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Abstract

In a democratic proportional election system, it is vital that the mandates
in the parliament are allocated as proportionally as possible to the number of
votes the parties got in the election. We formulate an optimization model for
allocation of seats in a parliament so as to minimize the disproportionality. By
applying separable programming techniques, we obtain an easily solvable problem,
and present a method for solving it optimally. The obtained solution is thus the
feasible solution that has the minimal disproportionality (with the measure chosen),
in contrast to the heuristic procedures used in many countries. We apply the
approach to real life data from the last three elections in Sweden, and show that the
result is better, i.e. more proportional, than what was obtained with the “adjusted
odd number rule”, which is presently used. A natural suggestion would be to use
our method instead.

We also consider the issue about constituencies, and suggest a procedure, based
on the same kind of optimization problem, for allocating mandates in the con-
stituencies, without changing the overall allocation with respect to parties. In our
approach, the numbers of mandates for the constituencies are based on the number
of votes given, not on estimated numbers of inhabitants. This removes the need
for fixed and equalization mandates, and also makes the question about sizes of
the constituencies less important.

Key words: Democracy, proportional representation, the adjusted odd num-
ber rule.



1 Introduction

In a representative democracy, the rulers of a country are appointed with general elec-
tions. In a proportional electoral system, each party shall receive a number of mandates
(places in the parliament) that is proportional to the number of votes the party got in
the election. However, the number of seats in the parliament is integer, and considerably
less than the number of votes, so perfect proportionality is not possible.

In Sweden, the mandates are distributed according to “the adjusted odd number method”,
(in Swedish: “den jdmkade uddatalsmetoden”), sometimes also called the modified
Webster /Sainte-Lagué method, a sequential heuristic that is actually specified in le-
gal text.

In this paper we first ignore constituencies, i.e. see all of the country as one constituency.
The difference to reality is usually small, because one has introduced equalization man-
dates to eliminate the difference that arises because of the constituencies. We assume
that the main common goal is to get a representation that is as proportional as possible
for the whole nation.

However, sometimes the number of equalization mandates are not enough, or the allo-
cation of them does not work as wished, so the final result is changed because of the
constituencies. This is not desired, see for example Janson and Linusson (2014), and
can give rise to questions about the formation and size of the constituencies, as well as
about the number of equalization mandates.

Therefore we also consider the issue about constituencies, and suggest a procedure,
based on the same kind of optimization problem as for the whole nation, for allocating
mandates in the constituencies, without changing the overall allocation with respect to
parties. In our approach, the numbers of mandates for the constituencies are based on
the number of votes given, not on estimated numbers of inhabitants. This removes the
need for fixed and equalization mandates, and also makes the question about sizes of
the constituencies less important.

2 An optimization model

We consider an election with n parties. Each voter votes for one party, and the mandates
in the parliament are allocated proportionally to the votes.

Let us denote the total number of votes with p and the total number of mandates to be
allocated with m. We can calculate d = m/p, which in principle indicates the number
of mandates per vote (significantly less than 1). Conversely, 1/d in principle indicates
the number of votes per mandate. Let r; specify how many votes party j received in
the election (so p =3, 7).

Let us introduce the variables x; as the number of mandates party j will get.

The value v = Y%

jzl(acj — drj)Q is often used for measuring how disproportionate the



distribution of mandates is, and y/v/2 is called the Gallagher index. It has also been
called the least square index. (We will later use the notation G-index.)

If we ignore that z should be integers, the solution z; = dr; for all j gives perfect
proportionality, i.e. Gallagher index 0.

In another measure, the Sainte-Lagué index, the terms are weighted with the proportion
of votes, f(z) =37, (z; — drj)?/r;. It means that we compare the relative deviation,
so one unit’s error is worse for a party with fewer votes. (We will later use the notation

SL-index.)

A third measure is the Loosemore-Hanby index, where the target function is f(x) =
> j=1lw; — drj| (divided by 2). (We will later use the notation LH-index.)

We will start by using the Gallagher index, mainly because we believe that it is the best
measure, and consider the other measures later.

The integer solution that lies as close as possible to perfect proportionality is the solution
of the following optimization problem.

n

min f(z) = Z(x] — drj)?

7j=1
n

s.t. ij =m (1)
=1

xj > 0, integer, for all j

(P1)

This is a small nonlinear integer problem. The number of variables is equal to the
number of parties.

3 A lower limit

Usually there is a parliament barrier, i.e. a lower proportional limit, [, for a party to
get any mandates at all. If a party gets less than [p votes, the party gets no mandates.
In Sweden, | = 0.04, i.e. if a party gets less than 4% of the votes, the party gets no
mandates. In practice, parties that lie far below the limit are often combined into one
party, “Others”, under the condition that the sum of votes still lies below the limit.

Let CP1 denote the continuous relaxation of P1, obtained by relaxing the integer re-
quirements. It is clear that x; = dr; is the optimal solution of CP1 if there is no lower
limit.

With the help of the KKT conditions one can show the following for the optimal solution
of CP1. Let J = {j : r; > Ip}, i.e. J is the set of parties that do not fall below the
limit. We then get x; = 0 for j € J. Let s = ZjeJ rj, i.e. s is the total number of
votes given to parties that do not fall below the barrier. Then p — s votes were given to
parties that fall below the limit and will not get any mandates. One might call them
“wasted” votes, but they are not meaningless, since they affect d, i.e. affect the number



of votes needed to get a mandate.

Let us now assume that all parties having more than [p votes will receive at least one
mandate. This is certainly true if m > 1/I, so for [ = 0.04, the parliament must have
at least 25 seats. In Sweden there are 349.

Under these assumptions, the KKT conditions give x; = dr; — u/2 for all j € J, where
u is the multiplier of constraint (1) in P1. Since we must have ). ;z; = m, we get
> jes(drj—u/2) =m, ie. ds—qu/2 =m, where ¢ = |J|, i.e. the number of parties that
do not fall below the barrier. This gives u = 2m(s/p — 1)/q. (s/p is somewhat smaller
than 1, so u will be negative.) In words 1 — s/p = (p — s)/s is the proportion of votes
on parties that fall below the limit and will not get any mandates. This is divided by
the number of remaining parties and multiplied with 2m to ensure that constraint (1)
will be satisfied. We now get x; = dr; — u/2 = dr; + m(1 — s/p)/q. The conclusion is
that all values for the remaining variables will be increased by the same amount, u, so
that the sum becomes equal to m. This way CP1 can be explicitly and exactly solved.

Unfortunately, the integer problem P1 is more complicated when there is a lower limit.
Especially we cannot add the same amount to all parties in J. As mentioned above, we
have p — s “wasted” votes, i.e. votes that does not give any mandates. (Note that even
though the limit is Ip for single parties, the sum might exceed Ip.)

Can we simple remove all parties that fall below the barrier? Let us compare two cases,
one where a party with & < Ip votes is removed from the list before hand, together with
its votes, and one where it is left in the list. In both cases, that party will get zero
mandates. Can this make a difference for the remaining parties?

Removing the party from consideration will decrease n by one and decrease p by 9.
Since d = m/p, this means that d will increase to m/(p — d). This change will be the
same for all parties, but since the objective function is not linear, the effect on the terms
(z; —dr;)? will vary between parties. Above we traced the total effect on the continuous
solution, namely that all z;’s were increased by the same amount. Here integrality will
make the change different for different parties.

The shape of the objective function is the same (quadratic) for all parties, but is centered
around dr;, which is different for different parties. We note that the function is steeper
when the distance between z; and dr; is larger. Different parties will lie at different
distances from dr;, so the change in slope will be different. The conclusion is that the
number of mandates for the other parties might be affected by removing the votes for
a party that falls below the limit.

Is this a good or bad property? Removing a party completely from consideration changes
d, which means that the number of votes needed for a mandate will change, so this is
unavoidable. The conclusion is that we should not remove such votes. (Later we will
see that the adjusted odd number method does not use d, and would be unaffected by
removing small parties.)



4 Solving the integer problem

Let us now address the integer problem P1, and let us temporarily assume that there
are no parties with less than Ip votes. (This is just a notational simplification, in order
to avoid the discussion of limits at this stage. We will consider barriers later.)

To solve the integer problem P1, we first note that the objective function is additively
separable in j. Therefore we can introduce a piecewise linearization of the non-linear
objective function f;(z;) = (x; — dr;)?. Since the variables must take integer values,
this linearization becomes ezxact if it has the correct values in all integer points. We
can calculate coefficients representing the slope of the objective function between two
adjacent integer points by the following expression, denoted by C1.

Cik = fj(k)—fj(k—l) = (k—d?“j)2— (k—l—d?’j)Q :2(]€—de)—1 for k = 1,...,m.
Since fj(x;) is a convex function, we have cji, > ¢ p—1.

Now we replace x; by >, x;i, where the binary variable xj; is the part of z; that lies
in the interval [k — 1,k]. We get the following optimization problem, which gives the
same solution as P1 (with x; =Y, z1).

n m
min z = g g CikTjk

=1 k=1

s.t. szﬂ“ =m (1)
j=1k=1
zji € {0,1} for all j, k

(P2)

P2 is a linear integer problem, and f(z*) = 2* + Z?Zl(drj)Q. The number of variables
is mn. Since cji < ¢jg+1, Tjx+1 may be equal to one only if x;, = 1, ;51 = 1, etc.
Thus z;p =1if z; > k.

We may also consider the problem P3, which is P2 without integrality requirements.

n m
min z = g g CikT jk

j=1 k=1

n m

s.t. szﬂk =m (1)
j=1k=1

0<zj <1, forall j,k

One can show that all the extreme points of the feasible set of P3 are integer, which
means that solving P3 produces an integer solutions which also is optimal in P2. Our
optimization problem can thus be solved as an LP-problem.

There exists a well known greedy algorithm that optimally solves continuous knapsack
problems, and P3 is a simpler type of such a problem, since all the coefficients in the
knapsack constraint are equal to one. The general method is as follows: Find the best
unused variable, increase it, repeat until the knapsack is full. For an ordinary continuous



knapsack problem, the last variable increased may get a non-integral value, in order to
fill the knapsack exactly, but here that will not happen.

Let us temporarily ignore the index j. We then have an integer variable x = ),
with costs ¢; and wish to increase it as long it is beneficial. Let the current value of x
be denoted by Z. Since the cost function is convex, this means that zp = 1 for all k£ < &
and xp = 0 for all £ > 2. Now the question is if we should increase x to £ + 1 or not,
i.e if we should set z;» = 1 for ¥ = & + 1. For this reason we look at cj.

Let us now specify the algorithm (with j). We denote the number of mandates allocated
by 7. We start by all variables equal to zero, ; = 0, i.e. no mandates allocated, m = 0.
In each iteration, we set k; = &; + 1, and calculate v; = cjx; = 2(k; — dr;) — 1 for all
j. This yields v; = 2(Z; +1 —drj) — 1 = 2(2; —drj) + 1 for all j. In the first iteration,
kj =1, and we get v; = 2(1 —dr;) —1 =1 — 2dr;.

The values v now give the cost for increasing each variable to the next integer value
(which is k;), i.e. allocating one more mandate. We choose the best of the possibilities,
by finding min; ¢;x;, and the corresponding index by j = arg min; ¢jx;. Then 7 identifies
the best variable to increase, and we set :23 = :%3 + 1, i.e. allocate one more mandate to

party j. This yields /i = 1 + 1. If 1 = m, we are ready. Otherwise this is repeated.

In each iteration, one more mandate is allocated, so there will be exactly m iterations.
In each iteration, only one value v; needs to be calculated, since v; is unchanged for all
j# 7. In other words, the value only needs to be recalculated for the party that got
the mandate. Therefore, this method is very quick.

A lower limit [ is simply taken care of by not allowing any mandates to parties with less
votes than this. This does not change the method. It is however necessary, as noted
above, to include the votes for such parties in the calculation of the coefficients.

4.1 The algorithm

Let us now give the algorithm for solving P3, with the simplified notation s; = #; and
t=j. Let J={j:r; > Ip}, i.e. the set of parties that do not fall below the limit.

Algorithm 1 Exact mandate allocation

1: Set m =0, s; = 0 for all j, and calculate v; = 1 — 2dr; for all j.
2: while m < m do

3: Find ¢t = argmine s v;.
4: Set sy = s¢+ 1, and m = m + 1.
5 Calculate vy = 2(s; — dry) + 1.

Note that this actually gives the optimal solution, i.e. the feasible solution that has the
minimal disproportionality, in P3, P2 and P1.



4.2 Verification of optimality

Let us now verify that the solution obtained by the algorithm is optimal, with the help
of LP-duality. Given the primal solution s = &, we calculate the corresponding dual
solution, and show that both solutions are optimal.

The algorithm yields the solution s that satisfies the primal constraints. We have
xjr, = 1 for all k < s; and x5, = 0 for all £ > s;, for each j € J, and z;, = 0 for all
j & J and all k. The objective function value clearly is equal to . ; ZZ]: | Cjk-

The LP-dual of P3, with dual variables « for constraint 1 and g for the constraints
x <1 is given below.

max v = ma—ZZﬁjk
j=1 k=1 (D3)
s.t. a— B < cj, for all j, k
Bjr =0, for all j,k

The complementary slackness conditions are (a — Bji — ¢ji)xjr = 0 for all j,k, and
Bik(zjr — 1) = 0 for all j, k.

The dual constraints can be written as fj; > max(0, — ¢ji). For k > s;, we have
xjr, = 0, so complementary slackness yields 3;; = 0, and then the dual constraints
reduce to o < ¢j;. This is also true for j € J, so we have oo < ¢y, for all j € J and for
all k> s; for j € J. Since the objective function strives to maximize «, we set

a = min(min ¢;p, min ci).
(k,jeJ I fss;ged )

For k < Z;, we have x;, = 1, so complementary slackness yields S, = a — cjp.

These values of o and ( ensure that the dual solution is feasible in D3. The objective
function value now becomes

ma—ZZBijma—ZZ(a—Cjk) = (m—zsj)aJFZZCjk:ZZCjk

j=1k=1 jed k=1 jeJ jeJ k=1 jeJ k=1

where we have used primal constraint (1). We find that the dual objective function
value is equal to the primal objective function value. We thus have a primal feasible
solution and a dual feasible solution and they have the same objective function value.
Therefore they are optimal solutions.

5 Other measures

First we note that the other measures suggested also are separable in j and convex.
Actually we believe that all reasonable measures should be separable and convex. Sep-
arability is needed, so that moving a mandate between two parties should not affect a



third party. The only connection between parties should be constraint 1.

For a convex function, a larger deviation from dr; gives a larger “cost”, i.e. will be less
desirable. A non-convex function that gives a smaller cost for a larger deviation would
not be acceptable. This reasoning also applies to marginal effects, so a convex function
is desirable.

Using the Sainte-Lagué index, the terms are weighted with the proportion of votes,
fl@) =270 (x5 — drj)?/r;. It is easy to see that this only means that the coefficients
cji are all divided by r;, and that the same algorithm can be used. Let C2 denote the
expression ¢ji = (2(k —dr;) —1)/rjfor k=1,...,m.

Using the Loosemore-Hanby index, f(x) = Z?’Zl |z —drj|, we get cj, = fj(k) — f;j(k—
1)=|k—drj|—|k—1—drj|for k=1,...,m.

If k <drj, |k —dr;| <0, s0|k—drj| =—k+dr;. Since k —1 < k, we likewise get
|k:—1—drj\ = —k+1+drj. Then ’k—d?"ﬂ—’k—l—dT‘j’ = —k—l—drj—(—k—i—l—i-drj) = —1.

Ifk—1>drj, |k—1—drj| >0,s0 |[k—1—drj| =k—1—dr;. Since k >k —1, we also
get |k —drj| =k —dr;. Then |k —drj| — |k —1—drj|=k—dr; — (k—1—dr;) = 1.

Finally, if k — 1 < drj <k, |k —drj| = k —drj, and |k — 1 —dr;| = =k +1+dr;. Then
|k—d7’j’—|k—1—d7"j|:k—d’r’j—(—k-i-l-f—d"f’j):2k—2d7’j—1.

Summing up, we have the following expression, denoted by C3.

~1 if k < dr;
Cjk = 2k‘—2d7’j—1 ifk‘—1<d7“j<k
1 if k—1> dr

The cost curve of C3 is thus convex, but not strictly convex. Mostly it is linear. This
is, as we shall see, an undesirable property.

6 The adjusted odd number rule

In Sweden, the mandates are distributed according to “the adjusted odd number rule”,
(“jamkade uddatalsmetoden” in Swedish), also called the modified Sainte-Lagué method
or the modified Webster/Sainte-Lagué method, a sequential heuristic that is specified in
legal text. The method has also been used in Denmark, Norway, Bosnia-Herzegovina,
Iraq, Kosovo, Latvia, New Zeeland and Nepal. It can be described as follows.

One works with values, v;, for each party, and allocates mandates one at a time to the
party that has the highest value. Then one divides the party’s value with the next odd
number, and repeats this. The designation “adjusted” means that the initial values of v
are the number of votes divided by 1.2. This makes the first mandate somewhat delayed
and thus gives a disadvantage for smaller parties. In Sweden, before 2018, 1.4 was used
instead of 1.2.



Algorithm 2 The adjusted odd number method
1: Set =0, s; = 0 for all j, and calculate v; = r;/1.2 for all j.
2: while m < m do

3: Find t = argmax;c s v;.
4: Set sy = s+ 1, and m = m + 1.
5 Calculate vy = 7 /(2s; + 1).

Empirically, this method appears to give quite good proportionality. Judging from the
name, is seems to aim at minimizing the Sainte-Lagué index. However, we have not
seen any derivation motivating this, and have found that it does not always produce
the best solution, even with that objective function.

In Linusson (2008) it is mathematically shown that this method does very well when
comparing two parties, and this is taken as motivation for claiming that the method is
very good. However, for more than two parties, nothing is theoretically shown.

If the initial factor 1.2 is replaced by one, the method is simply called the “odd number
method” (“uddatalsmetoden” in Swedish), or the Sainte-Lagué method. A lower limit, ,
(like 0.04 used in Sweden) often removes the effect of the adjustment, as it is a stronger
disadvantage for small parties.

In another method, called d’Hondts method, step 4 is replaced by vy = r¢/(s¢ + 1), i.e.
division is made with the next integer, not the next odd integer. In Sweden this method
is used in elections conducted by a city council, municipal council or municipal board
of directors. The method is said to favor large parties.

Since these methods are said to favor large parties, a technique occasionally used is
electoral cooperation, where two different parties sum up their votes and are counted as
one. Obviously this may make it possible to avoid the barrier, and also to avoid effects
of the initial factor 1.2. Otherwise the effect is unclear.

7 Constituencies

In this paper, we have up to now ignored constituencies. However, in reality they are
there. The procedure used (in Sweden) is that each constituency has a fixed number of
mandates (based on the number of inhabitants in the area), and the allocation is made
separately for each constituency. After this, the result is summed up, and compared
to the result for the whole nation. Equalization mandates are then allocated, based
on certain procedures, in order to eliminate the differences that appear because of the
constituencies.

Sometimes, for example 2010 in Sweden, this procedure does not succeed to eliminate
the differences, and the final result is not what it would have been for the whole nation
as one constituency. This has raised debates and protests, and the rules for allocating
equalization mandates and the number of equalization mandates have been changed.



We here suggest a different approach. First of all, we say that the allocation for the
nation as a whole (preferably found with Algorithm 1) must be kept, i.e. not changed
at all. Given the number of mandates for each party, s, the question is how to divide
those between constituencies.

Assume that we have ¢ constituencies, and let ¢;; be the number of votes for party j in
constituency ¢. (We have r; =" t;;.)

Now let y;; be the number of mandates for party j in constituency i. We get the
constraints y ¢, yi; = s; for each j, stating that the votes from the constituencies
should sum up to the national values for each party.

Then we suggest to use the same approach as used for the whole nation. The scaled
proportions of votes, y;; = dt;;, would be the correct solution if non-integral values were
allowed, since we have > 7 | y;; = >0 dt;j =d Y 1 | ti; = dr;.

Since y has to be integer, we can formulate an optimization problem similar to P1 for
each j. We use the same least square deviation as objective function.

q
min Z(yw — dtij)2
=1
! (P4)
s.t. Zyij = Sj (1)
=1

yij > 0, integer, for all ¢

P4 has the same properties as P1, and can be solved in the same way. Note however
that the summations are over i, the constituencies, and not over j, the parties, as in
P1. We again make an exact linearization in integer points k = y;;.

aije = (k —dt;)* — (k — 1 —dt;))?> =2(k — dt;j;) — 1L for k=1,...,m.

Now we replace y;; by >, ¥ijk, where the binary variable y;;; is the part of y;; that lies
in the interval [k — 1, k]. We get the following optimization problem for each j.

q m
min z = Z Z @ikYijk
’izl k=1
- (P5)
i=1 k=1

0 < yijr <1, integer, for all ¢, k

P5 is a linear problem with integer extreme points. We get y;;x = 1 if y;; > k. Now
the problem can be solved with the following algorithm, which uses the output, s, of
Algorithm 1 as input.

We let m; be the number of mandates allocated to party j. Also let I; be the set
of constituencies that does not fall below a lower limit, i.e. those constituencies where
party 7 may get votes. (The lower limits here may be different from the national level.)

This algorithm solves P4 exactly (just as Algorithm 1 solves P1).

10



Algorithm 3 Constituency mandate allocation
1: for j=1,..,ndo
2 Set m; = 0, y;; = 0, and calculate v;; = 1 — 2dt;;, for all 1.
3 while 7; < s; do
4: Find 7 = argmin;ey; vij.
5
6

Set, Yrj = Yrj + 1, and T?lj = ’ﬁlj + 1.
Calculate vrj = 2(yr; — dt,;) + 1.

A big difference compared to the presently used procedure is that the number of man-
dates for a constituency depends on the number of wvotes from the area, not on the
number of inhabitants. If few of the inhabitants vote, the constituency gets few man-
dates. On the other hand, if few inhabitants vote in the current system, those who vote
have a larger impact.

An advantage is that the number of votes obviously is very current, while the number
of inhabitants may be an outdated number. Another advantage is that it encourages
voting.

The need for fixed mandates and equalization mandates and procedures for allocating
them is completely removed. Furthermore the sizes of the constituencies is not as
important as it is in the present procedure. Changing the sizes of constituencies might
still have some effect, due to the integrality of the mandates, but those effects are small
and random, and we believe that it is not possible to use such a change in order to
achieve certain party-political goals.

8 Implementation

The methods are implemented in Python, and the code also includes an implementation
of the adjusted odd number method, which is presently used in Sweden. The code is
run in a terminal as follows.

python elect.py votes-2018.txt 0.04 349

The first argument, votes-2018.txt, is which input file to be used. The second argu-
ment, 0.04, is the limit [. The third argument, 349, is the number of mandates to
be distributed. This means that one can easily run the program with different input
files, various parliamentary barriers and different number of mandates. The code is
obtainable from the author on request.

8.1 Indata

An input file has one row per party, and each row contains the name of the party and
the number of votes the party received. The data is retrieved directly from the Election
Authority’s website (“Valmyndigheten” in Swedish) for the whole nation. There are
three files, votes-2018.txt, votes-2014.txt and votes-2010.txt, with results from three

11



Party r; drj Ti/p
The Administrators (A) | 320 32.0 0.32
The Bureaucrats (B) 280 28.0 0.28
The Commoners (C) 260 26.0 0.26

The Different (D) 80 8.0 0.08
The Xenophobes (X) 30 3.0 0.03
The Yetis (Y) 20 2.0 0.02
The Zeptoparty (Z) 10 1.0 0.01

Table 1: Parties and votes for the first instance.

elections.

The votes for many insignificant parties are in this data reported under one name,
“Others”. Usually the proportion of votes are below the limit [, so no mandates are
allocated. However, it is not impossible that the sum of votes for all the small parties
exceeds the limit. Since they are not one party, but many, they should not get any
mandates anyway. If the method treats it as one party, it might get mandates. We
must therefore deal with this item in a special way, i.e. not include it in J in Algorithm
1. Another possibility is to extract the largest parties in “Others” and give them their
own lines, until the remaining combined party gets less then Ip votes.

We have also used a small artificial instance for initial testing, and a few small instances
given in Linusson (2008).

9 Computational results

9.1 One artificial instance

First we solve an artificial instance, initially used for debugging. We have 7 parties, see
table 1, 1000 votes and 100 mandates. The number are chosen in order to yield integer
proportions. 100 mandates for 1000 votes gives 0.1 mandate per vote or 10 votes per
mandate. In table 1, we give the name of the party, the number of votes it got, r;, the
continuous solution, dr;, and the proportion of the votes it got, r;/p.

With [ = 0, i.e. no lower limit, both Algorithm 1 and 2 give the solution x; = dr;, with
G-, SL- and LH-index all equal to zero. In table 2, the results for [ = 0.02, [ = 0.03 and
= 0.04 are given.

In table 2, we find that for [ < 0.02, the two methods are equally good. However,
for [ = 0.03 and 0.04, Algorithm 1 gives better solutions, i.e lower G-index. Also the
SL-index is lower, while there is no difference for the LH-index. We also find that larger
[ gives worse proportionality.

If the X, Y and Z parties form an electoral cooperation for [ = 0.04, the result will be
the same as for [ = 0, since the combined party, XYZ, then has more then 4% of the
votes.
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1 =0.02 1 =0.03 1 =0.04
Party Alg1l Alg2 | Algl Alg2 | Algl Alg2

A 33 33 33 35 34 38
B 28 28 29 28 30 28
C 26 26 27 26 27 26
D 8 8 8 8 9 8
X 3 3 3 3 0 0
Y 2 2 0 0 0 0
Z 0 0 0 0 0 0

G-index 1.000 1.000 | 2.000 2.645 | 3.464 5.000
SL-index | 0.103 0.103 | 0.310 0.328 | 0.643 0.712
LH-index | 1.000 1.000 | 3.000 3.000 | 6.000 6.000

Table 2: Mandates for different lower limits for the first instance.

Orkeltrask 4

Party rj dr; rij/p| Algl Alg?2
A 333 3.33 0475 3 4
B 237 2.37 0.338 3 2
C 130 1.3 0.185 1 1
G-index 0.545 0.581
Orkeltrisk 5
Party rj dr; rij/p| Algl Alg?2
A 367 3.67 0.524 4 3
B 267 2.67 0.381 3 3
C 66 0.66 0.094 0 1
G-index 0.571 0.580

Table 3: Votes and mandates for the second set of instances.
9.2 Small artificial instances

We have also solved some small test instances described in Linusson (2008), there used to
illustrate the adjusted odd number method, Algorithm 2. Here there are three parties,
700 votes and 7 mandates, and no lower limit, i.e. [ = 0. This gives 0.01 mandate per
vote or 100 votes per mandate. In table 3, we give the name of the party, the number
of votes it got, 7}, the continuous solution, dr;, and the proportions of the votes it got,
rj/p, for the two instances Orkeltrisk 4 and Orkeltrisk 5. The last two columns give
the number of mandates allocated by the two algorithms, and the Gallagher index for
the solutions.

For both these instances, Algorithm 1 gives better solutions.

9.3 Sweden

Finally we have used the data from the three last elections in Sweden, see tables 4, 5
and 6. In these runs we used | = 0.04 and m = 349, as is the case in reality. (We have
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Party Tj dr; ri/p | Alg1 Alg2  Res

Moderaterna (M) 1791766 104.913  0.300 106 106 107
Centerpartiet (C) 390804  22.882  0.065 23 23 23
Folkpartiet (FP) 420524  24.622 0.0705 25 25 24

Kristdemokraterna (KD) 333696  19.538  0.055 20 20 19
Socialdemokraterna (S) 1827497 107.005  0.306 108 109 112

Vénsterpartiet (V) 334053  19.559  0.056 20 20 19
Miljopartiet (MP) 437435  25.613  0.073 26 26 25
Sverigedemokraterna (SD) | 339610  19.885  0.056 21 20 20
Ovriga 85023 4.978  0.014 0 0 0
G-index 3.801 3.915 5.266

Table 4: Votes and mandates for the 2010 election in Sweden.

Party Tj drj rj/p| Algl Alg2  Res
Moderaterna (M) 1453517  81.404 0.233 83 85 84
Centerpartiet (C) 380937  21.334 0.061 23 22 22
Folkpartiet (FP) 337773 18917 0.054 21 20 19

Kristdemokraterna (KD) 284806  15.950 0.045 18 17 16
Socialdemokraterna (S) 1932711 108.241 0.310 110 112 113

Vansterpartiet (V) 356331  19.956 0.057 22 21 21
Miljopartiet (MP) 429275  24.041 0.068 26 25 25
Sverigedemokraterna (SD) | 801178  44.870 0.128 46 47 49
Feministiskt initiativ (FI) 194719  10.905 0.031 0 0 0
Ovriga 60326 3.378  0.009 0 0 0
G-index 8.848 9.128 9.466

Table 5: Votes and mandates for the 2014 election in Sweden.

not translated the Swedish party names.) The last row, named “Ovriga” is the sum of
all minor parties.

In the election 2010, there was 5 960 408 votes, which gives 0.0000585 mandates per
vote or 17078 votes per mandate. In the election 2014, there was 6 231 573 votes, which
gives 0.0000560 mandates per vote or 17855 votes per mandate. In the election 2018,
there was 6 476 725 votes, which gives 0.0000538 mandates per vote or 18557 votes per
mandate. The results from Algorithm 2 are not identical to the final real life results,
due to some deficiencies in the allocation of equalization mandates. Our main goal is
to compare the two algorithms, but we also give the actual result in the last column.

In all these elections, Algorithm 1 gives better solutions than Algorithm 2. In other
words, the new algorithm presented in this paper would give a more proportional man-
date allocation.

We also find that for 2018, Algorithm 2 and the actual result are identical, which shows
that the procedure with equalization mandates worked rather well that year. For 2014,
the actual result is slightly worse, and for 2010, there is a large difference, as Algorithm
1 gives Gallagher index 3.801 and Algorithm 2 3.915, while the actual result gives 5.266.
There were articles in newspapers claiming that the election result was flawed, and we
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Party Tj drj rj/p| Algl Alg2  Res

Moderaterna (M) 1284698  69.22 0.198 70 70 70
Centerpartiet (C) 557500 30.041 0.086 31 31 31
Liberalerna (L) 355546 19.158 0.054 20 20 20

Kristdemokraterna (KD) 409478 22.064 0.063 23 22 22
Socialdemokraterna (S) 1830386 98.630 0.282 99 100 100

Vénsterpartiet (V) 518454 27.937 0.080 28 28 28
Miljopartiet (MP) 285899 15.405 0.044 16 16 16
Sverigedemokraterna (SD) | 1135627 61.193 0.175 62 62 62
Feministiskt initiativ (FI) 29665  1.598 0.004 0 0 0
Ovriga 69472  3.743 0.010 0 0 0
G-index 3.225 3.292 3.292

Table 6: Votes and mandates for the 2018 election in Sweden.

Party Alg1l Alg2
M 72 74
C 33 32
L 22 20
KD 25 23
S 102 105
\Y 31 30
MP 0 0
SD 64 65
FI 0 0
Ovriga 0 0
G-index | 12.562 13.065

Table 7: Votes and mandates for the 2018 election in Sweden with { = 0.05.

can only agree. However, since then either the flaws have been corrected, or we were
just luckier with the numbers.

Tests with initial factor 1.4 in Algorithm 2, as was used in the elections in Sweden before
2018, gave identical results. The same is the case for initial factor 1.0. Our conclusion
here is that the “adjusted” part of Algorithm 2 does not make a big difference.

On the other hand, raising the lower limit [ to 0.05 gives the result for 2018 given in
table 7, which shows important differences. Also it is clear that the Gallagher index
increases when [ increases.

We earlier mentioned electoral cooperation, where two parties are treated as one. In
section 9.1 this was used for small parties to get above the lower limit. Let us also
consider the effect it may have for parties over the limit. We have used the data from
2018 with three (fictitious) cooperations, and the results are given in table 8, where
small parties have been removed.

Due to the integrality of the mandates, it is inevitable that electoral cooperation may
have some effects, but it is not desired, and the effect should be small and random, and
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Cooperationl Cooperation2 Cooperation3
Party Alg 1 Alg 2 || Party Alg1l Alg2 | Party | Alg1 Alg2
M 70 71 || M+KD 92 93 | M 70 70
C+L 50 50 || C 31 31| C 31 31
KD 23 22 || L 20 19 || L 20 19
S 99 100 || S 99 100 || KD 23 22
\Y 29 28 ||V 29 28 || S+V 127 129
MP 16 16 || MP 16 16 || MP 16 16
SD 62 62 || SD 62 62 || SD 62 62
G-index | 3.236  3.408 3.237 3.414 3.229 3.538

Table 8: Votes and mandates for the 2018 election in Sweden with electoral cooperations
between parties.

2010 2014 2018
Block | Alg1 Alg2 Res | Algl Alg2 Res| Algl Alg2 Res
RB 174 174 173 145 144 141 144 143 143
LB 154 155 156 158 158 159 143 144 144
SD 21 20 20 46 47 49 62 62 62

Table 9: Mandates for the blocks.

not possible to plan in advance and use tactically. The Gallagher indices for Algorithm
1 are 3.225 without cooperation, and 3.236, 3.237 and 3.229 for the three cooperations.
For Algorithm 2, the corresponding numbers are 3.292, 3.408, 3.414 and 3.538. Clearly
the disproportionality increases more for Algorithm 2 than Algorithm 1. The changes in
our method are small and random, so we conclude that our method is better at handling
such changes.

9.4 Political blocks

The issue about political blocks is discussed much in Sweden. Traditionally there has
been a left block, LB, of S and V, where MP in later years has been included. The
traditional right block, RB, has been M, KD, L and C. (L was called FP before 2018.)
Where to put SD has been unclear, and it is sometimes called a third block. In table 9
we give the results for these blocks for the two algorithms, and the actual result.

There are some small differences between the algorithms, and one is especially inter-
esting. For 2018 Algorithm 2 gives the left block one more mandate than the right
block, which is equal to the actual result. However, Algorithm 1 would give the right
block one more mandate than the left block. That difference would probably have been
psychologically important, even though it is hard to say what difference it would have
been when it came to forming a government, which was unusually difficult (for Sweden)
and took more than 130 days.

Since we believe that Algorithm 1 gives the best result, we note that for 2010 and 2014,
the actual results were even worse than Algorithm 2.
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1 =10.03 [l =0.04
Party Alg1l Alg2 | Algl Alg?2

A 33 35 34 38
B 29 28 30 28
C 27 26 28 26
D 8 8 8 8
X 3 3 0 0
Y 0 0 0 0
Z 0 0 0 0

G-index 2.0 2.645| 3.605 5.0.00
SL-index | 0.310 0.328 | 0.642 0.712

Table 10: Mandates for objective function C2 for the first instance.

Studying the three electoral cooperations we tested does no shown any significant dif-
ferences for the blocks. Especially it does not seem to help the cooperating parties,
unless it is used to get above the lower limit.

9.5 Tests with other measures

We have also considered using the other measures, C2 and C3, in our algorithm. The
first conclusion was that C3 has a lack of controllability, i.e. many coefficients are equal
(=1 or 1), so the choice of minimizer is quite random. Practical tests confirmed that
this measure is inferior.

Using C2 instead of C1, we found the following. While using C1 in the objective
function often produces good results for the other indices too, using C2 as objective
function produced worse results for C1.

The other observation was that using C2 as objective function, the two algorithms gave
the same result for the Sweden instances. So it seems that Algorithm 2 gives good
solutions for the problem with C2 as objective function.

To further investigate this, we solved the instance in section 9.1 with C2 as objective
function. With [ < 0.02, Algorithm 1 and 2 give the same solutions. In table 10,
the results for I = 0.03 and [ = 0.04 are given. (We also did runs with initial factor
1.0 instead of 1.2. i.e. with the unmodified Sainte-Lagué method, but the results were
identical.)

Here we see that Algorithm 1 gives better solutions, i.e lower SL-index. (Also the G-
index is lower.) This means that the (modified) Sainte-Lagué method does not always
give the lowest Sainte-Lagué index. Algorithm 1, however, does.

Therefore a reason to use Algorithm 1 instead of Algorithm 2 is that Algorithm 1 with
C2 always produces the optimal solution, while this is not the case using Algorithm 2.
(And it is not more difficult to use Algorithm 1 than Algorithm 2.)

Another reason is that we believe that C1 is the correct measure. It is not motivated
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to put much higher cost on a certain deviation if the party in question has very few
mandates than if the party has more mandates. From a emotional point of view from
the smaller party, this might seem motivated, but from a more neutral point of view,
there is no reason to favor votes for small parties. It would be unfortunate if votes for
smaller parties always were given higher importance than votes for larger parties.

Furthermore, when it comes to forming government, several parties usually need to
collaborate, and one mandate more or less for a smaller party is exactly as important
as one mandate more or less for a large party if the two parties are collaborating.

9.6 Constituency allocation

We have also made tests with the method described in section 7. Here we take the
result of national allocation of mandates as input, and allocated these mandates to the
constituencies in the best possible way, using the same kind of quadratic error measure.

Here the total number of mandates for each party will not change. Instead the number
of mandates for each constituency might change, if the estimated number of mandates is
based on incorrect numbers of inhabitants, or if the number of votes are not proportional
to the number of inhabitants.

It does not seem controversial to say that non-voters should not affect the election
result. Especially, a high proportion of non-voters in a small constituency should not
make each vote more important than in other constituencies.

We have made three runs, for the three last elections in Sweden. Since the allocation
to parties is not changed, only the allocation to constituencies is interesting.

We begin by recalling that for 2010, the disproportionality decreased from 3.915 for the
old method to 3.801 for our method, for 2014 from 9.128 to 8.848, and for 2018 from
3.292 to 3.225. The effect on the constituencies are summed up in table 11, where all
constituencies are listed (the Swedish names are not translated) with their mandates,
first the actual result of the election, Old, and then the results our method would give,
New, and the difference, §. We also, for comparison, give the number of fixed mandates,
F, for 2018.

We find that using the new method would move in total 26 mandates between con-
stituencies in 2010, 28 in 2014 and 14 in 2028. That can be compared with the 310
fixed mandates and 39 equalization mandates that has been used.

As a general trend, our method seems to move mandates to highly populated regions
from sparsely populated. Goteborg and Stockholm get more, while the small Gotland
looses one of its two. This might indicate that the numbers of mandates have been
decided in a slightly conservative way, possibly wishing to avoiding extremes.

Looking for example at Stockholms lén, in 2010 it got 38 mandates, while our method
would give 41, 3 more. In 2014, it got 39, while our method said 43, 4 more. In 2018 it
got 43, and our method said 44, only one more. So it seems that the number of mandates
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2010 2014 2018

Constituency Old New 6| Old New 6 | Old New 0 F
Blekinge lan 6 5 -1 ) 4 -1 5 ) 0 5
Dalarnas lan 11 11 0 11 11 0 10 10 0 9
Gotlands lan 2 1 -1 2 1 -1 2 1 -1 2
Gavleborgs lan 12 11 -1 11 11 0 9 9 0 9
Goteborgs kommun 18 20 +2 | 17 20 +3 | 19 18 -1 17
Hallands l&n 12 12 0 12 12 0 13 13 0 10
Jamtlands lan 4 4 0 4 4 0 5 5 0 4
Jonkopings 1éan 13 14 +1 13 15 42 13 12 -1 11
Kalmar 1dn 9 7T -2 8 7 -1 8 9 +1 8
Kronobergs lan 6 5 -1 6 6 0 6 5 -1 6
Malmé kommun 10 10 0 11 9 -2 11 10 -1 10
Norrbottens lan 9 8 -1 8 8 0 8 8 0 8
Skane ldns norra och Gstra 12 12 0 13 13 0 11 11 0 10
Skéne lans sodra 13 13 0 13 13 0 14 14 0 12
Skane lans véastra 10 9 -1 11 10 -1 11 12 +1 9
Stockholms kommun 29 32 43 32 32 0 32 33 +1 29
Stockholms 1dn 38 41 +3 39 43 +4 43 4 +1 39
Sodermanlands ldn 11 11 0 11 12 +1 10 10 0 9
Uppsala lan 13 14 +1 12 13 +1 13 13 0 11
Véarmlands lan 12 12 0 11 10 -1 11 11 0 9
Vasterbottens 1an 11 11 0 10 10 0 9 9 0 9
Vasternorrlands 14n 9 8§ -1 10 8 -2 8 7 -1 8
Vastmanlands 14n 11 9 -2 10 8 -2 9 11 +2 8
Vastra Gotalands 14ns norra 12 12 0 13 12 -1 10 11 +1 9
Vastra Gotalands lans sodra 6 4 -2 6 5 -1 8 T -1 7
Vastra Gotalands lans véstra 13 14 +1 13 14 +1 13 13 0 11
Vistra Gotalands ldns Ostra 10 10 0 10 9 -1 10 10 0 9
Orebro lin 12 12 0] 12 13 +1| 12 12 0 9
Ostergstlands lin 15 17 +2| 15 16 +1| 16 16 0 14
Difference 26 28 14

Table 11:

Mandates for constituencies.
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allocated by the old procedure changes rather slowly in the direction indicated (faster)
by our method. A similar pattern can be seen for Goteborgs kommun. In general,
however, there is no obvious pattern in the reallocation obtained by our method.

Comparing to the fixed mandates for 2018, is would be natural for the numbers of fixed
mandates to lie slightly below the final result, since equalization mandates are added.
However, in a few cases the fixed numbers of mandates lie above what our method would
give. This occurs for small constituencies, and indicates, we believe, an unwillingness
to accept that those constituencies really are that small.

Seen from another point of view, it might be reassuring that the mandate allocations
really are rather similar. One can not say that our method would mean a drastic change.
In any case, we believe that our method is much better motivated, both with theoretical
and practical arguments.

10 Conclusion

We propose a new method for allocating mandates after an election. Tests show that our
new method often produces solutions with better proportionality than the one presently
used, and never worse. Furthermore it is not more complicated or time consuming to
use. There is a sound theoretical base for the method, in that it correctly solves a
relevant optimization problem. This can not be said for the present method, which is
quite difficult to analyze.

We also suggest a new way of allocating mandates to constituencies, which eliminates
the need for equalization mandates. We believe that it also eliminates many possible
sources of errors, and that using this method is better than adjusting and amending the
old rules when errors appear.

We believe that it is much better to discuss which optimization model to solve, i.e. what
measure to use as objective function, than doing changes of parameters in an algorithm,
when the effect of the changes is unclear.

After observing the recent difficulties in Sweden of forming a government, it seems even
more vital that the allocation of mandates is done in the best possible way, meaning
that is should be as proportional as possible, i.e. reflect the peoples votes as closely as
possible. We claim that our method does the best job in this aspect. The code can be
obtained by contacting the author at kaj.holmberg@liu.se.
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