1987; 2013). The girl was asked to solve the following task: 
 

You have two things and need nine. How many more things do you need? 
 
The girl started by putting both her hands on the table and folding her little 
finger. She thereby knew that 9 is one less than 10, without using single-unit 
counting. Then, she immediately looked at her hands and said “seven”, still 
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without counting any of her fingers. By creating a finger pattern, making the 
part-whole relations visible with her fingers, the girl saw on her finger pat-
tern that 7 is two less than 9 and identified the missing number (7). The 
parts and the whole were visible simultaneously, and the relation between 
seven fingers and nine fingers was discerned. This way of using finger pat-
terns for structuring number relations enabled the girl to see how the parts 
and the whole in the problem were related to each other. Through this, the 
structured part-whole relations of numbers were foregrounded. Even 
though the problem’s semantic formulation itself was ambiguous as to 
which of the numbers was missing and whether it was a subtraction or addi-
tion problem (See Nesher, Greeno & Riley, 1982; Vergnaud, 1982), the girl 
experienced the part-whole relation 9, 2, and 7 (number triple) as a struc-
ture, e.g. enabling her to transform a subtraction problem to an addition 
problem). Solving the problem by attending to the part-whole relation, for 
instance using finger patterns, stands in contrast to using a counting on strategy 
(Fuson, 1992), which could be illustrated solving the same task by raising 
one finger at a time, saying or thinking the number words: (2; 3 [is 1 more]; 
4 [is 2 more]; 5 [is 3 more]; 6 [is 4 more]; 7 [is 5 more]; 8 [is 6 more]; 9 [is 7 
more]. Children who use this strategy have to keep track of how many units 
they have counted and when to stop. In the literature, this counting strategy 
is sometimes called double counting (Fuson, 1992). Some researchers argue 
that children who get stuck counting by ones forward and backward with or 
without their fingers, and rely on these strategies for solving addition and 
subtraction problems, might be hampered in developing an understanding 
of the part-whole relations of numbers (Baroody & Gannon, 1984). These 
naïve counting strategies become ineffective and time-consuming in smaller 
as well as larger number ranges (Cheng, 2012; Laski, Ermakova & Vasilyeva, 
2014; Schollar, 2008; Svenson & Sjöberg, 1982; Zhou & Peverly, 2005). 
Studies conducted in the early primary years, for instance (Canobi, 2005; 
Ding & Auxter, 2017), have seen students’ understanding of part-whole 
number relations as an indicator of how they managed to solve different 
addition and subtraction problems. Furthermore, other studies have found 
that low-attaining students (Grades 2 to 4) who used ineffective counting 
strategies (single-unit counting) made progress and learned to use more 
structured number strategies, for instance involving a knowledge of part-
whole relations and using 10 and 5 as key benchmarks (Ellemor-Collins & 
Wright, 2009; Morrison, 2018). 
 
Part-‐whole	  relations	  of	  numbers	  
The terms whole and parts for describing the set-subset relation (cf. Piaget, 
inclusion relationship) were introduced by Payne and Rathmell (1975). 
Fischer (1990) defines the relation as involving “a set of objects associated 
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with a number can be separated into subsets, each of which may also be 
represented by a number” (p. 207). In the literature on early numeracy the 
part-whole concept is often emphasized, for instance in children’s develop-
ment of arithmetic skills and in learning trajectories (e.g. Baroody, Lai & 
Mix, 2006; Clements & Sarama, 2009; Resnick, 1983).  
 

Advocates of the counting operations approach to addition and subtraction do 
not disagree in regard to the importance of part-whole relations of numbers 
in the development of arithmetic skills. However, they do argue that count-
ing precedes part-whole relation thinking (Baroody, 1985; Nesher, Greeno 
and Riley, 1982; Resnick, 1983; Verschaffel, Greer, & De Corte, 2007). Ac-
cording to Resnick’s (1983) psychological theory of number understanding, 
children develop an informal knowledge (protoquantitative schemas) about 
numbers during the preschool years. The children are able to compare 
quantities, reason about changes in quantities, and make judgements about 
the parts and the whole without exact definitions. Even if they are able to 
use counting to determine quantities of given sets, they might not use 
counting as a strategy for solving an additive relation problem. In the pre-
school years the counting and protoquantitative schemas exist, albeit sepa-
rate from each other, and the children are therefore to be pushed to use 
counting to make an exact numerical quantification. It is not until the pro-
toquantitative part-whole schemas become integrated with children’s 
knowledge of counting (Quantification of the schemas) that they will under-
stand numbers as compositions of other numbers (part-whole relations) and 
understand, for instance, the complementary principle of addition and sub-
traction and the commutative principle of addition (Resnick, 1983; Resnick, 
Lesgold & Bill, 1990). Following this theoretical approach, children’s under-
standing of part-whole relations of numbers goes through counting. This is 
opposite to a structural approach, which does not neglect counting but sug-
gests that it is possible to understand the part-whole relation without push-
ing towards single-unit counting (Davydov, 1982). 
 

It has been further discussed at what age children are capable of under-
standing the part-whole relations of numbers. Piaget (1965) claimed that 
children might not understand this before the age of seven, an assertion 
built on clinical interviews with four- and five-year-olds. The children were 
able to compare quantities (less, more, most), but when asked to decom-
pose a whole collection into two parts (subsets) and re-compose those parts, 
it was not obvious to them that this was the same whole. It seemed as if 
they disregarded the whole or forgot one of the parts. Some studies on pre-
schoolers’ part-whole reasoning indicate that preschoolers are able to reason 
about numbers’ part-whole relations before the primary grades. Sophian and 
her colleagues (Sophian & McCorgray, 1994; Sophian & Vong, 1995) exam-



CHAPTER	  2   
	  

 22 

ined how four- to six-year-olds identified missing addends and initial values 
in contextual story problems. It was found that many preschoolers could 
reason about part-whole relations and identify missing addends and initial 
values in contextual story problems; however, they most often did this 
without exact numerical precision.  
 

Other researchers advocate that preschoolers can understand the part-whole 
relations of numbers using exact numerical quantification. Hunting (2003), 
using a task similar to that in Piaget (1965), found that three- and four-year-
olds could reason about part-whole relations in a task with a set of five 
items, in which one subset was hidden (these findings do not correspond 
with Piaget’s findings). Hunting also found that the children changed focus 
from counting single items in the subsets to seeing the items as composite 
sets. Hunting argues that the ability to see groups of items was fundamental 
to the development of their number knowledge. Also, studies by Ekdahl, 
Björklund and Runesson Kempe (2019), Cheng (2012), Fisher (1990) and 
Jung et al. (2013) suggest that children are able to learn part-whole relations 
of numbers earlier than primary school.  
 
Key	  mathematical	  ideas	  of	  learning	  part-‐whole	  relations	  
Within the structural approach to teaching and learning additive part-whole 
relations there are key ideas that, while they may not be seen as mathemati-
cal principles, are nonetheless inherent in relational reasoning, which does 
not emphasize single-unit counting.  
 
Numbers as composite sets of units 
When children are to determine the quantity in different collections of 
items, they may estimate, count the items as separate units, or see the items 
as composite sets of units. Within a structural approach to number rela-
tions, there is an intention to promote the composite sets of units approach, 
in which the arrangement of elements is crucial (cf. local relation, described 
above). The idea of spatial/perceptual structuring consists of the ability to 
recognize a structured pattern, such as dots on a die or finger patterns, ei-
ther as a wholeness and/or as part of a whole pattern (e.g. Benz, 2013). 
Recognizing patterns as composite units also relates to the intuitive cogni-
tive process of subitizing, (Wynn, 1992), or what Clements (1999) calls percep-
tual subitizing, “…the direct perceptual apprehension of the numerosity of a 
group (p. 400)”, the ability to discern three/four items simultaneously with-
out needing to count each one. The number of subitized items may be ex-
tended, for example perceiving six dots organized in two rows as two sub-
sets of three, or seeing eight fingers – four fingers on each hand and both 
thumbs folded in – as “one eight” without having to count each finger. 
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Through such grouping, the range of items is extended (more than 
three/four items) and the pattern is recognized as subitized parts put to-
gether into a whole, an ability called conceptual subitizing (Clements & Sarama, 
2009). Clements., Sarama and MacDonald (2019) argue that the idea of sub-
itizing supports children’s learning of numbers and development of arith-
metic skills. Especially conceptual subitizing, whereby children’s ability to 
mentally decompose numbers into parts and compose them back together 
facilitates them in operating on numbers (solving arithmetic tasks). They 
state that “… subitizing is a critical competence in children’s number devel-
opment” (Clements et al., 2019, p. 39). 
 

Structured finger patterns, for instance, support children’s ability to discern 
their fingers as composite sets without counting (Brissiaud, 1992) and see 
structured finger patterns as a composition of parts and the whole (Ahlberg, 
1997; Neuman, 2013; Björklund et al., 2018). Young children’s numerical 
understanding can be developed if they are encouraged to use their fingers 
as “symbol sets” or structured patterns representing quantities (Brissiaud, 
1992; Hunting, 2003). In addition to this, as mentioned earlier, Neuman 
(1987) asserts that structured fingers are useful for extending the number of 
items being subitized, without needing to count them as single units. The 
two hands, with five fingers on each hand, facilitate for the children to see 
numbers in the range of 6–10 as composite sets of units, using the undivided 
5 as a benchmark. The bead string8, with ten beads on a string grouped in 
five of one color and five of another (van den Heuvel-Panhuizen, 2008), is 
another example of a structural representation, which foregrounds the semi-
decimal structure and is associated with two hands and ten fingers (Ekdahl, 
2019). 
 
Decomposing numbers  
A whole number can be decomposed in different ways, with the various 
part-part combinations all relating to the same whole number (Payne & 
Rathmell, 1975). In the early mathematics education literature decomposi-
tion tasks are described as, for instance, starting with a concrete situation in 
which a whole quantity is to be decomposed into two parts (Cobb, Boufi, 
McClain & Whitenack 1997; Ekdahl, Venkat & Runesson, 2016), or with a 
hidden quantity (a whole) decomposed into two parts in different ways 
(Neuman, 1987) or with one part hidden (Hunting, 2003; Tsamir, Tirosh, 
Levensson, Tabach & Barkai, 2015). These kinds of tasks enable children to 
see how different possible parts are related to each other and to the whole, 
see different ways to split a whole number, and explore all the possible ways 
to decompose a given whole number (completeness by systematicity). 
                                                             
8 Sometimes called the ten chain in the educational literature. 
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Knowing that a specific whole number can be split in many different ways 
is important pre-knowledge to bridging over ten (Payne & Rathmell, 1975), 
and contributes to what is called the base-10 decomposition strategy, which can 
be seen as an alternative to the counting on strategy for solving addition and 
subtraction problems over 10 (Cheng, 2012; Murata & Fuson, 2006; Laski et 
al., 2014). 
 
Mathematical	  principles	  linked	  to	  the	  part-‐whole	  relation	  
In Piaget’s (1965) argumentation, knowledge of the various additive compo-
sitions of parts within a whole number is a prerequisite for understanding 
the addition concept. Knowing the “within relation” (triple of numbers)9 
provides the basis for solving different missing number problems with these 
numbers. Based on one specific part-whole relation (e.g. the relation of the 
whole number 8 and the two parts 5 and 3), it is possible to solve informal 
(verbally or with manipulatives) or formal (with symbols) problems, when 
one of the numbers is missing. The part-whole relations of numbers also 
provide openings for learning equality and “arithmetic-algebraic ideas” (Car-
raher et al., 2006; Schmittau, 2004); for instance, in a missing number prob-
lem the missing number could be a missing start number (_ − 5 = 3), a 
missing addend (5 + _ = 8), or a missing subtrahend (8 − _ = 5). Likewise, 
the positions of the missing number or the equal sign within the problem 
could be positioned differently (e.g. 3 = _− 5 or _ − 5 = 3). The part-whole 
relations of numbers also provide children opportunities to experience oth-
er mathematical properties such as the commutative principle and the complement 
principle (the inverse relation between addition and subtraction). 
 
The commutative principle for addition 
The commutative principle for addition (the irrelevance of addend order to 
the sum) is a mathematical principle that it is possible to learn when the 
part-whole relations of numbers are emphasized (e.g. Baroody, 1987; 2016; 
Ching & Nunes, 2017; Clements & Sarama, 2009). In Canobi, Reeve and 
Pattison’s (2002) study, four- to six-year-olds were able to see commutativi-
ty in practical situations (no formal symbols used) in terms of seeing that 
when two groups of objects (parts) can be combined, the order of the group 
does not matter; the total amount (whole) is still the same. However, studies 
within the same age group in which symbols were added, as an alternative 
or a complementary representation, showed that children continued count-
ing the objects included in both tasks presented (Baroody, 1987; Baroody & 
Gannon, 1984). When presented two symbolic examples simultaneously 

                                                             
9 Slightly different vocabulary is used in the literature to describe the additive relation of 
three numbers (family/fact family/triple of numbers). 



LITERATURE	  REVIEW	  

 25 

(e.g. “Is 3 + 5 the same as 5 + 3?”), most children used a counting strategy 
to “check” the answers. Baroody (1987) also argues that even if children are 
able to express the similarities between two numeric expressions, it cannot 
be taken for granted that they understand that “the commuted combina-
tions have the same sum” (p. 146) and will spontaneously apply the commu-
tative principle when solving arithmetic tasks in other learning situations 
(Haider et al., 2014). 
 
The complement principle 
Part-whole relations of numbers form the basis of the connection between 
addition and subtraction (e.g. Baroody, 1999; 2016; Carpenter, Franke & 
Levi, 2003; Davydov, 1982; Ding & Auxter, 2017; Neuman, 1987; Resnick, 
1983). Knowledge of the complement principle of one part-whole relation (if 
Part A and Part B = Whole C, then Whole C – Part B =Part A or Whole C 
– Part A = Part B) facilitates the solving of arithmetic problems. For in-
stance, 9 – 7 = _  can be solved by converting the problem into addition: 7 
+ _ = 9 (“What must be added to 7 to make 9?”)10. This complement prin-
ciple is not obvious to all children. In Baroody’s (1999) study, six- and sev-
en-year-olds were interviewed on pair of tasks (e.g. 5 + 3 = _; 8 – 5 = _), to 
investigate how they could make use of the first task to solve the second 
one. Few of the children saw the complementary relation, with one excep-
tion: the easy addition doubles (e.g. 3 + 3 = _; 6 – 3 = _  ). Therefore, in his 
later work, Baroody (2016) stresses even more the importance of “part-
whole number relation knowledge” and how it provides flexibility in prob-
lem solving. He argues that when the children use “subtraction as addition 
strategy” automatically, knowing the three numbers as a combination, addi-
tion and subtraction problems can be solved with fluency. Ding and Aux-
ter’s (2017) study in Kindergarten to Grade 3 showed what characterized 
the strategies of children who successfully solved different additive inverse 
problems. It was found that the children who showed full or partial under-
standing used their previous knowledge of additive part-whole relations, for 
instance by drawing a part-whole picture of the presented problem.  
 

Furthermore, a study examining five- and six-year-olds’ understanding of 
both the commutativity and complement principles, in the context of concrete 
quantities and abstract symbols, was conducted by Ching and Nunes (2017). 
They found that some children succeeded in solving only the commutative 
tasks with concrete material (cf. Canobi et al., 2002), while other children 
managed to solve all the commutative tasks (both concrete and abstract) but 
not the complement tasks. Another group of children solved the commuta-
tive tasks (both concrete and abstract) and the complement tasks with con-
                                                             
10 See also the example discussed on pp. 19–20. 
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crete material, whereas yet another group of children solved tasks with both 
principles, in both concrete and abstract settings. Building on the results, 
the authors argued that the commutative principle may be easier to under-
stand than the complement principle, and that the understanding seems to 
be developed through using concrete material into a more abstract under-
standing. 
 

In summary, there seems to be agreement regarding the importance of un-
derstanding mathematical principles for developing arithmetic skills. Results 
from earlier studies indicate that it is challenging for children in preschool 
and early primary grades to understand the commutative and complement 
principles. However, it seems as if the commutative principle is easier to 
understand than the complement principle, particularly in practical situa-
tions. 
 
Teaching	  part-‐whole	  relations	  -‐	  taking	  a	  structural	  approach	  
There is agreement that knowledge of the part-whole relations of numbers 
is important for children’s development of arithmetic skills. Thus, if the 
part-whole concept is developed through counting or if it is seen from a 
structural approach has different implications for teaching. As mentioned 
previously, according to Davydov (1982) counting is avoided by starting in 
measurement and comparing relations (See also p. 17). Number symbols 
and algorithms are to be carefully introduced, allowing the children to see 
connections between the concrete objects and more abstract representa-
tions (literal symbols and numerals). In order to retain the structural ap-
proach to numbers, it is suggested that the transition to number use and 
algorithms be handled through schematic representations: “There is one 
extremely important modality in making this connection and bridging ac-
tions with objects to their expression in symbols” (Schmittau, 2004; p. 27). 
A part-whole relation can be illustrated through a schematic representation 
(See Figure 1), the top representing the whole and the two “legs” the parts 
(cf. triad diagram, Articles I and II). In Figure 1, the part-whole diagrams 
are presented. 
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In the schema, literal symbols or numerals as well as x can be used in an 
empty circle (See Figure 1), marking a missing part/whole. It is argued that 
the schematic representation enables children’s analysis of the structure of 
word problems, supporting how the quantities are related to each other and 
whether a whole or a part is missing11. In the example in Figure 1, it also 
makes sense that the position of the unknown number can vary, translating 
the missing number into an equation (Schmittau, 2004; Schmittau & Morris, 
2004).  
 
The Chinese curriculum (Zhou & Peverly, 2005) emphasizes a structural 
approach to numbers. It gives detailed instructions for part-whole relation 
teaching from concrete and semi-concrete representations to a more ab-
stract one, before moving to the solving of addition and subtraction prob-
lems. It is explicitly pronounced that counting up and down is not recom-
mended, instead the teaching should focus on decomposition and composi-
tion of numbers. In teaching, children are to be encouraged to explore the 
commutative and reversible properties of addition and subtraction, being 
able to use these to solve new problems. Another curriculum that does not 
focus solely on the part-whole relation but rather takes a structural ap-
proach is the ACE (Arithmetic and Comprehension at Primary School) 
curriculum (Programmation et Progression ACE, n. d.). In a design-based 
study, in collaboration with teachers and their six-year-old pupils, a group of 
French researchers developed this curriculum. First, the children are to be-
come familiar with small numbers, and then explore numbers as relations 
within numbers and the equal sign as relational, not as producing an opera-
tion. Another principle is to help the children understand various properties 
                                                             
11 Sometimes the Bar Model is used for representing part-whole relations (e.g. Carpen-
ter et al., 1999). In later lessons in the South African focal study, the Bar Model was 
introduced as an alternative to the triad diagram.  
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of numbers by, for  instance,  comparing  different  representations.  Games 
and activities are to be carefully introduced by the teachers (Programmation 
et Progression ACE, n. d.; Sensevy, Quilio & Mercier, 2015). 

The curricula presented above have implications for teaching part-whole 
relations using a structural approach, which is to be taken under considera- 
tion in the design and planning of the activities and the implementation in 
practice, for instance the choice  of  adequate  part-  whole  representations 
that push towards structural relations, emphasizing translation between 
representations, and the careful introduction of number symbols. Also, 
children are to be encouraged to explore numbers as relations within num- 
bers in teaching, foregrounding the meaning of the equal sign as relational 
and focusing on commutative and reversible properties in additive relation 
teaching. 

 
Intervention programs promoting part-whole relations 
Only a small number of studies in early childhood and early primary years 
have investigated “part-whole relation teaching”. In one study conducted in 
Kindergarten in China, a program was introduced by Fischer (1990). He saw 
that children receiving part-whole teaching (relations  of  sets  and  subsets 
with few objects were used) developed a more concise knowledge of num- 
bers compared to the group who received more common instruction in a 
“Count/Say/Write program”. Fischer’s results indicate that the part-whole 
teaching also facilitated the children in solving  addition  and  subtraction 
word problems, even though these were not included in the instruction. The 
results from another intervention program (Cheng, 2012) with children aged 
five to six years show that children can learn to use effective decomposing 
strategies building on their knowledge of part-whole relations within 1–10 
in solving additive relation problems, instead of relying on single-unit count- 
ing. The results further suggest that children’s pre-knowledge of numbers’ 
part-whole relations was shown to be crucial in their use of systematic de- 
composition. 

In the context of early primary grades (Grades 1 and 2) in Canada, 
Polotskaia and her research group implemented an intervention program, 
building on Davydov’s ideas about relational reasoning (See p.  ). In the 
instruction on additive word problems, the teachers were to discuss the 
additive relation within the presented word problems and draw the 
learners’ attention to the relation between three quantities, encouraging them 
to model the problems using a bar model (part-part-whole) before 
identifying the arithmetic operations linked to the problem. After the 
program, the target group (Grade 2) performed significantly better than the 
control group on different types of additive relation problems. Also, the 
target group succeeded to a 

17
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greater extent than the control group in solving more complex problems 
that required relational thinking, for instance those in which the verb could 
not directly be transformed into an operation (e.g. missing start/missing 
addend problems12) (Polotskaia, 2017; Polotskaia & Savard, 2018; Savard, 
Polotskaia, Freiman, Gervais, 2013). 
 
Interventions promoting patterns and numbers as composite sets 
Given the importance of a structural approach to patterns and numbers, 
Mulligan and her colleagues (Mulligan & Mitchelmore, 2009; Papic et al., 
2011; Mulligan et al., 2013) implemented spatial structured patterns in pre-
school and primary grades (4- to 8-year-olds) in Australia. The tasks pro-
moted the children’s structural development of number, measurement, and 
space. The results indicated that children showing a higher awareness of 
structure more easily learned about properties of early numbers and tended 
to look at and explore new patterns in successful ways. This was especially 
the case with the low attainers.  
 

Results from other intervention studies show that it is possible for teachers 
to promote preschoolers’ subitizing ability by offering plays, games, and 
materials in the children’s learning environment. Schöner and Benz (2017), 
for instance, examined five- and six-year-olds’ ways of determining number 
of items (cardinality) before and after having participated in an intervention 
program. They found that many of the children developed an ability to per-
ceive structure in order to determine the cardinality of sets. For instance, 
before the intervention program they counted all dots one by one, whereas 
after the intervention they saw a collection of dots as a subset (conceptual 
subitizing). Similarly, the intervention by Jung et al. (2013) with four- and 
five-year-olds focused on subitizing ability, but in this case in combination 
with the part-whole relations of numbers and relations between numbers. It 
was argued that these three features are so closely connected to one another 
that they can be developed concurrently: 
 

For example, eight can be conceptually subitized as two groups of four; rep-
resented in more/less relations, such as two less than ten; and viewed as a 
whole made of sets of five and three. (Jung, 2011, p. 555) 

 
Therefore, the implemented preschool tasks focused on all these features. 
Even though the sample was small (73 children), positive effects were found 
in the group who received instruction emphasizing number relations, com-
pared to the control group. It can be concluded from these studies that 

                                                             
12 For instance, an additive relation problem with the same semantic structure as the 
problem discussed on pp. 19–20. 
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seeing numbers as composite sets of units rather than single units might 
promote children’s understanding of numbers and the part-whole relations 
of numbers (Clements et al., 2019; Jung et al., 2013; Neuman, 1987). These 
studies’ results encourage the further examination of how part-whole rela-
tion tasks might be designed and implemented to enable children to per-
ceive the items as composite sets and numbers decomposed as composite 
parts. 
 
Teaching for structure  
Several researchers accentuate that teachers’ actions in the teaching situation 
play a crucial role. Venkat et al. (2019), for instance, argue that teachers’ 
pedagogical actions should highlight structure in the instruction, involving 
actions that allow the learners to see both local and general relations (See 
also p. 16). Payne and Rathmell (1975) and Baroody (1999) argue specifical-
ly for the reinforcement of the part-whole relations by, for instance, under-
lining and verbally talking about “parts” and their relations to the “whole” 
and “other parts” in instruction with younger learners. In the context of 
teaching mathematical principles, Zhou and Peverly (2005) recommend 
emphasizing the complementary relation between addition and subtraction 
in instruction, proposing that teachers juxtapose two number sentences, 
with the relation to be discerned by the learners. Another example is found 
in Ching and Nunes (2017), who conclude that when children are to be 
taught the commutative and complement principles, they need to be offered 
representations that specifically visualize the respective principles. As men-
tioned earlier, some tasks and representations facilitate the discernment of 
relations. However, teachers need to draw the learners’ attention to the tar-
get relation in the learning situation. For instance, an abacus, having ten 
rows of groups of ten beads, five of each color on each row, has the poten-
tial to be used for visualizing place value and/or bridging through 10. How-
ever, whether the material is to be seen as structured or not will depend on 
the teacher’s handling of it. Consider a teacher presenting the example  4 + 8 
= _ on the abacus by counting four beads on the top row, followed by 
counting eight beads on the second row, and then enumerating the beads by 
counting them one by one (one, two, three, four, five, six, seven, eight, nine, 
ten, eleven, twelve). Here, the abacus is used as an unstructured collection of 
counting objects and the potential of the structured representation is lost 
(Venkat & Naidoo, 2012). 
 
Connections in instruction 
There is agreement that connections in instruction enhance teaching (e.g. 
Askew, Brown, Rhodes, Wiliam & Johnson, 1997; Hiebert, Stiegler & 
Manaster, 1999; Rowland, 2008; Venkat & Askew, 2018). For instance, 
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Askew and his colleagues (1997) identified what characterized effective pri-
mary numeracy teaching in England. This effective teaching was connec-
tion-oriented, with connections between different mathematical ideas within 
the same area as well as different areas constantly being made. One of the 
reasons for analyzing connection in instruction is the evidence of discon-
nected teaching in South African primary grades’ mathematics instruction. 
The disconnections were identified within the handling of examples (Venkat 
& Adler, 2012), and where individual examples were treated separately even 
though they had the potential to be connected (Venkat & Naidoo, 2012). 
With regard to connections in instruction, connections have been studied at 
different levels of analysis, for instance on a macro-level with the argument 
that connections between different areas in mathematics matter (Askew et 
al., 1997) or comparing teaching in different countries (Hiebert et al., 1999), 
while connections between examples within a sequence of examples refer to 
connection on a micro-level (Venkat & Naidoo, 2012). 
 
Towards	  the	  aim	  of	  this	  thesis	  
Building on previous research, the part-whole relation is seen as critical for 
children’s development of arithmetic skills (e.g. Neuman, 1987). There is 
also an acknowledgement in the early mathematical field that number triples 
(part/part/whole) provide a foundation for learners to solve additive rela-
tion problems with one missing value in a flexible way (e.g. Baroody, 2016; 
Baroody & Purpura, 2017). In mathematics, structure is considered im-
portant in the development of children’s arithmetic skills and therefore also 
important to introduce in teaching. In this thesis, structure is associated 
with mathematical relations between elements (Venkat et al., 2019), in terms 
of both emergent structure and mathematical structure, as the relation be-
tween the parts and the whole is essential, as are representations in which 
the whole and the parts are possible to discern simultaneously, especially 
concrete representations in which the organization of items/sets of items 
enabling items to be seen without counting them as single units. Further, in 
this thesis, the examples and how they are linked together might generate 
mathematical structure by emphasizing relations, mathematical principles, 
and ideas. In line with a structural approach to teaching and learning addi-
tive relations, this thesis also builds on Davydov’s theoretical ideas (Da-
vydov, 1982; Schmittau, 2004) on the relational reasoning of numbers and 
on Neuman’s (1987) findings concerning differences in young students’ 
performance on early addition and subtraction problems. 
 

It is mostly the learning perspective of part-whole relations of numbers that 
has been studied. Few studies in early childhood and the early primary years 
have investigated “part-whole relation teaching” grounded in a structural 
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approach, and this is especially the case at a more detailed level. Additional-
ly, there are few intervention studies that clearly describe how the activities 
are designed and enacted in practice, and the theoretical assumption on 
which they build their interventions. This thesis seeks to address these defi-
cits, studying the part-whole structure of additive relations from both a 
teaching and a learning perspective, using principles from the variation the-
ory of learning (Marton, 2015). 
 

Furthermore, connections in mathematics instruction have been widely 
examined. It has been described on a more general level that connections 
seem to provide better learning opportunities. However, the literature also 
describes instruction with a lack of connections (e.g. Venkat & Naidoo, 
2012). This led to my interest in further exploring how connections that 
emphasize relations and mathematical ideas and principles are made in 
teaching, on a micro-level within my area of interest, additive part-whole 
relations, and thereby add to previous research the nature of making con-
nections in early arithmetic teaching. In conclusion, in this thesis I aim to 
explore what can constitute teaching and learning additive part-whole rela-
tions grounded in a structural approach among young learners, with support 
from previous research on additive relations and using tools and terminolo-
gy from variation theory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	  

 33 

3	  Aim	  and	  framing	  question
 
The overall aim of this thesis is to deepen the understanding of the teaching 
and learning of additive part-whole relations, grounded in a structural ap-
proach. Variation theoretical ideas are used to expand the knowledge of 
part-whole teaching and the learning opportunities offered. 
 

The framing question is: 
 

• What can constitute a structural approach to teaching additive 
part-whole relations that facilitates learning among young learn-
ers? 

 
The thesis is framed within the context of two intervention studies. The 
participated children were four-to-eight-year-olds. All four articles are relat-
ed to the overall aim of the thesis. Each of the four articles has its own spe-
cific aims and research questions (See pp. 99–101 for short summaries). The 
first two examine teachers’ handling of additive relation problems in a 
South African context. In Article I, a coding framework was developed with 
the purpose of identifying and describing fine-grained differences in the 
teaching of additive relations in early primary grades. In Article II, changes 
in teaching the same topic over time were studied, using an expanded ver-
sion of the same framework. The other two articles are connected to the 
Swedish FASETT project. In Article III, I studied how the same part-whole 
activity was taught differently. An examination of how dimensions of varia-
tion were opened up in teachers’ enactment of the activity revealed differ-
ences in the children’s opportunities to learn about number relations. In 
Article IV, the aim was to examine the relation between what was taught 
and what was learned. Analyses were conducted on how the children’s ways 
of experiencing numbers changed after participating in the intervention, and 
how the ideas in the program were associated with the development of the 
children’s arithmetic skills. However, in order to synthesize the results of 
the four articles and describe differences in teaching additive relations from 
a structural approach, with key tenets from variation theory (Marton, 2015), 
a re-analysis of the data from the four articles has been conducted.  
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4	  Theoretical	  basis
 
As the aim of this thesis is to deepen the understanding of the teaching and 
learning of additive part-whole relations, grounded in a structural approach, 
the concern is to explore how the mathematical content (additive part-
whole relations) was handled rather than studying other aspects of teaching. 
For this reason, variation theory was considered appropriate, since accord-
ing to this theory learning is always related to something that is to be learned – 
the object of learning (Marton, 2015; Marton & Tsui, 2004; Runesson, 
2005). Furthermore, variation theory asserts that learning means discerning 
aspects of the object of learning that have not been previously discerned, 
and that these aspects can only be discerned if they are experienced as di-
mensions of variation (Marton & Tsui, 2004; Runesson, 2006). These theo-
retical principles have enabled me to study “part-whole relation teaching” 
with a focus on how the teachers handled this content in terms of relations 
within and between examples, relations between representations and how 
mathematical principles and ideas associated with the structural approach 
were brought to the fore in the teaching. Variation theory also offers con-
cepts and tools for analyzing and giving detailed descriptions of the teaching 
and the learning opportunities offered. 
 
Ways	  of	  experiencing	  	  
Variation theory has its roots in a research approach called phenomenogra-
phy (Bowden & Marton, 1998; Marton & Booth, 1997). This research ap-
proach was developed in the 70s and 80s by a group of researchers at the 
University of Gothenburg. In phenomenographic research, the interest is on 
qualitatively different ways in which people experience the same thing, tak-
ing a second-order perspective (Marton, 1981). This means that the re-
searcher should try to grasp the phenomenon through another person’s eyes 
(Marton & Booth, 1997). Phenomenography builds on a non-dualistic on-
tology, meaning that the person and the world are not separated from each 
other. Experience is described “…as an internal relationship between per-
son and world” (Marton & Booth, 1997, p. 122). This suggests that a way of 
experiencing a phenomenon is constituted in the relation between the per-
son and the experienced phenomenon. When a person draws attention to 
this “something”, it takes on meaning for that person. This meaning arises 
precisely in the meeting, and is an internal relation between the subject (the 
person who experiences) and the object (what is experienced) Another per-
son may draw attention to the same phenomenon in another way, at which 
point it takes on a different meaning for that person (Marton & Booth, 
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1997). An example of different people’s meaning of the same phenomenon 
arose in an interview study with nine-year-olds (Ekdahl, 2012). Each student 
was asked to solve and reason about various number sequence problems, 
for instance 1, 4, 8, _, _, _. Some students focused their attention on famil-
iar relations between some of the numbers within the sequences, for in-
stance talking about “4-jumps”, “plus 4” or “doubles”. Other students fo-
cused on what was between the numbers in the sequence. There were also 
some students who focused their attention on the whole sequence, looking 
at several relations between numbers and the numbers’ relation to the whole 
sequence. Additionally, some students reasoned about the regularity of the 
sequence and held that by knowing this “rule” they could identify a number 
later in the sequence. Hence, according to phenomenography, how people 
(in this case, 9-year-olds) handle a situation and act on problems, as well as 
what they focus their attention on, reveals the differences in the ways they 
experience a certain phenomenon (in this case number sequences), and 
hence that the same phenomenon can be experienced in various ways.  
 

In a series of empirical studies, the phenomenographic research group stud-
ied learners’ ways of experiencing different phenomena, a situation, or prob-
lems within and outside school (See for instance Bowden & Marton, 1998). 
Generally, these studies showed that there were a limited number of differ-
ent ways of experiencing a specific phenomenon, that some ways of experi-
encing were more comprehensive than others, and that the different ways of 
experiencing most often had a logical relation to each other. 
 

Later, Marton and Booth (1997) re-analyzed numerous phenomenographic 
studies. In addition to describing the various ways of experiencing a specific 
phenomenon, they focused their analysis on the nature of each way of expe-
riencing in terms of aspects discerned and what constituted the differences 
between the various ways of experiencing the same phenomenon, noting that 
some aspects are critical for discerning something specific. For instance, in 
the re-analysis of Neuman’s (1987) results, different ways of experiencing 
numbers among seven-year-olds were described in terms of which aspects 
of numbers and number relations were focused on simultaneously in each 
way of experiencing. In the most comprehensive way of experiencing num-
bers and number relations, the ordinal (each number refers to a place in an 
order) and cardinal aspects (each number refers to a certain group of items) 
of numbers as well as the numbers’ part-whole relations were discerned 
simultaneously. In contrast, in another way of experiencing only the cardinal 
aspect was discerned, and not the ordinality or part-whole relations (a less 
developed way of experiencing)13. Hence, the nature of different ways of 

                                                             
13 Marton (2015) makes a further theorization of Neuman’s results. 
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experiencing a phenomenon, in terms of aspects being discerned (or not) 
and coming to the foreground simultaneously, makes it possible to also 
describe differences between different ways of experiencing the same object 
of learning (Runesson, 2006). Pang (2003) describes the shift from the phe-
nomenographic methodological research approach to a theory of learning, 
variation theory, as a move “… from questions about how to describe dif-
ferent ways of experiencing something to questions concerning what is the 
nature of the different ways of experiencing something described” (p. 146). 
Further, it was argued that the development towards variation theory could 
have implications on how to make learning possible, by relating teaching 
and learning to each other (Marton & Booth, 1997; Marton, 2015; Runes-
son, 1999). 
 
Variation	  theory	  –	  a	  theory	  of	  learning	  	  
From a variation theory perspective, there is always something to be 
learned: a situation, content, a phenomenon, a skill or a capability, often 
called the object of learning (Runesson, 2005). How a person experiences or 
“sees” an object of learning depends on what aspects are discerned and are 
in the person’s awareness, how the aspects are related to each other, and 
whether they are discerned simultaneously (Marton & Booth, 1997; Marton & 
Tsui, 2004). Thus, learning is experiencing a specific object of learning in a 
new, different way. In order to be able to experience in this “new way”, one 
must discern certain aspects of the object of learning. Some aspects are 
necessary to discern while others are not, depending on what is to be 
learned and what aspects the learner has already discerned. The term critical 
aspects is used for aspects that are seen as critical for experiencing an object 
of learning in a certain way (e.g. Marton & Tsui, 2004). The necessary as-
pects for experiencing an object could presumably be the critical aspects; 
however, as the critical aspects are related to the individual learner, the same 
ones will not be critical for all learners.  
 

As mentioned earlier, according to the variation theory, learning is due to 
seeing the object of learning in a new way by discerning certain aspects that 
have not previously been discerned, and discerning them at the same time. 
Variation theory is influenced by the theory of perceptual learning as differ-
entiation (Gibson & Gibson, 1955). Furthermore, Marton (2015) describes 
learning as differentiation: when someone discerns relevant features and 
details of the surrounding world, they will experience it in an increasingly 
differentiated way. When someone learns something, an initially vague (un-
differentiated) perception becomes increasingly differentiated, both within 
the actual learning situation and in relation to earlier perceptions (Marton & 
Pang, 2006). Expressed in another way, “…learning and development pro-
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ceeds from the undivided wholes to more and more differentiated and inte-
grated wholes” (Marton, 2015, p. 37). Thus, learning to see something 
means being able to make more differentiations and discern nuances of that 
“something” that is to be learned, thereby discerning how aspects are relat-
ed to each other and the whole. 
 
Variation	  a	  necessary	  condition	  for	  learning	  	  
Based on variation theoretical assumptions, learning emerges from discern-
ing differences and similarities, starting with differences. Marton (2015) ad-
dresses that this experience of differences is a necessary condition for learn-
ing something specific. We learn by experiencing how instances vary: “New 
meanings are appropriated through contrast or differences” (p. 64). As stat-
ed before, when a person has not yet discerned an aspect which is necessary 
to discern in order to understand something specific, according to the theo-
ry it can only be discerned if it is experienced as a dimension of variation. 
“A discerned aspect or a feature of an experienced object is thus discerned 
as a dimension of variation. So what is discerned are actually dimensions of 
variation” (Runesson, 2006, p. 402). Consequently, if no variation of the 
aspect is provided, it cannot be discerned. For instance, it would not be 
possible to experience “height” or what a tall person looks like if one had 
not met people of different heights. To be able to discern the meaning of 
height, one has to experience a variation of heights; the aspect of height is 
thereby experienced as a dimension of variation. Runesson (2006) illustrates 
how dimensions of variation can be opened up in a learning situation by the 
learner herself. An analysis was done on an experimental situation with a girl 
exploring how her body’s movements were depicted as a graph on a moni-
tor screen. When the girl, for instance, noticed that her position affected 
what happened to the graph on the screen, she changed positions (e.g. mov-
ing to standing still), thereby herself opening up the aspect “position” as a 
dimension of variation.  
 

An often-used illustration of the significance of variation is the example of 
color (Lo, 2014; Marton, 2015; Marton & Tsui, 2004). If a child is to experi-
ence what the color red is, it is necessary to have the experience of other 
colors as well (a variation of colors). Children who already know what dis-
tinguishes red from other colors have previously experienced other colors, 
and have thus experienced color as a dimension of variation.  
 

Elucidating from a teaching perspective, if we want children to learn some-
thing specific, their attention should be drawn to what is to be learned by 
foregrounding an aspect and opening it up as a dimension of variation. So, 
depending on what is opened up as a dimension of variation, different as-
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pects are made possible to learn within an episode of teaching. For example, 
if we want to draw the children’s attention to the part-whole relation and to 
how a specific whole number (e.g. 7) can be decomposed into two parts14, 
we must offer different splits (e.g. 4/3; 5/2; 6/1) of that whole number. 
Thereby, a dimension of variation for “part-whole relations” is opened up 
and different part-whole relations are possible to discern simultaneously. 
This means that something varies within the aspect focused on while some-
thing else is kept constant (invariant) (Runesson, 2006; Marton, 2015). Since 
what varies against a stable background will most likely be discerned, not 
everything can vary at the same time; something needs to be kept invariant. 
In this example it is the sizes of the parts that are to be varied, while the 
whole number (7) is to be invariant. 
 
Connections	  –	  drawing	  attention	  to	  relations	  in	  mathematics	  
As stated earlier, from a variation theory perspective, what is afforded to be 
learned is explained by what dimensions of variation are opened up in the 
learning situation (Marton , 2015; Marton & Tsui, 2004). How the children 
experience the object of learning in a learning situation depends on what 
they have already experienced and what aspects are opened up as dimen-
sions of variation in the interaction between teacher and students. Marton 
(2015) asserts that the teacher needs to handle the object of learning in a 
powerful way by offering variation, pointing out similarities and differences 
between tasks and examples. He also states, in more general terms, that the 
teacher should also draw attention to and explain relations associated with 
the aspect in focus. In a variation theoretical analysis of teaching division in 
Grade 8, Kullberg, Runesson and Mårtensson (2014) describe more specifi-
cally what this kind of teaching could look like. They found differences in 
how the object of learning was handled, depending on how the teacher 
drew the students’ attention to the object of learning by comparing certain 
examples, pointing out specific numbers within the example space.  
 

More specifically, selected tasks, examples and sequences of examples, even 
with sufficient variation, are to be seen as “raw material”. There is also a 
need for pedagogical support to foreground the relations or mathematical 
ideas embedded in the tasks (Watson and Chick, 2011). Similar to Marton 
(2015), Watson and Mason and their colleagues (Mason et al., 2009; Watson 
& Mason, 2006a) argue that the teacher needs to direct the learners’ atten-
tion to this relation or idea by, for example, making connections between 
terms in different equations or asking questions that explicitly support the 
discernment of something the teacher wants the learners to discern (Mason 

                                                             
14 See Ekdahl et al. (2016). 



CHAPTER	  4   
	  

 40 

& Watson, 2006a). This could entail, for instance, an exercise with carefully 
planned variation and invariance, such as: 
 
 17 − 9 =    _                                  27 − 9 =          _                          37 − 9 =    _  (Ibid., p. 106) 
 
Some students may notice the structure and generality, whereas others may 
see the exercise as three isolated subtraction problems. Mason & Watson 
(ibid.) suggest that if the teacher in the exercise above draws the learners’ 
attention to what is similar and different between the subtraction problems, 
the concept of “nineness” is likely to be discerned. Venkat and Askew 
(2018) follow the argument that students’ attention needs to be drawn to 
mathematical ideas and relations in instruction; especially in the early prima-
ry years, when it is likely that young learners have not been sufficiently in-
troduced to looking at patterns and relations. The variation theoretical ar-
gument regarding connections, expressed and discussed above, as drawing atten-
tion to aspects and various relations in mathematics, corresponds with how “con-
nection” is described and used in this thesis. 
 
Connections – the role of gestures 
Given the importance of making connections, the role of gestures in mathemat-
ics teaching and learning has been studied within different research ap-
proaches, for instance within a semiotic approach (e.g. Arzarello, Paola, 
Robutti & Sabena, 2009; Duval, 2006; Radford, 2009). Hostetter’s (2011) 
meta-analysis of the effects of gestures in instruction (not just mathematics) 
points out that students younger than twelve benefit more in their under-
standing when gestures are used as a complement to talk, compared to older 
students and adults. These results correspond with those in Flevares and 
Perry’s study, (2001) which shows that teachers’ linking actions supported 
first graders in learning about place value. A combination of teacher speech 
and/or gestures in instruction, especially when the mathematical topic is 
new, also seems to enhance learning (Alibali et al., 2013; Richland, 2015).  
 

In early childhood, gestures used by teachers and by children themselves are 
seen as an important source of developing the children’s mathematical 
thinking. For instance, in a case study on geometry it was found that a child 
spontaneously used gestures that helped her explain different space and 
shape aspects in a construction. The child was also helped by observing the 
teacher’s gestures in the interaction (Elia, Gagatsis & van den Heuvel-
Panhuizen, 2014). Instead of taking departure in a semiotic theoretical per-
spective, the way gesture is used in this thesis emerges from McNeill’s 



THEORETICAL	  BASIS	  

 41 

(1992) deictic gestures15, in which pointing or movement is used to indicate a 
link. Gestures can be expressed through arm, hand, or finger movements16, 
in order to draw attention to relations, ideas, and mathematical principles.  
 

Hence, connection in teaching has been studied from different perspectives 
and different levels (See also pp. 30–31 in the literature section) and has 
been thoroughly argued for from a variation theoretical perspective on 
teaching and opportunities for learning (Watson & Mason, 2006a). A nar-
rower focus on making connections leads to the interest in studying teach-
ers’ linking actions (gestures and speech) on a micro-level, and which rela-
tions and mathematical ideas and principles can be made visible for learners 
in the four- to eight-year age group. Variation theoretical principles have 
been used for analyzing teaching in different ways (e.g. Huang, Zhang, 
Chang & Kimmins, 2018; Kullberg, 2010). Using the concept of dimensions 
of variation as an analytical tool makes it possible to examine and compare 
learning opportunities offered in teaching (Häggström, 2008; Maunula, 
2018; Runesson, 1999). In this thesis, especially in the re-analysis, I do not 
solely analyze what dimensions of variation are opened up; I also examine 
how they are opened up in the teacher’s enactment – thus, how the teachers 
direct the learners’ attention to the aspect opened up as a dimension of vari-
ation. In this analysis, enactment comprises not only the teacher’s handling of 
the mathematical content but also the teacher’s linking actions (both ges-
tures and speech) that facilitate for learning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                             
15 Alibali et al. (2013) and Elia et al. (2014) also build on McNeill’s definitions of ges-
tures. 
16 For examples of linking actions, see Ekdahl et al. (2016, p. 301) and Ekdahl et al. 
(2018, p. 4). 
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5	  Methods
	  
The methods in this thesis are associated with the overall aim and framing 
question, the research questions in the four articles, and the re-analysis. The 
focal studies are framed within an educational design research approach 
(Gravemeijer & Cobb, 2013), conducted in collaboration with teachers with 
an iterative design and driven by theory. The focal studies are based on vari-
ation theory, and some variation theoretical principles were used in design-
ing activities and as analytical tools in all analyses. Furthermore, the empiri-
cal data for analyzing different part-whole teaching emerge mainly from 
video-recorded teaching episodes (whole-class and small-group teaching) 
and learner interviews. Detailed theoretical analyses of various data sets 
enabled me to understand and describe differences in teaching part-whole 
additive relations within a structural approach. Another central issue con-
cerning methods relates to ethical considerations, for instance issues related 
to interviewing young children.  
 
The	  contexts	  of	  the	  projects	  
This thesis is connected to two different research projects: the South Afri-
can Wits Maths Connect Primary project and the Swedish FASETT project. 
In Wits Maths Connect my thesis is linked to one focal study, a small-scale 
intervention study. Within the FASETT project, two focal studies are asso-
ciated with this thesis. 
 
Wits Maths Connect project 
In the overall Wits Maths Connect Primary project, a research group 
worked with ten government primary schools in one district in Johannes-
burg, developing, trialing, and researching interventions that sought to im-
prove mathematics teaching and learning in the Foundation Phase (Grades 
R-3). At five of those schools English is the language of teaching, and at the 
other five there is a range of African languages (Zulu, Sepedi, Tsonga or 
Xhosa) as the language of teaching. The project aimed to add to a research 
foundation for intervening for mathematical development in a South Afri-
can context, as well as to contribute more broadly to the international field 
of primary mathematics education. A Swedish team from Jönköping Uni-
versity, including myself, became involved in this project in 2013. In collab-
oration with the South African research team, we developed and conducted 
a small-scale intervention at one of the English-medium schools. In the 
context of South African primary mathematics, studies point to lessons as 
collections of isolated facts and procedures, particularly in the case of early 
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work in addition and subtraction, underpinned by the use of naïve counting 
methods through the primary years (Hoadley, 2007; Venkat, 2013). The 
research team implemented a structural approach to teaching additive rela-
tions, which contrasts with the counting operational approach foregrounded 
in the South African curriculum (Department for Basic Education, 2011)17 . 
Articles I and II are based on the data from the focal study carried out in 
one of the English-medium schools in Wits Maths Connect. 
 
The FASETT project 
The Swedish FASETT project (The ability to discern the first ten numbers 
as a necessary ground for arithmetic skills) is the second research project 
connected to this thesis (Articles III and IV). Its overall aim is to generate 
knowledge about preschoolers’ ability to learn addition and subtraction, 
building on Neuman’s findings (1987; 2013) and Marton’s (2015) theoretical 
and methodological basis rather than those that have dominated the re-
search field in whole-number arithmetic (counting-operational approach). In 
this intervention, activities based on theoretical principles (Neuman, 1987; 
Marton, 2015) were designed collectively and implemented by teachers in 
their preschool groups in order to determine whether and how the tasks 
could contribute to preschool children’s development of arithmetic skills. 
Similar to the South African project, the Swedish preschool teachers were 
unfamiliar with the structured approach to early numbers. Two focal studies 
within the FASETT project are linked to this thesis. Article III is based on 
data from the preschool teachers’ video documentation of one specific part-
whole activity. In Article IV, data from eight learners’ interviews before and 
after the program, as well as video documentation of different activities, 
formed the basis for analyzing what was taught and learned in the interven-
tion program. 
 
Designs	  of	  the	  focal	  studies	  within	  the	  two	  projects	  	  
Even though the two projects (Math Wits Connect and FASETT) were 
conducted in different countries and cultures, their designs have a great deal 
in common. For instance, both involve educational design research. Build-
ing on research in the design research field, van den Akker, Gravemeijer, 
McKenney & Nieveen (2006, p. 5) summarized what characterizes design 
research: Interventionist – the research is aimed at designing an intervention in 
the real world; Iterative – the research incorporates cycles of analysis, design 
and development, evolutions, and revisions; Process-oriented – (…) the focus 
is on understanding and improving interventions; Utility-oriented – the merit 

                                                             
17 Curriculum and Assessment Policy Statement (CAPS): Foundation Phase Mathematics Grades 
R-3.  
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of a design is measured, in part, by its practicality for users in real contexts; 
and Theory-oriented – the design is (at least partly) based upon theoretical 
propositions, and field testing of the design contributes to theory building. 
In addition, Plomp (2013) argues that the involvement of practitioners will in-
crease the relevance of the intervention for practice. 
 

In the focal studies, the purpose was to understand and develop the teach-
ing and learning of additive relations from a structural approach. The re-
searchers introduced theoretical ideas linked to this structural approach that 
the participating teachers, working in cooperation with the research team, 
implemented in their practice. Both projects were conducted within the 
ordinary classroom teaching or in the teachers’ preschool practice, giving 
the studies ecological value (Cobb, Confrey, di Sessa, Lehrer & Schauble, 
2003). The iteration process was a salient feature. The design consists of 
cycles of analyzing, planning, evaluating, and revising the conjecture 
(Gravemeijer & Cobb, 2013), taking into account learners’ responses and 
teachers’ reflections18. The researchers were involved in the interventions 
and kept close to the practice (observations, regular meetings with teachers, 
analysis of video observations) during the whole process.  
 

To a certain extent, differences can be identified between the designs in the 
two contexts. In the focal study in Wits Maths Connect, the research team 
worked intensively for three-week periods (February 2013, October 2013 
and February 2014). Each cycle was comprised of three lessons taught by 
each of three Grade 3 teachers, with all lessons observed and video-
recorded by the research team. A written test was administered in the clas-
ses before and after each cycle, and students’ worksheets following each 
section of teaching were analyzed. In planning meetings, video-recorded 
episodes from the lessons, teachers’ reflections, and worksheet results 
formed the basis for the discussion and planning. The design was repeated 
in all three cycles. 
 

The design of the FASETT project differed in some ways from that of the 
South African study. Besides having a collective process-oriented approach, 
the study used a combination of a design research (Cobb et al., 2003) and a 
quasi-experimental design (Salvin, 2010), including a target group and a 
control group. Both groups had regular meetings with the research team 
during a period of two semesters in 2015–2016 (target group 12 meetings; 
control group 6 meetings). In the target group meetings, the researchers 
guided the discussion towards a structural approach to additive relations 

                                                             
18 cf. the iterative design in the learning study model (e.g. Pang & Marton, 2003). 
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and children’s different ways of experiencing numbers. Certain activities19 
based on these ideas were implemented (See Table 1). Thereafter, the teach-
ers in the target group enacted the collectively planned activities in their 
preschool groups. As a starting point for the teachers’ reflections on their 
instruction and the children’s reactions, short episodes of the recorded vid-
eos were selected for discussion. In the planning meetings, reflections 
around the theoretical and mathematical ideas included in the activities were 
in focus. As described in Articles III and IV, the meetings usually resulted in 
decisions about refining the same activities and reenacting them in their 
preschools, producing an iterative and theory-driven approach. This con-
trasted with the control group, for which documentation of the preschool-
ers’ incorporated numbers and counting formed the basis of the meetings 
with the researchers20. The discussions were in line with the preschool 
teachers’ national curriculum praxis21. 
 
Designed activities associated with the studies 
All activities used in the focal studies were designed to encourage a struc-
tured approach to additive relations. The part-whole relation was to be 
foregrounded in the instruction as well as in the work with representations. 
Therefore, the activities and examples were designed and selected in a way 
that made it possible to emphasize in the teaching the part-whole relations 
of numbers as well as mathematical ideas and principles associated with 
“part-whole teaching”. Also, the results from written pre-tests, worksheets, 
and learner interviews in the Wits Maths Connect focal study as well as the 
individual learner interviews in the FASETT project were used as a starting 
point for the design of the activities. For instance, in the written pre-test we 
noticed that missing number problems were challenging for the students, 
especially if the missing number was a subtrahend or start number. There-
fore, this aspect was discussed in the planning meetings with the South Af-
rican teachers. In the Swedish project, a few children used their fingers as a 
tool in the pre-interviews (Björklund et al., 2018), this was discussed in the 
planning meetings with the preschool teachers. Also, the teachers’ reflec-
tions on their teaching during the project and the discussions about the 
children’s learning opportunities in the collaborative meetings (between 
teachers and researchers) were considered in the refining process and in-
struction of activities. 
 

                                                             
19 No distinction is made between tasks and activities. Most often, the term activity is 
used in the articles.  
20 Data from the control group are not analyzed in this thesis. I was not involved in the 
meetings with the control group. 
21 Swedish National Agency for Education (2010). 
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In the process of designing activities, principles from variation theory were 
used (Watson & Mason, 2006a; 2006b; Mason et al., 2009). The aspects in 
focus that were to be experienced in the tasks were planned carefully, so 
that variation allowed the learners to experience variation of the aspect in 
focus. As an illustration, in the context problems (See p. 48 for a full de-
scription of the activity), the examples of number stories that were planned 
kept the whole number of animals invariant (e.g. 8) and the animal in the 
story was the same (e.g. bears), but the number of bears that ran away or 
had no place to sleep in a sequence of examples differed (8 – 3; 8 – 4; 8 – 5; 
8 – 6). Another illustration is selected from the design of one of the missing 
number problems in Grade 3. The learners were to discern that the missing 
number could be a missing subtrahend, addend or start number, and the 
position of the missing number could be placed differently; therefore, two 
number sentences (11 - _ = 5 and 5 = 11 - _) were written on the board. 
The numbers were related to one specific part-whole relation (11/5/6 tri-
ple). The whole numbers and the operation were the same in this sequence, 
while the position of the missing subtrahend varied. In another teaching 
sequence, two missing number problems were presented: one with a miss-
ing addend and one with a missing subtrahend (11 = 6 + _ and 11 - _= 6). 
The whole number (11) and one part (6) were the same, whereas the miss-
ing number varied (missing subtrahend and missing addend). Table 1 pre-
sents a summary of the activities and problems from both projects referred 
to in this thesis. 
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Table	  1:	  Overview	  of	  activities	  and	  problems	  used	  in	  this	  thesis22 
Wits	  Maths	  Connect	  
Partitioning	  of	  numbers	  
Splitting	   a	   whole	   into	   two	   parts,	   different	   versions:	   seven	   monkeys	   into	   two	  
trees,	   seven/nine	  balls	   into	   two	  bags.	  Different	   representations	   are	  used:	   con-‐
crete,	   triad	  diagram,	   table,	  number	   sentence.	  The	   teachers	  encourage	   learners	  
to	  find	  all	  combinations	  and	  strive	  for	  completeness.	  	  
Missing	  number	  problems	  
Missing	  subtrahend,	  addend	  or	  start	  number,	  a	  specific	  number	  triple	  combina-‐
tion	  is	  discussed.	  Different	  representations	  are	  used:	  triad	  diagram,	  double	  bar,	  
number	  sentence.	  
FASETT	  
Statement	  game	  
Before	  throwing	  a	  die,	  the	  children	  decide	  what	  number	  they	  think	  it	  will	  show.	  
When	  they	  have	  agreed	  on	  a	  number,	  they	  show	  this	  number	  with	  their	  fingers	  
using	  both	  hands.	  The	  teachers	  encourage	  them	  to	  show	  the	  number	  in	  different	  
ways.	  	  
Snake	  game:	  5-‐snake	  and	  10-‐snake	  
Two	  resources	  are	  used:	  a	  string	  with	  five	  beads	  of	  the	  same	  color	  or	  one	  with	  
ten	  beads,	  grouped	  as	  five	  of	  one	  color	  and	  five	  of	  another.	  The	  teachers	  en-‐
courage	  the	  children	  to	  represent	  the	  whole	  number	  (five	  or	  ten)	  with	  their	  
fingers.	  Then,	  some	  beads	  are	  hidden	  and	  the	  children	  show	  the	  number	  of	  
beads	  they	  see	  on	  the	  string.	  By	  looking	  at	  their	  unfolded/folded	  fingers,	  they	  
are	  then	  able	  to	  “see”	  the	  missing	  part	  (number	  of	  hidden	  beads).	  
Finger	  patterns	  
The	  children	  identify	  finger	  patterns	  shown	  by	  the	  teacher	  with	  a	  number	  word.	  
The	  “undivided	  five”	  is	  emphasized,	  so	  numbers	  >5	  are	  chosen.	  The	  teacher	  asks	  
how	  many	  fingers	  need	  to	  be	  added/taken	  down	  to	  make	  a	  different	  finger	  pat-‐
tern	  (>5),	  and	  then	  follows	  the	  children’s	  suggestions.	  The	  teacher	  reverses	  the	  
task	  and	  asks	  how	  many	  are	   to	  be	  added/taken	  down	  to	  give	   the	   first	  number	  
again.	  
Context	  problems	  
Short	  number	  stories	  of	  different	  types	  within	  the	  number	  range	  1–10	  are	  pre-‐
sented.	  The	  children	  model	  the	  problems	  on	  their	  fingers.	  A	  systematic	  order	  of	  
the	  presented	  problems	  emphasizes	  the	  number	  relations.	  
	  

                                                             
22 See Ekdahl et al. (2018, p. 4) for a more detailed descriptions of activities and prob-
lems used in the South African study.  
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As can be seen in Table 1, a limited number of activities and problems were 
implemented. Instead of introducing a large battery of tasks (cf. Dyson, 
Jordan & Gluttin, 2013), the intention of the studies was to “enter deeply 
into the activities and missing number problems” by revising and refining 
the activities and, moreover, by focusing on the mathematical principles that 
were possible to bring to the fore in the part-whole teaching within a struc-
tural approach and how the learners experienced the activities being con-
ducted (iterative process). Also, the teachers usually wanted to repeat the 
activities after having reflected on the videos and their own teaching with 
colleagues and researchers. Occasionally, teachers felt that a specific activity 
was too great a challenge for the children. Instead of following the setup for 
an activity, which had been planned together, some teachers simplified it. 
For instance, in the Snake game (See Table 1), instead of encouraging the 
children to identify the hidden part by looking at their structured finger pat-
terns (unfolded/folded fingers), the teacher repeatedly asked the children to 
simply show as many fingers as the number of visible beads on the snake. 
On the South African side, a teacher felt that the partitioning activity (seven 
monkeys playing in two trees) was too elementary for her class, and instead 
chose the whole value 26 to decompose into two parts (See Article I, p. 
303).  
 

The chosen representations (concrete, triad diagram, bar model, table, 
number sentence, bead string, and fingers) made it possible to discern the 
whole and its parts simultaneously, promoting structure. Payne and 
Rathmell (1975) and Baroody (1999) argue for the reinforcement of the 
part-whole relations by underlining and verbally talking about parts, and 
their relations to the whole and other parts in instruction with children. There-
fore, the teachers were encouraged to use “parts and whole” in the instruc-
tion of the partitioning number activity and various missing number prob-
lems (Wits Maths Connect project). In the FASETT project, the instruction 
emphasized the connection between decomposing a whole into two parts 
and composing the same parts into the original whole (without verbally 
talking about “parts and whole”). However, in both projects, relations with-
in numbers were to be emphasized in the instruction. 
 
Participants,	  samples,	  and	  data	  collection	  
Data for this thesis were sampled from three Grade 3 classes of 35+ stu-
dents each at a suburban government English-medium primary school in 
South Africa during 2013–2014, and from nine Swedish preschool teachers 
and their 65 preschoolers at five Swedish preschool units during 2015–2017. 
The total data collection from the two projects was extensive, which is pref-
erable in educational design research (Brown, 1992; Cobb et al., 2003). Data 
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included individual learner and teacher interviews, video-recorded lessons, 
video-recorded small-group teaching in preschool, audio-recording from 
planning meetings in both projects, pre- and post-tests and worksheets 
from three South African intervention cycles, and the preschool teachers’ 
logbooks of conducted activities. However, this thesis presents a selection 
of the total data collection. Table 2 provides an overview of the contexts, 
participant samples, and data types used in the four articles. 
 
Table	   2:	   Overview	   of	   contexts,	   participant	   samples,	   and	   data	   types	   used	   in	   the	  
thesis	  
	   Article	  I	   Article	  II	   Article	  III	   Article	  IV	  
Context	   South	  Africa	   South	  Africa	   Sweden	   Sweden	  
School	  
Grade	  

Primary	  	  
Grade	  3	  

Primary	  
Grade	  3	  

Preschool	   Preschool	  

Year	   2013	   2013-‐2014	   2016	   2015-‐2016	  
Participant	  sam-‐
ples	  

	   	   	   	  

N	  Teachers	   3	  	   3	  	   9	  	   3	  	  
N	  Classes/groups	  
and	  units	  

3	  classes	  
1	  school	  unit	  

3	  classes	  
1	  school	  unit	  

8	  preschool	  
groups	  
5	  units	  

1	  preschool	  
group	  
1	  unit	  

N	  Children	   132	   132	  +	  110	   65	   8	  
Age	  of	  children	   7-‐8	  years	   7-‐8	  years	   5	  years	   4-‐6	  years	  
Data	  types	  
Video-‐recorded	  
lessons/	  
observations	  

6	  lessons	  
whole-‐class	  
teaching	  
(+40	  students)	  

18	  lessons	  
whole-‐class	  
teaching	  
(+35	  stu-‐
dents)	  

67	  observa-‐
tions	  
small	  group	  
teaching	  	  
(2-‐8	  chil-‐
dren)	  

23	  observa-‐
tions	  
small	  group	  
teaching	  
(2-‐8	  children)	  

Total	  time	   120	  minutes	   440	  minutes	   450	  minutes	   210	  minutes	  
Video-‐recorded	  
task-‐based	  inter-‐
views	  

-‐	   -‐	   -‐	   16	  individual	  
learner	  inter-‐
views	  	  
(pre	  &	  post)	  	  

Total	  time	   -‐	   -‐	   -‐	   114	  minutes	  
Written	  
documentation	  

396	  	  
Worksheets	  

-‐	   -‐	   Teacher’s	  
Logbook	  
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As can be seen in the overview (Table 2), three Grade 3 teachers and 11 
preschool teachers23 participated in the four studies. In the South African 
intervention, Grade 2 teachers often joined the planning meetings and con-
ducted the planned lessons in their own classrooms. However, it was three 
Grade 3 teachers who regularly attended the meetings during all three peri-
ods and taught all the planned lessons who were sampled for analysis in the 
first and second articles. Similarly, in the FASETT project, it often hap-
pened that more than nine preschool teachers participated in the planning 
meetings, but their video-recorded activities were not included in the data 
set in Article III. In addition to the 132 participation children in Article I 
another 110 children participated in Article II. In the focal studies in the 
FASETT project, a total of 65 children participated in the video-recorded 
Snake game activity. The eight children in the target group (Article IV) were 
part of the group of 65 children in Article III. 
 

In Table 2, it can be seen that the data sampled for analysis in this thesis 
mainly emerged from video recordings of whole-class teaching, small-group 
teaching, and learner interviews. Video recording provides a rich set of ma-
terial that can capture details of the teaching in natural settings (Heath, 
Hindmarsh & Luff, 2010). Using video recordings enables researchers to 
record in real time, and they do not need to be present (ibid.). Recordings 
also show talk, gestures, and visible resources, making it possible to observe 
on a highly detailed level. Since the aim was to study part-whole teaching on 
a micro-level and the learning opportunities offered in classrooms and in 
preschool settings, video recording was a relevant method. Video-recorded 
data enabled me to make scrutinize in detail the teachers’ handling of the 
content and the teacher-child interaction, and to return to recorded se-
quences several times in the analysis process. The video-recordings also 
facilitated sharing with other researchers and with a wider public (ibid.). In 
the intervention processes as well as the analysis processes connected to this 
thesis, video recordings were continuously shared within the research group. 
During the process, videos were analyzed and discussed in the research 
group in order to carry the projects forward. Also, videos formed the basis 
for discussions at the collaborative planning meetings (between teachers and 
researchers) in both projects. Recorded data were also shared with research-
ers outside the research group as well as at conferences, communicating 
ongoing analyses and results (Ekdahl & Runesson, 2015; Ekdahl & Björ-
klund, 2017; Ekdahl et al., 2019). 
 

                                                             
23 In Article IV, one of the preschool teachers was the same as in the sample in Article 
III. However, in Article IV all video-recorded activities conducted at the target pre-
school were sampled and the teaching of another two preschool teachers was analyzed.  
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A total of 1,220 minutes of video-recorded teaching and 114 minutes of 
learner interviews have been analyzed. The data were collected over a period 
of four years. The key data sources for Article I are three video-recorded 
sections of teaching from the first and second lessons in the first cycle in 
February 2013. The whole-class instruction related to partitioning taught by 
the three teachers was sampled for analysis of the part-whole teaching (See 
Table 2). The data sources for Article II consisted of nine video-recorded 
lessons (three from each teacher) from the first cycle in 2013 and nine les-
sons from the third cycle (February 2014) (N=18 lessons, whole-class teach-
ing). Thus, in 2014 the same three Grade 3 teachers were teaching three 
new classes on the same topic. The lessons were recorded by me or another 
member of the research team. Since the interest was mainly in the teachers’ 
handling of the content, the camera was set up at the back of the classroom, 
focused towards the teacher and the board. It had a fixed position, but it 
was possible to zoom and follow the teacher’s movement. As backup, audio 
recording with a Dictaphone was used. I myself observed all the lessons. 
Only the recorded whole-class teaching was sampled for analysis; the intro-
duction of the lesson as well as the students’ individual work were excluded.  
The small-group video recordings in FASETT were handled by the pre-
school teachers themselves. Most often an iPad was used for recording, 
placed on a table in front of the group of children and their teacher, while 
sometimes a colleague or a child did the recording. The preschool teachers 
continuously uploaded their videos onto a server to which the research 
group had access. I myself did not observe any of these episodes in real life. 
In order to determine the different ways in which the teachers enacted the 
same part-whole activity, 67 uploaded recorded videos from the Snake 
game, conducted over a three-month period, were sampled for analysis in 
the third paper (Article III). In Article IV, 23 uploaded videos of four activi-
ties from one preschool unit were analyzed. 
 

Individual task-based learner interviews were conducted in the FASETT 
project24. In the fourth article, eight children from a target preschool were 
sampled for analysis. This group was chosen due to their low results on the 
pre-interview and the substantial data collection of recorded videos and 
logbook notes from this site. From the video-recorded learner interviews 
(pre and post), eight tasks (See Appendix) were chosen for deeper analysis 
of how their way of experiencing numbers had developed since their partic-
ipation in the intervention program. All interviews were conducted by me or 
my colleague at the children’s preschools, in a room close to the indoor play 
area. A video camera was set up beside the table where the child and inter-

                                                             
24 In the FASETT project, a total of 103 children (target and control group) were inter-
viewed on three occasions (309 interviews in total). 
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viewer sat side by side. The interviews focused on how the children counted 
and solved oral numerical and word problems. After having conducted pilot 
interviews, we agreed that if the child failed twice at the guessing game task, 
we would only present two examples. Further, if the child seemed to be 
troubled at the end of the interview, the last two questions would not be 
asked; alternatively, we could use a lower number range. Starting the inter-
view, I explained to the children the purpose of the interview in language 
they understood. Also, I told them that the interest was in hearing their 
reasoning about numbers, and they were furthermore encouraged to use 
their fingers. Sometimes a child wanted to play the guessing game with me 
and s/he was allowed to do this. In some cases, after having finished the 
interview, children wanted to watch themselves in the camera, which they 
were allowed to do. 
 

Also, learning interviews in the initial phase of a project provide useful in-
formation for the design of interventions25 (Brown, 1992). For a reason 
similar to that described above, video-recorded interviews (Heath et al., 
2010) provided me and the research team with detailed information about 
the children’s verbal utterances and how they used their fingers, counted, 
and used gestures when handling the tasks. 
 
Analytical	  tools	  	  
Concepts from variation theory (Marton, 2015; Marton & Tsui, 2004; Hägg-
ström, 2008) were used as analytical tools in this thesis. To some extent, the 
same concepts and analytical tools were used across the articles and in the 
re-analysis, but it also differed in terms of which ones were chosen and how 
they were used. Simultaneity was one concept that formed the categories of 
the coding framework developed in Articles I and II. Within a structural 
approach to part-whole relations, the simultaneous presence of parts and 
whole within examples is a necessary condition for making the relations 
discernable (Marton & Tsui, 2004). This was also the case with the simulta-
neous presence of different representations and part-whole examples. The 
other concept used for analyzing was connections, referring to a teacher’s link-
ing action (McNeill, 1992), which helped to draw learners’ attention to 
something specific (e.g. Mason et al., 2009). These two concepts formed the 
criteria for coding the teaching of the same partitioning number activity in 
three different South African classrooms. In order to further explore other 
aspects of part-whole relation teaching (missing number problems), and 

                                                             
25 Individual learner interviews were conducted in the South African project as well. 
They formed the basis for planned lessons and discussions, but are not used in the 
thesis. 
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changes in teaching over time, the same analytical tool (the combination of 
simultaneity and connection) was employed in Article II.  
 

The concept dimension of variation was used as an analytical tool for examining 
and comparing the learning opportunities offered in teachers’ teaching. Fol-
lowing the variation theoretical assumptions, the learner will most likely 
discern an aspect if it is opened up as a dimension of variation (Marton & 
Pang, 2006); thus, the dimensions of variation open up is what is made pos-
sible to learn. In Article III, I identified the aspects that were opened up as 
dimensions of variation in the teachers’ enactment of a part-whole relation 
activity. This analysis provided me with tools to describe the different enacted 
objects of learning constituted of certain dimensions of variation that were 
opened up, and thereby the different learning opportunities that were offered 
(Häggström, 2008). In a similar way in Article IV, the concept of dimension 
of variation was the analytical tool used for analyzing what aspects the 
teaching (all four activities) afforded the five-year-olds to discern.  
 

Way of experiencing was another analytical tool used in Article IV, for analyz-
ing the children’s way of experiencing numbers before and after an inter-
vention program. According to variation theory (Marton and Booth, 1997), 
how people handle a situation or act on a problem, and what they focus 
their attention on, reveals how they experience that situation or problem. 
Also, how something is experienced depends on what aspects are discerned. 
The nature of each way of experiencing something specific can be described 
in terms of discerned aspects26. Therefore, analyzing children’s ways of acting 
on additive relation problems in the interviews made it possible to describe 
their way of experiencing numbers, in terms of aspects being discerned or 
not. The teachers’ handling of the part-whole activities and emphasizing 
aspects by opening them up as a dimension of variation made it possible to 
analyze what was afforded in the teaching. Then, using the concepts discerned 
aspects (the children’s way of experiencing) and afforded aspects (what the chil-
dren were offered in the activities) and relating them to each other enabled 
us to describe how the discerned aspects reflect the afforded aspects. Since 
teaching and learning are described in commensurable terms (as afforded 
and experienced aspects, respectively) what is taught and what is learned can 
be related. 
 

In order to further deepen the understanding of the structural approach to 
part-whole teaching, in the re-analysis I approached the empirical data in a 
slightly different way. The analytical tools were refined, resulting in a com-
bination of the concepts dimension of variation (from Articles III and IV) and 

                                                             
26 See also p. 37. 
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connections (from the coding framework in Articles I and II), in order to iden-
tify qualitative differences in the teachers’ enactments of certain mathemati-
cal ideas and principles, and to describe the learning opportunities offered.  
  
Analysis	  processes	  –	  the	  four	  articles	  
Variation theory has offered appropriate concepts and analytical tools in 
relation to the research questions. Also, all analyses associated with the dif-
ferent data sets have been conducted on a micro-level, in order to under-
stand the teaching and learning of additive part-whole relations grounded in 
a structural approach. Even though the theoretical principles have been 
taken as a point of departure, it has been a challenge to approach the data in 
an appropriate way according to the research questions. Therefore, the anal-
ysis methods have been tried out, rejected, revised, and refined. 
 
Development of the coding framework Articles I and II 
The first article is a methodological paper, in which the development of the 
coding framework is described and applied to three sections of teaching 
related to partitioning in three South African Grade 3 classrooms. A prelim-
inary analysis of the same data set in 2014 suggested that differences in 
learning outcomes on worksheets following each section of teaching could 
be associated with differences in teachers’ teaching (Venkat, Ekdahl & 
Runesson, 2014). In explaining these differences, connection was applied as 
“an indicator” for describing the teaching. Each section of teaching for each 
teacher was categorized as “weak or strong connections” (in some cases 
“mostly weak”)27. Questions were raised according to the distinction be-
tween weak, mostly weak, and strong connections. Therefore, in the follow-
ing analytical process the definition of connections became more distinct 
and the criteria for coding the teaching were refined. In order to describe 
the fine-grained difference in the teachers’ instruction relating to partition-
ing problems, the coding framework was developed, considering the nature 
of simultaneity and connections at three levels: between representations 
(SCBR), within examples (SCWE), and between examples (SCBE). 
 

One issue that needed to be considered in the coding process was how to 
demarcate the teaching episodes in smaller units. The definition of the unit 
of analysis depends on what is to be examined (Herbst & Chazan, 2009). In 
this case, the purpose was to analyze the teachers’ connecting work (linking 
gestures and talk) of a specific topic (part-whole relations) across represen-
tations and examples, looking at every single example presented28. There-

                                                             
27 See for instance Venkat, Ekdahl & Runesson (2014, p. 343, Table 3). 
28 One example is an instance of a part-whole relation.  
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fore, the analysis was on the micro-level, with the “micro units” was defined 
as segments. A description of when a segment started, what it included, and 
when it was considered complete was formulated29. Demarcating the teach-
ing episodes into segments enabled the coding of simultaneity and connec-
tions. In the same segment, at least one instance was to fulfil the criteria for 
each SC category (SCBR, SCWE, SCBE).  
 

In Article II, a new process of defining criteria for different SC categories, 
applicable to missing number problems, started. The expanded coding 
framework30 was used for analyzing shifts in part-whole teaching over time. 
The results of the number and proportion of segments meeting the criteria 
for each SC category in 2013 and 2014 for partitioning activities and missing 
number problems were summarized for each teacher, and qualitative chang-
es in teaching related to connections within examples and between exam-
ples were illustrated. 
 
Analysis process - Article III 
Videos selected for discussion in the planning meetings during the FASETT 
project had indicated that, even if the activity had been planned collectively 
and handled several times, it was conducted differently. Therefore, my in-
terest was to go deeper into the data of one specific part-whole activity, the 
Snake game. The video-recorded observations were analyzed in several 
steps. First, an overall analysis of 39 observations was made in order to 
identify how the game was handled. It was demonstrated that how mathe-
matical ideas became visible depended on the teacher’s way of handling the 
activity, described in more general terms (Ekdahl & Björklund, 2017). 
Thereafter, a more detailed analysis of all video-recorded observations was 
conducted, focusing on differences and similarities in the teachers’ enact-
ment (Ekdahl, 2019). Until this moment, the analysis had focused on teach-
ers’ different ways of handling the Snake game activity.  
 

But now, a need for theoretical clarification and further distinction between 
different enactments emerged. As variation theory assumes that an aspect is 
considered possible for learners to discern if the corresponding dimension 
of variation is opened up as a dimension of variation (Häggström, 2008), I 
revisited the data and focused on what was made possible for the five-year-
olds to learn (the enacted object of learning). By analyzing all 67 observa-
tions of the Snake game activity again, I identified aspects related to number 
relations that were opened up as dimensions of variation in each observa-
tion. Here, I used questions that would help me maintain focus on the en-

                                                             
29 For a more detailed definition av segment, see Article I (p. 299). 
30 For the criteria for missing number problems, see Article II, (p. 4, Table 2).	   
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acted object of learning. For each dimension of variation identified as being 
opened, I described in detail what varied and what was kept invariant. Then, 
for each observation I analyzed which dimension of variation was opened 
up. Those with the same sets of dimensions of variation were grouped to-
gether, constituting one enacted object of learning. 
 
Analyzing teaching and learning - Article IV 
The purpose of Article IV was to examine the relation between what was 
taught and what was learned through an analysis of how aspects of numbers 
were afforded in the intervention program and how these aspects were re-
flected in five-year-olds’ learning. Three analyses were conducted. 
 

In the first analysis, the focus was on changes in the children’s ways of ex-
periencing numbers expressed when they solved different additive relation 
tasks in the pre- and post-assessment. On a detailed level, the children’s 
ways of acting on each task, both reasoning verbally and their use of their 
fingers, were analyzed. This resulted in six different ways of experiencing 
numbers (See Björklund & Runesson Kempe, in press). Then, a coding was 
made of how these ways of experiencing numbers changed from one cate-
gory to another during the intervention.  
 

The second analysis focused on how the structural approach to part-whole 
relations of numbers was implemented in the intervention program. The 
video-recorded observations of the activities were analyzed. Similar to the 
analysis conducted in Article III, each observation was analyzed in terms of 
what dimensions of variations were opened up in the teachers’ teaching. 
This analysis made it possible to identify what aspects the children were 
afforded to experience in the teaching of the four different activities (See 
also Ekdahl et al., 2019).  
 

The third analysis enabled us to synthesize the two other analyses, by identi-
fying what aspects the children had discerned and what aspects had been 
afforded in the activities (See also p. 54). This analysis made it possible to 
identify certain aspects that the children had not discerned before the inter-
vention but did discern after it. 
 
Revisiting	  the	  data	  -‐	  a	  re-‐analysis	  
To further explore how mathematical ideas and principles linked to additive 
part-whole relations can be brought to the fore following a structural ap-
proach to teaching, a re-analysis of the data set associated with the articles 
was conducted. This provided me with a way to further answer the question 
of what can constitute part-whole relation teaching grounded in a structural 
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approach, and the learning opportunities that are afforded using principles 
from the variation theory of learning. 
 

In the re-analysis, the teachers’ different enactment was scrutinized. In this 
re-analysis enactment comprises the teachers’ handling of the content, but 
also their linking actions – their gestures and talk (McNeill, 1992) that might 
facilitate the learning of additive part-whole relations. This analysis involved 
attention to mathematical ideas and principles associated with a structural 
approach to additive part-whole relations, which are important for children 
(aged 4 to 8) in developing arithmetic skills. These ideas and principles have 
been noted in earlier research within the field of early numbers, and are, to 
various extents, described in the literature section31. Among the mathemati-
cal ideas and principles are: number relations as composite sets, decompositions of 
whole numbers, the commutative principles for addition, the complement principle (the 
inverse relation between addition and subtraction), equality, and completeness by systema-
ticity. Teachers have the possibility to bring these ideas and principles to the 
fore within structural part-whole teaching. Some ideas were possible to em-
phasize in certain activities in the interventions, whereas others were more 
suitable to emphasize in other activities. For instance, using finger patterns 
for structuring number relations as composite sets was an object of atten-
tion in FASETT (but not in the focal study in Wits Maths Connect), where-
as the decomposition of a whole number into different parts was empha-
sized in both projects. Moreover, commutativity and the complement prin-
ciple, and completeness, were possible to emphasize within structured part-
whole teaching in all the focal studies. 
 

In order to discern how the same mathematical idea/principle was handled, 
excerpts from the articles, transcripts, and video observations from the 
whole data sets associated with the four articles were sampled for analysis. 
The intention was to find short teaching episodes in which the mathemati-
cal ideas/principles were focused on in the teaching. As the activities had 
been planned cooperatively, it was plausible to find episodes with similar 
examples in the data set. Moreover, in some case comparisons, teaching of 
the same activity had been analyzed and described in the articles. 
 

The first analytical step was to identify, in each teaching episode sampled, 
what dimensions of variation were opened up (or not) that were associated 
with the mathematical idea (cf. analysis of the Snake game p. 56). In most 
enactments, more than one dimension of variation was opened up. In cer-
tain cases, another dimension of variation that was not critical for the dis-
cernment of the specific mathematical principle was opened up. For in-

                                                             
31 See pp. 20–26. 



METHODS	  

 59 

stance, the aspect representations of numbers was opened up as a dimension of 
variation when the same example was represented in number sentence form 
and in a triad diagram. This aspect would have been necessary if number 
relations represented in different representations were to be foregrounded; 
however, it was not critical for discerning the commutativity principle. It 
was found that in some of the sampled teaching episodes it should have 
been possible to open up the dimension of variation associated with the 
mathematical principle, but this was not the case. For instance, if examples 
presented on the board were erased, they were not possible to simultane-
ously discern and it was not made clear to the learners how an “erased ex-
ample” was related to the next example produced. 
 

In the analytical process, it was also found that a certain dimension of varia-
tion associated with the mathematical idea/principle can be opened more or 
less explicitly in the enactment. Having repeatedly analyzed the teaching 
episodes of the same idea, I noticed differences in whether and how the 
teacher directed the children’s attention to the mathematical idea through 
their actions. For instance, in one enactment of the Snake game activity 
associated with number relations as composite sets, I saw that the teacher explicit-
ly pointed to the children’s finger patterns and compared their different 
ways of showing them (folded/unfolded fingers), whereas in another en-
actment different finger patterns of the same number relation were possible 
to discern, but were not specially brought to the fore by the teacher. How-
ever, in both these enactments the part-whole relation as composite sets of 
units was opened up as a dimension of variation. 
 

Therefore, being able to distinguish between a more or less explicit enact-
ment, the notation connections was used. The definition of connection corre-
sponds with the definition in the coding framework in Articles I and II32. 
Connections consist of linking actions in a teacher’s speech and/or gestures 
emphasizing, in this analysis, the dimension of variation opened up within 
relations of part-whole and the mathematical idea in the context of struc-
tured additive relation teaching. Since connections were not a component of 
the analysis process in Articles III and IV, I revisited the video-recorded 
observations in certain cases. The teacher’s connecting action was supposed 
to explicitly direct the attention to focused ideas. Several comparisons of the 
selected excerpts within the same mathematical idea or principle were made. 
Each enactment was described based on dimensions of variation that were 
opened up (or not), connections made by the teacher (or not), and what 
learning opportunities were offered within each of them. 
 

                                                             
32 See for instance Article I (p. 300) and Article II (p. 4).  
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This micro-level analysis enabled me to identify and describe subtle differ-
ences in the teaching of the same mathematical idea or principle that was 
made possible to bring to the fore within a specific activity. With this in 
view, different enactments of the same idea were described. The excerpts 
were condensed and focused mainly on the teacher’s instruction. Three 
mathematical ideas/principles – number relations as composite sets, the commutative 
principle, and completeness by systematicity – were analyzed in the same way. 
 
Ethical	  considerations	  
Ethical approval for the Wits Maths Connect project was granted by the 
University of the Witwatersrand within the Discussing Lessons initiative in 
the Wits Maths Connect Primary project. The data collection and research 
procedures were consistent with the principles of research ethics published 
in South Africa. The principal and the three teachers at the primary school 
had indicated their willingness, and voluntarily gave informed consent to 
participate in the planning and development of the lessons. Parents and 
students also gave their informed written consent for the students’ partici-
pation. The teachers’ names (Teachers A, B, and C) were not associated 
with their class notations. As the teachers’ board work was important in the 
analysis process, photos (though not showing their faces) were used to illus-
trate the coding framework and the teachers’ enactments in the results sec-
tions of the articles. Students’ names involved in the interaction with the 
teacher were changed to pseudonyms as well (Articles I and II). 
 

Before the video recordings were made in starting up the FASETT project, 
parents as well as teachers were informed about the purpose and design of 
the project, both in a written document and at an information meeting at 
each preschool unit. All participating teachers gave their written consent. 
The parents of the children involved in the project also gave their written 
consent for their children’s participation, according to the ethical guidelines 
from the Swedish Research Council (2011). They were also informed that 
participation was voluntary and they had the possibility to withdraw from 
the study at any time. Interviews and samples of group activities were video 
recorded. To ensure confidentiality the participants were coded, and the 
coding list was stored separately from the recordings. Ethical approval was 
granted by the Ethical Review Board in Region Västra Götaland. Some 
parents gave their permission for their children’s participation in the project, 
but not to video-record their children in the individual interviews or in the 
group activities. Therefore, in these cases we audio-recorded the interviews, 
with one researcher interviewing and another researcher making field notes 
on the child’s use of their fingers or gestures. In the group activities, the 
camera was placed so that the children’s fingers were in the focus of the 
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camera. The teachers’ and children’s names were changed to pseudonyms in 
the written papers and conference presentations. 
 

One ethical dilemma relates to the confidentiality. The number of partici-
pating teachers was quite small in both projects, and the analyses were done 
on a highly detailed level. Even though no photos have been used and the 
teachers’ names have been changed, it could be the case that a participating 
teacher might recognize herself when reading this thesis or the articles. It 
was difficult to entirely overcome this anonymity problem, especially in the 
South African focal study, where the results revealed differences between 
the three teachers’ teaching. However, several sections of teaching as well as 
teaching over time were coded, and there were shifts and differences that 
emerged, implying that it was not the same teacher who always performed 
the most linking actions. The sections of teaching were compared in order 
to identify differences in teaching the same content. It is also important to 
emphasize that the focus of this thesis is on the teaching of additive relations, 
and the differences in teaching that are possible to identify by using the 
coding framework. Even though sections of teaching (Articles I and II) and 
teaching the preschool activities (Articles III and IV) were compared, the 
teachers themselves were not my research interest as the main focus was on 
their teaching. 
 

Another ethical dilemma in one of the focal studies concerns the task-based 
learner interviews. Even though the research group had made outlines for 
when to stop, as an interviewer it was sometimes hard to determine how far 
to go and how much pressure to put on the child. Especially in the pre-
interviews, some tasks were a very challenging for the children. Therefore, I 
had to handle each interview uniquely and consider when to stop, how long 
to wait for an answer, and when it was appropriate to stop asking follow-up 
questions. When the child seemed troubled, I sometimes decided to not ask 
all the questions. In such cases, the answers were handled as fallout.  
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6	  Results
 
This thesis aims to deepen the understanding of the teaching and learning 
of additive part-whole relations grounded in a structural approach, using 
variation theoretical ideas to expand the knowledge of the teaching and 
learning opportunities offered. The framing question of the thesis – What 
can constitute a structural approach to teaching additive part-whole relations that facili-
tates learning among young learners? – is to be answered in the results of the four 
articles and in the re-analysis. The results emerged from focal studies associ-
ated with two intervention programs, among children four-eight years old. 
In this chapter, first, the results of each articles are summarized. Then the 
results of the re-analysis are provided, followed by conclusions based on the 
overall results. 
 
Article I 
In Article I, the structural approach to teaching additive part-whole relations 
was explored through a coding framework based on variation theoretical 
assumption. The aim of Article I was to describe the development of this 
coding framework, in terms of criteria for coding viewed as important with-
in additive relations. However, using the framework also allowed me to see 
fine-grained differences in three Grade 3 South African teachers’ handling 
of additive part-whole relations related to the simultaneity of, and connec-
tions between, representations (SCBR) and examples (SCBE) as well as 
within examples (SCWE). Summarizing the total number of segments meet-
ing the criteria for each SC category in the teaching indicates differences and 
similarities in the three teachers’ enactment of the jointly planned activities. 
The results show that, in some teaching episodes, poor attention to connec-
tions between representations was identified. For instance, one teacher 
merely focused on the symbol representation when splitting a number into 
parts, whereas another teacher constantly verbally and gesturally linked con-
crete, triad diagram and symbol representation33. In some episodes, the 
teacher’s handling of part-whole relations could be restricted to one single 
split of one specific whole number, whereas in other episodes the teacher 
ended up with complete partition sets of 7 or 9, but with different simulta-
neity and connection pathways. In another episode, the teacher erased each 
example (part-whole relation) being handled, compared to another teacher 
who recorded several examples but made no linking actions between the 
different examples produced, thus not meeting the criterion for SCBE34. 

                                                             
33 See Article I (p. 303, Table 1). 
34 See Article I (p. 305, Table 2). 
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However, in the same episode one teacher presented several examples, and 
explaining and pointing to the relations between different part-whole exam-
ples provided the opportunity to discern commutativity and completeness 
in the example space. Furthermore, in Article I, the students’ performance 
on worksheets was tentatively reflected in the way they dealt with partition-
ing in the different teaching in the three classrooms. The shifts in the work-
sheet results, on the class level, followed the analyzed teaching episodes in 
terms of the number of segments meeting the criteria for linking exam-
ples35. 
 
Article II 
The structured approach to additive relations was further explored in Article 
II. The same coding framework as in Article I was used to examine how 
relations and mathematical ideas associated with the structural approach 
were taught. The aim was to examine differences in three Grade 3 South 
African teachers’ teaching, with respect to connections in teaching within 
and between examples. The application of the coding framework comparing 
the teaching of part-whole relations over time (Year 1 and Year 2) points to 
differences in teaching and a progression in teaching the same kind of parti-
tioning and missing number problems. Improvement was identified at both 
the individual teacher level and the collective level (all three teachers). The 
numbers and proportion of segments meeting the criteria for SCWE and 
SCBE had increased by the second year, particularly proportions of seg-
ments coded SCBE36. Thereby, a richer range of structural relations within 
part-whole examples and more connecting work between examples were 
identified in the second year compared to the first. For instance, in Year 2 
one teacher foregrounded the equivalent and commutative ideas of additive 
relations by juxtaposing and comparing examples, while these ideas were 
not discussed in the same way in Year 1. With reference to changes in 
teaching, the results also show that examples were erased from the board 
after being treated more often in the first year than in the second. In Year 2, 
examples were most often simultaneously visible on the board, which pro-
vided opportunities for the students, to a greater extent, to discern that part-
whole examples can be related to each other. 
 
Article III 
In Article III, the structural approach to additive part-whole relations was 
explored by studying how an activity was implemented in a Swedish pre-
school context. The aim of this article was to contribute knowledge about 

                                                             
35 See Article I (pp. 310–311). 
36 See Article II (p. 6, Table 4). 
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how the same part-whole activity, designed collectively, can be enacted dif-
ferently, using principles from variation theory. The results suggest differ-
ences in teaching the same part-whole activity, and that these different ways 
of teaching provide different learning opportunities. Four enacted objects of 
learning were constituted, one of which did not offer any variation of repre-
sentations or alternative to counting single units. Thereby, the children 
simply had the possibility to learn that collections of beads can be deter-
mined by counting them as single units. This can be compared to another 
enacted object of learning in which the teacher contrasted counting single 
units with composite sets of units, or decomposed a part into smaller parts. 
In some of teachers’ enactment, the children were given the opportunity to 
learn how to use finger patterns as a tool for structuring part-whole rela-
tions without having to count their fingers as single units. In another en-
actment, the children also had the opportunity to experience that the undi-
vided 5 (one whole hand) can be used as a benchmark for determining col-
lections slightly below 5. One enacted object of learning also provided a 
systematic variation of examples, giving the children the opportunity to 
experience the commutative principle. 
 
Article IV 
Article IV reports on a preschool intervention program, grounded in a struc-
tural approach to additive relations and essential principles from variation 
theory (Marton, 2015). The aim was to explore how the teaching of additive 
relations was reflected in the children’s learning of numbers. The results 
suggest that the five-year-olds following the program made great progress. 
After the intervention program, they were able to discern aspects related to 
numbers that they had not previously discerned. This new way of experienc-
ing enabled them to act more flexibly on the arithmetic tasks in the post-
assessment than was the case in the pre-assessment. For instance, the results 
show that before the intervention, in most observations the cardinal and 
ordinal aspects were not discerned at the same time, and the part-whole 
aspect was undiscerned. Meanwhile, in the post-assessment the children 
were able to discern the cardinal and ordinal aspects simultaneously as the 
part-whole relations of numbers. The results show that in the cases in which 
the children did not experience numbers as known facts after the interven-
tion, they used their fingers to create finger patterns to solve the additive 
relation problems. In the program, the children were afforded finger pat-
terns as a tool for structuring different relations of parts and whole, when 
for instance missing parts in different context problems37 were to be identi-
fied and a systematic variation of examples was provided. This suggests that 

                                                             
37 See p. 48 for a description of activities. 
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the aspect finger patterns representing numbers that had been afforded in the pro-
gram had also been made possible for the children to discern. 
 

To further summarize Article IV, the results point to other necessary as-
pects of structured additive part-whole relations inherent in the activities 
that the participating children were afforded to experience, for instance 
numbers as composite sets. The analyses showed how aspects were opened up as 
dimensions of variation, and were thereby made possible for the children to 
discern. For example, the children were afforded the opportunity to discern 
numbers as composite sets when the teacher offered variation by directing their 
attention to the undivided 5, offering an alternative to counting the beads or 
their fingers as single units. In the analysis of the post-assessment, there 
were no observations of children counting single units. This suggests that 
they had developed the ability to experience numbers as composite sets; and 
consequently, what they were afforded to experience of numbers, as associ-
ated with the structural approach to additive relation, mirrored and ex-
plained their progress in solving arithmetic problems38. 
 
The	  re-‐analysis	  -‐	  Teaching	  mathematical	  ideas	  and	  principles	  
To further explore the structural approach to teaching and learning additive 
part-whole relations, using principles from variation theory, a detailed analy-
sis of how mathematical ideas and principles were brought to the fore in teaching was 
conducted. In order to elucidate qualitative differences in the teaching and 
the learning opportunities that were offered, data associated with the four 
articles were re-analyzed. From the analysis, evidence emerges supporting 
the enactment of number relations as composite sets, the commutative principle, and 
completeness by systematicity.	  
	  
Number relations as composite sets  
Results of different enactments of the mathematical idea of number relations 
as composite sets are sampled from Articles III and IV. Structured finger pat-
terns were used to support the ability to see number relations as composite 
sets of units rather than merely as single units, and to facilitate the discern-
ment of how the parts are related to each other and to the whole. Paying 
attention to a structural approach to additive relation problems, children in 
the FASETT intervention were introduced to finger patterns for structuring 
part-whole relations. Also, the bead string with ten beads grouped together, 
five of each color, associating with five fingers on each hand, was promoted 
in the intervention. In the Snake game and the context problems, as well as 

                                                             
38 For more detailed results, see Article IV (pp. 25–27). 
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in other activities (See p. 48 for descriptions of activities), number relations as 
composite sets is possible to focus on in the teaching.  
 

Four different ways of enacting were identified. The results show that the 
main difference in the enactments is associated with the teacher’s af-
fordance of finger patterns for structuring number relations and whether 
the teacher draws the children’s attention to seeing numbers as groups of 
units as an alternative to counting them as single units. 
 

Table 3 presents the different enactments (A-D)39 of the mathematical idea 
of number relations as composite sets. The table includes examples and excerpts 
from the teacher-child dialogues, and what dimensions of variation, signifi-
cant in relation to the idea, were opened up40. The table also includes the 
nature of connections manifested by the teachers as identified in the analy-
sis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                             
39 Enactment A (p. 12) in Article III; Enactments B and C are sampled from the video-
recorded observations analyzed in Articles III and IV (Observations 21 and 44); and 
Enactment D is sampled from Article IV (p. 20). 
40 In Table 3–5: DoV.	  
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Table	  3:	  Enactments	  of	  number	  relations	  as	  composite	  sets	  
 Enactment	  A	   Enactment	  B	   Enactment	  C	   Enactment	  D	  

Ex
am

pl
es
	   Five	  beads	  of	  the	  10-‐

snake	  hidden,	  three	  
beads	  of	  the	  10-‐
snake	  hidden.	  

Six	  beads	  of	  the	  10-‐
snake	  hidden,	  three	  
beads	  of	  the	  10-‐
snake	  hidden.	  

Two	  beads	  of	  the	  	  
10-‐snake	  hidden,	  	  
four	  beads	  of	  the	  	  
10-‐snake	  hidden.	  

Seven	  beads	  of	  the	  
10-‐snake	  hidden,	  
eight	  beads	  of	  the	  
10-‐snake	  hidden.	  

In
st
ru
ct
io
n	   The	  teacher	  asked:	  

“How	  many	  on	  this	  
snake?	  How	  many	  
are	  hidden?”	  After	  
having	  identified	  
five,	  she	  asked	  them	  
to	  count	  the	  ten	  
beads	  again.	  She	  hid	  
three	  beads.	  
The	  children	  counted	  
the	  seven	  beads	  as	  
single	  units,	  and	  she	  
said:	  “How	  many	  in	  
my	  hand?”.	  After	  the	  
children	  had	  an-‐
swered,	  she	  said	  
“You	  think	  it’s	  four,	  
and	  you	  think	  it’s	  
three;	  how	  do	  you	  
know?”	  (No	  one	  
answered.)	  “Let’s	  
check!”	  (Opened	  her	  
hand).	  	  

The	  teacher	  pre-‐
sented	  a	  sequence	  of	  
examples.	  She	  said:	  
“There	  are	  ten	  from	  
the	  beginning”.	  How	  
many	  beads	  do	  you	  
see?	  How	  many	  
hidden?	  How	  do	  you	  
know?”	  
The	  children	  showed	  
their	  fingers	  by	  
raising	  one	  at	  a	  time	  
or	  by	  structuring	  
finger	  patterns.	  
Some	  showed	  the	  
visible	  part,	  and	  
some	  did	  not	  identi-‐
fy	  the	  hidden	  part.	  
Different	  finger	  
patterns	  (fold-‐
ed/unfolded	  fingers)	  
were	  shown.	  	  

The	  teacher	  said:	  
“There	  are	  ten	  
beads,	  two	  hands.	  
Show	  me,	  how	  many	  
do	  you	  see?”	  The	  
children	  modelled	  
finger	  patterns	  in	  
different	  ways.	  
Noticing	  this,	  the	  
teacher	  said:	  “Yes,	  
you	  show	  it	  like	  this,	  
and	  you	  did	  it	  an-‐
other	  way	  (point-‐
ing).”	  “Look	  at	  your	  
fingers,	  how	  many	  
are	  hidden?”	  A	  child	  
said:	  “Five”,	  and	  the	  
teacher	  said:	  “If	  you	  
look	  at	  your	  hands	  
again	  (touching	  the	  
child’s	  eight	  unfold-‐
ed	  fingers)	  –	  how	  
many	  folded?”	  The	  
next	  time,	  four	  were	  
hidden.	  The	  teacher	  
compared	  the	  finger	  
patterns.	  She	  said:	  
“Some	  counted	  five	  
red	  beads,	  just	  like	  
one	  hand…”.	  

The	  teacher	  noticed	  
that	  one	  child	  
counted	  the	  beads	  
as	  single	  units,	  
having	  identified	  the	  
hidden	  number	  by	  
looking	  at	  his	  finger	  
pattern.	  She	  said:	  
“Remember,	  there	  
are	  five	  here	  (making	  
a	  circle	  with	  her	  
hand	  around	  the	  five	  
red	  beads	  of	  the	  10-‐
snake)	  …	  you	  don’t	  
have	  to	  count	  
those…6	  and	  7	  
(Points	  to	  the	  two	  
white	  beads)	  just	  like	  
your	  fingers.”	  (Points	  
to	  a	  child’s	  finger	  
pattern)	  Having	  
identified	  eight,	  she	  
said:	  “Eight,	  exactly.	  
Do	  you	  remember…	  
five	  (circling	  the	  five	  
red	  beads,	  and	  
pointing	  to	  the	  three	  
white	  beads)	  …	  six,	  
seven,	  eight”.	  So,	  
eight	  and	  two,	  
altogether,	  make	  ten	  
(making	  two	  circles,	  
around	  the	  two	  
parts).	  

Do
V	  
op

en
ed

	   -‐	   Part-‐whole	  relations	  
as	  composite	  sets	  of	  
units.	  
	  
	  

Part-‐whole	  relations	  
as	  composite	  sets	  of	  
units.	  

Part-‐whole	  relations	  
as	  composite	  sets	  of	  
units.	  
The	  undivided	  5	  as	  a	  
composite	  unit	  
(within	  one	  part).	  

Co
nn

ec
tio

ns
	   -‐	   -‐	   Directing	  attention	  

to	  different	  struc-‐
tured	  finger	  pattern;	  
Contrasting	  counting	  
single	  units	  and	  
composite	  set.	  

Contrasting	  compo-‐
site	  sets	  with	  unit	  
counting;	  Directing	  
attention	  to	  the	  
undivided	  5	  within	  a	  
collection.	  
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In Table 3 presents four different ways of enacting the 10-snake task. The 
results reveal that in Enactment A, the children were not afforded any alter-
native to counting the beads as single units. As can be seen in Enactment A, 
the teacher asked the children to figure out how many beads there were on 
the whole bead string and when five were hidden. After they had identified 
the seven beads by counting, and disagreed about the hidden part, the 
teacher asked them how they knew this but they could not answer. In this 
enactment, the use of their fingers was not offered as an alternative for 
structuring number relations. No attention was paid to the fact that the five 
beads of different colors constituted a composite set of beads, or to the 
relation of the visible part to the whole number, which would have facilitat-
ed for the learners to identify the hidden part. Therefore, number relations as 
composite sets was not brought to the fore by the teacher. In Enactment A, 
the children were not offered any alternative to counting one by one to 
determine collections of items larger than three. Thus, no variation of how 
to figure out the missing part was provided. Still, the children had the op-
portunity to learn that groups of items can be determined by counting them 
as single units or by estimating.  
 

In Enactment B, the aspect part-whole relations as composite sets of units was 
opened up as a dimension of variation. In order to identify the hidden part, 
in a sequence of examples the teacher encouraged the children to show on 
their fingers how many beads they saw on the string. One variation was 
provided when some of them counted their fingers as single units, while 
others structured them as patterns (folded/unfolded fingers) without count-
ing them. Another variation was provided when different ways of structur-
ing the same part-whole relation with finger patterns among the learners 
were possible to discern (See Table 3). However, neither connections in talk 
and gestures pointing out differences and similarities between the ways of 
showing fingers, nor contrasting counting with seeing items as composite 
sets, were identified in the enactment. Since the teacher, with no discussion, 
simply asked “How do you know?” when a child had found the hidden part, 
some children failed to identify the hidden part. It was made possible for 
the children to see number relations as composite sets of units (without 
counting) (e.g. by looking at folded/unfolded fingers or the group of beads 
on the string) and perceptually discern various ways of showing numbers 
using their fingers (their own as well as their friends’ finger patterns). How-
ever, the teacher did not explicitly direct the learners’ attention to finger 
patterns for structuring number relations as composite sets. Since the teach-
er did not pay attention to these aspects in her enactment (no linking talk or 
gestures), the learners could perceptually discern the variations by looking at 
their own and their friends’ ways of showing their fingers. This enactment 
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enabled them to experience that the part-whole relation can be structured 
on one’s fingers as composite sets or as single counted units, in different 
ways. 
 

In Enactment C, part-whole relations as composite sets of units was opened up as a 
dimension of variation. When eight fingers were to be shown, the way of 
unfolding eight fingers varied, and the same variation occurred when six 
fingers were to be shown. Variation also occurred when the same numbers 
of items (beads/fingers) could be discerned as separate single units or as 
composite sets (See Table 3). In Enactment C, opposite to Enactment B, 
the teacher noticed that the children structured their finger patterns differ-
ently. She directed their attention to this variation by pointing to and com-
paring the different patterns, saying for instance “Yes, you show it like this, 
and you did it in another way.” When a child answered incorrectly (5 as the 
hidden part), she underlined the power of structured finger patterns by talk-
ing to the child and touching the child’s correct finger pattern, which sup-
ported the child in seeing the hidden part without having to use one-by-one 
counting. In the end she contrasted counting single units with 5 as a composite 
set of units, pointing out the similarity between five fingers on one hand and 
five beads of the same color. In Enactment C, the learners were offered 
finger patterns as a tool for structuring number relations. They also had the 
opportunity to experience that a specific number relation can be structured 
using different fingers and that finger patterns allow them to identify the 
hidden part by “seeing it” (not counting one by one). Since the teacher also 
connected five fingers with five beads, it enabled the children to see 5 as a 
composite unit. The way the teacher explicitly pointed out the features of 
the aspect may have facilitated for the learners to discern number relations 
as composite sets. 
 

In Enactment D, two dimensions of variation were opened: Firstly, part-
whole relations as composite sets of units was opened up as a dimension of varia-
tion. Various examples of hidden parts (7 and 8) of the same 10-snake, 
which were to be structured on the children’s fingers, were offered. Second-
ly undivided 5 as a composite unit was opened up as a dimension of variation, 
through the variation of selected numbers of the hidden parts slightly below 
5 (invariant). 
 

The teacher’s way of handling the Snake game differed from Enactments A 
and B as well as Enactment C. In Enactment D, the teacher noticed that the 
children were able to structure number relations with their fingers and iden-
tify the hidden part by looking at their patterns (without repeated single 
counting). However, some of the children did not see the number relations 
on the bead string as composite sets, instead starting to count all the beads 
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as single units. At that point, the teacher directed the learners’ attention to 
number relations as composite sets, underlining the undivided 5 and saying “Re-
member, there are five there (making a circle with her hand around the five 
red beads of the 10-snake) … you don’t have to count them” (7 = 5 + 2). 
Furthermore, she linked to the undivided 5 on the finger of one hand, say-
ing “…just like your fingers” and linking to a child’s finger pattern of seven 
unfolded and three folded fingers (7 + 3 = 10). The teacher then connected 
the “undivided 5 and three more” on the bead string to the finger pattern of 
one whole hand and three more fingers in her talk and with her gestures. 
She circled the five red beads and pointed to the three white beads, saying 
“…six, seven, eight” (5 + 3 = 8). Also, she emphasized that the two parts 
“8 and 2”, make “10” by making two circles around the two parts (8 + 2 = 
10). In Enactment D, the principle of number relations as composite sets was 
foregrounded, in relation not only to finger patterns for structuring number 
relations as composite sets but also to the beads grouped together in two 
colors.  
 

Enactment D allowed the children to experience different ways of structur-
ing the same part-whole relation as composite sets, and the undivided 5 as a 
composite unit as a variation to single counting. When the teacher contrast-
ed repeated single counting with seeing numbers as composite sets and explicitly di-
rected the children’s attention to the undivided 5, the learners were given 
the opportunity to extend their subitizing range (conceptual subitizing). 
They were also given the opportunity to experience that five beads of the 
same color, just like five fingers on one hand, support the idea of the undi-
vided 5 and are helpful when collections (parts) of slightly less than five are 
to be identified. Furthermore, they were afforded the possibility to experi-
ence that a part within a part-whole relation can be decomposed into two 
smaller parts or as a combination of a decomposed set of units and single 
counted units (10 = 2 + (5 + 3); 10 = 3 + (5 + 2 )41. Since the teacher ex-
plicitly pointed out the composite sets, the teaching afforded the children 
richer learning possibilities compared to Enactment B (in which no connec-
tions were identified) and Enactment C, where only the similarities between 
five fingers and a group of five beads of the same color served as the object 
of attention. 
 
The commutative principle 
The commutative principle for addition (a + b = b + a) is possible to bring to the 
fore in structural part-whole teaching. In both projects, implemented activi-
ties and problems provided opportunities for learning commutativity. For 
example, in the context problems, some of the stories encouraged the chil-
                                                             
41 See Article III (p. 15 Figure 3).  
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dren to solve the problem by starting with the larger number (part) instead 
of following the story’s semantic structure. For instance, “Two bears were 
playing, then six more bears came. How many were there altogether? (2 + 6 
= _)” could be solved by starting with six and adding two (6 + 2 = _)42. In 
the partitioning number activity, in which the same whole number was to be 
decomposed into two parts in different ways, pairs of combinations were 
possible to present as a commutative pattern. For instance, 7 (whole num-
ber) can be decomposed into 3 and 4; 4 and 3; 2 and 5; 5 and 2; and so on. 
In the instruction of additive relation problems, combinations within a spe-
cific part-whole relation (e.g. 2/7/9) provided discussions about commuta-
tivity as well. Four different enactments (A-D) (See Table 4) of the mathe-
matical principle of commutativity were identified in the analysis43. The 
results suggest that in three of these enactments the commutative principle was 
offered by a sequence of two additive relation problems. The main differ-
ences between the enactments are associated with how the teacher directed 
the learners’ attention to the principle. 
 

Table 4 is a summary of the four enactments, with examples, the teachers’ 
instruction, the dimensions of variation opened up relative to the commutative 
principle. The table also includes connections, made by the teacher both ver-
bally and through gestures, associated with the property of commutativity. 
The selected data set is sampled from Articles I and II44.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                             
42 See also the results section in Article IV. 
43 Selected from the Wits Maths Connect project. 
44 Enactment A is sampled from the second section of teaching (Article I, p. 304–306) 
and is further discussed in Article II (p.7); Enactment B is sampled from section 13.3.2 
(Overview of teaching p. 4, in Article II). This enactment is taken from the data set 
analyzed in Article II. Enactments C and D are sampled from Article II (pp. 6–7). 
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Table	  4:	  Enactments	  of	  the	  commutative	  principle	  
 Enactment	  A	   Enactment	  B	   Enactment	  C	   Enactment	  D	  

Ex
am

pl
es
	   7= 4+3 

7= 0+7 
7= 6+1 
7= 2+5 
	  

9=2+7 
9=7+2 
	  

2+7=9 
7+2=9	  

2+7=9 
7+2=9 
5=1-6 
5=11-6	  

In
st
ru
ct
io
n	   Four	  different	  ways	  

of	  splitting	  the	  whole	  
number	  7	  (triad	  
diagram	  and	  number	  
sentence)	  were	  
produced.	  The	  
teacher	  recorded	  
learners’	  suggested	  
splits,	  	  
then	  erased	  each	  
split	  after	  it	  had	  
been	  handled.	  	  

The	  teacher	  wrote	  
9	  in	  the	  top	  circle,	  
then	  2	  and	  7	  in	  the	  
bottom	  circles	  in	  
the	  triad	  diagram,	  
and	  asked	  for	  the	  
whole	  and	  the	  
parts,	  saying:	  “We	  
can	  also	  write	  it	  like	  
this:	  9=2+7.”	  
She	  then	  drew	  a	  
new	  triad	  diagram	  
on	  the	  right	  side	  of	  
the	  other	  one,	  and	  
asked:	  “What	  are	  
the	  whole	  and	  the	  
parts?”.	  The	  teach-‐
er	  recorded	  the	  
split	  and	  said:	  “9	  
equals	  7	  and	  2.	  I’m	  
going	  to	  give	  you	  
another	  one.”	  

The	  teacher	  
recorded	  2+7	  and	  
7+2	  on	  the	  board	  
and	  asked:	  “Are	  
these	  the	  same?”	  
When	  some	  
students	  hesitat-‐
ed,	  she	  said:	  “Give	  
me	  a	  reason	  why	  
they’re	  not	  the	  
same.”	  (pointing	  
to	  the	  ‘2s	  and	  7s’	  
in	  the	  two	  num-‐
ber	  sentences)	  
She	  then	  wrote	  
the	  sums	  (9).	  “No	  
matter	  if	  I	  take	  2	  
plus	  7	  or	  7	  plus	  2	  
(pointing	  to	  the	  
two	  number	  
sentences)	  I’ll	  
have	  the	  same	  
answer	  (pointing	  
to	  the	  9s).	  

The	  teacher	  recorded	  
2+7	  and	  7+2	  and	  com-‐
pared	  them.	  She	  wrote	  
5=1-‐6	  and	  5=11-‐6	  and	  
said:	  “These;	  are	  they	  
the	  same	  (pointing	  to	  
5=1-‐6	  and	  5=11-‐6)?	  
Which	  one	  is	  correct?	  
Why?”	  The	  teacher	  
continued	  discussing	  the	  
differences	  between	  
5=1-‐6	  and	  5=11-‐6,	  and	  
which	  was	  correct.	  She	  
said:	  “You	  can’t	  subtract	  
6	  from	  1	  (finger	  moving	  
from	  right	  to	  left).	  We’re	  
not	  reading	  it	  from	  this	  
side	  (finger	  moving	  from	  
right	  (6)	  to	  left	  in	  the	  
first	  number	  sentence	  
again).	  Listen,	  when	  
you’re	  adding,	  you	  can	  
say	  7	  plus	  2	  (moving	  her	  
finger	  from	  right	  to	  left	  
in	  the	  first	  number	  
sentence)	  or	  2	  plus	  7	  
(movement	  right	  to	  left).	  
You	  can	  do	  it	  in	  addition,	  
but	  in	  subtraction	  you	  
can’t	  start	  with	  6	  (points	  
to	  the	  ‘6’	  in	  5=1-‐6)	  going	  
backward	  (moving	  her	  
finger	  to	  the	  left).”	  

Do
V	  
op

en
ed

	   -‐	   	  The	  irrelevant	  
order	  of	  the	  ad-‐
dends.	  
	  
	  
	  

The	  irrelevant	  
order	  of	  the	  
addends.	  

The	  irrelevant	  order	  of	  
the	  addends.	  

Co
nn

ec
tio

ns
	   -‐	   -‐	   Directing	  atten-‐

tion	  to	  the	  same	  
addends	  and	  to	  
different	  positions	  
and	  same	  sums	  in	  
the	  number	  
sentences.	  

Directing	  attention	  to	  
the	  same	  addends,	  
position,	  and	  sums;	  
Emphasizing	  differences	  
between	  addition	  and	  
subtraction;	  Juxtaposing	  
correct/incorrect	  an-‐
swers.	  

 

9 
2 7 

9 

2 7 
9 

2 7 
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The results suggest that in Enactments B, C and D the commutative principle of 
addition was emphasized by presenting the examples in a systematic order. 
However, in Enactment A (See Table 4) this was not the case. Firstly, when 
the students offered different ways of partitioning a whole number in two 
parts, the order of the combinations was randomly produced. Secondly, 
after each partition was recorded on the board, the teacher erased the triad 
diagram and the number sentence. Each partition was hence handled sepa-
rately, and they were therefore not possible to discern simultaneously. As a 
consequence, and although four different ways of partitioning the same 
whole number were offered, it was not possible to discern the commutative 
pattern (or any other pattern) as the students offered combinations random-
ly and the teacher erased each produced combination. If the examples were 
produced randomly without systematicity, and examples were erased from 
the board (Enactment A), it would be hard for the students to visually dis-
cern the relations between the examples. In this enactment, the students 
were afforded the opportunity to experience that a specific whole number 
can be decomposed into two parts in different ways. However, the commuta-
tive principle for addition was not opened up as a dimension of variation and 
was not made possible to learn. 
 

In Enactment B, the irrelevant order of addends was opened up as a dimension 
of variation when two examples (9 = 2 + 7; 9 = 7 + 2) with the same whole 
number and same parts/addends but in different order were presented in a 
sequence. The teacher recorded the two part-part-whole relations in a triad 
diagram and in a number sentence format. In this way, two examples con-
taining the same sum and addends, but with the addends in different posi-
tions, were simultaneously possible for the learners to discern. From Table 
4, it can be seen that in Enactment B the teacher emphasized the part-part-
whole relation 9/7/2 and talked about parts and whole. However, no atten-
tion was directed to the commutative principle in the teacher’s instruction, since 
she made no connections between the ‘2s’, ‘7s’ or ‘9s’ and their positions in 
the triad diagram or the number sentences were made. In other words, 
when analyzing this enactment, the commutative principle was offered within 
the example space but no connections, either in talk or with gestures point-
ing out the principle, were identified. Since the teacher selected these two 
part-whole relation problems and varied the order of the addends/parts, the 
irrelevant order of addends was opened up as a dimension of variation. Howev-
er, the commutative principle was only made perceptually visible for the learners. 
In terms of dimensions of variation being opened up, the examples as such 
provided this variation. In Enactment B, the learners were given the oppor-
tunity to visually discern the commutative principle of two examples, and 
that regardless of the order of the addends the sum is the same. 
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In Enactment C, similar to Enactment B, the aspect the irrelevant order of the 
addends was opened up as a dimension of variation. The addends’ order dif-
fered, while the numbers (2 and 7) and the sum (9) were the same. Howev-
er, like in Enactment B, in Enactment C it emerged that, apart from making 
a pair of commutative examples perceptually visible simultaneously (See 
Table 4), the teacher also directed the learners’ attention to the commutative 
principle by comparing the two examples. For instance, she said “Are these 
the same?”, and noticing some students’ hesitation then continued to em-
phasize the similarities and differences by underlining the ‘2’ (first addend) 
and ‘7’ (second addend) in the first number sentence and the ‘7’ (first ad-
dend) and ‘2’ (second addend) in the second example. She also emphasized 
that the sums in the two examples were the same, by pointing to the 9s. In 
Enactment C, besides offering the examples as a commutative pattern, the 
teacher’s enactment included connecting work that underlined the commuta-
tive principle. So, beyond the experience of variation provided by the visual 
format of the number sentences presented on the board, the commutative prin-
ciple for addition was made explicit by the teacher. This enactment, in which 
the properties of commutativity were also reinforced in the teacher’s con-
necting work, may facilitate the students’ discernment that, regardless of the 
order of the addends, the sum is the same. 
 

The results suggest that in Enactment D as well, the irrelevant order of the ad-
dends remains as a dimension of variation that was opened up, when a pair 
of examples (2 + 7 = 9; 7 + 2 = 9) with the same addends and sums, and in 
various positions, were simultaneously visible on the board. The relations 
between the examples were emphasized in the teacher’s connecting work 
when she asked for differences and similarities between the number sen-
tences and explicitly linked the addend ‘2s’ and ‘7s’ and the same sums (sim-
ilar to Enactment C). However, there was an attempt at further elaboration 
of this dimension in Enactment D when two subtraction problems, a cor-
rect and an incorrect example (5 = 1 - 6; 5= 11 - 6), were written on the 
board below the two addition examples. So, similarities and differences 
between the four number sentences were possible to visually discern. When 
the teacher juxtaposed the correct and incorrect examples, saying “Are they 
the same (pointing to 5 = 1 - 6 and 5 = 11 - 6)? “Which one is correct?... 
Why?”, the discussion started. 
 

Then, in the enactment there was a reference explicitly directing the learn-
ers’ attention to the irrelevant order of the addends in 2 + 7 and 7 + 2, with 
the teacher saying “…when you’re adding, you can say 7 plus 2 (moving her 
finger from right to left in the first number sentence) or 2 plus 7 (move-
ment right to left) along with the fact that in the 5=1-6 instance, “You can 
do it in addition, but in subtraction (…) you can’t start with 6 (points to the 
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‘6’ in 5=1-6) going backward (moving her finger to the left).” Here, the 
teacher offered a contrast and stated as a generalization that irrelevant order 
cannot be applied to subtraction45.  
 

In summary, in Enactment D, four additive relation problems were simulta-
neously visible, and the teacher explicitly directed the learners’ attention to 
the commutative principle and explored the principle in interaction with the 
learners. This enactment afforded the students the opportunity to learn that, 
following the commutative principle, the order of the addends in addition does 
not matter as the sums are still the same, and that commutativity applies to 
addition but not subtraction. The teacher’s enactment, with the attention to 
comparing the number sentences, served as a way to elaborate the mathe-
matical principle into noting that irrelevant order holds for addition but not 
subtraction. The teacher’s explorative actions point to enriched learning 
coming from the students being able to distinguish examples and nonexam-
ples46 of a particular idea, in this case irrelevant order. The enactment might 
also allow the students to learn that the direction of the number sentences 
does not matter in addition but must be considered in subtraction. 
 
Completeness by systematicity 
A third example of differences in teaching was chosen from the South Afri-
can Grade 3 teachers’ ways of handling the partitioning task (“seven mon-
keys playing in two trees” or “nine balls in two bags”) (See p. 48). This ac-
tivity offers students the opportunity to represent part-whole relations in a 
concrete situation and learn how these relations can be represented in sym-
bolic form, for instance in a table. One principle that is possible to focus on 
in this activity is completeness by systematicity. Completeness in the context of 
the part-whole relations of numbers can be used to highlight the relations 
between the produced partitions when recording the different ways of de-
composing a whole number, for instance producing a compensational pat-
tern (0/7; 1/6; 2/5…) or a commutative pattern (7/0; 0/7; 1/6; 6/1…) 
Also, systematicity supports the production of all possible partitions and 
enables the discernment of completeness. 
 

When analyzing the data, with regard to completeness by systematicity, four dif-
ferent enactments were found (A-D). The main difference relates to wheth-
er and how completeness was brought to the fore by systematicity in the 
enactment of the partitioning task. In Enactment A, the part-whole rela-
                                                             
45 It would likely have been better to use examples in which the relation holds with one 
order but not the reverse order. Working with 5 = 11 - 6 might therefore have been 
more useful for discussing the irrelevant order more clearly than 5 = 1 - 6, where nei-
ther works. 
46 See also Ekdahl & Runesson (2015).  
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tions were not possible to discern simultaneously. In Enactment B, systema-
ticity was inherent in the partitions visible on the board, but the teacher did 
not explicitly point it out. This enactment differs from Enactments C and 
D, in which the teachers directed the learners’ attention to completeness by 
systematicity, using connecting talk and gestures. Differences in the learning 
opportunities offered depend on whether completeness by systematicity is inher-
ent in the example space (perceptually visible), and whether and how com-
pleteness is explicitly pointed out by the teacher. 
 

Table 5 presents a summary of the different enactments (examples and in-
structions)47 of completeness by systematicity. The table includes the dimensions 
of variation opened up in regard to completeness by systematicity. Also included 
in the table is the nature of the connections associated with the mathemati-
cal idea identified in each enactment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                             
47 Enactment A is sampled from third section on teaching in Article I (pp. 307–308) 
and discussed in Article II, p. 6; Enactment B is sampled from the coding framework in 
Article I (p. 302); Enactment C is found in third section on teaching in Article I, illus-
trated in p. 308; and Enactment D is taken from the section on teaching, 14.1.1 (Article 
II, pp. 4 and 6) and the transcriptions of the episode. 
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As can be seen from Table 5, four different ways of enactment (A-D) asso-
ciated with systematicity were identified. In one of them, Enactment A, the 
first part in each combination was initially produced as an increasing num-
ber sequence (0, 1, 2, 3, …), and thereafter the second part in each combi-
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nation as a decreasing number sequence (9, 8, 7, 6, …). As each part was 
produced separately, the different part-part-whole combinations were not 
possible to discern simultaneously. Instead, the teacher pointed vertically to 
the left column, talking about “counting from smallest…” and “subtract-
ing”, drawing the students’ attention to the decreasing number sequence in 
the right column and emphasizing only one of the parts within each part-
part-whole combination. The connections made by the teacher were not in 
accordance with the principle in focus, even if the episode resulted in a 
complete set of splitting the whole number 9. In Enactment A, in which the 
focus of attention consisted of counting the separate parts backward and 
forward, the learners were afforded openings to learn a pattern of adding 
and subtracting numbers by ones. Thus, the dimension of variation, decom-
posing one whole into two parts, was not opened up in this enactment. 
 

In Enactment B, the partitioning task “seven monkeys playing in two trees” 
was handled (See p. 48). Decomposing one whole into two parts was opened up as 
a dimension of variation by various partitionings of the same whole number 
(seven monkeys) being recorded in table format, as a compensational pat-
tern (7/0; 6/1; 5/2; 4/3). However, in a way similar to that in Enactment A, 
the teacher emphasized the vertical pattern, pointing to each column one at 
a time and saying “counting backward and counting forward” with separate 
attention to the increasing (7, 6, 5, 4) and decreasing (0, 1, 2, 3) patterns of 
the parts. Even if several partitions were simultaneously visible on the 
board, no attention was paid to how the different part-whole relations were 
connected. For instance, no attention was paid to how the ‘4/3 partition’ 
was connected to the previous partitions (7/0; 6/1; 5/2). There was indeed 
a pattern produced, but not a complete systematic pattern. Several partitions 
were possible to discern simultaneously, which implies that systematicity was 
made possible for the learners to discern perceptually, but without any ver-
bal or other designation. However, this dimension of variation was opened 
up in Enactment B when a variation of partitions of the same whole value 
was presented. In this way, it was possible for the learners to discern a pat-
tern when the compensational sequence of four partitions of 7 were visible 
on the board. Still, the compensational pattern was not made explicit be-
cause the teacher’s attention (both in talk and with gestures) was directed at 
each column separately. Therefore, it might have been challenging for the 
learners to understand how the part-whole combinations were connected to 
each other. Thus, if the learners only focused on the partitions written on 
the board, it would have been possible to experience that a whole number 
can be decomposed in different ways and the partitions can be produced as 
a pattern. Completeness was not afforded in this enactment, as only four 
examples were perceptually visible.  
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Also, in Enactment C, different partitions of the whole number 7 were rec-
orded in table format. Several ways of decomposing the whole number 7 
were simultaneously visible on the board. The teacher created variation by 
recording the first four examples in systematic order (0/7; 1/6; 2/5; 3/4) 
(See Table 5), thereby opening up decomposing one whole into two parts as a di-
mension of variation. When the teacher focused on the production of all 
possible partitions of the same whole number, systematicity as one complete set of 
partitions was opened up as a dimension of variation. The teacher explicitly 
directed the learners’ attention to the systematicity in the relation between 
the partitions. Initially, the teacher recorded the students’ suggestions, even 
if they did not follow the properties of a compensational pattern. The parti-
tioning of 4 and 3 was missing in the sequence, as was the combination of 6 
and 1 (See Table 5). Noticing this, the teacher wanted the students to find 
the missing combinations. She further directed their attention to systematic-
ity, using linking gestures (gesturing vertically and horizontally), which em-
phasized the change in part-whole relations from one example to the next. 
After the systematic compensational pattern (including all partitions) had 
been produced, the teacher asked the students to explain the pattern. Varia-
tion was provided when various partitions of the same whole number were 
simultaneously visible on the board, and the sequence of recorded different 
partitions opened up for producing a complete set of partitions of that 
whole number. In addition, the teacher explicitly directed the learners’ at-
tention to the missing combinations by pointing to relations between com-
binations and discussing the complete produced compensational pattern. 
This attention afforded the learners the opportunity to discern completeness by 
systematicity, and to experience how many ways in which a whole number can 
be decomposed into two parts and how to figure out all the combinations 
(completeness).  
 

Still more attention was directed to systematicity and completeness in En-
actment D. Similar to Enactment C, the aspect decomposing one whole into two 
parts was opened up as a dimension of variation. Instead of producing one 
complete set of partitions, though, in Enactment D systematicity as two complete 
sets of partitions of the whole number 7 – a compensational and a commutative 
one – was produced in the interaction with the students (See Table 5). Thus, 
this aspect was opened up as a dimension of variation. 
 

Attention was directed to systematicity when the teacher had produced a 
commutative pattern and offered the first combinations (7 and 0; 6 and 1) 
with the purpose of producing another systematic pattern. Having finished 
this pattern, the teacher explicitly pointed out systematicity, underlining 
each combination from top to bottom in the table and referring to them as 
parts that can compose the same whole. Even if the pattern was complete, 
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her verifying question “Have we finished?” (pointing horizontally and verti-
cally to the compensational pattern of 7) and her incorrect suggestion 
“What if I put 8 here?” (pointing below 7 in the left column) show how the 
principle of systematicity was made explicit. Ultimately, number of partitions of 
various whole values was opened up as a dimension of variation. The teacher 
offered a variation by asking for the total number of combinations of the 
number 7, and made a generalization, elaborating on the total number of 
combinations of other whole numbers (9, 12, and 24).  
 

In Enactment D, the learners were offered the chance to experience how 
systematicity is useful in determining how many different ways a whole 
number can be decomposed into two parts; that there are different ways of 
producing completeness. They were also afforded the opportunity to expe-
rience the pattern of possible partition options for 7 as a whole value and 
that could be generalized to other whole values (n+1). This connecting 
teaching’ might enrich students’ opportunities to learn completeness by systema-
ticity. 
 
Learning opportunities enhanced by variation and connection  
In the findings from the re-analysis, the enactments of the same mathemati-
cal idea point to differences that are sometimes subtle, but that provide 
different learning opportunities. The various ways of teaching additive part-
whole relations relate, on the one hand, to the potential of the task or activi-
ty as such, and on the other to how the teacher directs the learners’ atten-
tion to important mathematical ideas and principles concerning additive 
relations. As argued before, when the activities, example spaces and enact-
ments were similar, what the teacher explicitly pointed out – alongside the 
dimensions of variation opened up – can explain the differences in learning 
opportunities offered. The linking action, pointing out what is to be con-
nected with what, is of importance in what the learners need to discern in 
order to be able to understand the specific idea, principle, or relation. It is 
the feature(s) that are crucial within this mathematical idea, relation or focus 
aspect that are to be explicitly pointed out by the teacher. 
  
The results of the re-analysis indicate that it matters whether or not aspects 
associated with the mathematical principle or idea in focus are opened up as 
a dimension of variation. In some enactments within a certain idea or prin-
ciple, more than one aspect was opened up as dimension of variation as 
well. The provided variation afforded the learners the opportunity to dis-
cern the object of attention: number relations as composite sets, commutativity, 
completeness by systematicity. Written commutative examples recorded on the 
board, or visible finger patters showing composite sets, may allow learners 
to perceptually discern the aspect in focus (Enactment B). However, the re-
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sults suggest that, even if a mathematical principle or idea is present and 
variations of this aspect are provided, this principle may not be visible to all 
learners. There seems to be a need for teachers to support the learners’ dis-
cernment of the principle or idea in focus. According to the analysis, it 
might be necessary to direct children’s attention to the principle gesturally 
and/or verbally, rather than taking for granted that every child has dis-
cerned the principle in focus.  
 

Besides which aspects were opened up as dimensions of variation and made 
perceptually visible, the analysis suggests that making connections in in-
struction can enhance learning opportunities. The results reveal that aspects 
that were necessary to discern in order to experience a specific mathematical 
idea or principle were in some cases explicitly pointed out (both verbally 
and gesturally). However, it appears that making connections does not merely 
entail pointing out something (not just anything); it is rather about what is 
to be connected to what, and how the connections are made. An illustration 
of these differences in linking connections can be seen in a comparison of 
Enactments B and C regarding completeness by systematicity (See Table 5). In 
Enactment B connections were made to the vertical pattern of each column 
separately, when the teacher pointed to the increasing and decreasing pat-
terns of separate parts, whereas in Enactment C the connections made were 
directed towards systematicity, pointing out both the horizontal pattern of 
part-whole relations and the vertical pattern (systematicity) (cf. Watson & 
Mason, 2006b).  
 

It seems that in some enactments, the teacher directed the learners’ atten-
tion to other mathematical properties of the principle than was planned. For 
instance, in Enactment D (See Table 4) the part-whole reasoning of general-
ization had not been planned in advance. When the teacher discussed com-
pleteness by also making connections to the completeness of other whole 
numbers, the mathematical discussion seems to have become more ad-
vanced, and may have empowered the teaching mathematically.  
 

In addition to the data sets analyzed in the re-analysis above, the power of 
variation and connection can be illustrated with two empirical examples 
from Articles II and IV, respectively. In the first example, selected from the 
South African focal study, two missing number problems (_- 7 = 10 and 10 
= _ - 7) were recorded on the board, one under the other48. The teacher 
created a variation by offering the two missing number problems simulta-
neously. Following variation theoretical principles, the numbers and opera-
tions were invariant and the position of the unknown number varied. 

                                                             
48 See Article II (p. 7 Figure 3). 
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Hence, it could be argued that there is a difference depending on whether 
the instruction was focused on producing the answers to the two missing 
number problems or if the teacher explicitly directed the learners’ attention 
to the structural relations of parts and whole and the position of the un-
known number. In this episode the teacher made connections by juxtapos-
ing the examples, asking for differences and similarities. She also drew lines 
between the missing whole numbers and the 10s, and used circling gestures 
to emphasize the same quantities across the two examples. The example 
itself (_- 7 = 10 and 10 = _ - 7) provides learners the opportunity to experi-
ence variation perceptually. However, if the mathematical ideas embedded 
in the task are also explicitly pointed out and discussed, this may expand the 
learning space even more.  
 

The power of variation and connections can be further described with ref-
erence to the second empirical example of the Statement game (description 
on p. 48) in the FASETT project (See Article IV). Within this game, the 
children were to reach agreement on what number they thought the die 
would show. When the children had shown the same number on the fingers 
of two hands in various ways, the teacher could verify their finger patterns 
without making any comments and then move on to the next example, 
which sometimes happened. In this case, different ways of showing the 
same number on two hands were possible to discern in the enactment, 
however only implicitly since the teacher did not direct the children’s atten-
tion to various ways of showing the same number. This is different from an 
enactment49 in which the teacher explicitly directed the children’s attention 
to the different ways of showing the same number on two hands, for in-
stance asking a child “How many do you have?” and turning to another 
child, asking “… and you?” (at the same time touching each child’s hands), 
and directing the children’s attention to another child’s fingers while saying 
“How many does Kim have there?” She then juxtaposed the children’s ways 
of showing the same number, saying “Did you show it in the same way?” 
and continued, saying “How many different ways do we have?” Besides 
manifesting different ways of showing the same numbers on the fingers of 
two hands, the teacher made connections between finger patterns, by asking 
questions and using linking gestures emphasizing the similarities and differ-
ences between the finger patterns shown. In these empirical examples (miss-
ing number problems and the Statement game), as well as in the three prin-
ciples described in detail in the re-analysis, the theoretical concepts of varia-
tion and connections are central in the argumentation concerning how to 
enhance part-whole teaching within a structural approach. 
 
                                                             
49 See Article IV (p. 19). 
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Conclusion	  
The results from the four empirical studies and the re-analysis contribute a 
deeper understanding of what can constitute a structural approach to addi-
tive relations. Looking across the articles and the re-analysis, the results 
suggest that it matters for learning which representations, examples, and 
problems are offered to the children. Some representations and resources 
(e.g. finger patterns and bead strings) seem to facilitate the discernment of 
the parts and whole and their relations, which is seen as essential for a struc-
tural approach to additive relations.  
 

Structural part-whole relation teaching is also associated with the simultane-
ous presence of more than one example at a time. The results suggest that it 
matters if several examples are offered by the teacher, but also which exam-
ples are offered in a sequence. A systematic sequence of examples has the 
potential to bring to the fore the relations between different part-whole 
examples, which provides the opportunity to learn mathematical principles 
such as commutativity or completeness by systematicity.  
 

The overall results indicate that ideas and principles from variation theory 
made it possible to expand the knowledge of part-whole relation teaching 
and the learning opportunities offered. In the articles as well as the re-
analysis, the results indicate that what is made possible to learn about addi-
tive part-whole relations is associated with what aspects are opened up as 
dimensions of variation.  
 

Foremost, however, the results reveal the importance of making connections to 
highlight number relations and key features associated with the structural 
approach to additive relations. Whether and how the teacher explicitly (ver-
bally and gesturally) draws attention to relations, ideas and aspects seems to 
be crucial for the structural approach to additive part-whole relation teach-
ing. The results suggest that teachers’ connecting work has implications for 
the learning opportunities. It seems to matter not only what the teacher ex-
plicitly draws the learners’ attention to within a part-whole relation by open-
ing dimension of variation (between different part-whole relations, between 
various representations and ideas and within an aspect) but also how this is 
accomplished. 
 

To conclude, looking across the articles and the re-analysis, the micro-
analyses suggest differences in terms of provided representations, examples 
and problems; the variation in the aspects offered; and particularly whether 
and how relations and ideas are connected. These sometimes subtle differ-
ences identified in the teaching offer the children different learning oppor-
tunities for. The results suggest that how variation is offered (dimensions of 
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variation opened up) and whether or not relations and mathematic ideas are 
specifically pointed out (by making connections) seem to be critical in 
teaching for the learning of additive part-whole relations. In addition, 
through the separate articles and the re-analysis, the results imply that it is 
possible to implement the structural approach to additive part-whole rela-
tions and assumptions from variation theory in the two contexts chosen for 
this thesis. 
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7	  Discussion
 
The overall aim of this thesis is to contribute deeper knowledge about the 
structural approach to teaching and learning additive relations, in the con-
text of two intervention studies with children aged five to eight years. One 
point of departure is Neuman’s (1987) findings and her argument that an 
awareness of numbers’ part-whole relations is essential for children’s devel-
opment of arithmetic skills. Another point of departure is the structural 
approach to relations and the ‘relational reasoning’ argued for by Davydov 
(1982), and the importance of offering children the opportunity to explore 
numbers as relations within numbers in teaching, instead of focusing on 
counting (Schmittau, 2004). These ideas (structure and relations) and their 
implications for teaching, as well as principles from variation theory, have 
been the main thread throughout the collaborative work in the intervention 
studies. 
 
Discussion	  of	  the	  results	  
The overall findings indicate how examples, representations, resources, and 
problems offered in teaching might support learners in discerning part-
whole relations. It seems to be a question of how teachers direct children’s 
attention to the relations between the parts and the whole, regardless of 
which representations come into play50. This might enhance children’s abil-
ity to see how quantities are related to each other and whether a whole or a 
part is missing (cf. Schmittau, 2004; Sensevy et al. 2015). In teaching, the 
teacher needs to direct the learners’ attention to representations that push 
towards structure (van den Heuvel-Panhuizen, 2008; Venkat et al., 2019). In 
the focal studies and the re-analyses associated with this thesis, the teacher 
directed the learners’ attention to structured finger patterns, or alternatively 
the bead string grouped in two colors on the string, and the organization of 
the items/sets of items. This seemed to facilitate for the children to see 
items without counting them as single units. The results also reveal the 
teachers’ different ways of highlighting the undivided 5, and 10 as constitut-
ed of two 5s, for instance circling the undivided 5, and thereby directing the 
children’s attention to the semi-decimal structure. This provided the chil-
dren with an alternative to single-unit counting, and gave them the oppor-
tunity to experience numbers as composite sets. These results add to previ-
ous early number research (e.g. Ellimore-Collin & Wright, 2009), regarding 
how teachers can draw attention to 5 as a benchmark51, allowing learners to 
                                                             
50 See for instance Article I (p. 301, Fig. 2).  
51 See for instance Enactments C and D (pp. 70–71). 
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extend their subitizing range: conceptual subitizing (Clements, 1999; Clem-
ents et al., 2019). In earlier intervention studies, for instance, it has been 
concluded that seeing numbers as composite sets of units – subitizing and 
conceptual subitizing – promotes children’s understanding of part-whole 
relations of numbers (Jung et al., 2013, Benz, 2013; Schöner and Benz, 
2017). Whereas these studies did not explicitly examine the role of finger 
patters related to subitizing, their findings related to Articles III and IV as 
well as the re-analysis can further contribute knowledge about how struc-
tured finger patterns can be emphasized in teaching. When children’s atten-
tion is drawn to numbers as composite sets and highlighting how these sets 
(parts) are related to each other and to the whole, they are offered an alter-
native to single-unit counting (cf. Carpenter & Moser, 1984; Fuson, 1992). 
Furthermore, children’s ability to see a part-whole relation as composite 
sets, by creating finger patterns and learning how to decompose/compose 
numbers (conceptual subitizing), might develop their ability to solve addi-
tive relation problems (cf. Clements et al., 2019). The results associated with 
this thesis imply that the relation of the parts and the whole is seen as the 
basis for addition and subtraction. Even though the structural approach 
emphasizes the part-whole relation from the outset, counting is not seen as 
unimportant. However, following the results, single-unit counting might not 
necessarily be the foundation for the development of arithmetic skills. 
 

As mentioned previously, finger counting is strongly rooted in South Afri-
can classrooms (Venkat, 2013). Therefore, finger patterns were not explicit-
ly promoted in teaching this intervention, even though the students used 
them spontaneously, counting them as single units. Nevertheless, since it is 
known that some representations associated with a structural approach sup-
port the discernment of part-whole relations (Carpenter et al., 1999; 
Schmittau, 2004), other representations were introduced in the South Afri-
can context. These were the part-whole schema (triad) and the bar diagram, 
combined with other more familiar representations as well as symbol repre-
sentations. The results do not specifically reveal whether or not the triad 
diagram and the bar model supported the students’ learning of part-whole 
relations. However, these representations seem to have afforded the stu-
dents the possibility to discern the part and the whole at the same time, and 
helped the teachers to focus on relational reasoning (structure) instead of 
emphasizing single-unit counting. The results from the coding suggest that, 
in addition to the linking gestures, the verbal linking using the terms “parts 
and wholes” (cf. Payne and Rathmell, 1975) seems to have drawn the learn-
ers’ attention to the within relations of numbers (Articles I and II)52. 
 

                                                             
52 See for instance Article II (p. 5, Figure 1).  
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Paying attention to the within relations of numbers is fundamental in a 
structural approach to additive relations (Neuman, 1987; Schmittau, 2004); 
additionally, the “between examples relation” needs to be emphasized in 
teaching (Watson & Mason, 2006b), in order to be able to generate mathe-
matical structure (Venkat et al., 2019). The results of this thesis suggest 
many different ways in which principles and ideas can be brought to the 
fore in teaching, by emphasizing relations between examples. For instance, 
the results revealed that more mathematical structure was brought to the 
fore in teaching additive relation problems in the second year than the first 
(Article II). These improvements in teaching are important in the light of 
South African evidence of disconnected teaching (Mathew, 2016; Venkat & 
Naidoo, 2012). 
 

Earlier research emphasizes the importance of acquiring knowledge of the 
commutativity and complement principles for developing arithmetic skills 
(Baroody, 1999, 2016; Canobi et al., 2002); however, the research base does 
not tell us much about teaching that helps young learners to learn these 
principles. Some researchers deal with this deficit by suggesting curricula 
that emphasize relational reasoning (e.g. Zhou & Peverly, 2005; Schmittau, 
2004; Sensevy et al., 2015). The results of the focal studies associated with 
this thesis, as well as those of the re-analysis, also address this deficit. By 
taking a structural approach to additive part-whole relations, it has been 
possible to offer several concrete illustrations of how, for instance, the 
commutative principle can be taught in different ways, by means of both 
concrete representations and abstract symbols53. For example, it was found 
that teachers directed learners’ attention to the interchangeability of the 
parts/terms that composed the whole/sum by juxtaposing two examples. 
This enactment gave the children the opportunity to experience the com-
mutative principle. One interpretation of these findings might be that, in 
addition to the teachers’ enactment, the commutative principles had been 
discussed to various extents in planning meetings, the activities and exam-
ples were designed based on principles of variation and invariance to make 
it easier to discern the commutative principle, and the representations sup-
ported the discernment of part-whole relations from the outset.  
 

However, the results also show ways of teaching in which relations and 
mathematical ideas and principles were not brought to the fore, and were 
hence not possible for the learners to discern. For instance, if examples are 
erased, it may be difficult to discern a specific relation, idea, or principle that 
was the object of attention54. Alternatively, if the sequence of examples of a 

                                                             
53 See for instance Table 4, Enactment C (p. 73) and Article IV (pp. 24–25). 
54 Compare to Enactment A (p. 73) in the re-analysis.	  
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hidden number of beads on the 10-snake is presented in a more or less ran-
domly chosen order, it may be difficult to discern commutativity55. The 
results also suggest that, even though teachers in both projects had been 
involved in the design and planning of the activities and the underlying 
mathematical principles and ideas had been discussed, there were differ-
ences in the extent to which learning opportunities related to the mathemat-
ical ideas and principles were offered.  
 

Furthermore, in the South African focal study, examining teaching missing 
number problems (Article II) revealed how the part-whole reasoning within 
a structural approach was brought to the fore by the teachers56. These 
“arithmetic-algebraic ideas” are seen as a challenging task for many learners 
(e.g. Carraher et al., 2006). The results can contribute knowledge about how 
principles from variation theory – variation in the midst of invariance – can 
be used for a carefully planned example space, in order to emphasize these 
ideas. In one of the lessons, two examples were recorded on the same piece 
of paper (so that they could not be erased) if, for instance, the position of 
the unknown number was to be focused on, the positions of the missing 
number varied, and the given numbers were the same57. Thereby, the chil-
dren’s attention was drawn to the aspect of position and they were given the 
opportunity to experience that the position of a missing number is not al-
ways the same. These results, involving how missing number problems were 
handled through symbol representations, offer implications regarding how 
to implement these ideas in primary teaching58. These findings would not 
have emerged if merely concrete representations and resources had been the 
object of attention in teaching, such as in the preschool intervention. There-
fore, I would argue that the different contexts and age groups offer com-
plementary knowledge about what can constitute the structural approach to 
additive part-whole teaching. 
 
Making connections in teaching 
The results from the first two articles and the re-analyses indicate that mak-
ing connections in teaching can enhance children’s learning opportunities. 
In mathematics education research, connections in mathematics are seen as 
an essential part of the instruction (Askew et al., 1997; Hiebert et al., 1999; 
Rowland, 2008). The results in this thesis support these findings: connec-
tions in teaching do seem to matter. Nevertheless, the sort of connections 
emphasized in this thesis refer to making connections and consist of the teach-

                                                             
55 See for instance Enacted Objects of Learning A and B in Article III. 
56 See for instance the example discussed on pp. 82–83. 
57 See for instance p. 47 and Article II (p. 7). 
58 See also Ekdahl & Runesson (2015). 
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ers’ linking actions (verbal and gestural), studied on a fine-grained level. This 
kind of making connections on the micro-level, specifically the additive part-
whole relation teaching, is reported on only to a limited extent in the re-
search literature. There is empirical support for the importance of teachers’ 
linking gestures in instruction (Alibali et al., 2013; Flevares & Perry, 2001), 
and preschoolers’ and teachers’ gestures are seen as an important source of 
developing children’s mathematical skills in one-to-one interaction (Elia et 
al., 2014). Nevertheless, the findings associated with this thesis extend these 
studies’ results by focusing on what “connecting work” (gestures and 
speech) looks like on a micro-level, related to the teaching of a structural 
approach to additive relations and how this connecting work might facilitate 
learning among young learners. 
 

The criteria for defining a linking action were developed in the coding 
framework in Article I. Here, it was illustrated what teachers’ linking actions 
looked like when connections were made within an example as well as be-
tween examples and representations. Therefore, it was possible to identify 
what additive relation teaching without linking actions or with few linking 
actions looked like, compared to teaching including several linking actions. 
These fine-grained differences in teaching the same topic enabled me to 
identify differences in teaching. 
 

Given the importance of using various representations in mathematics and 
learning how to move between them (Carpenter et al.,1999; Lesh, Post & 
Behr, 1987), it cannot be taken for granted that all learners are able to dis-
cern how different representations are related to each other. As an illustra-
tion from Articles III and IV, it might be the case that the preschoolers do 
not get the chance to experience that the same collections of items can be 
represented with beads and with fingers, even though these representations 
are familiar to them. If this relation is pointed out by the teacher, by for 
instance circling the beads on the string and then grasping the raised fingers 
on a child’s hand, saying “There are five, just like the fingers on one hand”, 
it might facilitate for the learners to experience that the same number can be 
represented with both beads and fingers. Another illustration is selected 
from the Grade 3 classroom, where missing number problems were handled 
(Article III) and the number sentence representation and the double bar 
diagram59 were presented at the same time. Even though the two represen-
tations were visible on the board and the same example as well as different 
examples were recorded in both representations, it cannot be taken for 
granted that all the children understand that the marking for the missing 
number was associated with the empty square in the double bar. However, 

                                                             
59 See p. 27. 
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if the teacher, for instance, directs the learners’ attention to these similarities 
by drawing lines or making a movement with her finger from the “empty 
line” in the number sentence to the empty square in the double bar, and 
discusses the positions of the missing number, it might happen that more 
learners are able to discern the similarities between the representations.  
  
To some extent, there are overlaps between the way connections are applied 
in the coding framework (Articles I and II) as well as in the re-analysis and 
the MPM (Mediating Primary Mathematics) framework developed by Ven-
kat and Askew (2018). However, the MPM framework takes its point of 
departure in sociocultural theory. Some principles from variation theory 
(e.g. Watson & Mason, 2006b) are used as a complement in the MPM 
framework within the mediation with examples, talk, and gestures. Connec-
tions used for linking between mathematical ideas are, for instance, seen as 
indicators of a higher qualitative level of instruction. However, given that 
the MPM framework is broader and used generically across topics and takes 
its departure in sociocultural theory, the coding in this thesis is conducted 
on an even more detailed level and linked to additive relations specifically, 
and variation theory is the solid theoretical base. 
 
The re-analysis – a variation theoretical contribution? 
In the re-analysis, the teachers’ enactments were in focus. The enactments 
that included linking actions were analyzed on a highly detailed level. Also, 
in the analyses a distinction was made between dimensions of variation 
opened up and connections (linking actions) made by the teacher. Previous 
variation theoretical studies (e.g. Häggström, 2008; Runesson, 1999) have 
analyzed and compared teaching, using the concept of dimensions of varia-
tion as an analytical tool. However, in this thesis, both dimensions of varia-
tion and connections were used. This way of “expanding the analysis” might 
make a contribution to further discussions on how to analyze teaching using 
tools and principles from variation theory.  
 

My findings align with the interpretation that learners’ attention should be 
drawn to relevant relations and patterns (Kullberg et al., 2014; Marton, 
2015; Watson & Chick, 2011). However, the re-analysis of the data shows 
what this could look like in practice; as its findings reveal qualitative differ-
ences in the enactment of the same mathematical idea or principle. These 
findings indicate that it is not only the example space provided and the di-
mensions of variation opened up (or not) in the teaching that imply what is 
made possible to learn, but also how the relations, ideas, or principles are 
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explicitly pointed out by the teacher60. Through this analysis I may have 
found something that, while not completely new, is important to discuss 
from a pedagogical as well as a variation theoretical point of view. 
 

According to variation theory, making connections might be seen as a way to 
offer variation within the specific dimension, or offer new values in one 
dimension that has already been opened up. However, building on the re-
sults from the micro-level re-analysis, I would argue that making connections is 
something that explicitly points out the features associated with the mathe-
matical principle or idea focused on in the teaching in the dimension of 
variation that has been opened up; a way of extending the teaching, and 
expanding the learning that is offered, so to say. I would argue that, besides 
offering variation, connections can facilitate for children who do not see the 
relation, idea, or mathematical principle in focus even if it is perceptually 
visible in the learning situation.  
 

Hence, the results of the re-analysis suggest that it is a combination of the 
dimensions of variation opened up and the connections made explicitly that 
seems to be powerful in what is made available for the children to learn61. 
Even though there is no robust data on learner performance associated with 
this thesis, the classroom learner data (Article I) tend to say that making con-
nections matters. More connecting in order to work on partitioning a number 
in different ways was seen in the class in which more actions directing the 
attention to completeness by systematicity were identified compared to other 
classes. The empirical example of Enactment C (See Table 5, p. 78), in 
which the teacher emphasized systematicity, relates to the results on the 
worksheet following this teaching episode62. This class performed better 
than the two other classes. Out of 44 students, 26 produced all the possible 
partitions of whole number 9, and 14 of these 26 students showed systemat-
ic working; this can be compared to other classes, in which 2 out of 13 and 
3 out of 20 students, respectively, produced a systematic pattern. These 
results may indicate that variation and connections matter. However, much 
more work is needed if any sort of claims is to be made about linking ac-
tions on the micro-level and the relation between “connecting teaching” 
and learner performances. Nevertheless, I have found a phenomenon – 
variation and connections – that is important to further explore from a variation 

                                                             
60 The results in the articles also show that mathematical ideas and principles linked to 
additive relations were brought to the fore in the teaching. However, the combination 
of dimensions of variation and connections as analytical concepts was only applied in the re-
analysis. 
61 Article II reveals similar results, but dimensions of variation were not used as a con-
cept in the analysis. 
62 See Article I (p. 311) for a detailed description. 
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theoretical as well as an educational perspective, especially for early child-
hood and primary mathematics. Therefore, further intervention studies 
could be designed to investigate where the impact of connections might be 
tested. 
 
Critical	  reflections	  on	  methods	  and	  findings	  	  
There are several questions concerning the validity and reliability of this 
thesis that need to be considered. During the whole research process, to 
strengthen the validity of this study, my ambition has been to provide a 
transparent description of how the data were sampled, considerations that 
were made, and how the analyses were carried out. The validity and reliabil-
ity were strengthened by, for instance, continuously discussing method is-
sues and analyses of video-recorded sequences and transcriptions at collab-
orative research meetings, both within and outside the project. The reliabil-
ity of the coding associated with the analytical framework in the first two 
articles was improved when the co-authors coded a limited number of seg-
ments (agreed/disagreed) with the coding I had done. However, to establish 
even higher reliability in the agreement regarding the coding, it would have 
been desirable for the co-authors to have coded all lessons separately.  
 

Using segments as the smallest unit of analysis (Articles I and II) has enabled 
me to describe differences in part-whole additive relation teaching. It might 
be the case that another unit of analysis would have given slightly different 
results. For instance, in Article II, according to the coding one of the teach-
ers used fewer linking actions in 2014 than in 2013 (Article II, p. 5). How-
ever, within some segments (2014) multiple linking actions were identified, 
suggesting that one example was treated more mathematically in terms of 
emphasizing the within relations, compared to other examples in the se-
quence in which no linking action occurred. Consequently, if the smallest 
unit of analyses had been “even smaller”, there might have been slightly 
different numbers of linking actions (coded units); however, this would 
likely not have revealed any great differences in the results of comparing the 
teaching over time.  
 

There might be other shortcomings in the methods that had an influence on 
the results, for instance concerning the samples of video documentation 
that formed the basis of analysis of the conducted activities in Articles III 
and IV. The preschool teachers themselves decided which learning situa-
tions to upload to the server. Even if the large number (N=67) of uploaded 
videos likely provided me with sufficient variation in the enactments of the 
Snake game activity, other enactments that were not uploaded might have 
constituted another enacted object of learning. Likewise, the videos for 
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discussion in the “teacher-researcher meetings” were selected in order to 
discuss mathematical ideas related to additive part-whole relations. It is not 
possible to know whether other choices of videos might have stimulated the 
mathematical discussion even more (or less), or supported the reflections on 
how to conduct the activities. Another issue that might have influenced the 
outcome is the number of teachers who participated. It might be the case 
that if other teachers or a greater number of teachers had participated, other 
aspects of “part-whole-teaching” could have been identified. However, a 
greater number of participating teachers would have generated more whole-
class lessons and small-group teaching to analyze, which would have been 
too time-consuming. Furthermore, it might have made the results more 
robust if analyses had been conducted on all 65 participating children’s ways 
of experiencing numbers in the intervention program. Nevertheless, follow-
ing the phenomenographic tradition (Marton, 1981), the main purpose of 
this analysis was to understand different ways of experiencing numbers and 
collect further knowledge about preschoolers’ development of arithmetic 
skills rather than to make generalizations. Finally, a re-analysis of another 
mathematical principle or idea (e.g. the complement principle), or a re-
analysis of qualitative differences in the enactment of commutativity in pre-
school settings, might have deepened the results, and might have strength-
ened the argument for teaching with “variation and connection” even more. 
 
Reflections on the design  
The studies associated with thesis had the characteristics of educational 
design research (van den Akker, et al., 2006; Cobb et al., 2003), whereby 
teaching part-whole relations grounded in a structural approach was imple-
mented in natural settings and in close collaboration between the practition-
ers and researchers. It could be concluded that the process orientation ap-
proach allowed the involved teachers and researchers to continuously dis-
cuss underlying mathematical principles related to numbers from different 
perspectives. I saw the advantage of having a common interest in teaching 
part-whole relations. It was possible to link theory to practice by continu-
ously referring back to lessons, reflecting on teaching episodes, and discuss-
ing the teachers’ experiences. Furthermore, the iterative design of these 
focal studies, with few activities being focused on and reenacted, enabled 
the teachers to reflect on their teaching and become more aware of the chil-
dren’s ways of reasoning about number relations. Also, the iterative design 
focusing on one specific topic over a longer period may contribute to teach-
ers’ deeper understanding of the mathematical ideas that are possible to 
bring to the fore within teaching about number relations.  
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Implementing activities that unpack mathematical ideas can be a challenge, 
especially when dealing with unfamiliar ideas such as alternative approaches 
to numbers. For example, it sometimes seemed to be challenging for the 
Grade 3 teachers, who were not familiar with the structural approach, to 
change their focus. Instead of focusing on producing answers to a sequence 
of tasks, they were to encourage the students to, for instance, reason about 
the relation between three numbers (number triples), comparing two miss-
ing number problems without being asked to produce the correct answers. 
Similar to other studies (Mulligan et al., 2013; Savard et al., 2013), it seems 
as if the participating teachers in the current studies needed to become con-
fident with the structural approach and mathematical ideas themselves in 
order to be able to implement them in practice.  
 

In conclusion, several questions and shortcomings related to the validity and 
reliability of the methods, and other issues concerning the designs and how 
these issues might have affected the results, have been discussed above, and 
there are likely others. Based on these focal studies and the re-analysis it is 
not possible to generalize the results, for instance that this is what differ-
ences in part-whole teaching grounded in a structural approach look like in 
all classrooms and preschool groups, or to make claims regarding what 
structured part-whole relation teaching “should” look like. This has not 
been my intention with the thesis. Nevertheless, following Larsson’s (2005) 
argumentation, the nuances and detailed descriptions as well as the clear 
structure, I will argue, strengthen the interpretation of the results. By using 
video observations and making comprehensive analysis that capture the 
essential aspects of teaching additive part-whole relations, I have, on a clear 
empirical basis, captured what can constitute part-whole relation teaching. 
Furthermore, I have strengthened the quality of the results by focusing on a 
specific mathematical content. According to variation theory, which forms the 
basis of this thesis, if several different mathematical contents had been stud-
ied, too great a variation in teaching would have been demonstrated and the 
analyses would have revealed other results related to teaching. Instead, 
keeping the content invariant made it possible to describe different ways of 
handling this specific mathematical content (additive part-whole relations). 
For instance, in the analyses I examined how the same part-whole activities 
and additive relation problems were handled by different teachers, and in the 
re-analysis, I analyzed various enactments of the same mathematical 
idea/principle. I was thus able to describe subtle differences in the ways the 
same activity, or the same idea, was taught. In order to enhance the descrip-
tions of part-whole teaching and highlight subtle differences in the teaching, 
I have provided concrete illustrations of it.  
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Generalization of research results is sometimes discussed by focusing on 
similarities between the researched context and other contexts, and the ex-
tent to which a study’s results can be transferred to other contexts (Cohen, 
Manion & Morrison, 2011; Larsson, 2009). This thesis is framed within two 
quite different contexts. A South African classroom is completely different 
from a Swedish classroom. However, all Swedish and South African class-
rooms do not have the same settings; there are also contextual nuances 
within the same country. In this thesis, such differences and nuances related 
to contexts and settings are not decisive for the results as the focus is on 
examining the teaching of a specific mathematical content while taking a 
specific approach. Hence, the result of this thesis can contribute deeper 
knowledge about additive part-whole relation teaching and learning ground-
ed in a structural approach. The detailed results’ descriptions of teaching 
and learning opportunities and the “content focus” have the potential to be 
used in other contexts and settings. Thereby, other researchers and teachers 
might discover the relevance of the results in their contexts (Larsson, 2005). 
Thus, the results in this thesis can indeed be useful outside its own context. 
 
Pedagogical	  implications	  and	  future	  research	  
Supported by the results of this thesis, implications for teaching have been 
discussed in previous sections. Nevertheless, some noteworthy implications 
for teaching practices deserve further mention. For instance, the results 
imply that taking additive part-whole relations of numbers as a starting 
point in teaching (in preschool and the first grades of lower primary school) 
enables learners to reason and explore the part-whole relations of numbers. 
This is the case in concrete and play-based activities (without written nu-
merals) as well as in tasks with different kinds of representations, including 
symbols. 
 

The activities developed in the two contexts are not in themselves a prereq-
uisite for teaching part-whole relations. However, teachers need to consider 
what activities, examples, resources, and representations facilitate for their 
learners to discern numbers’ relations and numbers as composite sets. 
Teachers should also reflect on what mathematical ideas and principles, 
essential for developing arithmetic skills, are important and possible to bring 
to the fore in their teaching. The results indicate that the teacher’s pedagog-
ical role also consists of directing learners’ attention to the relation, idea, or 
principle and not taking for granted that all children are able to discern the 
necessary aspect of the object of learning on their own. Following this idea 
of making connections, it is important for the teacher to reflect on: what 
sort of questions should I use; what do I compare with what; how can I 
explicitly point out the relation with fingers, hands, drawing, etc. This kind 
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of pedagogical support might provide qualitative reasoning about relations 
across examples and make the mathematics available to the children, offer-
ing a way to generate mathematical structure (Venkat et al., 2019). 
 

Another pedagogical implication of the results is related to structured finger 
patterns. The results suggest that a teacher ought to reflect on the differ-
ences between fingers used as a tool for counting single units and fingers 
used as structuring part-whole relations, and see the potential of introducing 
and encouraging structured finger patterns as a tool for solving additive 
relation problems in early childhood mathematics. This might help the chil-
dren to focus on numbers’ part-whole relations instead of getting stuck 
counting forward and backward, and use single-unit counting as their main 
strategy for solving addition and subtraction problems. 
 

The results of this research have generated new questions that are potential-
ly of interest to gather more knowledge about. One suggestion for further 
research that has already been mentioned is to further explore the concepts 
of variation and connections in teaching by analyzing other teaching episodes 
and larger samples. Results from one of the focal studies revealed that struc-
tured finger patterns offered a powerful way for five-year-olds to solve addi-
tive relation problems within the number range of 1–10. Therefore, a se-
cond suggestion for future research would be to conduct an intervention 
study, with an educational design research, in a South African Reception 
class (the first year of formal schooling). Here it would be possible to im-
plement the results from the focal studies of the FASETT project, develop-
ing and adjusting the design to large group sizes, and implement structured 
finger patterns to see units as composite sets, and examine how this could 
be offered as an alternative to the strongly rooted single-unit counting seen 
in South African classrooms. A third suggestion for future research would 
be to investigate how mathematical ideas and principles, which have been 
found to be essential for developing flexibility in additive relation problem 
solving, can be implemented in practice by preschool teachers – not only 
examining how these ideas and principles can be implemented as collective-
ly planned activities in an iterative process, but also discussing how the same 
mathematical ideas and principles can be brought to the fore in more play-
based learning situations.  
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8	  The	  four	  articles:	  a	  summary
 
Short summaries of the four articles associated with this thesis are provided 
here. Article I is published in Educational Studies in Mathematics; Article II is 
published in South African Journal of Childhood Education; Article III was re-
submitted in August 2019 and is under revision; Article IV was submitted in 
September 2019. 
 
Article	  I	  
Ekdahl, A-L, Venkat, H., Runesson, U. (2016). Coding teaching for simul-
taneity and connections Examining teachers’ part-whole additive relations 
instruction. Educational Studies in Mathematics, 93(3), 293–313. 
 

This article presents a coding framework based on simultaneity and connec-
tions. The coding focuses on micro-level attention to three aspects of simul-
taneity and connections: between representations; within examples; and 
between examples. Criteria were developed for coding what was viewed as 
mathematically important within part-whole additive relations instruction. 
Teachers’ use of multiple representations within an example, attention to 
part-whole relations within examples, and relations between multiple exam-
ples were identified, with teachers’ linking actions in speech or gestures 
pointing to connections between them. In this article, the coding framework 
is detailed and exemplified in the context of a structural approach to part-
whole teaching in South African Grade 3 lessons. The coding framework 
made it possible to identify fine-grained differences in the teachers’ handling 
of part-whole relations related to the simultaneity of, and connections be-
tween, representations and examples as well as within examples. Further, 
the associations between the simultaneity and connections, seen through the 
coding framework in sections of teaching and students’ responses on work-
sheets following each teaching section, were explored.  
 
Article	  II	  	  
Ekdahl, A-L; Venkat, H. Runesson, U & Askew, M. (2018). Weaving in 
Connections: Studying changes in early grades additive relations teaching. 
South African Journal of Childhood Education. 
 

This article presents aspects of teaching that draw attention to connections 
both within and between examples, in order to explore the potential objects 
of learning that are brought into being in the classroom space and thus what 
is made available to learn. The article’s focus is on exploring differences in 
teaching over time, in the context of learning a study style development 
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activity of additive relation problems in three Grade 3 classes in South Afri-
ca. In a context where highly localized and fragmented instruction has been 
noted, this study reports on the nature and extent of changes in connections 
in instruction over time. The application of a coding framework focused on 
simultaneity and connections in teaching points to a richer range of struc-
tural relations within examples, and more connecting work between exam-
ples, in the second year than in the first. 
 
Article	  III	  
Ekdahl, A-L. (in review). Different Learning Possibilities from the Same 
Activity – Swedish Preschool Teachers’ Enactment of a Number Relation 
Activity.  
 

This paper studies differences in the implementation of a number activity 
called the Snake game. Nine Swedish preschool teachers worked in collabo-
ration with a research team, enacting the same activity with their groups of 
five-year-olds over a three-month period. Variation theory forms the basis 
of the analysis of 67 video-recorded enactments. The results suggest that an 
activity such as the Snake game can bring to the fore various aspects of 
numbers through differences in enactment. The activity became mathemati-
cally richer when the teachers compared the children’s different finger pat-
terns and used systematically varied examples of number relations. This 
study’s results contribute knowledge about characteristics of teaching that 
foreground numbers’ part-whole relations. 
 
Article	  IV	  
Björklund, C., Ekdahl, A-L. & Runesson Kempe, U. (in review). Imple-
menting a Structural Approach in Preschool Number Activities. Effects of 
an Intervention Program.  
 

This article reports on results from an intervention program implementing a 
structural approach to arithmetic problem solving in relation to learning 
outcomes among preschoolers. Using the fundamental principles of the 
variation theory of learning to develop the intervention and as an analytical 
framework, we discuss teaching and learning in commensurable terms. The 
research question is how teaching grounded in a structural approach and 
designed based on principles of variation theory is reflected in children’s 
learning of numbers. To answer this, three analyses were conducted: i) ad-
dressing how the children’s ways of experiencing numbers changed after 
participating in the intervention; ii) addressing how the theoretical ideas 
were afforded in the intervention program; and iii) synthesizing how the 
affordance was associated with the children’s arithmetic learning. One 
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group of eight children participating in the intervention program was cho-
sen for thorough analysis. Progression was observed in how the children 
changed their ways of experiencing numbers during the intervention to 
allow them to enact more advanced arithmetic strategies, which was associ-
ated with the structural approach in teaching. The results also show how 
analysis focusing on aspects discerned in learning and aspects afforded in 
teaching provides an alternative way of describing arithmetic learning, with 
significant implications for teaching practice. 
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9	  Summary	  in	  Swedish
 
I den här avhandlingen har resultatet från fyra empiriska studier och en re-
analys sammanförts i syfte att fördjupa förståelsen av vad som kan utgöra 
en strukturell ansats till undervisning och lärande av tals additiva del-
helhetsrelationer. Med tals additiva del-helhetsrelation menas att exempelvis 
talet 7 kan delas upp i 5 och 2. En strukturell ansats innebär i det här sam-
manhanget att relationerna mellan tals delar och helhet står i fokus från 
början och ses som grunden för att lära sig addition och subtraktion (Da-
vydov 1982; Neuman, 1987). En mer vanligt förekommande beskrivning av 
barns kunskapsutveckling i aritmetik (ex. Carpenter, Hiebert & Moser, 1981; 
Fuson, 1992) innebär att barn till en början räknar med hjälp av konkreta 
föremål och använder ett-till-ett räkning, för att sedan utveckla strategier 
som att räkna vidare från ett givet tal och därefter utveckla mer sofistikerade 
räknestrategier, för att slutligen lära sig kombinationer som talfakta. Vissa 
forskare (ex. Ellemor-Collins & Wright, 2009; Neuman, 1997) ifrågasätter 
vad som händer med de barn som fastnar i ett-till-ett räkning, och inte ut-
vecklar mer hållbara strategier för att lösa addition och subtraktion-
suppgifter. Istället föreslår de att barnen ska erbjudas strategier som baseras 
på tals relationer. Denna avhandling tar sin utgångspunkt i Neumans (1987) 
argument om att tals del-helhetsrelationer är avgörande för barns utveckling 
av aritmetiska färdigheter och Davydovs (1982) argument om vikten av att i 
undervisningen erbjuda barn möjligheten att utforska tal som relationer, 
istället för att fokusera på ett-till-ett räknande. I sådant utforskande av rela-
tioner förefaller det vara av betydelse att barn får möjlighet att se delarna 
och helheten samtidigt samt att se antal som sammansatta enheter. Det har 
visat sig att vissa representationer och formationer av föremål möjliggör 
denna förmåga, exempelvis fingermönster (Neuman, 2013). 
 

Många forskare inom det matematikdidaktiska fältet lyfter fram vikten av att 
barn/elever behöver lära sig att se relationer mellan tre tal i en additiv talre-
lation (ex. 7/5/2) (Baroody, 2016; Clements & Sarama, 2009) för att därmed 
kunna utveckla ett flexibelt sätt att lösa additions- och subtraktionsproblem 
(ex. 5 + _ = 7; 7 - _ = 5). I sammanhanget förespråkas även vikten av att 
barn och yngre elever lär sig matematiska principer såsom kommutativitet 
för addition och reversibilitet mellan addition och subtraktion. Dessa prin-
ciper är möjliga att introducera tidigt i undervisningen utifrån en strukturell 
ansats till tals del-helhetsrelationer (Schmittau, 2004). 
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En teori som fokuserar på hur ämnesinnehållet hanteras i undervisningen är 
variationsteorin (Marton, 2015). Eftersom lärandet, utifrån teorin, alltid är 
relaterat till något som ska läras – lärandeobjektet (Marton & Tsui, 2004; 
Runesson, 2005) ansågs variationsteorin vara lämplig för att undersöka hur 
tals additiva del-helhetsrelationer hanteras i undervisningen. Utifrån varia-
tionsteorin beskrivs lärande som att urskilja aspekter av lärandeobjektet som 
inte tidigare har urskiljts, alternativt urskilja aspekterna på ett mer differen-
tierat sätt (Marton, 2015). Enligt teorin kan dessa aspekter endast urskiljas 
om de öppnas upp som dimensioner av variation (Häggström, 2008). Varia-
tionsteorin erbjuder relevanta begrepp och verktyg för att analysera un-
dervisning och lärande, varför denna valdes i avhandlingen. 
 

Resultat från tidigare interventionsstudier visar att det är möjligt för för-
skolebarn att lära sig om tals del-helhetsrelationer (ex. Fischer, 1990; Jung, 
m.fl., 2013). Det finns ett begränsat antal interventioner som i mer detalj har 
undersökt lärares del-helhetsundervisning grundad i en strukturell ansats. 
Det finns få interventionsstudier som tydligt har beskrivit hur aktiviteterna 
designats och implementeras i praktiken, och vilket teoretiskt antagande 
dessa studier grundar sig i. Denna avhandling syftar till att bidra med kun-
skap inom detta fält, genom att studera en strukturell ansats till tals additiva 
del-helhetsrelationer från både ett undervisnings- och lärandeperspektiv, 
med hjälp av principer från variationsteorin (Marton, 2015). 
 

Utifrån såväl ett pedagogiskt perspektiv (ex. Askew, 1999) som ett varia-
tionsteoretiskt perspektiv (ex. Kullberg m.fl., 2015) lyfts i den här avhan-
dlingen betydelsen av lärarens agerande fram, och vikten av att rikta barnens 
och elevernas uppmärksamhet mot det som ska läras. Det kan exempelvis 
handla om hur läraren påvisar samband och relationer mellan begrepp, ex-
empel, matematiska idéer och områden. Tidigare studier (ex. Alibali m.fl. 
2013; Flevares & Perry, 2001) visar att lärarens gester och verbala kommu-
nikation kan stödja elevers lärande. Venkat och Askew (2018) hävdar dock 
att uppmärksammande av samband och relationer inte alltid är så vanligt 
förekommande i undervisning med yngre elever. 
 
Syfte	  och	  frågeställning	  
Det övergripande syftet med avhandlingen är att fördjupa förståelsen av 
undervisning och lärande av tals additiva del-helhetsrelationer, utifrån en 
strukturell ansats. I avhandlingen används variationsteoretiska idéer för att 
utvidga kunskapen om undervisning i additiva del-helhetsrelationer och för 
att studera de lärandemöjligheter som erbjuds. 
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Följande frågeställning avses att besvaras: 
 

• Vad kan konstituera en strukturell ansats till undervisning och 
lärande av tals additiva del-helhetsrelationer, som främjar barns 
och yngre elevers lärande? 

 
De fyra artiklarna har specifika syften och forskningsfrågor, som besvaras i 
respektive artikel. Utöver dessa resultat och i syfte att mer i detalj utforska 
vad som kan konstituera undervisning och lärandemöjligheter av tals addi-
tiva del-helhetsrelationer, har en re-analys av data från dessa artiklar ge-
nomförts. Skillnader i hur matematiska principer och idéer lyfts fram i un-
dervisning är i fokus i denna analys. 
 
Metod	  
Avhandlingen är inramad i två forskningsprojekt: Wits Maths Connect-Primary 
projektet och FASETT-projektet63. Wits Maths Connect-Primary syftar till 
att förbättra matematikundervisningen från förskoleklass till årskurs 3 i tio 
skolor i Johannesburg. Inom detta project designades en mindre interven-
tionsstudie där jag och några andra forskare arbetade tillsammans med tre 
lärare från årskurs 3 på en av dessa skolor (Artikel I och II). Det svenska 
FASETT-projektet syftar till att implementera del-helhetsaktiviteter som 
främjar förskolebarns utveckling av aritmetikfärdigheter. Två av avhan-
dlingens delstudier (Artikel III och IV) baseras på data från FASETT-
projektet. 
 

I båda dessa delprojekt arbetade lärare och forskare i ett tätt samarbete och 
utgångspunkten togs i den strukturella ansatsen till tals additiva del-
helhetsrelation. Aktiviteter och uppgifter planerades gemensamt, lärarna 
genomförde dem i sina praktiker och tillsammans diskuterade sedan 
forskare och lärare hur dessa skulle kunna förfinas för att möjliggöra för 
barn och elever att lära sig det som avsågs. Endast ett fåtal aktiviteter och 
uppgifter användes, men prövades och förfinades under processen. Samtliga 
aktiviteter tog sin utgångspunkt i en strukturell ansats till tals delhelhetsrela-
tioner. Det empiriska materialet som har samlats in och analyserats i denna 
avhandling består av 18 videofilmade lektioner i årskurs 3 i Sydafrika (Wits 
Maths Connect-Primary) och 80 videofilmade undervisningsmoment i 
barngrupper som går sitt sista år i svensk förskola (FASETT-projektet). 
Därutöver valdes 16 individuella intervjuer där barn fick lösa aritme-
tikuppgifter i uppstarten av FASETT projektet och efter det att projektet 
var avslutat för analys. 

                                                             
63 Förmågan Att Sinnligt Erfara de Tio första Talen som nödvändig grund för aritme-
tiska färdigheter. 
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Datamaterialet har i samtliga fall analyserats på en detaljerad nivå, utifrån ett 
variationsteoretiskt perspektiv (Marton, 2015; Marton & Tsui, 2004). I 
Artikel I and II utvecklades ett ramverk för att identifiera relationer inom 
del-helhets exempel, mellan del-helhetsexempel och mellan representationer 
i tre lärares undervisning om additiva del-helhetsrelationer. De teoretiska 
begreppen simultaniety och connections utgjorde de centrala analysverktygen i 
dessa artiklar. Connections, åsyftar lärares handlingar med icke-verbala gester 
och verbala uttryck. Definitionen av gester utgår från det McNeill (1992) 
kallar ”utpekande gester”, vilket kan vara lärarens hand- eller fingerrörelser i 
syfte att påvisa exempelvis en relation mellan två representationer eller sam-
bandet mellan två del-helhetsrelationer. Connections kan även handla om 
lärarens verbala uttryck, såsom frågor som explicit pekar ut denna relation 
eller detta samband (Se gärna sidan 83 för ett exempel).  
 

I Artikel III och IV användes begreppet dimensioner av variation (Marton, 
2015) för att undersöka och jämföra lärandemöjligheter som erbjöds i 
lärares undervisning. Därutöver analyserades i Artikel IV barns upp-
fattningar av tal före och efter interventionsprogrammet, samt vilka aspekter 
som var möjliga att urskilja i undervisningen och vilka aspekter som barnen 
urskilde. I syfte att mer i detalj utforska vad som kan konstituera un-
dervisning av tals additiva del-helhetsrelationer, genomfördes en ny analys 
av de olika sätt på vilka samma matematiska princip eller idé behandlades i 
undervisningen. De tre matematiska idéer/principer som analyserades var; 
tal som sammansatta enheter, kommutativitet och systematik. I den här analysen 
användes begreppen dimensioner av variation och connections, i syfte att beskriva 
kvalitativa skillnader i lärares undervisning och vilka olika lärande-
möjligheter som därmed erbjöds. 
 
Resultat	  och	  konklusion	  
En sammanfattning av resultatet från re-analysen visar kvalitativa skillnader 
i undervisningen av samma matematiska idé. I ett sätt att undervisa syn-
liggjordes inte den specifika idéen, även om så var möjligt. I ett annat sätt att 
undervisa öppnades aspekten upp som en dimension av variation genom att 
exempelvis en systematisk sekvens av exempel dokumenterades på tavlan, 
vilket gjorde det möjligt för barnen att visuellt urskilja den matematiska 
idéen. Ytterligare ett sätt att undervisa, kännetecknas av att förutom att en 
eller flera dimensioner av variation öppnades upp, använde läraren connections 
(icke verbalt och verbalt) då läraren pekade ut, och riktade barnens och 
elevernas uppmärksamhet mot denna matematiska idé. Dessutom identifi-
erades sätt där idéen mer explicit synliggjordes i undervisningen. 
Sammantaget bidrog dessa, ibland subtila skillnader som identifieras i 
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analysen av undervisningen av samma innehåll, till olika lärandemöjligheter 
för barnen/eleverna.  
 

Resultat från de fyra empiriska studierna och re-analysen bidrar med en 
djupare förståelse för vad som kan utgöra en strukturell ansats till tals 
additiva del-helhetsrelationer. Om man ser till artiklarna och re-analysen 
visar resultaten att specifika representationer, exempel och problem verkar 
gynna barns/elevers förmåga att urskilja delarna och helheten samtidigt. Det 
övergripande resultatet indikerar att det är viktigt att flera del-
helhetsexempel erbjuds av läraren, men det är också viktigt vilka exempel 
som erbjuds. En systematisk sekvens av exempel har potential att lyfta fram 
relationerna mellan olika exempel, vilket i sin tur ger barnen eller eleverna 
möjlighet att urskilja en systematik i de olika sätt på vilket exempelvis ett tal 
kan delas upp eller urskilja en matematisk princip som kommutativitet.  
  
De övergripande resultaten tyder på att principer från variationsteorin har 
gjort det möjligt att fördjupa kunskapen om ”del-helhetsundervisningen” 
och lärandemöjligheter som erbjuds. Resultatet visar att det som görs 
möjligt att lära om additiva del-helhetsrelationer relaterar till vilka aspekter 
som öppnas som dimensioner av variation i undervisningen (Marton, 2015). 
Men, framförallt visar resultaten hur viktigt det är med connections , det vill 
säga hur läraren med sina handlingar (muntligt och med gester) pekar ut 
relationer och samband. Om och hur läraren explicit uppmärksammar 
relationer, matematiska idéer och principer, förefaller vara väsentligt för vad 
barnen erbjuds att lära. De ibland subtila skillnader som har identifierats i 
analysen av undervisningen av samma innehåll, erbjuder olika 
lärandemöjligheter för barnen och eleverna. Hur variation erbjuds 
(dimensioner av variation öppnas) och om och hur relationer och 
matematiska idéer explicit pekas ut av läraren eller inte, verkar vara kritiskt 
för elevernas lärande av additiva del-helhetsrelationer. Vidare framgår det av 
de separata artiklarna och re-analysen att den strukturella ansatsen och 
antaganden från variationsteorin är möjlig att implementera i de två olika 
kontexterna, valda i den här avhandlingen. 
 
Diskussion	  
Yngre elevers förståelse av tal och utveckling av aritmetiska färdigheter är 
ett välbeforskat område (ex. Carpenter, Hiebert & Moser, 1981; Fuson, 
1992). Vissa delar av resultatet i avhandlingen stämmer överens med tidigare 
forskningsresultat. Emellertid tillför resultatet från avhandlingen kunskap 
om en teoretiskt underbyggd undervisning där idéer, matematiska principer, 
mönster och relationer kopplade till en strukturell ansats till additiva rela-
tioner står i fokus. Även om tidigare forskning lyfter fram vikten av att 
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erbjuda mer än ett exempel, att påvisa samband mellan exempel (ex. Wats-
son & Mason, 2006b) och representationer (ex. Lesh m.fl., 1987), samt att 
lärares gester är viktiga i matematikundervisningen (ex. Alibali m.fl., 2013) 
ger avhandlingens resultat ett bidrag till hur connections i undervisningen kan 
se ut inom ett specifikt avgränsat ämnesområde. De detaljerade och empir-
inära analyser som har genomförts och beskrivits i så väl artiklarna som i re-
analysen, bidrar med fördjupad kunskap om vad som kännetecknar en un-
dervisning där tals del-helhetsrelationer lyfts fram i den här åldersgruppen. 
Exempelvis visar resultaten hur lärare kan synliggöra matematiska principer, 
såsom kommutativitet i såväl en förskole- som i en grundskolekontext. Re-
sultaten visar även att barn i undervisningen erbjuds alternativ till att alltid 
räkna föremål ett och ett, och istället se gruppen av föremål som sam-
mansatta enheter (jmf. Clement m.fl. 2019). Vidare ger resultatet implika-
tioner om att användandet av strukturerade fingermönster (jmf. Neuman, 
1987; 2013) underlättar för fem- till sexåringar att urskilja relationer mellan 
tals delar och helhet och kan därmed vara ett verktyg för barn i denna 
åldersgrupp att lösa additions- och subtraktionsproblem. 
 

Det är viktigt att betona att avhandlingens resultat inte är menade att vara 
en lösning på hur undervisning utifrån en strukturell ansats ska se ut, snara-
re kan resultaten vara ett stöd i lärares reflektion över vad i undervisningen 
som kan gynna barns och elevers lärande av tals del-helhetsrelationer. Det 
handlar inte om att replikera de specifika aktiviteterna eller uppgifterna som 
designats och används i projekten. Det är inte uppgifter och aktiviteter i sig 
som är avgörande, utan i vilket syfte de används, hur de kan gynna barns 
och elevers möjligheter att se samband, relationer mellan tal, exempel och 
representationer, samt möjligheter att utforska matematiska idéer och prin-
ciper. Dock föreslår resultatet att connections; lärarens pedagogiska handlingar 
genom gester och verbala uttryck, det vill säga vad uppmärksamhet riktas 
mot, verkar främja vad barnen och eleverna ges möjlighet att lära sig. 
 

Sättet på vilket re-analysen i kappan gjorts skiljer sig till viss del från andra 
variationsteoretiska analyser av undervisning av samma innehåll (ex. Hägg-
ström, 2008; Runesson, 1999). I analysen använde jag de teoretiska begrep-
pen dimension av variation och connections och kunde därmed identifiera subtila 
skillnader i undervisningen, skillnader som kanske inte hade identifierats om 
endast ett av begreppen hade använts. Min förhoppning är att sättet på 
vilket jag har utvidgat analysen  kan bidra till fortsatta diskussioner om hur 
undervisning och lärandemöjligheter kan analyseras med hjälp av principer 
och begrepp från variationsteorin. 
 

Förutom de resultat som har presenterats och diskuterats ovan, ger de sepa-
rata artiklarnas resultat ytterligare implikationer för praktiken. Värt att 
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notera är att ämnesinnehållet står i förgrunden i samtliga av dessa implika-
tioner. Min förhoppning är att dessa resultat kan ses som en källa till reflek-
tion över vad som kan känneteckna en strukturell ansats till additiva del-
helhetsrelationer och den viktiga roll läraren i förskolan och tidigare år-
skurser har, i mötet med barn och elever, för att matematiken ska bli syn-
liggjord.  
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Appendix	  
 
Tasks given in the interviews: 

A. The Guessing-game 

First: 
 

7=_+_ Seven marbles are counted and then hidden in the interviewer’s 
closed hands.  How many can there be in the one hand and how 
many in the other hand? (Multiple options possible). 

 

7=4+_ The interviewer opens one of her hands, showing four marbles. If 
one knows  there are seven altogether, how many are there in the 
closed hand? 

 
Second: 
 

7=_+_  The same seven marbles are put back on the table. Then hidden in 
the interviewers closed hands. How many … 

 

7=2+_ The interviewer opens one of her hands, showing two marbles and 
ask the same question. 

 
Third:  The same seven marbles and the same procedure. 
 

7=_+_   
 

7=1+_ 
 

B. Context tasks 

5=4+_  You and your friend collected five shells together, you collected four 
of them,  how many did your friend collect? 

 

9-7=_ If you have nine shells and your friend has seven shells, how many 
more shells  do you have? 

 

2+5=_  You have two shells and receive five more, how many do you have 
then? 

 

10-6=_   If you have ten candies and eat six of them, how many are left? 
 

3+_=8  You have three glasses, but are going to set the table for eight people, 
how many  more glasses do you need? 

 

_-3=6  On the morning of your birthday party, you blew up balloons. At the 
party, three  balloons broke, and there were only six balloons left. 
How many balloons did  you blew up that morning? 

 
In Article IV, the first two tasks (7=_+_; 7=4+_) in the Guessing game and the 
Context tasks are sampled.  
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