

Vision based control and landing of
Micro aerial vehicles

Visionsbaserad styrning och landning av drönare

Christoffer Karlsson

Faculty: Department of Engineering and Physics: Electrical Engineering

Subject: Electrical Engineering: Degree Project, ELGC11

Points: 22.5 HP

Supervisor: Jorge Solis

Examiner: Magnus Mossberg

Date: June 7, 2019

Karlstad Universitet

Högskoleingenjörsprogrammet i Elektroteknik

Vision based control and landing of Micro
aerial vehicles

Bachelor Thesis
Department of Engineering and Physics

June 7, 2019

Author:
Christoffer Karlsson

Course:
Degree project (ELGC11)

Internal supervisor:
Jorge Solis

External supervisor:
Kristoffer Richardsson

Acknowledgements

I would hereby like to express by my greatest appreciation to all the people who helped and
made it possible for me to perform this work.

Firstly, I would like to thank Assoc. Prof Jorge Solis for the continuous support throughout
this thesis. His guidance incented me to widen my research from various perspectives and he
gave me insightful input throughout the project. It is also thanks to him that I came in
contact with Bitcraze and I would not have been able to do this particular project if it were
not for him.

Secondly, I would like to thank Kristoffer Rickardsson at Bitcraze AB for all the support,
encouragement and inspiration during the project.

I would also like to give a sincere thanks to all my classmates for the stimulating discussions
and all the fun we have had during the years at Karlstad University.

I am also immensely grateful to my family for their unconditional support and encouragement.

Finally, I want to express my profound gratitude to my beloved fiancée, Sofie Dervander, who
has supported me throughout my years of study, carrying me through stressful times and were
always there for me when I needed.

Abstract

This bachelors thesis presents a vision based control system for the quadrotor aerial vehicle,
Crazyflie 2.0, developed by Bitcraze AB. The main goal of this thesis is to design and
implement an off-board control system based on visual input, in order to control the position
and orientation of the vehicle with respect to a single fiducial marker. By integrating a camera
and wireless video transmitter onto the MAV platform, we are able to achieve autonomous
navigation and landing in relatively close proximity to the dedicated target location.

The control system was developed in the programming language Python and all processing of
the vision-data take place on an off-board computer. This thesis describes the methods used
for developing and implementing the control system and a number of experiments have been
carried out in order to determine the performance of the overall vision control system. With
the proposed method of using fiducial markers for calculating the control demands for the
quadrotor, we are able to achieve autonomous targeted landing within a radius of 10
centimetres away from the target location.

Sammanfattning

I detta examensarbete presenteras ett visionsbaserat kontrollsystem för drönaren Crazyflie 2.0
som har utvecklats av Bitcraze AB. Målet med detta arbete är att utforma och implementera
ett externt kontrollsystem baserat p̊a data som inhämtas av en kamera för att reglera fordonets
position och riktning med avseende p̊a en markör placerad i synfältet av kameran. Genom att
integrera kameran tillsammans med en tr̊adlös videosändare p̊a plattformen, visar vi i denna
avhandling att det är möjligt att åstadkomma autonom navigering och landning i närheten av
markören.

Kontrollsystemet utvecklades i programmeringsspr̊aket Python och all processering av
visions-datan sker p̊a en extern dator. Metoderna som används för att utveckla
kontrollsystemet och som beskrivs i denna rapport har testats under ett flertal experiment som
visar p̊a hur väl systemet kan detektera markören och hur väl de olika ing̊aende
komponenterna samspelar för att kunna utföra den autonoma styrningen. Genom den metod
som presenteras i den här rapporten för att beräkna styrsignalerna till drönaren med hjälp av
visuell data, visar vi att det är möjligt att åstadkomma autonom styrning och landning mot
m̊alet inom en radie av 10 centimeter.

Contents

1 Introduction 3
1.1 Introduction . 3

1.1.1 Related work . 4
1.1.2 Problem statement . 5
1.1.3 Proposed solution . 5
1.1.4 Delimitations . 6
1.1.5 Outline . 6

1.2 Conventions and terminology . 7

2 Hardware 9
2.1 Crazyflie 2.0 Quadcopter . 9

2.1.1 Specifications . 9
2.1.2 Flow deck V2 . 11
2.1.3 Camera . 12

3 Theory 14
3.1 Basic mechanics of a quadrotor . 14
3.2 Rigid transformations . 16

3.2.1 Rotations . 16
3.2.2 Translations . 18

3.3 Visual Odometry . 18
3.3.1 Camera optics and image formation . 19
3.3.2 Homogeneous coordinates and the projective plane 20
3.3.3 Camera projection . 21
3.3.4 Camera calibration . 23

3.4 ArUco library and relative pose estimation . 24
3.4.1 Feature based detection and the Direct Method 26

3.5 Control . 28
3.5.1 PID control . 28
3.5.2 Kalman filters . 32

4 Implementation 36
4.1 Added sensors . 36
4.2 The Crazyflie Python API . 37
4.3 General control structure . 38
4.4 Camera calibration using ArUco . 40
4.5 Marker creation and detection using the ArUco module 41
4.6 Relative pose estimation . 41
4.7 Signal filtering . 42

4.7.1 Moving Average Filter . 42
4.7.2 Implementation of Kalman filter . 43

1

Vision based control and landing of MAV’s CONTENTS

4.8 PID control . 44
4.8.1 Tuning the PID controllers . 44

4.9 Application . 45

5 Results and evaluation 47
5.1 Camera calibration . 47
5.2 Filtering and estimation . 49
5.3 PID Tuning . 52
5.4 Detection performance . 59

5.4.1 ORB . 65
5.5 Battery life characterization . 66
5.6 Targeted landing . 68

6 Conclusion and future work 71
6.1 Conclusion . 71
6.2 Future Work . 72

Appendices 77

A Main application (Python) 78

2 Christoffer Karlsson, June 7, 2019

Chapter 1

Introduction

1.1 Introduction

In recent years, the interest around micro aerial vehicles (MAVs) has grown rapidly, both for
use within the industry as well as for hobbyists and for research purposes. The small size of
the craft allows for applications such as remote observation or analysis of environments that
would be otherwise inaccessible to a larger vehicle or individuals. The small size of the MAV
also facilitates indoor flight in tightly constrained environments or in close proximity to people
without significantly exhibiting a hazard, as well as promote the overall agility of the vehicle.

Some of the reasons behind the growing popularity around quadrotor MAVs, also known as
quadcopters, include the relatively simple mechanical structure of the vehicle, as well as the
high manoeuvrability and low price, allowing for a broad user base and high accessibility.
Another reason behind the growing interest around quadrotors is their ability to handle
various payloads within reasonable limits, which allows for modifications to be made in order
for the vehicle to perform various tasks. Recent technological innovations in micro-controllers
and sensors have paved the way for research around autonomous flight which will also be the
context of this thesis.

MAVs can be classified into three different types, fixed wing configuration, rotary wing
configuration and flapping wing configuration, each with their own advantages and
disadvantages [21]. This thesis will employ the Crazyflie 2.0, a low weight rotary wing
quadrotor from the Swedish company, Bitcraze AB, released as an open source development
platform, to which we mount an RGB CMOS camera and a wireless analogue video
transmitter.

One of the major complications around quadrotors is that they are inherently unstable without
the assistance of a control system. They must rely on sensor data and constant corrections to
be made at a very high rate to maintain stability. If the on-board electronic control unit
(ECU) would fail for only a short amount of time, it could bring the quadrotor into a crash
and thereby constitute a danger to both the vehicle itself, the environment or human
bystanders. Since MAVs often rely on a lithium battery as the primary source of power, as the
size of the vehicle is decreased, the size of the battery must also be dimensioned appropriately
in order to achieve a feasible thrust to weight ratio. By limiting the size of the battery, the
accessible amount of energy available to the MAV becomes as a result reduced as well. If the
battery level is running low whilst the craft is in flight, it must be able to make a good
estimation of the remaining time it can stay in flight before it needs to land and recharge the
batteries, or it would simply crash as a result of depleted batteries. In the case of low battery
level under circumstances where the vehicle is human controlled, the pilot would need to locate
a safe zone for landing. However, an autonomous MAV must be able to find a safe location to

3

Vision based control and landing of MAV’s CHAPTER 1. INTRODUCTION

land and recharge the batteries on its own, without any human interaction. This can be an
especially challenging scenario in GPS denied areas or when GPS is not an available option.

With this presupposition in mind, I will in this thesis present a method for vision based
control and landing of a quadrotor utilizing a small RGB-camera, analogue video transmitter
and a pre-defined marker depicting the landing zone.

1.1.1 Related work

In past years, several papers have been published regarding research around autonomous flight
for quadrotors using one or multiple cameras. The major difference among them is the
implementation of the control algorithm and the selection of the fiducial markers. Some of
them rely on systems where the trajectory computations are done off-board and others have
implemented solutions where the vision-data is processed on-board. In the case of this project
however, on-board computations are not a viable option because of the limited computational
power available on the MAV platform, but may be possible for future generations of the
Crazyflie platform. For instance, [11] presents a quadrotor system capable of achieving
autonomous navigation and landing on a moving platform using only on-board sensing and
computing. A similar concept using optical flow and vision based detection is presented by
[24], where the marker depicting the target landing location consists of several concentric white
rings on a black background. This project also relies on on-board computation where the
embedded computer receives images from an on-board camera.

Furthermore, [12] has demonstrated a method for achieving autonomous hovering using a
monocular SLAM-system for the Crazyflie. With this method, the Crazyflie is able to remain
stable whilst in flight without the need of using any external sensors or relying on the optical
flow deck which is used in this project. However, [12] relies on pose estimation through the
Kinect RGB-D sensor, which in contrast to the method described in this thesis, must be
configured as an external set-up, meaning that the control system requires data from sensors
external to the MAV platform in order to achieve autonomous waypoint flying. Various
research has also been done on methods for controlling the position of a quadcopter by using
control systems other than the PID controller. For example, [30] proposes a method where an
LQ-controller is used together with a PID controller in order to control the position of the
quadcopter in all three dimensions.

4 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 1. INTRODUCTION

1.1.2 Problem statement

The goal of this thesis is to develop a method for achieving autonomous flight based on fiducial
markers for a quadrotor MAV, primarily concerning the following points:

• Navigation and landing should be performed without any human interaction.

• The solution should not be dependant on sensor information external to the MAV.

• The visual control system should be able to detect a defined fiducial marker in the envi-
ronment around the MAV and verify the validity of the marker.

• The system should be able to infer information from a single defined marker in its envi-
ronment, allowing the MAV to localize itself relative to the target location.

• The effective flight time should not be adversely affected by more than 50 percent due to
additional sensors and peripherals.

• The MAV should be able to hover, navigate and fly to the desired target location while
remaining stable.

1.1.3 Proposed solution

In order to satisfy the conditions mentioned above in section 1.1.2, some considerations have to
be made. The camera and video transmission module should be as lightweight as possible
while still maintaining good resolution and image quality. I opted for using a small commercial
off-the-shelf video transmitter and camera module from Eachine, carrying a total weight of 4
grams[8]. The Crazyflie 2.0 from Bitcraze has a specified maximum payload capacity of 15
grams[2], making the camera- and transmitter module fit well within the specified payload
range. The transmitter and camera module is mounted on the top side of the quadcopter and
the video feed containing visual information about the environment around the MAV is
transmitted through wireless communication to the PC which handles the computations of the
control signals that are to be sent back to the quadcopter.

I will in this thesis evaluate two different methods for visual odometry, both extraction of
image feature points, known as the Feature Based Method, and the Direct Method, where the
pixel intensities are used as the direct visual input. Estimation of the camera motion will be
done by utilizing a homography transformation and a linear Kalman filter which will also aid
in reducing the noise in the discrete data signals. In order to minimize drift of the quadcopter
in the inertial frame, I will make use of the Flow deck v2 from Bitcraze, which give the
quadcopter the ability to discern movement above the ground.

The fiducial marker specifying the target landing location must be clearly identifiable and
verifiable from the camera perspective, thus it should be in a shape and form that stands out
from the rest of the environment, as well as provide some form of error detection. I decided to
use ArUco, an open source marker dictionary and library that also offers camera pose
estimations using square planar markers [33][14], but I will also evaluate the feature matching
algorithm ORB (Oriented FAST and Rotated BRIEF), which is an open source alternative to
SIFT or SURF [10] which are both feature detection and descriptors used for e.g. object
recognition and classification.

5 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 1. INTRODUCTION

1.1.4 Delimitations

Research around autonomous rotary wing quadrotors includes a broad spectrum of objectives,
questions and variables, thus it is necessary to confine the work within some bounds. My
interest in this subject lies primarily within the process of control using visual odometry, hence
the delimitations are set up as accordingly and with consideration to the time limit of the
project:

• Throughout the whole project, testing, analysis and verification will be conducted for
indoors conditions, i.e., contributing factors such as wind and ambient temperature will
be kept near constant.

• The project will not include the process of charging the battery once the MAV has landed.

• I will use a non-model based approach for tuning the control system parameters

• Because of the limited size of the workspace where I do my experiments, the small form
factor of the camera and its relatively low resolution, the detection of the fiducial marker
should be limited to a maximum of two meters between the camera lens and the marker.

• I will not consider cases with various payloads other than the flow deck, camera and
transmission module.

• The focus on this thesis will be on controlling the MAV through visual input data by com-
munication with a ground station computer and therefore the control parameters internal
to the firmware of the MAV will be left unadjusted if not explicitly required.

1.1.5 Outline

• In chapter 1, we have summarized the intentions of this thesis and defined the problem
statement. We have proposed a solution and defined the delimitation of which we confine
the work. We will also cover some basic notations, conventions and terminology that will
be used throughout this thesis.

• In chapter 2 we take a look at the hardware platform on which the vision system is im-
plemented in order for the reader to get a better understanding of the upcoming chapters.
The chapter will cover some basics about the vehicle itself, as well as the hardware used for
data acquisition and communication between the MAV and the ground-station computer.

• In chapter 3 we discuss the underlying theory behind the concepts implemented in the
vision control system, the basic operation of the camera and we introduce the reader to
the ArUco library used for detection and pose estimation.

• In chapter 4, we examine how the hardware- and software components in the system were
implemented to work together and take a closer look on the general control structure and
the algorithm for achieving autonomous navigation and landing towards the target.

• In chapter 5 we cover the outcome of the experiments conducted during and after the
development of the vision based control system and evaluate the performance of the control
system and the detection algorithms, as well as investigate how the flight time is affected
by adding additional sensors.

• Finally, in chapter 6, we will conclude the results of this project and discuss future work.

6 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 1. INTRODUCTION

1.2 Conventions and terminology

This section will cover the some of the most important conventions, notations and terminology
used throughout this thesis.

Table 1.1: Notations used throughout the thesis

Notation description Example

Matrices are denoted in bold upper-case letters H
Identity matrix I

Vectors are denoted either as bold lower-case letters or with an arrow x,
−→
X

Scalar values are denoted as italic lower-case letters x
Three dimensional Euclidean space R3

Planar two-dimensional space P2

Image frame coordinates are represented by ux,y (ux, uy)
Reference frames are denoted in calligraphic capitals M
Leading superscript denote the frame of which the object occupy CP

An object in frame M transformed to frame C CPM
The camera reference frame C
The marker reference frame M
Time derivatives are indicated by a dot or by Leibniz’s notation ẋ, d

dtx

Covariance matrix:

Each element (i, j) in the covariance matrix describe the degree of correlation between the i : th
state variable and the j : th state variable. We define a covariance matrix as:

Σ =

[
Σii Σij

Σji Σjj

]
(1.1)

Standard deviation

The standard deviation is a statistical measurement that quantify the amount of variation in a
set of discrete values and is in this thesis denoted by σ, which we define as:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (1.2)

, where N is the size of the data set, µ is the mean value and xi denote an individual element
in the data set.

3D rotation group

The group of all rotations about the origin in three-dimensional Euclidian space R3:

SO(3) := R ∈ R3|RTR = I, det(R) = ±1 (1.3)

Framestore:

The camera captures its source information to a framestore in the computer which is a portion
of memory containing a spatial sample of the image. The pixels in the framestore can be seen
as a vector function (bitmap or image function) whose components represent the values of the
physical quantities captured by the camera in a sampled and quantized form.

7 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 1. INTRODUCTION

Grayscale image:

A grayscale image is represented in the computer as a m×n matrix where the elements contained
in the matrix: J ij ∈ [0, 255], where J is the image function and 0 represent a completely black
pixel and 255 represent a completely white pixel. The elements of J are defined as integers.

Color image:

Color images following the RGB color model are represented as three grayscale image matrices,
one for each color channel. The image function for such images are:

J = JR(xJ , yJ),JG(xJ , yJ),JB(xJ , yJ) (1.4)

, where each component correspond to the light intensity in its respective color channel. The
number of gray-levels (0-255) depend of the adapted grayscale resolution but is always bound
to the minimum and maximum light intensity in physical quantities.

OpenCV

OpenCV is an open source library built natively in the C++ programming language to provide
algorithms for applications in computer vision and machine learning software. The algorithms
contained in the OpenCV library can be used to e.g., detect and identify objects, track camera
movement and camera calibration and is has cross-platform support for Python, C++, Java and
MATLAB.

Thresholding

In image processing, thresholding is a method of image segmentation and can be used to form
binary images from a grayscale- or color image by replacing a pixel if the image intensity in
J i,j is less than or greater than a defined scalar value. In this thesis, Otsu’s method is used for
thresholding an image and the interested reader is referred to [20] for more information about
this topic.

(a) Crazyflie 2.0 reference
frame

(b) Fiducial marker
reference frame

Figure 1.1: The axes within each reference frame follows the convention as displayed in this
figure.

8 Christoffer Karlsson, June 7, 2019

Chapter 2

Hardware

In order to get an idea about the system configuration, we will in this section cover all the
hardware used during this project. We will begin by presenting the platform and describe its
components and features and then take a closer look at the peripherals and sensors used for
communication and data collection.

2.1 Crazyflie 2.0 Quadcopter

The word quadcopter is derived from ”quadrotor helicopter”, which imply that they exhibit
flight characteristics similar to helicopters, but with the thrust generated from a four-rotor
configuration. The quadcopter has similar vertical take-off and landing (VTOL) capabilities of
a helicopter and the ability to hover while remaining perfectly stable, combined with excellent
manoeuvrability. Modern quadrotor aircrafts come in many forms and sizes, from very small
designs fitting in the palm of the hand, to very large configurations, targeted towards use in
e.g., the military, agricultural purposes or for use within the film- and photography industry.

The commercially available Crazyflie 2.0 from Bitcraze AB is used as platform for this project.
It is an extremely lightweight quadrotor MAV, designed with simplicity and development in
mind, allowing for software and hardware modifications to be made with relative ease.
Bitcraze AB was founded in 2011 with the purpose of financing and developing the
Crazyflie-kit as an open source development platform [1] and they shipped their first units in
2013. Thanks to the success of their initial product, they started the development of the
Crazyflie 2.0 in 2014 with the ambition to create a versatile platform with the possibility of
hardware expansion and customization.

2.1.1 Specifications

The Crazyflie 2.0 comes equipped with a dual main control unit (MCU) architecture with ded-
icated power- and radio management. The nRF51822 is an always-powered-on slave unit that
handles the radio communication with the computer and the power management. It also com-
municates the data via UART to the STM32F405 (see figure 2.1) and detects and check installed
expansion boards. The STM32F405 gets initiated by the nRF51822 and acts as a master which
runs the main firmware of the whole system.

In its base configuration, the MAV has a takeoff weight of only 27 grams and a size of
92x92x29 millimetres[2]. As stated on the Bitcraze website, the flight time of the Crazyflie 2.0
with the mounted stock battery is 7 minutes, which can in consonance with experiments
covered in this theses, considered quite to be accurate.

9

Vision based control and landing of MAV’s CHAPTER 2. HARDWARE

Figure 2.1: With a specified take-off weight of only 27 grams, the Crazyflie 2.0 from Bitcraze
AB makes an excellent indoors flying platform

Figure 2.2: System architecture of the Crazyflie 2.0. This block diagram was created with [3] as
reference.

To keep the quadrotor level autonomously, some additional proprioceptive sensors are required,
which in the case of this platform comes packaged as an inertial measurement unit (IMU) with
9 degrees of freedom(9-DOF). The quadrotor must have a notion of its relative position and
velocity, as well as the rate of change of velocity and its orientation to the earth in order to
determine its own movement along any of its axis. The Crazyflie 2.0 comes with the
MPU-9250 from Invensense, which is a micro-electro-mechanical system (MEMS) based IMU
with an accelerometer which measures the inertial force generated when the quadrotor is
affected by a change in velocity, a gyroscope that measures the rate of rotation and a digital
compass which measures the strength and direction of local magnetic fields. The Crazyflie 2.0
also comes with a high precision absolute air pressure sensor, the LPS25H, which can be used
for approximating the altitude of the craft above sea level.

The battery used is a Lithium-Polymer (LiPo) battery with a nominal voltage of 3.7V and a
rated capacity of 250mAh, giving it a theoretical capacity of 925mWh. It also comes with a
Protection Circuit Module (PCM) attached, which prevents the user from under- or
overcharging the battery, as well providing short circuit protection. The battery is easily
swappable thanks to its JST-DS connector.

The Crazyflie 2.0 uses four 7x16 millimetres brushed DC motors, utilizing one pull-down
MOSFET-transistor per motor, controlled by a 328kHz PWM-signal. Thus, the motor driver

10 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 2. HARDWARE

is designed such that each rotor should only spin in one particular direction, either clockwise
or counter-clockwise. The four rotors are set up in pairs of two with a common angular
direction. One of the pairs rotates in a clockwise direction, whilst the other pair rotate in the
opposite direction, see figure 2.3 below.

Figure 2.3: One motor pair (2, 4) turns clockwise and the other pair (1, 3) turns counter-
clockwise. By varying the absolute value of the angular velocity, ωi of any of the four motors,
the position and orientation of the craft may be controlled.

Communication between the Crazyflie 2.0 and a client computer is achieved with the
Crazyradio PA 2.4GHz USB-dongle, based on the nRF24LU1+ from Nordic Semiconductor [4].
The Crazyradio PA allows for wireless two-way communication via USB with up to 2Mbit/s
data-rate, making it quick and easy to both send and receive data from the Crazyflie 2.0. It
has a specified range of over 1km within line of sight of the Crazyflie 2.0 and is just like the
quadrotor, a fully open source project, allowing for firmware upgrades via USB and comes with
an application programming interface (API) for the Python programming language.

2.1.2 Flow deck V2

The Crazyflie 2.0 offers the possibility to connect expansion boards to the headers, both on the
top or on the bottom of the unit and are automatically detected and read by the power
management MCU. The Flow deck V2 is an expansion board developed by Bitcraze AB that
gives the Crazyflie the ability to discern when it is moving in any direction above the ground
and acts as a complement to the IMU. It incorporates the VL53L1x time-of-flight sensor which
measures the relative distance between the ground and the PMW3901 optical flow sensor that
measures movement above the ground[5].

The Flow deck V2 is intended to be mounted to the bottom of the Crazyflie and allows the
MAV to hold its position by itself without the need of an external positioning system. The
way the optical flow works, is that it uses the visual data captured by the PMW3901 sensor
and calculates a gradient from which it is possible to determine the distance and speed of
which the craft is travelling. However, since optical flow depends on finding features on the
plane of which the sensor is directed, it works best on matte surfaces. A surface that is very
uniform or reflective will make it more difficult to match the features between each frame.
This topic will be discussed in further detail in section 4.1.

11 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 2. HARDWARE

2.1.3 Camera

In order to be able to localize the marker and determine the relative pose of the quadcopter, it
is necessary to add an additional sensor. It is theoretically possible to detect and ascertain the
position of a given target by using various approaches and thus, it may be of relevance to
consider what features are important when choosing what type of sensor to use. To meet the
conditions discussed in section 1.1.2 and 1.1.4, I opted for using a camera- and transmitter
module from the company Eachine, sold as a spare part for their M80S RC Drone.

The module is very cheap, lightweight and small, while still maintaining decent image
resolution and build quality. However, because of the low price, it has some shortcomings and
a professional grade component would probably be able to produce a much better end result.

Table 2.1: Camera- and transmitter module specifications

Total Weight 4 grams
Size (Width, Height, Depth) (14.5, 12.0, 9.22) millimetres
Camera Resolution (Width, Height) (640, 480) pixels
Camera Sensor 1/3 inch CMOS
Module Operating Voltage 2.9V - 5.5V
Video Output Format PAL/NTSC
Transmitter Channels 48
Transmission Frequency 5.8GHz
Field of view (FOV) 140◦

When mounting a camera that is to be used for visual odometry for a MAV, it is of great
importance that it is attached in a rigid configuration in order to reduce vibrations and wobble
that may introduce noise and/or other inaccuracies in the visual data. One should also
consider that the field of view of the camera should not be occluded by the propellers or the
craft itself. Also, the added mass may shift the center of mass of the MAV, which could alter
the performance of the vehicle.

In order to keep the weight of the whole system to a minimum, as well as keeping the whole
construction as simple as possible, the camera and transmitter module is powered directly
from the Crazyflie 2.0. The camera- and transmitter module requires 2.9V-5.5V to operate, so
it is possible to drive the module directly from the VCOM(3.7V) and GND pin-headers on the
PCB of the quadcopter. Since the VCOM pin is only active when the Crazyflie 2.0 is turned
on by the nRF51822 chip, it is also a very convenient solution because it eliminates the need
for separate power management. However, this also leads to an adverse effect on the total
amount of accessible energy for the Crazyflie 2.0, since the camera- and transmitter module
draws about 1.3W during operation when powered with 3.7V. When adding any peripherals to
the vehicle it is of interest to consider its power consumption both for operation and its
contribution to the total amount of available energy by payload.

12 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 2. HARDWARE

Figure 2.4: The camera and transmitter module was mounted on top of the Crazyflie 2.0 by
soldering and attaching it onto a Breakout deck. More sophisticated solutions are available, but
this is a quick and simple solution that offers great flexibility and sturdiness.

The camera- and transmitter module was soldered onto a Breakout deck for easy connection
and disconnection. The Breakout deck is an expansion board provided by Bitcraze AB that
allows for testing and development of hardware without the need of soldering or connecting it
directly to the pin headers of the Crazyflie. This proved to be a suitable solution for the case
of this module, as it also acts as a mounting platform, thus, we can dismiss the need of
creating and designing a mounting platform for the module. The module was then fixated onto
the Breakout deck simply by gluing it onto the surface of the deck with non-conductive glue.

This configuration will entail in the propellers occluding the view of the environment in the
image plane when to rotors are stationary. However, this will not be a complication when the
rotors are spinning at a high rate because of the aliasing effect that occurs. Because the frame
rate of the camera is several times lower than the angular rate of the propellers, they will
appear as invisible in the image frame during flight. The shift in the center of mass caused by
the addition of the camera- and transmitter module is compensated for by the placement of
the LiPo-battery.

Transmission and reception

Sources of radio transmission in the vicinity of the system may cause interference with the
video transmission signal. If these signals occur on the same frequency band as the video feed,
it could introduce noise which will reduce the signal-to-noise ratio (SNR), resulting in artefacts
and noise in the video signal. This problem can be reduced by a proper channel selection on
both the receiver and transmitter. The video transmitter and receiver used in this project
follows an analogue convention, meaning that transmission can be made in real-time with very
low latency and no image compression required. This is important because a latency in the
range of only tens of milliseconds could impact the performance of the vision based control
system drastically. However, because the received analogue signal must be converted into a
digital format that we can process in the computer, there will always be a small delay between
the time of transmission and when the broadcasted image reaches the framestore in the
computer.

The broadcasted video signal is picked up by an Eachine 5.8GHz OTG USB video class (UVC)
receiver. This particular receiver has 150 channels, so finding a relatively noise free channel for
transmission and reception is an easy task. The receiver can be plugged directly into a free
USB-port on the computer and requires no additional drivers to operate. The latency of the
receiver is specified on the Eachine website to be at around 100ms and has a frequency range
of 5.645GHz - 5.945GHz at a -90dBm sensitivity[9].

13 Christoffer Karlsson, June 7, 2019

Chapter 3

Theory

This chapter aims to give the reader a basic understanding of the mechanics of a quadrotor MAV,
as well as discuss the underlying theory behind transformation of points between coordinate
reference frames, control theory and visual odometry. The contents of this chapter is considered
a prerequisite for assimilating the context of the forthcoming chapters.

3.1 Basic mechanics of a quadrotor

Quadcopters have six degrees of freedom (6-DOF), translational movement along the x, y and
z -axes, as well as rotational movement along each of the three respective axes. The angular
rotations along each axis are commonly referred to as: Roll (Φ), Pitch (Θ) and Yaw (Ψ)
respectively. The quadcopter is lifted and propelled by four vertically oriented propellers, two
of them rotating in a clockwise direction and the other set rotating in a counter-clockwise
direction, as seen in figure 2.3. Each rotor has to support roughly one quarter of the total
weight of the craft in equilibrium: W0 = 1

4mg, where m is the mass of the system and g is the
gravitational constant. This allows us to calculate the operating speed for all four rotors, ωo.
However, this operating speed will produce a drag moment that each rotor has to overcome.
Therefore, it is important that the motors are dimensioned such that they can produce enough
torque to overcome this drag moment.

If we know the constant of proportionality, kF between the force,
−→
F i generated by each rotor

and its respective angular velocity ωi, then the force generated by that motor can be expressed
as: −→

F i = kFω
2
i (3.1)

And if we know the constant of proportionality, kM between the drag moment
−→
M i and the

angular velocity, ωi, then: −→
M i = kMω2

i (3.2)

14

Vision based control and landing of MAV’s CHAPTER 3. THEORY

Figure 3.1: A basic model of a quadrotor. The force exerted by each motor is represented by
F i and r is the characteristic length of the system, i.e., the distance between the rotor and
the center of mass. In an ideal one-dimensional model, the thrust output from the motors will
determine the height, x of the quadrotor in the world frame.

This gives us the resultant force:

−→
F t =

4∑
i=1

(
−→
F i)−mga3 (3.3)

And if we know the distance to the center of mass between each rotor, we can calculate the
moment around the center of mass such that:

−→
M t =

4∑
i=1

(ri ×
−→
F i +

−→
M i) (3.4)

, where ri is the distance between an individual rotor, i and the center of mass, C. The first
term inside the summation represents the moments due to the forces exerted by the rotors and
the second term represents the reactions due to the angular direction of rotation of the rotors.

This means that for an ideal system in equilibrium, the thrust output from each motor is the
same and they add up to support the total weight:

4∑
i=1

(kFω
2
i) +mg = 0 (3.5)

If we consider the mass, m and the gravitation, g as constant, any increase in angular velocity
will yield an acceleration such that

∑4
i=1(kFωi) +mg = ma, where a = d2x

dt2
= ẍ and x is the

vertical position as seen in figure 3.1.

One of the reasons this is important is that when we design the control system for the
quadcopter, we must take into consideration the limited capacity of the motors to generate
thrust. If we let u = 1

m [
∑4

i=1(kFω
2
i) +mg] be the control signal to the system, then:

umax =
1

m

(−→
F max +mg

)
(3.6)

, where
−→
F max is the maximum thrust that can be generated, determined by the peak motor

torque.

15 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

3.2 Rigid transformations

Any position and orientation is associated with a reference frame and a rigid transformation
is generally used to describe a geometric transformation between reference frames attached to
different rigid bodies, whereas a displacement is essentially a transformation of points within
a frame attached to a rigid body. This section will discuss how to transform points between
reference frames in three-dimensional Euclidean space, R3.

A transformation of a point, p, from a world frame coordinate system, W, to a local
coordinate system, C, can be expressed as:

CpW = CRW
Wp + CtW (3.7)

Figure 3.2: Transformation of a point, p, between coordinate frames

In figure 3.2 above, frame W indicate the world frame that is motionless and attached to the
ground and frame C represent the body fixed frame that moves with the motion of the rigid
body. Transformation of points between the two frames involves both translation, which can
be described as the one-to-one corresponding translational displacement between two sets of
points within a pair of coordinate systems, and rotation, which describes the angular
displacement between the two frames.

3.2.1 Rotations

A rotation matrix, R must follow some requirements in order to be classified as a rotation
matrix in the three-dimensional rotation group, often denoted as the special orthogonal group,
SO(3). By definition, the transpose of the rotation matrix must be equal to its inverse, i.e.,
RT = R−1. Also, since the column vectors of the rotation matrix are mutually orthogonal[36]
the rotation matrix R is an orthogonal matrix, meaning: RTR = I(3×3) Further more, the
determinant of the rotation matrix must be equal to one: det(R) = 1.

A rotation matrix in SO(3) has the general form:

R =
[
r1 r2 r3

]
=

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3.8)

, such that for a counter-clockwise (CCW) rotation about any linearly independent axis in
three-dimensional space:

Rz(Ψ) =

cos Ψ − sin Ψ 0
sin Ψ cos Ψ 0

0 0 1

 (3.9)

16 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

Ry(Θ) =

 cos Θ 0 sin Θ
0 1 0

− sin Θ 0 cos Θ

 (3.10)

Rx(Φ) =

1 0 0
0 cos Φ − sin Φ
0 sin Φ cos Φ

 (3.11)

, where Φ,Θ,Ψ denote the angular rotation about the x, y and z axes respectively. These
angles are considered Euler Angles as long as the condition of linearly independent axes is
fulfilled and can be used to place a rigid body in R3. A single rotation matrix may also be
formed by successive rotations about the linearly independent axes. Every rotation will then
occur about the axes according to the sequence in which the rotation matrices are multiplied,
e.g, following the sequence Z-Y-X will yield the following rotation matrix:

R(Ψ,Θ,Φ) = RzRyRx

=

cos Θ cos Ψ sin Φ sin Θ cos Ψ− cos Φ sin Ψ cos Φ sin Θ cos Ψ + sin Φ sin Ψ
cos Θ sin Ψ sin Φ sin Θ sin Ψ + cos Φ cos Ψ cos Φ sin Θ sin Ψ− sin Φ cos Ψ
− sin Θ sin Φ cos Θ cos Φ cos Θ

(3.12)

Rotations may also occur about an arbitrary axis, i.e., an axis other than the unit vectors
representing the reference frame. In such cases, we need a way of determining the final
orientation and the unique axis about which the point vector is rotated. This is often referred
to as Orientation Kinematics [16]. A rotation of a generic vector p about an arbitrary axis u
through an angle φ can be written as:

Rot(u, φ) = I cosφ+ uuT (1− cosφ) + û sinφ (3.13)

, where û is the skew-symmetric matrix representation of the vector u and is defined as:

û =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (3.14)

This equation (3.13) is called Rodrigues’ rotation formula and has proved to be especially
useful during this project with the main reason being that by knowing the numerical values of
the elements contained within the rotation matrix, it is possible to compute û and φ by:

û =
1

2 sinφ
(R−RT) (3.15)

and:

cosφ =
τ − 1

2
(3.16)

, where τ is the sum of the scalar values in the main diagonal of the rotation matrix, R:
τ = r11 + r22 + r33. However, we must consider that for τ = 3 and τ = −1, we will not be able
to compute a unique axis of rotation because φ will either be equal to zero or π.

This same principle holds for when we want to calculate the Euler angles given a known
rotation matrix. We will always have at least two solutions for every set of Euler angles for a
given rotation matrix, and we may also have points of infinite solutions. To counter this issue,
we need a second set of Euler angles to take care of the points of which we have infinite

17 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

solutions. Generally, for a rotation matrix, Rzyx, its respective Euler angles, Ψ,Θ and Φ can
be computed as:

Θ1 = −sin−1(r31)

Θ2 = π −Θ1

Φ1 = atan2

(
r32

cos Θ1
,
r33

cos Θ1

)
Φ2 = atan2

(
r32

cos Θ2
,
r33

cos Θ2

)
Ψ1 = atan2

(
r21

cos Θ1
,
r11

cos Θ1

)
Ψ2 = atan2

(
r21

cos Θ2
,
r11

cos Θ2

)
(3.17)

However, this can only be done if r31 6= ±1 because it would mean that Ψ and Φ cannot be
uniquely determined. In this case, we let Ψ = 0 and perform two calculations for two different
cases; if r31 = −1:

Θ =
π

2
Φ = Ψ + atan2(r12, r13)

(3.18)

, otherwise:

Θ = −π
2

Φ = atan2(−r12,−r13)−Ψ
(3.19)

The above equations, (3.18 and 3.19), will give infinite solutions when Θ = ±π
2 , hence, we let

Ψ = 0 for the sake of convenience.

3.2.2 Translations

By neglecting the second term in the right-hand side of equation 3.7, we assume that the two
coordinate systems have a shared origin and that the transformation simply occurs without a
translational difference between the two reference frames. Thus, in order to compensate for this
difference, we must add the second term, denoted by CtW in the same equation. This is a vector
containing information about the relative distance between the two frames, along each of the
three respective axes, which can be interpreted as an addition of a constant to every point in
the reference frame, or a shift of the origin between the two reference frames. The combination
of rotation and translation as seen in equation 3.7 is called rigid motion or rigid transformation.

3.3 Visual Odometry

As we take an image of an object in the three-dimensional world around us, that object gets
defined in a two-dimensional plane, meaning that we lose the third dimension in the process.
Also, when we take a picture, it matters how the camera is oriented and positioned towards the
world because various orientations and positions will yield different projections onto the image
plane. Visual odometry is the process of resolving the pose of the camera, or in this case the
MAV, in terms of position and attitude from data associated with images taken by the camera.
This section will cover the theory behind this process and discuss the basic functionality and
properties of the camera, as well as camera calibration and how the digital images are interpreted
and processed by the computer.

18 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

3.3.1 Camera optics and image formation

A typical modern digital camera requires two essential elements, the imaging sensor and a lens.
The imaging sensor is usually in the form of a charge-coupled-device (CCD) or a Complemen-
tary Metal Oxide Semiconductor (CMOS) -sensor, which are both light sensitive semiconductor
devices with the primary function of detecting and transmitting information in order to form an
image. The lens allows for the formation of an image onto the imaging sensor from the collection
of rays of the entering light.

Figure 3.3: The thin lens model. Rays from a point, p, on an object converge on a point, p’,
on the image plane.(a = distance between lens and object, b = distance between image plane
and lens, m = focus point, f = focal length, Y = height of object in world frame, y = height
of object in image plane)

The optical properties of the camera govern the relationship between the scene in the world
frame and the projected image on the image plane [39]. The thin lens model shown in figure
3.3 above is an approximative mathematical model where rays of light emitted from a point of
an object travel along a path through the lens, converging onto another point on the image
plane. Through this model, the projection on the image plane is a function that depends on
two factors; the distance between the image plane and the lens, denoted as b, and the distance
between the lens and the object in the world frame, denoted as a. The axis going through the
center of the lens is called the optical axis, and the plane that lies perpendicular to that axis is
called the focal plane, which is centered at the optical center. All the rays that are going
parallel to the optical axis of the lens go through a point, m, defining the focus of the lens, and
thereafter hits the image plane where the image is projected.

When the two rays emitted from the point, p, intersect at the image plane on point p’, it can
be proved that:

1

f
=

1

a
+

1

b
(3.20)

, where f defines the focal length of the lens. At the conditions where this equation (3.20) is true,
that is where the projected image is at its theoretically sharpest representation of the object in
the world frame. This relationship expressed in equation 3.20 is called the fundamental equation
of the thin lens.

19 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

So by controlling the parameter b, we can control the focus by changing the distance between
the lens and the image plane. Another way to focus the image would be to move the lens and
the image plane closer or further away from the object in the world frame, thus, controlling the
parameter a. In modern digital cameras, this process is done automatically (by adjusting b),
through a procedure called autofocusing. If we look at the size of the object in the world frame
in relation to the projection of that same object in the image plane, we can directly relate
them through similarity of triangles, such that:

Y

a
=
y

b
(3.21)

, where Y is the size of the object in the world frame and y is the size of the object in the
image plane. This tells us that the size of the object in the image plane will change in relation
to the relative distance between the two. However, if the point p moves along a ray, keeping
the angle α as seen in figure 3.3 constant, the perspective projection will also remain constant
and we can therefore not without ambiguity determine where an object is located in the world
frame from a single point in the image plane, but we require at least two points in order to be
able to reason about the position of an object in the world frame, as we will discuss in further
detail in the following sections.

3.3.2 Homogeneous coordinates and the projective plane

As we perceive the world from a first person view, we are at the origin of three-dimensional
space and everything around us is measured relative to that origin. This means that any
parallel horizontal lines in physical space will be observed as converging to a single point. This
concept holds true especially in the image plane. These points are referred to as vanishing points,
indicated by V1 and V2 in figure 3.4 below. Between these vanishing points lies the vanishing
line, also known as the horizon. The concept of vanishing points and vanishing lines allows us
to reason about the relative pose of the observer of the scene, in this case, the camera. If we
know the actual height of an object in physical space, we could also use this concept to reason
about its movement in the image plane.

Figure 3.4: Illustration of the concept of vanishing points

Homogeneous coordinates can be especially useful when representing points at infinity, such as
vanishing points from the three-dimensional world projected onto the two-dimensional image
frame. If we were to imagine that each point on the image plane can be seen as a ray from the
observer origin, then all points on that ray can through geometric intuition be seen as
essentially the same, such that:

(x, y, 1) ∼= (wx,wy,w) (3.22)

20 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

, so any point in R3 along that ray will project to the same point on the image plane, meaning
that the relevance lies not in the distance of the point along it, but in the direction of the ray.

Figure 3.5: Geometric intuition: A point on the image plane is a ray in projective space. Each
point, (x, y) on the image plane is represented by a ray, (wx, wy, w).

So when we want to represent a two-dimensional vector in the image plane by a
three-dimensional vector, we append an additional element to every 2D-point, such that:

[
x
y

]
⇒

xy
w

 (3.23)

, where w is a scaling factor. In fact, every representation of an n-component vector is through
the homogeneous coordinate representation, represented as an (n+1)-component vector [16]. If
we suppose that the image plane of the camera lies at w = 1, then the ray through the pixel
(x, y) can be represented in homogeneous coordinates by: (x, y, 1) ∼ (wx,wy,w). This can be
done for any value of the scaling factor, w, provided w 6= 0 and w 6=∞. However, if w = 0,
then we would essentially describe a point that lies at infinity and does not correspond to any
finite pixel in the image plane. By adding such points in a two-dimensional image, we form the
vanishing line in the image.

3.3.3 Camera Projection

Camera calibration is the process of estimating the cameras internal characteristics and the
camera position and orientation in the world, commonly known as the intrinsic and extrinsic
parameters respectively. The intrinsic parameters of the camera include parameters such as the
focal length of the lens, the optical center, also known as the principal point, the pixel skew and
the optical distortion in the image. Knowing the intrinsic parameters of the camera is essential in
order to with good accuracy, be able to estimate the extrinsic parameters, i.e., the relative camera
position and orientation. As discussed in section 3.3.2, camera projection involves mapping
points in the physical three-dimensional space onto the two-dimensional imaging plane. Through
similarity of triangles, it can be proved that for a given point x = (ux, uy) projected on the image
plane and the corresponding point in three-dimensional space, P (X,Y, Z), that:

f

Z
=
ux
X

=
uy
Y

(3.24)

21 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

which gives us:

ux = f
X

Z

uy = f
Y

Z

(3.25)

, where f is the focal length. From these equations (3.25), we can express the point x using
homogeneous coordinates when magnified by a factor λ, i.e., the distance to the camera, by:

λ

uxuy
1

 =

f 0 0
0 f 0
0 0 1

XY
Z

 (3.26)

Also, if the origin of the two-dimensional image plane does not coincide with where the
principal axis lies, i.e., where the optical axis intersects the image plane, it is necessary to
translate the point x to the desired origin. An image in a computer is usually defined as a
(m× n)-matrix, hence, the origin of the image is defined at the top left corner, whereas in the
optical image, the origin is defined at the center of the image. Let this translation determined
by the principal point be defined by (cx, cy). This gives us:

ux = f
X

Z
+ cx

uy = f
Y

Z
+ cy

(3.27)

, which can be expressed in matrix form as:

λ

uxuy
1

 =

f 0 cx
0 f cy
0 0 1

XY
Z

 (3.28)

In order to convert the point x from a measure in pixels in two-dimensional space, to a
measure in centimetres in two-dimensional optical space, we need to know the resolution of the
camera in pixels/centimetre, as well as the magnification caused by the focal length f . If we
let αx and αy define the pixel scaling factor in x−and y-direction, then to measure the point x,
its x−and y-coordinates should be multiplied with αx and αy respectively. This gives us:

λ

uxuy
1

 =

αxf sf cx
0 αyf cy
0 0 1

XY
Z

 (3.29)

, where s represent the slant factor, used when the image is not normal to the optical axis.

Putting it all together, the camera projection matrix for a first person view camera configuration
can be expressed as:

λ

uxuy
1

 =

fx s cx
0 fy cy
0 0 1

 [I3×3 0
]
Xcamera

Ycamera
Xcamera

1

 (3.30)

, where the first term on the left-hand side of the equals-sign represent the 2D-pixel values in
pixel-domain and the last factor on the right-hand side of the equation, [Xcamera, Ycamera, Zcamera, 1]T

represent the first person view in three-dimensional physical space.
Now, in the case of this project, we want to be able to recover both the camera orientation

relative to the world, as well as the translational offset by looking only at the image itself, so

22 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

if we want to map this image between different perspectives, we utilize the previously discussed
transformation of points between coordinate systems covered in section 3.2. Using a rotation
matrix and a translation vector, we can through a homogeneous transformation describe the
point x from one frame to another:

x = K

[
R3×3 t3×1

0 1

]
Xcamera (3.31)

, where K is the camera matrix containing the intrinsic parameters. Through equation 3.31, we
can recover the rotation matrix and the translation vector: R ∈ SO(3), t ∈ R3 if the K-matrix
is known through calibration.

3.3.4 Camera calibration

Before the use of computers, if the focal length of the lens (in millimetres) and the dimension of
the camera film was known, the K-matrix (as shown in equation 3.31) was computed manually.
Today we can quite easily compute the intrinsic parameters of the camera with the use of
computers. The process usually involves a provision of a set of images containing a calibration
pattern used as a point of reference or measure for the computer. The properties of the pattern
in physical space must be known. The intrinsic and extrinsic parameters can then be computed
by a least-square minimization method[35].

Cheap cameras with a large field of fiew (FOV) such as the one employed in this project (see
section 2.1.3 and 5.4) often suffer from distortion in the image. This distortion comes in the
form of radial distortion and tangential distortion. Radial distortion appears when the pixel
point is distorted proportionally to the radius from the center of the images. This can be seen
as straight lines in physical space appearing as curved in the image frame, i.e., the vanishing
line takes an elliptical shape in the image instead of a perfectly horizontal line. Radial
distortion is typically modelled as:

xdist = x(1 + k1r
2 + k2r

4 + k3r
6 + ...)

ydist = y(1 + k1r
2 + k2r

4 + k3r
6 + ...)

(3.32)

, where k is the unknown parameter that we want to find through calibration and r is the
radius from the center of the image, i.e., r2 = u2

x + u2
y. Typically, using only two coefficients

are sufficient for most calibration purposes, but for severe distortion, additional coefficients
may be used (in our case, we compute three coefficients for the radial distortion). So for each
pixel with coordinates (x, y), the position is corrected by (xdist, ydist) [25].

The tangential distortion occurs when the elements of the lens do not perfectly align with the
imaging plane and can be corrected by:

xdist = x+ [2p1xy + p2(r2 + 2x2)]

ydist = y + [p1(r2 + 2y2) + 2p2xy]
(3.33)

So through equation 3.32 and 3.33, we have a set of distortion parameters which can be
computed by following the procedure covered and documented in [37] and [41]. The results of
calibrating the camera used in this project can be found in section 5.1.

23 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

(a) Original image, unrectified (b) Rectified image

Figure 3.6: Comparison of an unrectified versus rectified image from calibration

3.4 ArUco library and relative pose estimation

In this thesis, the ArUco module developed by Rafael Muñoz and Sergio Garrido[33][14] was
employed as the library for target detection and pose estimation. The library is composed of a
set of dictionaries of different markers, each with its own unique identifier(ID) but with the
same characteristic design. An ArUco marker is a synthetic square planar marker with an
inner binary identifier matrix contained within a thick black border. Similar to a barcode or a
QR-code, each marker has its own unique identification which is determined by an inner
binary matrix.

The AruCo library is composed of several predefined dictionaries with predefined sizes,
meaning that the internal binary matrix may be of size e.g., (4× 4), (5× 5) or (6× 6). The
original ArUco dictionary utilize a (5× 5) internal binary matrix where the 1st, 3rd and 5th
column represent the parity bits of the marker. The parity bits are composed in Hamming
code such that it can detect up to two-bits error or correct a one-bit error by checking for odd-
or even parity. If the parity does not conform to the defined parity, the transmission is treated
as erroneous. The rest of the columns represent the data bits where a white part represents a
logical one and a black section in the inner matrix represents a logical zero. In the original
ArUco dictionary, since there are two columns with a total of five elements, a total of ten bits
are allocated for data. Thus, the maximum number of markers that can be encoded in the
dictionary is 210 = 1024 different markers. The identification of the marker is decoded by
reading the 2nd and 4th column from top to bottom, left to right, such that for the marker in
figure 3.7 below, the ID = 12.

24 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

(a) ArUco marker from the Original dictionary (5×
5). The identification of this marker is read as:
0000001100 in binary, which yields 4 + 8 = 12 in
decimal, hence, the ID of this marker is 12.

(b) We must have at least two perpendicular van-
ishing points to be able to compute the relative
rotation

Figure 3.7: ArUco marker from Original dictionary.

Now, in order to perform a pose estimation for the origin of the reference system of the camera
relative to the reference system of the marker, we want to know all the relative angles in R3, as
well as the translation between the two reference systems. One possible way to determine the
relative angles is through the concept of vanishing points. Through finding at least two
perpendicular vanishing points of the marker, its relative rotation can be computed if the
intrinsic parameters of the camera are known by multiplying the inverse of the camera matrix,
K, with the respective coordinates of the vanishing points in the image plane:

R = [r1, r2, r3] ∈ SO(3) (3.34)

r1 =
K−1ux

||K−1ux||

r2 =
K−1uy

||K−1uy||
r3 = r1 × r2

(3.35)

, where ux and uy represent the respective coordinates of the vanishing points in the image
plane as seen in figure 3.7b. The pan- and tilt angles of the cameras can then be computed as:
α = tan−1(r3(1)

r3(3)), β = cos−1(r3(3)). However, since we must be able to recover both the
camera orientation relative to the marker, as well as the translation by looking only at the
image itself, we utilize a homography transformation from a planar object in the physical
three-dimensional space to a planar surface in two dimensions.

As such, if we define a point in planar two-dimensional space as: x = [x, y, 0, 1], which is
projected onto the image frame to a point: m = [ux, uy, 1]T in homogeneous coordinates, we
can see that we have eliminated the third column, r3 in the rotation matrix and thereby
obtained a two-dimensional homography transform where we have:

λm = K[R, t]

uxuy
1

 (3.36)

25 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

In this way, we transform the x,y-coordinates in the planar world to a set of corresponding
x,y-coordinates in the image plane:

λm = H̃x (3.37)

, where H̃ = K[r1, r2, t]. The homography matrix, H̃, can be estimated through the ArUco
library with the help of projective transformation by taking four points in the marker frame
and compute a correspondence to them in the image plane. These points represent the four
corners of the given ArUco marker and through this four-point correspondence, the rotation
matrix, R and the translation vector, t can be computed numerically. This is done by taking
the matrix H̃ estimated from the four points in physical space to the image plane such that:

H = K−1H̃ = [r1, r2, t] (3.38)

and
r3 = r1 × r2 (3.39)

, where H is the transformation from P2 to P2

So if we are able to detect the four corners of the marker in an image taken by the camera, we
can estimate the pose of the camera relative to that marker. In order to properly detect the
marker, it should have some white space around the black border encompassing the inner
matrix. The reason behind this is that the detection algorithm that the ArUco library utilizes
cannot disambiguate the marker from its surroundings if the black border is not clearly
contrasted from its environment. The pose estimation algorithm in the ArUco library outputs
two vectors once it has detected the four corners of the marker in the image through a
thresholding process. These two vectors are the rotation vector and the translation vector,
each containing three parameters; the relative rotation between the two reference frames and
the translation between them. These six parameters are transformed though Rodrigues
formula as seen in equation 3.13 and a homogeneous transformation such that we get:

xc
yc
zc
1

 =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

xm
ym
zm
1

 (3.40)

, where [xc, yc, zc, 1]T is the homogeneous representation of the camera frame reference system,
the (4× 4)-matrix is the transformation matrix and [xm, ym, zm, 1]T is the representation of
the marker reference frame. So once we know the transformation matrix that relates these two
systems, we can use these parameters as input to the control system for controlling the
position and orientation of the quadcopter.

3.4.1 Feature based detection and the Direct Method

The ArUco library uses a filter based method for detecting the marker in the scene, but one
should also acknowledge that other methods exist. Key-frame based detection methods, such
as ORB, SIFT and SURF can prove to be reliable methods for detecting objects in the image
frame and they build upon matching features between different image frames through 2D to
2D correspondences. From this correspondence, it is possible to extract information about the
3D-representation of the camera relative to the world and obtain a pose estimation of the
camera. For example, [7] presents a monocular SLAM-based visual odometry method for
stabilizing the Crazyflie 2.0 and provide autonomous flight by utilizing a key-frame based
approach.

26 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

Feature-based detection relies on finding features in images, i.e., finding regions in the image
which exhibit maximum variation when shifted or rotated in any direction by a small amount.
Once the features in the image have been detected, each feature is given a description in order
to be able to map the features from one image to another. The description basically describes
the region around each feature, making it possible to find the same feature in two images and
align them. The feature-based detection algorithm evaluated in this thesis is ORB (Oriented
FAST and Rotated BRIEF), which builds upon the FAST keypoint detector and the BRIEF
descriptor[34] and comes available in the OpenCV library. The ORB keypoint detector and
descriptor is marketed as an efficient free alternative and improvement over the patented
algorithms SIFT and SURF which either impose a high computational cost or yield poor
approximations[34]. However, after evaluating the results of using ORB for detecting the
marker in the image (see section 5.4.1), I decided on using the ArUco library which comes with
an available detection and pose estimation function readily available, hence, the rest of this
thesis will primarily focus on detection using the direct method.

Detection of ArUco markers

The process of detecting the markers in the images taken by the camera is comprised of two
main steps. The first step involves image segmentation through local adaptive thresholding
and extraction of contours so that we can find square shaped candidates of markers in the
image. Those rectangular shapes found in the thresholded image that do not approximate to a
square gets disregarded and we proceed to the second step. Once we have found a set of
candidates for markers in the image, we analyse the inner binary matrix of each candidate by
extracting the white and black bits to determine which of them are valid markers. This is done
through computing the homography matrix and thresholding using the Otsu’s method [33] so
that perspective projection is removed and we get a binarized image containing a grid of
binary values. The bits are then analysed to determine which of the specific dictionaries the
marker belongs to. For a more in-depth description about the marker detection and
identification in ArUco, the reader is referred to [33].

Since the marker detection function relies on the color image produced by the camera as input,
the capability of the camera to produce high-quality images has a direct impact on the
performance of the marker detection, and subsequently, the pose estimation function. Firstly, a
low-resolution camera will theoretically be able to detect the marker at shorter distances away
than that of a high-resolution camera since the amount of pixels representing the marker in the
image frame is gets decreased at larger distances. Secondly, the quality of the lens and the
imaging sensor plays a major role in the overall image quality. No matter how high the
resolution of the output image is, if the lens is made from poor quality materials or is
inaccurately calibrated, the output image will still be grainy, indistinct or out of focus, which
directly impacts the ability of the marker detection function to identify the marker in the
image frame.

27 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

3.5 Control

This section will discuss some basic principles of control theory, which is the study of a
dynamical system’s reaction to a given input over time. The controller of a MAV is an
essential component because the vehicle must be able to compute its control demands to each
rotor based on its current position and orientation, as well as the target position and
orientation in real-time. The general idea when designing a control system is that the
controller should be able to compute an error signal from a measured system state value and
the desired target state. In a closed-loop system, the difference between them is then applied
as feedback to the input of the controller such that the error signal will eventually converge
exponentially to zero. One should also consider that a well-designed controller should be able
to perform this process at a certain rate whilst sustaining stability.

When evaluating the response of the system, one could look at a numerous amount of
parameters related to its behaviour in both time domain and frequency domain. However, in
order to determine all the physical parameters of the system, it is often necessary to create a
mathematical model of the system, describing all its inertial properties, drag coefficients and
thrust maps, etc., from which we can perform a number of simulations. This can prove to be a
very time-consuming process, especially when dealing with complex dynamical systems. An
extensive documentation of the system parameters of the Crazyflie 2.0 has been made
previously by Julian Förster through measurements, calculations and experiments [13], Hence,
for the rest of this thesis, we will concentrate on a non-model based approach and analysis in
time domain.

3.5.1 PID control

In this project, a set of closed-loop controllers are used to continuously compare the measured
output state of the system with the desired state, producing an error signal,
e(t) = xdesired(t)− xactual(t), and convert it into a control action to reduce the error. The error
signal e(t) may arise as a result of change in the process being controlled or because the
desired set point (SP) has changed and will always exponentially converge to zero if there
exists constants, α, β and time t0 such that for all instants of time t ≥ t0:

||e(t)|| ≤ αe−βt (3.41)

A closed-loop controller differ from an open-loop controller in that a feedback from the output
of the process being controlled is used to modify the input signal such that the system
maintains the desired state, whereas in an open-loop controller, the input to the controller is
independent of the system output.

The proportional-integral-derivative controller (PID controller) is a type of closed-loop
controller and is one of the most frequently used controllers in the industry. As its name
suggests, the PID controller consists of three correcting terms; a proportional part, a derivative
part and an integrating part. These terms are summed to calculate the output of the PID
controller, u(t), which is sent as input to the system. The system that we wish to control is
commonly referred to as a plant or process. A schematic representation of a PID controller
with a feedback loop can be seen in figure 3.8 below.

28 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

Figure 3.8: Block diagram of a PID controller in a feedback loop. sp(t) is the desired set point,
e(t) is the error signal, u(t) is the output from the PID controller and y(t) is the measured value
of the process being controlled.

When combining all three terms, the equation describing the action of the controller can be
written as:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t) (3.42)

, where Kp is the proportionality constant, Ki is the integral constant, Kd is the derivative
constant and τ is the variable of integration. Through taking the Laplace transform of
equation 3.42, we get:

GPID(s) = K(1 +
1

Tis
+ Tds) (3.43)

, where K is the gain constant, Ti is the integral time and Td denote the derivative time.

The proportional part of the control signal is directly proportional to the size of the error,
meaning that the gain Kp governs the reaction to the current error. Generally, an increase of
the proportional gain will allow for a faster control system. However, if it is set too high, the
process will exhibit oscillations and may eventually become unstable.

The integral component of the PID controller reacts to the accumulation of recent errors over
time. This means that the integral response will increase over time unless the error remains at
zero, thus, driving the remaining difference between the set point and the state of the process
to zero. The remaining difference between the set point and the state of the process is referred
to as the steady-state error. For a process that is in itself non-integrating, meaning that it
accumulates its input up until it has reached a point of equilibrium, a controller with an
integral part is required in order to fully drive the steady-state error to zero in the presence of
noise[38].

The derivative part of the controller output is proportional to the rate of change with time of
the error signal and can be thought of as the damper of the control signal, with the purpose of
regulating the speed of the system and increase its stability. However, because the derivative
part looks at the slope of the error signal over time, if its respective constant of proportionality,
Kd, is set to high, the system may become very sensitive to high-frequency noise and may
cause the system to become unstable. As such, careful tuning of all three parameters, Kp,Ki

and Kd must be performed in order to have the system behave in a favourable way.

29 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

PID Gain Tuning

Finding optimal values of the proportional constants for a system that we have no direct
knowledge of is not a trivial task. If we know the transfer function of the system that we want
to control, we could simulate the system with various gain values and evaluate the response
from the given set of parameters. However, this requires complete knowledge of the real
system and the environment in which it operates in because the response of any physical
system will in some degree deviate from the ideal system simulation. Since we are adopting a
non-model based approach, we will resort to finding the gain values from analysing the system
output as a function of time from experiments.

Various tuning methods have been proposed since the formulation of the PID controller was
presented by Nicholas Minorsky in 1922[6] and an example of two commonly known heuristic
tuning methods are the Ziegler-Nichols method and the AMIGO-method. Both of these
methods can be implemented in two different ways, either through gradually increasing the
proportional gain until the system begins to oscillate and then analyse the system output, or
by applying a unit step to the system and evaluate the system step response. Through the step
response, we can get information about the stability of the dynamical system as well as its
ability to reach a stationary state when a given input signal is applied. Note that directly
applying these methods may not yield parameter values that give us perfect regulation, but
some manual tuning is often required in order to have the system behave in a desirable way.

In order to dimension the gain parameters, we need to define some metrics that can be used to
characterize a well-regulated system. Firstly, the most basic requirement of the controller is
Stability, which means that the error signal, e(t), must at some point converge to zero (as
described in equation 3.41) and exhibit minimal oscillations. Secondly, we want the system to
behave in a desirable way with regard to external disturbances and reach the commanded
set-point within the required time and minimize the steady state error. We can model the
response of the controller through the following metrics when the system is subject to a step
reference change:

• L: Dead Time, i.e., the time delay from when the controller output is issued to when
the process begins its initial response.

• T63%: Time constant defined at the elapsed time from the beginning of the step, to 63%
of the change in reference, after the dead time, L has elapsed.

• K = ∆y
∆u : Static gain, i.e., the ratio between the system output, y and the constant input,

u at steady state.

30 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

Figure 3.9: Example step response of a system with transfer function: H(s) = e−5s 1.4
2.4s2+s+2

,
indicating the time constant, T63% and dead time, L.

Before we start tuning the PID controller, we should also define the intentions of the controller
in terms of how we want the system to behave by:

• Rise Time: The time required for the error signal, e(t), to reach between 10% and 90%
from the initial step to a steady state.

• Overshoot: The peak magnitude of the error signal, e(t), after the initial breach of the
reference step. Commonly denoted in terms of percentage.

• Steady State Error: The magnitude of the error signal, e(t) after the system has
converged to its steady state.

• Settling time: The elapsed time between the initial system response and the steady
state response which remains within ±5% in terms of magnitude of the final system
output.

Ziegler-Nichols Method

In the 1940s, John G. Ziegler and Nathaniel B. Nichols proposed a set of rules for determining
the values of the proportional constants, Kp, Ki and Kd through analysis of the transient step
response of a plant [6]. Through knowledge of the parameters, K,L and T100% as described in
section 3.5.1, the respective gains can through the Zieger-Nichols method be calculated as:

Table 3.1: Calculations of parameters for a PID controller from Ziegler-Nichols step response
method:

K Ti Td
1.2T100%
KL 2L L

2

, where Ti is the integral time and Td is the derivative time (as in equation 3.43), such that:

Kp = K

Ki =
K

Ti
Kd = K · Td

(3.44)

31 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

Note that Ziegler-Nichols method uses the time parameter T100%, which denote the time of
which it takes the step response to reach 100% of the reference change, rather than 63%.

The AMIGO Method

AMIGO is an abbreviation for Approximate M-constrained Integral Gain Optimisation and was
presented by T. Hägglund and K. J. Åström in 2002 as an improvement to the Ziegler-Nichols
method with significantly better performance. It is used to calculate the proportional parameters
in a similar fashion to the procedure used in the Zieger-Nichols method and is applicable for any
system that can be modelled as a first order system with dead time (FOPTD) or integrating with
dead time [32][15]. Through measuring the parameters, K, L and T63% from the step response
of the system, the parameters for the process can be calculated as:

Table 3.2: Calculations of parameters for a PID controller from the AMIGO step response
method:

k Ti Td

1
K (0.2 + 0.45T63%L) 0.4L+0.8T63%

L+0.1T63%
L 0.5LT63%

0.3L+T63%

, and the respective gains, Kp, Ki and Kd can subsequently be calculated following equation
3.44 by letting k = K.

3.5.2 Kalman filters

Through the ArUco library (discussed in section 3.4), the target marker can be detected and
validated and the pose of the camera relative to that marker can be computed. The pose of
the camera relative to the detected marker is then given as input to the control system so that
the MAV may align itself such that the y-axis of the body fixed frame of the quadrotor lies
collinear with the z-axis of the reference frame of the detected marker. However, because of
the noise introduced by e.g., the limited capabilities of the camera, transmission losses,
vibrations in the reference frame of the quadrotor or by loss of detection, we require a method
for estimating the relative pose of the MAV given the incomplete or noisy data from the
images taken by the camera.

The Kalman filter, named after its author, Rudolf E. Kálmán (1960)[40], is an effective
recursive filter or algorithm that provides an optimal estimation of unknown variables from
noisy or inaccurate measurement data, hence, the word filter amounts to not only cleaning up
the measured data, but also projecting the measurement onto a state estimate. The Kalman
filter addresses the problem of predicting the state of a dynamical system at discrete time step,
k, given measurements from the current state at time step k − 1 and its uncertainty matrix.
This section will cover the basics of the Linear Kalman Filter as it is the one implemented in
this project (see section 4.7.2), but note also that extensions and improvements to this method
have been developed, such as the Extended Kalman filter(EKF) and the Unscented Kalman
filter(UKF) which are used for non-linear systems where the standard Kalman filter is not
sufficient.

32 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

The linear Kalman filter

The linear Kalman filter is a discrete time algorithm consisting of a prediction and a
measurement update step which can be run independently from one another. If we assume a
current state of our system, xk, containing elements describing its position, p and velocity, v,
as:

xk = (p,v) (3.45)

,where subscript k indicates the current discrete time step, then the Kalman filter will assume
a correlation between the elements contained in xk, captured by a covariance matrix, P k. It
will then produce an estimate, x̂k from the previously estimated state, x̂k−1, the covariance
matrix and the current measurement from time step k for the conditional probability that the
error between the measured and estimated state is Gaussian distributed with a mean value µ
and variance σ2, i.e., the prediction step will project the current state and error covariance
forward in time to obtain the a priori estimates for the next time step. The measurement
update step then feeds back the measurement into the a priori estimate to obtain an a
posteriori estimate [6].

Figure 3.10: Probability density function of state estimates and measurements displaying how
the measured state is combined with the predicted state estimate, x̂k in order to produce an
optimal state estimate, x̂′k.

We make this possible by taking each point in our original estimate and move it to a new
predicted point, governed by the parameters that dictate how the system would behave if that
original estimate was correct. The prediction step can be represented by a state transition
matrix, F k:

F k =

[
1 ∆t
0 1

]
(3.46)

and:

x̂k =

{
pk = pk−1 + ∆tvk−1

vk = vk−1

(3.47)

This gives us the state estimate:

x̂k =

[
1 ∆t
0 1

]
x̂k−1 = F kx̂k−1 (3.48)

So for each time we want to update the covariance matrix, since for a general case where
Cov(Ax) = AΣAT , where Σ denote a covariance matrix, we get that:

x̂k = F kx̂k−1

P k = F kP k−1F k−1

(3.49)

33 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

This however only holds true for a system where the velocity is constant and does not account
for any acceleration the system may carry. So if we assume that we expect an acceleration, α,
we get:

x̂k =

{
pk = pk−1 + ∆tvk−1 + 1

2α∆t2

vk = vk−1 + α∆t
(3.50)

Or in matrix form:

x̂k = F kx̂k−1 +

[
∆t2

∆t

]
α = F kx̂k−1 + Bkuk (3.51)

, where Bk is the control matrix and uk is the control vector used as input to the system.

The above equation (3.51) would hold for an ideal system without any external uncertainty,
but real systems do in most cases operate in environments within the presence of unknown
external forces, modelled as noise. To overcome this issue, we treat these external influences as
noise with covariance, Q, which we add after every prediction step:

x̂k = F kx̂k−1 + Bkuk

P k = F kP k−1F
T
k + Qk

(3.52)

So in summary, the optimal state estimate, x̂k, is a prediction made from the previous optimal
state estimate, x̂k−1, with an added correction for the process noise Q which is assumed to be
normal distributed. The uncertainty is predicted from the previous uncertainty with an
addition of the environmental uncertainty. The final part of the algorithm is the measurement
part. As we receive new data, we are storing it into a vector, z, since we are often logging
more than one parameter of the system. These measurements may contain some level of noise,
here denoted as R:

zk = Hxk + Rk (3.53)

The matrix, H in equation 3.53 above is a general matrix of which we multiply the state into
to convert it into a measurement matrix, meaning that for e.g., the state xk as in equation
3.45, we set H =

[
1 0

]
. So when we receive the measurement values, we are expecting that:

ẑk−1 = Hx̂k−1 (3.54)

However, in many cases:
y = zk+1 − ẑk+1 6= 0 (3.55)

, meaning that there is often a difference, y (also commonly known as the innovation[40])
between the estimated value and the measured value. Ideally, this difference would be zero,
but in order to calculate how much the state would change based on this difference, we
incorporate it into the state estimation equation as:

x̂k+1 = Fxk + Ky (3.56)

, where K is known as the Kalman Gain, which is proportional to the ratio between the
process noise and the noise in the measurement, i.e., it is the gain we should use to create the
new optimal state estimate, x̂′k[22]. The derivation of the Kalman Gain is quite extensive and
will therefore not be covered in this thesis. The interested reader is referred to [29] and [40]
which covers the Kalman filter and its derivation in great detail. This gives us the final
equations for the update step:

x̂′k = x̂k + K ′(zk −Hkx̂k)

P ′k = P k −K ′HkP k

(3.57)

, where:
K ′ = P kH

T
k (HkP kH

T
k + Rk)

−1 (3.58)

34 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 3. THEORY

Putting it all together, the prediction part of the algorithm projects the state ahead given the
initial estimates and the parameters from the measurement update step. It also projects the
error covariance to the time step ahead given the same parameters. The measurement update
step computes the Kalman gain and updates the estimate with the measurement zk. It then
updates the error covariance and feeds it back to the prediction step. This runs as an iterative
process and can be run in real time for as many times as we like.

Figure 3.11: Diagram showing the basic operation of the Kalman filter, combining the equations
from the prediction part (equation 3.52) and the measurement update part (equations 3.58 and
3.57).

So by using this idea of a prediction followed by a correction in order to determine the state of
the system given some amount of uncertainties, the Kalman Filter can be used to model the
behaviour of any linear system with good accuracy.

35 Christoffer Karlsson, June 7, 2019

Chapter 4

Implementation

This chapter will cover the implementation of the various hardware- and software components
and the communication between the computer and the MAV, as well as the general control
structure of the whole system. We will also discuss in further detail the configuration of the
camera, implementation of the Kalman filter and PID controller, as well how the detection
algorithm and relative pose estimation was implemented in practice through OpenCV and the
ArUco library. Lastly, we will go through the algorithm that connects all components together
and allows the MAV to perform autonomous navigation and landing.

4.1 Added sensors

When using a mono- or stereo camera configuration intended for inferring information about
the environment of any robotics system, two possible options come to mind; having the
cameras mounted in a fixed position, often referred to as eye-to-hand, or in a mobile position
where the cameras are attached to the robot itself, known as eye-in-hand. One could also
consider a combination of the two with one camera mounted in a fixed position external to the
MAV and having one camera attached to the vehicle. In this project, we utilize a mono-camera
configuration for the marker detection and relative pose estimation because of the low weight,
low price and simplicity in calibration it entails.

The RGB camera is mounted in an eye-in-hand configuration as seen in figure 4.1a below,
together with the optical flow deck which is mounted to the bottom of the unit. The optical
flow sensor works as a complement for stabilizing the craft by tracking features (as described
in section 3.4.1) in the X-Y plane and their motions between frames. Thus, the overall control
structure consists of two control layers, an inner loop implemented onboard in the firmware of
the Crazyflie 2.0 that provides stabilization of the craft with input from the IMU and the
optical flow deck, and an outer control loop that provides stabilization of the MAV in terms of
position and orientation with respect to the marker. The input to the outer control loop is
determined by the relative translations and rotations computed from the images taken by the
camera mounted on top of the MAV.

36

Vision based control and landing of MAV’s CHAPTER 4. IMPLEMENTATION

(a) Monocular eye-in-hand camera configuration. (b) Optical flow deck mounted to the bottom of
the MAV

Figure 4.1: RGB-camera and optical flow deck mounted on the Crazyflie 2.0

This proves to be a very reliable combination because of the two sensors has its own
designated purpose, with the RGB camera being responsible for acquiring the data used for
computation of the relative position and orientation of the quadcopter with respect to the
marker, and the optical flow deck being responsible for maintaining stability of the craft itself
whilst in flight. This means that the stability of the vehicle does not get compromised when
the marker is not detected by the RGB-camera. Note however that solutions using only the
RGB-camera could in theory be possible, as presented by [7] and [12], but may require a
different approach than the one presented in this thesis since the detection of the marker and
pose estimation requires a heavy computational cost.

4.2 The Crazyflie Python API

In order to easily control the Crazyflie 2.0 from the computer, an API(Application
Programming Interface) for Python provided by Bitraze AB was used, giving high-level access
to a communication protocol for logging of variables and transmission of control commands to
the MAV. The computer transmits and receives data from the MAV by utilizing the
Crazyradio PA (operating at 2.4GHz) which handles communication through a packet-based
protocol and can be plugged directly into a free USB port on the computer. The received data
contains information read by the on-board sensors of the quadcopter, which in the case if this
project is the current voltage of the battery and the rotational movement along each axis of
the body fixed frame of the MAV, determined by the IMU of the quadcopter. The library is
asynchronous and is based on callbacks for events, meaning that each time we receive data, it
is required to match the time of reception with the time of computation. This is handled
through sending a time-stamp with each transmission from the MAV which can then be
synchronized with the internal clock of the computer.

However, before we can begin to send and receive data between the quadcopter and the
computer, we must initiate a link between the computer and the Crazyflie 2.0 that we want to
connect to. The API allows us to scan for available interfaces and opens up a communication
link between the Crazyradio PA and the desired Crazyflie 2.0. Once we have the established
the communication link, a log configuration must be written to the firmware of the Crazyflie
2.0. This configuration contains information about what variables we are interested in
receiving in real time from the MAV and at which period they should be logged. Each
log-packet is limited to a maximum of 32 bytes, giving us access to about 14 different
variables. This is more than sufficient for the purpose of this project, since we are primarily
interested in the roll(Φ), pitch(Θ), yaw(Ψ) and the current battery level. When the
configuration is set up and validated, it is written to the firmware and sends back the data to
the computer each time we initiate the callback through the logging framework.

37 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 4. IMPLEMENTATION

4.3 General control structure

After having discussed the principles of obtaining data from the different sensors, it’s worth
outlining the general architecture of the system. In summary, the computer acting as the
ground station receives the images from the RGB-camera in the form of a continuous video
feed through analogue transmission over the 5.8GHz band and it can perform a two-way
communication with the Crazyflie 2.0 through the Crazyradio PA, logging data and sending
control signals to the vehicle. Through the ArUco library, each obtained image frame is
processed in the computer and once a marker has been detected by the algorithm, the pose of
the quadcopter relative to that marker in that image frame is calculated and is fed to a
Kalman filter. The Kalman filter makes an optimal estimation of the relative pose of the MAV,
given the previous state data, the measurement data and the error covariance matrix. An error
signal is then computed and the PID controllers output the commanded control signal to the
Crazyflie 2.0 in order for the MAV to align and position itself towards the marker.

The control signals from the PID controllers is comprised of the relative yaw(Ψ)-angle and
translation in x- and z-direction, x defining the horizontal alignment offset of the quadrotor in
the world frame and z defining the distance between the detected marker and the quadrotor in
the world frame in centimetres. The translation in y-direction is intentionally left out because
we do not want the quadcopter to fall to the same height as the marker before we have
initiated the landing procedure. Figure 4.2 below gives a basic idea of the overall control
structure with some simplifications.

(a) Block diagram displaying the simplified con-
trol structure of the system. The components con-
tained within the blue dotted line define operations
that occur in the computer external to the MAV

(b) Physical representation of the system architec-
ture

Figure 4.2: Overall system architecture

Ideally, all computations should be done on-board, eliminating the need of an external
computer which will introduce a time delay in the system due to e.g., time loss in transmission
and processing. However, having all computations made on-board may in the case of this
platform require extensive hardware modifications because of its low weight and limited
computation power. Therefore, it was decided to have an external computer do all the heavy
computations.

38 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 4. IMPLEMENTATION

On-board Control Architecture

In order to get a better understanding of the already implemented controllers that comes in
the stock firmware of the Crazyflie 2.0, we will in this section give a brief overview over the
on-board control architecture of the MAV. The vision based control system that is
implemented in this project computes the control demands which are given as input to the
on-board controller on the vehicle in order to regulate its position and attitude, meaning that
we could consider the whole system as a cascaded control structure where the controllers
external to the MAV itself feed the input to the on-board controllers.

Figure 4.3: Block diagram of the on-board control architecture. Image courtesy of Bitcraze AB.

The on-board controller consists of two PID controllers in cascade, as can be seen in figure 4.3
above. A rule of thumb for cascaded PID controllers is that in order to have a stable and
robust control scheme, the inner loop should operate at a higher frequency than the outer
loop. If the outer loop runs at a lower frequency than the inner loop, synchronization problems
may occur which entails in that the steady state value of the outer loop is reached before the
inner loop has computed its output response, causing instability[17]. In this case, the on-board
attitude and rate controllers operate at 250Hz and 500Hz respectively and the off-board
controllers operate at about 10Hz.

39 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 4. IMPLEMENTATION

4.4 Camera calibration using ArUco

Before we can begin using the ArUco library for marker detection and pose estimation, the
camera must be calibrated in order to be able to recover information about the size of the
markers in world units and determine the pose of the camera in the scene with good accuracy.
The ArUco module provides this option through OpenCV from which we can obtain the
camera intrinsic parameters and the distortion coefficients. The procedure of calibrating the
camera needs only to be done once since the properties of the camera remain unchanged unless
we change its physical configuration by e.g., replacing the lens.

Conventionally, the camera is calibrated by providing multiple images of a calibration pattern.
In many applications, the calibration pattern comes in the form of a checkerboard with known
3D world points from which the corresponding 2D image points are calculated. Using this 3D
to 2D correspondence, it is possible to solve for the camera parameters. This same approach is
used in this project but with the difference being that the calibration is performed based on
finding the corners of multiple ArUco markers set up in a grid. The ArUco module also
provides a second option where the ArUco markers are set up in a checkerboard pattern,
known as a ChArUco Board. The benefit of using ChArUco or the ArUco board rather than
the traditional checkerboard patters is that they allow for partial views and occlusions in the
image, meaning that not all corners need to be visible in all the viewpoints. OpenCV
recommends using the ChArUco corners approach[23] because of its higher accuracy, however,
the ArUco approach has proved to be sufficient for the scope of this project.

Figure 4.4: The ArUco Board used during calibration. It has five rows and four columns and
the identifiers of each marker in the board ranges from 0 to 19.

The ArUco board may also be used for post-calibration pose estimation since the obtained
pose from a detected board of markers is usually more accurate than of a single marker. This
is because when using a set of independent markers, the pose of each marker can be
individually estimated, providing a higher amount of 3D to 2D point correspondences. This
also implies that partial occlusions of the board can take place without significantly impacting
the performance of the pose estimation algorithm. However, because of the low resolution of
the camera used in this project, using an ArUco board for pose estimation during flight is not
feasible. The board would have to be very large in order for the vision system to properly
detect and validate the markers at a larger distance, for which reason, the decision fell on
detection of single markers during flight.

40 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 4. IMPLEMENTATION

4.5 Marker creation and detection using the ArUco module

As previously mentioned in section 3.4, the ArUco library allows for a selection amongst a set
of hardcoded dictionaries, namely the ARUCO MIP 25h7, ARUCO MIP 16h3, and
ARUCO MIP 36h12, but also allows for custom dictionaries. When choosing a dictionary, one
should consider that the number of bits contained in the marker will govern the distance of
which it may be detected, e.g., a marker with an internal binary matrix of size 4× 4 will be
less difficult to detect and less prone to erroneous detection at a larger distance, than say a
marker with an internal matrix of 6× 6. During the development of the ArUco library, it was
concluded that the ARUCO MIP 36h12(6x6) was the optimal dictionary considering the
trade-off between robustness and size [26], which is the reason this specific dictionary was
employed in this project.

When generating the marker, we should also consider the quantity of markers that we want to
be able to detect. The ARUCO MIP 36h12 is a 36 bit dictionary and can be set to hold a
maximum of one thousand valid markers, which is more than enough for this project. Lastly,
we should define the size of the marker before we are ready to print it and place it in the
environment around the MAV. In this case, the marker size was set to 200× 200 millimetres.
Knowing the physical dimensions of the marker is very important because an inaccurate
3D-to-2D correspondence will yield an inaccurate pose estimation of the camera. After having
defined and printed the markers, the side length of the markers were measured and we are
ready to begin implementing ArUco library into the code.

Given that we have calibrated the camera such that we have obtained information about the
K-matrix that holds the elements describing the focal length of the camera, its optical center
and the slant factor (see section 3.3.3), and information about the camera distortion
coefficients (see section 3.3.4), the image taken by the camera can be rectified and interpolated
in order to remove any distortion effects in the image before it is given as input to the
detection algorithm. The detector also requires that the input image is first converted to a
grayscale representation of the original color image. The detector function will then return a
list of all corners found for each detected marker, its respective identifier and an array
containing information about the rejected image points corresponding to detected squares in
the image that do not present a valid codification.

4.6 Relative pose estimation

When the four corners of the marker have been detected and have been validated with the
identifier that we want to track, the pose of the camera can be estimated through a
homography transformation function. The function returns the transformation as two vectors;
one vector holding elements describing the translation between the reference frame of the
marker and the camera reference frame, and one vector holding the elements describing the
relative rotation between the two. The function relies on the theory discussed in section 3.3.3
and 3.4 and the problem of pose estimation is often referred to as the Perspective-n-Point or
PNP -problem in computer vision. OpenCV has implemented this as a method called
solvePNP() in Python which provides several algorithms to solve for the relative pose by
Direct linear transformation(DLT) or by the Levenberg-Marquard optimization-method[37].

Once we have obtained the rotation and translation vectors, the next step is to determine the
rotation matrix, Rzyx, which holds the rotation between the two reference frames in a similar
fashion as seen in equation 3.12. By using Rodrigues formula (equation 3.13) , the rotation
matrix can be calculated and its respective Euler angles can be computed through following
the procedure as noted in equations 3.17 through 3.19.

41 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 4. IMPLEMENTATION

4.7 Signal filtering

Measurements taken from real world systems do often contain some level of noise due to e.g.,
vibrations in the system or electromagnetic interference (EMI). In order to reduce the
unwanted features in the signals that we receive from the IMU and the camera sensor, we
utilize two types of filters in this thesis; A Moving Average Filter and a Kalman filter. Note
that the latter is not only used for filtering out noise present in the signal, but also for
providing estimations about unknown parameters when given incomplete or corrupt detection
of the target marker.

4.7.1 Moving Average Filter

The moving average filter works by simply taking m number of samples of the streaming data
and averaging them over a period of time. The moving average filter can be thought of as a
special case of the regular FIR(Finite Impulse Response)-filter and computes the average of
the input signal with a finite sliding window:

MovingAvg =
x[n] + x[n− 1] + ...+ x[n−m]

m+ 1
(4.1)

This allows us to smooth out the noise in the streamed sensor data, as can be seen in figure 4.5
below. Note however that the size of the sliding window, m must be defined carefully as very
large values of m will yield a very slowly decaying or increasing filtered output which may
decrease the performance of the overall system.

(a) Window size: m = 10. (b) Window size: m = 60.

Figure 4.5: An example of the moving average filter in action with different defined window sizes

In this example, the Crazyflie 2.0 was placed in a stationary position and the rotation about
its z-axis was measured by the IMU for ten seconds. The data was streamed in real-time to the
computer and logged in memory. As is obvious upon inspection of figure 4.5, by using a small
window size, the filtered output signal follows the raw data signal through its peaks and
valleys, but increasing the window size yields a smoothed output signal by suppressing sudden
changes in the signal.

42 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 4. IMPLEMENTATION

4.7.2 Implementation of Kalman filter

The data that we are looking to estimate and filter in the case of this project is the relative
yaw angle (Ψ) and the translation CtM between the body fixed frame of the quadrotor and the
reference frame of the detected marker, meaning that we need to define the state vector
holding the elements: CxM = {Ψ, Ψ̇, tx, ṫx, tz, ṫz, ty, ṫy}, where the leading superscript C is the
camera reference frame which is assumed to have its axes lie collinear and with zero translation
in relation to the reference frame of the MAV for simplification. Subscript M denote the
reference frame of the marker. Having a state vector containing eight elements imply that we
need a state transition vector initially defined as:

F k =

1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

(4.2)

, where each non-zero element above the diagonal in each column of the matrix defines the
time ∆t between the states. The measurement matrix, H is then initiated as:

H =

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 (4.3)

, where a non-zero value represents the elements of which we want to measure and estimate.
Thereafter, we define the uncertainty matrix, R = k1In×n, where k1 is the uncertainty factor
and n is the number of parameters that we want to estimate, in this case four. Lastly, we
define the process noise matrix, Q = k2I2n×2n, where k2 is a constant determining the
magnitude of the process noise.

Each measurement we make is given as input the Kalman filter together with the previous
estimated state and the calculated error covariance matrix. This is an iterative process and the
Kalman filter gets updated with a new state estimate for each iteration. However, having the
filter defined in this way implies that we are expecting a constant velocity, meaning that we
have not accounted for any acceleration. This means that if the detected marker exhibit rapid
movement in the image frame and detection is suddenly lost for an amount of frames, since the
control signal to the MAV relies on the estimated data given by the Kalman filter, it would
follow a linear motion proportional to the estimated velocity. One way to solve this would be
to instead implement an extended Kalman filter (EKF), however, I opted for a different
approach where if the desired marker has not been detected for n number of frames in a row,
the velocity for each state element is exponentially decreased such that for each time step,
kn ≤ nmax, where kn denote a time step with an undetected marker:

x̂′kn(vk) = x̂′kn(vk−1)α (4.4)

, and α denote the diminishing factor. Because of how the whole vision based control system is
implemented, the time required for computation is one of the largest bottlenecks in the whole
system, so using this method instead of implementing the EKF will yield a lower
computational cost and has proved to be sufficient for the scope of this project.

43 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 4. IMPLEMENTATION

4.8 PID control

As mentioned in section 4.1, two main controllers are used in this system, one that runs
internally in the firmware of the Crazyflie 2.0 and one set that runs in the computer and sends
the commanded trajectory to the MAV, determined by the computed relative pose estimation.
The set of PID controllers that run externally to the MAV has three different command
variables, the relative yaw angle and translation in x- and z direction, hence, three PID
controllers are implemented in the software. These controllers continuously compute the error
signals as the difference between the desired setpoint and the measured value of the current
pose of the quadcopter relative to the marker and thereafter applies a correction based on the
proportional, integral and derivative terms for each controller.

4.8.1 Tuning the PID controllers

In order to have the system operate in a stable and desirable way, each controller must be
tuned by defining values for the proportional gains, Kp,Ki and Kd. This was achieved by
evaluating the step response for each of the three controllers through experiments. The
AMIGO method was chosen as the primary tuning method as it has been proven to be a
reliable method for tuning the PID controllers of the Crazyflie 2.0 in previous work by [17].

Each controller was tuned with the AMIGO method separately by turning off the other
controllers whilst focusing on one controller at the time. After having obtained values of the
dead time, L, the time constant, T63% and the static gain, K, the gains were calculated by
following the procedure described in section 3.5.1. However, this gives us only an indication of
feasible values of the respective gains and requires some additional manual tuning. By
evaluating the step response in terms of rise-time, overshoot, settling time and steady state
error, following table 4.1 below gives us a proposal of how to continue tuning each parameter
manually:

Table 4.1: Effects of independent tuning by increasing the gains, Kp,Ki and Kd, in credit to
[19].

Gain Rise time Overshoot Settling time Steady-State
Error

Stability

Kp decrease increase small change decrease degrade
Ki decrease increase increase eliminate degrade
Kd increase decrease decrease - Improve for small values of Kd

For safety reasons, a limit to a maximum velocity for the MAV was set. All experiments were
conducted in a very small area, meaning that having the quadcopter move rapidly in either
direction could induce a hazard to both the drone itself and its surroundings. The translational
velocity limitation was set to 8cm/second and the angular velocity was limited to about
90degrees/second, which was taken into consideration when performing the manual tuning.

44 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 4. IMPLEMENTATION

4.9 Application

Once the MAV is in flight and has detected and validated the marker in its surroundings
through information captured by the on-board camera, command signals will be sent to the
vehicle such that it orients itself towards the target and it will stay locked on the target for a
certain time before it begins to approach the target, i.e., a commanded signal is sent from the
computer to the quadcopter containing the translation in the z-axis of the camera (see figure
3.4) relative the detected marker. The time the quadcopter stays locked on target and in hover
can easily be changed by modifying the target lock-time defined as a constant in the source
code (see Appendix A). The landing process involves a linear motion towards the marker with
constant velocity and when the MAV has reached within a defined vicinity of the marker, it
stops the linear motion and slowly descends until it turns off all four motors. This whole
process can be seen as illustrated in figure 4.6 below.

Figure 4.6: Flow diagram of the application

The main loop of the system is contained within the blue section in figure 4.6 and the
initialization step of the whole process lies outside the blue section. The whole process is
comprised of four main state conditions that have to be fulfilled in order to move on to the
next stage in the process. The first state takes into account that the battery level is above a
certain threshold and that the link quality between the computer and the quadcopter is
sufficient. If every condition is fulfilled, a signal is sent to the Crazyflie 2.0, commanding it to

45 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 4. IMPLEMENTATION

take off and hover at a predefined height. Given that the quadcopter remains stable after take
off and is capable of receiving command signals and transmitting data back to the computer,
we check that the images received by the on-board camera are not corrupt and we proceed into
the main loop. The first step in the main loop captures the information received by the
on-board camera sensor and are transmitted through wireless communication to the computer
where the images get rectified and put through the ArUco marker detector function. This
function also validates the detected marker identification and computes the relative rotation
and translation between the MAV and the marker reference frame.

The output data from the detector function is then filtered through a Kalman filter which also
estimates the relative pose of the camera if the detection gets lost for a number of frames, as
described in section 4.7.2. The PID control signals are then computed and sent to the MAV
and the process repeats itself until the vehicle has locked in its position and attitude towards
the marker and has remained locked on target for a given time. When these conditions have
been fulfilled, the quadcopter is commanded to move towards the marker until it has reached
within a certain distance towards the marker. Finally, as this distance has been reached, it is
commanded to land and turn off power to all four motors.

With this implementation, the frequency of outer control loop that computes the control
demands to the Crazyflie 2.0 is dependant on the overall system performance, meaning that
the time it takes for the application to transmit a control signal to the MAV is directly linked
to the processing speed of the computer, which in this case is the bottle-neck in the whole
application. We are able to receive data from the MAV at a much higher rate than the
computer is able to compute and transmit the control demands back to the vehicle. The main
control loop in this application runs at a rate of about 10Hz, meaning that we are able to
update the state of the vehicle 10 times per second. By increasing the speed of the control
loop, we could potentially see a significant improvement in the overall performance of the
vision based control system. The results of implementing and tuning the control system will be
covered in the following chapter.

46 Christoffer Karlsson, June 7, 2019

Chapter 5

Results and evaluation

Ths chapter will cover the results of the experiments conducted during development of the vision
system. We will also discuss the outcome from each experiment and evaluate the results, as well
as discuss some of the underlying causes of the outcome and possible ways of improving the
results.

5.1 Camera calibration

Through following the process as described in section 4.4, the camera intrinsic parameters and
distortion coefficients were estimated by providing 85 different images of the ArUco board
taken from various angles to the calibration function. The function detects the four corners
around each marker in the board and estimates the camera parameters from which each image
can be undistorted and we are given a set of corresponding translation and rotation vectors
from each image. This allows us to re-project the corner points in the image and we can
evaluate the performance of the calibration through measuring the average re-projection error.
The re-projection error gives us a good approximation of the accuracy of the calibration and is
defined as the distance between the detected corner keypoint in the image and the
corresponding point in the world frame, projected in the same image. A very high average
re-projection error indicates that the confidence between points in the image frame and the
world frame is very low, meaning that the translation and rotation between the two reference
frames cannot be computed with high certainty. Therefore, during calibration, we want the
re-projection error to be as low as possible. Figure 5.1 below shows the re-projection error
after calibrating.

47

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

Figure 5.1: Re-projection error given a sample of 85 images

By looking at the calibration data, we see that the overall mean re-projection is only 0.3062
pixels, which can be considered quite good and is more than acceptable for the purposes of this
project. Using 85 sample images as input to the calibration function may be considered an
exaggeration and removing some of the samples that exhibit a large re-projection error would
lower this value significantly because providing multiple images as input to the calibration
function entails in the function computing the K-matrix for all combinations of those images
and the error is the mean between all those computed matrices. Next, it is of interest to
examine the uncertainty of each estimated parameter. By evaluating the standard deviation σ
of each estimation, we can get an idea of how accurately the camera parameters and
subsequently the frame transformation vectors could be estimated and thereby obtain a
concept of how much confidence we can have in the parameters conforming to reality. Table
5.1 below shows the elements contained in the computed camera matrix and the standard
deviation of each estimated intrinsic parameter.

Table 5.1: Results of camera calibration

Camera intrinsics from calibration

Parameter Value (pixels) σ (pixels)

Focal length (fx, fy) [248.1442, 244.0496] ± [0.2506, 0.2445]
Principal point (cx, cy) [308.4223, 2.551080] ± [0.1191, 0.1459]
Skew factor (s) -0.2630 ± 0.0403
Radial distortion [0.2141, -0.2542, -0.0708] ± [0.0014, 0.0022, 0.0010]
Tangential distortion [-0.0035, 0.0015] ± [0.0002, 0.0002]

48 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

5.2 Filtering and estimation

When implementing the Kalman filter, it was necessary to perform some initial experiments in
order to determine how it should be utilized and what parameters to set. Firstly, the filter
should be specified with the number of dimensions contained in the state vector, i.e., how
many variables we want to filter and estimate. In the case of this project, we need to keep
track of the relative yaw angle and translation in x,y and z-direction and their respective
derivatives, meaning that we need eight elements contained in the state vector along with the
4× 4 measurement matrix, H. We also need to define the state uncertainty, R and the process
noise, Q. A higher uncertainty factor will yield an output from the Kalman filter that deviates
more from the measured values by giving the internal properties of the filter a higher priority,
whilst lower values will make the filter output follow the measured values more accurately.

Figure 5.2a shows a plot over a short tracking sequence where the marker was moved in
various angles in front of the MAV whilst it was hovering and was given attitude control
signals such that it tries to always have its y-axis pointing collinear with the z-axis of the
reference frame of the marker, radiating out from its center. The green line in figure 5.2a
displays the estimated values given as output from the Kalman filter, the red line is the raw
data output from the ArUco detection and pose estimation function and the blue line is the
measured relative yaw angle of the quadcopter. As can be seen upon inspection of figure 5.2,
at time t ≈ 5.5s, the Kalman filter is able to make a good estimate of the movement of the
marker when the measurement input data is lost. Also, at t ≈ 12.5s, the detection of the
marker is lost for approximately one second and the Kalman filter predicts the movement of
the marker given the velocity at this time which gets reduced by the factor α for each iteration
until the maximum number of frames, nmax has been reached as described in section 4.7.2.

49 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

(a) Experiment 1, yaw (Ψ): The red line displays the computed relative yaw angle, the blue shows the
measured yaw angle of the vehicle and the green line is the estimated yaw angle which is transmitted
to the MAV.

(b) Experiment 2, marker center (x-direction): The blue line displays the computed values and the
green line displays the output data from the Kalman filter.

Figure 5.2: Kalman filter experiments

Similarly, in figure 5.2b, the Kalman filter was used in an experiment for tracking the center
point of the ArUco marker. In this experiment, the camera view was obscured at different
points in time (sections where the blue line in figure 5.2b is absent) and moved to a new
location. The filter was limited to output only an estimate for a maximum of 25 frames in a
row when the marker was not detected and data was sampled only when the marker was
detected or estimated by the Kalman filter, hence the peaks in the green line. Similar to the
plot in figure 5.2a, the factor α = 0.85 was set for diminishing the velocity v̂k = αv̂k−1 for each
iteration where an estimation has been made in the previous time step for a maximum nmax
number of frames.

From these experiments, it was concluded that the parameter nmax was set to high in order for
the MAV not to drift away when the marker exhibits rapid movements in the image frame. In
the following experiment (see figure 5.3), the maximum number of frames, nmax was set to
nmax = 8 for both estimation of the relative yaw angle and translation in x-direction. The

50 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

marker was moved in various directions and orientations in front of the vehicle and control
signals was sent to the MAV such that it orients itself towards the marker, just as in the
previous experiments, but this time with more aggressive displacements.

Figure 5.3: Experiment with more aggressive displacements of the marker. The blue line is the
measured yaw angle of the MAV, the line in magenta displays the commanded signal computed
through the PID controller, the dotted lines represent the estimated and measured error signal,
e(t) = Ψcmd −ΨCF , where subscript CF denotes the Crazyflie 2.0 and cmd denotes the control
signal.

Note that by displacing the marker more aggressively, the MAV takes a longer time to reach
the desired setpoint. The performance of the system in terms of the components listed in table
4.1 can be improved by proper tuning of the respective gains in the PID controllers. In the
case of this experiment, the Kp,Ki and Kd gains in the outer controllers were tuned manually
and by using the AMIGO-method presented in 3.5.1 The results from the tuning process will
be discussed in the following section (5.3).

51 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

5.3 PID Tuning

The previously mentioned AMIGO- and Ziegler Nichols tuning methods can be performed
either by intentionally putting the state where it presents oscillations around a given setpoint,
or by evaluating the output response from the system when given a defined control input. Due
to the nature of the platform that is to be regulated, it was decided to use the step response
for assessing the gains. Bringing the system into an oscillating state may be an unsafe option
because the regulation is not a linearly independent process, meaning that instability along
any of the axes of its body fixed frame may influence the stability of any other axis in that
same frame.

First, the controller for regulating the relative yaw-angle of the quadcopter was tuned. As a
starting point, it was decided to let the overshoot be at most 10% and a maximum settling
time of about 5 seconds. Figure 5.4 below shows the step response when having the MAV
placed in a position where the control signal: Ψcmd = 45◦ and at a distance of 75 centimetres
away from the marker along its z-axis. The I- and D terms in the PID controller were turned
off by setting the values: Ki = 0, Kd = 0 and letting the proportional gain, Kp = 1.0.

Figure 5.4: Step response (Ψ)

By analysing the step response, we can calculate the parameters T63%, L and the static gain,
K. Since the step response exhibits oscillations around the setpoint, the static gain was given
the value K = 1 for simplification and the the parameters L and T63% were given the values
shown in table 5.2 below:

Table 5.2: KLT parameters

K = ∆y
∆u T63% L

1.0 2.44 0.6

The respective gains were then computed by using the AMIGO-method (according to the
equations given in table 3.2). This however did not improve the response in any way, but made

52 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

the system quite unstable with significant overshoot and oscillations around the setpoint, as
can be seen in figure 5.5 below. Therefore, I opted for tuning the PID-controller for the yaw
angle manually as described in section 4.8.1. The results when using the gains calculated
through the AMIGO-method can be seen in figure 5.5 below.

Figure 5.5: Step response for the relative yaw-angle when given a control input of Ψcmd ≈ 45◦,
calculated by the ArUco marker detection and pose estimation algorithm.

Upon inspection of the step response in figure 5.5, it can be observed that after the output
having initially breached the setpoint marked as a dotted red line in the plot, the output gets
distorted and peaks down towards the setpoint before continuing oscillating. This occurs due
to measurement errors and noise present in the signal which makes the graph look distorted
and should not be considered when evaluating the overall performance of the controller, but
should be handled by the noise suppressing filters. Because tuning this particular controller
with the AMIGO-method does not prove to be reliable, it was decided to continue the tuning
process through manual adjustments.

Manual tuning was performed by initially setting the proportional gain to Kp = 1 and the rest
to zero, thereafter tuning the gains and evaluating the step response through looking at
parameters such as the overshoot, settling time and rise time which each contribute to the
overall stability. By following this process, I found that defining the gains as: Kp = 1.0,
Ki = 0.10, Kd = 0.045 proved to give satisfactory results, although, using a standalone P- or
PD controller could arguably be sufficient for the case of this project because the on-board
attitude and velocity controller compensates for any biasing caused by e.g., imbalance in the
platform or externally acting forces thanks to the optical flow deck. With these settings, the
overshoot was determined to be about 16% and the settling time to about 5 seconds for an
input step of Ψcmd = 45◦. The overshoot is slightly above the desired 10%, but the overall
performance of the controller is sufficient for the scope of this project and it was the best I
could manage. One way of decreasing this overshoot would be to lower the proportional gain
or slightly increasing the derivative gain. However, there will always be a trade-off in terms of
speed and stability.

Next, the regulator used for controlling the position of the MAV with respect to the marker in
x-direction must be tuned. The tuning process was done by following a similar procedure as

53 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

for the yaw-angle controller. The quadcopter was placed approximately 20 centimetres away in
x-direction and 75 centimetres away from the marker in z-direction (x,z in the camera reference
frame) and was then given control signals to orient itself by regulating its roll-angle such that
the marker lies in the center of the x-axis in the image frame. The initial step response with
the gains defined as: Kp = 1.0, Ki = 0 and Kd = 0 can be seen in figure 5.6 below.

Figure 5.6: Step response

After estimating the parameters, L, T63% and K, tuning with AMIGO yields results as shown
in figure 5.7. The quadcopter regulates its translation in x-direction by controlling its
roll-angle, hence the inclusion of the graph displaying the measured roll-angle.

Figure 5.7: Step response

54 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

From this result, it is obvious that the controller requires some further manual tuning. By
simply gradually decreasing the proportional gain and further tune the integral- and derivative
gains, the system response became considerably more stable but still exhibits oscillations
around the setpoint. As a countermeasure for reducing these oscillations, instead of letting the
proportional term be determined by the error, e(t), the PID controller was modified such that
the P-term is fed the current input value of the PID controller:

u(t) = K

(
βe(t)− (1− β)x+

1

Ti

∫
e(t)dt+ Td

d

dt
e(t)

)
(5.1)

, where x is the measurement, β = 0 defines the proportional-on-measurement (PonM) and
β = 1 defines the conventional way of computing the proportional on error. Note however that
by directly following the measurement as a setpoint change, only the integral mode will act on
the deviation, which may entail in a degradation in the response[31], but because we are
feeding the output signal from this outer controller into the internal controller running in the
firmware of the Crazyflie 2.0, the PonM helps in reducing the oscillations around the setpoint
and gives a smoother response. The results of using proportional-on-measurement versus
calculating the P-term by the error can be seen in figure 5.8 below.

55 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

(a) Without PonM

(b) With PonM

Figure 5.8: Step response displaying the results of using proportional-on-measurement versus
proportional-on-error for control in x-direction. The gains were defined as: Kp = 5.10, Ki = 5.40,
Kd = 0.62 for both experiments.

Finally, by using the two PID controllers for the yaw-angle and translation in x-direction in
parallel to each, an experiment was conducted where the quadcopter was placed in a position
approximately 30 centimeters away from the marker in x-direction with a 35◦ relative angle
(Ψcmd = 35◦). By having the two controllers work together in order for the MAV to orient and
position itself such that the center point of the marker lies in the center of the camera
reference frame in x-direction and the y-axis of the MAV lies collinear with the z-axis of the
marker reference frame, the results exhibit a quite stable operation and the quadcopter is able
to reach the target setpoints within a reasonable time.

56 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

(a) Step response for control in x-direction

(b) P,I,D term contributions to x-direction controller

Figure 5.9: Results of x-direction controller when working together with the controller for the
yaw-angle.

57 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

Figure 5.10: Results of yaw-angle controller when working together with the controller for motion
in x-direction

The results when the two controllers are working together can be considered to be quite
accurate with a deviation around the setpoint ΨSP of only about ±5 degrees. The x-direction
controller shows significant improvement over using a simple P-controller but still displays a
minor oscillation around the setpoint despite the use of PonM. However, the results are very
much sufficient for the scope of this project as it shows that the MAV is able to orient and
position itself relative to the target marker with only a small amount of oscillations and
overshoot. The relative translation in marker z-direction is controlled by a straightforward
P-controller which simply computes the error signal and sends the proportional error term to
the internal controller of the MAV. Because of the simple nature of the z-direction controller,
the tuning process was quite uncomplicated due to that the MAV does not have to
continuously correct itself relative to the marker in z-direction until it has locked on target as
described in section 4.9.

One way of further improving the performance of the outer controllers in the system could be
to include a feed forward term in the control loop as:

u(t) = ẍdes +Kdė(t) +Kpe(t) +Ki

∫
e(t)dt (5.2)

, which can aid in reducing the error more quickly, thus improving the speed of the response
and leave less of an error over time, though this lies in the scope of future work and will not be
evaluated during this project. Also, the performance of the control loop is dependent on the
computational capacity of the computer since the detection and pose estimation algorithm
requires a significant amount of processing time. By reducing the processing time required in
the control loop, the overall performance can be improved since it would facilitate for an
increased number of samples per second.

58 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

5.4 Detection performance

The field of view (FOV) of the camera was calculated simply by placing the camera perfectly
centred and square and facing a wall with two registration grids, placed level in height with
respect to the camera and each other. By accurately measuring the distance between the two
grids and the distance towards the camera along the principal axis, the field of view can be
calculated by simple trigonometry. By knowing the distance, y between the registration grids
and the distance, x between the wall and the camera, the angle, α between the camera

principal axis and each of the registration grids can be calculated by simply: α = tan−1
(
y/2
x

)
,

and FOV = 2α. The resultant field of view I got from these calculations and measurements
was FOV ≈ 120◦, which is slightly less than the 140◦ specified by the manufacturer of the
camera. This could be due to either slightly inaccurate measurements or because the field of
view specified by the manufacturer is estimated given other unknown variables.

As an initial experiment for evaluating the performance of the detection algorithm in the
ArUco module, an ArUco marker was placed in various angles, α ∈ [−60◦, 60◦] in front of the
camera while keeping the distance, x = 125cm as shown in figure 5.11a below constant. This
means that we cover the complete field of view of the camera and we can evaluate the ability
of the function to output a signal that indicates if the detection and verification of the marker
was successful or not. In this case, the detection function did output a signal indicating that
the detection was successful for all angles α ∈ [−60◦, 60◦].

(a) Set-up for detecting the marker when
varying the angle α and keeping x constant.

(b) ArUco marker
with ID=24 from
the 6 × 6 dictionary

Figure 5.11: Experiment configuration

In the second experiment, the angle of rotation about the marker y-axis (see figure 5.11b) was
varied in steps of 10◦, starting from 0 to 90, while keeping the camera at a constant distance
away from the marker at about x = 75centimetres, as well as the angle α = 0◦. The detection
and pose estimation algorithm was able to, with good results, estimate the angle of rotation
about the marker y-axis with only minor deviations of about ±2◦ when the detection
algorithm was running in real-time and given visual input data as a continuous data stream.
The results of the experiment can be found in table 5.3 below.

59 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

Table 5.3: Results of marker detection by vary-
ing the angle MΘ about the marker y-axis

Angle MΘ Detected Calculated angle

0◦ Yes 0.11◦

10◦ Yes 10.2◦

20◦ Yes 21.1◦

30◦ Yes 31.4◦

40◦ Yes 40.6◦

50◦ Yes 51.2◦

60◦ Yes 61.9◦

70◦ Barely 70.3◦

80◦ No -
90◦ No -

Figure 5.12: Marker detected at an angle
of 70◦. Beyond this angle, the marker can-
not be detected given the camera used in
this project. In the figure, psi rot denotes
the angle of the marker, corrected by the
relative rotation of the camera.

In this experiment, the camera was placed as centred and square as possible towards the
marker, but note that minor deviations in the measurements may have been present due to
how the experiment was conducted. The results prove however that the camera is able to
detect the marker at aggressive angles up to a maximum of about MΘ = 70◦, at which the
detection is lost for numerous amount of frames when the detection algorithm is running in
real-time. At low angles, MΘ ∈ [0, 50], the detection of the marker is quite consistent with
only a very few detection losses between frames. The calculated angle in table 5.3 is computed
through taking the average between the estimated angle in n = 10 frames given a successful
detection. The experiment was conducted only for angles 0 < MΘ < 90 because negative
angles would yield the same result as positive angles and any angle beyond 90 degrees would
imply that the identifier of the marker cannot be determined by the computer because the
inner binary matrix of the marker becomes non-existent in the image frame.

One should also note that external conditions play a huge role in the performance of the
detection algorithm. When the image taken by the camera is being processed in the detection
algorithm, it relies on segmentation through thresholding and extraction of contours, meaning
that the presence of e.g., specular reflections coming from surrounding light sources or noise
and distortions in the image originating from electromagnetic interference in the transmission
can disrupt the results. There are many ways of minimizing the influence of these interfering
factors. One possible way is to pre-process the image by identifying the disrupting segment in
the image and then filter out the noise before it is given as input to the marker detection
function. Yet, this may require an additional computational cost which could impact the
overall performance of the control loop by increasing the processing time. Therefore, it was
decided to instead minimize the influence of external factors by simply conducting the
experiments in a controlled environment.

60 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

Figure 5.13: Reflections coming from external light sources could impact the ability of the
detection algorithm to identify the marker.

Figure 5.13 shows how lighting could interfere with the detection of the marker by creating
reflections on the target which obscure its internal binary matrix. The ArUco module provides
the possibility of applying error detection and correction techniques through modifying the
function parameters that govern the marker identification by bit extraction, but one should
bare in mind that increasing the number of bits that can be corrected by the detection
function could entail in an increased amount of false positives.

The next experiment for evaluating the performance of the detection algorithm was to examine
at which distance, x (as shown in figure 5.11) the marker can be detected when placed directly
in front of the camera with zero relative rotation. The experiment was conducted by placing
the marker at various distances, x ∈ [10, 220] centimetres away from the camera in order to
study the distance computed by the pose estimation algorithm and determine the distance
interval of which the detection algorithm is able to detect and validate the marker. As
mentioned in section 4.5, the capability of marker detection and verification algorithm is
highly dependent on the size of the internal binary matrix of the marker. A marker with a low
amount of bits should theoretically be less prone to erroneous detection and allows for
detection at greater distances because of the larger size of the bits in the image frame. In order
to keep the results of the experiments consistent, the marker used is characterized by a
200mm× 200mm square with a 6× 6 internal matrix and has the identifier ID = 24.

All measurements were done in conditions where there was no rotation of the camera with
respect to the marker, i.e., CRM = I3×3 and the translation vector, CtM = [tx, ty, tz] was
computed by the ArUco pose estimation function. In this case, we are only interested in the
component tz, which holds the value of the translation along the marker z-axis between the
reference frame of the marker and the camera.

61 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

Table 5.4: Actual distance between the camera and the marker, versus the distance calculated
by the marker detection and pose estimation function

Actual distance [cm] Detected Calculated distance [cm]

10 No -
15 No -
20 Yes 20.47
25 Yes 25.20
30 Yes 30.07
35 Yes 35.63
40 Yes 40.31
45 Yes 46.09
50 Yes 51.01
55 Yes 56.83
60 Yes 61.32
65 Yes 66.22
70 Yes 71.68
75 Yes 76.58
80 Yes 81.39
85 Yes 87.65
90 Yes 92.81
95 Yes 93.50
100 Yes 109.74
105 Yes 117.08
110 Yes 114.37
115 Yes 118.60
120 Yes 127.14
125 Yes 131.91
130 Yes 133.61
135 Yes 142.08
140 Yes 146.03
145 Yes 152.53
150 Yes 157.52
155 Yes 162.04
160 Yes 168.26
165 Yes 174.42
170 Yes 181.72
175 Yes 185.17
180 Yes 188.28
185 Yes 195.72
190 Yes 204.65
195 Yes 209.36
200 Yes 213.89
205 Yes 214.09
210 Yes 219.63
215 No -
220 No -

62 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

Figure 5.14: The difference between the calculated distance tz and the actual measured distance

As we can see from the graph in figure 5.14 which holds the values given in table 5.4, at short
distances, the pose estimation algorithm is able to estimate the distance between the camera
and the marker with only a very small amount of deviation from the actual value
(approximately ±2centimetres) and the error in the estimated distance increases with the
distance. When the marker is placed at the distance limit of detection (about 2 metres), the
pose estimation function outputs a value of tz with a maximum deviation of about 14
centimetres. However, looking at the result from this experiments in terms of absolute units
does not tell the whole truth since we have to account for the perspective geometry. A more
accurate interpretation of the performance of the estimation in translation would be to
consider the error in terms of the ratio between the actual distance and the distance calculated
by the pose estimation function: Error% = ||100 · (dcalculateddactual

− 1)||

Figure 5.15: The difference between the actual and calculated distance between the camera and
the marker in percent

By analysing the results shown in figure 5.15, it can be observed that the error as a percentage
follows an upwards trend when the distance between the camera and the marker is increased,
similar to when the error was evaluated in terms of absolute units. At the distance of about 1
meter, the error peaks up to around 10%, which is is most probably a computational error that
comes as a result of occlusions of the marker in the image frame, making the filter average the
relative pose of the marker through a broad-ranging data set, resulting in a large variance and
thus, a larger error. I have not been able to reproduce this large error at the same distance in
other experiments.

63 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

Nevertheless, the results show that the system is able to detect the marker at distances
tz ∈ [20, 210] centimetres. At 10-15 centimetres, the function is not able to detect the marker,
simply because with the physical marker size of 200× 200 millimetres, the projected size of the
marker is too large to fit within the image frame, thus making the marker detection function
not able to identify the marker by analysing the inner binary matrix. At tz = 20cm, the inner
binary matrix is fully visible in the image frame and the marker detection function is able to
detect and validate the marker, as well as estimate its pose with only about 2.35% error to the
actual distance. As previously discussed, this error follows an almost linear upwards trend as
the distance between the camera and the marker is increased. The reason behind this is that
because the amount of pixels representing the area of the marker in the image frame gets
decreased the further away the marker gets, the fewer pixels the function has to work with,
meaning that the function output gets more prone to systematic errors as the distance
increases.

64 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

5.4.1 ORB

As previously mentioned in section 3.4.1, the feature-based detection method ORB was
considered an option for detecting the markers in the image frame, as opposed to using the
ArUco module for detection and pose estimation. The results from experiments show however
that using ORB may not be a feasible option in the case of this project because the
performance of the detection algorithm when used for detecting codified fiducial markers at
various distances and orientations in real time were found to be much lower than for the filter
based detection method that comes with the ArUco module. ORB relies on finding and
matching features between image frames, hence it requires at least one reference image from
which it can relate and link the detected features with the images taken by the camera. Figure
5.16 shows how features can be detected and matched between two images, given both a RGB
image (allthough OpenCV uses the BGR convention for historical reasons) and a thresholded
binary image.

(a) Failed attempt at detecting the marker through ORB

(b) Successful attempt at detecting the marker through ORB

Figure 5.16: Using a feature-based method for detecting a fiducial marker requires careful ad-
justment of the detection parameters. The number of detected and matched features directly
influence the performance of the vision system.

The coloured lines radiating out from the reference image (aligned to the left in figure 5.16)
indicate the matched feature points and the blue rectangle around the marker in the same
figure indicate a successful detection. The marker was placed in the vicinity of the camera and
the ORB detection function was running in real-time. Immediately, it could be concluded that
the ORB detection would not be a viable option in the case of this project as this detection
algorithm would require an immense amount of adjustments in order to produce consistent and
reliable results. Therefore, it was decided to not put any more effort into improving the
detection through ORB, but instead focus on using detection and pose estimation through the
ArUco library which had proved to be more reliable and robust than the ORB algorithm.

65 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

5.5 Battery life characterization

The Crazyflie 2.0 has a flight time of around 7 minutes as specified on the manufacturer
website [2] when it is used in its base configuration, that is without any added peripherals or
sensors other than those that come embedded onto the platform itself. During this project, we
augment the capabilities of the MAV to perform relative pose estimation and navigation by
adding two additional sensors two the platform, namely the optical flow deck V2 and the
camera and transmitter module, which both contribute to the total weight and power
consumption of the vehicle. Therefore, it is of interest to study how the addition of these
sensors impact the total flight time of the vehicle in order to establish at what battery level
the MAV should approach the target and begin the landing procedure.

As an initial experiment, the flight time was measured first without the camera and video
transmission module mounted on the vehicle and secondly with the module mounted and
turned on, thus contributing to the effective flight time both by its net weight and by the
power required for operation. The battery was fully charged and the Crazyflie 2.0 was set to
hover in place at a constant height without any commanded inputs to move or change its
attitude other than for stabilization purposes. The vehicle was then left in the hovering state
until the battery voltage level was measured to batteryLevel < 3.0V whereby a signal was sent
to the MAV to initialise a landing procedure and the logged data was stored from memory into
a file and the results could be plotted and analysed. The results from measuring the battery
level with and without the camera module attached and (turned on) to the quadcopter can be
seen in figure 5.17 below.

Figure 5.17: Measurements of battery voltage level, with and without the attached camera- and
video transmission module. Starting with a fully charged battery and hovering until the voltage
between the positive- and negative terminals of the battery has reached 3.0 Volts. The top graph
displays the discharge in terms of percentage of the maximum voltage for each attempt.

As can be seen upon inspection of the results shown in the graph in figure 5.17, in its base
configuration, the Crazyflie 2.0 can hover in place for almost 400 seconds (which equates to
roughly 6.7 minutes) until the battery voltage level decreases below 3.0 Volts. It is however
possible for the vehicle to remain in flight even for a while longer, but for safety purposes it

66 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

was decided to let the vehicle land before a critical voltage level is reached where the motors
simply cannot produce enough thrust to keep the MAV level and stable.

When the camera and video transmission module is mounted on the Crazyflie 2.0 and turned
on, the flight time gets considerably decreased when compared to the flight time in the base
configuration. With the module attached and turned on, the flight time gets decreased by
about 28% through its contribution by power consumption for operation and weight.

Figure 5.18: Sensor readings during hover with camera and video transmission module on-board
(camera and tx-module turned off)

In the figure above (5.18), a similar experiment was conducted but this time with the camera
and transmission module mounted on-board the Crazyflie 2.0 and with the power to the
module turned off. The intention of this experiment was to assess how the battery life is
influenced by only its contribution by weight, excluding the power consumption for operation
of the module. However, at this point, the battery had reached too many charge cycles to be
able to maintain a similar operational time as for the previous experiments, making the
battery discharge more rapidly and thus decreasing the effective flight time substantially.
Therefore, we cannot compare the results between the different measurements directly, but we
can observe how other parameters influence the flight time.

As the battery level decrease, the duty cycle of the PWM signal given as input to the
MOSFET-transistors which drive the motors must increase in order to keep the vehicle in
equilibrium at the specified height because the thrust generated by each motor must add up to
support the total weight of the platform, as described through equation 3.5. The plot in figure
6.1 above shows how the duty cycle of the PWM signal increase as the battery voltage
decrease, in order to keep the quadcopter stable and at a constant height. This means that
since the thrust output from each motor will determine the position (in this case the height) of
the quadcopter, by increasing the cycle frequency, the quadcopter is able to remain in its
original pose, but will also entail in increased power consumption. We can also see from the
graph that the readings from the on-board temperature sensor increase with the time of
operation. This is interesting because it allows us to reason about the losses in the system that
appear as heat losses. The internal resistance in the battery will cause the temperature in the
battery to increase over time during operation and causes the voltage to drop, however, since
the sensor measures the ambient temperature, we cannot conclude that the increase in
temperature is subject to only the heat generated by the battery, but it may also originate
from e.g., friction, ohmic or other losses from the brushless motors which generate heat.

67 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

5.6 Targeted landing

In order to determine the performance of the vision control system for targeted landing, an
experiment was conducted where the marker was placed along a certain distance away from
the MAV and with a constant angle, α as shown in figure 5.19a. Both the marker and the
quadcopter was placed on the same initial height and a signal was transmitted to the MAV to
take off and hover above the ground at a height of 30 centimetres, whereby it captures visual
data from the camera, detects and validates the marker and calculates its current relative pose
to the marker. The goal of this experiment was to evaluate the accuracy and precision of the
control system by utilizing the visual control input for autonomous navigation towards the
detected target and landing in the vicinity of the marker.

(a) The Crazyflie 2.0 was placed at a distance of 1.5
metres away from the marker, pointing directly to the
center of the marker with an angle α = 30◦ between
the y-axis of the camera reference frame and the z-axis
of the marker reference frame.

(b) ArUco marker with ID=24 from the
6 × 6 dictionary used as target. Below
the marker lies a measurement platform
on which the MAV should land as close
to the center as possible.

Figure 5.19: Experiment configuration

Given the results from the previous experiments, we have concluded that the vision system is
able to detect and validate the marker in the image frame, as well as compute the relative pose
of the MAV, even with aggressive marker angles assuming favourable lighting conditions. The
limitations of the vision system is directly dependent on the capabilities of the camera, so the
experiment has to be confined to the capacity of the camera. Therefore, the perpendicular
distance between the MAV and the marker was set to x = 150 centimetres and the relative
angle of rotation about the marker y-axis, CΨM = α = 30◦, as shown in figure 5.19a.

When the quadcopter has found and validated the marker in the image frame, it aligns itself
such that its y-axis lies collinear with the z-axis of the marker (thus controlling its yaw-angle,
CΨ) and continues with controlling its position in x-direction by moving so that the marker
center point always lies in the center of the image frame. If the MAV is able to stay locked on
target for one second, it calculates its relative translation in marker z-direction, tz and begins
to approach the marker until it has reached 15 centimetres away, whereby it begins to descend
and finally land on the platform beneath the marker as shown in figure 5.19b. By measuring

68 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

the point of where the MAV landed in relation to the desired landing location (indicated by
the center point of the circular angle diagram), we can through these measurements argue
about the accuracy of the vision system and its performance.

The experiment was conducted with five iterations, keeping the distance x and the angle, α as
close to constant as possible between each reiteration. The position as well as the attitude of
the MAV post-landing was carefully measured and logged. The results of each observation can
be seen in table 5.5 below, where the column x > 0 indicates the offset in x-direction from the
desired landing location in positive planar x-direction, y > 0 indicate the offset in positive
planar y-direction and Ψ specifies the relative angle of rotation about the z-axis of the body
fixed frame of the quadcopter.

Table 5.5: Results of targeted landing
experiment. The mean value µ and the
standard deviation, σ is shown below
the table for each respective parame-
ter.

Distance from platform origin

x [cm] y [cm] Ψ [◦]

-7.7 1.0 0.12
7.3 -7.1 -10.67
3.5 -3.4 5.19
-6.1 0.5 0.38
3.6 9.2 1.44

µ = 0.12 µ = 0.04 µ = −0.708
σ = 5.644 σ = 5.438 σ = 5.301 Figure 5.20: Target landing diagram. Each point, Pi

on the diagram correspond to the landing point of the
MAV for each attempt.

From the results of these five iterations, we can conclude that there are some inconsistencies in
terms of both precision and accuracy. The MAV is able to land in relatively close proximity to
the center of the landing platform with a standard deviation of about σ ≈ 5.5 centimetres in
both x- and y-direction as indicated in figure 5.20, but the worst result resulted in the
quadcopter almost crashing into the target with only about five centimeters to spare. A better
camera would most probably yield a more accurate and consistent result, but considering that
the camera is at best a hobby-grade component, the results from this experiment show that it
is possible to achieve autonomous navigation and landing by using cheap and accessible
equipment.

For safety reasons and due to the small confined space where the experiment was conducted,
the velocity was limited to about 0.08 meters per second for translational movement along all
three axes of the MAV and the velocity for the relative attitude of the MAV was limited to a
maximum of 90 degrees per second. This means that the time it takes for the vehicle to change
its orientation and position relative to the marker is governed by the maximum allowed
velocity, the distance it should travel and the required change in attitude. Figure 5.21 below
shows how the vehicle changes its position and orientation and the time required for making
such a change. The blue line in the plots display the measured yaw-angle of the MAV, the line
in magenta shows the yaw-angle and the dotted lines indicate the computed and estimated
relative yaw-angle. The line red in figure 5.21 displays the difference between the computed

69 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 5. RESULTS AND EVALUATION

(and commanded) distance in x-direction which is the actual distance between the marker in
the image frame. As time passes, the vehicle performs corrections in order to make the red
line, as well as the dotted lines, converge to zero.

(a) Log-data from attempt number 4

(b) Log-data from attempt number 5

Figure 5.21: During the experiment, data containing information about the actual yaw-angle,
CΨ, as well as the commanded yaw-angle and the translation in z-direction was logged. The plots
show each data-set as a function of time when the vehicle positions and orients itself towards
the target marker before it begins to approach the target at t = 10s.

From these plots, we can see that it takes about 8-10 seconds for the vehicle to correct its
position such that the marker lies in the center of the image frame and approximately 3
seconds for the vehicle to orient itself towards the marker. Also, by looking at the commanded
yaw-angle and translation in x-direction, we notice a slight overshoot. This is unfortunately
not something I have been able to fully eliminate, but can theoretically be corrected by
improving the control system by e.g., increasing the sampling frequency of the data given as
input to the controller or by further tune the PID controllers as explained in section 5.3. Due
to the time limit of this project, improving the vision control system any further will be left to
future work.

70 Christoffer Karlsson, June 7, 2019

Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, we presented a vision based control system for the Crazyflie 2.0, incorporating a
small camera and wireless video transmitter with which we have demonstrated a method for
achieving autonomous navigation and landing towards a fiducial marker. The vision system
was designed and implemented with a sub-goal of detecting and validate a target marker in the
image frame, for which purpose the ArUco module was used. From the images containing the
detected marker, the relative pose of the MAV could be computed in real-time through a
homography transformation, which allows the vehicle to align itself towards the marker and
finally approach it and land.

The vision control system was implemented off-board, meaning that all computations related
to the vision system are done on a ground station computer which receives the video feed from
the on-board camera and handles all the heavy computations. The computer then sends the
control signals to the MAV, containing information about its relative position and orientation
towards the target marker, whereby the input control signal is handled by the on-board
controllers. In order to improve the stabilization of the vehicle whilst in flight, the Optical
Flow Deck V2 was used. This deck uses a downwards-pointing image sensor which tracks the
planar movement of the MAV above the ground in order to minimize the drift along its x- and
y-axes. The deck also utilizes a time-of-flight sensor which helps the Crazyflie 2.0 maintain its
position along its z-axis by measuring the distance to the ground.

In order to evaluate the performance of the whole system, several experiments were conducted
which indicate that the vision system as presented in this thesis will work in practice but also
leaves room for future improvements. The impact on the battery life due to the addition of the
sensors can be considered quite reasonable considering the small form factor of the vehicle.
Because of the small size of the quadcopter, the battery must be dimensioned appropriately as
well. The flight time of the Crazyflie 2.0 is about 7 minutes in its stock configuration and by
adding the optical flow deck and the camera- and video transmitter module, the flight time
gets reduced by about 28%. For a larger vehicle with a larger battery carrying the same
sensors, the reduction in effective flight time due to the addition of the sensors would be
substantially less. However, the camera was chosen in accordance with the price, size and
weight of the chosen platform, hence, it was necessary to choose a camera that was as cheap,
light-weight and small as possible. This meant that we had to make a compromise in terms of
performance of the vision system because a better camera would most certainly be able to
improve the overall performance of the whole system due to higher image quality, but could
also increase the payload or would be more expensive.

Through the results of the conducted experiments, we can conclude that the implemented
vision system allows for the MAV to detect, navigate towards and land in relatively close

71

Vision based control and landing of MAV’s CHAPTER 6. CONCLUSION AND FUTURE WORK

proximity of the target marker during indoors conditions. In the experiment discussed in
section 5.6, the vehicle was able to locate and land on the desired location within a radius of
about 10 centimetres from the center-point of the landing pad given the five attempts. The
results show that there is definitely room for further development and improvements, but
because of the small size of the vehicle and the relatively cheap components used, the results
can be considered quite good and has great potential for usage in various applications, such as
remote observation of otherwise inaccessible areas, transportation or search tasks. Therefore,
by publishing the source code of the project, we aim to inspire and encourage future
development and research around autonomous MAVs. Parts of the main software for the vision
system can be found in appendix A and the full source code of the project is released as open
source on[18].

6.2 Future Work

During development of the vision based control system for the Crazyflie 2.0, a number of
interesting approaches came to mind which may be viable for improving the performance or
increasing the functionality of the overall system, which will be further discussed in this
section.

In the current state of the project, the system has a few limitations. Firstly, as mentioned in
section 5.3, the outer controller makes the quadcopter slightly oscillate around the set-point,
even in its steady-state. One way of minimizing or eliminating these oscillations would be to
include a feed-forward term in the control output that can be used to estimate the output from
the controller without having to wait for the response of the controller, thus reducing the error
faster. Another way of improving the controllers would be to increase the performance of the
ArUco marker detection algorithm in terms of computational speed. Since the time required
for the detection of the marker and relative pose estimation of the camera directly influence
the performance of the controller by lowering the number of measurements that can be made
per second, decreasing the computational time would have a direct positive impact on the
overall performance of the system. Ideally, all computations should be made on-board,
meaning that we can further reduce or eliminate the time required for transmission, reception
and format conversion, thus we can also dismiss the need of having a ground station computer,
making the system fully autonomous. This would however require significant changes to be
made in the case of this platform both in terms of hardware and software because of the
limited computational power of the MAV and the application specific libraries and devices
used during this project.

The ArUco library is natively written in C++ which is generally considered faster than
Python, meaning that using C++ could potentially increase the operational speed of the
control system and thereby making the system operate in a more stable and robust manner. In
its standard form, the ArUco detection module uses adaptive thresholding to detect the
marker in the image frame, but has support for global thresholding as well, meaning that
instead of changing the threshold dynamically over the image, it operates with the same
threshold across the whole image and thereby significantly decreasing the required
computational time. This option is only natively available for the C++ programming language
and could therefore not be evaluated during this project due to time restrictions.

Furthermore, it would be very interesting to see how the vision based control system could be
extended to larger vehicles. A larger vehicle would be able to carry substantially heavier
payloads, making it capable of using superior equipment. As previously mentioned, the low
performance of the camera makes the vision system only able to detect the 6× 6 ArUco
marker within distances of about two metres, but a camera with the capability to produce

72 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s CHAPTER 6. CONCLUSION AND FUTURE WORK

images of higher quality would yield a higher performance in terms of accuracy, precision and
repeatability, thus extending the possibilities for the system to be used in other applications to
a greater extent. Another future work line could be to further increase the functionality of the
system by e.g., having it take off again after it has landed and recharged its batteries. Bitcraze
AB provides a wireless Qi-charging deck that can be directly plugged onto the pin-headers on
the Crazyflie 2.0. Through using this expansion board, the vehicle can charge its battery
without having to directly connect the battery with a cable, so incorporating this functionality
to the system could potentially mean that the vehicle can remain in flight until the battery
level has decreased below a certain threshold and then navigate towards the charging pad
through the vision based control system, recharge and then take off again.

One could also consider scenarios where the vision system can be used to detect obstacles in
the environment around the vehicle. Some key components for achieving fully autonomous
flight are that the vehicle must be able to estimate its own position and velocity in the room,
be able to compute its control demands based on its current position and target position, map
its environment and be able to compute a safe path to go from one point to another. Through
using simultaneous localization and mapping(SLAM), the MAV can localize itself in the room
and create a map of its environment. The ArUco library provides a solution to this problem by
a real-time application that can build a map of the environment around the camera through
detection of the planar markers[27], and incorporating it into this project would potentially
allow the MAV to fully localise itself in the room and thereby be able to compute a path in the
world frame.

Figure 6.1: SLAM: Simultaneous localization and mapping concept. The general idea is that
that the system should be able to localise itself in the room by mapping the location of the
markers as well as the velocity of the MAV relative to the markers.

This approach differs from the method presented in this thesis by having the vision system
create a map of its environment by which the MAV can determine its position through
triangulation, rather than solely rely on position data given by a single detected marker. Due
to time restrictions, this method could not be implemented and tested, but is left for future
work. Also, a very interesting project has recently been presented by the Integrated and
System Laboratory at ETH Zürich, based on artificial intelligence (AI) for achieving fully
autonomous flight for the Crazyflie 2.0[28]. Their prototype uses deep neural networks (DNNs)
for visual navigation and has been implemented as a fully on-board solution, thus eliminating
the need of human operation, external control signals and remote ground station computing.
By incorporating the vision based detection control system presented in this thesis on that
same on-board platform (Bitcraze has announced this under the codename ”AI-deck”), there is
potential for developing fully autonomous on-board solutions for navigation using fiducial
markers without modifying the existing hardware of the Crazyflie 2.0 in the near future.

73 Christoffer Karlsson, June 7, 2019

Bibliography

[1] Bitcraze AB. About Us. 2019. url: https://store.bitcraze.io/pages/about- us

(visited on 04/04/2019).

[2] Bitcraze AB. Crazyflie 2.0. 2019. url: https : / / store . bitcraze . io / products /

crazyflie-2-0 (visited on 04/04/2019).

[3] Bitcraze AB. Crazyflie 2.X System Architecture. 2019. url: https://store.bitcraze.
io/products/crazyflie-2-0.

[4] Bitcraze AB. Crazyradio PA 2.4 GHz USB dongle. 2019. url: https://store.bitcraze.
io/collections/kits/products/crazyradio-pa (visited on 04/04/2019).

[5] Bitcraze AB. Flow deck v2. 2019. url: https://wiki.bitcraze.io/projects:crazyflie2:
expansionboards:flow-v2 (visited on 04/04/2019).

[6] Stuart Bennett. “A Brief History of Automatic Control”. In: IEEE Control Systems 16.3
(1996), pp. 17–25. issn: 1066033X. doi: 10.1109/37.506394.

[7] Oliver Dunkley et al. “Visual-inertial navigation for a camera-equipped 25g nano-quadrotor”.
In: IROS2014 aerial open source robotics workshop. 2014, p. 2.

[8] Eachine. Eachine M80S M80 Micro FPV Racer RC Drone Spare Parts 5.8G 25MW 48CH
VTX 600TVL CMOS 1/3 FPV Camera. 2019. url: https : / / www . eachine . com /

Eachine-M80S-M80-Micro-FPV-Racer-RC-Drone-Spare-Parts-5_8G-25MW-48CH-VTX-

600TVL-CMOS-1-or-3-FPV-Camera-p-1174.html (visited on 04/04/2019).

[9] Eachine. Eachine ROTG01 UVC OTG 5.8G 150CH Full Channel FPV Receiver For An-
droid Mobile Phone Smartphone. 2019. url: https://www.eachine.com/Eachine-

ROTG01-UVC-OTG-5.8G-150CH-Full-Channel-FPV-Receiver-For-Android-Mobile-

Phone-Smartphone-p-843.html (visited on 04/04/2019).

[10] Kurt Konolige Ethan Rublee Vincent Rabaud and Gary Bradski. “ORB: An efficient
alternative to SIFT or SURF”. In: 2011 International Conference on Computer Vision.
2011, pp. 2564–2571. doi: 10.1109/ICCV.2011.6126544.

[11] Davide Falanga et al. “Vision-based autonomous quadrotor landing on a moving platform”.
In: SSRR 2017 - 15th IEEE International Symposium on Safety, Security and Rescue
Robotics, Conference (2017), pp. 200–207. doi: 10.1109/SSRR.2017.8088164.

[12] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast semi-direct monocular visual odom-
etry”. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). 2014,
pp. 15–22. doi: 10.1109/ICRA.2014.6906584.

[13] Julian Forster. “System Identification of the Crazyflie 2.0 Nano Quadrocopter”. In: Thesis
(Aug. 2015). url: https://polybox.ethz.ch/index.php/s/20dde63ee00ffe7085964393a55a91c7.

[14] Sergio Garrido-Jurado et al. “Generation of fiducial marker dictionaries using Mixed In-
teger Linear Programming”. In: Pattern Recognition 51 (Oct. 2015). doi: 10.1016/j.
patcog.2015.09.023.

74

https://store.bitcraze.io/pages/about-us
https://store.bitcraze.io/products/crazyflie-2-0
https://store.bitcraze.io/products/crazyflie-2-0
https://store.bitcraze.io/products/crazyflie-2-0
https://store.bitcraze.io/products/crazyflie-2-0
https://store.bitcraze.io/collections/kits/products/crazyradio-pa
https://store.bitcraze.io/collections/kits/products/crazyradio-pa
https://wiki.bitcraze.io/projects:crazyflie2:expansionboards:flow-v2
https://wiki.bitcraze.io/projects:crazyflie2:expansionboards:flow-v2
https://doi.org/10.1109/37.506394
https://www.eachine.com/Eachine-M80S-M80-Micro-FPV-Racer-RC-Drone-Spare-Parts-5_8G-25MW-48CH-VTX-600TVL-CMOS-1-or-3-FPV-Camera-p-1174.html
https://www.eachine.com/Eachine-M80S-M80-Micro-FPV-Racer-RC-Drone-Spare-Parts-5_8G-25MW-48CH-VTX-600TVL-CMOS-1-or-3-FPV-Camera-p-1174.html
https://www.eachine.com/Eachine-M80S-M80-Micro-FPV-Racer-RC-Drone-Spare-Parts-5_8G-25MW-48CH-VTX-600TVL-CMOS-1-or-3-FPV-Camera-p-1174.html
https://www.eachine.com/Eachine-ROTG01-UVC-OTG-5.8G-150CH-Full-Channel-FPV-Receiver-For-Android-Mobile-Phone-Smartphone-p-843.html
https://www.eachine.com/Eachine-ROTG01-UVC-OTG-5.8G-150CH-Full-Channel-FPV-Receiver-For-Android-Mobile-Phone-Smartphone-p-843.html
https://www.eachine.com/Eachine-ROTG01-UVC-OTG-5.8G-150CH-Full-Channel-FPV-Receiver-For-Android-Mobile-Phone-Smartphone-p-843.html
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/SSRR.2017.8088164
https://doi.org/10.1109/ICRA.2014.6906584
https://polybox.ethz.ch/index.php/s/20dde63ee00ffe7085964393a55a91c7
https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.1016/j.patcog.2015.09.023

Vision based control and landing of MAV’s BIBLIOGRAPHY

[15] T. Hägglund and K. J. Åström. “Revisiting The Ziegler-Nichols Tuning Rules For Pi
Control”. In: Asian Journal of Control 4.4 (2002), pp. 364–380. doi: 10.1111/j.1934-
6093.2002.tb00076.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/
j.1934-6093.2002.tb00076.x. url: https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1934-6093.2002.tb00076.x.

[16] Reza N. Jazar. Theory of Applied Robotics - Kinematics, Dynamics, and Control (2nd
Edition). Springer, Apr. 2010. isbn: 9781441917492.

[17] Simon Johansson. “Control of drone with applied weights”. Bachelor’s Thesis. Karlstad
University, June 2018.

[18] Christoffer Karlsson. Crazyflie-vision-system. https://github.com/lecristoph/Crazyflie-vision-
system. 2019.

[19] Kiam Heong Ang, G. Chong, and Yun Li. “PID control system analysis, design, and
technology”. In: IEEE Transactions on Control Systems Technology 13.4 (2005), pp. 559–
576. issn: 1063-6536. doi: 10.1109/TCST.2005.847331.

[20] T. Kurita, N. Otsu, and N. Abdelmalek. “Maximum likelihood thresholding based on
population mixture models”. In: Pattern Recognition 25.10 (1992), pp. 1231 –1240. issn:
0031-3203. doi: https://doi.org/10.1016/0031- 3203(92)90024- D. url: http:

//www.sciencedirect.com/science/article/pii/003132039290024D.

[21] Dilek Kurtulus. “Introduction to micro air vehicles: concepts, design and applications”.
In: Apr. 2011, pp. 219–255. isbn: 978-2-87516-017-1.

[22] Roger Labbe. Kalman and Bayesian Filters in Python. https://github.com/rlabbe/
Kalman-and-Bayesian-Filters-in-Python. 2014.

[23] OpenCV Labs. Calibration with ArUco and ChArUco. 2019. url: https://docs.opencv.
org/3.4/da/d13/tutorial_aruco_calibration.html (visited on 05/07/2019).

[24] Sven Lange, N Sunderhauf, and Peter Protzel. “A vision based onboard approach for land-
ing and position control of an autonomous multirotor UAV in GPS-denied environments”.
In: Proceedings of the International Conference on Advanced Robotics (2009), pp. 1–6. doi:
10.1109/ROBOT.2001.932859. url: http://ieeexplore.ieee.org/xpls/abs{_}all.
jsp?arnumber=5174709{\%}5Cnhttp://www.dis.uniroma1.it/lmarchetti/private/

quadrotor/lange-vision-based-onboard-approach-landing-position-control-

UAV-gps-denied-environments.pdf.

[25] Lili Ma, YangQuan Chen, and Kevin L. Moore. “Rational Radial Distortion Models with
Analytical Undistortion Formulae”. In: (2003). arXiv: 0307047 [cs]. url: http://arxiv.
org/abs/cs/0307047.

[26] Rafael Munoz-Salinas. ArUco: One library to rule them all. 2019. url: https://bitbucket.
connectia.com/users/vfilatov/repos/aruco/browse?at=55d86f631b35b7a80bc1094fb78c98e0d16512b4

(visited on 05/07/2019).

[27] Rafael Muñoz-Salinas, Manuel Maŕın-Jiménez, and Rafael Medina-Carnicer. “SPM-SLAM:
Simultaneous Localization and Mapping with Squared Planar Markers”. In: Pattern Recog-
nition 86 (Sept. 2018). doi: 10.1016/j.patcog.2018.09.003.

[28] Daniele Palossi et al. “A 64mW DNN-based Visual Navigation Engine for Autonomous
Nano-Drones”. In: (2018). arXiv: 1805.01831. url: http://arxiv.org/abs/1805.01831.

[29] Brent Perreault. “Introduction to the Kalman Filter and its Derivation”. In: (2012), pp. 1–
10.

[30] Axel Reizenstein. “Position and Trajectory Control of a Quadcopter Using PID and LQ
Controllers”. In: (2017).

75 Christoffer Karlsson, June 7, 2019

https://doi.org/10.1111/j.1934-6093.2002.tb00076.x
https://doi.org/10.1111/j.1934-6093.2002.tb00076.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1934-6093.2002.tb00076.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1934-6093.2002.tb00076.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1934-6093.2002.tb00076.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1934-6093.2002.tb00076.x
https://doi.org/10.1109/TCST.2005.847331
https://doi.org/https://doi.org/10.1016/0031-3203(92)90024-D
http://www.sciencedirect.com/science/article/pii/003132039290024D
http://www.sciencedirect.com/science/article/pii/003132039290024D
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://docs.opencv.org/3.4/da/d13/tutorial_aruco_calibration.html
https://docs.opencv.org/3.4/da/d13/tutorial_aruco_calibration.html
https://doi.org/10.1109/ROBOT.2001.932859
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5174709{\%}5Cnhttp://www.dis.uniroma1.it/lmarchetti/private/quadrotor/lange-vision-based-onboard-approach-landing-position-control-UAV-gps-denied-environments.pdf
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5174709{\%}5Cnhttp://www.dis.uniroma1.it/lmarchetti/private/quadrotor/lange-vision-based-onboard-approach-landing-position-control-UAV-gps-denied-environments.pdf
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5174709{\%}5Cnhttp://www.dis.uniroma1.it/lmarchetti/private/quadrotor/lange-vision-based-onboard-approach-landing-position-control-UAV-gps-denied-environments.pdf
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5174709{\%}5Cnhttp://www.dis.uniroma1.it/lmarchetti/private/quadrotor/lange-vision-based-onboard-approach-landing-position-control-UAV-gps-denied-environments.pdf
http://arxiv.org/abs/0307047
http://arxiv.org/abs/cs/0307047
http://arxiv.org/abs/cs/0307047
https://bitbucket.connectia.com/users/vfilatov/repos/aruco/browse?at=55d86f631b35b7a80bc1094fb78c98e0d16512b4
https://bitbucket.connectia.com/users/vfilatov/repos/aruco/browse?at=55d86f631b35b7a80bc1094fb78c98e0d16512b4
https://doi.org/10.1016/j.patcog.2018.09.003
http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831

Vision based control and landing of MAV’s BIBLIOGRAPHY

[31] R.R. RHINEHART. “Control Modes—PID Variations”. In: Process Control (2013), pp. 30–
33. doi: 10.1016/b978-0-7506-2255-4.50010-6.

[32] J. A. Romero Perez and P. Balaguer Herrero. “Extending the AMIGO PID tuning method
to MIMO systems”. In: IFAC Proceedings Volumes (IFAC-PapersOnline) 2.PART 1 (2012),
pp. 211–216. issn: 14746670.

[33] Francisco Romero Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-Carnicer. “Speeded
Up Detection of Squared Fiducial Markers”. In: Image and Vision Computing 76 (June
2018). doi: 10.1016/j.imavis.2018.05.004.

[34] Ethan Rublee, V Rabaud, and K Konolige. “ORB : an efficient alternative to SIFT or
SURF About local feature and matching Motivation oFAST – Oriented FAST BRIEF (
Calonder et al . 2010)”. In: Intl. Conf. Computer Vision (2011), pp. 1–5. issn: 00043591.
doi: 10.1002/art.38045. arXiv: 0710.1980.

[35] D. Scaramuzza and F. Fraundorfer. “Visual Odometry [Tutorial]”. In: IEEE Robotics Au-
tomation Magazine 18.4 (2011), pp. 80–92. issn: 1070-9932. doi: 10.1109/MRA.2011.
943233.

[36] Bruno Siciliano et al. Robotics: modelling, planning and control. Springer, 2009. isbn:
9781846286414.

[37] OpenCV dev team. Camera calibration With OpenCV. 2019. url: https://docs.opencv.
org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html

(visited on 04/23/2019).

[38] Bertil Thomas. Modern reglerteknik. Liber, 2016. isbn: 9789147112128.

[39] Michael Veth. “Fusion of Imaging and Inertial Sensors for Navigation”. In: (Jan. 2006).

[40] Greg Welch and Gary Bishop. “TR 95-041: An Introduction to the Kalman Filter”. In:
In Practice 7.1 (2006), pp. 1–16. issn: 10069313. doi: 10.1.1.117.6808. arXiv: arXiv:
1011.1669v3. url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
79.6578{\&}rep=rep1{\&}type=pdf.

[41] Stefano Soatto Yi Ma Jana Kosecka and Shankar Sastry. “An Invitation to 3-D Vision -
From Images to Models”. In: (Nov. 2001).

76 Christoffer Karlsson, June 7, 2019

https://doi.org/10.1016/b978-0-7506-2255-4.50010-6
https://doi.org/10.1016/j.imavis.2018.05.004
https://doi.org/10.1002/art.38045
http://arxiv.org/abs/0710.1980
https://doi.org/10.1109/MRA.2011.943233
https://doi.org/10.1109/MRA.2011.943233
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://doi.org/10.1.1.117.6808
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.6578{\&}rep=rep1{\&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.6578{\&}rep=rep1{\&}type=pdf

Appendices

77

Appendix A

Main application (Python)

import l o gg ing
import time
import numpy as np
import cv2
import yaml
import math
import sys
import os
import t raceback
from s imp l e p id import PID
from f i l t e r p y . kalman import KalmanFilter

import c f l i b . c r tp
from c f l i b . c r a z y f l i e import C r a z y f l i e
from c f l i b . c r a z y f l i e . s y n c C r a z y f l i e import SyncCrazy f l i e
from c f l i b . p o s i t i o n i n g . motion commander import MotionCommander
from c f l i b . c r a z y f l i e . l og import LogConfig
from c f l i b . c r a z y f l i e . syncLogger import SyncLogger

import arucoCam as arc
from plotData import plotData

e r r d i c t = {
”1” : ”Could not reshape . Mult ip l e markers detec ted ?” ,
”2” : ”No C r a z y f l i e s found , cannot run t e s t ” ,
”3” : ”Something went wrong . Clos ing webcam . ” ,
”4” : ” Battery l e v e l i s low . land ing . . . ” ,
”5” : ”Unknown e r r o r . Check traceback : ”

}

def getData () :
with SyncLogger (s c f , l g s t a b) as l o g g e r :

for l o g e n t r y in l o g g e r :
data = l o g e n t r y [1]
yaw = data . get (’ s t a b i l i z e r . yaw ’)
p i t ch = data . get (’ s t a b i l i z e r . p i t ch ’)
r o l l = data . get (’ s t a b i l i z e r . r o l l ’)

78

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

vbat = data . get (’pm. vbat ’)
time . s l e e p (0 . 0 2)
return (yaw , pitch , r o l l , vbat)

def getCFparams (s c f , a v a i l a b l e) :
try :

yaw CF , pitch CF , ro l l CF , vbat = np . asar ray (getData ()) . t o l i s t ()
except TypeError :

print (” Error : ” , sys . e x c i n f o () [0])
print (TypeError)
t raceback . p r i n t e x c ()

i f np . s i z e (vbat) != 0 :
return (yaw CF , pitch CF , ro l l CF , vbat)

else :
return (0 , 0)

def angCor (alpha) :
i f alpha > 0 :

alpha = 180 − alpha
else :

a lpha = abs (alpha) − 180
return (alpha)

def getMarkerAngles (cam) :
Read image frame from camera
[ret , img] = cam . read () # Take snapshot from camera

Undis t or t the frame
img = arc . u n d i s t o r t (img , cMatrix , k d i s t)
Detect ArUco marker
corners = [x1 , y1 ; x2 , y2 ; . . . , x4 , y4] where x1 , y1 = top l e f t corner
corners , rvec , tvec , ids , imgWithAruco = arc . ArUcoDetect (img , cMatrix ,

k d i s t , m len ,
a ruco d i c t ,
arucoParams)

Get a n g l e s between camera and marker wi th ID=2
i f i d s i s not None and i d 2 f i n d in i d s :

idx r , i d x c = np . where (i d s == i d 2 f i n d)
tvec = tvec [idx r , :]
rvec = rvec [idx r , :]
draw r e c t a n g l e around marker wi th ID=2
co rne r s = np . asar ray (co rne r s)
co rne r s = corne r s [idx r , :]
c o rne r s = np . reshape (corners , [4 , 2])
imgWithAruco = arc . drawRec (imgWithAruco , co rne r s)
EulerAngles = arc . angleFromAruco (rvec , tvec , i d s)

else :
EulerAngles = None

79 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

i f EulerAngles i s not None :
p s i = EulerAngles [0]∗18 0/ math . p i # yaw
theta = EulerAngles [1]∗18 0/ math . p i # p i t c h
phi = EulerAngles [2]∗18 0/ math . p i # r o l l
Corrent f o r r o t a t i o n
p s i = angCor (p s i)
EulerAngles = np . array ([ps i , theta , phi])
Eu l e rAng l e s ro t = arc . r o t a t e (EulerAngles)
alpha = Eule rAng l e s ro t [0 , 0] # yaw
return (alpha , imgWithAruco , tvec)

else :
return (None , imgWithAruco , None)

class CF:
def i n i t (s e l f , s c f , a v a i l a b l e) :

g e t yaw−ang le and b a t t e r y l e v e l o f c r a z y f l i e
s e l f . ps i , s e l f . theta , s e l f . phi , s e l f . vbat = getCFparams (s c f , a v a i l a b l e)
s e l f . s c f = s c f
s e l f . a v a i l a b l e = a v a i l a b l e
s e l f .mc = MotionCommander (s c f)
s e l f . p s i l i m i t = 0 .7 # Don ’ t cmd an ang le l e s s than t h i s [deg]
s e l f . d e s ang l e = 0 # Set to zero i n i t i a l l y

def update (s e l f , des ang le , eul , turnRate) :
i f ’ p s i ’ in eu l and abs (de s ang l e) > s e l f . p s i l i m i t :

s e l f . d e s ang l e = de s ang l e
i f de s ang l e > 0 :

i f not s e l f .mc . t u r n r i g h t (abs (s e l f . d e s ang l e) , turnRate) :
pass

else :
i f not s e l f .mc . t u r n l e f t (abs (s e l f . d e s ang l e) , turnRate) :

pass
Compute curren t ang l e (yaw) o f CF
s e l f . ps i , s e l f . theta , s e l f . phi , s e l f . vbat = getCFparams (s e l f . s c f ,

s e l f . a v a i l a b l e)
return (s e l f . ps i , s e l f . theta , s e l f . phi , s e l f . vbat)

Move c f l e f t or r i g h t
def update x (s e l f , d i s t) :

i f d i s t i s not None and d i s t != 0 :
i f not s e l f . move distance (0 , −d i s t , 0) :

pass
e l i f d i s t i s not None and d i s t == 0 and s e l f . d e s ang l e == 0 :

s e l f .mc . stop ()

def t a k e o f f (s e l f) :
s e l f .mc . t a k e o f f ()

def land (s e l f) :
s e l f .mc . land ()

80 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

def move distance (s e l f , x , y , z) :
’ ’ ’
Move in a s t r a i g h t l i n e , {CF frame } .
p o s i t i v e X i s forward [cm]
p o s i t i v e Y i s l e f t [cm]
p o s i t i v e Z i s up [cm]
’ ’ ’
v e l o c i t y = 0.08
x = x/100
y = y/100
z = z /100

d i s t anc e = math . s q r t (x∗∗2 + y∗∗2 + z ∗∗2)

i f x != 0 :
f l i g h t t i m e = d i s t anc e / v e l o c i t y
v e l o c i t y x = v e l o c i t y ∗ x / d i s t ance

else :
v e l o c i t y x = 0

i f y != 0 :
v e l o c i t y y = v e l o c i t y ∗ y / d i s t ance

else :
v e l o c i t y y = 0

i f z != 0 :
v e l o c i t y z = v e l o c i t y ∗ z / d i s t anc e

else :
v e l o c i t y z = 0

s e l f .mc . s t a r t l i n e a r m o t i o n (v e l o c i t y x , v e l o c i t y y , v e l o c i t y z)
i f x != 0 :

time . s l e e p (f l i g h t t i m e)
return (Fa l se)

i f name == ’ ma in ’ :
Define rad io i n t e r f a c e
URI = ’ rad io ://0/80/2M’
I n i t i a l i z e camera
cam = cv2 . VideoCapture (1)
Name o f p l o t f i g u r e output
f igname = ” experimentData1 . png”
T i t l e o f p l o t
f i g t i t l e = ”Experiment t e s t ”

Name o f dumpf i l e
dumpfile name = ” testData1 . yaml”
Do we want l i v e d i s p l a y or not ?
dispLiveVid = True
Marker s i d e l e n g t h [cm]
m len = 19 .0
Marker ID to f i n d :

81 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

i d 2 f i n d = 24
I n i t w r i t e VideoWriter
FILE OUTPUT = ’ output . av i ’
Checks and d e l e t e s the output f i l e
You cant have a e x i s t i n g f i l e or i t w i l l through an er ror
try :

i f os . path . i s f i l e (FILE OUTPUT) :
os . remove (FILE OUTPUT)

except Permiss ionError :
print (” Error : ” , sys . e x c i n f o () [0])
t raceback . p r i n t e x c ()

Get width o f camera capture
width = (int (cam . get (3)))
Get h e i g h t o f camera capture
he ight = (int (cam . get (4)))
Define some t e x t parameters
f ont = cv2 .FONT HERSHEY SIMPLEX
s1 = (10 , int (height −40))
s2 = (10 , int (height −60))
s3 = (10 , int (height −80))
s4 = (10 , int (height −100))
s5 = (10 , int (height −120))
s6 = (10 , int (height −140))
f o n t S c a l e = 0 .6
fontCo lor = (255 , 255 , 255) # whi te
l ineType = 2
Define the codec and c r e a t e VideoWriter o b j e c t
f ou r c c = cv2 . VideoWri te r fourcc (∗ ’XVID ’)
out = cv2 . VideoWriter (FILE OUTPUT, fourcc , 8 . 0 , ((width) , (he ight)))
Open camera c a l i b r a t i o n data
with open(’ c a l i b r a t i o n . yaml ’) as f :

calParams = yaml . load (f)
Load camera matrix and d i s t o r t i o n c o e f f s
cMatrix = calParams . get (’ camera matrix ’)
k d i s t = calParams . get (’ d i s t c o e f f ’)

Convert to numpy arrays
cMatrix = np . array (cMatrix)
k d i s t = np . array (k d i s t)

keep t r a c k o f v a l u e s f o r p l o t t i n g
s e t p o i n t = np . array ([])
yaw cf = np . array ([])
p i t c h c f = np . array ([])
r o l l c f = np . array ([])
a r t ime = np . array ([])
a r bat = np . array ([])

Set up aruco d i c t i o n a r y and parameters
aruco d i c t , arucoParams = arc . createAruco ()

I n i t Kalman f i l t e r

82 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

x = 8 # n . o . e lements in s t a t e v e c t o r
z = 4 # n . o dimensions in s t a t e v e c t o r
f = KalmanFilter (dim x=x , dim z=z) # Yaw f i l t e r

Uncer ta inty f a c t o r
unc f = 0 .04
Define Kalman f i l t e r s t a t e e s t i m a t e v e c t o r
f . x = np . z e r o s ((x , 1) , dtype=’ f l o a t ’)

s t a t e t r a n s i t i o n matrix
f .F = (np . eye (x))
f .F [0 , 1] = 1 .0
f .F [2 , 3] = 1 .0
f .F [4 , 5] = 1 .0
f .F [6 , 7] = 1 .0

Measurement f u n c t i o n
f .H = np . z e r o s ((z , x) , dtype=’ f l o a t ’)

Define e lements to which we perform c a l c u l a t i o n s
f .H[0 , 0] = 1 .0
f .H[1 , 2] = 1 .0
f .H[2 , 4] = 1 .0
f .H[3 , 6] = 1 .0

s t a t e u n c e r t a i n t y
f .R ∗= unc f

p roc ess no i se
f .Q ∗= unc f ∗0 .1

low bat te ry = 2.71 # Don ’ t t ake o f i f b a t t e r y l e v e l < l o w b a t t e r y [V]
nf max = 8 # Define maximum number o f e s t imated frames in a row
nf = nf max + 1 # Define current number o f e s t imated frames
alpha = 0.91 # I n e r t i a l f a c t o r f o r v e l o c i t y d e g r e g a t i o n
samples max = 10 # Define sample heap s i z e f o r moving avg f i l t e r
zs = np . array ([]) # Array f o r moving average f i l t e r (yaw)
ds = np . array ([]) # Array f o r moving average f i l t e r (t r a n s l z)
xs = np . array ([]) # −−||−− (t r a n s l X = r i g h t / l e f t in img)
ys = np . array ([]) # −−||−− (t r a n l s Y = h e i g h t)
arb = np . array ([]) # Array f o r moving avg f i l t e r (b a t t e r y l e v e l)
r = np . array ([0]) # Array f o r s t o r i n g l o c a t i o n and v e l o c i t y e s t i m a t e s (yaw)
r2 = np . array ([0]) # −−||−− (t r a n s l z)
r3 = np . array ([0]) # −−||−− (t r a n s l x)
r4 = np . array ([0]) # −−||−− (t r a n s l y)

PID Gains
Kp psi = 1 .0 # 1.40
Kd psi = 0.045 # 0.15
Ki ps i = 0 .1 # 0.55
Kp x = 5.1 # 7.24
Kd x = 0.62 # 0.46
Ki x = 5.40 # 0 . 1 3 . 8 9
turnRate = 360/3.8 # 360/4.5 i s d e f a u l t v a l u e

Only output e r r o r s from the l o g g i n g framework
l o gg ing . bas i cCon f i g (l e v e l=logg ing .ERROR)

83 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

I n i t i a l i z e the low− l e v e l d r i v e r s (don ’ t l i s t the debug d r i v e r s)
c f l i b . c r tp . i n i t d r i v e r s (enab l e debug dr i v e r=False)

Scan f o r C r a z y f l i e s and use the f i r s t one found
print (’ Scanning i n t e r f a c e s f o r C r a z y f l i e s . . . ’)
a v a i l a b l e = c f l i b . c r tp . s c a n i n t e r f a c e s ()
print (’ C r a z y f l i e s found : ’)
for i in a v a i l a b l e :

print (i [0])

i f len (a v a i l a b l e) == 0 :
print (e r r d i c t [”2”])

else :
c f = C r a z y f l i e (rw cache=’ . / cache ’)

Add l o g g i n g c o n f i g to l o g g e r
l g s t a b = LogConfig (name=’ S t a b i l i z e r ’ , pe r i od in ms =12)
l g s t a b . add var i ab l e (’pm. vbat ’ , ’ f l o a t ’)
l g s t a b . add var i ab l e (’ s t a b i l i z e r . yaw ’ , ’ f l o a t ’)
l g s t a b . add var i ab l e (’ s t a b i l i z e r . p i t ch ’ , ’ f l o a t ’)
l g s t a b . add var i ab l e (’ s t a b i l i z e r . r o l l ’ , ’ f l o a t ’)
with SyncCrazy f l i e (URI) as s c f :

Define motion commander to c r a z y f l i e as mc:
c f 2 = CF(sc f , a v a i l a b l e)
c f 2 p s i = c f 2 . p s i # Get curren t y , p , r−a n g l e s o f c f
c f 2 t h e t a = c f 2 . theta
c f 2 p h i = c f 2 . phi
c f 2 b a t = c f2 . vbat # Get curren t b a t t e r y l e v e l o f c f
marker ps i = 0 # Set marker ang l e to zero i n i t i a l l y

pid = PID(0 , 0 , 0 , s e t p o i n t=marker ps i) # I n i t i a l i z e PID
pid x = PID(0 , 0 , 0 , s e t p o i n t =0) # i n i t PID f o r r o l l
Define pid parameters
pid . tun ings = (Kp psi , Kd psi , K i p s i)
p id x . tun ings = (Kp x , Kd x , Ki x)
p id x . sample t ime = 0.05 # update p id every 50 ms
pid . o u t p u t l i m i t s = (−60 , 60)
p id x . o u t p u t l i m i t s = (−20 , 20)
pid . proport ional on measurment = False
p id x . proport ional on measurment = False

i f c f 2 b a t >= low bat te ry :
c f 2 . t a k e o f f () # CF t a k e s o f f from ground
print (”Taking o f f ! Battery l e v e l : ” + str (c f 2 b a t))
time . s l e e p (1 . 5) # Let the CF hover f o r 1 .5 s

t i n i t = time . time ()
endTime = t i n i t + 10 # Let the CF do i t s t h i n g f o r some time

Add v a l u e s to array f o r l o g g i n g / p l o t t i n g
s e t p o i n t = np . append (se tpo in t , marker ps i) # Commanded yaw
yaw cf = np . append (yaw cf , c f 2 . p s i) # Actual yaw o f CF
p i t c h c f = np . append (p i t c h c f , c f 2 . theta) # Actual p i t c h o f CF

84 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

r o l l c f = np . append (r o l l c f , c f 2 . phi) # Actual r o l l o f CF
ar t ime = np . append (ar t ime , 0) # Time v e c t o r
ar bat = np . append (ar bat , c f 2 b a t)

A = s c f . i s l i n k o p e n ()
while time . time () < endTime and c f 2 b a t >= low bat te ry and A:

Get ang le o f marker
try :

Get marker yaw−angle , img and t r a n s l a t i o n v e c t o r (xyz)
marker ps i , img , t v e c = getMarkerAngles (cam)

Get t r a n s l a t i o n a l d i s t a n c e in Z−dir , marker−>l e n s
i f t v e c i s not None :

try :
t v e c = np . asar ray (t v e c) . t o l i s t ()
t v e c = np . reshape (t vec , [1 , 3])
d i s t x = t v e c [0 , 0]
d i s t y = t v e c [0 , 1]
d i s t z = t v e c [0 , 2]

except ValueError :
print (e r r d i c t [”1”])

else :
d i s t z = None
d i s t x = None
d i s t y = None

Moving average f i l t e r
i f marker ps i i s not None :

zs = np . append (zs , marker ps i)
ds = np . append (ds , d i s t z)
xs = np . append (xs , d i s t x)
ys = np . append (ys , d i s t y)
marker ps i = np . average (zs)
d i s t z = np . average (ds)
d i s t x = np . average (xs)
d i s t y = np . average (ys)
i f np . s i z e (zs) >= samples max :

zs = np . d e l e t e (zs , 0)
ds = np . d e l e t e (ds , 0)
xs = np . d e l e t e (xs , 0)
ys = np . d e l e t e (ys , 0)

perform kalman f i l t e r i n g
i f marker ps i i s not None :

f . update (np . array ([marker ps i ,
d i s t z , d i s t x , d i s t y]))

f . p r e d i c t ()
else :

f . update (marker ps i)
f . p r e d i c t ()

85 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

Set i n e r t i a l d e g r e g a t i o n to v e l o c i t y f o r each i t e r a t i o n
i f marker ps i i s None and nf < nf max :

f . x h o l d s the es t imated v a l u e s
f . x [1 , 0] ∗= alpha
f . x [3 , 0] ∗= alpha
f . x [5 , 0] ∗= alpha
f . x [7 , 0] ∗= alpha
yaw cmd = f . x [0 , 0] # commanded yaw
t rans l z cmd = round(f . x [2 , 0] , 2) # comm t r a n s l z
t rans l x cmd = round(f . x [4 , 0] , 2) # comm t r a n l s x
t rans l y cmd = round(f . x [6 , 0] , 2) # comm t r a n s l y
nf += 1

e l i f marker ps i i s not None and marker ps i != 0 :
nf = 0
yaw cmd = marker ps i # commanded yaw
t rans l z cmd = round(d i s t z , 2) # commanded t r a n s l z
t rans l x cmd = round(d i s t x , 2) # commanded t r a n s l x
t rans l y cmd = round(d i s t y , 2) # commanded t r a n s l y

else :
yaw cmd = 0
trans l z cmd = 0
trans l x cmd = 0
trans l y cmd = 0

except (cv2 . e r ror , TypeError , Att r ibuteError) :
print (e r r d i c t [”3”])
print (” Error : ” , sys . e x c i n f o () [0])
cam . r e l e a s e ()
cv2 . destroyAllWindows ()
c f 2 . land () # Land the CF2
print (TypeError)
t raceback . p r i n t e x c ()
break

dt = time . time () − t i n i t # compute e l a p s e d time

p r i n t t e x t on image
cv2 . putText (img , ” t : ”+str (round(dt , 2)) ,

s1 ,
font ,
f ontSca l e ,
fontColor ,
l ineType)

cv2 . putText (img , ” p s i : ”+str (round(yaw cmd , 2)) ,
s2 ,
font ,
f ontSca l e ,
fontColor ,
l ineType)

cv2 . putText (img , ”Z : ”+str (t rans l z cmd) ,
s3 ,

86 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

font ,
f ontSca l e ,
fontColor ,
l ineType)

cv2 . putText (img , ”X: ”+str (t rans l x cmd) ,
s4 ,
font ,
f ontSca l e ,
fontColor ,
l ineType)

cv2 . putText (img , ” Battery : ”+str (round(c f2 bat , 2)) ,
s5 ,
font ,
f ontSca l e ,
fontColor ,
l ineType)

i f dispLiveVid :
cv2 . imshow (’ image ’ , img) # d i s p l a y curren t frame

i f cv2 . waitKey (25) & 0xFF == ord (’ q ’) :
c f 2 . land ()
cv2 . destroyAllWindows ()
break

out . wr i t e (img) # w r i t e img frame to v ideo f i l e
Send command s i g n a l to CF2 and update c f 2 p s i
’ p s i ’ = yaw
’ t h e t a ’ = p i t c h
’ phi ’ = r o l l
’ z ’ = forwards / backwards
∗∗ Send s i g n a l to CF + g e t b a t t e r y l e v e l and yaw−ang le
try :

i f yaw cmd i s not None :
c v a l p s i = pid (yaw cmd)
c f 2 p s i , c f 2 the ta , c f 2 ph i , c f 2 b a t = c f2 . update(− c v a l p s i ,

’ p s i ’ , turnRate)
i f t rans l x cmd i s not None :

cva l x = pid x (t rans l x cmd)
c f 2 . update x (round(−cva l x , 1))

time . s l e e p (0 . 0 3)
except (UnboundLocalError , TypeError , Ze roDiv i s i onError) :

print (e r r d i c t [”5”])
print (” Error : ” , sys . e x c i n f o () [0])
cam . r e l e a s e ()
cv2 . destroyAllWindows ()
c f 2 . land ()
t raceback . p r i n t e x c ()
s c f . c l o s e l i n k ()

Moving avg f i l t e r , b a t t e r y :

87 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

i f c f 2 b a t i s not None :
arb = np . append (arb , c f 2 b a t)
c f 2 b a t = np . average (arb)
i f np . s i z e (arb) >= samples max :

arb = np . d e l e t e (arb , 0)

Do some l o g g i n g o f data f o r p l o t t i n g
i f marker ps i i s not None or nf < nf max :
s e t p o i n t = np . append (se tpo in t , marker ps i) # Commanded yaw
yaw cf = np . append (yaw cf , c f 2 p s i) # Actual yaw o f CF
p i t c h c f = np . append (p i t c h c f , c f 2 t h e t a)
r o l l c f = np . append (r o l l c f , c f 2 p h i)
ar t ime = np . append (ar t ime , dt) # Time v e c t o r
r = np . append (r , f . x [0 , 0]) # Estimated yaw
r2 = np . append (r2 , f . x [2 , 0]) # Estimated z d i s t a n c e
r3 = np . append (r3 , f . x [4 , 0]) # Estimated x d i s t a n c e
r4 = np . append (r4 , f . x [6 , 0]) # Estimated y d i s t a n c e
ar bat = np . append (ar bat , c f 2 b a t) # Battery l e v e l

A = s c f . i s l i n k o p e n () # Check t h a t l i n k i s s t i l l open
∗∗∗∗∗∗ END OF MAIN LOOP ∗∗∗∗∗∗∗∗∗
i f c f 2 b a t <= low bat te ry :

print (e r r d i c t [”4”])
print (” Battery l e v e l : ” + str (c f 2 b a t))
c f 2 . land ()

else :
print (” Test completed . land ing . . . ”)
Test sending a s i g n a l to CF: Move forward [cm] :
arguments : Forward (+) , l e f t (+) , up(+)
i f v a l u e s are n e g a t i v e ; o p p o s i t e d i r e c t i o n
c f 2 . move distance (round(t rans l z cmd −15) , 0 , 0)
Land the CF2
time . s l e e p (0 . 1)
c f 2 . land ()
print (”Landed . ”)

Important to c l o s e webcam connect ion when e v e r y t h i n g i s done
i f ’ s c f ’ in locals () :

s c f . c l o s e l i n k () # Close connect ion to CF
out . r e l e a s e ()
cam . r e l e a s e ()
cv2 . destroyAllWindows ()
i f len (a v a i l a b l e) != 0 :

Save data to yaml− f i l e f o r a n a l y s i s
p i d s e t t i n g s = np . array ([Kp psi , Kd psi , Ki ps i , turnRate])
data = { ’ timestamp ’ : np . asar ray (ar t ime) . t o l i s t () ,

’ b a t t e r y l e v e l ’ : np . asar ray (ar bat) . t o l i s t () ,
’ yaw cf ’ : np . asar ray (yaw cf) . t o l i s t () ,
’ r o l l c f ’ : np . asar ray (r o l l c f) . t o l i s t () ,
’ p i t c h c f ’ : np . asar ray (p i t c h c f) . t o l i s t () ,
’ yaw commanded ’ : np . asar ray (s e t p o i n t) . t o l i s t () ,

88 Christoffer Karlsson, June 7, 2019

Vision based control and landing of MAV’s APPENDIX A. MAIN APPLICATION (PYTHON)

’ Kalman yaw estimation ’ : np . asar ray (r) . t o l i s t () ,
’ Ka lman z d i s t e s t imat ion ’ : np . asar ray (r2) . t o l i s t () ,
’ Ka lman x d i s t e s t imat ion ’ : np . asar ray (r3) . t o l i s t () ,
’ Ka lman y d i s t e s t imat ion ’ : np . asar ray (r4) . t o l i s t () ,
’ P ID se t t ings ’ : np . asar ray (p i d s e t t i n g s) . t o l i s t ()}

Save data to f i l e
with open(dumpfile name , ”w”) as f :

yaml . dump(data , f)

Plot r e s u l t s
plotData (dumpfile name , figname , f i g t i t l e)

89 Christoffer Karlsson, June 7, 2019

	Introduction
	Introduction
	Related work
	Problem statement
	Proposed solution
	Delimitations
	Outline

	Conventions and terminology

	Hardware
	Crazyflie 2.0 Quadcopter
	Specifications
	Flow deck V2
	Camera

	Theory
	Basic mechanics of a quadrotor
	Rigid transformations
	Rotations
	Translations

	Visual Odometry
	Camera optics and image formation
	Homogeneous coordinates and the projective plane
	Camera projection
	Camera calibration

	ArUco library and relative pose estimation
	Feature based detection and the Direct Method

	Control
	PID control
	Kalman filters

	Implementation
	Added sensors
	The Crazyflie Python API
	General control structure
	Camera calibration using ArUco
	Marker creation and detection using the ArUco module
	Relative pose estimation
	Signal filtering
	Moving Average Filter
	Implementation of Kalman filter

	PID control
	Tuning the PID controllers

	Application

	Results and evaluation
	Camera calibration
	Filtering and estimation
	PID Tuning
	Detection performance
	ORB

	Battery life characterization
	Targeted landing

	Conclusion and future work
	Conclusion
	Future Work

	Appendices
	Main application (Python)

