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A convective-scale ensemble system was developed to predict the occurrence of

heavy convective rainfall around Singapore with a focus on the prediction of

high-impact events. The new ensemble SINGV-EPS has been nested within two

global ensembles, MOGREPS-G (UK Met Office) and EC-ENS (ECMWF). Predict-

ing the occurrence of convective rainfall in an area such as Singapore is challenging

and this article discusses the use of the convection-permitting ensemble to char-

acterize the uncertainties in the prediction of such localized heavy rainfall. First,

verification of wind, temperature, and precipitation is performed for a month-long

period to assess the relative performance of each ensemble. This reveals differences,

but no robust signal to say one is better than the other. The results are not statistically

significant and not all variables are consistently better with one ensemble or the other.

Secondly, the precipitation characteristics of SINGV-EPS are analysed from proba-

bilities of precipitation and variability among the ensemble members. SINGV-EPS

is sensitive to the choice of the global ensemble providing the initial conditions and

boundaries. The results suggest there is benefit, in some cases, from combining the

two ensembles. Thirdly, the spread of the ensemble precipitation is analysed using

the dispersion Fractions Skill Score (dFSS). We compare the impact of the initial

perturbations and the perturbations in lateral boundary conditions in both nesting

options. The initial perturbations dominate in the beginning of the forecasts, with

influence up to T+24 h, and are associated with an upscale growth of the uncertain-

ties. The impact of the parent ensemble and lateral boundary conditions dominate at

the end of the forecast and tend to influence larger scales more.
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1 INTRODUCTION

Singapore has one the world's busiest airports, and the Straits

of Malacca is one of the world's most important shipping

lanes linking the Indian Ocean and Pacific Ocean. Together

with a high population density, any damage caused by extreme

weather could have a significant impact on the infrastructure

of the region.

At Singapore, intense rainfall events can occur through-

out the year. These events can happen at any time of the day,

either following the onset of daytime convection or as a result

of specific organization, such as squall lines, at the end of the
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night or early morning. The ability to forecast the onset, inten-

sity, and evolution of deep convective storms is the subject of

ongoing research and is of primary importance to operational

meteorologists.

Lo and Orton (2016) described the features of Suma-

tra Squalls. These squalls usually initiate late at night over

Sumatra, move eastwards through the Malacca Straits and

make landfall in Singapore in the early hours of the morn-

ing. Strong wind gusts accompany the heavy rain produced by

these squalls. Many factors can affect the onset, development,

and propagation of these squalls. For example, Sakurai et al.
(2005) described the seasonal influence of the Intertropical

Convergence Zone on the propagation of the storms develop-

ing over Sumatra and found that eastward movement of the

storms (i.e. affecting Singapore) is more uncertain than the

westward movement. Wu et al. (2009) showed the importance

of the topography over Sumatra for the onset of the heavy rain-

fall over the sea to the west, while more generally, Letkewicz

and Parker (2011) showed how sensitive squall-line develop-

ment is when interacting with terrain. Mesoscale flows over

Sumatra are also associated with gravity waves resulting from

different heating profiles, as described in Love et al. (2011).

With so many forcing mechanisms for initiating convec-

tion in this area (i.e. temperatures of the shallow seas and large

mountain ranges), it is clear that we need a model that can

capture the uncertainties related to the nonlinear nature of the

convection that initiates and develops over Sumatra and the

Malaysian Peninsula in order to predict the landfall and inten-

sity of the rainfall at Singapore. Additionally, the nonlinear

evolution of convection related to variations in background

shear and instability, and perhaps to a lesser extent for the

Tropics, larger-scale dynamical forcing, add to the difficulty

of predicting high-impact rainfall.

Convection-permitting ensembles are required to estimate

the uncertainty in the prediction of precipitation events and

provide additional details in the timing and spatial develop-

ment of these events (Marsigli et al., 2001). Increased com-

puter power has allowed more of a focus on convection with

the development of convection-permitting ensembles in sev-

eral meteorological centres (Gebhardt et al., 2010; Schwartz

et al., 2010; Beck et al., 2016; Hagelin et al., 2017). The use of

convective-scale models improves both the physical realism

and the skill of rainfall forecasts when analysed on appropri-

ate scales (Roberts and Lean, 2008; Clark et al., 2011; 2016;

Schwartz and Sobash, 2017). Convective-scale models have

also been shown to give an improved representation of diur-

nally forced convection compared to parametrized-convection

models (Kendon et al., 2012).

Despite the potential benefits, little research has been done

with convection-permitting ensembles to understand and pre-

dict the occurrence of the squalls in tropical regions, com-

pared to the midlatitude severe convective systems (Hanley

et al., 2013; Bednarczyk and Ancell, 2015).

The type and scale of the perturbations used in setting

up a convective-scale Ensemble Prediction System (EPS) is

an ongoing area of research. Durran and Weyn (2016) stud-

ied the sensitivity of perturbation growth to the scale of

those perturbations for a squall-line simulation in horizon-

tally homogeneous conditions. They found that errors at the

large scale are perhaps more important than errors at the small

scale. Nielsen and Schumacher (2016) also demonstrated the

importance of the large-scale errors by computing the evolu-

tion of the spread of the ensembles using multiple variables

and an amplitude factor on the initial and lateral boundary per-

turbations of the ensemble. Gebhardt et al. (2010) showed that

the dispersion of an ensemble is affected by the type of per-

turbations: initial conditions (IC) control the dispersion at the

beginning of the forecasts, while lateral boundary conditions

(LBC) control the following forecast hours. The sensitivity

of these may depend upon the size of the domain (Warner

et al., 1997). Hanley et al. (2013) also identified the impor-

tance of the large-scale forcing on a squall-line simulation as a

part of the Convective and Orographically-induced Precipita-

tion Study (COPS) campaign. Most of these studies, however,

relate to midlatitude meteorology.

In collaboration with Meteorological Service Singapore

(MSS), the Met Office have set up an EPS at the convective

scale, namely SINGV-EPS, to capture the possible outcomes

in forecasts of heavy (and extreme) rainfall around Singa-

pore and analyse the benefits of running an ensemble at such

a resolution. SINGV-EPS has the option of being nested

within MOGREPS-G (Unified Model UM-SINGV) or nested

within EC-ENS (EC-SINGV). Since the Met Office Global

and Regional EPS (MOGREPS-G) and ECMWF Ensemble

EC-ENS have more uncertainty in the Tropics (Park et al.,
2008), compared to midlatitudes, the convective-scale ensem-

bles nested within these global ensembles are also likely to

exhibit noticeable differences.

The aims of the article are to determine the benefits of

running a convective-scale ensemble for capturing heavy or

extreme rainfall over Singapore. The first objective is to deter-

mine whether there are differences in skill and variability

between UM-SINGV and EC-SINGV. The second objec-

tive is to determine the relative impact of the perturbations

from the ICs or from the LBCs on the spread of the ensem-

bles. We examine the differences in spread between the two

ensembles and ask how that compares with the spread char-

acteristics regarding the impact of the ICs and LBCs. The

article is divided into five main sections. In section 2, we

describe UM-SINGV and EC-SINGV ensembles and their

parent ensembles as well as the metrics used in this study.

A spatial representation, given by the Fractions Skill Score,

is used here, following Roberts and Lean (2008), Roberts

(2008), Mittermaier et al. (2013), Schwartz et al. (2010), Dey

et al. (2014) and Flack et al. (2018). In section 3, we use objec-

tive verification to evaluate a month-long trial to determine
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the differences between the two ensembles and assess their

diurnal cycles. In section 4, we study the meteorology of

four high-impact cases to understand the differences between

UM-SINGV and EC-SINGV, the sensitivity of SINGV-EPS

to the parent ensemble and the relative importance of the ICs

and LBCs. The relative importance of these perturbations is

studied by quantifying the ensemble spread at different scales

for precipitation and compared against the differences in the

spread between the two ensembles.

2 DESCRIPTION OF THE
ENSEMBLE MODELS AND METRICS

2.1 The ensemble models EC-SINGV
and UM-SINGV
The SINGV ensemble, SINGV-EPS, is run as a downscaler

of the global ensemble similar to the set-up used by the UK

ensemble MOGREPS-UK up to March 2016 (Hagelin et al.,
2017). The initial and boundary conditions for SINGV-EPS

are taken from the global ensemble running at the Euro-

pean Centre for Medium-range Weather Forecasts (ECMWF)

at 0.2◦ resolution with 51 members (Buizza and Palmer,

1995; Marsigli et al., 2001; Molteni et al., 2001; Buizza

et al., 2008; Leutbecher and Palmer, 2008) and the global

ensemble running at the Met Office, MOGREPS-G at ∼0.28◦

resolution with 18 members (Bowler et al., 2008; Bowler

and Mylne, 2009; Tennant and Beare, 2014). Comparing the

global ensembles from ECMWF and MOGREPS-G, Zsoter

et al. (2009) showed that, by using the ensemble mean and

the control forecasts, both global ensembles tend to follow

their own ensemble forecasts more closely than the forecasts

from the other EPS. The two ensembles differ in their way of

creating the member perturbations, with the EC-ENS model

based on singular vector perturbations (Buizza and Palmer,

1995) and MOGREPS-G based on the ensemble transform

Kalman filter (ETKF) data assimilation scheme (Bowler and

Mylne, 2009). Park et al. (2008) highlighted different charac-

teristics of the ensembles, particularly in the Tropics; Fig. 7

in their work shows that EC-ENS is less dispersive than

MOGREPS-G over the first 3 days.

For ease of reference, SINGV-EPS within MOGREPS-G

is named UM-SINGV and SINGV-EPS within the ECMWF

ENS is named EC-SINGV.

The formulation of SINGV-EPS is based on

MOGREPS-UK (Hagelin et al., 2017). However, some of the

parametrizations used in SINGV-EPS are slightly different

from MOGREPS-UK. SINGV-EPS uses a tropical configura-

tion while MOGREPS-UK uses a midlatitude configuration.

The main differences are explained in Bush et al. (2019)

and include: a different set of vertical levels (more levels

in the upper troposphere to allow for a higher tropopause),

the presence of boundary-layer stochastic perturbations in

the midlatitude configuration (useful to initiate convection

earlier) and not in the tropical configuration, as well as the

use of a prognostic cloud scheme (PC2) in the tropical con-

figuration (Morcrette, 2012a; 2012b). Details about other

physics parametrizations can be found in Dipankar et al.
(personal communication, 2019) and Hagelin et al. (2017).

An important difference in the initial perturbations in the

UM-SINGV and EC-SINGV ensembles is that the sea-surface

temperatures (SSTs) are perturbed in UM-SINGV, but are

nearly identical in the EC perturbed members. This is

because the EC-ENS model relies on an evolving temper-

ature parametrization to create the spread of the ensemble.

This, together with differences in the parent ensembles (Park

et al., 2008) may have some implications for the spread of the

ensemble as described in section 4.

SINGV-EPS is running with a 4.5 km (0.0405◦) grid

spacing with 364 points in longitude, 342 in latitude, and 80

vertical levels. Sensitivity tests with the UM deterministic

model show that the changes introduced with the tropical

convective-scale science contribute more to the performance

of the model than an increase in horizontal resolution. The

domains are illustrated in Figure 1. Singapore is offset from

the domain centre so that the source of the Sumatran squalls,

namely the Sumatran mountains, are wholly within the

domain. Within EC-ENS, SINGV-EPS is initialized twice

a day, at 0300 and 1500 UTC, with 51 members. Within

MOGREPS-G, mirroring the settings of MOGREPS-UK,

SINGV-EPS is initialized four times a day, at 0300, 0900,

1500 and 2100 UTC, with 18 members. We will only use the

1500 UTC forecasts in this article as this is a time at which

both ensembles are initialized and is in the period of transi-

tion between the daytime and night-time convection systems

(for example, squall lines), as local time is UTC +8 h. Each

forecast is run for 36 h.

F I G U R E 1 Illustrations of the different domains used here. (a)

“Full domain” with “Radar domain” (box in dotted lines) and

“Singapore domain” (small box in solid lines). (b) “Radar domain” and

“Singapore domain” (small box in solid lines). The “Singapore

domain” contains 20 by 20 grid points centred around Singapore)

[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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2.2 Neighbourhood metrics
The probabilities generated from the ensembles make use

of neighbourhood post-processing. Neighbourhood ensem-

ble probabilities (NEP) are computed by averaging the

neighbourhood probability NP defined here over the ensem-

ble members (as described in Eqn 3 in Schwartz and Sobash

(2017)). Neighbourhood processing is used to increase the

size of the ensemble (Roberts and Lean, 2008; Clark et al.,
2010, 2016; Schwartz et al., 2010, 2015; Golding et al.,
2016). Probabilities are given by fractions of occurrence

in the “neighbourhood” square surrounding each grid point

and this is applied for each ensemble member to produce

a final ensemble probability. The purpose is to produce

more smoothly-varying probabilities by accounting for the

small-scale uncertainty that is not captured by a small ensem-

ble. A neighbourhood S around the ith point, Si, is here a

box of 15× 15 points centred on the point itself, with Nb the

number of grid points included in Si. The following calcu-

lation is repeated for every grid point of the “radar domain”

in Figure 1, except for the grid points which are too near

the boundaries. For each member j, this follows Eqn 2 from

Schwartz and Sobash (2017) as described here:

NP(𝑞)𝑖𝑗 =
1

𝑁𝑏

𝑁𝑏∑

𝑘=1

BP𝑘𝑗 , 𝑘 ∈ 𝑆𝑖,

with BP the binary probability for threshold q of event occur-

rence at the ith point for the jth member.

The dispersion metric dFSS (Dey et al., 2014) is also used

in this article to study the spatial characteristics of the ensem-

ble spread for precipitation. This dispersion metric is based

on the Fractions Skill Score metric (FSS) as in Roberts and

Lean (2008) and Roberts (2008) and can be used to com-

pare the similarity between ensemble members and a field of

observations/truth.

First we define a square neighbourhood of length L over

which probabilities (area fractions) are computed at each grid

square for a specified rainfall threshold (e.g. 2 mm/h). Let

PXL(i,j) and PYL(i,j) be the neighbourhood probabilities of an

event from two ensemble members X and Y respectively at

grid point (i,j) on a domain of dimension m × n grid points

Then the FSS is given by:

FSS𝑋,𝑌 ,𝐿 = 1 − 𝐴𝑋,𝑌 ,𝐿∕𝐵𝑋,𝑌 ,𝐿;

𝐴𝑋,𝑌 ,𝐿 =
∑𝑚

𝑖

∑𝑛

𝑗 [𝑃𝑋,𝐿(𝑖, 𝑗) − 𝑃𝑌 ,𝐿(𝑖, 𝑗)]2

𝑚 × 𝑛
;

𝐵𝑋,𝑌 ,𝐿 =

[∑𝑚

𝑖

∑𝑛

𝑗 [𝑃𝑋,𝐿(𝑖, 𝑗)]2 +
∑𝑚

𝑖

∑𝑛

𝑗 [𝑃𝑌 ,𝐿(𝑖, 𝑗)]2
]

𝑚 × 𝑛
,

with AX,Y,L representing the mean squared differences between

the neighbourhood probabilities, and BX,Y,L the maximum

possible mean squared differences (Roberts, 2008). The FSS

ranges between 0 and 1. If the two probability fields are

identical at every grid square, the FSS = 1. In that case the

fields are perfectly spatially matched. If the two fields have

non-zero probabilities at different locations everywhere in the

domain, the FSS = 0. In that case the two fields are com-

pletely mismatched. It is therefore possible to determine the

spatial agreement between two fields at different scales by

computing the FSS for a range of neighbourhood lengths L.

The bigger the FSS the better the spatial agreement at the scale

(neighbourhood length) of interest.

We can extend this measure of spatial differences between

two fields to obtain a measure of the spatial ensemble spread

by following the approach of Dey et al. (2014). If the met-

ric FSS is computed for a pair of ensemble members, it

becomes known as dFSS to relate to the dispersion metric

of the ensemble. For an ensemble forecast, the dFSS is com-

puted for each member compared with every other member.

Then the mean value over all the comparisons, dFSSmean, is

found. The closer dFSSmean is to 1 the better the mean spatial

agreement between the ensemble members and the lower the

spatial ensemble spread; conversely a low value of dFSSmean

indicates a large spatial spread.

dFSSmean is computed over a range of neighbourhood

sizes (L) varying in length from L = 3 to 31 points, and we

obtain one value of dFSSmean for each forecast time and

neighbourhood size. We can then use dFSSmean to estimate

how the spatial ensemble spread differs between UM–SINGV

and the EC-SINGV as the forecasts evolve.

3 MONTHLY ANALYSIS FOR
OCTOBER 2017

3.1 Objective verification
Initial objective verification is performed here against

land-surface observations of rain accumulations (frequency

every 6 h), wind speed and temperature over the month of

October 2017. The following verification scores: Continu-

ous Rank Probability Score (CRPS), Rank Probability Score

(RPS) and Relative Operating Characteristic (ROC) area, are

used here to analyse the performance of EC-SINGV and

UM-SINGV against the land-surface observations as illus-

trated in Figures 2–6. A “spin-up period” comprising the

first 6 h is not included in the wind and temperature scores.

To collect as many data as possible, the verification for the

full ensemble comparison is done over the 0300 and 1500

UTC cycles, which are the two cycles in common between

UM-SINGV and EC-SINGV. A small neighbourhood length

of 3× 3 points (13.5× 13.5 km) is used, which was found to

be beneficial in the objective verification of MOGREPS-UK

(Mittermaier, 2014; Hagelin et al., 2017; Mittermaier and

Csima, 2017).
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F I G U R E 2 Ranked probability scores for 6-hourly precipitation for October 2017. (a) Comparison UM-SINGV (18 members) with

EC-SINGV (51 members), (b) Difference plots between UM-SINGV and EC-SINGV for simulations starting at 0300 and 1500 UTC only, (c)

Ensemble sizes of 6, 12, 18, 24 and 30 are here compared for the ranked probability scores of the full ensemble EC-SINGV for simulations starting

at 1500 UTC only and the differences to the full-size EC-SINGV ensemble are depicted in (d). A neighbourhood size of 3 grid points is used here.

Ninety per cent confidence intervals are calculated using Monte-Carlo method [Colour figure can be viewed at wileyonlinelibrary.com]

Figures 2, 3 and 4a,b compare the skill of both EC-SINGV

and UM-SINGV for the 6-hourly precipitation, temperature

and wind speed respectively. In these plots, 90% confidence

intervals were generated by bootstrapping, using 500 boot-

strap resamples and the percentile method (Wilks, 2011).

Statistical significance at the 0.05 level was determined using

the Wilcoxon signed-rank test (Wilks, 2011). Figures 2 and

4 show that EC-SINGV has better (lower) ranked probabil-

ity scores for precipitation and wind, while UM-SINGV has

better continuous ranked probability scores for the 1.5 m

temperature (Figure 3), although most differences are within

the error bars and therefore there is little real discernible

difference. This behaviour matches the performance of the

ensembles regarding the mean biases (not shown): while both

ensembles have a positive bias in wind speed, EC-SINGV

has a smaller bias than UM-SINGV whereas UM-SINGV

has a smaller bias in temperature than to EC-SINGV. In

Figure 5, the ROC areas, representing the resolution of the

ensemble, for the precipitation are higher (i.e. better) for

EC-SINGV, but Figure 6, for the wind speed, shows a better

performance for EC-SINGV at lower thresholds (Figure 6a)

and for UM-SINGV at higher thresholds (Figure 6b). Nei-

ther of the ensembles has a better spread consistently across

all lead times (not shown): UM-SINGV starts with a better

spread in temperature and wind speed up to about T+ 18 h, in

agreement with the results of Park et al. (2008). The spread

in precipitation is the subject of section 4.

To complete this analysis, we also take into account the

difference in ensemble size between the two ensembles:

EC-SINGV has 51 members while UM-SINGV has 12 mem-

bers. Sensitivity to ensemble size has been the subject of

many studies (Buizza and Palmer, 1998; Clark et al., 2011;

Schwartz et al., 2014; Hagelin et al., 2017; Raynaud and

Bouttier, 2017). However, there has been little study of the

ensemble size of convective-scale ensembles over the Trop-

ics. Here, for each day of the trial period, a new random

set of members is used by the verification, creating a ran-

dom selection of members throughout the month (each draw

automatically includes the control member of the ensemble).

Figures 2, 3 and 4c,d display the impact of ensemble size

on the EC-SINGV ensemble on the ranked probability scores

for precipitation, temperature and wind speed respectively for

an ensemble of 6, 12, 18, 24 and 30 members against the

full-size EC-SINGV ensemble for the 1500 UTC forecasts.

A lead time of T+ 15 h corresponds to the initiation of the

daytime convection and a lead time of T+ 30 corresponds

to the night-time convection. Using the 1500 UTC forecasts

only has the advantage of comparing the verification results

directly against the local time and the diurnal cycle, and so to

understand the growth of errors corresponding to the diurnal

cycle.

The largest change in ensemble skill occurs between an

ensemble size of 6 to 12 members (this is in agreement with

for example Buizza and Palmer (1998) and Raynaud and

http://wileyonlinelibrary.com
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F I G U R E 3 Continuous ranked probability scores for temperature at 1.5 m for October 2017. (a) Comparison UM-SINGV (18 members) with

EC-SINGV (51 members) for simulations starting at 0300 and at 1500 UTC, (b) Difference plots between UM-SINGV and EC-SINGV, (c)

Ensemble sizes of 6, 12, 18, 24 and 30 are here compared for the continuous ranked probability scores of the full ensemble EC-SINGV for

simulations starting at 1500 UTC only, and (d) Difference plots against the full-ensemble EC-SINGV. A neighbourhood size of 3 grid points is used

here. Ninety per cent confidence intervals are calculated using Monte-Carlo method [Colour figure can be viewed at wileyonlinelibrary.com]

Bouttier (2017)). However, the impact of further increasing

the size of the ensemble to 18 members is more important

for the wind speed than for the temperature (so a size of

18 members starts to be more comparable with the full-size

ensemble as in Schwartz et al. (2014)). Significant, albeit

small, differences can still hold even for an ensemble size of

30 members (again in agreement with studies over midlati-

tudes as in Raynaud and Bouttier (2017) and Hagelin et al.
(2017)). The growth in errors happens during the daytime

and night-time convection and the impact of ensemble size

is largest at these times. There is also some evidence that for

the temperature, the 6-member ensemble is most dissimilar to

the 51-member ensemble when the error growth peaks. Sim-

ilar results are found for precipitation: an ensemble size of

12 members is essentially enough to capture the skill of the

51-member ensemble, except over the T+ 15 to T+ 21 period

(i.e. the daytime convection), during which a larger ensemble

size, as 24 members, may be needed.

The resolution of the ensemble for different sizes is also

studied using areas under ROC. For the wind speed, there are

some lead times at which a smaller size ensemble is as skilful

as the full-size ensemble (not shown). For the 6-hourly precip-

itation, the ROC area improves with increasing ensemble size

at low thresholds (Figure 7a). At higher thresholds however

(i.e. 32 mm in Figure 7b, as opposed to lower thresholds as in

Figure 7a), the smaller sized ensembles are as skilful as the

full-size ensembles at some lead times. Although the skill of

the ensemble does depend on ensemble size (Figures 2–4), the

spread (i.e. standard deviation between the members and the

ensemble mean) does not vary with ensemble size. This is in

agreement with the results for the precipitation in section 4.

Reliability diagrams for wind speed and precipitation

were also compared, revealing similar behaviours for the two

ensembles (not shown).

An important note to make here is that given UM-SINGV

uses only 12 members, the differences in ranked proba-

bility scores in Figures 2, 3 and 4 between the full-size

EC-SINGV and a 12-member EC-SINGV ensemble are as

large as the differences between the UM-SINGV and the

full-size EC-SINGV ensemble from the left panels of the

same figures.

Finally, we did not decide to reduce the ensemble size

of EC-SINGV based on these results for later sections. To

exploit the full capability of the EC-SINGV ensemble, the

51 members of EC-SINGV are used for the analysis of the

case-studies in section (this is so we get a better chance to

assess the behaviour of the extreme members as explained

in Clark et al. (2011)). The impact of ensemble size will be

revisited in section 4.

3.2 Monthly mean characteristics of the
diurnal cycle
To examine the spin-up and diurnal behaviour of the char-

acteristics of our UM-SINGV and EC-SINGV ensembles,

http://wileyonlinelibrary.com
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F I G U R E 4 Ranked probability scores for 10 m wind speed for October 2017. (a) Comparison UM-SINGV (18 members) with EC-SINGV

(51 members) for simulations starting at 0300 and 1500 UTC, (b) Difference plots between UM-SINGV and EC-SINGV, (c) Ensemble sizes of 6,

12, 18, 24 and 30 are here compared for the continuous ranked probability scores of the full ensemble EC-SINGV for simulations starting at 1500

UTC only, and (d) Difference plots against the full-ensemble EC-SINGV. A neighbourhood size of three grid points is used here. Ninety per cent

confidence intervals are calculated using Monte-Carlo method [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 ROC area for UM-SINGV and EC-SINGV (full

size) for 6-hourly precipitation for a threshold of 4 mm. A

neighbourhood size of three grid points is used here [Colour figure can

be viewed at wileyonlinelibrary.com]

we have plotted the mean rainfall over the “Full domain”

and “Singapore domain” (Figure 1), for the whole month of

October for both EC-SINGV and UM-SINGV (Figure 8).

In this region, rain occurs frequently, so while a month-long

period is not a particularly long time for comparison, rain

occurs for about 20 days in total during October 2017, hence

we believe the results are meaningful. From Figure 8, we

see four main characteristics. First, UM-SINGV (red) has an

earlier development in the spin-up (see for example T+ 5 or

2000 UTC or 0400 local time), associated with night-time

convection. Secondly, EC-SINGV has more rain over land

(Figure 8c,d) between T+ 15 and T+ 20 h, which corre-

sponds to the afternoon convection (i.e. between 0600 and

1100 UTC, or between 1400 and 1900 local time). Thirdly,

UM-SINGV is drying out more quickly than EC-SINGV

following the afternoon convection (Figure 8c–d, around

T+ 20 h). Finally, we see that UM-SINGV (red) again shows

an earlier development in the night-time convection for

the second day of the forecast, see T+ 27 h (Figure 8b,d).

So, UM-SINGV has stronger night-time convection than

EC-SINGV at both T+ 3 h and T+ 27 h (i.e. 1800 UTC or

0200 local time).

When comparing against the GPM (Global Precipitation

Measurements) satellite data, a spin-up time of about 6 h

is clearly visible in Figure 8a–c. Figure 8c shows that the

peak in the diurnal cycle (T+ 15 to T+ 20 h) is too strong

in both ensembles, but there is less bias in UM-SINGV. The

dissipation of the convection is however better captured by

EC-SINGV. In Figure 8a, EC-SINGV is also better at captur-

ing the amount of rain over both land and sea. So again, from

this set of observations, both ensembles show different char-

acteristics and neither of them clearly outperforms the other.

Note also that a satellite-based product such as the GPM is

naturally likely to detect deeper and more mature convection

http://wileyonlinelibrary.com
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F I G U R E 6 ROC areas for UM-SINGV and EC-SINGV (full

size) for 10 m wind speed. A neighbourhood size of three grid points is

used here. (a) Threshold of 5.65 m s−1, (b) threshold of 8.74 m s−1

[Colour figure can be viewed at wileyonlinelibrary.com]

(with anvils) more easily than younger developing storms,

and may be biased towards a later afternoon peak than might

actually occur in reality.

In the rest of this article, we have used radar imagery

to examine the local spatial development and organization

of the showers, since the GPM was only used to identify

domain-wide patterns of the diurnal cycle. A radar scan

of 240 km around Singapore is used. Within Singapore,

the radar data was well calibrated using a dense network

of rain-gauges. Further evaluation of the impact of the

convective-scale model nested within the global EC and

global UM models will be done in future work in the context

of the deterministic model.

4 SPATIAL ENSEMBLE SPREAD

We will now examine the spatial differences between the

ensemble members, and hence the spatial ensemble spread,

for the four case-studies. The objective is to determine

the contribution to the spatial ensemble spread in both

UM-SINGV and EC-SINGV from the ICs and LBCs. We

do this by using the dispersion metric for the Fractions Skill

Score (dFSS) as in Dey et al. (2014) as defined in section

F I G U R E 7 Impact of ensemble size on EC-SINGV on the ROC

areas for the 6-hourly precipitation. Ensemble size of 6, 12, 18, 24 and

30 are here compared against the ROC areas of the full ensemble

EC-SINGV for simulations starting at 1500 UTC. A neighbourhood size

of three grid points is used here. (a) Threshold of 0.5 mm, (b) threshold

of 32 mm [Colour figure can be viewed at wileyonlinelibrary.com]

2.2. In order to do so, we have chosen four case-studies repre-

sentative of high-impact rainfall We will show the variability

for each day as well as the day-to-day variability of the dFFS

metric over the four case-studies and assess the importance of

this variability compared to the mean over the four days.

4.1 Analysis of case-studies
October is in the inter-monsoon season and can have varied

wind directions. Lo and Orton (2016) show that the number of

squall-line events peaks in October and November. As illus-

trated in their paper, squall lines tend to initiate over Sumatra

and the Straits of Malacca. Convergence is often found along

the Straits of Malacca late in the evening. Given suitable wind

conditions, the squalls move eastwards towards Singapore, as

shown in the Hovmüller diagrams in Fig. 2 of Lo and Orton

(2016). Additional mesoscale circulations come from the

sea-surface temperature and the sea-breeze/land-breeze sys-

tems. Sea breezes are dependent on the combination of mul-

tiple parameters such as atmospheric stability, time-averaged

integrated surface heat flux near the coastline, offshore wind,

http://wileyonlinelibrary.com
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F I G U R E 8 Monthly analysis of hourly rainfall accumulations as a function of lead times for October 2017 for UM-SINGV in red and

EC-SINGV in black. This mean analysis is calculated over land and sea for the “Full domain” in (a), over land only over the “Full domain” in (b),

over land and sea over the “Singapore domain” in (c) and over land only over the “Singapore domain” in (d). For information about the domains,

please see Fig 1. GPM data (see text for details) are illustrated with small circles [Colour figure can be viewed at wileyonlinelibrary.com]

as well as local topography (Porson et al., 2007a, 2007b). The

uncertainty in the initial development of the squalls is a result

of these complex interactions in the local winds as well as

secondary development related to cold pools. An ensemble

approach is needed to capture this uncertainty, which cannot

be specified in a deterministic forecast.

The four case-studies were chosen on the basis of evidence

for squall lines or convective storms from local rain-gauge

data and radar animations. The performance of the two

ensemble systems is examined for two squall-line cases

(making landfall at Singapore in the early mornings of 9 and

12 October 2017) and two afternoon rain cases, with heavy

rain hitting Singapore in the late afternoons of 7 and 30

October 2017.

Southwest Monsoon conditions with low-level winds

blowing from the southwest prevailed over Singapore and

the surrounding region on 9 and 12 October 2017. A trop-

ical depression formed over the central part of the South

China Sea on the morning of 9 October while tropical cyclone

Khanun formed as a tropical depression over the western

North Pacific on the morning of 12 October. Formation of

tropical cyclones over the South China Sea and the western

North Pacific can draw low- to mid-level strong winds (925

to 700 hPa) over the Singapore and Sumatra region which is

favourable for the formation of Sumatra Squalls. The occur-

rence of Sumatra squalls on 9 and 12 October also brought

moderate to heavy thundery showers to many parts of Sin-

gapore in the morning. The highest daily rainfall recorded

during the period was 129.8 mm around Tuas (westernmost

part of Singapore) on 12 October 2017.

Since squall lines usually happen in the early morning

from about 2200 UTC (0600 local time) to approximately

0300 UTC (1100 local time) and the forecasts are initialized

at 1500 UTC, we focus on the early morning event on the

second day of the forecast (lead times of T+ 30 to T+ 36 h),

to avoid the spin-up period and allow for more differences to

develop between forecasts.

In the first case (9 October) in Figure 9, both ensembles

capture the location of the developing squall line along the

Straits of Malacca, with higher probabilities for UM-SINGV,

although EC-SINGV better captures the formation of the arc.

In the second case (12 October) in Figure 10, the probabilities

are, again, higher for UM-SINGV than for EC-SINGV for the

threshold shown. For 12 October, in both ensembles, the con-

trol members of the ensembles (i.e. without the perturbation

in ICs from the perturbed members of the respective parent

ensembles) miss the squall line (not shown). This highlights

the benefit of running convective-scale ensembles for extreme

cases, compared to deterministic models, in order to obtain a

bigger range of scenarios.

We have also repeated this analysis for the two cases

of afternoon convection, 30 October and 7 October 2017.

On both days, the Southwest Monsoon gave way to

inter-monsoon conditions where winds became lighter and

more variable. During the day, thundery showers developed

in the afternoon and persisted into the evening, due to strong

http://wileyonlinelibrary.com
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F I G U R E 9 Date 9 October. (a) Radar at [2300 UTC 8 October−0200 UTC 9 October], (b) Neighbourhood ensemble probability (NEP) of

accumulated rainfall 2300–0200 UTC to exceed rain amounts of 12 mm over the 3 h for EC-SINGV, and (c) UM-SINGV. The simulations are

initialized at 1500 UTC 7 October. Note that the probability scale ranges from 0 to 0.5 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 10 Date 12 October. (a) Radar at [2300 UTC 11 October−0200 UTC 12 October], (b) neighbourhood ensemble probability (NEP)

of accumulated rainfall 2300–0200 UTC to exceed rain amounts of 3 mm over the 3 h for EC-SINGV, and (c) UM-SINGV. The simulations are

initialized at 1500 UTC 10 October [Colour figure can be viewed at wileyonlinelibrary.com]

solar heating of land areas coupled with the convergence of

winds over Singapore and the surrounding area.

On 30 October, storms developed around 0900 UTC, fol-

lowing the northern shoreline of the Straits of Malacca. By

1100 UTC, the rain band had moved to Singapore. Figure 11

shows that both ensembles can represent the risk of heavy

precipitation at the right location and time, with higher

probabilities for UM-SINGV. UM-SINGV also shows high

values of probability over Peninsular Malaysia, within the

limits and outside of the radar coverage area.

For 7 October, Figure 12 shows similar spatial variabil-

ity between the two ensembles over this 3-hour window.

But the details of the precipitation over the northeast of

Sumatra Island and over the Malaysian Peninsula are different

between the two ensembles. UM-SINGV is wetter generally

over Sumatra Island, with some of these areas lying outside

the radar coverage area.

Again, based on this subjective evaluation of these rain

events, there is little evidence here to suggest that one

ensemble is much better than the other, which matches the

inconclusive results from the objective verification.

The ensembles were also compared at a smaller scale over

the 20× 20 grid-point Singapore domain. Figures 13 and 14

compare the ensembles for the squall-line cases and afternoon

rain cases respectively.

In Figure 13, we use meteograms or box plots to represent

the mean hourly rain amounts (kg/m2) over the “Singapore

domain”, covering 20 by 20 grid points (i.e. 90 by 90 km) in

each direction, centred on Singapore (Figure 1). The size of

the domain is chosen to be big enough so that the ensembles

have some skill at predicting the rainfall at this length-scale

(see the monthly analysis of Figure 8 for more detail), but

still small enough to focus on the Singapore area. There

is a notable difference in the predictive skill of these two

cases: in the first case, both ensemble means show a marked

increase in the domain mean precipitation around the period

of interest (2100–0300 UTC), while in the second case, only

the mean of UM-SINGV has a small increase. There is a

small difference in the timing of the squall line for the first

http://wileyonlinelibrary.com
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F I G U R E 11 (a) Radar at [0800 UTC–1100 UTC] on 30 October, (b) neighbourhood ensemble probability (NEP) of accumulated rainfall

0800–1100 UTC on 30 October to exceed rain amounts of 6 mm over the 3 h for EC-SINGV, and (c) UM-SINGV. The simulations are initialized at

1500 UTC 29 October [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 12 (a) Radar at [0800 UTC–1100 UTC] on 7 October, (b) neighbourhood ensemble probability (NEP) of accumulated rainfall

0800–1100 UTC on 7 October to exceed rain amounts of 6 mm over the 3 h for EC-SINGV, and (c) UM-SINGV. Simulations are initialized at 1500

UTC 6 October [Colour figure can be viewed at wileyonlinelibrary.com]

case, with UM-SINGV 2–3 h earlier. The rainfall amount is

larger for UM-SINGV in both cases. In terms of the extremes

(outliers in circles), the range seen in both ensembles from

these meteograms is fairly similar. Despite the smaller num-

ber of members in UM-SINGV, the extremes in UM-SINGV

cover the same range as the extremes in EC-SINGV. In the

second case, it is particularly noticeable that a lot of the mem-

bers in both ensembles are just simply “dry” (i.e. little-to-no

precipitation in the region of interest) and only a few of them

show heavy rain, indicating less predictability.

The same characteristics regarding the spread and the

extremes of the ensembles apply to the afternoon rain cases.

In Figure 14, we use bin diagrams depicting the number of

hourly events for each member, associated with each bin, over

the same box of 20 by 20 grid points. The bin ranges used

here are in mm per hour: 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32,

64, 128 and 256. These diagrams for both afternoon rain cases

give similar mean amounts of rain for the afternoon events

from both ensembles, with more extreme values (i.e. extreme

members) in EC-SINGV for 30 October. On 7 October, for

hourly accumulations of over 40 mm per hour, UM-SINGV

has, however, more spread than EC-SINGV.

The comparison of the two ensembles so far has shown

that EC-SINGV and UM-SINGV have a different spatial orga-

nization of convection for these heavy rain events (i.e. squall

line and afternoon rain) in some cases, with some areas wetter

than others and different squall-line developments. However,

they also show similar distribution in their extremes, which

particularly indicates that UM-SINGV is able to capture a

range of outcomes despite having fewer members.

4.2 Dispersion metric dFSS applied
to each case-study
We have chosen to compute the dFSS using a threshold

of 2 mm/h. All these calculations are done over a domain

slightly smaller than the full domain, which excludes 14

points (i.e. corresponding to the maximum neighbourhood

size used here) from the boundaries of the full domain,

Figure 1. We did not examine the first 6 h to avoid model

spin-up and because the FSS is sensitive to the frequency

http://wileyonlinelibrary.com
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F I G U R E 13 Meteograms representing hourly rain

accumulations over the “Singapore domain” (see Fig 1 for reference) for

the 9 October in (a) and 12 October in (b). The UM-SINGV ensemble

is represented with white boxes, red lines for medians, and blue circles

for outliers; the EC-SINGV ensemble is represented with green boxes,

green lines for medians and blue stars for outliers. The boxes represent

the first and third quartiles, while the whiskers are set at the 1.5 × IQR

(interquartile range) from below and above the first and third quartiles

respectively. Outlier circles here are thus found above the 75th centile

+1.5 IQR [Colour figure can be viewed at wileyonlinelibrary.com]

bias which can tend to become larger when rainfall coverage

is small.

Spatial comparison may depend upon ensemble size.

Leoncini et al. (2013) found that an ensemble size of 8 was

large enough to capture the time evolution of the anomalies

relative to a 50-member ensemble for a flash-flood event for

the United Kingdom; however, there was not much spread

between members in that study. Hagelin et al. (2017) found

that ensemble size matters mostly for the spatial details in the

precipitation areas, so perhaps influencing the smallest spatial

scales. To check if the impact on the spread of the precipi-

tation is dependent upon the size of the ensemble, we have

recalculated dFSSmean for three sets of ensemble members

from EC-SINGV (Figure 15), approximately equal in size to

UM-SINGV. Set1 uses members 0 to 17. Set2 uses members

0 and then 18 to 34; set3 uses members 0 and then 35 to 50.

These three sets sample all the ensemble members. Figure 15

shows that the smaller ensemble samples from EC-SINGV

have dFSSmean values very much like the full ensemble with

the dots lying almost exactly along the diagonal. Therefore,

for these cases, we have reasonable confidence that the results

from the comparison of EC-SINGV and UM-SINGV should

not be significantly affected by the bigger size of EC-SINGV

(51 members), compared to UM-SINGV (18 members). We

do not claim that this is a statistically significant result for all

situations; for that a larger sample would be needed.

As in Dey et al. (2014), Figure 16 shows dFSSmean as a

function of neighbourhood size (i.e. spatial scale) and fore-

cast time for EC-SINGV for all four cases (a–d) and for the

mean over these four cases in Figure 16e. Similar behaviour

can be seen across all the cases. It is most apparent that the

spatial agreement between members increases with increas-

ing spatial scale (dFSS is larger for larger neighbourhoods)

showing that the spatial ensemble spread is greatest at small

scales. The dFSS is larger around 0900 UTC, which is in the

afternoon local time when convection is most widespread and

reflects the greater spatial predictability at that time. Three of

the cases (9 October being the exception) show an increase

in the spatial agreement at early times up to 0100 UTC,

which probably indicates that the ensemble is still adjust-

ing to the perturbations and increasing precipitation cover-

age (the impact of the initial perturbations will be studied

later on).

Roberts and Lean (2008) and Roberts (2008), when com-

paring forecasts with radar, defined a smallest skilful scale as

the neighbourhood length at which FSS = 0.5+ f /2, where

f is the fractional coverage of pixels exceeding the threshold

on the domain. Skok (2015) and Skok and Roberts (2018)

show that a value of FSS = 0.5 can be used instead because

the neighbourhood size at which FSS = 0.5 is effectively a

direct measure of the mean spatial agreement between two

fields (as long as the frequency bias is small). In an ensemble

context, values of dFSSmean of at least 0.5 give the scales

(neighbourhood sizes) over which the forecasts have suffi-

cient agreement (sufficiently low spread) to have confidence

in the prediction of the outcomes provided by the ensemble

forecast. This, of course, assumes that the ensemble has a

good representation of the true spatial uncertainty. We see

there is little agreement between members at small scales:

dFFSmean is smaller than 0.5 for small neighbourhood

lengths and dFSSmean is larger than 0.5 for neighbourhood

lengths longer than 10 to 15 grid points (∼40 to 70 [15 times

4.5] km). The 12 October has even less agreement at small

scales than the other cases, with good agreement only at

scales larger than ∼120 km other than around 0900 UTC

when agreement is at scales larger than ∼70 km at the time
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F I G U R E 14 Bin diagrams of hourly accumulated rainfall over the “Singapore domain”, 0400 UTC–1500 UTC, for simulations starting at

1500 UTC the day before. (a) 7 October, (b) 30 October 2017. Ensemble members are depicted in thin lines and the mean over the members in thick

lines [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 15 Comparison of dFFS for all the case studies

between different sets of ensemble members defined as set1, set2 and

set3 (see text for more explanation) and EC-SINGV for different lead

times (as in legend) and different neighbourhood scales (3 by 3, 7 by 7,

11 by 11, 15 by 15, 19 by 19, 23 by 23, 27 by 27 and 31 by 31 points)

[Colour figure can be viewed at wileyonlinelibrary.com]

of maximum convection. This reflects the large disagreement

between members for this case, as seen in Figure 13.

The main characteristics of the diurnal cycle and the

dependence on neighbourhood size are still present in the

mean in Figure 16e.

These results can be compared to those of Leoncini et al.
(2013). They found that the least spatial agreement between

forecasts occurred before and after the development of storms

because the uncertainty in the initiation and decay dominated

the convection at those times. The best spatial agreement

occurred during the most intense part of the storm. These

results are consistent with the findings in Figure 16. In all

the diagrams, an increase in dFSSmean happens around 0900

UTC (i.e. 1700 local time, which corresponds to the daytime

convection). Although all these plots show an increase in FSS

during the afternoon, they do not reveal any second increase

in FSS related to the development of the squall line later in

the simulations. This is probably an indication of much lower

predictability for that feature. An analysis over a smaller

domain focused around Singapore (not done here) may be

helpful to determine the impact of these squall lines on the

spread, although care is needed in the choice of domain size

because the use of too small a domain might introduce sig-

nificant errors associated with proximity to the boundaries

(Skok and Roberts, 2018) and make the scores more erratic

for such a small sample.

4.3 Spatial spread in UM-SINGV
and EC-SINGV
To illustrate the differences in the ensemble spread between

UM-SINGV and EC-SINGV, we plot the differences in

dFSSmean between UM-SINGV and EC-SINGV for the four

cases in Figure 17a–d and for the mean over the four cases

in Figure 17e. Figure 17 shows that at the start of the fore-

casts, dFSSmean is higher in UM-SINGV (red colours) than

it is for the EC-SINGV at all scales. Therefore the spread

in UM-SINGV is smaller at the start of the forecasts. How-

ever, for later forecast hours, dFSSmean from UM-SINGV is

smaller than from EC-SINGV (blue colours), particularly at

larger scales, indicating that the spatial spread in UM-SINGV

is larger. Averaging over the four cases (Figure 17e) for this

type of metric reveals a much smoother response than on a

day-to-day basis, but still retains the important signal that

the EC-SINGV ensemble has more spread at the start and

the UM-SINGV ensemble later. However, this suggests that

individual case-study analysis may reveal higher differences

in this distribution of spread and so averaging this type of

product over a long period may sometimes be misleading.
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F I G U R E 16 Diagram representing dFSSmean (see text) as a function of neighbourhood size and time of day for EC-SINGV and for the four

case-studies. Values of dFSSmean of 0.5 are depicted in white. Different neighbourhood scales (3 by 3, 7 by 7, 11 by 11, 15 by 15, 19 by 19, 23 by

23, 27 by 27 and 31 by 31 points) are used here. (a) 9 October, (b) 12 October, (c) 7 October, (d) 30 October 2017, (e) average over all cases [Colour

figure can be viewed at wileyonlinelibrary.com]

Note that these results do not indicate whether larger or

smaller spread is better, only that the two ensembles show

different behaviour.

As illustrated in sections 3.2 and 4.1, the two SINGV-EPS

ensembles produce different organization in the development

of the convection, so it is not surprising to see differences in

the spread of the precipitation from these ensembles.

The particularly large differences from 1800 UTC onwards

on 9 October occur at the time of the squall line. The smaller

spread in EC-SINGV may be associated with the presence

of more developed convergence lines in more members in

EC-SINGV than in UM-SINGV, which would make the

EC-SINGV ensemble more confident than UM-SINGV about

rainfall occurrence. Note, though, that the dFSS analysis is

carried out for the whole domain (“Full domain”, Figure 1)

and therefore not all the signal is associated with the squall

line. As mentioned previously, looking at a smaller domain

might be helpful to isolate the signal, but also brings addi-

tional difficulties, particularly if one ensemble has more rain

than the other, increasing the frequency bias. While it is

beyond the scope of this article to assess which characteristics

of the ICs in the parent ensembles are responsible for these

differences in the spread, the differences in spread may be

related to the differences in the perturbations in SSTs given

to EC-SINGV and UM-SINGV, as well as the characteristics

of the parent ensembles, as described in section 2.1.

A common problem with convective-scale EPS is that

they are often found to be under-spread. Combining different

convective-scale ensembles has been used in Beck et al.
(2016). They show that combining EPS models gives a bet-

ter performance against observations and increases ensemble

spread, when using grid-scale metrics. Since we are examin-

ing two ensembles, the next step is to compare the dFSSmean

metric for a combination of the two ensembles (i.e. 69 mem-

bers including the 51 EC-SINGV members as well as the

18 UM-SINGV members) to the original UM-SINGV and

EC-SINGV to see how this affects the spatial spread.

Figure 18a shows that, as in Figure 17, the UM dFSS-

mean are larger (less spread) at earlier times in the forecasts

and smaller (more spread) at later times. Figure 18b,c show

how the dFSSmean from EC-SINGV and the dFSSmean

from UM-SINGV compare against the two SINGV-EPS

ensembles combined (here EC+UM). This shows that the

EC+UM ensemble has smaller dFSSmean (higher spread)

than EC-SINGV alone, but the results are different when it

comes to comparing EC+UM against UM-SINGV. Indeed,

after T+ 6 h, the dFSSmean from EC+UM are larger

(smaller spread) than the 18-member UM-SINGV ensemble.

Thus, grouping the ensembles does not necessarily lead to

an increase in the ensemble spread in spatial terms! The

combination of the two ensembles has not produced larger

spread than that of the larger-spread ensemble on its own,
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F I G U R E 17 Diagram representing the difference in dFSSmean (see text) between UM-SINGV and EC-SINGV for the four case-studies.

Blue (red) colours mean dFSSmean smaller (larger) for UM-SINGV. Different neighbourhood scales (3 by 3, 7 by 7, 11 by 11, 15 by 15, 19 by 19,

23 by 23, 27 by 27 and 31 by 31 points) are used here. (a) 9 October, (b) 12 October, (c) 7 October, (d) 30 October 2017, (e) average over all cases

[Colour figure can be viewed at wileyonlinelibrary.com]

although it has created larger spread than that of the

lower-spread ensemble on its own. This again suggests that

the EC-SINGV ensembles produced rain in a more focused

region than the UM-SINGV, and relates to the differences in

the spread in the ICs.

4.4 Spatial spread and the initial
and lateral boundary conditions
We now investigate the ICs and LBCs on the evolution

of spread as measured by the dFSS. First, we rerun each

ensemble by setting the ICs to be the same for every fore-

cast (so defining two new forecasts UM-IC for UM-SINGV

and EC-IC for EC-SINGV) whilst continuing to use dif-

ferent LBCs. Then we run the forecasts using the different

ICs whilst making the LBCs identical (from the control),

thus defining two new forecasts UM-LBC for UM-SINGV

and EC-LBC for EC-SINGV. Next we examine the relative

influence of the ICs and LBCs by subtracting the dFSS-

mean values in the ensembles with fixed ICs or LBCs from

the standard ensembles (Figure 19). So, the impact of the

ICs is illustrated for EC-SINGV by subtracting EC-IC from

EC-SINGV (similarly for UM-SINGV). The impact of the

LBCs is illustrated by subtracting EC-LBC from EC-SINGV

(similarly for UM-SINGV).

In Figure 19, the results are averaged over the four

case-studies directly. The day-to-day variability is filtered out,

but robust signals remain. Averaging over the different cases

lead to similar magnitudes between the four cases for the ICs.

The magnitude of the impact from the LBCs is however more

sensitive to the day-to-day variability.

As expected, the impact of the ICs (Figure 19a,b) is

the largest at the beginning of the forecast, up to approx-

imately T+ 18 h (0900 UTC) and the impact of the LBCs

(Figure 19c,d) is the largest towards the end of the forecast

from approximately T+ 18 h onwards.

The impact of the ICs tends to be greatest at the smaller

to intermediate scales at the earliest times and then extends

to all scales equally, perhaps even upscaling. The impact of

the LBCs is greatest at the later times (mostly after 0900

UTC) and tends to influence the larger scales more. Smaller

scales appear to be affected more by LBCs in EC-SINGV

than UM-SINGV.

For both configurations, over all lead times, the maximum

impact of the ICs is a bit larger (i.e. bigger dFSS differences)

than the impact of the LBCs. The impact of the LBCs on

the ensemble spread at the end of the forecasts is in agree-

ment with the role of these perturbations on the ensemble

dispersion in Gebhardt et al. (2010). These results are also

in agreement with Peralta et al. (2012) who show that the

impact of the ICs on the ensemble dispersion can extend up to

T+ 14 h for higher thresholds (i.e. higher than 1 mm/h). The

lead time at which the ICs or LBCs become most influential
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F I G U R E 18 Comparison of dFFS for all the case studies and as

a function of lead times (see legend) between (a) UM-SINGV and

EC-SINGV (b) UM-SINGV combined with EC-SINGV against

EC-SINGV (c) UM-SINGV combined with EC-SINGV against

UM-SINGV. Different neighbourhood scales (3 by 3, 7 by 7, 11 by 11,

15 by 15, 19 by 19, 23 by 23, 27 by 27 and 31 by 31 points) are used

here [Colour figure can be viewed at wileyonlinelibrary.com]

depends on the domain size of these simulations (Warner

et al., 1997), but also on the meteorological conditions and

therefore the geographical region in which the system is run.

A comparison of Figure 19 and Figure 17 shows that, on

average, the dFSSmean differences associated with the ICs or

LBCs are more important than the differences related to the

choice of the ensemble (UM-SINGV or EC-SINGV).

5 CONCLUSIONS

The main objective of this article is to study the pre-

dictability of convective rainfall over Singapore using

convection-permitting ensembles. To this end, we set up

an ensemble, named SINGV-EPS, with a grid spacing of

4.5 km. SINGV-EPS is nested either within the ECMWF

global ensemble (EC-SINGV with 51 members) or within the

Met Office global ensemble MOGREPS-G (UM-SINGV with

18 members).

Both ensembles were compared using objective verifi-

cation against land-surface data and satellite GPM, but it is

difficult to draw robust conclusions about relative perfor-

mance. For example, ranked probability scores show a better

performance in wind speed and precipitation for EC-SINGV,

while UM-SINGV shows better performance for tempera-

ture. When taking into account the difference in size of the

ensemble between the two ensembles however, the impact of

the ensemble size can be of similar magnitude to the differ-

ences between the two full-size ensembles. This may suggest

perhaps a better performance of UM-SINGV if ensemble

size is taken into account. An analysis of the monthly-mean

rainfall with forecast lead time shows systematic differences

between the two SINGV-EPS ensembles. The UM-SINGV

ensemble tends to initiate convection earlier and have a larger

peak around the time of squall-line occurrence, whereas

the EC-ensemble tends to produce more rainfall over the

period of most convective activity. A comparison against the

GPM shows that UM-SINGV captures the daytime peaks of

convection better, but EC-SINGV is better at capturing the

dissipation of convection. So, unless one of these ensembles

is shown to be clearly systematically better in general (which

it is not), it would seem to be beneficial to utilize a combined

ensemble that has the capability to give a bigger range of

plausible outcomes.

Using case-study analysis, we illustrate the benefits of

running such an ensemble for providing plausible alterna-

tive higher-impact scenarios. Because of the inherent low

predictability associated with a single forecast, running a

convective-scale ensemble is thus needed to capture the pos-

sible occurrence of high rainfall amounts (perhaps extreme)

over Singapore and the use of both ensembles is useful

for capturing plausible events. The results show that the

convective-scale ensemble is sensitive to the parent ensem-

ble model, which tells us something about the nature of the

http://wileyonlinelibrary.com
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F I G U R E 19 Mean impact of initial conditions (ICs) and lateral boundary conditions (LBCs) on the forecast over the four cases (9, 7, 12 and

30 October 2017). (a,b) Differences in dFSSmean metrics (see text) between the standard ensemble and the ensemble with the same ICs. (a) EC; (b)

UM. (c,d) Differences in dFSSmean metrics between the standard ensemble and the ensemble with the same LBCs. (c) EC; (d) UM. Different

neighbourhood scales (3 by 3, 7 by 7, 11 by 11, 15 by 15, 19 by 19, 23 by 23, 27 by 27 and 31 by 31 points) are used here [Colour figure can be

viewed at wileyonlinelibrary.com]

predictability of the convective events. It appears that the

differences in the spread in the ICs between UM-SINGV and

EC-SINGV, as well as differences in the parent ensembles,

perhaps in the dynamical configuration or parametriza-

tions, can determine the nature of the convection in the

convection-permitting forecasts. It is possible the one ensem-

ble may provide systematically more convective instability

or a larger convective inhibition or a warmer sea-surface

temperature than the other and this matters when convection

tries to develop explicitly in the higher-resolution forecasts.

Our second research question is to understand the nature of

the spatial spread of the ensemble regarding the precipitation

because it is important to be able to forecast where heavy rain

is likely to occur. For the four case-studies examined here, we

have studied the impact of the ensemble perturbations com-

ing from the initial and lateral boundary conditions in both

UM-SINGV and EC-SINGV.

The impact of the different perturbations on the spread of

the ensemble rainfall (i.e. UM-SINGV or EC-SINGV, initial

perturbations or lateral boundary conditions) vary with lead

time and spatial scales. The initial perturbations dominate

more at the beginning of the forecasts (up to T+ 18 h) and

are more associated with smaller to intermediate scales. The

lateral boundary conditions tend to influence the spread more

after around T+ 18 h and are more influential at intermediate

to larger scales. The size of the impact associated with each

of the different types of perturbations is similar, although

slightly larger for the initial-condition perturbations. The

results were compared against the mean over the four cases.

In particular we find a lot of day-to-day variability in the

spread between EC-SINGV and UM-SINGV, with the

mean resulting in a much smoother response, but yet still a

robust signal. Future work could evaluate how different this

impact would be for different weather regimes throughout

the year.

These results highlight the importance of the ICs. The

differences related to the initial perturbations can persist

up to 24 h into the forecast. Hence, any work on the

ICs through the use of data assimilation techniques may

be of important consideration for the ensemble spread.

Note as well that the relative behaviour of the ICs and

BCs may differ in midlatitude conditions, or even other

tropical regions. Further research should also evaluate the

sensitivity of convective-scale ensembles nested in different

global ensembles and the potential of using combined infor-

mation from these different ensembles.

http://wileyonlinelibrary.com
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