
Towards Machine Learning
Inference in the Data Plane

Jonatan Langlet

The Faculty of Health, Science and Technology

Department of Mathematics and Computer Science

C-Dissertation 15 HP

Advisor: Andreas Kassler

Examiner: Bestoun Al-Beywanee

Date: 14 June 2019

Towards Machine Learning Inference in the

Data Plane

Jonatan Langlet

c© 2019 The author and Karlstad University

This report is submitted in partial fulfillment of the requirements

for the Bachelor’s degree in Computer Science. All material in

this report which is not my own work has been identified and

no material is included for which a degree has previously been

conferred.

Jonatan Langlet

Approved, June 14, 2019

Advisor: Dr. Andreas Kassler

Examiner: Dr. Bestoun Al-Beywanee

iii

Abstract

Recently, machine learning has been considered an important tool for various networking

related use cases such as intrusion detection, flow classification, etc. Traditionally, machine

learning based classification algorithms run on dedicated machines that are outside of the

fast path, e.g. on Deep Packet Inspection boxes, etc. This imposes additional latency in

order to detect threats or classify the flows.

With the recent advance of programmable data planes, implementing advanced function-

ality directly in the fast path is now a possibility. In this thesis, we propose to implement

Artificial Neural Network inference together with flow metadata extraction directly in the

data plane of P4 programmable switches, routers, or Network Interface Cards (NICs).

We design a P4 pipeline, optimize the memory and computational operations for our data

plane target, a programmable NIC with Micro-C external support. The results show that

neural networks of a reasonable size (i.e. 3 hidden layers with 30 neurons each) can pro-

cess flows totaling over a million packets per second, while the packet latency impact from

extracting a total of 46 features is 1.85µs.

v

Acknowledgements

First, I would like to thank my supervisor Dr. Andreas Kassler for showing great

interest in this project, and inspiring me for a future career in research.

I would also like to thank Jonathan Vestin for helping me with the hardware installation,

and making time in his busy schedule for technical discussions and general advice during

the development process.

Lastly, I would like to show my appreciation for Jonathan Magnusson, Simon Sundberg,

and Daniel Larsson who made the lab a fun environment to work in.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Roadmap . 3

2 Background 4

2.1 The P4 programming language . 4

2.2 Micro-C . 5

2.3 Feedforward neural networks . 6

2.4 NFP-4000 architecture . 9

2.4.1 Overview . 9

2.4.2 Memory regions . 10

2.4.3 Memory accesses . 12

3 Design & Implementation 13

3.1 Overview . 13

3.2 Floating point calculations . 13

3.3 Physical setup . 16

3.3.1 Measuring processing time in SmartNIC 16

3.4 Handling race conditions . 17

3.4.1 Mutex locks . 18

3.4.2 Atomic functions . 18

3.5 Feature collection . 19

3.5.1 Identify traffic flow . 21

3.5.2 Time based features . 22

3.5.3 Round trip time . 22

3.5.4 Detecting packet retransmissions 23

vii

3.5.5 Counting number of packets . 24

3.5.6 Traffic load . 24

3.6 Improving performance by emitting packets before analysis 25

3.7 Specifying neural network configuration . 26

3.7.1 Specifying neural network size . 26

3.7.2 Loading parameters into firmware 27

4 Results 29

4.1 Memory latency . 29

4.2 Neural network inference delay . 31

4.2.1 Memory region impact on performance 31

4.2.2 Performing inference on packet clones 33

4.3 Impact on data throughput . 34

4.4 Memory size limiting the model complexity 35

4.5 Impact of feature collection on packet latency 36

5 Conclusion 37

References 38

A Setting up a host for the SmartNIC card 41

A.1 Host hardware . 41

A.2 Host installation . 41

A.2.1 Splitting the ports . 43

A.3 Compiling and loading firmware from the host 44

A.3.1 Compiling P4 code from Linux . 44

A.3.2 Loading firmware to card . 45

B Raw data 46

viii

B.1 Packet processing rate for various neural network configurations 46

B.2 Memory usage for various neural network configurations 49

ix

List of Figures

2.1 A simplified view of the PSA pipeline displaying four programmable blocks

that every incoming packet is passing through in-order. 4

2.2 Visualisation of the neurons and connections in a feedforward neural network

with two hidden layers. The grey nodes are neurons, and the red nodes with

a ’1’ are biases . 6

2.3 A simplified view of the components in the NFP-4000 architecture showing

the locations of the various memory regions 10

3.1 Visualization of the P4 pipeline for incoming packets in this implementation.

The red blocks are Micro-C functions, while the white are pure P4. 14

3.2 Visualizing the breakout module splitting the two ports into eight 16

3.3 Visualization on how OSNT is used to calculate packet latency using one

10GbE port for sending traffic and another 10GbE for receiving those same

packets. Timestamps are inserted in the network packets 17

3.4 A visualization of the RTT calculation from switch’s point of view 23

3.5 Simplified visualization on the egress pipeline explaining the cloning tech-

nique. Red block includes Micro-C functions, while white are pure P4 . . . 26

4.1 Performance impact for different neural network configurations. Comparing

choices of memory region and network complexity. 32

4.2 Neural network performance when the weights and activations are stored

together compared with stored separately 32

4.3 Performance impact when doing neural network inference on a clone af-

ter emitting the packet. 1x10Gbit port for in-traffic forwarded to another

10Gbit port during measurements . 33

x

4.4 Cumulative distribution function for latency impact with/without cloning,

showing the reduction in latency spikes when performing inference on packet

clones. Left image is using an IPG of 100 microseconds, while the image

on the right has an IPG of 0. 10000 packet latencies are included in each

experiment . 34

xi

List of Tables

3.1 A full list of stored flow metadata. The source in the first packet is called

flow client, while the destination is flow server 19

4.1 Measured average delay for read/write-operations to specified memory re-

gions. Standard deviation in parenthesis 30

4.2 Measuring total data throughput with and without metadata collection and

neural network inference. Processing TCP packets with varying payload

length . 35

4.3 Examples of memory usages while running various model complexities. Ev-

ery model has 5 input neurons and 5 output neurons. CTM+CLS means

that the model weights are placed in CTM, while activations are stored in

CLS . 36

4.4 Measured packet latencies while collecting various features. See table 3.1

for a full list of extracted flow metadata 37

B.1 Packet processing rate while running various neural network configurations.

Input and output layers contain 5 neurons each. Triggered every 20:th

packet. 1x10GbE for in-traffic and 1x10GbE out 46

B.2 Packet processing rate while running various neural network configurations.

Input and output layers contain 5 neurons each. Triggered every 20:th

packet. 4x10GbE ports for in-traffic and 4x10GbE ports out 49

B.3 Measured memory usage for different neural network configurations. Input

and output layers contain 5 neurons each 50

xii

1 Introduction

Machine learning (ML) is a field within computer science which has gained a lot of traction

in recent years, introducing new techniques and applications at a rapid pace.

An important property of ML is its ability to quickly and efficiently analyze large amounts

of data, as is the case when analyzing network traffic. This could mean a data flow

with millions of packets per second without knowing exactly how to manually specify the

classification rules, which is a task where ML shines with its ability to perform inference on

massive amounts of data, and a classification accuracy often surpassing that of humans [7,

32].

1.1 Motivation

There are many different kinds of ML algorithms with varying degrees of effectiveness

depending on the application. Among these are Support-vector machines (SVMs) [15],

Random forests [9], and Artificial Neural Networks (ANNs) [25]. These ANNs have proven

to deliver great results when trained on network packet traces to perform network intrusion

detection [10, 23, 31], flow classification [27, 16, 2], etc., and could therefore be a great

inclusion in the data plane where these classifications could be used for influencing packet

forwarding decisions.

Recently, there has been significant research effort in making the data plane more pro-

grammable. Indeed with the recent advancements in programmable data plane architec-

tures, programming languages such as P4 together with compiler support, the data plane

has evolved from a fixed function forwarding pipeline, to a flexible data plane that can be

used to implement advanced operations on packets at line rate.

Machine learning based classification algorithms are traditionally implemented outside of

the fast data path, e.g. on external Deep Packet Inspection Boxes [24, 4], which imposes

additional latency on flow classification. An inclusion of machine learning inference in the

1

data plane could result in faster reaction times when identifying specific kinds of traffic

flows, blocking malicious traffic, etc. Consequently, the question that we ask in this thesis

is if recent programmable data planes can be used to implement machine learning inference

directly in the fast data path, and if so what sort of performance impact can be expected

on the network traffic? This thesis evaluates the feasibility of implementing inference us-

ing a specific kind of ANN called a feedforward neural network directly in the data plane,

as these are some of the least computationally expensive neural networks available and

require a constant number of operations for every possible input, based only on the model

complexity. Given this property, a feedforward neural network should be able to perform

reliably in a real time environment as is the case with packet forwarding.

1.2 Contribution

A framework has been developed for performing neural network inference on extracted

traffic flow metadata in a P4 programmable switch, router, or network interface card with

Micro-C external support, and the performance impact of various complexities have been

evaluated. The results using a programmable data plane show that ANNs of a reasonable

size (i.e. 3 hidden layers with 30 neurons each) can process flows totaling over a million

packets per second while performing inference on every 20:th packet, with an additional

packet latency of 1.85µs for extracting a total of 46 features.

Training is not a part of this work, the focus is instead of implementing inference using

pre-trained neural network configurations. The neural networks are trained offline, and

these parameters are then loaded onto the network appliance to perform inference on the

extracted flow metadata. The neural network output can then be used when determining

forwarding rules for the traffic flows.

2

1.3 Roadmap

Section 2 contains background information, where 2.1 and 2.2 is a brief overview of the

P4 programming language and Micro-C respectively. 2.3 explains the theory behind the

machine learning algorithm which has been implemented, and 2.4 describes the hardware

architecture where the machine learning algorithm has been implemented. Section 3 is

describing the implementation in more detail, where 3.1 is a brief overview, 3.2 describes

the workaround used for performing floating point calculations in this architecture, 3.3

briefly explains the physical setup of the test environment, 3.4 is describing how race

conditions due to the high level of parallelization was avoided, 3.5 explains how metadata

about the network traffic flows was recorded, 3.6 introduces an interesting cloning method

that could be used to decrease packet latencies, and 3.7 explains how the neural network is

stored in memory. Section 4 contains the resulting measurements showing the performance

impact of various model configurations on the packet throughput in the switch. Section 5

contains a brief discussion where the feasibility of this implementation is evaluated based

on the results.

3

Figure 2.1: A simplified view of the PSA pipeline displaying four programmable blocks
that every incoming packet is passing through in-order.

2 Background

2.1 The P4 programming language

P4 is an open source programming language developed by The P4 Language Consortium

that is designed to be used for data plane programming, which can include extra function-

ality during the forwarding of incoming network packets [3]. Because of this, there is a

lot of built-in support for parsing network packets and specifying the forwarding rules for

these. The language is also designed to be target-independent, which is accomplished by

using a P4 compiler that is aimed at the target architecture. An example of such a target

architecture is the NFP-4000 network flow processor, which is presented in Section 2.4.

The P4 language includes tools for packet parsing and reassembly. There are also built-in

methods to match these parsed values against lookup tables, where the user can specify

matching-rules that are used to perform specific user-defined actions. These actions behave

a lot like traditional functions, and can often be used as such.

To develop P4 firmware targeting packet switches, a library called Portable Switch Archi-

tecture (PSA) can be used [6]. To simplify development, PSA introduces additional pre-

defined functionality to P4 including checksum calculation, packet cloning, and a packet

processing pipeline.

Every incoming network packet goes through a pre-defined sequence of programmable

blocks, as seen in Figure 2.1. First is the parser, which is where packet data can be

extracted and categorized. A typical use is to parse the IP headers to retrieve the IP-

addresses. These values that are extracted can then be used further down in the packet

4

processing pipeline.

When the parser is finished, the packet enters the programmable ingress block for further

processing. The main goal of this block is to specify the forwarding rules to determine the

egress port for the packet. It is also possible to perform packet cloning to either the egress

block or back again to ingress. After ingress processing, the packet is stored in a buffer

waiting to be entered into the egress processing.

This egress block doesn’t have a specific mission, but can be used for general processing of

the packet. For example, this is where neural network inference could be performed.

Lastly there is the deparser, which might be the least interesting block. This is where the

packet is prepared for emission.

One of the primary limitations of P4 is the lack of native floating-point calculations. An

example of how this functionality can be implemented is described in Section 3.2. Variable-

length loops are also not implemented by design, the reason being that these can result

in inconsistent packet processing times. This can be circumvented by linking in external

Micro-C code (see Section 2.2), at the cost of making the code target dependent.

Using these Micro-C additions, a P4 firmware can be expanded to do a lot of complex

computations during the processing of the network packets passing through a switch. For

example, it should be possible to perform real time neural network inference on the traffic

flows passing through, which is the focus of this thesis. A problem with including Micro-C

code snippets in P4 is that these are target dependent, and could require modifications

when migrating to another hardware architecture. For cases when P4 is compiled to VHDL,

as is the case when programming an FPGA [18], linking in Micro-C is not even a possibility

as the hardware has no way of executing these instructions.

2.2 Micro-C

Micro-C is a slimmed down version of C that has been developed by Netronome for devel-

oping firmware targeting their network flow processor architecture. [30]

5

Input 1

Input 2

Input 3

Input 4

1
1 1

Output 1

Output 2

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Figure 2.2: Visualisation of the neurons and connections in a feedforward neural network
with two hidden layers. The grey nodes are neurons, and the red nodes with a ’1’ are
biases

This language is based on C89, but without support of floating point variables and dy-

namic memory among other things. Due to the lack of stack memory, recursion and

variable length function lists are also not allowed. Most standard C libraries are not in-

cluded in Micro-C, and can’t easily be modified for compatibility because of the limitations

previously mentioned.

2.3 Feedforward neural networks

Neural networks are one of the most powerful machine learning algorithms currently avail-

able, and are heavily utilized in a variety of fields to perform inference on large amounts

of data. This technique has proven to deliver great results when performing inference on

network traffic [26, 11].

One of the simplest neural networks to implement are the feedforward neural networks [14].

These work by arranging neurons into different layers, where each layer is connected to

the two adjacent ones as seen in Figure 2.2.

What we here refer to as a neuron is a node that can hold a single value, which is the

neuron’s activation level. This value is calculated based on the activations of every neuron

6

in the previous layer, and how strong the connection is between those neurons and this

one according to the following equation:

a
(L)
i =

NL−1∑
k=1

a
(L−1)
k w

(L)
i,k

where

a
(L)
i : the activation of neuron i in layer L

w
(L)
i,k : the weight between neuron a

(L)
i and a

(L−1)
k

NL: the number of neurons in layer L

It is often not optimal for every neuron to have the same base activation level, so a bias is

included in each calculation like so:

a
(L)
i =

NL−1∑
k=1

a
(L−1)
k w

(L)
i,k + b

(L)
i

where

b
(L)
i : the bias attached to neuron a

(L)
i

These biases can be thought of as weights from a neuron with a constant activation level

of 1.

An activation function φ is applied to the calculation, which will allow the neural net-

work to learn more complex patterns with a smaller number of neurons [8].

a
(L)
i = φ(

NL−1∑
k=1

a
(L−1)
k w

(L)
i,k + b

(L)
i)

There are numerous different activation functions to choose from such as Sigmoid [29,

12], tanh [28, 12], and rectified linear units (ReLU). Sigmoid (1
1+e−x) used to be the most

7

widely adopted activation function for a long time, but has in recent years been almost

universally replaced by one of the ReLU variants [5, 7, 22]. Most ReLU functions do not

require calculation of any exponential functions, and could therefore be implemented in

those architectures that do not have any native support for handling these.

The simplest ReLU is seen in Equation (2.1). These would be inexpensive to implement,

but has some inherent problems such as dying neurons occurring when the neuron is stuck

at an activation level of 0.

ReLU(x) =

x, x ≥ 0

0, otherwise

(2.1)

Because of this, Leaky ReLU [17] is sometimes used instead, and is calculated as seen in

Equation (2.2). This function introduces a small slope for negative activations, which will

make sure that the backpropagation algorithm can keep changing these parameters even

in those cases when basic ReLU would have a dead neuron.

LReLU(x) =

x, x ≥ 0

αx, otherwise

(2.2)

where

0 < α < 1

An alternative ReLU, which is especially useful in cases when a predictable maximum acti-

vation value is wanted, is the ReLU-6 [13]. This activation function behaves like standard

ReLU, except that it is also capped at an arbitrary maximum value (see Equation (2.3)).

ReLU6(x) =


6, x ≥ 6

x, 0 < x < 6

0, otherwise

(2.3)

8

The input-layer neurons do not use an activation function at all. Instead, the activation

levels in these input-neurons contain the scalar values of the features that the neural

network will perform inference upon. These activations will then propagate through the

neural network, until the resulting output is presented as activations in the last layer (i.e.

the output layer).

For the neural network to do anything meaningful, every weight and bias has to be fine-

tuned to produce a proper output. One way to tune these parameters is by doing a gradient

descent of the loss function, which in the case of supervised machine learning is usually

the squared difference between the expected output ~y and the produced output ~a from the

neural network:

L(...) =
Nout∑
k=1

(ak − yk)2

The neural network is then trained to perform as intended by doing a gradient descent

on this loss function. The algorithm used for performing this gradient descent is called

backpropagation, but is out of the scope of this thesis.

2.4 NFP-4000 architecture

The programmable network card which was used in this project is the Netronome Agilio

CX 2x40 SmartNIC, which is based on Network Flow Processors (NFP’s) [19, 20] clocked

at 800MHz. This architecture is utilizing a lot of parallel processing to achieve a high

packet processing performance.

2.4.1 Overview

The network cards have 60 flow processing cores called Micro Engines (ME’s), with 8

threads each. These ME’s have a small amount of local memory, and run in parallel with

every other ME. It is essential to keep this parallelization in mind during development to

9

Figure 2.3: A simplified view of the components in the NFP-4000 architecture showing the
locations of the various memory regions

avoid problems with race conditions.

An ME can have no more than one thread executing code at any given time. Each thread

is working with its own set of CPU registers, which means that a context switch between

threads is really quick, taking no more than 2 cycles to complete. The threads are non-

preemptive, and have to explicitly tell the CPU that they are done executing for another

context to take control.

These ME’s are grouped together into different islands, where each island has some memory

that can be shared between its ME’s. See Figure 2.3 for a rough visualization of how

components are grouped together.

2.4.2 Memory regions

There are multiple memory regions available to the programmer, each with its own ca-

pacity and access times. Picking an optimal memory region for data storage is important

when developing firmware for this architecture, since there is a significant latency difference

10

between regions.

The fastest memory, apart from CPU registers, is the ME’s local memory (LMEM), which

is shared by all threads in an ME. This region has a maximum capacity of just 4 kilobytes,

yet has an impressive latency of 1-3 cycles.

Then there is the Cluster Local Scratch (CLS). This is a region which is shared within

an island, and is accessible by an ME over the Command Push Pull bus (CPP). It is possi-

ble for an ME in another island to access the CLS, but this is much slower than accessing

the CLS from within the island.

The CLS has a maximum capacity of 64 kilobytes, with a latency of about 20-50 cycles.

It is also worth noting that the CLS is the only memory accessible through the CPP that

processes queries in-order.

The third region is the Cluster Target Memory (CTM). This region is shared by all ME’s

in an island, and is accessible through the CPP bus.

The CTM has a maximum capacity of 256 kilobytes, with a latency of about 50-100 cycles.

Another region is the Internal Memory (IMEM), which is the first region that is not

bound to any one island, but is instead shared by all ME’s on the card through the CPP

bus.

There is only one IMEM available, with a maximum capacity of 4 megabytes. The latency

of the IMEM is about 150-250 cycles.

Finally there is the External Memory (EMEM) which, like the IMEM, is shared by all

ME’s through the CPP bus.

There are two EMEM areas available, each with 3 megabytes of built-in cache memory.

11

Data allocated here is stored in external DRAM, which in the case of the Netronome Agilio

CX 2x40GbE cards contains 2GB memory storage.

The EMEM has a latency of about 150-500 cycles, making it the slowest memory region

available. But because of the possibility to expand the EMEM memory, it could be a

necessity to utilize it when storing large amounts of data in memory.

2.4.3 Memory accesses

The CPP bus is used when an ME wants to access the CLS, CTM, IMEM, or EMEM

regions. These memories have a built-in dispatcher thread that handles incoming queries,

and delegates work to internal threads that handle the memory.

When an ME thread wants to read one of these memories, it sends an instruction through

the CPP bus and yields to the CPU until the read is complete, allowing another thread to

continue its work while the memory is being read. When the memory is sent back, the ME

changes the state of the thread to ready, indicating that it is ready to continue execution.

A write request works similarly to read, except that the thread doesn’t yield while the

query is being processed. Instead, the thread sends an instruction and lets the memory

workers handle it on their end.

12

3 Design & Implementation

The feature collection and neural network inference is implemented on a Netronome NFP-

4000 Flow Processor. This architecture has some limitations that makes the implementa-

tion tricky, which will be explained in more detail during this chapter.

3.1 Overview

Every incoming packet is first processed by the parser, where everything down to and

including the first few bytes of the application payload is extracted1. After the packet has

been parsed, P4 table rules are used to determine egress port for the packet (i.e. what

physical port to send the packet through after its processing is complete). Immediately

after that, the values that were extracted by the parser are used to update flow metadata

to include the current packet. Next, the packet enters egress processing. Here, the flow

metadata is used to determine if it is time for the flow to be analyzed by the neural

network. This is triggered by every 20:th flow packet during all of the measurements,

although additional packets in this flow might be included in flow metadata before the

20:th packet has time to enter egress processing. How many packets should get through

before performing a neural network inference is a hyperparameter which has to be tuned

to find an optimum for each application.

A visualization of the packet pipeline for this implementation can be seen in Figure 3.1.

3.2 Floating point calculations

The NFP-4000 architecture, which Netronome Agilio CX SmartNICs are based upon,

doesn’t have any native support for handling floating point calculations. Because of the

extensive use of floating point multiplications in neural networks, it is essential to find a

1The first few bytes of the application payload is parsed so that application headers could be retrieved.
These can be used to verify application protocol without just relying on transport port. For example, port
80 by itself doesn’t guarantee HTTP traffic

13

Figure 3.1: Visualization of the P4 pipeline for incoming packets in this implementation.
The red blocks are Micro-C functions, while the white are pure P4.

14

working representation of these.

The solution implemented in this thesis is using arithmetic bit-shifting of 64-bit integers

to represent floating point values. A shift of 30 will be used during this section as an

example, but this shift has to be changed to ensure that the largest expected values can be

represented without an integer overflow occurring. Using a bit-shifting of 30 means that a

floating point value of x is represented in memory by an integer with the value x230.

The smallest non-zero unit that can be stored in an integer is 1. This means that the

smallest unit x which can be represent using this method is:

x230 = 1⇔ x = 2−30 ≈ 9.3× 10−10 (3.1)

A floating point multiplication can be done by multiplying two of these representations

and then bit-shifting the product. This is more clearly demonstrated with the following

equation:

x230y230 = xy260 (3.2)

where simply multiplying the product with 2−30 (i.e. bit-shifting 30 positions to the right)

results in the correct answer. This step in the floating point multiplication seen in Equa-

tion (3.2) results in a pretty small maximum value that can be handled using this im-

plementation. The largest value that can be stored in a signed 64-bit integer is 263 − 1,

which means that the largest values that can appear during multiplication can’t exceed

this maximum2. The largest value that has to be stored during these multiplications are

the ones from Equation (3.2), which means that the following inequality has to be met for

floating point multiplications to work as expected:

xy260 < 263 − 1⇒ xy < 8 (3.3)

2A workaround that could solve this might be using datatypes larger than 64 bits, but because floating
point multiplications are such a big part of the computational time of the neural network, we try to avoid
working with anything that can’t fit in the CPU registers

15

Figure 3.2: Visualizing the breakout module splitting the two ports into eight

As described in Section 2.3, some variation of ReLU-6 can be used to keep the maximum

values down, at the same time as the bit-shifting is kept low as to enable handling of larger

values without integer overflows.

3.3 Physical setup

The system was implemented in a Netronome Agilio CX 2x40GbE SmartNIC, equipped

with a breakout module splitting each of the 40GbE ports into 4x10GbE port as seen in

Figure 3.2. These split ports are then referred to as P0,P1,P2 and so on during firmware

development.

3.3.1 Measuring processing time in SmartNIC

To measure the packet latencies, a NetFPGA SUME [33] running Open Source Network

Tester (OSNT) [1] was plugged into two of the SmartNIC ports as seen in Figure 3.3. The

OSNT sent traffic through one of these ports, and the SmartNIC performed its computa-

16

Figure 3.3: Visualization on how OSNT is used to calculate packet latency using one 10GbE
port for sending traffic and another 10GbE for receiving those same packets. Timestamps
are inserted in the network packets

tions and forwarded the packet back to OSNT through the other port.

To measure latencies, the OSNT was configured to send custom UDP packets with a pay-

load containing an arbitrary string of characters. OSNT is inserting a timestamp in this

payload, with a granularity on 6.25ns, right before transmission. When it receives these

same packets in the other port, it just has to calculate the difference between the packet

timestamps to know the total latency.

This latency is a bit larger than the actual processing latency in the SmartNIC, because

it takes a non-zero time for the transceivers to send and receive the packets3. This de-

lay can easily be measured by connecting a fiber directly between the transceivers of the

OSNT card without a SmartNIC in the middle. Simply subtracting this value from the

measurements should result in a decent approximation of the actual latency impact of the

SmartNIC.

3.4 Handling race conditions

Because of the high level of parallelization, it is essential to keep the risk of race conditions

in mind during development to ensure that the system performs as expected [21].

3There is also a tiny propagation delay in the fiber cables

17

An example of when race conditions have to be accounted for is when the firmware is

counting total number of packets that has been seen in a specific traffic flow4. If there

are two or more packets belonging to the same flow being processed in parallel inside of

different ME’s, and they are both at the part where they should increment the same packet

counter, one of these packets might not be included in the counter unless there is some

safeguard implemented.

3.4.1 Mutex locks

One method to avoid race conditions is using mutex locks. These locks can be utilized to

make sure that there can only be one worker inside of a critical section at any given time.

This has an obvious performance impact since they prevent all but one packet from doing

these calculations at any given time.

Mutex locks are not used in this implementation, atomic functions are used instead.

3.4.2 Atomic functions

Atomic functions can sometimes be used as an alternative to mutex locks. These are

functions where other threads see them happen instantaneously, and therefore eliminating

the risk of a thread being half-done when another is entering a critical section. Only very

short and simple functions can be written atomically.

Atomic functions are heavily utilized in this implementation to avoid race conditions while

at the same time keeping the performance high. As an example, atomic functions are used

in the case of recording the total amount of data seen in a flow as seen below:

1 // get packet s i z e

2 p k t s i z e t pktS i ze = p i f p l u g i n m e t a g e t s t a n d a r d m e t a d a t a p a c k e t l e n g t h (

headers) ;

4The total number of packet seen in a flow is the base for various other features that the neural network
will perform inference upon. An example is the mean packet size, which is the total amount of data divided
by the total number of packets

18

3 mem add64 imm(pktSize , (mem40 void ∗)&flowMetadata [f lowIndex] .

totalFlowData) ;

4

3.5 Feature collection

A big part of the implementation is the collection of features for the neural network to

perform inference on. In this implementation, feature collection happens during ingress

processing on a per-flow basis where metadata is extracted from the network packets pass-

ing through the switch. Most of the metadata is recorded separately for each direction of

the packet flow, meaning that for example the total number of flow packets is split into

the forward and backwards direction.

There are both recorded raw metadata, and derived metadata which is based on recorded

values. The full list of stored flow metadata is presented in Table 3.1.

Table 3.1: A full list of stored flow metadata. The source in the first packet is called flow
client, while the destination is flow server

Name Description

clientAddr Source IP-address in first flow packet

serverAddr Destination IP-address in first flow packet

clientPort Source port in first flow packet

serverPort Destination port in first flow packet

clientLowerIP 1 if clientIP < serverIP

initTime Time when first flow packet was processed

lastTime Time when latest flow packet was processed

pktCount Total number of packets in flow

pktCount forward Number of packets from client to server

pktCount backward Number of packets from server to client

Continued on next page

19

Table 3.1 – continued from previous page

Name Description

totalFlowData Total data volume in flow

totalFlowData forward Data volume from client to server

totalFlowData backward Data volume from server to client

tproto tcp If TCP traffic

tproto udp If UDP traffic

maxPktSize Size of largest packet in flow

maxPktSize forward Size of largest packet from client to server

maxPktSize backward Size of largest packet from server to client

minPktSize Size of smallest packet in flow

minPktSize forward Size of smallest packet from client to server

minPktSize backward Size of smallest packet from server to client

aProto http Is this HTTP traffic?

aProto ssh Is this SSH traffic?

aProto ftp Is this FTP traffic?

lastSeqnum forward The last TCP sequence number from client to server

lastSeqnum backward The last TCP sequence number from server to client

synTime Time when SYN-packet was processed

synackTime Time when SYNACK-packet was processed

tcpSynSynackTime Time between SYN and SYNACK

tcpSynackAckTime Time between SYNACK and ACK

tcpSetupRTT RTT during TCP handshake (see fig 3.4)

flowDuration Time between first and last packet in flow

load forward Traffic load from client to server (Bytes/sec)

load backward Traffic load from server to client (Bytes/sec)

ttl forward TTL of last packet from client to server

ttl backward TTL of last packet from server to client

Continued on next page

20

Table 3.1 – continued from previous page

Name Description

retran forward Number of retransmissions from client

retrans backward Number of retransmissions from server

interPktGap forward Interpacket arrival time from client to server

interPktGap backward Interpacket arrival time from server to client

tcpWindow source Advertised TCP window from client

tcpWindow dest Advertised TCP window from server

ISN forward TCP sequence number in first packet from client

ISN backward TCP sequence number in first packet from server

meanPktSize forward Mean packet size from client to server

meanPktSize backward Mean packet size from server to client

3.5.1 Identify traffic flow

A fundamental part of flow analysis is to identify what flow an incoming packet is part of.

This is accomplished by calculating a simple hash, which is based on the source/destination

IP addresses and ports. The flow metadata can then be stored in a hash table using this

calculated hash as index.

To make sure that the hashes of packets in both direction point to the same entry in the

hash table, the hash function is based on the sum of the source/destination addresses and

ports as seen below:

h(ps, pd, as, ad) = (31(as + ad) + ps + pd)%Tsize (3.4)

where

ps, pd: the source and destination ports

21

as, ad: the source and destination IP addresses

Tsize: the maximum number of entries in hash table

This hash function in Equation (3.4) is not cryptographic, and should be changed before

being used in a real-world scenario so that an attacker could not mess with recordings

of per-flow metadata. A simple non-cryptographic hash function was used while testing

because of time restrictions during implementation, but because of the modular design it

should be trivial to replace.

3.5.2 Time based features

There is a timestamp that can be retrieved during packet processing, which is a simple

counter in memory that is incremented every 16:th clock cycle. For this to be compatible

with the timestamps that are used while training a neural network, these values have to

be converted into a second-based format.

To get a base value that can be used for this conversion, timestamps were collected with

100 seconds in between5. A function was then created which can be used to convert from

the timestamp value into microseconds, which has proven to result in valid timestamps

differences during testing.

3.5.3 Round trip time

The round-trip time (RTT) is a feature which is extracted for TCP traffic. This is calcu-

lated only once during the first 3 packets in a flow, and takes into account the fact that

this implementation can be placed anywhere in between the client and server as seen in

Figure 3.4. It is assumed that its relative position is unchanged during the handshake

process.

For every incoming packet in a flow, a timestamp of the last flow packet is updated with

5The timestamp had increased by 5,074,521,076 while running for 100 seconds

22

Figure 3.4: A visualization of the RTT calculation from switch’s point of view

the current time. This is the last thing that happens during the ingress processing to

ensure that the timestamp of the previous packet is still accessible.

The time between SYN and SYNACK can easily be recorded and stored because these

packets arrive to the switch in-order, meaning that when a SYNACK is detected, the

SYN-SYNACK duration is the difference between the current time and the last stored

timestamp in the flow. The same logic applies to SYNACK-ACK time difference. Total

RTT is then the sum of these two time differences.

3.5.4 Detecting packet retransmissions

The TCP sequence numbers of incoming packets is used to identify retransmissions for

TCP traffic flows. For every incoming packet, the sequence number is compared to the

sequence number of the last packet. If the sequence number isn’t larger than the last one,

the packet is assumed to be a retransmission. Below is a code snipped showing how this is

implemented in this thesis.

23

1 i f (thisSeqnum <= flowMetadata [f lowIndex] . lastSeqnum forward)

2 {

3 // i f t h i s i s a r e t r a n s m i s s i o n −> increment counter

4 mem incr32 ((mem40 void ∗)&flowMetadata [f lowIndex] . r e t r an s f o rward) ;

5 }

6 e l s e

7 {

8 // not r e t r a n s m i s s i o n −> update l a s t seqnum with t h i s one

9 f lowMetadata [f lowIndex] . lastSeqnum forward = thisSeqnum ;

10 }

11

However, this implementation has some problems. It does not take into account the rollover

effect, which is when the sequence numbers reach their maximum value of 232− 1 and rolls

back from 0. These events will be falsely counted as a retransmitted packet because the

sequence number is lower than the previous one. Another problem is that packets in reality

can arrive at a switch out of order, which this implementation can not handle.

Because of these reasons, another method of detecting retransmissions has to be imple-

mented for this to work in practice. During the experiments, a packet stream can be

designed in such a way that every packet arrives to the switch in-order and without reach-

ing the maximum value.

3.5.5 Counting number of packets

To record the number of packets in each flow, an atomic incremental function is used which

can increase a variable value by 1 in a single clock cycle. This means that there is no need

for a mutex lock, which would slow down the system.

3.5.6 Traffic load

One of the features required by the ANN is the traffic load going back and forth between

the source and destination. This is recorded as total bytes sent per second in each direction

24

of a traffic flow.

For every processed packet, a specific function is called depending on the direction of

the packet. These functions use an atomic add function, which is increasing a variable

containing the total data volume sent in the current direction by the size of the current

packet. This function has to either be atomic, or use a mutex lock to prevent race conditions

between different workers handling different packets belonging to the same flow.

This atomic function is handling 64-bit memory areas in a strange way, swapping the

highest and lowest 32 bits. To get around this, the value is being retrieved using a getter

function which is swapping the bits to their correct positions, and by doing so returning

the actual value being represented there.

1 u i n t 6 4 t getTotalFlowData forward (index t f lowIndex)

2 {

3 u i n t 6 4 t r e s u l t = flowMetadata [f lowIndex] . tota lFlowData forward ;

4 re turn ((r e s u l t & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f) << 32) | ((r e s u l t & 0

x f f f f f f f f 0 0 0 0 0 0 0 0) >> 32) ;

5 }

This total data volume can then be divided by the total number of packets to get the traffic

load, which can then be used as a feature for the ANN.

3.6 Improving performance by emitting packets before analysis

The neural network is waiting to perform inference until there is enough metadata collected.

There would therefore be latency spikes for those packets which are triggering an inference

if these calculations are performed in the processing pipeline before packet emission. A

solution to this problem is to create a packet clone, and immediately emitting the original

packet before performing the inference (this is visualized in Figure 3.5).

A problem with this approach is that this creates extra work in egress, which can result

in packets spending more time in queue to enter egress processing than they would do

without this cloning method. This would likely only be a problem during high load on the

25

Figure 3.5: Simplified visualization on the egress pipeline explaining the cloning technique.
Red block includes Micro-C functions, while white are pure P4

network card when there are no any idle egress workers. The performance impact of this

technique has been measured for various neural network complexities, and is presented in

Section 4.2.2.

Unfortunately, this technique does not work when storing the neuron activations in CLS

memory for unknown reasons. Attempting this results in a service crash on the host

machine.

3.7 Specifying neural network configuration

3.7.1 Specifying neural network size

The NFP architecture lacks dynamic memory allocations, which means that every variable

has to be declared at compile time. Because of this, the number of hidden layers and

neurons per layer are specified using preprocessing directives. This means that the firmware

has to be recompiled when the ANN size has to be changed.

Two-dimensional arrays of signed 64-bit integers are used to store the neural network

weights. One-dimensional arrays of signed 64-bit integers are used to store neural network

26

biases and activation levels. Preprocessor directives determine how many arrays should be

declared, and the sizes of these base on the specified number of neurons and hidden layers.

Below is a Micro-C code snippet showing what the pre-processor is generating for neural

networks with two hidden layers:

1 // Weights between l a y e r s

2 ann we ight t we ights I H1 [INPUT NNODES] [HIDDEN1 NNODES] ;

3 ann we ight t weights H1 H2 [HIDDEN1 NNODES] [HIDDEN2 NNODES] ;

4 ann we ight t weights H O [HIDDEN2 NNODES] [OUTPUT NNODES] ;

5 // Biase s

6 ann we ight t b i a s I H1 [HIDDEN1 NNODES] ;

7 ann we ight t bias H1 H2 [HIDDEN2 NNODES] ;

8 ann we ight t bias H O [OUTPUT NNODES] ;

9 //Neuron a c t i v a t i o n s

10 a n n a c t i v a t i o n t a c t i v a t i o n s I [INPUT NNODES] ;

11 a n n a c t i v a t i o n t ac t i va t i on s H1 [HIDDEN1 NNODES] ;

12 a n n a c t i v a t i o n t ac t i va t i on s H2 [HIDDEN2 NNODES] ;

13 a n n a c t i v a t i o n t ac t i va t i on s O [OUTPUT NNODES] ;

14

3.7.2 Loading parameters into firmware

The weights and biases that are calculated during the training of the neural network have

to be loaded into the ANN implementation. Because of the fact that every island has their

own isolated CLS and CTM regions, these all have to be updated separately. This is done

first thing when the firmware has loaded, telling every ME to execute a certain function

which is populating their memory region with the weights and biases.

For this implementation, a simple python script was created which generates Micro-C code

that is defining these values during compilation and includes this in the ME instruction

store. This is not a flexible solution, seeing as the firmware has to be recompiled every

time the model has been retrained, however, it is a straight forward approach which should

27

not impact the runtime performance of the implementation. Another technique is required

to load more complex models that do not fit in an ME code store.

An example of such a technique could be to use registers for communication with the

host machine to update one parameter value at a time. Alternatively, if the host machine

is supporting virtual functions it should be possible to send a custom network packet,

containing weights and biases as packet payload, through the PCI slot that the SmartNIC

is connected through. This packet could then be identified during processing either by

a custom flag, or by the fact that it came in through a virtual interface from the host.

This solution would allow quick modifications of the neural network weights, for example

to automatically update the model when an updated version has been developed, without

having to recompile the firmware6.

6On-the-fly updates would only work in the case when the updated neural network model has the same
structure, but with new values for weights and biases. New structures still require a recompilation to
allocate these arrays in memory

28

4 Results

4.1 Memory latency

A simple test has been performed to get an idea of the latency for each memory region.

This has been done for read- and write-operations separately.

100 TCP packets with a 100 byte payload was sent through the SmartNIC with an inter-

packet gap (IPG) of 10ms during each test. The SmartNIC firmware has been programmed

to perform either a read- or a write operation a specified number of times before the packet

is emitted. During this test, the operation was performed [1,1000,10000,100000,1000000]

times for each memory region to ensure that the results are linearly increasing with the

number of memory operations performed. The latency when performing 1 read/write was

subtracted from the results to isolate the impact of just the additional memory operations,

and the latency when performing 1000000 memory operations was used to get an average

latency for read/write-operations to each of the memory regions.

The firmware running on the SmartNIC is executing the following Micro-C code during

ingress processing:

1 v o l a t i l e d e c l s p e c (local mem) u i n t 3 2 t lmem counter ;

2 v o l a t i l e d e c l s p e c (c l s) u i n t 3 2 t c l s c o u n t e r ;

3 v o l a t i l e d e c l s p e c (c l s 4) u i n t 3 2 t c l s 4 c o u n t e r ;

4 v o l a t i l e d e c l s p e c (ctm) u i n t 3 2 t ctm counter ;

5 v o l a t i l e d e c l s p e c (ctm4) u i n t 3 2 t ctm4 counter ;

6 v o l a t i l e d e c l s p e c (imem) u i n t 3 2 t imem counter ;

7 v o l a t i l e d e c l s p e c (emem) u i n t 3 2 t emem counter ;

8 i n t p i f p lug in memtes t (EXTRACTED HEADERS T ∗headers , ACTION DATA T ∗

ac t i on data)

9 {

10 /∗

11 //Measure wr i t e l a t ency

12 v o l a t i l e u i n t 3 2 t i ;

29

13 f o r (i = 0 ; i < MEMACCESS NUM; i++)

14 lmem counter = i ;

15 ∗/

16 //Measure read la t ency

17 v o l a t i l e u i n t 3 2 t i , j ;

18 f o r (i = 0 ; i < MEMACCESS NUM; i++)

19 j = lmem counter ;

20

21 re turn PIF PLUGIN RETURN FORWARD;

22 }

23

Table 4.1: Measured average delay for read/write-operations to specified memory regions.
Standard deviation in parenthesis

Region Read delay (ns) Write delay (ns)
LMEM 13 (0.0) 15 (0.0)
CLS (same island) 51 (0.4) 43 (0.4)
CTM (same island) 74 (0.5) 53 (0.5)
CLS (another island) 112 (7.0) 106 (6.3)
CTM (another island) 132 (4.3) 103 (5.0)
IMEM 136 (9.2) 115 (7.9)
EMEM 137 (9.5) 102 (8.3)

The results in Table 4.1 show that it is important to place the neural network parameters

in a fast memory region for its inference to have as low latency impact as possible on the

network traffic.

As explained in Section 2.4.3, memory-operations to regions other than LMEM go through

the CPP bus. The way this works for write-operations is for the worker thread to dele-

gate these operations to the memory workers and immediately keep working, while read-

operations require the thread to wait for the results to get delivered before continuing. The

data shows that write-operations are faster than read-operations for every memory region

that is accessed through this CPP bus.

30

4.2 Neural network inference delay

Because of how memory-heavy this ANN implementation is, it is important to pick an

optimal memory region when storing the model.

A total of 62 different combinations of neural network sizes and memory regions have been

measured (see Table B.1). During these measurements, empty TCP packets was being

sent from the OSNT with an IPG of 0. Every feature was recorded. Every neural network

that has been evaluated had 5 neurons in the input as well as in the output layer, with a

variable number and size of hidden layers. All of these measurements were recorded while

the OSNT sent traffic through one 10GbE port, and received those same packets back

through another 10GbE port.

The measurements are confirmed to be identical with experiments where 4x10GbE ports are

used for receiving traffic, which is forwarded back through another set of 4x10GbE ports.

See Table B.2 for these measurements. The throughput difference between 1x10GbE and

4x10GbE is explained by changes to the feature collection made since the older 1x10GbE

measurements. The reason for not using all 8 ports during the experiments presented here

is because this required a more advanced hardware setup which was not available until at

the very end of the project.

4.2.1 Memory region impact on performance

There is a clear negative correlation between the neural network complexity and the packet

throughput in the switch, as can be seen in Figure 4.1. The choice of memory region also

has a clear performance impact, as seen by the fact that faster memory regions (as defined

in Table 4.1) consistently deliver a higher packet processing rate.

It is also possible to store the weights and neural activations in separate memory regions

instead of storing them together. This will allow more complex neural networks to be

implemented before having to move the model outside of the faster in-island memory

regions.

31

Figure 4.1: Performance impact for different neural network configurations. Comparing
choices of memory region and network complexity.

Figure 4.2: Neural network performance when the weights and activations are stored to-
gether compared with stored separately

Splitting the weights and activations into CTM and CLS have a slightly worse performance

than storing them both in the faster CLS. But as Figure 4.2 shows, relocating only the

weights to a slower memory region while keeping the activations unchanged has almost as

32

good of a performance as storing the weights and activations together, and could therefore

be acceptable when very complex neural networks that are too big to be stored in only

CLS are needed.

4.2.2 Performing inference on packet clones

Figure 4.3: Performance impact when doing neural network inference on a clone after
emitting the packet. 1x10Gbit port for in-traffic forwarded to another 10Gbit port during
measurements

A possible technique to keep the performance high for more complex neural networks could

be to perform the inference after having already emitted the original packet, as discussed

in Section 3.6.

As Figure 4.3 shows, this technique results in a significant improvement on the packet

processing rate, especially for complex neural networks where the packet processing rate

is more that doubling7. Figure 4.4 shows the reduction in latency spikes while using the

cloning technique. There is a small increase in the base latency when packet cloning is

enabled. This increase comes from the fact that every single packet is being cloned even if

7As an example, three hidden layers with 40 neurons each go from a packet processing rate of 285KPPS
to 850KPPS when enabling cloning as seen in table B.1

33

Figure 4.4: Cumulative distribution function for latency impact with/without cloning,
showing the reduction in latency spikes when performing inference on packet clones. Left
image is using an IPG of 100 microseconds, while the image on the right has an IPG of 0.
10000 packet latencies are included in each experiment

they would not trigger a neural network inference. This could easily be resolved by moving

this check to before the cloning occurs, instead of after as is the case here.

Unfortunately, it is not possible to do this cloning technique while the memory activations

are positioned in CLS for unknown reasons. Attempting this results in a service on the

host machine crashing. A workaround for this problem has not yet been found.

4.3 Impact on data throughput

Two experiments measuring the maximum data throughput with and without metadata

collection and neural network inference has been done, evaluating two different neural

network complexities. The first neural network (ANN1) has 3 hidden layers with 10 neurons

each, and the second neural network (ANN2) has 3 hidden layers with 20 neurons each.

Both of these have 5 neurons in the input and output layers, are stored in CTM, and

have cloning enabled. OSNT was used to generate the traffic through one 10GbE port,

and receiving these packets back in another 10GbE port. A total of 46 features are being

extracted from the traffic flows.

34

Table 4.2: Measuring total data throughput with and without metadata collection and
neural network inference. Processing TCP packets with varying payload length

Payload Only parsing +Metadata collection +ANN1 +ANN2
0 bytes 7.62Gbit/s 4.29Gbit/s 1.42Gbit/s 0.82Gbit/s
100 bytes 8.78Gbit/s 8.78Gbit/s 2.66Gbit/s 1.47Gbit/s
1000 bytes 9.80Gbit/s 9.80Gbit/s 9.80Gbit/s 9.80Gbit/s

These results presented in Table 4.2 show that neural network inference can be performed

at line rate for larger packet sizes.

4.4 Memory size limiting the model complexity

Both the weights and activations for the neural network are in this implementation stored

as signed 64-bit integers, which are used for representing their actual floating point values.

The various memory regions are rather limited in their sizes, which adds an upper boundary

on the maximum complexities of the neural network models which can be stored.

As discussed in Section 4.2.1, placing the neural network in a faster memory region has a

significant impact on the performance. Unfortunately, these faster regions are also smaller

in size, which means that a slower memory regions is required when working with complex

models.

CLS is the fastest memory region, not counting the tiny local memory, and is recommended

when possible. Placing the model here requires a copy to be placed in the CLS of every

island, otherwise there will be a significant performance loss because of the cross-island

memory accesses. The same is true when placing the model in CTM.

Table 4.3 shows that it is possible to implement complex neural network models in the cards

without having to use memory regions outside of the islands. Of course, utilizing models

as complex as these would result in a terrible packet forwarding performance, unless the

inference is triggered very rarely. More of these measurements can be seen in the expanded

Table B.3.

35

Table 4.3: Examples of memory usages while running various model complexities. Every
model has 5 input neurons and 5 output neurons. CTM+CLS means that the model
weights are placed in CTM, while activations are stored in CLS

Hidden layers Neurons per hidden Mem placement CLS CTM
2 55 All CLS 93.40% 50.00%
2 120 CTM+CLS 98.36% 86.44%
3 40 All CLS 96.75% 50.00%
3 80 CTM+CLS 86.44% 92.25%
4 30 All CLS 89.43% 50.00%
4 70 CTM+CLS 98.16% 97.87%

4.5 Impact of feature collection on packet latency

The total packet latencies while collecting various flow metadata has been measured. These

values, presented in Table 4.4, were all recorded with direction and time functionality

enabled, meaning that the firmware is identifying if an incoming packet is going towards

the client or server, and has stored a timestamp in local memory for fast retrieval. The

SmartNIC is only performing packet forwarding and metadata recording, neural network

inference is disabled during these measurements.

The total number of packets in each flow is also recorded during every test, the reason

being that this value is used to only perform certain actions for the first few packets in

each flow. An average latency for 5000 packets is what is presented in the table, after

already having sent a few flow packets to not include the flow initialization in this data.

36

Table 4.4: Measured packet latencies while collecting various features. See table 3.1 for a
full list of extracted flow metadata

Features extracted Mean packet latency (ns) Additional delay (ns)
None 6471 N/A
Everything 8318 +1847
ttl forward 6600 +129
lastPktTime 6631 +160
pktCount forward 6501 +30
totalFlowData forward 6515 +44
isn forward 6508 +37
maxPktSize forward 6637 +166
tcpWin forward 6601 +130
minPktSize forward 6633 +162
retrans forward 6656 +185
firstPktTime 6472 +1
duration & firstPktTime 6762 +291
handshakeTimes 6631 +160

5 Conclusion

A framework for performing neural network inference on Netronome NFP-4000 flow pro-

cessors has been developed and tested for various neural network complexities.

The results show that neural networks of a low-medium complexity can perform real time

inference while keeping an acceptable packet processing rate. Very complex models are

possible to implement, but these come at a high performance cost. Combining these com-

plex models with the cloning trick discussed in Section 3.6, while only performing inference

once per traffic flow could yield a good throughput in the switch.

The results presented in this thesis are all recorded when the neural network is performing

inference for every 20:th packet, which might not translate well to real-world scenarios. A

more realistic scenario might be to restrict inference to once per traffic flow, after some

specified number of flow packets has been included in the flow metadata. This would most

likely drastically improve packet throughput over all, since traffic flows with a lot of packets

would only require neural network inference once instead of multiple times.

37

References

[1] Gianni Antichi et al. “OSNT: Open source network tester”. In: IEEE Network Mag-
azine 28.5 (2014), pp. 6–12.

[2] Tom Auld, Andrew W Moore, and Stephen F Gull. “Bayesian neural networks for
internet traffic classification”. In: IEEE Transactions on neural networks 18.1 (2007),
pp. 223–239.

[3] Pat Bosshart et al. “P4: Programming protocol-independent packet processors”. In:
ACM SIGCOMM Computer Communication Review 44.3 (2014), pp. 87–95.

[4] Johan Garcia et al. “Towards Video Flow Classification at a Million Encrypted Flows
Per Second”. In: 2018 IEEE 32nd International Conference on Advanced Information
Networking and Applications (AINA). IEEE. 2018, pp. 358–365.

[5] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neural
Networks”. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson, and Miroslav
Dud́ık. Vol. 15. Proceedings of Machine Learning Research. Fort Lauderdale, FL,
USA: PMLR, 2011, pp. 315–323. url: http://proceedings.mlr.press/v15/

glorot11a.html.

[6] The P4.org Architecture Working Group. P416 Portable Switch Architecture (PSA).
2019. url: https://p4.org/p4-spec/docs/PSA.html (visited on 05/14/2019).

[7] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1026–1034.

[8] Knut Hinkelmann. Neural Networks. University of Applied Sciences Northwestern
Switzerland. url: http://didattica.cs.unicam.it/lib/exe/fetch.php?media=
didattica:magistrale:kebi:ay_1718:ke-11_neural_networks.pdf (visited on
05/15/2019).

[9] Tin Kam Ho. “Random decision forests”. In: Proceedings of 3rd international con-
ference on document analysis and recognition. Vol. 1. IEEE. 1995, pp. 278–282.

[10] Elike Hodo et al. “Threat analysis of IoT networks using artificial neural network
intrusion detection system”. In: 2016 International Symposium on Networks, Com-
puters and Communications (ISNCC). IEEE. 2016, pp. 1–6.

[11] Ahmad Javaid et al. “A deep learning approach for network intrusion detection sys-
tem”. In: Proceedings of the 9th EAI International Conference on Bio-inspired Infor-
mation and Communications Technologies (formerly BIONETICS). ICST (Institute
for Computer Sciences, Social-Informatics and . . . 2016, pp. 21–26.

38

http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://p4.org/p4-spec/docs/PSA.html
http://didattica.cs.unicam.it/lib/exe/fetch.php?media=didattica:magistrale:kebi:ay_1718:ke-11_neural_networks.pdf
http://didattica.cs.unicam.it/lib/exe/fetch.php?media=didattica:magistrale:kebi:ay_1718:ke-11_neural_networks.pdf

[12] Bekir Karlik and A Vehbi Olgac. “Performance analysis of various activation func-
tions in generalized MLP architectures of neural networks”. In: International Journal
of Artificial Intelligence and Expert Systems 1.4 (2011), pp. 111–122.

[13] Alex Krizhevsky and Geoff Hinton. “Convolutional deep belief networks on cifar-10”.
In: Unpublished manuscript 40.7 (2010).

[14] Antonino Laudani et al. “On Training Efficiency and Computational Costs of a Feed
Forward Neural Network: A Review”. In: Intell. Neuroscience 2015 (Jan. 2015),
83:83–83:83. issn: 1687-5265. doi: 10.1155/2015/818243. url: https://doi.

org/10.1155/2015/818243.

[15] scikit learn. Support Vector Machines. url: https://scikit-learn.org/stable/
modules/svm.html (visited on 05/14/2019).

[16] Mohammad Lotfollahi et al. “Deep packet: A novel approach for encrypted traffic
classification using deep learning”. In: arXiv preprint arXiv:1709.02656 (2017).

[17] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlinearities im-
prove neural network acoustic models”. In: Proc. icml. Vol. 30. 1. 2013, p. 3.

[18] Netcope. P4 to VHDL. 2019. url: https://www.netcope.com/en/products/p4-
to-vhdl (visited on 05/14/2019).

[19] Netronome. NFP-4000 Theory of Operation. url: https://www.netronome.com/m/
documents/WP_NFP4000_TOO.pdf (visited on 05/14/2019).

[20] Netronome. Programming Netronome Agilio R© SmartNICs. url: https : / / www .

netronome . com / m / documents / WP _ NFP _ Programming _ Model . pdf (visited on
05/14/2019).

[21] Robert HB Netzer and Barton P Miller. “What are race conditions?: Some issues
and formalizations”. In: ACM Letters on Programming Languages and Systems (LO-
PLAS) 1.1 (1992), pp. 74–88.

[22] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for activation func-
tions”. In: arXiv preprint arXiv:1710.05941 (2017).

[23] Alan Saied, Richard E Overill, and Tomasz Radzik. “Detection of known and un-
known DDoS attacks using Artificial Neural Networks”. In: Neurocomputing 172
(2016), pp. 385–393.

[24] Cole Schlesinger, Michael Greenberg, and David Walker. “Concurrent NetCore: From
policies to pipelines”. In: ACM SIGPLAN Notices. Vol. 49. 9. ACM. 2014, pp. 11–24.

[25] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural
networks 61 (2015), pp. 85–117.

39

https://doi.org/10.1155/2015/818243
https://doi.org/10.1155/2015/818243
https://doi.org/10.1155/2015/818243
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://www.netcope.com/en/products/p4-to-vhdl
https://www.netcope.com/en/products/p4-to-vhdl
https://www.netronome.com/m/documents/WP_NFP4000_TOO.pdf
https://www.netronome.com/m/documents/WP_NFP4000_TOO.pdf
https://www.netronome.com/m/documents/WP_NFP_Programming_Model.pdf
https://www.netronome.com/m/documents/WP_NFP_Programming_Model.pdf

[26] Alex Shenfield, David Day, and Aladdin Ayesh. “Intelligent intrusion detection sys-
tems using artificial neural networks”. In: ICT Express 4.2 (2018). SI on Artifi-
cial Intelligence and Machine Learning, pp. 95 –99. issn: 2405-9595. doi: https:
//doi.org/10.1016/j.icte.2018.04.003. url: http://www.sciencedirect.
com/science/article/pii/S2405959518300493.

[27] Zhanyi Wang. “The applications of deep learning on traffic identification”. In: Black-
Hat USA 24 (2015).

[28] Eric W. Weisstein. Hyperbolic Tangent. MathWorld–A Wolfram Web Resource. url:
http://mathworld.wolfram.com/HyperbolicTangent.html (visited on 05/17/2019).

[29] Eric W. Weisstein. Sigmoid Function. MathWorld–A Wolfram Web Resource. url:
http://mathworld.wolfram.com/SigmoidFunction.html (visited on 05/17/2019).

[30] Stuart Wray. The Joy of Micro-C. Open-NFP. url: https://open-nfp.org/media/
documents/the-joy-of-micro-c_fcjSfra.pdf (visited on 06/11/2019).

[31] Chuanlong Yin et al. “A deep learning approach for intrusion detection using recur-
rent neural networks”. In: Ieee Access 5 (2017), pp. 21954–21961.

[32] Qian Yu et al. “Sketch-a-net that beats humans”. In: arXiv preprint arXiv:1501.07873
(2015).

[33] Noa Zilberman et al. “NetFPGA SUME: Toward 100 Gbps as research commodity”.
In: IEEE micro 34.5 (2014), pp. 32–41.

40

https://doi.org/https://doi.org/10.1016/j.icte.2018.04.003
https://doi.org/https://doi.org/10.1016/j.icte.2018.04.003
http://www.sciencedirect.com/science/article/pii/S2405959518300493
http://www.sciencedirect.com/science/article/pii/S2405959518300493
http://mathworld.wolfram.com/HyperbolicTangent.html
http://mathworld.wolfram.com/SigmoidFunction.html
https://open-nfp.org/media/documents/the-joy-of-micro-c_fcjSfra.pdf
https://open-nfp.org/media/documents/the-joy-of-micro-c_fcjSfra.pdf

Appendix

A Setting up a host for the SmartNIC card

To use a Netronome SmartNIC, you need to install a host server for the card to be plugged

into. This host is used to power, flash firmware, and configure the card.

We used Dell Optiplex 755 running Ubuntu Server 18.04 to host the cards.

A.1 Host hardware

We do not recommend using the same server models that we used for hosts. The PCI

ports lack SR-IOV support, which seems to make it impossible to forward packets from

the Netronome card to an interface on the host using virtual functions.

Make sure that your host has at least PCI Gen3 x8 (or x16) slots, ideally with SR-IOV

support if you want to send packets between the card and host.

A.2 Host installation

The first step is to install an operating system.

At the time of writing, we would recommend using either Ubuntu 18.04 or CentOS 7.

This is because the pre-compiled binaries you need are only available for Ubuntu and Cen-

tOS/Red Hat. This guide is for Ubuntu, but the setup for CentOS is very similar.

You need to install the NFP kernel module, like so:

$ wget https : // deb . netronome . com/gpg/NetronomePublic . key

$ sudo apt−key add NetronomePublic . key

$ apt−get update

$ apt−get i n s t a l l nfp

41

You need to download NFP SDK6 Run Time Environment and Board Support Package

from the Netronome support website, which in my case is ’nfp-sdk-p4-rte-6.1.0.1-preview-

3214.ubuntu.x86 64.tar’ and ’nfp-bsp-6000-b0 2018.06.29.1443-1 amd64.deb’.

Before you continue, there’s some dependencies that are needed. They can be installed

like so:

$ sudo apt−get i n s t a l l dkms bui ld−e s s e n t i a l l i b j a n s s o n 4 l i b f t d i 1

Install the BSP:

$ sudo dpkg − i nfp−bsp−6000−b0 2018 .06 .29 .1443−1 amd64 . deb

Next, install the RTE and reboot:

$ ta r x f nfp−sdk−p4−rte −6.1.0.1− preview −3214. ubuntu . x86 64 . ta r

$ cd nfp−sdk−6−rte−∗

$ sudo . / s d k 6 r t e i n s t a l l . sh i n s t a l l

$ sudo i n i t 6

Every time that the host has rebooted or changed some configuration you have to reload

the kernel module and restart services to be able to load firmware. It is easiest to create

a script to automate this.

Here is the final version of the script we used:

#! bin /bash

echo ” Unloading o ld f irmware . . . ”

sudo /opt /netronome/ bin /nfp−nffw unload

sudo p k i l l p i f r t e

echo ” Stopping s e r v i c e s . . . ”

sudo sys t emct l stop nfp−sdk6−r t e

sudo sys t emct l stop nfp−hwdbg−s rv

echo ” Reloading ke rne l modules . . . ”

42

sudo depmod

sudo modprobe −r nfp

sudo modprobe nfp nfp dev cpp=1

sudo modprobe dev l ink

echo ” S ta r t i ng s e r v i c e s . . . ”

sudo sys t emct l r e s t a r t nfp−sdk6−r t e

sudo sys t emct l r e s t a r t nfp−hwdbg−s rv

Listing 1: setup.sh

A.2.1 Splitting the ports

The SmartNIC card has two 1x40G ports. We are splitting these into 4x10G virtual ports

using a breakout module from 1x40G QSFP+ to 4x10G SFP.

You configure the physical port for splitter-mode like so:

$ sudo / opt /netronome/ bin /nfp−media phy0=4x10G

$ sudo / opt /netronome/ bin /nfp−media phy1=4x10G

The ordering is important. It is not possible to split phy1 without already having split

phy0, but you can split phy0 without also splitting phy1.

We have encountered a lot of problems with splitting the ports, and would recommend you

to reload the kernel modules every time you make a change to the splitting configuration:

$ sudo modprobe −r nfp

$ sudo depmod −a

$ sudo modprobe nfp nfp dev cpp=1

$ sudo modprobe dev l ink

43

A.3 Compiling and loading firmware from the host

It is possible to compile P4 and load the generated firmware from within the host system.

You will need to download the SDK from the Netronome support website. The file that

we downloaded was called ’nfp-sdk 6.1.0.1-preview-3243-2 amd64.deb’.

$ sudo dpkg − i nfp−sdk 6 .1 .0 .1 − preview−3243−2 amd64 . deb

After installing the SDK, you have to add a missing symlink like so:

$ sudo ln −s / opt/netronome/p4/ bin /p4c−bm2−s s \

/ opt /netronome/p4/ l i b e x e c /

The host should now be ready to compile P4 firmware.

A.3.1 Compiling P4 code from Linux

To compile a P4 16 file called ’main.p4’, you do the following:

$ / opt /netronome/p4/ bin / n fp4bu i ld −o output / f irmware . nffw \

− l be ry l l ium . . n f p 4 c I / opt /netronome/p4/ inc lude /16/ p4 inc lude / \

−−n f p 4 c p 4 v e r s i o n 16 −4 main . p4

For P4 14, you do:

$ / opt /netronome/p4/ bin / n fp4bu i ld −o output / f irmware . nffw \

− l be ry l l ium −4 main . p4

There should now be a directory ’./output/’ that is populated with a bunch of files. The

most important ones are ’firmware.nffw’ which is the actual firmware, and ’pif design.json’.

44

A.3.2 Loading firmware to card

In addition to the files created in Section A.3.1, you also need to include a configuration

file ’config.p4cfg’ with your rules and tables.

We ended up with the following script to load the firmware, design, and configuration

to the card:

#! / bin /bash

DIR=$ (pwd)

LOG FILE RUN=$DIR/ out load #output from t h i s run

LOG FILE MAIN=/var / log /nfp−sdk6−r t e . l og

FIRMWARE FILE=$DIR/ output / f irmware . nffw #path to f irmware

DESIGN FILE=$DIR/ output / p i f d e s i g n . j son #path to des ign

CONFIG FILE=$DIR/ c o n f i g . p4c fg #path to c o n f i g

#r e s t a r t s e r v i c e s

sudo sys t emct l stop nfp−sdk6−r t e

sudo sys t emct l stop nfp−hwdbg−s rv

#unload old f irmware

sudo /opt /netronome/ bin /nfp−nffw unload

sudo p k i l l p i f r t e

#load firmware and r u l e s to card

pushd / opt / n f p p i f / bin / > /dev/ n u l l

sudo . / p i f r t e −n 0 −p 20206 −I −z \

−s / opt / n f p p i f / s c r i p t s / p i f c t l n f d . sh \

−f $FIRMWARE FILE −d $DESIGN FILE −c $CONFIG FILE \

−− l o g f i l e $LOG FILE MAIN > $LOG FILE RUN &

popd > /dev/ n u l l

Listing 2: load firmware.sh

45

After running the script, you can verify that the firmware loaded successfully by check-

ing the log file located at ’/var/log/nfp-sdk6-rte.log’.

B Raw data

B.1 Packet processing rate for various neural network configu-

rations

The measurements in Table B.1 contains packet processing rates for the latest implementa-

tion of the neural network. Network traffic came in to the switch through one 10Gbit port,

and was forwarded to another 10Gbit port. The neural network inference was triggered

every 20:th incoming packet.

Table B.2 is the same as B.1, except the traffic is forwarded to/from 4x10Gbit ports instead.

Table B.1: Packet processing rate while running various neural network configurations.
Input and output layers contain 5 neurons each. Triggered every 20:th packet. 1x10GbE
for in-traffic and 1x10GbE out

Num hidden layers Neurons per hidden Weight region Activ region KPPS Clone hack

2 10 CLS CLS 4570 0

2 10 CTM CTM 4170 0

2 10 CTM CTM 3980 1

2 20 CTM CTM 2530 1

2 20 CLS CLS 1960 0

2 20 CTM CTM 1780 0

2 30 CLS CLS 1010 0

2 30 CTM CTM 920 0

2 55 CLS CLS 345 0

2 55 CTM CLS 335 0

Continued on next page

46

Table B.1 – continued from previous page

Num hidden layers Neurons per hidden Weight region Activ region KPPS Clone hack

2 80 CTM CTM 550 1

2 80 CTM CTM 155 0

2 120 CTM CLS 75 0

3 10 CTM CTM 3100 1

3 10 CLS CLS 2920 0

3 10 CTM CLS 2870 0

3 10 CTM CTM 2670 0

3 10 CLS CTM 2620 0

3 10 IMEM iMEM 2135 0

3 15 CTM CTM 2380 1

3 15 CLS CLS 1690 0

3 15 CTM CTM 1510 0

3 15 IMEM IMEM 1210 0

3 20 CTM CTM 1820 1

3 20 CLS CLS 1070 0

3 20 CTM CLS 1045 0

3 20 CTM CTM 970 0

3 20 CLS CTM 965 0

3 20 IMEM IMEM 760 0

3 25 CTM CTM 1430 1

3 25 CLS CLS 720 0

3 25 CTM CTM 670 0

3 25 IMEM IMEM 515 0

3 30 CTM CTM 1175 1

3 30 CLS CLS 530 0

3 30 CTM CLS 520 0

Continued on next page

47

Table B.1 – continued from previous page

Num hidden layers Neurons per hidden Weight region Activ region KPPS Clone hack

3 30 CTM CTM 475 0

3 30 CLS CTM 475 0

3 30 IMEM IMEM 375 0

3 35 CTM CTM 985 1

3 35 CLS CLS 410 0

3 35 CTM CTM 370 0

3 35 IMEM IMEM 280 0

3 40 CTM CTM 850 1

3 40 CLS CLS 320 0

3 40 CTM CLS 310 0

3 40 CTM CTM 285 0

3 40 CLS CTM 285 0

3 40 IMEM IMEM 225 0

3 45 CTM CTM 740 1

3 45 CTM CTM 230 0

3 50 CTM CTM 630 1

3 50 CTM CTM 190 0

3 80 CTM CLS 85 0

4 10 CLS CLS 2330 0

4 20 CLS CLS 760 0

4 30 CLS CLS 380 0

4 30 CTM CLS 370 0

4 45 CTM CTM 570 1

4 45 CTM CTM 165 0

4 50 CTM CLS 140 0

4 70 CTM CLS 60 0

48

Table B.2: Packet processing rate while running various neural network configurations.
Input and output layers contain 5 neurons each. Triggered every 20:th packet. 4x10GbE
ports for in-traffic and 4x10GbE ports out

Num hidden layers Neurons per hidden Weight region Activ region KPPS Clone hack

2 10 CTM CTM 3976 1

2 10 CLS CLS 3920 0

2 10 CTM CTM 3588 0

2 30 CTM CTM 1660 1

2 30 CTM CTM 820 0

2 120 CTM CLS 68 0

3 10 CTM CTM 3116 1

3 10 CTM CTM 2264 0

3 30 CTM CTM 1060 1

3 30 CTM CTM 424 0

4 45 CTM CTM 516 1

4 45 CTM CTM 144 0

4 70 CTM CLS 64 0

B.2 Memory usage for various neural network configurations

The measurements in Table B.3 are collected for the latest version of the implementation.

49

Table B.3: Measured memory usage for different neural network configurations. Input and
output layers contain 5 neurons each

Num hidden layers Neurons per hidden Weight region Activ region CLS usage CTM usage

2 10 CLS CLS 24.73% 50.00%

2 50 CLS CLS 83.33%

2 55 CLS CLS 93.40%

2 55 CTM CLS 48.35% 61.26%

2 70 CTM CLS 57.14% 67.54%

2 80 CTM CTM 97.53%

2 90 CTM CLS 68.86% 78.03%

2 120 CTM CLS 98.36% 86.44%

3 30 CLS CLS 69.29%

3 40 CLS CLS 96.75%

3 40 CTM CLS 51.28% 61.37%

3 50 CTM CTM 21.25% 90.84%

3 60 CTM CLS 68.86% 74.37%

3 80 CTM CLS 86.44% 92.25%

4 20 CLS CLS 57.69%

4 30 CLS CLS 89.43%

4 30 CTM CLS 51.28% 59.54%

4 50 CTM CLS 74.72% 75.04%

4 60 CTM CLS 86.44% 85.54%

4 70 CTM CLS 98.16% 97.87%

50

	Introduction
	Motivation
	Contribution
	Roadmap

	Background
	The P4 programming language
	Micro-C
	Feedforward neural networks
	NFP-4000 architecture
	Overview
	Memory regions
	Memory accesses

	Design & Implementation
	Overview
	Floating point calculations
	Physical setup
	Measuring processing time in SmartNIC

	Handling race conditions
	Mutex locks
	Atomic functions

	Feature collection
	Identify traffic flow
	Time based features
	Round trip time
	Detecting packet retransmissions
	Counting number of packets
	Traffic load

	Improving performance by emitting packets before analysis
	Specifying neural network configuration
	Specifying neural network size
	Loading parameters into firmware

	Results
	Memory latency
	Neural network inference delay
	Memory region impact on performance
	Performing inference on packet clones

	Impact on data throughput
	Memory size limiting the model complexity
	Impact of feature collection on packet latency

	Conclusion
	References
	Setting up a host for the SmartNIC card
	Host hardware
	Host installation
	Splitting the ports

	Compiling and loading firmware from the host
	Compiling P4 code from Linux
	Loading firmware to card

	Raw data
	Packet processing rate for various neural network configurations
	Memory usage for various neural network configurations

