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Abstract

Digital certificates have long been used for traditional Internet applications,
and have now entered into widespread use for the Internet of Things. However,
constrained devices currently have no means to verify the revocation status of
certificates. Without the ability to revoke certificates, network administrators
have no recourse in the event of a private key compromise. This thesis explores
three alternatives to solve this problem: (1) implement the Online Certificate
Status Protocol (OCSP) as is on a CoAP network stack, (2) compress certificate
revocation lists (CRLs) using Bloom filters, and (3) design an optimized version
of OCSP (referred to here as TinyOCSP). This work concludes that TinyOCSP
reduces the message overhead of online validation by at least 73%. This reduced
the energy consumption of certificate validation by 50% relative to OCSP in the
experiments on constrained hardware, which shows that it may be a feasible
solution for the IoT.
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Sammanfattning

Digitala certifikat har länge tillämpats inom traditionella internetapplicering-
ar och har numera även omfattande användningsområden inom IoT. Begränsade
apparater har i nuläget dock inga metoder för att verifiera återkallningsstatusar
av certifikat. Utan förmågan att återkalla certifikat har nätverksadministratörer
inga alternativ att återfalla till när en hemlig nyckel har blivit stulen. Denna upp-
sats undersöker tre alternativ för att lösa detta problem: (1) tillämpning av Onli-
ne Certificate Status Protocol (OCSP) med CoAP, (2) komprimering av certificate
revocation lists (CRLs) som använder Bloom filters, och (3) skapa en optimerad
version av OCSP (TinyOCSP). Arbetet drar slutsatsen att TinyOCSP minskar mes-
sage overhead av onlinevalidering med åtminstone 73%. Detta minskade energi-
konsumtion av certifikatsvalidering med 50% jämfört med OCSP i experimentet
med begränsade apparater, vilket visar att detta är en tänkar lösning för IoT.
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List of Acronyms

ACE Authentication and Authorization for Constrained Environments

ACME Automatic Certificate Management Environment

AES Advanced Encryption Standard

ASN.1 Abstract Syntax Notation One

CA certificate authority

CBOR Concise Binary Object Representation

CMC Certificate Management over CMS

CMP Certificate Management Protocol

CMS Cryptographic Message Syntax

COSE CBOR Object Signing and Encryption

CoAP Constrained Application Protocol

CoAPs CoAP secure

CRL certificate revocation list

CSR certificate signing request

DER Distinguished Encoding Rules

DH Diffie-Hellman key exchange

DoS denial of service

DTLS Datagram Transport Layer Security

ECC elliptic curve cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EDHOC Ephemeral Diffie-Hellman Over COSE

IETF Internet Engineering Task Force

IoT Internet of Things

EALS Enrollment with Application Layer Security

EE end entity

EST Enrollment over Secure Transport

EST-coaps EST over CoAPs
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FS forward secrecy

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

MITM man-in-the-middle

NIST National Institute of Standards and Technology

OCSP Online Certificate Status Protocol

OSCORE Object Security for Constrained RESTful Environments

PAN personal area network

PGP Pretty Good Privacy

PKI public key infrastructure

PMTU path maximum transmission unit

RA registration authority

REST representational state transfer

RFC Request for Comments

RP relying party

RSA Rivest-Shamir-Adleman

SCEP Simple Certificate Enrollment Protocol

SHA Secure Hash Algorithm

TCP Transmission Control Protocol

TLS Transport Layer Security

TTP trusted third party

UDP User Datagram Protocol

VA validation authority

WoT web of trust

WoV window of vulnerability

6LoWPAN IPv6 over Low-Power Wireless PAN
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1 Introduction

A growing majority of Internet-connected devices are tiny computers embedded in
machines and infrastructure called smart objects. This new Internet of Things (IoT)
provides the foundation for automated cities, factories, buildings and power grids.
However, it also exposes this physical infrastructure to cyber threats. Security for the
IoT is a high priority for governments and industry, because many critical systems can
now be controlled at a distance, over the Internet.

Smart objects are characterized by stringent resource constraints. Often, they
only have tens of kilobytes of memory, 8- or 16-bit processors, and lossy wireless
radios. Some run on battery power but are expected to operate for years before being
recharged. These devices perform specialized periodic tasks, and keep their radios off
most of the time. As a rule of thumb, transmitting one byte requires about as much
energy as running 8000 CPU cycles [3]. Any protocol designed for the IoT must take
these factors into account.

These computing constraints create security challenges. Most traditional Internet
security protocols require too many compute cycles and message exchanges to run
on constrained networks. Some of these protocols have been successfully adapted for
the IoT, but digital certificates are still a work in progress. These data structures are
ubiquitous across the Internet for authentication. However, the network infrastruc-
ture required to validate them makes them particularly challenging to adapt for the
Internet of Things.

1.1 Background

Consider a common situation on the Internet. Alice wants to send Bob a confidential
message. How can she make sure that only Bob can read it, even if someone else
manages to intercept it? Asymmetric cryptography provides the solution. Bob gener-
ates his own unique key pair – two very large random numbers. Messages encrypted
with one of these keys can only be decrypted with the other, and vice versa. Bob
keeps his private key secret and sends his public key to Alice. Now, all Alice needs to
do is encrypt her message with the key Bob sent her. Now the question is, how can
Alice be so sure that this key came from Bob and not some imposter?

To prove his identity, Bob sends his digital certificate to Alice. His certificate states
his name, his public key, an expiration date and a signature [4]. The signature comes
from a certificate issuing authority, and is signed using the authority’s private key.
Alice, the relying party, now uses the authority’s public key to validate that the signa-
ture is authentic. She trusts that the authority did its due dilligence to make sure Bob
owned his key before signing his certificate. So, Alice is now reasonably assured that
the key belongs to Bob.

A system like this requires all parties involved to play their role according to
agreed-upon procedures. Someone has to be responsible for verifying that users are
authorized to receive a certificate. Someone has to sign the certificates. Everyone
has to trust the signatures. Everyone has to keep their private keys safe. Trust in
the certificate system is built on the assumption that, if a certificate is valid, then the
associated private key has not been compromised.

8
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1.2 Problem

If an attacker manages to steal a private key, the authorities must revoke the associated
certificate as soon as possible. Relying parties must also have some way of verifying
whether or not a certificate has been revoked. Otherwise, the stolen key could be
used to impersonate the certificate owner until the certificate expires. Several pro-
tocols for certificate revocation and validation exist, but none have been adapted for
constrained devices. This research will answer the following question: How should
certificate revocation be implemented for the Internet of Things?

1.3 Purpose

The purpose of this research is to provide a detailed analysis of the current procedures
and protocols used for certificate revocation. This will be a benefit to the industry,
because few resources currently exist to explain the tradeoffs between competing
protocols. This study will then propose a new protocol for certificate revocation which
meets the system requirements of constrained devices. This protocol could improve
security for any commercial or government service depending on a constrained node
network.

1.4 Goals

1. Determine if any existing protocols for digital certificate revocation can be im-
plemented in the IoT.

2. Design and specify a new protocol for certificate revocation that fits the resource
constraints of IoT devices. This protocol should be compatible with and/or
based on existing protocols in order to be a candidate for future standardization.

3. Implement this new protocol in the Contiki-NG operating system on a con-
strained device. Compare its energy consumption with the best existing pro-
tocol.

1.5 Research Methodology

This work will draw inspiration from other recently developed protocols and frame-
works for the IoT such as ACE, CoAP, DTLS and OSCORE. These protocols were de-
signed by first comparing the needs of the IoT with the needs of traditional Internet
devices and services. Once these differences were well understood, existing Internet
protocols were analyzed to to see what could be adapted, removed or combined to
meet the needs of the IoT even under stringent resource constraints. Existing design
patterns should be reused in new protocols to the largest extent possible to encourage
adoption. The usefulness of this project work is largely dependent on how practical
its findings are to implement, and how widely they are adopted.

9
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1.6 Delimitations

Only one existing protocols will be chosen for comparison with a newly proposed pro-
tocol. The selection of protocol used for comparison will be informed by the research
done in the literature review. The selected protocol shall be the one which appears
to be the most feasibly implemented on constrained devices. The proposal for a new
protocol will not be detailed enough for immediate standardization. Rather, it will
only be comprehensive enough to be implemented in the experiments and subjected
to a security analysis.

1.7 Outline

This thesis will begin with background information related to public key infrastruc-
tures, secure IoT frameworks and constrained devices. These are presented in Chap-
ter 2, which concludes with related academic work on digital certificate revocation.
Chapter 3 then discusses potential approaches to certificate validation in the IoT, and
describes the experiments that were performed for this work. Chapter 4 introduces
a new protocol for certificate validation, which is tested in the experiments. Finally,
Chapter 5 presents the results from said experiments and the conclusions that can be
drawn from this research.

10
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2 Background

This chapter provides background information about public key infrastructures on a
conceptual level, as well as the protocols which exist to implement them. Section
2.2 introduces two network protocol stacks offering encrypted communication for
constrained devices. These will be the target platforms for the experiments discussed
later in this paper. Section 2.3 discusses classes of resource contrained devices and
their implications on digital certificate systems. Finally, Section 2.4 briefly introduces
web of trust, a decentralized alternative to public key infrastructures, and why it
cannot be feasibly implemented in the IoT.

2.1 Public Key Infrastructure (PKI)

A public key infrastructure is a system which facilitates the use of digital certificates.
The specific policies, procedures and roles within this system vary between imple-
mentations, but a generalized model can be seen in Figure 1. A PKI must have at
least one certificate authority (CA), which issues and signs certificates with its private
key. Participants in the system will trust certificates signed with this key as long as
they trust the signing CA.

1. Send CSR.

3. Sign certificate.

RA

CA

VA

2. Approve request.

4. Send certificate. 

5. Check validity.

7. Confirm validity.

6. Update CRL.

EE

RP

Figure 1: The actors and procedures in a typical public key infrastructure.

In many PKI implementations, a separate entity known as a registration authority
(RA) serves as an intermediary between a participant requesting a certificate and
the CA. An end entity (EE) may generate its own key pair and send a certificate
signing request (CSR) to the RA for approval [5]. Depending on the organization or
application, steps may be taken at this time to validate the identity and permissions of
the requester. Once approved, the request is forwarded to the CA to sign and deliver
to the requester.
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With valid certificates, participants can trust one another and initiate secure com-
munications. However, some circumstances require a certificate to be invalidated
prior to the certificate’s expiration date (e.g. if its private key has been compromised).
To handle these events, the CA or another authorized entity may issue a certificate re-
vocation list (CRL), which broadcasts the serial numbers of revoked certificates. The
CRL is signed by the issuer in order to prevent spoofing or denial-of-service attacks.
The distribution of this list may be delegated to other entities, which are sometimes
referred to as validation authorities (VA). A relying party (RP) can send a request to
the VA to download the entire CRL or check an individual certificate, depending on
the protocol used.

In many PKI implementations, trust is delegated from a master root CA to in-
termediate CAs. This way, there is not a single server responsible for issuing every
certificate. Intermediate CAs may further delegate trust to subordinate CAs, and each
one will have a certificate signed by the CA above it in the hierarchy. The root CA is
the only entity that signs its own certificate. This system of trust delegation is known
as a chain of trust, and the root CA is known as the trust anchor. In a public key infras-
tructure, everything depends on the security of the root CA private key. Generating
and storing this key is typically done in a root key ceremony under strictly controlled
conditions, with video surveillance and lawyers present [6].

2.1.1 The X.509 Standard

X.509 is an Internet standard defining data structures for digital certificates and re-
vocation lists [4], and is used in nearly all PKI implementations. It also defines an
algorithm to recursively validate all of the certificates in a chain of trust. X.509 is
specifically designed for use in a PKI with the roles and procedures shown in Figure
1. It does not, however, specify how any of these should be implemented.

2.1.2 Certificate Revocation Lists

Certificate revocation lists have a problem with scalability which makes them un-
suitable for use in the IoT. A 2015 study found that publicly available CRLs for TLS
website certificates vary in size from a few bytes to tens of megabytes, with a median
size of 51 KB [7]. The problem is mitigated somewhat by issuing delta-CRLs, which
allow clients to download only the additions since the last update.

RFC 5280 §5.3.1 strongly encourages the use of the reason code extension when
revoking a certificate. This provides the following options: (0) unspecified, (1) key
compromise, (2) CA compromise, (3) affiliation changed, (4) superseded, (5) cessa-
tion of operation, (6) certificate hold, (8) remove from CRL, (9) privilege withdrawn
and (10) authorization authority compromised. Option (8) is only to be used in delta-
CRLs. A 2013 survey of publicly accessible CRLs found that 44% of the entries had
been revoked for a key compromise, and 38% had been revoked for either cessation
of operation or change of affiliation [8].

12
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2.1.3 Management Protocols

Administering a public key infrastructure involves a few core procedures: certificate
enrollment, renewal, revocation and validation. Several protocols have been drafted
and standardized implemented in the past two decades to facilitate these actions. Ta-
ble 1 summarizes the feature coverage of popular and recently introduced protocols.

OCSP CMC CMP SCEP ACME EST EALS
RFC document number 6960 5272 4210 draft draft 7030 draft
Standardized 1999 2000 2005 2013
Last updated 2013 2011 2012 2018 2018 2017
Certificate enrollment 3 3 3 3 3 3
Certificate renewal 3 3 3 3
Certificate revocation 3 3 3
Certificate validation 3 3 3 3
End-to-end security 3 3 3
Server-side key generation 3 TBD

Table 1: A comparison of existing PKI management protocols.

It should be noted that no single protocol covers the full range of PKI operations,
and in practice multiple protocols are often combined. CMC, CMP and SCEP come
close, and have all been in widespread use for nearly 20 years [9, 10, 11, 12]. For cer-
tificate validation, these three protocols implement a CRL retrieval message. Arguably
the most important protocol shown in Table 1 is OCSP, which provides an interface
for querying the status of an individual certificate rather than downloading a CRL.
ACME, EST and EALS were introduced more recently, and did not specify methods
for verifying certificates [13, 14, 15].

2.1.4 Online Certificate Status Protocol (OCSP)

OCSP was developed as a replacement for the CRL method of certificate validation
[16]. OCSP allows a relying party to query the status of an individual certificate with
a request to a server known as an OCSP responder. The responder checks the cer-
tificate’s status and returns a signed response. This offers a significant improvement
over the resource demands of X.509 CRLs, but it still has a few notable security and
performance issues:

• The OCSP responder acts as a trusted third party (TTP), which may be a privacy
concern. Since the RP must indicate the specific certificate it wishes to validate,
it reveals which EE it wishes to communicate with.

• OCSP responses are vulnerable to replay attacks. The standard offers an op-
tional nonce extension to mitigate this, but it increases demand on OCSP re-
sponders and is often not implemented.

• If an RP fails to establish a connection with the OCSP responder, it must elect to
either communicate anyway (negating any security provided by OCSP) or cease
communication with the EE.

13
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The above issues are solved by OCSP stapling [17]. This is a TLS handshake extension
which allows relying parties to request a valid timestamped OCSP response along with
a end entity’s certificate when establishing a connection. Since OCSP responses are
signed, it is not a security risk to have the end entity forward its own OCSP validation.
This greatly reduces network traffic to OCSP responders, because an end entity can
copy a single response to all its relying parties until the response expires.

VAEE

RP

VAEE

RP

VAEE

RP

VAEE

RP

CRL OCSP

OCSP

Stapling

OCSP

MustStaple

Figure 2: Certificate validation options (inspired by Figure 1 on page 3 of [1]).

It is not guaranteed that the end entity will return a timestamped OCSP response
when a relying party requests one. In that case, the relying party may contact the
OCSP server on its own, depending on its security policy. More recently, the X.509
Must-Staple extension was introduced, which tells relying parties that they should
expect a stapled OCSP response as part of the TLS handshake, and the connection
should be dropped otherwise [18]. This level of reliance on OCSP responders led one
study to conclude that the Web is not yet ready to widely implement Must-Staple [1].
Figure 2 illustrates the various validation schemes possible with OCSP.

2.2 Secure IoT Frameworks

IoT devices require many of the same functions and security assurances as traditional
Web services. In recent years, this has been accomplished by profiling existing pro-
tocols for use in smart objects [3]. Figure 3 shows two Internet protocol stacks for
constrained devices along with an equivalent Web protocol stack. In many IoT de-
ployments, low communication overhead is of higher priority than reliable packet
transmission, so UDP is often preferred to TCP.

14
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Secure Web 

HTTPS Stack 
Secure IoT 

OSCORE Stack 
Secure IoT 

CoAPs Stack 

ESTcoaps

CoAPs

IEEE 802.11

IPv4 IPv6
IPv6

6LoWPAN

IEEE 802.15.4

IPv6

6LoWPAN

UDP

TLS

TCP

Application 
Layer 

Transport 
Layer 

Network 
Layer 

Link Layer 

EALS EST

HTTPS

DTLS

UDP

OSCORE

CoAP

IEEE 802.15.4

Figure 3: Network stacks for secure IoT devices and their Web-based equivalent.

2.2.1 Secure Constrained Application Protocol (CoAPs)

CoAP was developed to provide a request/response interaction model between con-
strained devices similar to HTTP, with the option to use either UDP or TCP as a trans-
port layer [19]. The CoAP message structure and response codes are deliberately sim-
ilar to HTTP, which allows messages to be translated between the two protocols easily
via a proxy. (D)TLS can be used at the transport layer to provide end-to-end encryp-
tion using pre-shared keys, key exchange or certificates, in which case it is referred
to as CoAPs. The EST protocol has already been adapted for the CoAPs framework,
and is aptly named EST-coaps [20]. This provides constrained devices with efficient
procedures for certificate enrollment and renewal, but none for certificate validation.

End-to-end encryption is not possible if a proxy is used to translate messages be-
tween CoAP and HTTP. The proxy must be able to decrypt messages from the con-
strained devices in order to translate between protocols, so the security association
is between the client and the proxy, not the client and the server. From an appli-
cation program perspective, the most important difference between TLS and DTLS
is the limitation on message size. DTLS records must fit within a single datagram,
which means application programs must anticipate the path maximum transmission
unit (PMTU) and the amount of message expansion incurred by DTLS processing to
prevent fragmentation.

2.2.2 OSCORE

Object Security for Constrained RESTful Environments (OSCORE) is being developed
as an alternative to CoAPs [21]. The key difference is that OSCORE encrypts only the
payload of CoAP messages, which means end-to-end encryption can be achieved over
CoAP even if an HTTP proxy is used. (The proxy only needs to change the message
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headers to perform the protocol translation.) The Enrollment with Application Layer
Security (EALS) protocol is currently being developed to enable certificate enrollment
and distribution with OSCORE [15].

2.3 Resource Constraints

A key characteristic of embedded computing is the impact (or lack thereof) of Moore’s
law. As transistor count and density increases, investments are made into reducing
cost and energy requirements rather than increasing computing power [22]. The IETF
produced RFC 7228, an informational memo, to provide some succinct categories of
constrained devices. Those categories are shown in Tables 2, 3 and 4.

RAM size (data) ROM size (code)
Class 0 (C0) ⌧ 10 KiB ⌧ 100 KiB
Class 1 (C1) ⇠ 10 KiB ⇠ 100 KiB
Class 2 (C2) ⇠ 50 KiB ⇠ 250 KiB

Table 2: Classes of constrained devices (from RFC 7228 §3).

Energy limitation Example power source
E0 Event energy-limited Event-based harvesting
E1 Period energy-limited Periodically recharged battery
E2 Lifetime energy-limited Non-rechargable battery
E9 No limitation Mains-powered

Table 3: Classes of energy limitation (from RFC 7228 §4.2).

Strategy Ability to communicate
P0 Normally off Reattach when required
P1 Low-power Appears connected, perhaps with high latency
P9 Always-on Always connected

Table 4: Power usage strategies for communication (from RFC 7228 §4.3).

For the scope of this thesis, C0 and E0 devices will not be considered, because they
do not have sufficient resources to run most encryption operations. However, the dis-
tinction between P0 and P1 power management strategies is notable in the context of
digital certificates. P0 devices transmit messages so infrequently that they terminate
connections after each message, while P1 devices send messages often enough that
they keep their connections open indefinitely. Certificates are only exchanged and
verified during (D)TLS connection handshakes, which means P1 devices may only
validate a certicate once before it expires.

2.4 Web of Trust

Considering the many challenges in implementing a public key infrastructure, one
may be wondering if such a rigid hierarchy is the best solution to public key credential
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management. One alternative is the decentralized web of trust (WoT) model used in
PGP and other related protocols. In a WoT scheme, end users can simply vouch for
each other; a single certificate may have several signatures attesting to its validity.

Sign.

Sign. Sign.

Trust?

Trust?

Trust?

Sign.

Sign.

Figure 4: Peer certificate signing in a web of trust.

In practice, web of trust faces many scalability issues. Relying parties have no
practical way of reaching the same level of confidence in a certificate as they can in
a PKI. This would require verifying the authenticity of, and the procedures used by,
every signatory in the entire chain of trust. In order for a relying party to accept a
certificate, there must be at least one trusted party in the chain of trust. This means
that end entities must have some way to bootstrap an intial list of trusted parties.
That list essentially has to be established out-of-band, which creates a major barrier
to enrolling new entities.

If an end entity’s private key is lost or compromised, there is no central authority
to report it to the entire network. Two solutions exist to this problem. (1) Every end
entity assigns a designated revoker to report their key compromised on their behalf.
(2) Every end entity prepares a signed suicide note declaring their key lost or compro-
mised, in case this ever occurs. Neither of these options look promising for large-scale
networks, because there is no central server to broadcast certificate status changes.

2.5 Bloom Filters

A Bloom filter is a data structure for representing a compressed set. Membership
tests on the compressed set are probabilistic; false positives are possible but not false
negatives. This could be a useful property for the compression of CRLs. A valid
certificate falsely reported as revoked will merely cause a service disruption, but a
revoked certificate falsely reported as valid would be a security breach.

Figure 5 illustrates the operation of a Bloom filter with m = 18 elements and k = 3
hash functions. The elements of the output array are initially set to 0 before the
values {x,y,z} are added. The membership of any arbitrary value w can be checked
by computing the output of all k hash functions. The output of these functions point
to indicies in the output array. If any of the elements are 0, w is definitely not a
member of the set. If they are all 1, w might be in the set. With a Bloom filter,
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0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0

{x, y, z}

w

Figure 5: Example of a Bloom filter (from page 13 of [2]).

the fixed-size output array never “fills up”, but the false positive rate will increase to
100% when all elements are set to 1. This is an interesting property in the context of
constrained devices, where a predictable memory footprint is critical.

2.6 Related Work

Preventing the use of a certificate in a public key infrastructure can be viewed as a
two-step process: revocation and validation. To revoke a certificate, a network admin-
istrator simply marks the certificate in the CA’s internal software. This is not broadcast
to the network nodes, so the certificate is not actually “disabled” until relying parties
retrieve a status update from the VA (e.g., a CRL). This is why the academic discus-
sion of revocation has mainly focused on the question of distributing revocation state,
rather than server-side operations and data structures.

2.6.1 Rivest, 1998

In his paper Can We Eliminate Certificate Revocation Lists?, Ronald Rivest laid out
three propositions regarding certificate revocation [23]:

1. Recency requirements must be set by the acceptor, not by the certificate issuer.

2. The signer can (and should) supply all the evidence the acceptor needs, includ-
ing recency information.

3. The simplest form of recency evidence is just a recently issued certificate.

This paper conlcluded that relying parties must be able to query a VA for up-to-date
information. It also suggests that in many cases online validation can be eliminated
simply by reducing certificate lifetimes.

2.6.2 Gunter & Jim, 2000

Rivest’s ideas were expanded upon in the paper Generalized Certificate Revocation,
in which the authors argue that any revocation system ultimately strikes a balance
between three performance metrics [24]:

• Risk – the probability that a stolen private key is used successfully.
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• Cost – the resources consumed by the system.

• Liability – the consequences of a security breach.

In short, the distribution of revocation state throughout a network is ultimately a
tradeoff between security and resource consumption.

2.6.3 Raya, Jungels, Papadimitratos, Aad & Hubaux, 2006

Raya et al. demonstrated the use of Bloom filters to compress CRLs for vehicle-to-
everything communications (V2X) in [25]. Revocation is particularly challenging in
a V2X context for a few reasons:

• Security has physical safety implications.

• The end entities are inherently mobile and wireless.

• Each EE has many short-lived certificates (i.e., pseudonyms) for anonymity.

A similar system was demonstrated in [26], in which EEs must check every com-
pressed CRL update to see if its certificates register as false positives. When this
happens, those certificates must be replaced with backup pseudonyms which do not
trigger a false positive. This solution would not be feasible constrained devices.

2.6.4 Fan, Andersen, Kaminsky & Mitzenmacher, 2014

In the paper Cuckoo Filter: Practically Better Than Bloom, an alternative to the Bloom
filter is introduced [27]. The Cuckoo algorithm supports deleting members of the set
after it has been compressed, which is not easily done with Bloom. It also outperforms
the Bloom filter on compression ratio when the desired false positive rate is below 3%.
It is not clear whether this algorithm could be implemented on constrained devices.

2.6.5 Wang, Qian, Li & Shi, 2019

Wang et al. demonstrated a distributed approach to certificate validation in IoT net-
works by caching validation information across constrained devices throughout the
network [28]. Centralized servers generate data structures called Othello Hashings,
which are claimed to be more efficient than Cuckoo filters for this application. This
maps ownership of validation information to devices and is distributed throughout
the network so that devices can collaboratively share validation information.
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3 Methodology

This chapter will present an overview of the research methods used in this thesis.
First, Section 3.1 introduces the concept of a window of vulnerability (WoV), a useful
metric for evaluating the efficacy of revocation systems. Sections 3.2 and 3.3 crit-
ically analyze a potential method for certificate validation in constrained networks.
The conclusions drawn here are the justification for a new protocol, which is pre-
sented in the next chapter. Finally, Section 3.4.1 describes the hardware used in the
experiments and Section 3.4.3 describes the data to be collected and analyzed.

3.1 Window of Vulnerability (WoV)

The crux of the entire revocation problem can be summarized as follows: Trust in a
digital certificate can only be derived from its signed expiration date or an online val-
idation authority. Either one of these can be used to limit the window of vulnerability
– the timeframe in which an adversary can exploit a stolen private key.

Consider, for example, a constrained device initiating a long-lived DTLS connec-
tion with a server. It receives a copy of the server’s certificate during the DTLS hand-
shake, and must decide whether the certificate is trustworthy before proceeding. The
following two trust policies provide a deterministic window of vulnerability:

1. Periodically validate the certificate with a VA as long as the connection remains
open. The WoV is equal to the frequency of validation checks.

2. Only check the certificate’s expiration date. If the expiration date is sufficiently
soon, accept the connection. Drop the connection when the certificate expires.
The WoV is equal to the remaining life of the certificate.

An identical WoV can be achieved with either of these policies, as shown in Fig-
ure 6. This demonstrates the principle that expiration dates and online checks are
effectively redundant. The maximum allowable window of vulnerability should be
the first consideration when setting PKI policies, as it determines the level of risk the
system is exposed to.

valid

expired 

renewed renewed 

issued 

rejected 

valid valid

revoked 

vulnerable 

vulnerable 

expired 

Figure 6: The certificate life cycle: revocation checks versus frequent renewal.
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3.2 OCSP Proxies

This section presents a potential “off-the-shelf” solution for certificate validation in
the IoT. A CoAP-HTTP proxy can be configured to make legacy OCSP responders
compatible with devices running a CoAP network stack. A critical analysis of this
method will be presented, with a focus on its feasibility for the IoT.

3.2.1 X.509 Certificate Generation

The OpenSSL library implements all the necessary protocols to generate key pairs,
issue X.509 certificates and perform basic PKI management. For this analysis, three
certificates were generated, two of which can be found in Appendix A.

1. A self-signed root CA certificate, which signs the latter two certificates.

2. A validation authority certificate, which is authorized to sign OCSP responses.

3. A TLS Web server certificate (i.e., an end entity).

All of the certificates used in this study contain 256-bit elliptic curve (EC) keys
using the prime256v1 algorithm (a.k.a. secp256r1). This algorithm is widely used
and is compliant with the NIST key size recommendations on elliptic curve digital
signing algorithms (ECDSA) in [29] (see Table 5).

Use case RSA key [b] ECDSA key [b] DH key [b]
Client authentication 2048 256
Client non-repudiation 2048 256 or 384
CA and OCSP signing 2048 or 3072 256 or 384
Session key establishment 2048 256 or 384 2048

Table 5: Key sizes recommended by NIST (see NIST SP 800-57 Part 3 §2.2.1).

3.2.2 OCSP Responder and Proxy Setup

OpenSSL includes a full-fledged OCSP responder, which is accessed easily from the
command line. RFC 6960 §A.1 specifies two alternatives for sending OCSP requests,
both of which are supported by this implementation:

1. Use the HTTP POST method and specify application/ocsp-request as the
content type.

2. Use the HTTP GET method and put the request directly in the URI. In this case,
the request must be base-64 encoded, which increases its size by 33%.

Proxying requests over CoAP using the second option is trivial using the crosscoap
library developed by IBM Corporation. The shell commands needed to do this are
shown in Listing 1. The first OCSP option would require non-standardized modifi-
cations to the proxy and/or OCSP responder. This is because while HTTP specifies
content types with strings, CoAP uses integers, and there is no integer yet assigned to
the type application/ocsp-request (see RFC 7252 §12.3). This study will therefore
use the second option, even though the first would be more efficient.
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$ crosscoap -listen [::]:5683 -backend http ://127.0.0.1:2560
,! -accesslog /tmp/coap.log &

$ openssl ocsp -port 2560 -index index.txt -CA ca_cert.pem -rkey
,! va_priv.pem -rsigner va_cert.pem -resp_no_certs

Listing 1: A CoAP-HTTP proxy connected to an OCSP responder.

In Listing 1, the proxy is listening on the local host’s default CoAP port (repre-
sented as [::]:5683 in IPv6). The payloads of incoming CoAP messages are encapsu-
lated in the equivalent HTTP message type and forwarded to the local host’s default
OCSP port (represented as 127.0.0.1:2560 in IPv4). HTTP responses are then routed
back through the proxy and translated to CoAP for the original requester.

The -index flag in the OpenSSL command specifies a plaintext file listing the
status of all certificates issued by the CA. The -resp no certs flag indicates that the
OCSP responder should not attach its certificate to the response. Curiously, there is
no field in the OCSP request to indicate whether or not the client needs a copy of the
certificate.

3.2.3 Packet Analysis

Listing 2 shows how the base-64 encoded OCSP request was generated for this test.
As per OpenSSL’s default settings, the OCSP nonce extension is included. A simple
CoAP client program was written in Contiki-NG to send this request to the proxy. To
do this, a CoAP GET request is issued to coap://[::]:5683/<base-64 encoded OCSP

request>. The proxy transforms this into an HTTP GET request and forwards it to
the OCSP responder.

$ openssl ocsp -reqout request.der -issuer ca_cert.pem -cert
,! ee1_cert.pem -VAfile va_cert.pem

$ base64 request.der
MGgwZjA/MD0wOzAJBgUrDgMCGgUABBSGCNnE3gpecfd8mrrBRzzRrk8c5wQUlh92gq

,! D5mYC0SH9xD3pFiMp7mMMCAhABoiMwITAfBgkrBgEFBQcwAQIEEgQQ3UR6eI
,! t3eHhWZ6bs+Kw8+A==

Listing 2: Generating a base-64 encoded OCSP request.

A summary of the packet contents for the entire exchange is shown in Table 6.
This was captured and analyized using Wireshark. Although the proxy could be con-
figured to keep its connection to the responder alive (eliminating the TCP connection
handshake and teardown), the three packets containing the actual OCSP exchange
still use 256 bytes for HTTP and TCP headers. The same exhange between the client
and proxy uses only 25 bytes for UDP and CoAP headers. Clearly, HTTP is not an
optimal transport protocol for OCSP.
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UDP CoAP TCP HTTP OCSP
client! proxy OCSP request 8 4 146
proxy! server TCP (SYN) 40
proxy server TCP (SYN, ACK) 40
proxy! server TCP (ACK) 32
proxy! server OCSP request 32 89 145
proxy server TCP (ACK) 32
proxy server OCSP response 32 81 385
proxy! server TCP (ACK) 32
proxy server TCP (FIN, ACK) 32
proxy! server TCP (FIN, ACK) 32
proxy server TCP (ACK) 32
client proxy OCSP response 8 5 385

Table 6: Layer sizes (in bytes) of a CoAP-proxied OCSP transaction.

3.2.4 Encoding Analysis

The ASN.1 DER structures for OCSP messages are illustrated in Figures 7 and 8.
In these diagrams, dashed boxes indicate optional fields and red boxes indicate an
extensible sequence. These header fields encapsulate any number of duplicates of the
items below it in the hierarchy. A single request can contain quite a lot of information:

• Any number of certificate serial numbers to validate.

• Any number of extensions for each individual request.

• Any number of extensions for the whole set of requests.

• A signature to authenticate the requester.

• Any number of certificates required to validate the signature.

Despite its extensibility, OCSP is used almost exclusively to validate a single certificate
with no client authentication. The discrepancy between the specification and the
usage of OCSP has led to an inefficient encoding scheme. For example, the first
required field in the request data structure is 6 levels deep, so virtually all requests
begin with an identical 12-byte sequence of ASN.1 tags.

OCSP requests contain 160-bit SHA-1 hashes of both the sigining CA’s name and
public key in order to create an identifier which is globally unique (see RFC 6960
§4.1.2). This implies the existence of 2320⇡ 2.14⇥1096 certificate authorities on Earth,
which is more than the number of atoms in the observable universe. The entire OCSP
request is then echoed back in the certID field of the OCSP response, which makes the
system doubly redundant.

ASN.1 itself has notable inefficiencies in the way data are demarcated. Each
header states the number of bytes contained in the next level of the hierarchy. As
a result, a significant portion of the encoded message contains byte counts. This also
means that data must be encoded in reverse, which is demonstrably less efficient in
implementation than a forward encoding scheme like CBOR.
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Figure 7: Illustration of the OCSP request data structure.
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Figure 8: Illustration of the OCSP response data structure.
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3.2.5 Timestamp Analysis

There are four different timestamp fields in an OCSP request: producedAt, thisUpdate,
nextUpdate and revocationTime. The update fields exist for VAs that either period-
ically update their information, or pre-generate responses for frequently requested
certificates (see RFC 6960 §2.4 and 2.5). Consider this in the context of the window
of vulnerability described in Section 3.1. If a client’s trust policy involves checking
certificates every T hours, but the VA only updates its information every 2T hours,
then that client will be out of service for half of the time. Therefore, VAs should only
implement this type of system if the update interval is acceptable to all clients. Addi-
tionally, clients don’t need to know when a certificate was revoked, because it will be
rejected regardless of when it happened. In summary, a single timestamp indicating
the production time would be sufficient.

3.3 Bloom Filter CRL Compression

This section discusses the feasibility of using Bloom filters to compress CRLs for con-
strained devices. Bloom filters have some useful properties for this application area,
namely:

• False positives are possible, but not false negatives (i.e., revoked certificates
would never appear valid, but the opposite is possible).

• They are space-efficient. For a p = 1% false positive rate, less than 10 bits per
element are required.

• A fixed-size Bloom filter has no “maximum capacity”, but the false positive rate
will increase as elements are added (i.e., as certificates are revoked).

In the context of CRL compression, Bloom filters would act as an initial offline vali-
dation check. If it comes up negative, the certificate is definitely not revoked. If it
comes up positive, an online validation protocol must be used to check whether it is
a false positive. This two-step strategy could eliminate most online revocation checks
with a Bloom filter size on the order of a few kilobytes.

3.3.1 Theory

The properties of a Bloom filter can be computed with the following equations. Here,
m is the size of the filter (in bits), n is the number of elements (i.e., revoked certifi-
cates), k is the number of hash functions used to map elements to bits, and p is the
false positive rate.

ln p =�m
n
(ln2)2 (1)

k =
m
n

ln2 =� log2 p (2)

These equations express the relationship between filter parameters which optimize
space efficiency. However, the number of hash functions must be a whole number,
so the optimal value of k cannot be realized unless Equation 2 evaluates to a positive
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integer. Equation 3 expresses the upper bound of the false positive rate p as a function
of k, m and n, which is more generally applicable [30].

p
⇣

1� e
k(n+0.5)

m�1

⌘k
⇡
⇣

1� e�kn/m
⌘k

(3)

3.3.2 Näıve Approach

As discussed in Section 2.3, highly constrained devices have RAM sizes ranging from a
few bytes to about 50 KiB. A näıve approach to using Bloom filters in this environment
would be to set the filter size m to some value that fits in memory, and then decide on
a tolerable false positive rate p. Equations 1 and 2 then give the optimal number of
hash functions k and the maximum CRL size n, shown in Table 7.

k = 10 k = 7 k = 3
p = 1/1024 p = 1/128 p = 1/8

m ⇡ 0.1% ⇡ 1% ⇡ 10%
256 B 142 203 473
512 B 284 406 946
1 KiB 568 811 1,893
2 KiB 1,136 1,622 3,786
4 KiB 2,271 3,245 7,571
8 KiB 4,543 6,489 15,142

16 KiB 9,085 12,979 30,284
32 KiB 18,170 25,958 60,568
64 KiB 36,341 51,916 121,136

Table 7: Maximum n before exceeding p for a Bloom filter with fixed k and m.

The approach is suboptimal due to its inflexibility. The space efficiency (i.e., bits
per element) is dependent on the CRL size n, which is neither constant nor easily
predicted. Moreover, the optimal value of k for a given application is difficult to
determine. Adding more hash functions increases performance at low values of n, but
reduces the performance at high values of n, as shown in Figure 9.

3.3.3 Optimization

A rigorous approach is needed to determine the optimal Bloom filter parameters for
CRL compression. More importantly, it must be shown that this system can outper-
form online validation checks if it is to be considered as a viable alternative. The
volume of data transferred between the client and the VA is a good basis of compari-
son, as it is strongly correlated to energy consumption in constrained devices.

Consider the case where c certificates must be verified. The number of bits trans-
ferred in a single online verfication check is denoted x. The number of bits transferred
for a Bloom filter-based protocol (in addition to the m-bit filter) is denoted y. The con-
dition for a protocol based on CRL compression to outperform a protocol based only
on online validation checks can then be expressed as Equation 4.

pcx+m+ y < cx (4)
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Figure 9: Upper bound of the false positive rate p with a 4 KiB Bloom filter.

A protocol based on Bloom filter CRL compression must validate all “possibly revoked”
reports with an online check, which occurs with probability p. So, the lefthand side
of Equation 4 is an expected value. The righthand side of the inequality is the total
number of bits to validate c certificates with an online check. After rearranging and
substituting Equation 3 for p, we obtain:

⇣
1� e�kn/m

⌘k
+

m+ y
cx

< 1 (5)

3.3.4 Feasibility

The boundary defined by Equation 5 can be graphed if x and y are known. For the sake
of discussion, some very rough estimates will be made here based on the recorded
OCSP exchange over CoAP in Section 3.2.3. We assume that the compressed CRL re-
quest message is the same size as the observed OCSP request, and that the responses
use the same signature algorithm. To simplify things further, only transport and ap-
plication layer data will be considered, which gives x=4448 and y=1928 (bits).

With an equation solver, the equal-cost boundary can be computed for different
validation counts c. The number of hash functions k were selected so as to maximize
the maximum value of n on the boundary. A rigorous approach was not needed here
because, interestingly, k = 1 turns out to be the optimal value for c> 1. (A Bloom filter
with k = 1 is essentially a hash map with collisions allowed.) The result is shown in
Figure 10.
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Figure 10: Estimated bounds in which CRL compression could outperform OCSP.

Since the VA has knowledge of the total number of revoked certificates, and can
therefore compute the optimal filter sizes, it should set the Bloom filter parameters.
The VA must perform n⇥ k hashes to generate one m-bit compressed CRL. Therefore,
it is apparent that this system cannot scale for the IoT if every client is able to request
different values for m and k.

The c = 1 boundary shown in Figure 10 is worth noting. This line suggests that
downloading a compressed CRL could be more efficient than OCSP for verifying just
one certificate. However, as explained in Section 3.2, OCSP has numerous design in-
efficiencies. If a more efficient protocol for online validation becomes available, such
as the one presented in Chapter 4, CRL compression may not be a viable alternative.

These estimates should be viewed within the context of CRL sizes. A 2015 study
surveyed 2,800 CRLs for TLS Web certificates and found a mean size of 689 entries
[7]. Over 90% contained fewer than 1,000 entries, and over 95% contained fewer
than 10,000 entries. However, these values may or may not be accurate predictors of
future CRL sizes in the IoT. The IoT will dramatically increase the number of certifi-
cates issued, but improved security could reduce the need for revocation, and shorter
certificate lifetimes could reduce the time spent on CRLs.
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3.4 Experimental Design

This section describes the experiment developed for this project. Two protocols for
online certificate validation were implemented on constrained hardware: OCSP over
CoAP and an experimental new protocol. This new protocol was designed for this
research based on the findings presented in Sections 3.2 and 3.3. It is described in
the following chapter, and is referred to as TinyOCSP.

3.4.1 Test Platform

The Zolertia Firefly breakout board is the hardware platform used the experiments.
This device provides a USB interface to the Texas Instruments CC2538 system-on-
chip. The Firefly includes the optional CC2538 hardware accelerator for 256-bit
ECDSA, which is leveraged in the experiments.

Figure 11: The Zolertia Firefly breakout board.

The protocols used in the experiments are implemented within the Contiki-NG
embedded operating system, which supports the CC2538 chipset natively. Contiki-
NG supports 6LoWPAN and RPL routing by default, both of which are used in the
experiments. One Firefly device is flashed with the Contiki-NG RPL border router ex-
ample code. Another Firefly is flashed with implementations of OCSP and TinyOCSP,
and connects to the VA server through this border router.

The VA server is implemented on a conventional x86 Linux desktop computer. The
exact performance specifications of this machine are not particularly relevant, as the
server-side operations are simple and introduce no appreciable delay to the exchange
relative to the constrained devices.
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3.4.2 Protocol Implementation Notes

The OCSP responder and CoAP-HTTP proxy described in Section 3.2.2 are used in
the constrained hardware experiment. One notable issue was found with this system.
CoAP does not encode URLs as pure strings like HTTP, which causes some base-64
URL encodings to become corrupted (e.g., if they contain multiple “/” characters in
a sequence). The serial numbers and nonces used in the experiments were therefore
preselected to prevent this from happening. This issue could be resolved by switching
to a non-standard version of base-64.

For both the TinyOCSP and OCSP implementations, only enough client-side code
was implemented to generate the requests for the experiment and validate signatures
on the responses. The CA configured in Section 3.2.1 is identified as the issuer for all
certificates, and the VA key pair that was generated is used for all of the signatures.

3.4.3 Planned Measurements

The performance of each protocol implementation will be evaluated based on client-
side resource use. Contiki-NG’s Energest module will be used to capture the number
of clock cycles spent in each of the CC2538’s operating states. The device’s data sheet
provides the following values for the typical current draw in each of these states:
radio receiving 20 mA, radio transmitting 34 mA, CPU on 13 mA, CPU low power
mode 0.6 mA, and CPU deep low power mode 1.3 µA. The Firefly supplies 3.2 V to
the CC2538 chip when powered via USB. These values are used to estimate energy
consumption in each of the experiments with Equation 6.

E =V ⇥ I⇥ cycles/ fclock (6)

Certificates are identified in all of the experiments with random 2-byte serial num-
bers, 4-byte nonces and 8-byte authority key identifiers. The energy consumption for
100 iterations of the following use cases are examined: from one to eight simulta-
neous verifications with TinyOCSP, and up to three simultaneous verifications with
OCSP. In sufficient RAM prevented the OCSP implementation from handling more
verifications than this.
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4 TinyOCSP

This chapter introduces a new protocol for online certificate validation, referred to
here as TinyOCSP. The goal of this protocol is to provide the same services as OCSP
with minimal computing resources. The validation requests and responses are en-
coded with CBOR.

4.1 Request Encoding

The TinyOCSP request data structure is illustrated in Figure 12. A red box indicates
an array of variable length. The version field is included to allow for future updates,
and also to indicate whether or not the client needs a copy of the server certificate
(i.e., using reserved values of 0 and 1). No such option exists in OCSP.

request

version

verify

pair

akid

serial

nonce

Figure 12: Illustration of the TinyOCSP request data structure.

Certificates are concisely and uniquely identified using an authority key identifier
(see RFC 5280 §4.2.1.1) and a serial number. Both of these values can be up to 20
bytes, depending on the CA implementation, though serial numbers are usually much
smaller. (Recall that in OCSP, certificates were identified using two 20-byte hashes
and a serial number.)

Major type Header Contents
request array 1
version integer 1
validate array 1
pair array 1
akid byte string 1  20
serial byte string 1  20
nonce integer 1 4

Table 8: Byte counts in a CBOR-encoded TinyOCSP request.

Table 8 shows the size and type of each field in the CBOR-encoded TinyOCSP
request. The nonce field is optional depending on the client’s security policy. The
server can sign the request without deserializing the nonce, so it could be virtually
any length. A 4-byte nonce should be plenty of random data to protect against replay
attacks. The OpenSSL default for OCSP nonces is 18 bytes; other implementations
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use 8 bytes. These values are excessive because OCSP includes a signed timestamp in
the response (see Section 4.4.3).

4.2 Response Encoding

The TinyOCSP response data structure is illustrated in Figure 13. The signature field
contains the two 32-byte integers that make up an elliptic curve digital signature
generated with the prime256v1 algorithm. The data which is actually signed is the
concatenation of the entire request sent by the client and the authenticated field that
follows the signature. (Recall that in OCSP, the entire request is echoed back in the
response.) With this procedure, even the nonce need not be echoed back.

response

signature

authenticated

timestamp

verified

statuscertificates

Figure 13: Illustration of the TinyOCSP response data structure.

The client must store a copy of its request until the response is received and the
signature is validated. The verified field is simply an array of 1-byte unsigned integers
(the X.509 revocation status codes) which correspond to the requested certificates.
Responses include a single, signed timestamp represented in Unix time (see RFC 7049
§2.4.1), which requires 5-bytes in CBOR. (Recall that OCSP uses string formatting for
timestamps, which is much more verbose.)

Major type Header Contents
response array 1
signature byte string 2 64
authenticated array 1
timestamp integer 1 4
verified array 1
status integer 1
certificates array – –

Table 9: Byte counts in a CBOR-encoded TinyOCSP response.

Table 9 shows the size and type of each field in the CBOR-encoded TinyOCSP
response. If the client requested the server certificate, the certificates field is populated
as a CBOR array containing the chain of trust. The certificates must be kept in their
original ASN.1 DER formatting. (Otherwise, the signatures would not be verifiable.)
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4.3 Overhead Comparison

Figure 14 illustrates the relationship between encoded message size and the number
of certificates identified in a request. In the case of a single validation, OCSP has
a total transaction size of 358 bytes. TinyOCSP has a total transaction size of only
96 bytes, a 73% reduction. Greater cost savings are achieved by verifying multiple
certificates simultaneously, because the encoded TinyOCSP response grows by only
one byte for each subsequent validation.

Figure 14: Encoded message sizes in OCSP and TinyOCSP.

In this example, the CA and VA certificates generated in Section 3.2.1 were used.
The requests for both protocols contain 2-byte serial numbers and a 4-byte nonce.
The OCSP messages sizes shown here are in binary ASN.1 DER encoding (i.e., before
the additional expansion incurred by base-64 encoding). The OCSP responder has
been configured to identify itself in the required responderID response field with its
subject key identifier, which is much more compact than its subject name string. In
other words, Figure 14 depicts an optimistic OCSP configuration; in practice, many
implementations use suboptimal features of the protocol.
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4.4 Security Considerations

This section discusses the potential security vulnerabilities in TinyOCSP and how they
differ from OCSP. It will be assumed here that signatures guarantee authenticity;
attacks based on private key theft are outside the scope of this work.

4.4.1 Denial of Service Attacks

A denial of service (DoS) attack on the VA is the most significant threat to online
validation systems. The VA must generate a response containing an ECDSA signature
for every request it receives, which is computationally expensive to generate. A flood
of requests could easily overwhelm the server’s resources.

This type of attack is mainly prevented by firewalls. OCSP has the same vulnera-
bility, but Web-based devices usually have access to a CRL even if the VA is unreach-
able. For constrained devices running TinyOCSP, there would be no backup system,
so disabling the VA could cause significant disruption to the network.

4.4.2 Man-in-the-Middle Attacks

A man-in-the-middle (MiTM) attack can be deployed against certificate validation
systems by intercepting requests and replying with a fraudlent response before the
legitimate one arrives. In the case of TinyOCSP, an attacker can return an otherwise
well-formed response with random data for a signature. This would force the client
to perform the ECDSA validation step and thus waste system resources.

If the attacker strategically blocks only a portion of requests, clients will be forced
to waste resources, but will not be shut out of the VA services entirely. This type of
attack could go undetected for long periods of time. Networks containing wireless
battery-powered nodes are particularly vulnerable, as this can be applied as a form of
battery-draining attack.

This vulnerability exists in both TinyOCSP and OCSP. It could be mitigated against
using end-to-end encryption (e.g., DTLS or OSCORE), but this would incur a signif-
icant cost overhead. Maintaing long-lived connections with the VA server may be
impossible in IoT networks due to the number of clients.

4.4.3 Replay Attacks

The use of a nonce effectively prevents any replay attacks with TinyOCSP, but this
feature should still be considered optional. Without nonces, the TinyOCSP server
can precompute responses for frequently queried certificates to conserve resources.
This may be required in IoT applications containing millions of devices connecting to
centralized resources. Without nonces, two types of replay attacks are possible:

1. Mallory, an attacker, steals Alice’s private key. At the same time, he queries the
VA for Alice’s certificate status. Mallory now has the means to impersonate Alice
even if the certificate is revoked by replaying the VA’s response to victims.

2. Mallory sends the VA a series of queries with serial numbers of increasing value.
CAs typically issue certificates in sequential order, so eventually he will find
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the highest issued serial number when the VA returns an unspecified revocation
status (see Section 2.1.2). He stores these unspecified responses and waits for
the CA to issue new certificates. Once they have been issued, he can replay the
old VA responses in a MiTM attack whenever a victim attempts to validate them,
forcing the victims to reject the certificates.

Both of these attacks become virtually impossible if clients require very recent
timestamps. If precomputed responses are to be used by the VA, however, there must
be some leeway to accept older responses. The second attack could be mitigated
against if the VA returns a certificate hold revocation status for certificates that have
not been issued. This way, at least, clients will check back later rather than assuming
the certificate is fraudulent.
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5 Results and Analysis

This chapter discusses the results from the experiments, their limitations, conclusions
that can be drawn, and suggest future work in this topic area.

5.1 Results

The implementation details of the experiments described in Section 3.4. Both OCSP
and TinyOCSP were implemented on the Zolertia Firefly, and the client-side energy
consumption for 100 iterations of the protocols was estimated using Contiki-NG’s
Energest module. The results for one, two and three simultaneous validations are
shown in Figure 15.

Figure 15: Energy use over 100 transactions with OCSP.

The median energy consumed by TinyOCSP for one, two and three validations was
50%, 59% and 63% less than OCSP, respectively. OCSP had a significantly higher up-
per standard deviation for two and three validations than any of the other test cases.
This is most likely due to random packet loss and re-transmission, as the median val-
ues still follow a linear upward trend, as one would expect. On lossy wireless links,
reducing message overhead by even a few hundred bytes can significantly reduce
radio use, which is often the greatest consumer of energy on wireless devices.

37



KTH Royal Institute of Technology Stockholm, Sweden

Figure 16: Energy use over 100 transactions with TinyOCSP.

5.2 Discussion

The CC2538 chip on the Zolertia Firefly has 512 KB of ROM and 32 KB of RAM.
However, only 16 KB of RAM are retained in low power mode, so this was the effective
upper limit for the experiments. To put these numbers in perspective, Contiki-NG’s
hello-world example progrom requires 11 KB of RAM when compiled for the CC2538.
Simply enabling CoAP and the TSCH MAC layer (both of which are used in these
experiments) is enough to overflow the RAM. So, all network protocol buffers must be
configured to use the minimum allowable values. Once this is done, there are still only
2 KB of RAM remaining for all application-specific code (e.g., OCSP or TinyOCSP).

The OCSP implementation created for these experiments used a 512-byte buffer
in RAM, which is only large enough to store a response containing three certificate
statuses. (The client must be able to store the entire response in memory in order to
verify the signature.) TinyOCSP, on the other hand, signs the concatenation of the
request and the response payload, so the buffer must be large enough to store both.
For the use case examined in these experiments, a 256-byte buffer was sufficient to
handle at least eight simulatenous validations with TinyOCSP.

OCSP’s use of SHA-1 hashes to identify certificate authorities in request messages
is problematic for constrained applications. Modern embedded chips, including the
CC2538, do not offer hardware acceleration for this algorithm. TinyOCSP is more
performant in this aspect, as CAs are identified by their authority key identifier, which
can be copied directly out of a certificate.

38



KTH Royal Institute of Technology Stockholm, Sweden

5.3 Limitations

Due to the scope and timeframe of this research, it was not possible to write fully
optimized implementations of either protocol. Moreover, only a subset of the OCSP
specification was implemented for the experiment. The required buffer sizes for either
of these protocols could be reduced by processing the responses as they are received
block-by-block. The signatures are generated first by hashing the signed data with
SHA-256, which handles inputs in 64- byte blocks. In theory, responses could be
decoded and hashed in blocks as they are received, but this would be much more
complicated to implement.

One important consideration is the fact that the two constrained devices used in
the experiments – one acting as an RPL router and the other as a client – commu-
nicated wirelessly. The conditions were controlled only insofar as the distance was
exactly the same between the two devices for all test cases. No measures were taken
to isolate the devices from external interference.

5.4 Conclusions

The Web continues to use OCSP for digital certificate validation in order to main-
tain compatibility with well-established public key infrastructures. This research has
demonstrated that OCSP can be at least partially implemented on a constrained de-
vice, and that an unmodified OCSP responder can be contacted via a CoAP-HTTP
proxy. However, it has also been shown that a performance-focused protocol such
as TinyOCSP can significantly outperform OCSP in terms of both message size and
energy use. Based on these results, standardizing and adopting a protocol like Tiny-
OCSP is a much better option than bringing OCSP into IoT public key infrastructures.

5.5 Future Work

Section 3.3 presented an argument for using Bloom filters for CRL compression on
constrained node networks. This was not experimentally tested in this work, but it is
certainly worth pursuing. Such a protocol would still need a deterministic validation
system as a backup, so it could potentially be combined with a protocol like TinyOCSP
to further improve validation performance.
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A X.509 Certificates

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 16493102087553698314 (0 xe4e344f6e4e44a0a)

Signature Algorithm: ecdsa -with -SHA256
Issuer: C=SE , ST=Sweden , L=Stockholm , O=RISE SICS , OU=

,! Certificate Authority , CN=CA
Validity

Not Before: May 26 17:15:54 2019 GMT
Not After : May 23 17:15:54 2029 GMT

Subject: C=SE , ST=Sweden , L=Stockholm , O=RISE SICS , OU=
,! Certificate Authority , CN=CA

Subject Public Key Info:
Public Key Algorithm: id -ecPublicKey

Public -Key: (256 bit)
pub:

04:ba:6a:a9:7e:73:30:41: e5 :19:08: c9:c9:ff:5b:
38:0f:84:39:5a:3e:f6:34:dc :14:45:5f:a6:5f:e5:
69:ff:49:b9:20:d3:7d:9c:85:44:85:0e:25:b6:72:
66:11:6a:e7:c0:5c:a5:8a:7b:da:0c:20:eb:4a:50:
b4:bb :24:20: a4

ASN1 OID: prime256v1
NIST CURVE: P-256

X509v3 extensions:
X509v3 Subject Key Identifier:

FF:FF:FF:FF:FF:FF:FF:FF
X509v3 Authority Key Identifier:

keyid:FF:FF:FF:FF:FF:FF:FF:FF

X509v3 Basic Constraints: critical
CA:TRUE

X509v3 Key Usage: critical
Digital Signature , Certificate Sign , CRL Sign

Signature Algorithm: ecdsa -with -SHA256
30:45:02:21:00: de:d5:c6:47:0d:e0:a1:77:9a:93:b7:8e:2f:
df:f5 :79:4c:e6:4c:fe:e6:ac:9b:66:b8:3a:11:0e:fc:a9:af:
52:02:20:06:31: e9:d1:f2 :60:13: d5:e1:47:7b:dd:1c:04:5f:
19:6d:1f:44:29:63: f7 :98:11: c7:56:a5:f1:4e:9c:50:c8

Listing 3: Self-signed root CA certificate used in the study.
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Certificate:
Data:

Version: 3 (0x2)
Serial Number: 4097 (0 x1001)

Signature Algorithm: ecdsa -with -SHA256
Issuer: C=SE, ST=Sweden , L=Stockholm , O=RISE SICS , OU=

,! Certificate Authority , CN=CA
Validity

Not Before: May 26 17:17:27 2019 GMT
Not After : May 25 17:17:27 2020 GMT

Subject: C=SE , ST=Sweden , O=RISE SICS , OU=Validation
,! Authority , CN=VA

Subject Public Key Info:
Public Key Algorithm: id -ecPublicKey

Public -Key: (256 bit)
pub:

04:e5:aa:1e:51:6d:ee :15:11:45:1a:26:84:30: cd:
85:28:5e:d6:c7:b8:48:b9 :37:96:89:26:80:40:3b:
ee:bb:0e:a6:de:2d:f6:fc:f4 :67:7b:fd :66:7c:17:
b9:6b:53:da:25:5a:1a:4c:fe:43:c9:f7:40:ea:ed:
20:17: f8:4c:be

ASN1 OID: prime256v1
NIST CURVE: P-256

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
X509v3 Subject Key Identifier:

FF:FF:FF:FF:FF:FF:FF:FF
X509v3 Authority Key Identifier:

keyid:FF:FF:FF:FF:FF:FF:FF:FF

X509v3 Key Usage: critical
Digital Signature , CRL Sign

X509v3 Extended Key Usage: critical
OCSP Signing

Signature Algorithm: ecdsa -with -SHA256
30:45:02:20:29: aa:e5:86:aa :15:27:3f:0f:64:22:54: c8:ef:
f4:a2 :14:13:0f:8e:2f:d3 :53:5f:32:06:1d:cb:ca:3c:79:a8:
02:21:00: c0 :20:76:4e:4e:61:c9:d0 :28:69:26:33:34:63:70:
39:f2:4b:3e:9a:cd:c9:c9:24:f2:9b:77:c4:df:d2:2d:3a

Listing 4: Validation authority certificate used in the study.
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