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Abstract 

Flood maps showing extents of predicted flooding for a given extreme event 
have wide usage in all types of spatial planning tasks, as well as serving as 
information material for the public. However, the production processes that 
these maps undergo (including the different data, methods, models and deci-
sions from the persons generating them), which include both Geographic In-
formation Systems (GIS) and hydraulic modelling, affect the map’s content, 
and will be reflected in the final map. A crisp flood boundary, which is a com-
mon way of representing the boundary in flood maps, may therefore not be the 
best representation to be used. They provide a false implication that these maps 
are correct and that the flood extents are absolute, despite the effects of the 
entire modelling in the prediction output. Hence, this research attempts to de-
termine how flood prediction outputs can be affected by uncertainties in the 
modelling process. In addition, it tries to evaluate how users understand, utilise 
and perceive flood uncertainty information.   

Three main methods were employed in the entire research: uncertainty 
modelling and analyses; map and geovisualisation development; and user as-
sessment. The studies in this work showed that flood extents produced were 
influenced by the Digital Elevation Model (DEM) resolution and the Man-
ning’s ݊ used. This effect was further increased by the topographic character-
istic of the floodplain. However, the performance measure used, which quan-
tifies how well a model produces results in relation to a reference flood bound-
ary, had also biases in quantifying outputs. Determining the optimal model 
output, therefore, depended on outcomes of the goodness-of-fit measures used. 

 In this research, several ways were suggested on how uncertainties can be 
visualised based on the data derived from the uncertainty assessment and by 
characterising the uncertainty information. These visualisations can be: dual-
ended maps; flood probability maps; sequential maps either highlighting the 
degrees of certainty (certainty map) or degrees of uncertainty (uncertainty 
map) in the data; binary maps; overlain flood boundaries from different cali-
bration results; and performance bars. Different mapping techniques and vis-
ual variables were used for their representation. Evaluations have shown that 
these mapping techniques, as well as the design of graphical representation, 
helped users understand the information. Note though that there were visuali-
sations, which the user found easier to comprehend depending on the task 
given. Each of these visualisations had also its advantages and disadvantages 
in communicating flood uncertainty, as shown in the assessments. Another im-
portant aspect that came out in the study was how the users’ background influ-
enced decision-making when using these maps. Users’ willingness to take risks 
depended not only on the map, but their perceptions on the risk itself. However, 
overall, users found the uncertainty maps to be useful to be incorporated in 
planning tasks.  

The entire research contributes to the understanding of uncertainties in 
flood maps. Furthermore, investigating ways to effectively communicate flood 
uncertainty using different visualisation techniques, as well as assessing how 



 

users apprehend and perceive the information provided to them have been im-
portant parts of the results derived. These findings and contributions can spe-
cifically be summed up as follows: 1) DEM resolution affected the extents of 
the flooding, and even high resolution data may be limited in producing accu-
rate results; 2) the topographic characteristics of the area under study further 
enhanced uncertainties produced by models; 3) optimal model results in deter-
ministic maps depended on the quantification method for assessing perfor-
mance, and thus, are affected by the assumptions of these measures; 4) relying 
mainly on performance values may not be enough; it also became important to 
look at the spatial flooding extents generated to determine accuracy of the pre-
diction results; 5) new methods for assessing model performance (mean and 
median disparities), as well as new a colour map scheme for dual-ended data 
and visualisation technique to represent uncertainty (i.e. performance bars) 
were presented in the research; 6) the application and implementation of the 
Disparity distance (ܦௗ) algorithm was explored in the research, as an alterna-
tive method for accounting uncertainty, and for generating flood uncertainty 
maps; 7) a cartographic framework was proposed that can help modellers and 
scientists in visualising flood uncertainty maps; and 8) evaluations showed that 
users understood flood uncertainty information through maps, but the deci-
sions they made can vary depending on different factors.  
 
Keywords: cartography, flood, GIS, hydraulic modelling, map, uncertainty, 
visualisation  

 



 

Sammanfattning 

Översvämningskartor som visar utbredningen av förutspådda översvämningar 
för vissa extrema händelser har stor användning i all typ av samhällsplanering, 
samt fungerar som informationsmaterial för allmänheten. Men, de produkt-
ionsprocesser som dessa kartor genomgår (inkluderande olika data, metoder, 
modeller och beslut från de personer som genererar dessa) och som innefattar 
både geografiska informationssystem (GIS) och hydraulisk modellering, på-
verkar kartornas innehåll, vilket även återspeglas i de slutliga kartornas utse-
ende. En skarp översvämningsgräns, som är det vanliga sättet att visa gränsen 
i översvämningskartor, är därför antagligen inte det bästa sättet att representera 
utbredningen. Sådana gränser ger en falsk trygghet i att dessa kartor är korrekta 
och att översvämningsutbredningen är absolut, trots att hela processen att pro-
ducera dem innebär osäkerheter. Denna studie försöker därför undersöka hur 
översvämningskartering påverkas av osäkerheter i modelleringsprocesser och 
hur dessa osäkerheter kan representeras, visualiseras och kommuniceras i kar-
torna. Dessutom försöker studien utvärdera hur olika användare förstår, använ-
der och uppfattar översvämningskartor som innehåller osäkerhetsinformation. 

Tre huvudmetoder har använts i denna studie: osäkerhetsmodellering och 
analys, kart- och geovisualiseringsutveckling samt användarstudier. Resultaten 
visar att översvämningsgränserna påverkades både av de digitala höjdmo-
dellernas upplösning (cellstorlek) och markens friktion, representerat av Man-
nings ݊, men också av markens topografi. För att kvantifiera skillnaderna mel-
lan modell och referensöversvämningsyta och därefter kunna välja den mest 
optimala modellen användes olika valideringsmetoder. Dessa lider dock också 
av olika brister, vilket gör att resultaten varierar beroende på den validerings-
metod som används. 

I denna studie föreslås flera sätt att visualisera osäkerheter baserat på resul-
taten från osäkerhetsmodellering och karaktären av osäkerhetsinformation. 
Dessa utgörs av kartor med divergerande färgramp (s.k. dual-ended colour 
maps), sekventiella kartor (som framhäver graden av säkerhet, respektive osä-
kerhet), binära kartor, överlagring av översvämningsgränser från olika mo-
deller samt värdestaplar. Olika karteringsmetoder och visuella variabler an-
vändes för att representera informationen. Resultat från en användarstudie vi-
sade att dessa, samt utformningen av den grafiska representationen, underlät-
tade förståelsen av informationen. Beroende på uppgiften finns det 
visualisering som är lättare eller svårare att förstå för kartanvändarna. Varje 
visualisering hade också för- och nackdelar med att kommunicera översväm-
ningsosäkerhetsinformation. En annan viktig aspekt som kom fram i studien 
var hur användarnas bakgrund påverkar beslutsfattandet när de använde de 
olika kartorna. Användarnas vilja att ta risker berodde inte bara på kartan, utan 
också på deras uppfattning av risken i sig. Sammantaget visade det sig emel-
lertid att osäkerhetskartorna är användbara för planeringsuppgifter.  

Hela denna forskningsstudie bidrar till förståelsen av osäkerhet i översväm-
ningskartor. I detta ingår även hur information om översvämningsosäkerhet 



 

effektivt kan kommuniceras med hjälp av visualiseringstekniker, samt hur an-
vändarna förstår och uppfattar den information som lämnats till dem. Forsk-
ningsbidraget kan sammanfattas som följande: 1) höjdmodellens upplösning 
påverkar översvämningsområdets utbredning, där även högupplösta data upp-
visar begränsningar för att få korrekta resultat; 2) de topografiska egenskap-
erna hos det område som studeras kan ge ytterligare osäkerheter utöver de som 
producerats av modellerna; 3) optimala modellresultat i deterministiska kartor 
berodde på valet av kvantifieringsmetod som använts för att validera modeller, 
och deras antaganden; 4) att huvudsakligen förlita sig på kvantitativt värde från 
valideringsmetod är inte tillräckligt, det är också viktigt att titta på den över-
svämningsutbredning som genereras för att avgöra modellens noggrannhet; 5) 
nya metoder för att bedöma modellers resultat (genom medel- och medianvär-
deskillnader) samt nya färgscheman för dual-ended data och ny visualiserings-
teknik för att representera osäkerhet (dvs. värdestaplar) presenterades; 6) till-
lämpning och implementering av disparity distance (݀ܦ)-algoritmen under-
söktes som en alternativ metod för att redovisa osäkerheter i översvämnings-
kartor; 7) ett kartografiskt ramverk som kan hjälpa modellerare och forskare 
att visualisera översvämningskartor som innehåller osäkerhetsinformation fö-
reslogs; och 8) användarstudien visade att användarna förstår osäkerhetsin-
formation i kartor, men att de beslut som de fattade varierade och beror på olika 
faktorer.  

  
Nyckelord: GIS, hydraulisk modellering, karta, kartografi, osäkerhet, visuali-
sering, översvämning, 
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݃ Acceleration due to gravity (m/s2) 
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 flux ݍ
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 Time (s) ݐ
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 ݅ ௜௝ Flooding status at cell ݆, for simulationݓ

ܹ Water depth (m) 
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 Water surface elevation (m) ܧܹܵ
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1 

Chapter 1.  

Introduction 

1.1 Background 

Flood modelling is important for predicting flood events, particularly those 
with high magnitudes. The results derived from these forecasts constitute an 
important part of information for authorities, planners and the general public, 
for awareness, and to manage flooding and the risks associated with it. The 
main outputs from flood modelling are flood inundation and hazard maps that 
are used for visualising the extents, depth and velocity of flood water, which 
are all vital for determining and analysing areas that are at potential risk during 
a flood event. These maps form the basis for flood risk maps, which are utilised 
in assessing costs and impacts of floods. Therefore, they are significant parts 
of Flood Risk Management (FRM) tasks (Schanze, 2006) and planning. De-
velopment plans, policies, emergency response, etc., rely on these maps as part 
of decision-support (Moel, van Alphen, & Aerts, 2009).  

Nevertheless, these maps are not perfect. The entire modelling process used 
in generating them involves the combination of Geographic Information Sys-
tems (GIS) and hydraulic modelling, which are both subject to different uncer-
tainty issues. Flood maps reflect the specific modelling assumptions, pro-
cesses, data and decisions made and performed by the modeller who produced 
the information. Yet, map users may or may not be aware of these sources and 
causes of uncertainties in the modelling process. The representation of these 
maps, which often shows deterministic information (Di Baldassarre, 
Schumann, Bates, Freer, & Beven, 2010) (either through crisp flood bounda-
ries, or depth-related information based on one simulation result), may give an 
impression that the information presented is true. Even if a model is calibrated 
to get an optimal result, there is no guarantee that it is accurate. Determining 
the correctness of the information is relative to the methods employed for quan-
tifying accuracy. Additionally, there can also be imperfections in the reference 
data that is used for comparing the model. Hence, information presented in a 
deterministic map, can be misleading  (Di Baldassarre et al. 2010; Di 
Baldassarre, 2012) as there will always be inexactness in the position of flood 
boundaries, as well as the water depths, for different reasons. To avoid these, 
uncertainties should be incorporated and represented in the flood maps. Uncer-
tainty assessment and flood uncertainty visualisation should therefore be rele-
vant parts of the flood modelling and prediction processes, and flood commu-
nication.  
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1.2 Problem definition 

Deterministic representation of floods that are used for hazard and risk map-
ping may not be the most appropriate representation of flood information. It 
may seem to convey absolute information (Di Baldassarre et al., 2010), despite 
the uncertainties in the map generation process. Different data, models, mod-
elling parameters and processing methods employed will all have effects on 
the flood maps. This is  part of the equifinality problem (Beven & Freer, 2001; 
Beven, 2006) in modelling. The equifinality problem recognises that there can 
be numerous combinations of factors that can produce acceptable results, as 
part of the modelling processes’ output. An optimal result derived, therefore, 
is only valid for the conditions, parameter ranges, study area, model etc. that 
are used and applied in the current setting. It cannot be guaranteed that the 
same optimal output will be derived if tested under different conditions 
(Beven, 2006, 2009). Hence, a deterministic map, which represents the single 
best result from the modelling conducted, will not be the most appropriate rep-
resentation to be used. The maps can be misinterpreted to be true, despite the 
uncertainties associated with their generation.  

This is the reason why earlier studies suggest the incorporation of uncer-
tainties in flood model results (Pappenberger & Beven, 2006; Faulkner, Parker, 
Green, & Beven, 2007; Beven, 2009; Di Baldassarre et al., 2010). Users of the 
information have to be made aware of the important conditions used in the 
modelling, their limitations and how they affect the results. The incorporation 
of uncertainty in planning and in the decision-making process, as well as its 
communication, have been seen to become more and more important (Hall &  
Solomatine, 2008) and necessary. Nevertheless, although methods for estimat-
ing flood uncertainties exist and are well documented, and various flood un-
certainty representations are suggested in different literature, they are hardly 
used to produce flood information that will cater the needs of practitioners and 
decision-makers. Even in some cases, practitioners can be reluctant when pre-
sented with uncertainty from any modelling process (Slocum, Cliburn, 
Feddema, & Miller, 2003). Scientists are adept in using quantitative analyses 
for estimating and visualising uncertainty. Statistics is often used to indicate 
how uncertain the information is. However, statistical representations may not 
be intuitively viewed by lay persons to suffice the decisions they make 
(MacEachren et al., 2005). They often rely on experience, best knowledge and 
reasoning to deal with decisions, rather than numbers. Moreover, there is other 
information that they have to consider and weigh upon in the decisions they 
make. Flood information is only one of them.  

If flood uncertainty information is to be practically used, the maps should 
be simple and easy to understand by their potential users. Hence, determining 
how uncertainty can be quantified, in a way that it can easily be visualised, 
may possibly help scientists and modellers (i.e. the producers of information) 
to communicate the information to lay persons and decision-makers (i.e. the 
users). This may help address reducing the cognitive gap between these two 
important groups. Possibly, this can also lead to uncertainties in modelling be-
ing considered in decision-making and planning.  
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1.3 Aims and research questions 

The aims of the research are to: 1) determine how uncertainties in the model-
ling process, as brought about by the effects of the Digital Elevation Model 
(DEM) resolution, the Manning’s ݊, and methods for estimating model perfor-
mance can affect the model prediction results, in terms of the flood inundation 
maps generated from them; 2) find out in what ways flood uncertainties can be 
represented, cartographically designed and visualised in maps; and 3) evaluate 
how different users utilise and perceive flood uncertainty maps. Specific ques-
tions that will help meet the aims are as follows:  

1. How are prediction results affected by the modelling processes and the 
performance estimation used? What are the assumptions of these tech-
niques that affect the output flood inundation map? 

2. How can uncertainties be represented in maps and other geovisualisation 
models? 

3. Which cartographic design elements can be adopted in flood uncertainty 
visualisation? How important are they in communicating uncertainty to 
different users? 

4. Which design guidelines can be suggested to modellers for visualising un-
certainty to users?  

5. How effective and useful are uncertainty flood maps and geovisualisation 
models when making spatial decisions? 

6. How do laypersons and practitioners perceive uncertain information pre-
sented to them? 

1.4 Scope and delimitation 

1.4.1 Uncertainty definition and type 

The uncertainty definition adopted in the entire research is derived from Hunter 
and Goodchild (1997) and MacEachren et al. (2005). Here, uncertainty will 
generally refer to as the lack of knowledge of the true value, or any incon-
sistency [in the data, results or processes] (Sec. 2.4.1), and the main research 
focus is on epistemic uncertainty. This type of uncertainty results from subjec-
tivity and the limited knowledge of the system being studied (Merz & Thieken, 
2005; Hutter & Schanze, 2008;). In modelling, this can arise from the imper-
fections of the data used, the parameter estimates, and the assumptions of the 
utilised model, as well as the uncertainty analysis method employed.  
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1.4.2 Maps and geovisualisation models as main tool for 

communication 

The entire uncertainty communication approach is not adopted in this research, 
but rather, the focus is on visualisation, as an important tool for communication 
(Faulkner et al., 2007). If models produced by scientists are to be used in plan-
ning, then flood uncertainty information must be thoroughly communicated to 
its potential users. The two groups have different understanding of the uncer-
tainty information. Inadequateness of the visualisation technique can pose cog-
nitive difficulty to the information, which is already deemed difficult to com-
prehend by laypersons.  

Flood inundation maps and geovisualisation models are the main visualisa-
tion focus. The former, in particular, are generally utilised in all planning and 
management tasks, as well as in information awareness campaigns. This is due 
to the simplicity of the information being conveyed. The flooding extents vis-
ualised in these maps usually serve as the initial information used for flood risk 
assessment, i.e. for identifying possible locations that are at risk of flooding. 

1.4.3 Prediction uncertainty 

Flood modelling prediction uncertainties that affect flood maps are accounted 
for in the entire research. There are two sources of uncertainties that are looked 
at primarily in the studies: the topographic data, in terms of the DEM resolution 
(input data), and the roughness parameters, through the Manning’s ݊  (model 
parameter) (Sec. 2.5.1). In different literature, these two sources of uncertain-
ties are widely recognised to significantly affect the flood inundation extents 
generated (Dottori, Di Baldassarre, & Todini, 2013).  

The topographic data is an important input that gives the geometry of the 
area (Casas, Benitio, Thorndycraft, & Rico, 2006), and is created through GIS 
techniques. Two important properties derived from the DEM are the resolution 
(or the grid size) and the height values. Both are used by hydraulic numerical 
models to discretise space and to extract elevation in order to derive water 
depths. In this research, the focus however is the effect of the resolution to the 
flood model results. DEMs come from different sources and can have different 
resolution and accuracy. Details in the topography are dependent on the reso-
lution of the DEM. High resolution DEMs, particularly LiDAR-based data, are 
known to give better representation of the topography (Casas et al., 2006; 
Schumann et al., 2008), allowing smaller features to be represented, and ac-
counted in the modelling. It has also better accuracy. On the other hand, details 
are eliminated in lower resolution DEMs. The elimination of details in the to-
pography has an impact in changing the flow patterns of water (Savage, 
Pianosi, Bates, Freer, & Wagener, 2016). Thus, flood extents produced from 
coarser DEMs differ from high resolution data. The resulting uncertainties in 
results as effect of resolution are widely investigated with one-dimensional 
models. However, with two-dimensional models, medium to lower resolution 
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DEMs are often investigated due to the higher computational cost of simula-
tions using fine resolution DEMs (Savage et al., 2016). This poses limitation 
of understanding whether there is a real benefit in using high resolution DEMs 
in modelling, or if it will suffice with medium to lower resolution DEMs, par-
ticularly with 2D models.  

On the other hand, the roughness coefficient, which determines the channel 
and floodplain’s resistance to the flow, is also an important model parameter. 
It is often derived from land cover classes and assigned with recommended 
values from literature. Yet, all models manifest different sensitivity to the Man-
ning’s ݊ (as shown e.g. Aronica, Hankin, & Beven, 1998; Pappenberger, 
Beven, Horritt, & Blazkova, 2005). It can produce different model results. Ac-
cordingly, this makes it difficult to determine the exact value to be used when 
modelling. Thus, the roughness parameter is often calibrated to match a refer-
ence data for the specific study site, model and even resolution to determine 
the Manning’s coefficient to be used.  

1.4.4 Model performance and uncertainty estimation 

There are different quantification methods used for accounting prediction un-
certainty in modelled flood extents. These performance or goodness-of-fit 
measures tell how the output is produced in relation to a reference flood extent 
(i.e. historical data). They are the bases for determining “optimal” model re-
sults that are used for deterministic flood maps. Moreover, they are important 
in uncertainty assessment methods such as the Generalised Likelihood Uncer-
tainty Estimation (GLUE) methodology. In GLUE, they are utilised for deriv-
ing the likelihood weights, which are used for producing the flood probability 
and uncertainty maps. Nevertheless, each of these quantification methods can 
also have assumptions on how model performance is quantified (Beven, 2009). 
This may also affect the uncertainty map outputs that are produced.  

In evaluating the effects of performance in deterministic mapping, there are 
four goodness-of-fit measures assessed (Sec. 3.4.3). The two feature statistics 
 methods are the most commonly used for extent validation studies. They (ܨ)
compare the total size of the predicted inundation with a known (observed or 
reference) extent. Aside from the feature statistics, two new proposed methods 
are presented, i.e. the mean and median disparities, which take into account the 
difference (i.e. error) between the modelled and the reference flood boundaries.  

In accounting for flood model’s prediction uncertainty, there are two main 
methods employed in the uncertainty assessment. These are the Generalised 
Likelihood Uncertainty Estimation methodology (Beven & Binley, 1992) and 
the Disparity Distance (ܦௗ) algorithm (Brandt, 2016)  (Sec. 2.5.2). Both meth-
ods consider uncertainties in flood extents, and can be used to produce different 
types of flood uncertainty maps that are used for the geovisualisation and user 
evaluation parts of the research.  
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1.5 Dissertation structure 

In chapter 2, relevant literature to the study is reviewed. This includes putting 
into context three important aspects of the research: Geographic Information 
Systems (GIS), flood modelling and uncertainty visualisation. The third chap-
ter presents the approach employed in the entire research to help answer the 
research questions. These are divided mainly into six main parts: data pre-pro-
cessing within GIS; hydraulic modelling; uncertainty estimation; uncertainty 
mapping, visualisation and design; and user assessments. The results of the 
different studies conducted through the different publications are summarised 
in the fourth chapter. This chapter also shows how the different papers address 
the different research questions presented in Sec. 1.3, together with their con-
tributions and discussions. The last chapter presents the conclusion, the overall 
research contribution and recommended future work.   
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Chapter 2. 

Theoretical Background 

2.1 GIS and its application to environmental modelling 

The utilisation of GIS and different spatial analysis methods is important for 
solving geographical problems and for investigating spatial phenomena (Mark, 
2000). This is a reason why GIS has been employed in different fields to help 
answer geographic problems related to them. One of the most common appli-
cations of GIS is in environmental modelling and research (Fedra, 1993). En-
vironmental models are used to simulate processes, in order to gain better un-
derstanding of the environmental system’s behaviour (Skidmore, 2002), as 
well as for prediction of future events (Beven, 2009). The latter is particularly 
important from management, planning and decision-making perspectives. Pre-
dicting the magnitude of phenomena can help visualise different scenarios and 
their possible consequences. From this information, authorities can take pre-
cautionary measures or actions that can help minimise (if not prevent) drastic 
impacts of a disaster (Mulligan & Wainwright, 2004). 

Like any other models, environmental models are simplifications of reality 
(Mulligan & Wainwright, 2004; Beven, 2009). This is because real-life pro-
cesses are complex that involve many interacting factors. In a model, the pro-
cesses and their components are transformed to mathematical equations to help 
quantify and explain system behaviours (Mulligan & Wainwright, 2004). Each 
equation implemented has certain assumptions that may neglect several aspects 
that it deems irrelevant in the modelling process, to reduce complexities and 
computational costs.  

The spatial aspect of environmental modelling is supported by both remote 
sensing and Geographic Information Systems. Remote sensing acts as an im-
portant data source for modelling. Satellite imagery, radar and LIDAR data, as 
well as aerial photographs are used for deriving the topography, land 
cover/land use, vegetation, geologic data, etc. which provide the geographic 
characteristics of the area. GIS, on the other hand, is applied mainly as a tool 
for capturing, storing, manipulating and displaying spatial data (Fedra, 1993; 
Skidmore, 2002). Most spatial data need further processing to be used in an 
environmental system. For instance, these datasets have to be added geometry 
and attributes that will help classify and identify landscapes. Some of the data 
also needs to be transformed to specific formats required by the model to be 
used. It is within GIS that these datasets are prepared before they can serve as 
inputs in a model, which is often external to a GI system (Fedra, 1993). 

But aside from this pre-processing functionality, GIS helps further analyse 
and visualise results from environmental modelling processes. Its analytical 
capacity lies in the different spatial modelling methods that can be employed 
to give insights of the geographic trends in results. Its visualisation capability 
enables the spatial and non-spatial display of information (Skidmore, 2002). 
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Therefore, GIS is also important for visual and exploratory analyses, and in 
scenario building, which are all valuable tools for planning and decision-mak-
ing. 

2.2 Flood inundation modelling 

Flood inundation modelling is used mainly for predicting the impacts of a 
given flood event, by simulating the flow behaviour. Hydraulic models are of-
ten used in the modelling to determine the movement and timing of flow along 
the channel. They give approximation of the flood or wave propagation that 
help determine water depth, velocity or flood extents, which are important out-
puts of the model. Their complexity depends on the equations they apply in 
simulating flows, and the assumptions that they consider in the modelling.  

2.2.1 Governing equations  

Hydraulic models are built on two main governing equations based on the laws 
of physics. These are the continuity (conservation of mass) and momentum 
equations. The continuity equation simply states that net change of mass in the 
control volume as caused by the inflow and outflow, is equal to the net rate of 
change of mass in the control volume. The momentum equation is based on 
Newton’s second law of motion. It states that the rate of change in the momen-
tum is equal to the net forces acting on it (French, 1986; Cruise, Sherif, & 
Singh, 2012). With flowing water, external forces such as gravity, friction, 
pressure and inertia are considered in the momentum equation. Hydraulic mod-
els implement these governing equations in different ways, to reduce the com-
plexity in the approximation of flow movement and to make the model more 
stable. Therefore, they apply these equations to meet certain assumptions, e.g. 
how the flow being modelled is to be characterised (flow types), or how the 
flow will be represented (dimensionality of the flow).  

2.2.2 Flow types 

Flow characteristics tell whether depth, flow and velocity change with time 
(steady or unsteady) or location (uniform or non-uniform) (French, 1986). In 
steady flow, these variables do not change over time, as opposed to unsteady 
flow, where they vary with time. In uniform flow, there is no change in flow 
depth along the river, as against non-uniform (varied flow). Non-uniform flow 
can further be classified as gradually-varied and rapidly-varied. With gradu-
ally-varied flow, there is no excessive change in the flow depth along the 
stream. If there is a large, sudden change in depth, specifically at shorter inter-
vals, the flow is characterised to be rapidly-varied (French, 1986; Wurbs, 
1997).  
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2.2.3 Flow dimensionality 

The governing equations and solutions applied to models may be described 
using different spatial dimensions on how flow is represented by the model. 
Although, real-life flow characteristics are three-dimensional (3D) (i.e. in ݔ,  ݕ
and ݖ) in nature, this may pose limitations in solving the flow problem due to 
more complex equations and data needed (Cruise et al., 2012). Therefore, the 
most common flow representations used are provided by one-dimensional (1D) 
and two-dimensional (2D) models. 1D models implement the simplest approx-
imations, followed by 2D models. Table 1 shows the different flow represen-
tations and their advantages and disadvantages, as well as their common appli-
cations.  

Table 1. Examples of different flow dimensional models, their advantages and disad-
vantages, as well as common applications.  

FLOW  
DIMENSION 

 
EXAMPLE 

 
ADVANTAGES 

 
DISADVANTAGES 

COMMON  
APPLICATIONS 

1D HEC-RAS (steady 
and unsteady) 

MIKE 11  
(unsteady) 

Tuflow 1D  

- Fast simulation 
time 

- Manageable data 
requirement 

- Easy to conduct 
model calibration 

- Can consider ef-
fects of bridges 
and other struc-
tures along the 
river 

- Sensitive to cross-
section spacing 
and positioning 

- May not be able to 
capture flow dy-
namics in complex 
channels 

- Straight chan-
nel 

- Steady or un-
steady river sys-
tems 

2D Telemac-2D 

RMA-2 

FEWWMS-2DH 

MIKE 21  
(unsteady) 

Tuflow 

LISFLOOD-FP 

- Discretisation of 
space through 
mesh or grid 

- Better for model-
ling floodplains 
with complex ge-
ometry 

- Balances the sim-
plicity and com-
plexity of 1D and 
2D models 

- Long simulation 
time for high reso-
lution data 

- More data and pa-
rameter require-
ments 
 

- Shallow  
- Braided channel 

3D Flow 3D (un-
steady) 

- Fulfils the limita-
tions of 2D models 

- Long simulation 
time 

- More data and pa-
rameter require-
ments 

- Complex river 
systems 

- Depth varying 
velocities 
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One-dimensional flow models 

In a one-dimensional flow model, the flow is considered to be one-directional, 
parallel to the channel (Néelz & Pender, 2009; Teng et al., 2017). Channel and 
floodplain geometries are represented by cross-sections  (Pender & Néelz, 
2007), which are used for solving flow equations. 1D hydraulic models are 
based on the St. Venant equations. There are several assumptions in these equa-
tions, which characterise 1D models. These include: 1) there is uniform veloc-
ity over the cross-section, and the water level at each cross-section is horizon-
tal; 2) the small streamline curvature and vertical accelerations are insignifi-
cant; 3) flow resistance can account for both boundary friction and turbulence; 
and 4) the average channel slope is small (Litrico & Fromion, 2009).  

One-dimensional models are in practice used because of their efficiency in 
modelling, due to the simple assumptions of the equation, as well as the utili-
sation of cross-sections to define geometry. This leads to lesser computational 
time even when using high resolution data  (Bates & de Roo, 2000; Néelz & 
Pender, 2009) with larger study area. The input data requirements and hydro-
logic data needed are also more manageable, making them easier to use (Bates 
& de Roo, 2000; Samuels, 2006). Shorter reach lengths with less complex ge-
ometries can appropriately be modelled with 1D models (Bates & de Roo, 
2000). Even so, 1D models are also known for their limitations in modelling. 
One of the sensitivities of the model is caused by the cross-sections’ spacing, 
(Cook & Merwade, 2009), position (Hunter, Bates, Horritt, & Wilson, 2007),  
and the representation of areas in between the cross-sections (Bates & de Roo, 
2000). Also, in modelling more complex and larger streams, 1D models may 
not capture the flow dynamics well (Merwade, Cook, & Coonrod, 2008), es-
pecially when flow is spread out horizontally. 

Two-dimensional flow models 

With two-dimensional models, both water depth (ܹ) and depth averaged ve-
locities (ݑ,  ,.Teng et al) (ݕ ,ݔ) are accounted for in two spatial dimensions (ݒ
2017). These	ݔ and ݕ directions are derived from the topographic data used, 
which is discretised in either a triangular mesh or through grid cells, that rep-
resents a continuous surface. The usage of a continuous surface gives better 
representation of the topography (Bates & de Roo, 2000) than by using cross-
sections, allowing better computation of depth and velocity. It also allows cap-
turing the flow dynamics in more complex channels.  

In 2D models, both the continuity and momentum equations are in most 
cases solved by applying the St. Venant’s shallow water equation, which is 
integrated with the 2D Navier Stokes equations (Teng et al., 2017). These mod-
els also vary in the solutions they apply when using the momentum equations, 
allowing them to neglect some of the components of the full equation (Néelz 
& Pender, 2009), to simplify flow calculation. The kinematic and diffusive 
wave are the most common approximations used. In the former both the grav-
itational and frictional forces are retained, while in the diffusion wave model, 
gravity and friction are accounted, together with pressure (Bedient, Huber, & 
Vieux, 2013). 
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According to Horritt and Bates (2001a), 2D models balance the modelling 
disadvantages of 1D and 3D models, in terms of simplicity and complexity, 
respectively. However, like the 1D model, 2D models also have certain issues. 
First, the accuracy of the flow representation will depend on the resolution of 
the discretised mesh or grid used. Second, the number of elements (triangles 
and cells) used in the modelling, is affected by the resolution (Fewtrell, Bates, 
Horritt, & Hunter, 2008) and size of the modelled area. This has a direct impact 
on the simulation time. Although better computer processors and model opti-
misation techniques speed up the modelling (Leedal, Neal, Beven, Young, & 
Bates, 2010), typical simulation time for 2D models can still take several hours 
or days (Néelz & Pender, 2009), depending on the resolution and size of the 
study site. Thus, the usage of high resolution data remains a restriction to 2D 
models (Savage et al., 2016). This time constraint also poses the limit to per-
forming several calibrations and sensitivity analyses, specifically when using 
fine resolution DEMs. Additionally, they also need more input data, model 
parameters and variables than 1D models. 

Three-dimensional flow models 

In the computation of 3D velocities, 3D models are used (Pender & Néelz, 
2007). They are also employed to predict water depths and extents at more 
local scale. According to Horritt and Bates (2001a), three-dimensional models 
try to compensate the limitations of 2D models. However, the numerical solu-
tions applied in them are more complex. Due to this complexity, there are tech-
nical problems that are associated with their full implementation (Néelz & 
Pender, 2009). The technical complexities also increase with the scale of the 
site being studied. This leads to practical limitations for its application to flood 
hazard mapping and inundation studies (Néelz & Pender, 2009).  

2.3 Flood mapping and management 

Flood model results are used for generating different flood hazard maps (i.e. 
flood inundation extent, depth and velocity maps). These maps provide rele-
vant information for different practitioners in both public and private sectors, 
in managing and mitigating the impacts of flooding (Table 2). They are mainly 
used for arriving at measures and instruments that are needed to reduce risks. 
These measures are either permanent or temporary physical actions undertaken 
to control floods and protect those that can be affected. Instruments are mech-
anisms that can help alleviate risk. Examples are policies, communication and 
financial supports (Schanze, 2006). Communities, homeowners and other citi-
zens also benefit from flood maps as source of information to make them aware 
if they are safe or unsafe from flooding.  
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            Table 2. Users of flood maps. 

PUBLIC PRIVATE OTHERS 

Municipal/regional/national 
government 

Policy makers 

Engineers/Surveyors 

Disaster/emergency workers 

Flood managers 

Planners and designers 

Insurance companies 

Stakeholders and developers 

Contractors 

Utility companies 

Non-government organisations 
(NGOs) 

Communities 

Homeowners 

General public 

Flood extent maps are the most general among inundation and hazard maps. 
They display the flood boundaries derived from simulating a given event. Be-
cause of their contents, they are easier to read and understand, and are often 
used in initial risk assessment tasks (EXCIMAP, 2007). These maps are also 
the most widely adopted in land use and urban planning, especially as basis for 
issuance of building permits.  

Flood depth maps show the water level at the given flood frequency, while 
the velocity of the water is displayed in a flood velocity map. Both are used for 
producing flood vulnerability and risk maps, which further help estimate pos-
sible consequences (social, cultural, economic, and environmental) of flood-
ing. The depth and velocity maps have also their usage in planning, but velocity 
maps are particularly important for emergency and engineering tasks 
(EXCIMAP, 2007). Emergency workers use the latter to determine how fast 
the water flows in areas where rescue operations take place. In constructing 
flood defence structures, velocity of water is also needed to be known.  

At the European Union (EU) level, the EU Flood directive 2007/60/EC re-
quires member states to develop flood hazard and risk maps, as well as flood 
management risk plans. The flood directive aims to comprehensively evaluate 
the associated flood risk in all water bodies in EU countries. This helps in ar-
riving at mitigation measures to better manage possible consequences of flood-
ing to avoid drastic human, economic and environmental impacts. 

2.4 Uncertainty 

Uncertainty is an issue in both GIS and flood inundation modelling. This is 
mainly due to the various sources of uncertainty that affect results produced 
from these processes. Therefore, accounting for uncertainty in the results is 
recognised to be important in both fields. 
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2.4.1 Definitions  

Uncertainty can have different definitions that can be subjective to people who 
are using the term. It is synonymously referred to inaccuracy, error, limited 
knowledge, unreliability, doubt, ambiguity, vagueness, etc. (Beven, 2009). In 
some contexts, there are clear differences among these terms, which can be 
distinguished according to the uncertainty source and types, and the methods 
employed for measuring it.  

Hunter and Goodchild (1997) use uncertainty to refer to the lack of 
knowledge of the true value of a data. According to them, this true value is the 
actual field/observation value derived for the data using an accurate instru-
ment. This definition given by  Hunter and Goodchild (1997) provides a gen-
eral depiction of uncertainty that encompasses any inconsistency in a data  
(MacEachren et al., 2005), which is brought about by different sources, such 
as the instrument’s imperfection in collecting and recording the data, data ma-
nipulation processes, generalisation effects in visualisation, etc.  

2.4.2 Typologies in GIScience and Geovisualisation 

In  both GIScience and geovisualisation, a formalised approach for typifying 
uncertainty is based primarily on the different components that affect the qual-
ity of spatial data (MacEachren et al., 2005; Thomson, Hetzler, MacEachren, 
MarkGahegan, & Pavel, 2005). Spatial data is an important product of GIS 
processes, and are also the usual inputs for modelling. Since these data come 
from different sources and are generated through different processing tech-
niques, their quality can change. Therefore, different information that can help 
determine their quality must be made known to its users by describing and 
indicating them in the metadata. The five quality components of spatial data 
are lineage, positional accuracy, attribute accuracy, logical consistency, and 
completeness (Table 3), which help indicate some parts of uncertainty affect-
ing the data (Thomson et al., 2005). 

Lineage tells about the history of the data (MacEachren, 1992). This in-
cludes its source, the processes it underwent to attain its final form, and its 
currency. Positional accuracy determines the closeness of the coordinate val-
ues in the maps to known true positions in the ground (absolute), and the close-
ness of measurement on how objects are placed relative to each other (relative). 
The most common indication of this is through error or accuracy measurements 
(e.g. root means square error, RMSE). Accuracy of the attributes is related to 
correctness of the non-spatial information associated with spatial data. Attrib-
ute accuracy can be measured by deriving random samples and comparing 
them to the “true” value (ground truth data) through classification error matri-
ces. This provides a measure of agreement between the sample and the ground 
truth data through the overall accuracy, or the omission or commission errors. 
Logical consistency refers to the topological accurateness of the data. Com-
pleteness indicates whether all objects are included or not included in the da-
tabase (MacEachren et al., 2005; Thomson et al., 2005). 
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Table 3. Spatial data quality elements, their descriptions and common indicators (from 
MacEachren et al. (2005) and Thomson et al. (2005). 

SPATIAL DATA 

QUALITY  
ELEMENT 

 
DESCRIPTION 

 
COMMON  

INDICATORS 

Lineage Spatial data history (source, currency, data 
generation process, reason for produc-
tion) 

Descriptive  
statements 

Positional accuracy Closeness to true position in the ground or 
in relation to other objects 

Error measurements  
(e.g. RMSE)  

Attribute accuracy Correctness of the attributes associated to 
the spatial data, to the real-world features 
that they represented. 

Classification error matrices 
to determine Kappa values 

Logical consistency Topological accurateness of the data Descriptive documentation 

Completeness Indication whether objects are repre-
sented and included in the database; defi-
nitions used; selection criteria, etc.  

Descriptive  
statements 

 

2.4.3 Typologies in flood inundation modelling  

In flood inundation modelling, two widely recognised types of uncertainties 
are aleatory and epistemic uncertainties (Apel, Thieken, Merz, & Blöschl, 
2004; Merz & Thieken, 2005; Hutter & Schanze, 2008). Aleatory uncertainty 
is related to the randomness of the phenomena. These uncertainties are in-
herent because of the complex processes involved in real events, and there is 
interplay of different factors associated with them. Yet, this type of uncer-
tainty is rather hard to quantify due to the variability of the phenomena itself, 
which is difficult to measure.  The second type of uncertainty is related to 
the modelling process and may be affected by the data and the model used, 
as well as the measurements applied. This is known as epistemic uncertainty. 
Unlike aleatory uncertainties, these uncertainties are quantifiable through 
different statistical methods. 

2.5 Flood inundation modelling uncertainty 

2.5.1 Sources 

There are several studies that recognise different sources of uncertainties in 
flood inundation modelling. According to the Handbook on good practices on 
flood mapping in Europe (EXCIMAP, 2007), the uncertainty sources can be 
classified mainly into three types: input data, measurements and model. 
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Input data 

Flood models require various data. The most commonly used are topographic, 
land cover and hydrologic data. Topographic and land cover data are derived 
from remote sensing, surveying, maps and application of GIS techniques. The 
hydrologic data are derived from gage measurements and through hydrologic 
modelling.  

Topographic data 
The topographic data, which is primarily used for providing the geometry of 
the river and floodplain, are derived from remote sensing and surveying tech-
niques. Popular sources are Light Detection and Ranging (LiDAR), Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 30 m), 
Shuttle Radar Topography Mission (SRTM with 90 m resolution), as well as 
bathymetric surveys and topographic maps. Bathymetric data are used for de-
riving channel elevation, which is not captured in remote sensing products 
(Casas et al., 2006; Cook & Merwade, 2009). Providers of these datasets can 
be government or federal agencies (e.g. National Aeronautics and Space Ad-
ministration, NASA), or private consulting companies who perform surveying.  

Topographic data used in flood modelling are processed to meet the hy-
draulic model’s requirements for input data. Combining different data from 
different sources (LiDAR and bathymetric data) is also needed to compensate 
for the missing information from one source (Casas et al., 2006). Therefore, 
before they are finally used in the hydraulic model, they undergo different ma-
nipulation and transformation within GIS. All these steps influence how the 
geometry of the channel and the floodplain are represented, as well as the even-
tual results derived from the hydraulic simulation.   

Uncertainty in flood maps as effect of topographic data has been exten-
sively studied (e.g. Tate, Maidment, Olivera, & Anderson, 2002; Casas et al., 
2006; Cook & Merwade, 2009). The uncertainties caused by these datasets are 
brought about by the different remote sensing data (SAR, LiDAR), which can 
also be associated by their resolution. High resolution data, particularly LiDAR 
in combination with bathymetric data (Casas et al., 2006; Cook & Merwade, 
2009), has been recognised to produce better model results . This is due to the 
more accurate representation of the river and floodplain, and the more precise 
height values LiDAR data provides. 

Land cover data 
Land cover data (which is often referred to as land use data in hydraulic mod-
elling literature and software) is used for assigning the roughness parameter 
(Manning’s ݊, see Parameter Uncertainty), which determines the floodplain 
and the channel’s resistance to flow. It provides the information as to the type 
of (surface) materials lining the channel and the floodplain. Examples can be 
light to heavy grasses, trees, shrubs, paved surfaces, etc. Land cover data is 
generated from classification of satellite images (Schumann et al., 2007), pro-
vided by local authorities, or can also be derived from existing land use data 
or maps. The detail of the land cover information can vary from one source to 
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another. Small-scale land cover maps are mostly homogenised to dominating 
classes. They give an overall view of the land cover at the larger area, but may 
fail to give the variation at the local level. On the other hand, land cover maps 
derived from classification using satellite images, can be affected by the clas-
sification technique performed, the processes involved in their preparation, as 
well as the resolution of the satellite image used.  

Hydrologic data 
Hydrologic data consist of flow data, water stages and their corresponding 
time. They are used as boundary conditions for the model. Raw hydrologic 
data are initially collected from measuring instruments (e.g. stream gauges), 
observations or from surveying methods at different parts along the river. They 
are used for deriving rating curves (to estimate discharges), hydrographs that 
show either the change in discharge or water elevation over time, discharge, 
velocity or water depths (Di Baldassarre & Montanari, 2009). Some of the raw 
data and already processed hydrologic data can also be available from meteor-
ological/hydrological agencies.  

Measurement errors  

The different input data are collected using different instruments. These instru-
ments can be affected by external factors when recording raw data, aside from 
human errors involved during the acquisition and processing of the measure-
ments. Sensors are used for obtaining satellite images and elevation infor-
mation, which are used for creating the land cover and topographic maps. The 
recorded raw digital images can be affected by weather conditions (e.g. clouds 
and rain), atmospheric factors and noise during the data gathering process 
(Lillesand, Kiefer, & Chipman, 2004). Hydrologic data, which are recorded 
from river gauges and field measurements, are also affected by environmental 
factors, as well as human errors. Thus, they are associated with uncertainties, 
as what was exemplified in Di Baldassarre and Montanari (2009).  

Inclusion of measurement errors in uncertainty modelling can be difficult 
particularly for topographic data and land cover maps. The former is usually 
derived from different providers, which publish already corrected information. 
Exact ways of how the different corrections in raw digital images (which are 
also based on different methods and equations) and the accuracy information 
may sometimes be left out in the accompanying metadata. Therefore, its qual-
ity is difficult to determine. Some data, like LiDAR, may have accompanying 
accuracy information provided by its producer.  

With hydrologic data, measurement errors can be based on the specifica-
tions indicated in the instruments. Nonetheless, uncertainties in methods em-
ployed for processing or deriving products based on these raw data readings 
may also be difficult to track, unless one processes the data to be used, and 
account for errors in the measurements. The latter can be considered in the 
modelling by varying the boundary conditions based on the associated error in 
the input data, or by varying discharges (see section on Information uncer-
tainty: initial and boundary conditions). 
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Model  

Model uncertainties are caused by the model structure, parameters, and infor-
mation used for modelling (i.e. the initial and boundary conditions). Model 
structure is affected by the model used, as well as its assumptions in applying 
mathematical solutions to the problem. Parameter uncertainty is the effect of 
limited knowledge of the parameter values, which can vary from one model or 
study case to another. Information uncertainty can be associated to the errors 
in the model input that affect the results (Loucks & Beek, 2005).  

Model structure 
As mentioned earlier, the governing equations (continuity and momentum 
equations) are applied in variety of ways in the different models, either to sim-
plify model solutions or to introduce stability when modelling. Therefore, al-
ternative equations are implemented in different models, with specific assump-
tions. The momentum equation for instance, can be used fully (i.e. dynamic 
wave models) to account for all external forces influencing the flow rate of 
water (Bedient et al., 2013). However, its application will require more data 
and numerical computations, making it more complex to handle. Therefore, 
approximations are applied, wherein some of the external forces are assumed 
to be unimportant and eliminated in the equation. For example, in the kine-
matic wave model, which is the simplest approximation for the momentum 
equation, only the gravitational and frictional forces are retained. In the diffu-
sive model, pressure, gravity and friction are accounted.  

Parameter uncertainty 
One of the important parameters to which hydraulic models manifest sensitiv-
ity is the roughness parameter represented by the Manning’s ݊. These Man-
ning’s ݊ values are typically derived from literature, e.g. Chow (1959), and 
assigned according to the land cover (vegetation or the surface material of the 
bed and floodplain). However, models behave differently when using the same 
roughness value. Horritt and Bates (2002) for instance showed how the opti-
mum channel and floodplain roughness differ with the models used (HEC-
RAS, Telemac and LISFLOOD-FP). Some models may also require heteroge-
neous Manning’s ݊ values as specified in the land cover map, while there are 
some which only need a specific value assigned to the channel and floodplain.  

Furthermore,  the roughness parameter used can also change with the reso-
lution of the input topographic data (Romanowicz & Beven, 2003; Yu & Lane, 
2006; Savage et al., 2016), boundary conditions (Hall, Tarantola, Bates, & 
Horritt, 2005; Pappenberger et al., 2006; Yu & Lane, 2006; Savage et al., 
2016), the discharge used (Aronica, Hankin, & Beven, 1998; Romanowicz & 
Beven, 2003; Di Baldassarre & Montanari, 2009), as well as the study site to 
which it is tested. Therefore, the roughness coefficient cannot just be based on 
standard values suggested in literature, which are empirically derived in spe-
cific test sites.  
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Information uncertainty: initial and boundary conditions 
Models require different information prior to starting the simulations. The 
basic information needed are the initial and boundary conditions, which are 
derived from the hydrological data. Initial condition determines the initial 
modelling status, at the starting time of ݐ ൌ 0. This condition is provided 
through a specified water level or discharge. Boundary conditions are the sta-
tuses that are often specified at specific locations along the reach. The most 
common locations are the upstream and downstream parts of the channel. The 
requirements for the initial and boundary conditions may vary among models. 
Some may only require an initial boundary condition. There are models that 
only need a boundary condition at the upstream of the river, while in some 
cases it has to be assigned at both ends of the channel. Information used for 
boundary conditions are the rating curves (stage-discharge relationship), hy-
drographs (showing changes in discharge or water elevation over time), water 
stage/level and discharge. Since they are all outputs from the hydrologic data, 
initial and boundary conditions are subject to the uncertainty of the hydrologic 
data. The sensitivity of the model to the boundary condition, particularly to the 
rating curve and inflow are shown in Hall et al. (2005) and Pappenberger et al. 
(2006). This effect is manifested mainly in the changes in water depth (Pap-
penberger et al., 2006).  

2.5.2 Uncertainty assessment methods 

There are several ways of how uncertainties are regarded in different inunda-
tion studies. In assessing flood model prediction uncertainties through the in-
undation extents produced, two methods that are usually employed are sensi-
tivity analysis and the Generalised Likelihood Uncertainty Estimation 
(GLUE). The former is used for understanding the effects of the model input 
or parameter to the output, while the latter is for understanding uncertainty in 
the model prediction.  A third method for accounting uncertainty, i.e. the dis-
parity distance, algorithm, is also introduced in this section. It considers the 
uncertainty in the model output as an effect of the topography in the area.  

In these methods, not all sources of uncertainties in the modelling are ac-
counted for. Only specific input data or parameters, or combinations are con-
sidered to be uncertain, while other information remains constant in the mod-
elling. This helps avoid the problem of over-parameterisation, which can hin-
der understanding the impact of specific input/parameter that is/are being ana-
lysed.  

Sensitivity analysis 

Sensitivity analysis allows to determine model output’s response to incremen-
tal changes in the input or parameters being tested (Mulligan & Wainwright, 
2004). Multiple simulations are carried out, where input data or parameters, or 
combinations of both, are altered in each run. Every simulation produces a 
unique result that is dependent on the input data/parameter used. This process 
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is often termed as ensemble modelling because the factors to which it is tested 
for is derived from given sets or an ensemble.  

Generalised Likelihood Uncertainty Estimation (GLUE) 

The Generalised Likelihood Uncertainty Estimation (Beven & Binley, 1992) 
accounts mainly for prediction uncertainty or how the model results are af-
fected by the uncertainties in the modelling process. There are four require-
ments that have to be decided in following the GLUE methodology, namely: 
1) a likelihood measure; 2) model parameter or input to be considered uncer-
tain; 3) sampling distribution from where the samples are to be derived; and 4) 
implementation.  

An important part of the methodology is deciding a likelihood measure, 
which is used to weight the model output, based on how well the result is gen-
erated. The likelihood measure can be based on any performance (goodness-
of-fit) measure that quantifies model results in relation to a reference data, 
where the model is validated. Therefore, in this methodology, a historical flood 
data is needed. These performance measures are then converted to likelihood 
weights assigned to each model. Beven (2009) also mentioned that a threshold 
should be set, that will distinguish acceptable (i.e. models that received perfor-
mance values above the threshold given) from rejected models (which will be 
assigned with likelihood values of 0), before the modelling is performed.  

After the likelihood measure and threshold have been decided, the uncertain 
parameters have to be considered, together with the prior distribution where 
they will be sampled. This is performed by following the Monte Carlo proce-
dure where samples are derived randomly from a given distribution. Also im-
portant to determine at this stage is the number of random samples to be de-
rived, which will be the basis of the number of simulations to be performed. 
This has also an implication to the last GLUE requirement, which is the imple-
mentation or realisation of the methodology. The number of realisations can 
be affected by the hydraulic model, the resolution used and the size of the study 
area. 1D models such as HEC-RAS, can be used to perform simulations at a 
faster time. However, with 2D models, it is still time consuming to conduct 
hundreds of simulations, especially when using high resolution data, which can 
take hours or days to perform a single simulation (Néelz & Pender, 2009). The 
output type to be generated from the analyses is also important to be considered 
together with the earlier factors mentioned. For analyses that only require 
model outputs in the form of data plots and graphs, hundreds or thousands can 
easily be extracted from the data. Nevertheless, when accounting for spatial 
uncertainties and visualising them through maps, these require additional GIS 
processing of individual results. Thus, the number of simulations is multiplied 
with the number of processing steps to be undertaken for each model output. 
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Disparity distance (ࢊࡰ) algorithm 

With the Disparity distance (ܦௗ) method, uncertainty bounds around a specific 
model output are generated, to further deal with the uncertainties as effect of 
the topography in the modelling process and in the output. In producing these 
uncertain zones, the ܦௗ algorithm is implemented. This is based on an empiri-
cal equation formulated by Brandt (2016), which was grounded in two  previ-
ous studies (Brandt, 2009, and the results from Paper I). The ܦௗ algorithm 
assumes that the disparity between the model and the reference data decreases 
with increasing slope value (and vice versa), and that lower resolution DEMs 
further contribute to an increased disparity. This relationship can be modelled 
through Equation 1, where ܦௗ or the disparity becomes a function of the river 
valley side slope (i.e. the slope perpendicular to the flow, (ܵ)), the DEM reso-
lution (ߜ) in m, and the percentile (ܲ) or level of confidence used for the as-
sessment of uncertainty.  

ௗܦ ൌ ݂ሺS, ,ߜ ܲሻ                                                                                                (1) 

This can be expressed as: 

ௗܦ ൌ ܿܵ௭                                                                                                        (2) 

where ܵ (Equation 3) is computed by dividing the difference between the ele-
vation (ܪ) at a given node and the water surface elevation (ܹܵܧ, i.e. the flood 
boundary), and by taking the distance between the two points (ܦ) (Equation 
4).  

ܵ ൌ
ுିௐௌா

஽
                                                                                                       (3) 

ଶݔ∆ඥ=ܦ ൅    ଶ                                                                                              (4)ݕ∆

The coefficient ܿ  and the exponent ݖ were derived from the regression analyses 
of disparity results of the Eskilstuna study area. Using the DEM resolution that 
was used for modelling and the percentile, these two can be computed as Equa-
tions 5 and 6. According to Brandt (2016), both values increase with coarser 
resolution DEMs. 

ܿ ൌ   0.000792ܲଵ.ଷ଴ଷߜ଴.ଽ଻଴                                                                           (5) 

ݖ ൌ ሺ0.1124 	ln ሻߜ ൅ ሺ0.0709 ln ܲሻ െ 1.0064                                             (6) 
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2.6 Uncertainty visualisation 

Uncertainty visualisation aims at informing users of inaccuracies associated 
with the information they are using (Pang, Witterbrink, & Lodha, 1997). It can 
help improve data analysis and decision-making, by being able to communi-
cate the limitations of the presented results (Pang et al., 1997; Mahoney, 1999; 
Drecki, 2002; Johnson & Sanderson, 2003). The topic on uncertainty visuali-
sation has been important in the fields of Geovisualisation (GeoVis), Scientific 
Visualisation (SciVis) and Information Visualisation (InfoVis) since the early 
1990s. However, their focus in handling uncertainties and their representations 
vary from each other. InfoVis and SciVis are geared towards the creation of 
visual representations of uncertainties using different dimensions in their rep-
resentations (Pang, 2001). In Geovisualisation, maps are the main tools for 
conveying the uncertain information. Additionally, GeoVis seeks to under-
stand the types, nature, character and sources of uncertainty (Pang, 2008). Both 
GIScience and Geovisualisation were first to consider a formal approach to 
handling and visualising uncertainties (MacEachren et al., 2005; Brodlie, 
Osorio, & Lopes, 2012). The primary reason for this is that both the spatial 
data and the GIS processes can considerably affect the quality of the resulting 
information produced based on them (Goodchild, 1992; MacEachren, 1992).  

2.6.1 The role of maps in uncertainty visualisation 

Although computer generated geovisualisation models have been common 
with the advancements in technology, maps in all forms remain relevant tools 
in planning. The effectiveness of maps for communicating geographic infor-
mation relies on the cartographic rules adhered in their design and development 
(MacEachren, 1995; Kraak & Ormeling, 2003). The cartographic rules and 
principles followed are based on psychology, communication (graphic) and 
geography (Dent, 1999). They have significant roles in communicating and 
explaining spatial phenomena through maps and other means of spatial display 
of information (Drecki, 2002). 

Important parts of graphic communication in maps are their visual ele-
ments, which serve as stimuli for the map reader to react when viewing the 
information (Robinson, Morrison, Muehrcke, Kimerling, & Guptill, 1995). A 
visual element can be perceived according to its location and how it looks like 
in relation to the rest of the objects presented. However, individuals may have 
different ways of processing and reconstructing information provided in a map 
to derive meanings from them. Thus, designing the map is an important task 
for the cartographer. The effectiveness of the map as a communication medium 
will therefore depend on how well the message conveyed by the cartographer 
agrees with the interpretation of the map reader (Robinson et al., 1995).  
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2.6.2 Uncertainty representation 

Uncertainty can be represented in maps and geovisualisation models by using 
the different visual variables, namely: colour, texture, value, size. In addition, 
saturation, fuzziness, arrangement, and transparency are also used (Bertin, 
1983; MacEachren, 1992; MacEachren et al., 2012). Certainty is often associ-
ated with darker value, finer texture, saturated colour, larger size, regular pat-
terns/arrangements, crisp and opaque objects. Uncertainty on the other hand is 
often symbolised by lighter values, coarseness, unsaturated colour, smaller 
size, irregular patterns, fuzziness and transparency. Yet, the logic in the repre-
sentation can also depend on what is being conveyed in the visualisation. Un-
certainty can be expressed using two semantics: degrees of certainty and de-
grees of uncertainty. The former indicates the progression in certainty status 
from low/minimum (i.e. uncertain) to high/maximum certainty. According to 
Beven et al. (2014), this implies a positive state by giving emphasis on the 
certainty of the condition. Therefore, the association between lowെhigh cer-
tainty with lightെdark, coarseെfine, unsaturatedെsaturated, transpar-
entെopaque, etc. follows the progression of the magnitude/quantity being rep-
resented. Degrees of uncertainty stresses the gradation of uncertain condition, 
where the maximum uncertainty is highlighted. Hence, if the magnitude or 
quantity will be the basis of representation, the order of the representation will 
be the same as the first semantics used, but the connotative meanings associ-
ated with them will be opposite. An example is how size is used to indicate 
degrees of uncertainty by Sanyal, Zhang, Bhattacharya, Amburn, and 
Moorhead (2009) and Kunz, Grêt-Regamey, and Hurni (2011). There, size in-
creases with uncertainty. Thus, the lowest uncertainty (i.e. the most certain 
condition) using this semantics is represented by smallest size, which gets an 
opposite representation in the other semantics used. However, how value is 
used in Scholz and Lu (2014) when using degrees of uncertainty is consistent 
with the first semantics. Darkest value is assigned to the most certain condition 
while the most uncertain has the lightest representation.   

Table 4 shows a list of the different visual variables used in earlier literature 
that were considered to be intuitive in representing uncertainty. The semantics 
used in these studies are also indicated.  
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Table 4. Uncertainty representations using the different visual variables in geovisualisa-
tion. 

 

VISUAL  
VARIABLE 

SEMANTICS USED 

DEGREES OF CERTAINTY 

Low (uncertain)  High (certain) 

DEGREES OF UNCERTAINTY 

Low (certain)  High (uncertain) 

Value 
 

*Leitner & 
Buttenfield (1997, 
2000); *Edwards & 
Nelson (2001); 
*Aerts, Clarke, & 
Keuper (2003); 
*Bisantz et al. 
(2009); *Kubíček & 
Šašinka (2011); 
*MacEachren et al. 
(2012) 

 
*Scholz & Lu 
(2014) 

 
Cheong et al. 
(2016) 

  

Size 
 

*Drecki (2002); 
*MacEachren et al. 
(2012); *Lim, 
Brandt, & Seipel 
(2016); *Seipel & 
Lim (2017) 

 
*Sanyal, Zhang, 
Bhattacharya, 
Amburn, & 
Moorhead (2009); 
Kunz et al. (2011) 

Texture 
 

*Leitner & 
Buttenfield (1997, 
2000) 

  

Arrange-
ment 

 
Goodchild, 
Buttenfield, & 
Wood (1994); 
Interrante (2000); 
*MacEachren et al. 
(2012) 

  

Opacity 
 

*Drecki (2002)    

Transpar-
ency 

 
*MacEachren et al. 
(2012) 

 
*Scholz & Lu 
(2014) 

Saturation 
 

Howard & 
MacEachren 
(1996); *Bisantz et 
al. (2009)  

 
*Sanyal et al. 
(2009) 

Fuzziness 
/Crispness  

*Edwards & Nelson 
(2001); 
*MacEachren et al. 
(2012) 

 
*Scholz & Lu 
(2014) 

* intuitiveness based on outcomes of experiments/user studies 
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The usage of colour for representing uncertainty may depend on its association 
with the object or condition being represented. For instance, red is often asso-
ciated with more risks or hazard, in contrast to green or blue, as depicted in the 
study of Smith-Jackson and Wogalter (2000). Colour is mainly used for selec-
tive purposes to easily identify a given class visually (Bertin, 1983). Unlike the 
other visual variables presented in Table 4, colour indicates no order. Some 
colours used to represent certain and uncertain statuses are shown in Table 5.  

Table 5. Colours used for representing certainty and uncertainty conditions. 

COLOUR REPRESENTATION SOURCE 

Single Uncertain 
 

Aerts et al. (2003);  
Tak & Toet (2014) 

 
Tak & Toet (2014) 

Certain 
 

Tak & Toet (2014) 

Bicolour Uncertain-certain 
 

Aerts et al. (2003)  

 
Tak & Toet (2014) 

Tricolour 

 

UncertainCertain 

 
 

Tak & Toet (2014) 

 
Tak & Toet (2014) 

 
Howard & MacEachren 
(1996) 

 

2.6.3 Flood uncertainty representation and visualisation 

Uncertainties in flood modelling studies are represented in variety of ways in 
different studies. Graphs and diagrams are often used to show variation in flood 
stages, model performances, depths, inundation sizes, etc. (Table 6). They are 
useful in displaying multiple results from the models simultaneously (even up 
to millions of them). A drawback, however, is that they lack giving the geo-
graphic context of the uncertainty (Hunter, Goodchild, & Robey, 1994; Merz, 
Thieken, & Gochi, 2007).  
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Table 6. Graphical methods for representing flood model uncertainty. 

DIAGRAM TYPE EXAMPLE APPLICATIONS 

Line graph 

 

‒ Changes in water stage, discharge, flow duration 
(Hunter, Horritt, Bates, Wilson, & Werner, 2005; 
Pappenberger et al., 2006; Hunter et al., 2008; Di 
Baldassarre, Laio, & Montanari, 2009; Di Baldassarre & 
Montanari, 2009; Neal et al., 2009, 2012; Bates, Horritt, 
& Fewtrell, 2010; Domeneghetti, Vorogushyn, 
Castellarin, Merz, & Brath, 2013), and areal size (Yu & 
Lane, 2006) 

‒ Comparison of errors (Di Baldassarre & Montanari, 
2009), entropy (Horritt, 2006); model reliability (Horritt, 
2006), CDF plots (Romanowicz & Beven, 2003); and accu-
racy (Yu & Lane, 2006) 

‒ Variation in predicted forecasts (Pappenberger et al., 
2005) 

Bar graph 

 

‒ Histogram of errors (Neal et al., 2009) 

‒ Model effect of DEM to WSE, velocity or timing (Neal et 
al., 2012) 

 

Contour plot 

 

‒ Model response to using parameter combinations 
(Horritt & Bates, 2001b; Aronica, Bates, & Horritt, 2002; 
Horritt, 2006; Fewtrell et al., 2008; Neal et al., 2009) 

Scatterplot 

 

‒ Likelihood or performance of model (Hunter, Bates, 
Horritt, De Roo, & Werner, 2005; Pappenberger, 
Frodsham, Beven, Romanowicz, & Matgen, 2007; 
Blazkova & Beven, 2009;) 

‒ Inundation size in relation to parameter used, model re-
liability, correlation plots 

Cross-section profile plot 

 

‒ Comparison of depth and bed elevation (Cook & 
Merwade, 2009) 

 
In representing uncertainties in flood maps, colour and value are the commonly 
used visual variables for indicating uncertainty statuses (Table 7). There are 
also different semantics used in presenting the information, which also affects 
the colour or values used. Degrees of uncertainty are often represented by grey-
scale, which is the safest choice for this type of information to avoid misinter-
preting the condition being represented. Flooding probability, which is being 
conveyed using values from 0 (lowest probability to be flooded) to 1 or 100% 
(highest probability), is either represented by sequential colour scheme (black-
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to-white or lightest-to-darkest blue colour), or dual-ended schemes, where the 
extreme values are assigned with different colours. In Romanowicz and Beven 
(2003), the authors used probability of being safe from flooding, which gives 
emphasis on areas with safe condition in the maximum value. The safest con-
dition was assigned to the lightest value. When discretising the conditions to 
different classes, the number of categories (from three to ten classes), types of 
classification (equal interval or manual classification) and colour used varied 
in different studies.  

Table 7. Uncertainty representations using colour and value with continuous and dis-
crete data, as presented in different uncertainty flood modelling studies.  

SEMANTICS USED 

& DATA SCHEME 

 
CONTINUOUS 

 

DISCRETE 

Degrees of 
uncertainty/  
entropy 

Se
q

u
en

ti
al

  

Low (0)             High (1) 

Horritt (2006)  
 

 

   
Low       Med.     High 

 

Faulkner et al. 
(2007) 

 
 

Min.                       Max. 

Lim et al. (2016) 

Flood proba-
bility/ hazard 

Se
q

u
en

ti
al

 

 

 

 

 

Low (0)              High(1) 

 

Horritt (2006); 
Pappenberger et 
al. (2007); Di 
Baldassarre et al. 
(2010) 

 

Smemoe, 
James, Zundel, 
& Miller (2007) 

 

 

Domeneghetti 
et al. (2013)  

 

 

D
u

al
-e

n
d

ed
 /

 D
iv

e
rg

in
g  

0                              1 

Leedal et al. 
(2010) 

 

 

 

 

National 
Oceanic and 
Atmospheric 
Admin. (NOAA) 
Coastal Services 
Center (2010) 

  

 
Low (0)         High (1) 

Beven et al. 
(2014); Beven, 
Lamb, Leedal, & 
Hunter (2015)  

 
 

     Dry         Unc.       Flooded 
 

Seipel and Lim 
(2017) 

Probability: 
safety from 
flooding 

Se
q

u
en

ti
al

 

 

 

 

   0                              1 
 

 

Romanowicz & 
Beven (2003) 

  

Dual condi-
tions: certain 
and uncertain B

in
ar

y   
 

 
Brandt (2016); 
Brandt & Lim 
(2016) 
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When presenting uncertainty information, there are three approaches that are 
used: overlay, map pair or multiple map display (Table 8). In most cases, un-
certainty is depicted by overlaying several flood boundaries from different cal-
ibrations results to show changes in the model output. Usually, these bounda-
ries are represented by lines differentiated by different colour or thickness. In 
other cases, probability of flooding is represented through a surface map. The 
reference flood boundary or the flooding extents with the highest probability 
are delineated as lines and overlain on these maps (e.g. Papaioannou, 
Vasiliades, Loukas, & Aronica, 2017). Map pairs or multiple maps are also 
used to show different model results, and to compare the variations from the 
model as effect of the tested variable. Yu and Lane (2006), for instance, used 
multiple maps to visualise evolution of flooding with time as influenced by the 
input data used in the modelling.  

Table 8. Presentation approaches for visualising flood uncertainties. 

PRESENTATION APPROACH USAGE 

Overlay 

 

‒ Difference in extents produced by the differ-
ent inputs/parameters (e.g. Mason, Cobby, 
Horritt, & Bates, 2003); 

‒ Model results vs. reference or validation data 

‒ Deterministic (i.e. the most optimum) vs. 
probabilistic result (Papaioannou et al., 2017) 

Map pair 

 

‒ Water level/depth variation in different quan-
tiles (Pappenberger et al., 2005), or in use 
with different models (Bates et al., 2010) 

Multiple map display 

 

Comparisons of: 

‒ Predicted water levels at different percentiles 
(Pappenberger, Beven, Hunter, et al., 2005); 
or as effect of model used (Hunter et al., 
2008) 

‒ Model result variations (Horritt, 2006)  

‒ Time series evolution of inundation based on 
different DEM resolution (Yu & Lane, 2006) 

‒ DEM/topographic data effect in inundation 
(Yu & Lane, 2006; Cook & Merwade, 2009;) 

‒ Structures or geometric configuration effects 
(Fewtrell, Neal, Bates, & Harrison, 2011) 

ଵܵ    ܵଶ 
 

ଵܵ    ܵଶ     ܵଷ     ܵସ 
 



28 

 



29 

Chapter 3.  

Methods 

Methods applied in the different studies presented in the papers included: pre-
processing the spatial data inputs within GIS, hydraulic modelling, uncertainty 
assessment, designing and creating the visualisation models, and user evalua-
tions. These are summarised in Table 9. 

Table 9. Methods employed in the different papers. 

 PAPER 

METHODS I II III IV V VI VII VIII 

GIS modelling (data pre-pro-
cessing and post-processing) 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Hydraulic modelling          

Disparity-distance algorithm  
implementation 

        

Sensitivity analyses/GLUE         

Design and/or creation of flood  
uncertainty geovisualisation 
models/maps 

        

User studies (quantitative and 
qualitative) 

        

Statistical analyses         

3.1 Study area 

The whole Testebo River (Testeboån) stretches from Åmot, upstream from 
Ockelbo to its drainage in Gävle, Sweden. The river flows in a flat and blocky 
moraine landscape. Due to its rich flora and fauna, Testeboån is classed under 
the Natura 2000 sites (Länstyrelsen Gävleborg, 2016).  

Testeboån in the municipality of Gävle extends from the E4 highway in the 
north, downstream to its outlet at the delta. The studied area focused within the 
parts of the river in Varva, Forsby and Strömsbro (Figure 1) in Gävle. The 
entire site measures about 4 km2. This size of the study area is computationally 
manageable for the 2D hydraulic simulation and ensemble modelling to be per-
formed using high to low resolution DEMs.  

From E4 going downstream, the river consists of single stream. The up-
stream part is relatively steep, surrounded by mixed forests, and some cleared 
areas. As it goes south towards the study site, the surrounding area around the 
river becomes flat. In the northern and eastern parts (Varva), arable lands con-
stitute the floodplain with some mixed forests. These topographic characteris-
tics of the floodplain (constituting steep and flat areas) are suitable conditions 
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for testing the hydraulic model’s capability to model the flow. This also allows 
to examine how variable the model results will be in these topographies, at the 
specific model conditions to be implemented. As mentioned in earlier studies, 
flat areas can produce more uncertainties in the model results (Fewtrell et al., 
2008). However, how big these uncertainties produced can also vary among 
different study areas and models due to the differing characteristics and com-
plexities in the flow pattern in the river. Furthermore, since one of the aims of 
the study is to visualise uncertainties, these locations where they can be high, 
will be good examples to be used in the uncertainty visualisation parts of the 
research, where maps and visualisation models are to be created from the mod-
elling results.  

 
 

Figure 1. Location of study area just north of the city Gavle. Flow direction is going 
south-southeast. ©Lantmäteriet 
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There are also arable lands in the western part of the study area, and at the 
south of Varva (i.e. Forsby) But most of the residential areas are concentrated 
here. Some of these residences in Forsby and Strömsbro were just outside the 
border of the 100-year flood that was initially modelled for Testeboån using 
the 1D hydraulic model HEC-RAS (Lim, 2009). But whether these will be pre-
dicted to be flooded or non-flooded using 2D model and different conditions 
is also uncertain. Thus, from planning perspective, these areas, particularly res-
idential areas at the border can be at risk of flooding.  

Testeboån has a mean discharge of 12.1 m3/s. There were four recorded 
major spring floods in the river: 1916 (177 m3/s); 1937 (127 m3/s, 1966 (180 
m3/s) and 1977 (160 m3/s) (Olofsson & Berggren, 1966).  

One of the earlier published studies of the river was made by Olofsson and 
Berggren (1966). They analysed its observed maximum discharges and water 
depths during extreme events. In 2002, the report Översiktlig översvämnings-
kartering längs Testeboån (sträckan från Åmot till utloppet i Bottenhavet) 
(SMHI, 2002) was published. It contains the mapping information conducted 
and the corresponding maps derived for the 100-year and highest probable 
flood for the Testebo River using the 1D hydraulic software MIKE11. This 
was based on the 50 m resolution data from the Swedish Mapping, cadastral 
and land registration authority (Lantmäteriet). The Swedish Meteorological 
and Hydrological Institute (Sveriges meteorologiska och hydrologiska insti-
tute, SMHI) performed the mapping, as commissioned by the Swedish Civil 
Contingency Agency (Rädningsverket by that time). In 2015, an updated ver-
sion of the maps were produced by WSP for the Swedish Civil Contingency 
Agency (now knowns as Myndigheten för samhällskydd och beredskap, MSB), 
for the 100-yr., 200-yr. and highest probable floods using MIKE11 software  
(WSP, 2015). They used the 2 m resolution DEM that is said to improve the 
results of the modelling.  According to MSB, these maps can be used for rescue 
operations and for risk management and spatial planning.  

3.2 Data and GIS processing 

The primary data used in the entire research are presented in Table 10. Most 
of them were used for generating secondary data that were needed for specific 
studies. Methods of how these secondary data were produced are further de-
scribed in the succeeding parts of the paper.  
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  Table 10. Summary of primary data used in the entire research. 

 PAPER 

PRIMARY DATA I II III IV V VI VII VIII 

LiDAR point cloud and bathymetric data         

LiDAR TIN (from 1D simulation)         

Lantmäteriet 50 m TIN         

Validation data         

Stream centrelines          

Channel         

Cross-sections based on:          

      Brandt’s LiDAR DEM         

      Lantmäteriet 50 m DEM         

      LiDAR DEM         

Flood extents from 1D modelling:         

      Brandt’s         

      Lantmäteriet         

      LiDAR         

Monte Carlo simulation results (1D flood 
modelling): 

        

     ௝ܵ map         

     Flood depth map         

     Most optimal map result from the  
     ensemble 

        

Other maps:         

     Orthophoto         

     Topographic map         

Results from modelling, analyses and map-
ping performed in: 

        

     Paper III         

     Paper IV         

     Paper VI         

     Paper VII         
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3.2.1 Digital Elevation Models (DEM) 

The Digital Elevation Models used for the 2D hydraulic modelling were cre-
ated from a combination of the LIDAR point cloud and bathymetric data. The 
point cloud data consisted of 4 million filtered ground points, with point spac-
ing ranging from 0.2 to 1.8 m. The said data has an accuracy of 0.10 m hori-
zontally. From these data, all points at the location of bridges were removed. 
The original bathymetric data composed of ca 30 000 points. To account for 
missing data in some parts of the river, which were impossible to echo-sound, 
bottom elevation data were interpolated (Lim, 2009) and added to the original 
bathymetric data (Figure 2). A Triangular Irregular Network (TIN) model was 
created by combining the two datasets. The advantage of using TIN is that it 
can well represent the banks and the floodplain, or the changes in the topogra-
phy (Casas et al., 2006), which are needed for the model to calculate the flow. 
It is also practical for interpolating millions of points, which will be more dif-
ficult to achieve with interpolation methods such as kriging.  

  
Figure 2. (a) The LIDAR and (b) bathymetric data used for generating the (c) TIN model.  

The hydraulic model used in the study requires raster data as input. Thus, after 
creating the TIN model, it was rasterised to different DEMs with resolutions 
of 1 to 5 m, 10, 15, 20, 25 and 50 m (Figure 3). Motivation for using different 
resolution DEMs and including high resolution DEMs of 1 to 5 m is to be able 
to see their effects in the extents of the flood generated and the quantified per-
formance, particularly in two-dimensional flood models. Earlier studies that 
analysed sensitivity of 2D hydraulic models to the effects of DEM resolutions 
in combination with different model/parameters or boundary conditions (e.g. 
Horritt & Bates, 2001; Horritt & Bates, 2002; Neal. et al., 2009; Savage et al., 
2016) utilise medium to lower resolution (10 to 90 m) DEMs. Fine resolution 
data (1 to 5 m) were seldom tested in ensemble modelling, due to increased 
simulation time (Savage et al., 2016). Therefore, high resolution DEMs were 
included in this research. Also, in the studies conducted in the different papers, 
DEMs poorer than 50 m were excluded due to higher inaccuracies they can 
produce, particularly at the scale used in the study area (which is more local). 
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Figure 3. The different resolution DEMs used in the research. 

3.2.2 Validation data 

The validation data used was provided by the municipality of Gävle. This co-
vers the extent of the flood that happened on 12 May 1977. According to the 
provider of the information, this was digitised from the aerial photo. The orig-
inal data was in digital format, but it only shows the boundaries of flooding, 
without the channel. Since this information is needed in the validation, they 
were added to the original data (Figure 4).  

 
Figure 4. The reference data used for validating the model prediction results. This corre-
sponds to the extent of the actual flooding in the Testebo river in 1977 at 160 m3/s. 
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3.3 Hydraulic modelling and simulations 

The hydraulic numerical model used was CAESAR-LISFLOOD (Coulthard et 
al., 2013), which is a 2D raster model that is based on the modified 
LISFLOOD-FP model (Bates et al., 2010). There are three primary equations 
implemented in the model. The first equation (Equation 7) calculates the flow 
(ܳ), by considering the flux (ݍ) and maximum flow depth ( ௙ܹ௟௢௪) between 
cells, acceleration due to gravity (݃), roughness parameter (i.e. Manning’s ݊), 
elevation (ܪ), cell width ሺߴ), water depth (ܹ), and time (ݐ). 

ܳ ൌ
௤ି௚ௐ೑೗೚ೢ∆௧

∆ሺೈశಹሻ
∆ആ

ଵା௚ௐ೑೗೚ೢ∆௧௡మ|௤|/ௐ೑೗೚ೢ
భబ/య  (7)                                                                         ߴ∆

The second equation accounts for the computation of the water depth of given 
cell (at coordinates ݔ,  using the computed discharges of the previous cells ,(ݕ
(Equation 8): 

∆ௐೣ,೤

∆௧
ൌ

ொഛ	
ೣషభ,೤ିொഛ	

ೣ,೤ାொആ
ೣ,೤షభିொആ

ೣ,೤

∆ణ	మ
                                                                        (8) 

The last equation accounts for the computation of time step, using coefficient 
 the grid size, the acceleration to gravity and water depth. This equation is ,ߙ
needed for the stability of the model. The coefficient ߙ can have values be-
tween 0.2 and 0.7 (Bates et al., 2010), depending on the DEM resolution used. 
The lowest value should be assigned to higher resolution DEMs, while the 
largest values for the coarsest resolution. 

௠௔௫ݐ ൌ ߙ
∆ణ	

ඥ௚ௐ	
                                                                                                (9)          

In the simulations performed, a steady-state flow was implemented. This is due 
mainly to the length of the river and the output that was to be derived for the 
simulation, i.e. the flood extents (cf. Di Baldassarre et al., 2010). The discharge 
of 160 m/s3 was used for simulating the flow. This is equivalent to the 100-
year flood of the river, and the flow that corresponds to the reference data. The 
Courant values used with the different DEMs were: 0.02 (1 to 5 m); 0.4 (10 
m); 0.5 (15, 20 and 25 m); and 0.7 (50 m). These were based on the suggestions 
made in Bates et al. (2010).  
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3.4 Ensemble modelling and GLUE application 

Ensemble modelling, following the GLUE methodology, was adopted to as-
sess model input/parameter sensitivity and prediction uncertainty. The 
flowchart in Figure 5 shows the implementation of the modelling and uncer-
tainty assessment. 

 
Figure 5. Ensemble modelling and GLUE methodology implementation.  

3.4.1 Accounting for uncertain input and parameters 

To assess the sensitivity of the model to the topographic data input and the 
hydraulic model parameter (Manning’s roughness, or ݊ ), there were 50 (Paper 
III) and 100 simulations (Paper VI) conducted to produce different model pre-
diction outputs. DEM resolutions used in Paper III were 5, 10, 15, 20, and 25 
m, while for Paper VI, higher and low resolution DEMs (1 to 5 m and 50 m) 
were included.   

A uniform Manning’s roughness was used for both the channel and flood-
plain, considering that the flow is more overland. Manning’s ݊ that were as-
sessed ranged from 0.01 to 0.1, with increments of 0.01. These values were 
based on Horritt and Bates (2002). According to the authors, this range of 
roughness values allows to see where the concentration of high or low perfor-
mance occur in the parameter space.  
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The main motivation for conducting the ensemble modelling in this way 
was the main outputs produced and analysed were the extents of flooding. In-
creasing the number of simulations can be a limitation for comparing the ex-
tents of the outputs produced. Moreover, small increments in the tested DEM 
or Manning’s ݊, may not capture big changes in the flood extents. The DEM 
and Manning’s ݊ used may be sufficient to see and compare geographic trends 
in the results.  

3.4.2 Generation of binary maps 

The output from the simulation result ሺ݅ሻ using a given DEM and Manning’s 
݊	combination is a flood (water) depth map (Figure 6, left). Each water depth 
map was converted to binary maps, where each cell ݆ was assigned a value 
indicating whether its predicted status (ݓ) is either flooded or dry. This was 
done through reclassification, where all depths > 0 were assigned to ݓ௜௝=1 or 
inundated, while depths=0 or areas having no data were ݓ௜௝=0 (non-flooded) 
(Figure 6, right).  

 
Figure 6. Conversion of one of the original simulation results (i.e. water depth map, left) 
to a binary map showing the flooding status of a given cell (ݓ௜௝, right).  

3.4.3 Performance assessment and likelihood computation  

To find out how well the model predicted the flood at the given discharge and 
using the different input and parameter pairs, four different performance 
measures were used to quantify the results.  

Feature agreement statistics (ࡲ૚ and ࡲ૛) 

Feature agreement statistics are commonly used for validating extents pro-
duced by the flood model. ܨ uses the set theory to account for the intersection 
and union between the observed (ܱܾݏ) or the actual data, and the predicted 
flooding (݀݋ܯ) (Bates & de Roo, 2000) (Equation 10). 
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ܨ ൌ
ை௕௦∩ெ௢ௗ

ை௕௦∪ெ௢ௗ
                                                                                                    (10) 

There are two versions of ܨ statistics applied in extent validation studies. 1ܨ 
is based on assessing how big the size of overlap (ܣ) between the model and 
the observed flood extent, in relation to the total size of overlap (ܣ), overesti-
mation (ܤ) and underestimation (ܥ) produced in simulation ݅ , using a particular 
input/parameter (Mason, Bates, & Dall’ Amico, 2009) (Equation 11).  

1௜ܨ ൌ
஺೔

஺೔ା஻೔ା஼೔
                                                                                                 (11) 

 
The other is 2ܨ, which is presented in Hunter et al., (2005) (Equation 12). In 
the equation, the size of over-estimation is subtracted to the size of overlap in 
the numerator. This penalises the over-estimation produced by the model to 
reduce the bias in 1ܨ.  

2௜ܨ ൌ
஺೔ି஻೔

஺೔ା஻೔ା஼೔
                                                                                                  (12) 

When implementing this with GIS, each flood extent produced by the model, 
was overlaid on the reference flood extent, to get ܣ,  prior ,(Figure 7) ܥ and ܤ
to applying Equations 11 and 12. ܨ values range from 0 to 1, where 1 is the 
maximum performance.  

 
Figure 7. Example simulation result showing how the overlap, areas under- and over-
estimated were accounted for.  

After computing the feature agreement statistics of all simulation results, the 
minimum (ܨ௠௜௡) and maximum (ܨ௠௔௫) values were derived and used for cal-
culating the likelihood weight (ܮ௜) of each model result (Equation 12). This 
equation is applicable for both 1ܨ and 2ܨ. 

௜,ிܮ ൌ
ி೔ିிಾ೔೙

ிಾೌೣିிಾ೔೙
                                                                                           (13) 
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Mean and median disparities 

Two additional performance methods were presented in Papers III and VI for 
assessing flood extents. Mean (ܦഥ௜) and median (ܦ෩௜) disparities employ sam-
pling methods as a means of quantifying the disparity. In both methods, the 
difference (error) between the modelled and reference flood extents is consid-
ered. The usage of ܦ෩ was presented as an alternative to ܦഥ, as there can be cases 
when the data sampled can be highly skewed, and the median will be a better 
performance determinant. 

In both methods, sampling was performed using the cross-section data and 
the flood extent from a given simulation. Each cross-section was numbered 
and divided to left and right sides using the stream centreline (looking down-
stream the channel), which were used for coding them with their unique iden-
tifiers. The flood map and the reference flood map were then used with the 
cross-section data to extract points where they intersected (Figure 8), that were 
used as samples for the computation. Each point was assigned with the unique 
identifier of the cross-section, in addition to getting their ݔ, y coordinates and 
elevation (ܪ) values. Afterwards, the distance (ܦ) between the two points 
(simulation and reference maps), at a given cross-section location, was com-
puted (Equation 4). To get the overall performance of the given simulation, 
either the mean (Equation 14, where ܰ is the total number of point samples) or 
the median (Equation 15 if the number of point samples is odd, and Equation 
16 if ܰ is even) of the disparities was taken.  

 
Figure 8. The sampling performed in one of the simulation results (left), and from the 
reference data (right).  

 = ഥ௜ܦ
∑஽

ே
                                                                                                         (14) 

෩௜ܦ ൌ ܦ
	
ಿషభ
మ

                                                                                                      (15) 

෩௜ܦ ൌ
ଵ

ଶ
ሺܦ

	
ಿషభ
మ
൅ ܦ

	
ಿషభ
మ
ାଵ
ሻ                                                                               (16) 
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The lower the disparity means the better the model performance. This has an 
inverse performance relationship compared with ܨ. Thus, when getting the ܮ௜ 
for the mean disparity, Equation 17 has to be applied. This equation is also 
valid for getting the likelihood weight for ܦ෩.   

௜,஽ഥ೔ܮ ൌ
஽ഥಾೌೣି஽ഥ೔

஽ഥಾೌೣି஽ഥಾ೔೙
                                                                                                      (17) 

3.4.4 Aggregation and uncertainty map generation 

The computed ܮ௜ from the performance measure was assigned as weights to its 
corresponding binary map (ܮ௜ݓ௜௝). The weighted maps were then aggregated 
using Equation 18: 

௝ܥ ൌ
∑௅೔௪೔ೕ
∑ ௅೔

                                                                                                      (18) 

This results to a map indicating a cost-weighted probability status, considering 
the ensemble of results and the likelihood weights. The value, which is en-
coded to each cell is from 0 to 1. The most certain conditions are represented 
by the minimum (ܥ௝=0, dry) and maximum (ܥ௝=1, flooded) values, while the 
most uncertain condition is the middle value (ܥ௝=0.5). 

However, according to Horritt (2006), the representation by the ܥ௝ values 
may not clearly distinguish certain and uncertain conditions, because of the 
duality of the statuses being represented, while uncertainty is in the middle of 
the two. Thus, Horritt (2006) proposed an entropy-like measure that will sep-
arate certain from uncertain statuses by transforming the ܥ௝ result using Equa-
tion 19. The resulting flood map still ranges from 0 to 1, but this time, those 
that are certain to be dry or flooded will have a value of 0, while those with 
maximum uncertainty will be 1. The relationship between the ܥ௝ and ௝ܵvalues 
is further illustrated in Figure 9. 

 

௝ܵ ൌ െ൛൫ܥ௝݈݃݋ଶܥ௝൯ ൅ ൣ൫1 െ ଶ൫1݃݋௝൯݈ܥ െ  ௝൯൧ൟ                                            (19)ܥ

 
Figure 9. The relationship between the ܥ௝	and ௝ܵ values. 



41 

3.5 Disparity distance algorithm 

In Paper IV, the disparity distance algorithm was used for estimating uncer-
tainty. In implementing the algorithm, three 1D (HEC-RAS) model results 
were used: Brandt’s simulation of the Testebo River using the LIDAR data, 
and Lim’s simulation results using LiDAR and the Lantmäteriet 50 m DEM.  

3.5.1 Data preparation 

For each simulation result, there were four datasets needed to apply the algo-
rithm: 1) the cross-section (CS) data corresponding to the DEM used; 2) stream 
centreline; 3) flood extent of the predicted flooding; and 4) the TIN model of 
the elevation (Figure 10). The cross-sections were initially numbered and as-
signed with unique identifiers, in a similar way performed in the computation 
of mean and median disparities (cf. 3.4.3). This unique identifier contained the 
CS number and an indication of whether it is positioned to the left (݈) or right 
  .part of the stream centreline (ݎ)

Two sets of sample points were then derived that were used later for the 
computation: 1) points intersecting the CS and the flood boundary polygon; 
and, 2) CS nodes that were sampled along the cross-sections, using the TIN 
model. Both datasets were assigned the unique identifier from the CS, in addi-
tion to getting their ݔ,  The CS nodes .(ܪ) coordinates, and elevation values ݕ
were also identified whether they were positioned on the inner (ܫ or flooded) 
or outer (ܱ or dry) side of the modelled flood extent.  

3.5.2 Algorithm implementation and delineation of uncertainty 

zones 

The delineated uncertain boundaries are derived by implementing the algo-
rithm. For each cross-section (݉), four uncertain elevation values have to be 
derived: left inner (݈ܪܫ) and outer (݈ܱܪ), as well as right inner (ܪܫݎ) and outer 
  .(Hܫݎ)

The algorithm was initiated at the first left cross-section’s outer side (i.e. 
the non-flooded side). Sampled nodes (݇) were numbered starting from the 
outermost node (݇௟ை=1) going towards the modelled flood boundary (ܭ). This 
was also the same direction that the algorithm followed in the node-to-node 
iteration (Figure 11). Starting from ݇௟ை=1, distance (ܦ, Equation 4) and slope 
(ܵ, Equation 3) between this node and the point sampled (ܭ) at the flood 
boundary were computed. Afterwards, coefficient ܿ  (Equation 5) and exponent 
 for Brandt and Lim using) 2.1=ߜ ,were computed, using ܲ=95 (Equation 6) ݖ
the LiDAR-based DEM data), and 50= ߜ for the 50 m DEM resolution. ܦௗ was 
then derived using Equation 2. 
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Figure 10. Data processing flow for the ܦௗ	algorithm. 
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Figure 11. Direction of the node-to node calculation at the left part of the cross-section.   

After the calculation of ܦ, ܵ and ܦௗ, the node was assessed with the following 
conditions: 

 
If ܵ > 0 AND ܦௗ< ܦ, node is Not flooded; 
If ܵ < 0 and ܦௗ< ܦ, node is Flooded;  
If ܵ > 0 AND ܦௗ> ܦ, node is Uncertain. 

If the node gets a certain condition (of either flooded or not flooded), the iter-
ation proceeds to the next node (݇௟ூ ൌ ݇ ൅ 1). Otherwise, if ܦௗ exceeds ܦ, then 
this node is uncertain. The algorithm stops at this node, and an outer left ele-
vation value is computed for this boundary. Preliminarily, this is assigned to 
the previous node’s elevation value (ܪ௞ିଵ). However, according to Brandt  
(2016), this height has to be initially assessed for any wall effect, to avoid get-
ting very high elevation values. To account for this, the elevation of the sam-
pled point at the flood boundary (ܪ௄) and the current node’s D were used with 
Equation 20.  

௄ܪ ൅ expሺ
୪୬஽ି୪୬ ௖

௭
ሻ ൈ  (20)                                                                                ܦ

If the result is less than ܪ௞ିଵ, then the result from Equation 20 is used as the 
left outer uncertain elevation for the given cross-section. But, if the result is 
greater than ܪ௞ିଵ, then the outer uncertain elevation used is the preliminarily 
assigned elevation value from the previous node (ܪ௞ିଵ). This is recorded as 
the left outer uncertain elevation (݈ܱܪሻ boundary for the specific cross-section. 

After the calculation of the CS’ outer part, the algorithm was iterated for 
the inner left part of the cross-section, but the calculation of the wall effect is 
altered to Equation 21. Also, the result of the equation is checked if it is greater 
than ܪ௞ିଵ, for it to be used as the left inner uncertain elevation value (݈ܪܫሻ, 
otherwise ܪ௞ିଵ is used. 
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௄ܪ െ expሺ
୪୬஽ି୪୬ ௖

௭
ሻ ൈ  (21)                                                                              ܦ

The algorithm was repeated for the right inner nodes, and lastly to the right 
outer nodes, following the same procedure when calculating the wall effects 
and in assigning the uncertain elevation values for the left CS’ outer and inner 
sides. Then the algorithm continued to the next cross-section (Figure 12).  
 
 

 
Figure 12. Algorithm’s implementation in deriving the uncertain elevation values.  

When all uncertain elevation values were derived, two new point datasets were 
generated: one that was assigned with the inner uncertain (ܪܫܮ, ܴ  elevation (ܪܫ
values, while the other with all outer elevation values (ܪܱܴ ,ܪܱܮ) (Figure 
13). These were used for creating a TIN model that was later rasterised, and 
compared with the DEM to identify flooded and uncertain zones. When com-
paring the inner and outer raster elevation, they were subtracted from the DEM. 
The results were then reclassified. In the reclassification, all cells that had dif-
ference < 0 (i.e. the DEM is lower than the inner/outer elevation value) were 
flooded and assigned a value of 1. If difference > 0 (i.e. the DEM is higher than 
the inner/outer elevation value), the cell’s condition was assigned to dry and 
are not represented in the map (i.e. NODATA). The reclassified raster datasets 
were then converted to polygons. To finally map the uncertain boundaries, the 
two datasets were overlaid (using union). The parts where the two polygons 
intersect are areas that are certain to be flooded, at 95% percentile confidence. 
The remaining areas are uncertain. 
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Figure 13. Delineation of uncertain boundaries in GIS for the 50 m data. 
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3.6 Uncertainty geovisualisation models and maps 

In the previous methods, there were different flood uncertainty information 
and maps produced.  In this section, the main focus is the design considerations 
for representing uncertainty, as well as the creation of different geovisualisa-
tion models and maps that can be used for communicating flood uncertainty.  

3.6.1 Interactive 3D flood uncertainty geovisualisation model  

A 3D geovisualisation model presented in Paper II was developed to show 
how flood uncertainty information can be used for visualising a flood scenario 
together with other maps. There were two main steps employed in the creation 
of the model. The first step was the data preparation/pre-processing stage. 
Here, all the spatial data to be used for the model were extracted for the study 
area, filtered/transformed and converted to a format readable by the visualisa-
tion software. In the second step, the model was developed in Python, by first 
creating the graphic visualisation using the Visualisation Toolkit (VTK), 
which is an open source package for computer graphics and visualisation 
(Schroeder, Martin, & Lorensen, 2006). The visualisation pipeline followed 
was reading the source/map layer data, filtering/transformation of the data, 
mapping and display. Afterwards, the Graphical User Interface (GUI) was cre-
ated using TkInter (Figure 14). 

 
Figure 14. Steps for generating the different maps layers used in the geovisualisation 
model and the visualisation pipeline followed.  
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Data pre-processing in GIS and other software 

There were different maps used in the geovisualisation model. These are the 
uncertainty information and the different map layers that give context to the 
information. The maps used were both in vector and raster formats. The pro-
cessing for the different vector maps was divided according to the feature types 
represented (i.e. point or polygon), as similar processing steps were applied to 
data with the same features.  

Point features  
There were three point feature maps that were used: uncertainty, slope and 
flood depth. The uncertainty information was derived from the available Monte 
Carlo simulation results using the one-dimensional model HEC-RAS. This 
takes into account the effects of varying roughness parameters for the channel 
and the floodplain. The uncertainty was represented by the entropy-like meas-
ure, ௝ܵ, indicating the degree of uncertainty of a cell. Cells with highest uncer-
tainty have ܵ ௝=1, while those that have low uncertainty (i.e. certain), have ܵ ௝=0. 
To further simplify the representation, all conditions that were certain to be 
flooded or dry (i.e. ௝ܵ=0) were eliminated in the data, as shown in Figure 15a.  

 
Figure 15. (a) ௝ܵ result in raster grid format (5 m resolution), after eliminating all certain 
to be flooded and dry areas. (b) the original LiDAR point cloud data in the same location 
where the ܵ ௝ values were present. (c) Filtered point cloud data that was used for extracting 
the uncertainty values.  

As the original uncertainty data was in raster format, this would result in a 
gridded appearance when transformed into points. To make them appear more 
random, the points from the LiDAR data (Figure 15b) were used, to geograph-
ically represent the uncertain conditions. To further reduce cluttering in the 
data, which can make it difficult to read and interpret, the points were further 
filtered, by using every 50th point in the data (Figure 15c). This reduces the 
number of points to 400, making them less cluttered. These filtered points were 
then used to extract the values from the ௝ܵ map in Figure 15a.  

In addition to the uncertainty map, a slope map and a flood depth map were 
also created. For the slope, the same point data as in Figure 15c was used to 
extract the values of the slope map, which was created from the DEM. The 
data used for the water depth came from the water surface elevation map from 
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the Monte Carlo simulation with the highest computed model performance (us-
ing ܨ). Unlike the uncertainty and slope data, the original gridded data was 
used for creating equally spaced points to where the depths were assigned. The 
point features were then converted to text files, with their corresponding ,ݔ	ݕ 
coordinates, and ݖ-values, which served as input to VTK. 

Polygon features 
Polygon feature maps comprised the channel, flood map, and the area predicted 
to be uncertain (Figure 16). The channel map came from digitising the banks 
of the river. The flood map of the predicted 100-yr flood event came from the 
highest performing model from the ensemble. The uncertainty data was de-
rived from the ௝ܵ raster map in Figure 15a. This gives an area delineation of 
uncertainty, to supplement the information provided by the point uncertainty 
map. The border can show up to which extent the prediction is uncertain. Since 
the original map data were all shapefiles, they had to be converted to VTK 
readable format using VisIt (Lawrence Livemore National Laboratory, 
https://wci.llnl.gov/simulation/computer-codes/visit).  

 
Figure 16. (a) Channel, (b) flooded areas and (b) uncertainty band. 

Background maps  
The background maps consisted of the DEM, slope map and the orthophoto. 
The orthophoto gives a realistic overview of the area, while the DEMs and 
slope maps can be used with the uncertainty and flooding information to visu-
alise possible flow patterns in relation to the topography. The DEM used came 
from the TIN model that was used for the 1D hydraulic simulation. This data 
was converted to raster format with 1 m resolution. It was also used for deriv-
ing the slope map. Both the DEM and slope datasets were converted to USGS 
DEM format using Global Mapper (Blue Marble Geographic, 
http://www.bluemarblegeo.com/products/global-mapper.php), which is reada-
ble by VTK (Figure 17). The transformation into this format also allowed these 
two maps to be extruded at a given value once in the Visualisation ToolKit. 
However, a disadvantage was the loss of details during the conversion. Thus, 
another DEM with more detailed features was produced from the original ras-
ter data, by using ParaView (https://www.paraview.org/). Nevertheless, this 
data cannot be extruded nor assigned with graded colours.  
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Figure 17. The (a) DEM and (b) slope maps converted to USGS DEM format, readable 
by VTK.  

Geovisualisation development  

When importing the different maps in VTK, an important preliminary step un-
dertaken was to consider how the layers were to be displayed. This is relevant 
if maps are to be overlaid during visual analyses, thus, their hierarchy must be 
considered. Point symbols were positioned on top of the hierarchy (Figure 18), 
allowing them to be visible, even without changing the opacity of the back-
ground map. This was followed by the polygon, and the background maps, 
which were lowest, allowing them to be displayed underneath the point and 
polygons features. It must be noted that even within each feature type group, a 
particular map can be positioned at a higher level.  

 
Figure 18. Display hierarchy of the different maps.  

Graphics and visualisation modelling in VTK  
The point features were all transformed into glyphs (spheres for the uncer-
tainty, cylinders for the slope and cubes for the flood depth) in VTK (Figure 
19aെc). The uncertainty information was assigned with graduated sizes ac-
cording to the uncertainty value (i.e. the bigger the glyph, the more uncertain 
it is). They were also classified into six classes using natural breaks, which was 



50 

used for assigning the colours. Red was used to represent the highest uncer-
tainty, and blue for the lowest. The cylindrical glyphs for the slopes were also 
set with varying sizes and colour based on the slope values. The flattest areas 
were represented by the smallest glyph size in yellow. The steeper the slope 
gets, the bigger the size and the darker the brown colour it becomes. The layer 
was also assigned with a default opacity of 0.25, to allow the uncertainty 
glyphs to be visible when turned on. The cubes representing the flood depths 
were scaled according to water heights and were coloured from green (lowest 
depth) to darkest blue (highest depth).  

All polygon features (Figure 19dെf) were assigned a default opacity value 
of 0.5 so that they would be visible when overlaid with other map layers. The 
colour assignments for the maps were: darker blue (i.e. representing deeper 
water) for the channel; light blue for the 100-yr flood extent; and light red for 
the uncertainty boundary, to indicate caution in these areas.  

The DEM and slope background maps were shown by default as non-ex-
truded layers. The DEM was assigned with colours from dark to lighter brown 
colours (i.e. low to high elevation), which is commonly used for representing 
geographic features according to elevation. For the slope, dark reddish brown 
was used for steep slopes, and light colours for the flattest areas.  

 
Figure 19. The different map layers in VTK. 
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Addition of cartographic elements 
Map elements necessary to facilitate reading and interpreting the information 
were included in the main geovisualisation window (Figure 20). The compass 
(upper right corner) and the coordinate axes (lower left) were added for orien-
tation purposes. The compass was basically used for controlling the orientation 
of the scene, while the coordinate axes gives the orientation of the map being 
displayed. The legend and scalar bars provide information on the meaning of 
the colours used in the map. The legends were used for representing point fea-
ture data, with discrete attributes. They were placed in the left part of the win-
dow, without overlapping each other. The scalar bars were used mainly for 
surface maps (i.e. the DEM and slope maps) that have continuous data. They 
were placed in the right-hand portion of the window. The visibility of the leg-
ends and scalar bars depended on the visibility of the map layer they represent. 
Additionally, a camera widget was added to record scenes. 

 
Figure 20. Cartographic elements included in the main window of the geovisualisation. 

Graphical User Interface (GUI) development 
Using the TkInter package, a graphical user interface was embedded in the 
visualisation model, to enable users to take more control of the visibility of the 
map layers (Figure 21). This added control from the user side can facilitate 
visual analyses of the flooding scenario. There were three main functions con-
trollable in the GUI: visibility, opacity and object size. Visibility lets a user 
choose the map, which will be visible (ON) or hidden (OFF) when using the 
geovisualisation model. Thus, all map layers were added with this functional-
ity. The control for opacity in the GUI was added primarily for the slope and 
flood depth glyph maps and the three polygonal maps. Since these layers can 
be overlaid on the background maps or to each other, users may opt to change 
their transparency when visualised with the other layers. Adjustment of glyphs’ 
sizes, and extrusion of elevation heights and slope values at the z-direction can 
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also be changed by the user to add distinctiveness to the features being repre-
sented. 

 
Figure 21. The graphical user interface, with the different functionalities. 

3.6.2 2D and 3D flood uncertainty geovisualisation  

For Papers III and V, there were four different flood uncertainty representa-
tions created that were later on evaluated in the two different user studies. Each 
visualisation is described briefly in the following subsections. All visualisa-
tions employed map pair presentation approach (MacEachren, 1992). 

 

2D contextual information and flood uncertainty map 

In the 2D contextual model and flood uncertainty map geovisualisation model, 
both the orthophoto and the flood uncertainty map were displayed in 2D (Fig-
ure 22). The flood uncertainty information was derived from the entropy-like 
measure produced by applying the ௝ܵ equation (Equation 19). This gives a se-
quential continuous predicted uncertain flooding status ranging from 0 (cer-
tain) to 1 (uncertain). The certain condition ( ௝ܵ=0) was assigned to black, while 
the highest uncertainty ( ௝ܵ=1) was white. This is similar to the representation 
used by Scholz and Lu (2014), in using value to express degrees of uncertainty 
(from i.e. minimum to maximum uncertainty). This type of data representation 
also gives more contrast, by highlighting medium to highly uncertain regions, 
which makes them immediately visible. 
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Figure 22. 2D contextual information and flood uncertainty map.  

3D contextual information and 2D flood uncertainty map 

The 3D contextual information and 2D flood uncertainty map model used the 
same uncertainty map as the first model, but the contextual information was 
displayed in 3D.  The orthophoto, was draped over an extruded digital eleva-
tion model (Figure 23). The contextual information was also added with func-
tionalities to allow rotating and zooming in and out of the model. With the 3D 
model, a clearer topographic and environmental perspective that is necessary 
for understanding the physical processes that contribute or affect, e.g. the flow 
of flood water is made possible ( Price & Vojinovic, 2008; Mitasova, Harmon, 
Weaver, Lyons, & Overton, 2012). Moreover, users can have more control of 
the 3D visualisation, which can help them to further explore, or investigate the 
area. 

 
Figure 23. 3D contextual information and flood uncertainty map.   



54 

Performance bars 

Instead of using a map to represent uncertainty, performance bars were used 
to depict the predicted uncertain status at the location where the cursor was 
pointed (Figure 24). There were 50 bars used to represent the individual simu-
lation result from the binary map (ݓ௜௝, Figure 6). Each bar has its correspond-
ing size, which was based on its computed likelihood weight (ܮ௜), i.e. how 
likely it is to reference data, based on the performance measure. The longer the 
size of the bar, the higher its likelihood value is. This is a similar uncertainty 
representation used, e.g. in MacEachren et al. (2012), when using size. The 
bars were arranged from longest to shortest in the visualisation. 

 
Figure 24. The performance bars used for the geovisualisation. Flood and dry statuses 
were represented by red/green in Paper III (left), and blue/brown in Paper V (right).  

The predicted status at the given location was indicated by the bar’s colour. A 
binary colour scheme was employed to indicate flooding and dry conditions of 
the cell at the cursor position. In Paper III, red/green were used  to indicate 
flooding/dry statuses due to the association that can be made to unsafe/safe 
regions (Van der Wel, Hootsmans, & Ormeling, 1994). However, in Paper V, 
the colours adopted were blue/brown, which were based on the association of 
these colours to water/land, according to an informal survey.  

Dual-ended colour map  

A new colour map for dual-ended information was proposed in Paper V. The 
main uncertainty information to which this colour scheme was applied was the 
results based on the ܥ௝ equation (Equation 18). This equation produces a cost-
weighted probability map, wherein there are two separate conditions being rep-
resented by the extreme values (i.e. ܥ௝=1 is flooded, while  ܥ௝=0 is dry). Un-
certainty is denoted by the middle critical value (ܥ௝=0.5). This type of infor-
mation can be represented using a dual-ended/diverging colour scheme 
(Brewer, 1994, 1996). For the minimum and maximum values, binary colours, 
which can be associated to the represented statuses, are suggested by Brewer 
(1994) to be applied. Thus, blue/brown were used for representing the oppos-
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ing statuses. Highly uncertain status was depicted by grey. The usage of un-
saturated colour, such as grey to signify uncertainty is a logical choice accord-
ing to MacEachren (1992). 

 
Figure 25. The dual-ended colour scheme applied to the cost probability (ܥ௝) map in Pa-
per V.  

In designing the colour scheme, several pivotal points were assigned to differ-
ent base colours that served as control points in the colour interpolation per-
formed (Table 11). The interpolation allows the generation of colour sequences 
to be applied. Additionally, linearization was performed to attain perceptually 
equal differences between the colours used.  The suggested colour map can 
also be used to indicate the ௝ܵ condition, based on its relationship to ܥ௝ values 
(cf. Figure 9).  

Table 11. Pivotal points and the corresponding based colours assigned for the dual-
ended colour map presented in Paper V. 

 

 
 ࢐࡯ 

	
 ࢐ࡿ

 
CONDITIONS 

BASE 

COLOUR 
 

RGB 
CONTINUOUS 

PALETTE 

1 0 Certain to be 
flooded 

Blue R: 70 
G: 62 
B: 174 

            

0.75 0.81  Blue-
grey 

R: 166 
G: 153 
B: 204 
 

 

0.5 1 Uncertain Grey R: 89 
G: 89 
B: 89 
 

 

0.25 0.81  Brown-
grey 

R: 189 
G: 186 
B: 62 
 

 

0 0 Certain to be 
dry 

Brown R: 130 
G: 106 
B: 74 
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3.6.3 Flood certainty maps   

The quantified uncertainty or sensitivity of the model can be visualised in dif-
ferent ways, as what is presented in the previous sections. There can be differ-
ent visual variables, map types and even abstraction that can be employed to 
facilitate reading the map. However, users may also have different ways of 
interpreting them, based on their understanding of the information. Thus, dif-
ferent types of uncertainty information were produced and created using dif-
ferent mapping techniques, to find out how users employ them in planning-
related decision-making tasks. 

In creating these maps, the two main uncertainty data used were the aggre-
gated maps from applying the ܥ௝ and ௝ܵ equations (Figure 26). The data used 
here were not the same as the ones used in the previous geovisualisation mod-
els under 3.6.2, since model sensitivity accounted for here included higher and 
lower resolution DEMs (1െ5, 10, 15, 20, 25 and 50 m), comprising an ensem-
ble of 100 simulations. Both maps originally contain continuous data, which is 
usually presented as surface maps. The ܥ௝ data can be used to produce a dual-
ended, sequential (probability) or even a binary (if reclassified in only two 
classes) maps. The ௝ܵ data, on the other hand, can only produce a sequential 
map. However, unlike the sequential probability map, the semantics used for 
expressing certainty is not the same, since the uncertainty of the condition is 
being emphasised in this map The colours used were derived from Color-
Brewer (Brewer, Hatchard, & Harrower, 2003), and were selected to be suita-
ble for colour-blind persons.    

 
Figure 26. The original aggregated maps based on applying the ܥ௝ (left) and ௝ܵ (right) 
equations. 
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Dual-ended certainty maps 

There were three static certainty flood maps created from the original ܥ௝ data. 
The coloured surface map (Figure 27a) gives a continuous representation of 
the certainty status. The choropleth (Figure 27b) and the graduated symbol 
maps (Figure 27c) were used for discretised information.  

 
Figure 27. The three dual-ended certainty maps showing (a) continuous predicted flood-
ing status through a surface map, and the discretised maps using (b) choropleth, and (c) 
graduated symbol mapping techniques. 

The surface map was created directly from the original ܥ௝ data, without altering 
the original data values. A dual-ended colour scheme was adopted for repre-
senting the two conditions: flooded=blue and dry=brown. The degree of cer-
tainty was represented by colour lightness: the darkest colour was the most 
certain condition, while the lightest was the least. This was based on the same 
representation for certainty used in Edwards and Nelson (2001), Aerts, Clarke, 
and Keuper (2003), and MacEachren et al. (2012). In the legend used in the 
map, the conditions representing the values were used, instead of the original 
numeric information  

In the choropleth dual-ended map, the original conditions were reclassified 
into eight categories. The first half represented certainty to be dry (ܥ௝=0 to 0.5), 
while the other half is certainty to be flooded (ܥ௝=0.5 to 1). Both certain to be 
dry (ܥ௝=0) and flooded (ܥ௝=1) belonged to separate class. The rest of the values 
were classified using equal intervals (Table 12). Furthermore, the big dry area 
outside of flood zones, was also eliminated in the map to further simplify the 
visualisation.  
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Table 12. Different map types used, and the classification and colour assignment for the 
different categories in the dual-ended map. 

 
ORIGINAL  
 ࢐࡯

 
CATEGORICAL 
CONDITIONS 

 
BASE 

COLOUR 

 
RGB 

MAP AND DATA TYPES 

Surface 
map  

(cont.) 

Choro-
pleth 
map  

(disc.) 

Grad. 
sym-
bol 

(disc.) 

 

1 

C
er

ta
in

ty
 t

o
 b

e 
fl

o
o

d
ed

 

 

Flooded 

 

 

 

 

 

Blue 

R: 33 

G: 102 

B: 172 

 

  

 

0.833െ0.999 

 

High 

R: 67 

G: 147 

B: 195 

  

 

0.667െ0.833 

 

Med. 

R: 146 

G: 197 

B: 222 

  

 

0.5െ0.667 

 

Low 

R: 209 

G: 229 

B: 240 

  

 

0.333െ0.5 

C
er

ta
in

ty
 t

o
 b

e 
d

ry
 

 

Low 

 

 

 

 

 

Brown 

R: 246 

G: 232 

B: 195 

  

 

0.167െ0.333 

 

Med 

R: 223 

G: 194 

B: 125 

  

 

0.001െ0.167 

 

High 

R: 191 

G: 129 

B: 45 

  

 

0 

 

Dry 

R: 140 

G: 81 

B: 10 

  

In the graduated symbol map, size was used additionally to provide an imme-
diate cue of the estimated quantities being represented, and to improve the 
readability of the difference in the data being presented (Bertin, 1983). Largest 
size was used to indicate certainty, while smallest size signifies the lowest cer-
tainty status (MacEachren et al., 2012). In producing this map, the original ܥ௝, 
which has 1 m resolution, was transformed to 50 m grid. This was then con-
verted to point symbols (squares). The squares were then assigned with sizes, 
according to the ܥ௝ value extracted at the particular location. A certain location 
was represented by a square having a size of 50 m ൈ 50 m, covering the entire 
grid. High to low certainty statuses were assigned with 37.5 m ൈ 37.5 m, 25 m 
ൈ  25 m, 12.5 m ൈ 12.5 m sizes, respectively. The symbol sizes compensated 
the scale used for mapping, allowing them to be visible and discernible. 
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Sequential certainty maps 

Two sequential maps were produced from the original data. The first sequential 
maps show the weighted flooding probability status (Figures 28a and b). They 
were derived from the ܥ௝ data by multiplying the value with 100. Highest prob-
ability is indicated by 100, while the lowest is 0. Since the information being 
represented is the flooding status, a base colour of blue was used. The degree 
of certainty was again signified by value, i.e. the most certain being the darkest. 
As the flooding probability gets lower, the colour gets lighter. White areas rep-
resent the non-flooded areas in the map. In the discretised flood probability 
map, the original values were classified into five equal intervals, and were as-
signed using the colour scheme presented in Table 13. The white (dry areas) 
were eliminated from the legend, to indicate that they are dry areas.  

 
Figure 28. (a) Continuous and (b) discrete flood probability maps. 

Table 13. Reclassification of original ܥ௝ values and the colour assignment used for the 
sequential probability surface and choropleth maps. 

ORIGINAL ࢐࡯ PROBABILITY TO 

BE FLOODED 
 

RGB 

MAP AND DATA TYPE 

SURFACE MAP  
(CONTINUOUS) 

CHOROPLETH MAP  
(DISCRETE) 

 

80-100 

 

100 

R: 8 

G: 81 

B: 156 

 

 

 

60 െ80 

 

80 

R: 49 

G: 130 

B: 189 

 

 

40െ60 

 

60 

R: 107 

G: 174 

B: 214 

 

 

20െ40 

 

40 

R: 189 

G: 215 

B: 231 

 

 

1െ20 

 

20 

R: 239 

G: 243 

B: 255 
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The remaining sequential maps were derived from the ௝ܵ data, where highly 
uncertain status is numerically equivalent to ௝ܵ=1, while certain to be 
dry/flooded is ௝ܵ=0. To make the values’ representation consistent with the 
recommendations of Brewer (1994a) and MacEachren et al. (2012), according 
to which higher certainty status should be represented by the highest values 
and vice versa, the original ௝ܵ data was inverted by applying Equation 22. This 
highlights the certainty condition, rather than the uncertainty, which is what 
the original information represents. 

௝ܵ,௜௡௩ ൌ ሺܵ௝ெ௔௫ െ ௝ܵሻ ൅	 ௝ܵெ௜௡                                                                    (22) 

The different maps produced from this data are shown in Figure 29. When 
discretising the information, four classes were used. The certain condition was 
again separated from the rest of the classes, and the remaining statuses were 
classified to high, medium, and low certainties to be flooded. For the graduated 
symbol map, the same technique was applied in producing the graduated sym-
bol maps for the dual-ended certainty information.  

 
Figure 29. Sequential maps showing degrees of certainty to be dry/flooded using the 
different mapping techniques: (a) surface map; (b) choropleth map; and (c) graduated 
symbol map.     

Colour and value were the main visual variables used for the surface (Figure 
29a) and choropleth (Figure 29b) maps. A grey colour scheme following a se-
quential lightness step (certain=dark, and low certainty=light, Table 14) was 
mainly used, to avoid misinterpretation of the status being depicted, which is 
either dry or flooded. The graduated symbol map only used size as the graph-
ical variable for representing the condition. All symbols were assigned with 
the same colour (R:37, G:37, B:37).  
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Table 14. The reclassified values and representation used for the sequential certainty 
status.  

 
INVERTED  

 ࢐ࡿ

 
CERTAINTY TO BE 

DRY/FLOODED 

MAP AND DATA TYPE 

SURFACE MAP  
(CONT.) 

CHOROPLETH MAP 

(DISC.) 
GRAD. SYM-

BOL (DISC.) 

1 Certain  

 

 

 

R: 37 
G: 37 
B: 37 
 

  

0.666െ0.999 High 
R: 115 
G: 115 
B: 115 
 

  

0.333െ0.666 Medium 
R: 189 
G: 189 
B: 189 
 

  

0െ0.333 Low 
R: 240 
G: 240 
B: 240 
 

  

Binary map  

The binary map was also derived from the original ܥ௝ data by discretising the 
values into two classes: flooded and uncertain. All cells having ܥ௝ values from 
0.05 to 1 were classified as certain to be flooded, while those having values 
from 0.01 to 0.5 were classified as uncertain. This reclassification categorises 
the predicted condition on the upper half of the ܥ௝ values (i.e. ܥ௝>0.5) to be 
flooded, to avoid selecting these areas. While those on the dry side were all 
uncertain. The certain to be dry areas (ܥ௝=0) were eliminated in this map, which 
is automatically the white area in the background having no information.  

When representing the statuses, colour was the main visual variable used, 
primarily for being able to easily identify the conditions displayed. Blue was 
assigned to flood zones, while red was used to imply uncertainty in a similar 
way used in Aerts et al. (2003), and Tak and Toet (2014) (Figure 30). 

 
Figure 30. The binary map representing certain (blue) and uncertain (red) conditions. 
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3.7 User evaluation 

Flood geovisualisation models (Sec. 3.6.2) and the static certainty maps (Sec. 
3.6.3) were evaluated in different user studies to be able to assess how users 
make decisions using them, and to find out how effective or intuitive they are 
in conveying their messages. Both quantitative and qualitative methods were 
employed in the user assessment. The quantitative method was mainly used for 
measuring decision-making task performances using the different geovisuali-
sation models and maps, while questionnaires were used for understanding the 
users, their perspectives of the tasks and using the uncertainty information.  

3.7.1 User evaluations 1 and 2  

In the first (Paper III) and second (Paper V) user studies, it was assumed that 
the different geovisualisation can lead users to choose different locations, de-
pending on how they interpret the displayed uncertainty information. Further-
more, different visualisation models can affect users’ times to solve the tasks.  

Task design and procedure 

The task was designed where participants have to act as planners and decide 
whether they will permit construction at the site (Figure 31) proposed (pre-
ferred location) by the homeowner, on the basis of the flood condition in the 
area. If deemed risky, participants are allowed to move the site to another lo-
cation (i.e. decided position), which they think is safer. To limit the participants 
from randomly choosing locations anywhere in the study area, they were only 
allowed to select the location from a pre-defined line, extending from the pre-
ferred site to some extent along the floodplain.  

 
Figure 31. (a) One of the stimuli to be assessed by the participants. The preferred home-
owner’s location is marked in green, while the location that will be allowed for construction 
(decided position, purple), can be chosen anywhere along the yellow line. (b) The equiv-
alent stimulus in 3D used in one of the conditions in Paper III. 
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To make the participants take into account possible consequences of their de-
cisions, different dilemmas were presented to them: (1) homeowners will be 
more likely to pursue with the project, if the site is located closer to the pre-
ferred site;  this can be advantageous to the municipality in terms of generating 
new revenues through property tax: (2) deciding on a location farther from the 
homeowner’s site preference may lead to backing out from the project, which 
can be a loss to the municipality; and (3) if building permit is released in a site 
that can possibly be flooded, the municipality is legally responsible to damages 
incurred due to inundation, for the next 10 years.  

In both user studies, the stimuli used were based on 14 preferred positions 
(Figure 32). The different conditions used for the assessment were the different 
uncertainty geovisualisation models presented in Section 3.6.2. For Paper III, 
these were the ௝ܵ (uncertainty) maps with 2D (Figure 22) and 3D (Figure 23) 
contextual information, and the performance bars (Figure 24a). In Paper V, the 
dual-ended ܥ௝ map (Figure 25) was additionally used, aside from the 2D ௝ܵ 
map and performance bars (Figure 24b), which was altered in colour. All con-
ditions used were presented in map pairs, where the contextual information 
(orthophoto) was displayed next to the uncertainty map. The user tests were 
programmed using VizardTM (WorldViz, http://www.worldviz. 
com/). Each test comprised 42 trials (3 conditions ൈ 14 stimuli), which were 
randomly displayed to the participants. They were self-paced, with no imposed 
time limit to solve the trials. It was emphasised to participants that solving the 
task is more important than speed. 

 

 
Figure 32. The preferred locations in the 14 different stimuli used in user evaluations 1 
and 2.  
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Questionnaire design 

The questionnaires in both user studies comprised of open and close-ended 
questions.  The former allowed free text answer possibilities, while the latter 
consisted of Likert Scales, Yes/No, and multiple-choice type questions. There 
were 16 (Paper III) and 20 (Paper V) questions used in the two user studies. 
They were categorised to five themes, namely: (1) familiarity on flood maps 
and flood-related questions; (2) applicability of the different visualisations in 
decision-making; (3) helpfulness of the uncertainty information in decisions 
made; (4) strategies used when making decisions using the different visualisa-
tion. The fifth theme varied with the user evaluation. In user evaluation 1 (Pa-
per III), the question focused on the 3D visualisation used, while in the second 
evaluation (Paper V), the effects of the contextual information in the decisions 
were explored.   

Procedure and implementation 

Prior to the actual user evaluation, written instructions, together with the ques-
tionnaire, which was sealed in an envelope, were distributed to the participants. 
The instructions provided background on flood uncertainties, descriptions of 
the different visualisation used, an explanation of the tasks to be performed, 
and the control keys to be used.  

Participants 

The first user study (Paper III) was conducted in February 2015 at the Univer-
sity of Gävle Sweden. There were 25 students (14 females and 11 males) com-
ing from bachelor and master study programmes in the Land Management Di-
vision (Geomatics, Land Surveying, Spatial Planning and Computer Science 
and Geographical Information Technology), who took part in the study. Their 
age ranged from 21 to 47 years.  

The second user assessment (Paper V) took place at the University of Ghent 
in Belgium, in April 2015. There were two sessions held to accommodate two 
groups of bachelor students from the Engineering and Geography departments. 
The total number of students who participated were 83 (30 females and 53 
males), with ages ranging from 20 to 27 years. 

3.7.2 User evaluation 3  

In the third user evaluation (Paper VIII), it was presumed that different cer-
tainty maps can lead participants to choose different locations, and the task to 
which a visualisation is applied can also influence their choices. Additionally, 
such decisions may or may not be affected by the background of the partici-
pants. Thus, an online survey was conducted to find out how users employ the 
different certainty maps in planning related tasks, and to know their perception 
of certainty maps as used in similar tasks and decision-making.  
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The survey was primarily designed to be conducted online, to allow more 
participants to be reached (Aerts et al., 2003; Roth, 2009), particularly the dif-
ferent groups of practitioners. The evaluation was developed in Psytoolkit 
(Stoet, 2010, 2017). There were two main parts of the survey. The quantitative 
parts included measuring performance of participants in solving two planning 
tasks and determining their map preference. The qualitative part of the survey 
comprised of questionnaires that participants had to answer. 

Participants were contacted through e-mail explaining the purpose of sur-
vey and by describing how uncertainty was accounted for in the maps used in 
the different tasks. The link to the survey was also included in the e-mail. In-
structions for each task were embedded in the survey. After performing the 
third task, the questionnaire followed. This was a self-paced survey, with no 
imposed time limit to solve the different tasks. It was emphasised in the e-mail 
that the main focus of the analysis was their answers.        

Task procedure 

There were three tasks included in the user assessment. The first two tasks 
involved making decisions based on the provided maps, while the third task 
was mainly for knowing the certainty map preference of the users. The nine 
certainty maps used as conditions in the different tasks are presented in Sec. 
3.6.3. All certainty maps were presented together with the orthophoto of the 
area employing the map pair presentation approach (MacEachren, 1992).  

Task 1 
In this task, participants had to determine whether a requested site by a home-
owner is to be allowed (Yes) or not allowed (No) for construction. This is sim-
ilar to a planning task, wherein planners have to grant building permits depend-
ing on the condition of the requested location. There were four requested sites 
used for this task (Figure 33a). Each of the sites has its corresponding status 
depending on the map used (Table 15). Aside from providing a Yes/No answer, 
participants had also to give their confidence in their response through a Likert 
Scale of 1 (not confident) to 5 (highly confident), similar to the assessment 
made in (Roth, 2009) (Figure 33b).   

Each participant had to solve 36 trials for this task (i.e. for the 4 different 
targets ൈ 9 certainty maps). Presentation order for each trial was randomised 
for all participants to avoid learning effect.  
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Figure 33. (a) The positions of the requested sites, and (b) a sample task to be solved, 
where they have to decide whether the requested location will be allowed or nor allowed 
for construction. 

 

Table 15. The statuses of the sites in the different certainty maps. 

 
 

FLOOD CERTAINTY 
MAP 

TARGET 1 TARGET 2 TARGET 3 TARGET 4 

Dual-ended (ܥ௝),  

surface 

1 (Flooded) 0.513 0.025 0.333 

Dual-ended (ܥ௝),  

choropleth 

Certain to be 
flooded 

Low certainty to 
be flooded 

High certainty 
to be dry 

Low certainty to 
be dry 

Dual-ended (ܥ௝),  

graduated symbol 

Certain to be 
flooded 

Low certainty to 
be flooded 

High certainty 
to be dry 

Low certainty to 
be dry 

Sequential (probability), 
surface 

100% 51.33% 2.5% 32.98% 

Sequential (probability), 
choropleth 

100% 60% 20% 40% 

Sequential ( ௝ܵ),  

surface 

1 (Certain to be 
dry/flooded) 

0 0.83 0.085 

Sequential ( ௝ܵ),  

choropleth 

Certain Low High Low 

Sequential ( ௝ܵ),  

graduated symbol 

Certain Low High Low 

Binary Flooded Flooded Uncertain Uncertain 
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Task 2 
In the second task, participants were given the choice to select a location for 
project development, based on the flooding condition in the area, and the land 
use from the orthophoto, which can both constrain decisions. This task is com-
parable to the ones undertaken as part of project planning, where prospective 
locations suitable for a specific project are identified. In identifying suitable 
project locations, different maps are often used in deciding the site.  

To limit participants from randomly selecting locations, their choice was 
constrained by an area measuring 450 m ൈ 450 m (Figure 34b). There were 
four target areas, where participants had to decide the location (Figure 34a) 
using the nine certainty maps, leading to 36 trials that had to be solved. As in 
Task 1, participants were also asked to rate their decision confidence in their 
location choices.  

 
Figure 34. (a) Areas where participants had to select locations for project development, 
and (b) the sample task to be solved for Task 2. 

Task 3 
In evaluating the map preference of participants, the different certainty maps 
(Figures 26െ30) were presented to them in pairs (Figure 35). For each pair, 
they had to select the map that was helpful in identifying the risk condition at 

the given site. Task 3 consisted of 36 pairwise comparisons (ଽ
మିଽ

ଶ
), allowing all 

maps to be paired with each other.  

Questionnaire design 

There were about 35 open and close-ended questions that were answered by 
the participants for this study. The questions used consisted of deriving infor-
mation on: participants’ background (age, gender, education, GIS/hydrology 
knowledge); (uncertainty) decision-making perspectives; map familiarity and 
usage; certainty maps viewpoints and map preferences; insights on the tasks; 
and usage of contextual information.  
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Figure 35. Example map pairs used for the pairwise comparison in Task 3.  

Participants 

Three groups of participants were chosen for the user evaluation, to be able to 
determine if there will be differences in their response to both the tasks and 
questionnaire. This can be an important determinant of their understanding of 
the certainty information provided to them (through the flood certainty maps) 
and the decisions they make (MacEachren, 1992). As shown in earlier studies, 
participants having different backgrounds solve decision-making tasks when 
presented with certainty information in different ways (Edwards & Nelson, 
2001; Roth, 2009). Additionally, the results of Roth (2009) showed that differ-
ent participant groups can have different ways of comprehending risks, which 
influence their decisions.  

A total of 45 participants performed the quantitative part of the user evalu-
ation by solving the different tasks. 13 of them were master and bachelor stu-
dents from the University of Gävle within the Geospatial Information Science, 
Geomatics Spatial Planning and Land Surveying study programmes. The other 
two groups consisted of practitioners from Sweden (22) and the Philippines 
(10), who work mainly in municipalities and other government agencies.  

Forty-two (11 students; 21 from Sweden; and 10 from the Philippines) out 
of the 45 participants answered the accompanying questionnaire. Age range of 
those who responded was 21 to 60 years old, with majority within the age 
bracket of 31 to 40 years of age. All respondents (with the exception of the 
three senior undergraduate students) have at least a bachelor’s degree. Some 
participants, particularly from Sweden, have even their post graduate degrees. 
Participants from the Philippines are employed in different offices in the gov-
ernment. Nine of them work within general administration, while one is head 
of division. The Swedish group consisted of people working as planners, ar-
chitects, researcher, GIS and project engineers, IT staffs, operations developer, 
environmental strategist, heads of department, as well as administrative work-
ers. Most of the students and Swedes have knowledge in GIS or hydrology, 
while there was only one from the Philippine group who has this knowledge.  
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Chapter 4.  

Summary of papers, discussion and 

contributions  

Papers included in this dissertation focused on three areas to help answer the 
research problem: 1) modelling and uncertainty analyses (Papers I, III IV and 
VI); 2) mapping and geovisualisation (Papers II, III, V, VII and VIII); and 3) 
user assessment (Papers III, V and VIII) (Figure 36). The modelling part in-
cluded GIS pre- and post-processing, hydraulic simulations, the sensitivity and 
uncertainty evaluation of model performance, and the mapping of uncertain-
ties. It addresses the first and second research questions on how uncertainties 
can affect the model outputs and how they can be represented in maps. Map 
and geovisualisation model development focused on the conceptualisation and 
design of the uncertainty information derived in the flood modelling and un-
certainty analyses parts. Research questions 2 to 4 are dealt with in this part. 
User assessment, which is centred on the design of tasks and carrying out quan-
titative (performance evaluation) and qualitative (questionnaire) studies, has 
its purpose to find out how the different uncertainty models developed from 
the previous steps are comprehended and utilised by users in decision-making 
tasks. This helps understand the effectiveness and usefulness of the uncertainty 
representations when making decisions (Research question 3 and 5), and how 
users perceive the inclusion of uncertainty information in the maps (Research 
question 6). 

 
Figure 36. Main research topics in the dissertation.   
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4.1 Paper I: Importance of river bank and floodplain slopes 
on the accuracy of flood inundation mapping 

Paper I investigates and quantifies the inaccuracies of flood results generated 
from a one-dimensional HEC-RAS model. There were two cases studied in 
this paper: the Eskilstuna River (Brandt, 2009) and Testebo River (Lim, 2011) 
in Sweden. The causes of uncertainties affecting prediction results (particularly 
the inundation extents) that were examined in the paper were the resolution of 
the DEM and the river side slope. For the Eskilstuna River, degenerated DEMs 
were used, while for the Testebo River, LiDAR combined with bathymetric 
data, and a 50 m elevation data from the Swedish Mapping, cadastral and land 
registration authority that was supplemented with bottom elevation were ana-
lysed.   

There were four main findings derived from this study: 

1) Regardless of the DEM resolution and the study area, inaccuracy in 
the results of the model became higher as the topography gets flatter. 
At steeper slopes, the disparity between the model and the validation 
data was smaller. 

2) Lower resolution DEM further increased the inaccuracy of the model. 
3) Errors induced by the modeller (in the cases used) were minimal 

compared with the effect of using lower resolution data. 
4) How big the uncertainties accounted for also depended on the study 

area.   

The first result was evident after plotting the river side slope against the meas-
ured disparity between the modelled and the reference data, using the different 
resolution DEMs in the two study areas. All results showed an inverse rela-
tionship, wherein higher disparities were derived at lower slopes (i.e. flat ar-
eas). From here, it can be deduced that in areas that are naturally flat, the results 
of the model in delineating the flood boundaries will be highly uncertain. In 
areas bounded by steep side slopes, water can be confined within a certain area. 
In this case, the water depth is increased vertically, rather than horizontally. 
Once the water level exceeded a vertical height threshold, it can expand later-
ally.  

The increase in inaccuracy of results when using lower resolution data may 
be caused by the smoothing effect in the DEM, which can be brought about by 
the process of converting them from the original resolution to a lower resolu-
tion data. This leads to loss of details in the topography, making them flatter, 
especially with the lowest resolution Digital Elevation Models.  

Errors brought about by the modellers are caused by the differences in the 
decisions they make throughout the modelling process. This is in terms of the 
data and the methods of processing them, the cross-section generation, han-
dling the model and choice of model parameter and inputs used. But since the 
data and modelling performed were mostly similar to each other, the effect of 
the modellers to the prediction output was minimal. However, if there is a big 
discrepancy in modelling decisions made, as well as the type of data used, it is 
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possible that there can be greater error between the results produced by two 
modellers.  

The two study areas, although having similarities in the disparity trends, 
produced different results in the uncertainty analysis. Poorer results were de-
rived for the Testebo River, which can be attributed to the accuracy of the val-
idation data that was used for deriving the disparity. As mentioned in the paper, 
the Eskilstuna River had no historic flood event to which the disparity can be 
accounted for. Instead it used the original resolution (non-degenerated) DEM. 
Furthermore, difference in results in the two study areas may also be affected 
by the dominant characteristic of the site being studied. If it is dominated by 
huge flat floodplains, then it is possible that there will be more inaccuracy in 
this area, than in an area dominated by steeper slopes.  

4.2 Paper II: Geovisulisation of uncertainty in simulated 
flood maps 

Geovisualisation of predicted flooding scenario for a specific flood event can 
be an important support tool that can aid planning and flood risk management. 
With flood visualisation, areas that are at risk of flooding can be identified or 
be used for creating scenarios. Thus, the aim of the paper was to show how 
uncertainties from hydraulic modelling can be visualised and incorporated in 
the 3D geovisualisation of predicted flooding conditions, and how they can be 
used for visual analysis of floods and exploration of spatial relationships. Ad-
ditionally, an important phase in the development of the geovisualisation 
model was the process undergone by the different map layers and objects used, 
and their design. In order to meet the aim, a 3D visualisation model (Figure 
37) was created using the Visualisation ToolKit. Prior to the creation of the 
model, there were several steps undertaken to prepare the different maps that 
constituted the information to be visualised. These were all described in Chap-
ter 3, Sec. 3.6.1. 

The design considerations applied in the geovisualisation have been im-
portant part of creating the model. These included the initial display of the 
visualisation, hierarchy of the spatial objects to be visualised, the type of ge-
ometry to represent the different features, the visual variables (size, colour, 
value) applied to the different geographic features in the map, the type of con-
textual information to be included, and the basic functionalities in the graphical 
user interface. The adoption of cartographic principles in the 3D representa-
tions was also significant part of the design, since geographic data are repre-
sented in the visualisation.  

Moreover, in creating the model, it was also avoided to have much of the 
processing of the maps within the program. Since geovisualisation models uti-
lise numerous map layers, and different transformation steps to attain their fi-
nal forms, this was minimised by performing most of the transformation such 
as conversion and filtering, externally from the geovisualisation program. Most 
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of these tasks were performed in the data preparation stage. This allowed faster 
rendering of object and scenarios in the 3D scenes.                                                                              

 
Figure 37. The 3D geovisualisation model with flood uncertainty information.  

Nevertheless, it must be noted that the entire pipeline followed in both prepar-
ing the map layers and the development of the model (cf. Figure 14) also in-
cluded different decisions that affected how the data appeared in the final vis-
ualisation. All these transformations that the data underwent are forms of ab-
straction (MacEachren et al., 2005). These steps are necessary in maps and 
other geovisualisation models, to avoid cluttered information, to attain more 
visually appealing visualisations or to augment the representation. However, 
they also altered the original data, causing information to be lost, as shown in 
Figure 38.  Here, it was chosen to use more randomly distributed points instead 
of the original equally-spaced points (at 5 m) from the uncertainty information 
to avoid gridded appearance. But in the final output, it led to some locations 
having no entropy information, while in others, they were more clustered.   
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Figure 38. The effect of using randomly distributed points to represent uncertainty.                                         

In some cases, it also became difficult to adhere to visualisation design princi-
ples. An example was the use of the colour representation for the entropy 
glyphs. The rainbow colour representation is not an optimal colour choice for 
representation due to its lack of perceptual ordering (Borland & Taylor, 2007). 
But in this case, it was used more for selective purpose, allowing one to easily 
identify the entropy and match it with the legend. This also makes them iden-
tifiable even when overlaid with the slope glyphs. Otherwise, it will be difficult 
for both glyphs to be distinguished from each other if the two of them follow 
a sequential colour scale, particularly for the lightest colour.   

Moreover, the classification method used, i.e. natural breaks, also affected 
the representation of the information, particularly the uncertainties.  If equal 
interval, for instance was used, the range of values will not be similar, leading 
to a different colour and size representation for the glyphs. As an example in 
the legend in Fig. 38, the last class was from 0.57 to 1 using natural breaks 
method for classification. This large range of values in the last uncertainty class 
will visualise most of the glyphs in red colour and with the largest sizes. If 
equal interval is used, there can be fewer red and large glyphs, since there will 
be smaller interval for the last class. Thus, this representation of colour and 
size according to class breaks may also influence how one views the uncer-
tainty information. As what Brewer (2006) mentions, different classification 
schemes can produce various results and visual patterns. Yet, also according 
to her, this is a natural problem because there is no exact way of how to effec-
tively class a data. This must be tested to the data that one is classifying and 
determine which method can convey well the message in the map. 

The different user decisions in creating a geovisualisation model impact the 
visualisation and the information being conveyed, and its eventual interpreta-
tion by the user. This leads to another issue known as the uncertainties in vis-
ualisation (Brodlie et al., 2012). Although there are already uncertainties in the 
modelling and assessment of model prediction output, there are also uncertain-
ties involved in the visualisation pipeline that affect the final information being 
imparted.  
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4.3 Paper III: Visualisation and evaluation of flood 
uncertainties based on ensemble modelling 

Three different uncertainty geovisualisation models, namely the aggregated 
entropy-like measure of uncertainty ( ௝ܵ) with 2D and 3D contextual infor-
mation, and the performance bars (Figures 22‒24a), were evaluated through 
user assessment (cf. Sec. 3.7.1) to determine how users make geographic deci-
sions using the information provided to them. Task performance of users was 
quantitatively measured in the task through: 1) the distance of their chosen 
location from the (target) stimuli given; 2) the predicted flooding status of their 
selected sites; and 3) the time they needed to solve the task. The questionnaire, 
on the other hand provided qualitative evaluation of the uncertainty geovisual-
isation models used and the task undertaken by the participants.  

The location decisions made by the participants were influenced by the type 
of uncertainty information (aggregated ௝ܵ vs. performance bars), rather than 
the accompanying contextual information. There was significant difference in 
distance of the chosen location from the target when using the performance 
bars against the 2D and 3D ܵ ௝ maps. Longer median distance was evident when 
the performance bars were used, but there was less variation in the response 
of the participants. This geovisualisation model also allowed them to totally 
avoid flooded areas, but at the same time, there were also more participants 
who chose uncertain locations using it. A possible reason for the better perfor-
mance using the performance bars can be attributed to the visual variables used 
for representing uncertainty, particularly colour. As described in Sec. 3.6.2, the 
status of a given location where the cursor is pointed was represented by indi-
vidual simulations results through 50 colour-coded bars (green=dry and 
red=flooded). The sizes of the bars indicate the likelihood of the particular 
simulation result to the reference data. If the bars are all red, it denotes that this 
location is flooded. Thus, it has to be avoided. The degree of certainty to be 
dry or flooded can easily be represented by the dominance of one colour in the 
series. This technique employed in using the performance bars also came out 
in the participants’ answers in the questionnaire, when asked how they decided 
with the said visualisation. On the other hand, the ௝ܵ uncertainty map became 
more difficult to interpret, due to the same colour (black) used for representing 
certain to be flooded or dry areas. This loss of clear distinction between the 
statuses was due to the transformation made in applying the equation (Sec. 
3.4.4), assigning the two statuses to a value of 0.  

On the contrary, time varied among the different visualisations. Models in-
tegrated with functionalities, which allow users to interact with them, can take 
longer time to use. This was particularly the case for uncertainty map accom-
panied by 3D contextual information, followed by the performance bars.  

However, the performance bars and the ௝ܵ uncertainty maps have also their 
own advantages in showing spatial patterns of the flooding condition. Alt-
hough the performance bars visualisation is intuitive in representing the pre-
dicted conditions, it represents a point-based status. The performance bars in-
dicates the condition of the particular cell where the cursor is currently pointed. 
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This condition is very specific to the cell and may change if it moves to another 
position. The value can also depend on the resolution of the underlying map. 
Moreover, since the information is point-based, it cannot immediately provide 
an overall geographic context of uncertainty, which can otherwise be provided 
by the entropy-based ௝ܵ map. This can be important especially in planning, 
where conditions of neighbouring areas are considered to see how flooding 
patterns will affect a location and nearby sites. 

4.4 Paper IV: Visualising DEM-related flood map 
uncertainties using a disparity-distance equation algorithm 

Earlier flood modelling results derived from the Eskilstuna River, and the anal-
ysis of the river side slope and model inaccuracy in Paper I led to the develop-
ment of the disparity distance (ܦௗ) equation algorithm that accounts for the 
inaccuracies brought about by the DEM resolution and the slope (Brandt, 
2016). With the algorithm, an uncertain zone is generated around the flood 
extents produced from modelling performed using the 1D HEC-RAS model. 
Since the equation was empirically derived using the Eskilstuna case, this was 
tested to another river (i.e. the Testebo River), which has different topographic 
characteristics. This is mainly to identify the applicability of the equation to 
other cases aside from which it is based on, and to study how it can be used to 
assess or analyse model prediction uncertainties caused by the resolution of the 
data. This can also help determine the advantages and possible problems in 
implementing the method.  

Results of this paper showed that the size of the uncertainty zones generated 
by the equation for the Testebo River was affected primarily by the resolution 
used. As can be seen from the result, the low resolution (50 m) DEM produced 
a larger uncertain area (0.93 km2), compared with the two results from the Li-
DAR data (0.22 km2), coming from the different modellers (Figure 39aെb). 
With the 50 m data, the terrain has become smoother, making the topography 
flatter. The issue with flat areas was also manifested in LiDAR-based results, 
particularly in locations that are already flat. But since the details in the terrain 
were preserved using high resolution DEM, it did not suffer as much uncer-
tainty in the result as the 50 m resolution data.  

Similar to Paper I’s results, the implemented algorithm showed that uncer-
tainty in the model prediction (in terms of the zones generated) was affected 
more by resolution than the modellers. Again, the minimal effect by the mod-
ellers, who produce the simulations results, was caused by calibrations to 
match the reference data. Thus, uncertainties stemming from data processing, 
modelling and mapping were minimised.  
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Figure 39. Uncertainty zones generated when using the LiDAR data and 50 m DEM.  

It is also possible in the produced results for the Testebo case that uncertainties 
were underestimated. As mentioned, the equation in the algorithm was based 
on the Eskilstuna River, which lacks larger flat areas. Thus, the coefficient ܿ 
(Equation 5) and exponent ݖ (Equation 6) may be specific in accounting for 
the characteristics of the river to which it was based upon. This is a usual lim-
itation with empirically derived equations. Therefore, they have to be tested 
and assessed for their applicability. Nevertheless, the method can be valuable 
in assessing further uncertainties of any prediction results as effect of the DEM 
resolution and the topography of an area. This method can be useful in adding 
uncertainty zones to deterministic (most optimal result) maps, to indicate their 
limitations.  

4.5 Paper V: Color map design for visualisation in flood risk 
assessment 

Paper III showed that the loss of information in indicating the exact status of 
the flooding condition, led to poorer user performance when using the entropy-
like ௝ܵ map. To determine whether decisions will be improved when explicit 
flooding and dry statuses are represented as part of the uncertainty, a second 
user study was carried out to assess spatial decisions and task performance 
when utilising three different geovisualisation models: an ܵ ௝ map accompanied 
by the 2D contextual information; the performance bars with altered colours 
to blue (flooded) and brown (dry); and a new dual-ended custom-designed ܥ௝ 
map, which shows a cost-weighted probability flooding status based on the 
aggregated ensemble results. The colour mapping scheme applied to the new 
map was conceptualised to follow different semantics and perceptual criteria 
to facilitate user interpretation of the map. Hence, the design aspects and pro-
cedure followed in developing the colour map became an important part of the 
method applied in this study (Sec. 3.6.2).  
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The findings of the user evaluation showed that the new dual-ended ܥ௝ map 
was the most effective and efficient for identifying and choosing dry locations 
among the geovisualisation models tested (Figure 40). Although there were 
also more participants who chose locations that were uncertain with this map, 
the statuses of these locations had higher certainty to be dry (ܥሚ௝=0.39) or have 
lower risk to be flooded. 

 
Figure 40. The proportion of the statuses chosen by participants when using the different 
geovisualisation models. Total ݊ per visualisation was 1162.  

Also similar to the result of Paper III was the findings derived for the perfor-
mance bars. This geovisualisation model was the most effective for avoiding 
flooded status, wherein only 1% (11 out of the 1162 cases) where chosen in 
these sites. But at the same time, it led to the largest number of choices (62%) 
in highly uncertain locations.  

The ineffectiveness of the ܵ ௝ map when making decisions was demonstrated 
by the biggest number of locations chosen that have certain to be flooded status 
(݊=137). Dry locations, on the other hand, were identified the fewest times 
using this map. This ambiguity in identifying flooded/non-flooded locations 
when using this information was also evident in the answers of the participants 
in the questionnaire when they rated the map. It also received the lowest rating 
in terms of comprehensibility, helpfulness in making decision and visual ap-
peal. These results for the ௝ܵ map also agreed with the results of Paper III. 
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4.6 Paper VI: Flood map boundary sensitivity due to 
combined effects of DEM resolution and roughness 

Model sensitivity to both the Digital Elevation Model and the roughness pa-
rameter (Manning’s ݊) was looked at in this study to evaluate how they affect 
model prediction outputs, in terms of the flood boundaries generated. Most 
often, results from ensemble modelling and Monte Carlo simulations are lim-
ited in presenting such results due to the large number of outputs that have to 
be processed and produced. Yet, getting a spatial overview of the extents may 
help to further analyse the variabilities in the produced extents. Furthermore, 
the goodness-of-fit measure used can also have bias in assessing model sensi-
tivity. These measures are used to quantify the results produced from using a 
given input/model parameter combination. Whether a model produces a good 
or poor result will be relative to the performance measure used. Thus, this pa-
per investigates how flood map boundaries can be affected by both DEM res-
olution and the Manning’s n used, and how the performance measure can fur-
ther influence uncertainty assessment, as well as the deterministic maps used 
in flood inundation mapping. In the ensemble modelling conducted, 100 hy-
draulic simulations using ten DEMs (1 to 5 m, 10, 15, 20, 25 and 50 m) and 10 
Manning’s roughness values (0.01 to 0.1) were performed to assess the sensi-
tivity of the prediction results. For estimating the model performance, four 
goodness-of-fit measures described in Sec. 3.4.3 were used.  

The results of the extents produced from the different combinations of DEM 
and Manning’s roughness are shown in Figure 41. Regardless of the resolution, 
all total flooding extents were under-estimated when using Manning’s ݊=0.01 
to 0.04, particularly in the northern and southern parts of the study area. How-
ever, the 25 m DEM only minimally under-estimated the southwest portion. 
The 50 m data, on the other hand, gradually produced an over-estimation in the 
extent as the roughness parameter was increased. At ݊=0.05 and 0.06, the 
northern portion was fully inundated in all resolutions. There were still under-
estimations in the southern part, but mostly for higher resolution DEMs (1 to 
10 m) that were paired with these Manning’s ݊. With ݊=0.07 to 0.10, the 1977 
flood extent was within the predicted extents in all resolution used, though the 
size of the overestimation in the northern and the entire western parts also be-
came bigger as the roughness values were increased.  
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Figure 41. Flood extents grouped according to roughness value used. 
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The most optimal result varied with the goodness-of-fit measure used. Differ-
ent combinations of DEM and Manning’s roughness gave different highest 
performances (Figure 42). The lower resolution data produced maximum per-
formance when using the three goodness-of-fit measures: 50 m for 1ܨ, and the 
25 m for 2ܨ and ܦ෩. The Manning’s roughness paired with them also varied. 
For 1ܨ and 2ܨ, lower Manning’s ݊ values produced the most optimal results 
with lower resolution data paired with them. While for both disparity measures, 
݊=0.07 gave the highest performance for the 5 m and 25 m DEMs.   

 
Figure 42. Optimal model performance from the different goodness-of-fit measures.  

The number of high performances also differed with the method employed. 
When using 74 ,1ܨ of the 100 simulation results received performance ≥ 0.50, 
while in 2ܨ, there were 18 simulations with the performance value. For the 
disparity measures, if the threshold used for high performance is ≤ 50 m, then 
no simulation will have good performance using mean disparity (ܦഥ), since the 
maximum is 55 m. If median disparity (ܦ෩) is used, majority of the simulations 
(67) will be considered to have high performance. 

Additionally, based on all the results of the different performance measures, 
the intermediate resolution 25 m received consistently high median perfor-
mance among the different resolutions DEMs. It had also the lowest variability 
in the range of quantified performance, especially when 1ܨ and the two dis-
parity measures were used. For the roughness parameter, the highest median 
performance was 0.07 for ܦ ,1ܨഥ and ܦ෩, and 0.04 for  2ܨ. All performance 
measures indicated the lowest median performance for the lowest roughness 
parameter due to the big underestimation in the model result, and bigger dis-
parity between the model and the actual data.  

The differences in the results of the goodness-of-fit measures were affected 
by how they account performance through the different equations imple-
mented. The feature agreement statistics (1ܨ and 2ܨ), which are commonly 
used in flood modelling studies (e.g. Bates & de Roo, 2000; Aronica et al., 
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2002; Hunter et al., 2005; Mason et al., 2009), consider mainly areal sizes (i.e. 
overlap, over- and underestimated) of the predicted flood in relation to the ref-
erence data. Both 1ܨ and 2ܨ also do not consider positional accuracies when 
comparing the extents produced in the model. They rely mainly on the total 
area sizes produced. In 1ܨ the size of overlap is important in determining the 
overall performance of the model. Thus, a big overlap size (i.e. exceeding the 
combined size of the over-estimation and under-estimation of the model) can 
produce high performance. In 2ܨ, the size of overestimation, as well as the 
underestimation, determines how well the model performs. If both are very 
small, then performance of the model can be high. If the produced over-esti-
mation (as well as underestimation) is high, then the model gets lower perfor-
mance. So, in a study area that is flat with huge uncertainties in the model 
results, this performance measure can give low values.  

 The two disparity measures (ܦഥ	and ܦ෩) proposed in the study account for 
positional difference between the extents produced by the model and the ref-
erence data. However, the point sampling performed affected the values de-
rived for the measure. Since this is based on the cross-sections, it will be sen-
sitive to the cross-section’s position, and also if the sampling is performed in 
locations where there are big disparities. If there are more locations with bigger 
disparities included in the sample, the mean will be larger. But if no sampling 
was performed in locations with big disparities, then the mean will be smaller. 

Thus, only basing the results in the performance measures may miss look-
ing at how well the flood extents were generated. For instance, low resolution 
(50 and 25 m) data received the maximum performance in three performance 
measures. Nevertheless, in the maps, the boundaries generated, may not be ac-
curate due to the loss of details produced. Another example was when using 
 No high resolution data set (from 1 to 5 m) received a performance higher .2ܨ
than 0.5, despite some of the results having better fit when compared to the 
reference map. If GLUE is implemented using this measure, and if the rejection 
criteria is set to 0.5, results from high resolution data sets will be eliminated, 
and most of the results that will be included in the probability map will be 
based on the intermediate and lower resolution DEMs.  

As what is also seen in the results, these lower resolution data, particularly 
the 25 and 50 m DEMs, produce more errors in the generated water surface 
elevation. The effect was most prominent in flat areas, wherein coarser resolu-
tion data produced higher water surface elevation due to an increase in bottom 
elevation. This result was in agreement with the findings of Cook and Merwade 
(2009). At steeper slopes and narrower channels this effect was minimal in the 
WSE. The rise in bed was compensated by the increase in the width of the 
channel as effect of the grid size. This makes the WSE to not change signifi-
cantly.   
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4.7 Paper VII: A cartographic framework for visualising 
flood uncertainties  

Uncertainty communication is a complex process, involving different actors. 
In frameworks and guidelines recommended for flood uncertainty communi-
cation, there are different elements that are looked at (e.g. Faulkner et al., 2007; 
Beven et al., 2014, 2015)  on how this can be carried out. One important aspect 
mentioned in these frameworks is the visualisation or presentation of the un-
certainty. However, despite being mentioned as significant, there is no clear 
guideline or explanation on how this can be carried out to help modellers when 
visualising their results. Thus, Paper VII suggests a working framework that 
can be adopted by flood modellers or scientists when visualising map results 
from sensitivity or uncertainty analyses undertaken. This framework can partly 
address the communication issues between scientists and practitioners, by al-
lowing the former to visualise and convey the information they produce, in a 
way that can easily be comprehended by the latter. 

The guidelines adopted were grounded on cartographic principles, since 
maps were the main visualisation tools that the study focused on. Therefore, 
adhering to cartographic grammar became an important part of the suggested 
guidelines. Moreover, the suggestions for the usage of different visual uncer-
tainty representations used, and those provided in the examples were based on 
earlier uncertainty visualisation studies that evaluate their intuitiveness in con-
veying information to their users.  

The proposed framework consists of three primary stages: 1) flood model-
ling and uncertainty analyses; 2) output classification and characterisation; and 
3) uncertainty mapping and visualisation. The first stage is crucial in producing 
the uncertainty map. This can be any method that will account for uncertainty 
in the model output. There are suggested ways on how this can be carried, out 
as in Hall and Solomatine (2008). After the uncertainty information is 
produced, the data needs to be characterised with regards to its structure, types 
and the meanings associated with the information. The third stage focuses on 
the actual design and generation of the uncertainty representation. This is fur-
ther divided in eight steps, namely: 

1. determining the purpose of the information; 
2. resolving the map scale to be used; 
3. selecting a mapping method and symbolisation; 
4. applying abstraction/generalisation/transformation; 
5. choosing the visual variable for uncertainty representation, and the 

semantics to be used; 
6. overlay consideration for contextual information; 
7. inclusion of basic map elements; and, 
8. visualisation technique.  

The applicability of the proposed framework was also tested with uncertainty 
maps generated from flood uncertainty modelling. An important part of the 
proposed step that facilitated the design process was the second stage, where 
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the output data was characterised and typified. Here, the characterisation of 
whether the original data follows a sequential, double-ended, or binary scheme, 
or whether they come from individual simulation results that can be presented 
simultaneously in a map, helped facilitate decisions as to the mapping method, 
symbols and the uncertainty representation used. Thus, regardless of the un-
certainty assessment method used, the suggestions for stages 2 and 3 can be 
adopted as long as they follow the same data characteristics. This may even be 
considered in other fields of application in uncertainty modelling. 

The guidelines also include a step that is usually undertaken in visualisa-
tion, i.e. the application of abstraction in the modelling results. It can either be 
skipped or implemented in the framework, depending on the purpose of the 
map, or the information that is to be highlighted. Abstraction is often necessary 
steps in cartography to simplify the information (Dent, 1999; Kraak & 
Ormeling, 2003). It also allows users to easily interpret and find trends in the 
information. In the examples given, two ways of abstraction were presented in 
the uncertainty map: one is classing the original information to discrete condi-
tions when using choropleth mapping techniques, and the other is the usage of 
graduated symbols to represent the flood statuses in a graduated symbol map. 
In choropleth mapping, reclassification is often undertaken to form homoge-
nous patterns that will help users of the maps to easily identify categories 
(Dent, 1999; Kraak & Ormeling, 2003), which can be crucial for extracting 
information from the map and for immediately making decisions based on it 
(Morss, Wilhelmi, Downton, & Gruntfest, 2005). Reclassification is usually 
employed in flood risk maps, where risks are classed into low, medium or high 
risks. The simplified information through the categories can immediately pro-
vide an estimate of risks. Nevertheless, in reclassifying the data, there can also 
be different schemes used for classing the original values (e.g. equal interval, 
natural jenks, quantile, standard deviation), and the number of classes to be 
discretised. They affect how the information is displayed or how they can be 
interpreted, as explained in Paper II. The graduated symbol grid map employs 
both reclassification and the assignment of symbols to each cell. The symbol’s 
size gives emphasis to the quantities being represented in the map (Dent, 
1999). However, during the process of creating the symbols, some details may 
have to be eliminated or refined, or the size and number of symbols may need 
to be increased or decreased to make the features more discernible, at the par-
ticular scale used in the visualisation medium, and the size of the grid. But 
regardless of the method used, abstraction alters the original data. This is the 
same issue presented in Paper II on how the entire visualisation process can 
also produce uncertainties in the visualisation (Brodlie et al., 2012). Therefore, 
a modeller must be aware of the effects of these alterations in the information 
they are showing, and how decisions can be influenced by them. At the same 
time, users shall be informed of these processes to make them aware of the 
limitations of the visualisation they are using.  
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4.8 Paper VIII: Assessment of spatial-based decisions and 
user perspectives in the utilisation of flood uncertainty 
maps 

In this paper, different users, including practitioners and students, were as-
sessed on how they understand and use different flood certainty maps, which 
indicate the certainty/uncertainty of the predicted flooding condition. These 
maps were derived from the uncertainty analyses conducted in Paper VI and 
from some of the examples generated in Paper VII in applying the proposed 
framework. Different mapping techniques were employed to produce these 
maps, where uncertainty was represented by different visual variables such as 
colour, value and size.   

Decisions and confidence of the participants using the maps varied accord-
ing to the task, as well as according to the group they belonged to. At certain 
to be flooded locations, participants were unanimous in not allowing construc-
tion in these locations. At the same time, they were also more confident in their 
response.  However, the variation in response became evident when the sites 
to be decided were positioned in locations with varying degrees of certainty. 
Their decision became dependent on the dominant colour at the position of the 
site, as well as the condition of the neighbouring areas. The lightest colours 
were considered to be safer place in this case, particularly when using the ܥ௝ 
and probability maps, although for the former, this status is uncertain.  

When users were to suggest locations for construction, they became more 
confident in their judgement. Also, the map type became important in the ef-
fectiveness of their decisions. Here, both the continuous dual-ended and prob-
ability maps made users to select dry locations. The continuous ௝ܵ map had 
again caused ambiguity in the choices made by the participants, wherein they 
chose less certain (i.e. most uncertain) areas the most number of times. But the 
abstraction performed in the choropleth and graduated symbol ௝ܵ maps had 
reduced the ambiguity when reading this information. Additionally, the elimi-
nation of the big certain to be dry area (outside the flood zone) allowed partic-
ipants to be able to identify dry locations using these maps.  

Although the three groups of participants had different backgrounds and 
line of work, a majority understood the information in a given map. Neverthe-
less, the variation between groups became obvious when they responded in the 
tasks, as well as their map preferences. The Swedish group (consisted of more 
experienced persons working with maps, more familiar with GIS, visualisation 
or hydrology) was the most careful in their decisions in both tasks. Participants 
in this group were less willing to take risks in their decisions by choosing lo-
cations that are certain or have high certainty to be dry. On the other hand, 
some students have taken more risky decisions, by selecting places with vary-
ing degrees of certainty the most frequently. This trend among students was 
also evident in the results from Papers III and V, regardless of the visualisation 
used. A possible reason that can explain this may be similar to Roth (2009), 
wherein he mentioned that domain novices, have the tendency to underestimate 
the risk in uncertain locations. Their lack of experience in making spatial de-
cisions may also be a contributing factor. As also mentioned by Roth (2009), 
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non-experts tend to take more risks in their decisions because they misjudge 
the impact of the risk associated with flooding. With regards to certainty map 
preference, the less experienced groups preferred discretised (choropleth 
maps) over continuous surface maps. Nevertheless, if the performance will be 
looked at, the number of dry locations that were selected by them were higher 
for the continuous maps.  

Overall, participants were positive with the inclusion of flood certainty sta-
tuses in a map, and how it can help improve their decisions. However, most of 
them are also aware that this is not the only information to the decisions they 
make. They mentioned for instance in their answers to the questionnaire that 
other maps are also needed when making location-related decisions. This is 
true in planning, and it is important for scientists and modellers to know this. 
Other information has also to be processed in relation to flood uncertainty con-
dition (Morss et al., 2005). Therefore, it is vital that the visualisation is able 
communicate its message directly and in an easy way that can be compre-
hended by the user. Yet, despite this positive reception on uncertainty flood 
maps, it is hardly seen that these practitioners use them in planning related 
tasks. It can be easier for them to see its importance when they practically know 
how to use them (Morss et al., 2005). This can also be a contributing reason 
why users were positive in all evaluations conducted (even in Papers III and 
V) to the inclusion of flood uncertainty information in decision-making. The 
usage of the information in the different tasks that the participants solved dur-
ing the assessments, exemplified how these maps and geovisualisation models 
can be employed practically in planning-related tasks.   
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Chapter 5. 

Conclusion, research contributions and  

future work 

5.1 Conclusion 

Flood maps are produced from using different data and involve different pro-
cesses and modelling decisions. All these are reflected in the final map. The 
first aim of the study, which is to determine how uncertainties in the modelling 
process, as brought about by the effects of the input DEM resolution, Man-
ning’s roughness parameters and methods for estimating model performance 
can affect the model prediction results, in terms of the flood inundation maps 
generated from them, tried to show the effects of these problems, particularly 
to deterministic maps (i.e. maps only showing dry and flood areas for a given 
flood magnitude). Papers I, IV and VI showed that flood extents produced var-
ied depending on the DEM resolution and the Manning’s roughness parameter 
used, as well as the area’s topography. Even the performance measure for 
quantifying how well a model produced its results in relation to a historical 
flood data showed to manifest biases when choosing an optimal model. As 
what was presented in Paper VI, the optimal outputs were different in all good-
ness-of-fit measures used.  

Although there are imperfections brought by the modelling process to pro-
duce flood maps, they remain valuable tools for information. Without them, it 
is impossible to foresee and plan what can possibly happen during an extreme 
flood event, which is important for disaster risk management. However, these 
maps should be able to reflect the uncertainties in the flood prediction process. 
As part of this issue and the disadvantages of using deterministic maps, it was 
explored in the research how uncertainties can be represented or accounted for 
in maps and other geovisualisation models (i.e. the second aim of the study). 
Papers IIെV, VII and VIII showed different ways of representing uncertainty 
information by employing probabilistic and uncertainty mapping (Papers III, 
V, VIII), or generating uncertain flood zones around deterministic maps (Paper 
IV). Different visual variables (colour, value size, arrangement, texture and 
fuzziness) recommended in earlier uncertainty geovisualisation literature and 
different mapping techniques were applied for representing flood uncertainties. 
The flood uncertainty representations presented in Papers III, IV, V, VII and 
VIII can be classified as dual-ended flood maps, probabilistic flood maps, se-
quential certainty and uncertainty maps, binary maps, overlain flood bounda-
ries and performance bars. A description of these different uncertainty repre-
sentations, together with their advantages and disadvantages, are found in the 
Appendix.  

As part of addressing the second aim, it was also examined how carto-
graphic design elements can be adopted in the visualisation. Here, the role of 
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cartography was considered to be important in facilitating communication of 
the information in maps. The cartographic aspect in flood uncertainty visuali-
sation is often overlooked in flood uncertainty studies and the visualisation of 
results. This is the reason why a framework was also recommended in Paper 
VII, particularly the 8-step design considerations in flood uncertainty mapping 
and visualisation, following cartographic rules in the visual display of infor-
mation. It aimed to help modellers and scientists to consider cartographic de-
sign aspects when visualising their results. Together with the suggested frame-
work, the conceptualisation of the design aspects was adopted for the data de-
rived from the different studies to exemplify how these guidelines can be flex-
ibly applied to different types of flood uncertainty data.  

To better understand the effectiveness of the uncertainty representations 
proposed in the different studies, user evaluations were conducted (Papers III, 
V and VIII). The assessments helped address the third aim, which is under-
standing how users make spatial decisions based on the different visualisation, 
and determining their perspectives on the uncertainty maps. The results of 
these evaluations showed that users were able to make spatial decisions ac-
cording to the tasks given to them using the uncertainty maps. Therefore, there 
is no problem on how they understood the maps containing flood uncertainty 
statuses. However, the findings also showed that there can be uncertainty in-
formation that is more difficult to understand, and may be confusing, such as 
the entropy ( ௝ܵ) maps based on Equation 19, which could have led users to a 
different decision or choice. Regardless of the semantics applied in this map 
(degrees of certainty or uncertainty), similar results in the evaluations (Papers 
III, V and VIII) were obtained.  The difficulty in understanding this map was 
only reduced by discretising the original information and by using symbols for 
representing the statuses (Paper VIII). Here, the role of map abstraction be-
came important to simplify and make the information more comprehendible.  

Nevertheless, how well the decisions were made also depended on the back-
grounds of the participants. From the different groups evaluated, it was shown 
that students tended to take more risk in their location choices. This was evi-
dent in all user evaluations (Papers III, V and VIII). The most experienced 
practitioners (i.e. Swedish group) were most careful with selecting sites in 
flooded areas. Different users were also positive on the inclusion of uncertainty 
in flood maps and adopting them in decision-making.  

5.2 Research contributions 

The entire research contributes to the comprehension of uncertainties affecting 
flood model results, in terms of the maps produced by them. Some of the causes 
of uncertainties that were looked at included the Digital Elevation Model’s 
resolution, the roughness parameter, the inherent characteristics of the area, as 
well as the performance measures used. The DEM resolution was shown to 
have great effect in the extents of the flooding produced (Papers I, IV and VI), 
which can further be affected by the Manning’s roughness that was paired with 
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it (Paper VI). Lower resolution data increased the inaccuracy in model results. 
Additionally, their effect was not only manifested in the extents of floods, but 
also in the water surface elevation, which became higher due to the increased 
in bottom elevation as effect of the smoothing in the DEM (Paper VI). This 
effect of resolution in both the spatial extents of flooding and the water surface 
elevation is seldom analysed in sensitivity analyses of 2D models, especially 
in relation to the performance of the model. In most studies, the focus is as-
sessing the model based only on its performance. Since these performances are 
given as numeric values, the geographic variation in the results, and the dis-
crepancies in the extents cannot be determined by just relying on them. This 
may therefore lead to concluding that a specific flood model result, even when 
based on lower resolution DEM, is acceptable as long as the performance de-
rived is high. Nevertheless, as what was shown in Paper VI, coarser resolution 
affected the inaccuracies horizontally (in the expanse of flooding) and verti-
cally (with the increase in water surface elevation) in the model. Thus, sugges-
tions that it is acceptable to use coarser resolution DEMs in flood modelling 
(e.g. 25 m, 50 m or even lower than these two), may be misleading. 

It was also shown that uncertainties in prediction results can further be in-
fluenced by the topography of the area. Uncertainties were bigger in flatter 
areas (Papers I, IV and VI). This was regardless of the resolution of the DEM, 
although higher resolution DEMs have shown to minimise these uncertainties 
(Papers I and IV). In flatter areas, the smoothening effect mentioned earlier, 
and the increase in bed elevation become more prominent (Paper VI). Unlike 
in steeper and narrower channels (having widths smaller than the cell size of 
the DEM), the increase in grid size is compensated by the rise in bed. There-
fore, the extents and water surface elevation do not change much in these lo-
cations. This may be an explanation why flat areas produce more uncertainties 
in model results than steeper areas, especially when using lower quality DEMs. 

Two new methods for quantifying model prediction performance were also 
presented in the research. These were the mean and median disparities. In con-
trast to the feature agreement statistics (1ܨ and 2ܨ), which are commonly em-
ployed in extent validation studies, the new measures account for model errors 
rather than areal size comparisons that are used in 1ܨ and 2ܨ (Paper VI). The 
usage of areal size comparisons in feature agreement statistics considers the 
totality of the sizes (overlap, over- and underestimated) generated by the model 
in comparison with the reference data. They do not account for any positional 
accuracies between the two. In 1ܨ, for example, a higher performance can be 
derived, as long the overlap size between the model and the reference is larger 
than the combined sizes of under- and over-estimation it produced. However, 
if the latter becomes larger than the size of overlap, a lower performance is 
given (i.e. <0.5, where 1 is the maximum). An equal size of overlap to the 
combination of under- and overestimated sizes will produce an ܨ ൌ	0.5. In 2ܨ, 
a higher performance can be derived if the sizes of the over- and under-estima-
tion is very low.  

It was also shown in the results of the study, particularly in Paper VI, that 
the most optimal model result depended on the performance (goodness-of-fit) 
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measure used. Different performance measures gave varying best model re-
sults in the study conducted. Hence, these findings further supports Di 
Baldassarre et al. (2010) on why it is inappropriate to use deterministic flood 
maps. In the case of this research (Paper VI), however, it was attributed to the 
performance measure as causing subjectivity in the choice of an optimal model 
result. Since most deterministic flood maps used in planning are outcomes of 
calibrations and/or validation with historical data and are evaluated based on a 
specific performance measure, they may also suffer from uncertainties caused 
by the assumptions of the performance measure used when quantifying the 
generated model results.  

In estimating uncertainty, the most commonly used method for assessment 
and producing flood inundation probability and uncertainty maps was applied 
by following the GLUE methodology framework. In addition to this, the im-
plementation of the empirically derived Disparity Distance (ܦௗ) algorithm was 
also presented in this study. Unlike the GLUE methodology, the ܦௗ algorithm 
can consider the effects of different resolution DEMs in model results and the 
slope by generating uncertainty zones around these maps (Paper IV). The ef-
fect of various DEM resolution in prediction results is more difficult to account 
in the GLUE methodology, due to the implementation of Monte Carlo simula-
tions. This will necessitate changing the DEM or its accuracy for each test, 
before conducting the simulation. Additionally, the DEM resolution and the 
study area’s size can increase the simulation time, making it impractical to use 
in this context. Therefore, the ܦௗ algorithm can serve as an alternative method 
to account for DEM uncertainties in the model. 

Ways of visually communicating uncertainties through maps were investi-
gated in the entire research, aside from evaluating how different users deal with 
flood uncertainty maps. Different flood uncertainty maps produced from un-
certainty assessments were represented in different ways as shown in Papers 
II, III, V, VII and VIII. The characterisation of the data helped in conceptualis-
ing the design and the selection of graphical variable to be used in mapping. 
Different visualisations were also assessed and the findings from these evalu-
ations led to the suggestions of representations that can be adopted in flood 
inundation mapping (see Appendix for the list). As part of representing flood 
uncertainty, a new dual-ended colour map scheme (Paper V) and an uncer-
tainty visualisation model (i.e. performance bars in Papers III and V) were also 
introduced in the research. The former was specifically designed for flood risk 
assessment. Unlike any colour map used for flood risk applications, the new 
colour represents both probability and uncertainty of the flooding condition. 
Despite being specific to flooding application, the design process adopted to 
this colour map can also be applicable to diverging data manifesting uncer-
tainty. An important step suggested in Paper V is to determine the colours at 
the ends of the scheme, which can be dependent on what is being represented 
by the data. The evaluation of this colour map also showed its effectiveness in 
preferring dry areas and efficiency in solving the tasks in the assessment. The 
performance bars, which is an interactive way of presenting ensemble results 
for a specific location, was effective especially in avoiding flooded areas (Pa-
pers III and V).  
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Furthermore, a cartographic framework for presenting and visualising flood 
certainty maps was proposed in Paper VII that can serve as guidelines for mod-
ellers and scientists. This framework partly addresses the call of some authors 
like Pappenberger and Beven (2006) and Beven et al. (2015) for guidelines that 
will enhance flood uncertainty communication process between producers and 
users of flood information. However, instead of focusing on the entire commu-
nication process, which is rather more complicated, the guidelines suggested 
centred on cartographic visualisation aspects that will help scientists and mod-
ellers when communicating the information that they derive. Moreover, the 
suggested framework can also be extended to other domains in environmental 
modelling, when visualising uncertainties in prediction results.   

Evaluation of maps and representations are important steps to determine 
how visual representations of uncertainty is understood, and if it serves its pur-
pose to communicate its message to users of the information (MacEachren et 
al., 2005). Yet, in specific domains, these studies are still limited. In flood in-
undation and uncertainty modelling studies, the focus is coming up with anal-
yses and different representations of uncertainties, but leave out the part of 
conducting user evaluations. Therefore, this research contributes, not only in 
understanding the causes of uncertainties in flood maps and creating or design-
ing visualisations based on them, but also in apprehending how users utilise 
and decide using the different information. The results of the user evaluations 
in Papers III, V and VIII, for instance, gave insights that different users can 
understand flood uncertainty information through the maps and use them in the 
tasks given to them. However, they also showed that decisions made varied 
among user groups, as brought about by the task to be solved, the visualisation 
used, as well as their backgrounds (Papers III, V and VIII). The last mentioned 
can further be affected by participants’ reasoning on the choice of locations 
they prefer, wherein both their knowledge of risk and experience can play sig-
nificant roles when making decisions (Roth, 2009). Thus, this make uncertain-
ties also inherent when making decisions (Hutter & Schanze, 2008). 

The tasks designed in the user evaluations exemplified practical ways on 
how flood uncertainty information can be used in spatial planning (e.g. sug-
gesting locations where projects can possibly be developed, based on the in-
formation provided in the map, or granting construction based on the uncertain 
flooding status at that site). This could have led users to better understand the 
information and its usage, as well as its value in planning, making them more 
positive in its inclusion in planning-related tasks. Moreover, the findings of the 
research become relevant, since more practical (valid) tasks are solved in rela-
tion to understanding the use of flood uncertainty information in decision-mak-
ing. 

5.3 Future work 

Based on the outcomes of the research, there are several recommendations sug-
gested for future studies that can lead to better understanding of the uncertain-
ties contributing to flood maps. High resolution DEMs and their effects in 2D 
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modelling, for instance, should be investigated more. With increasing compu-
tational power of computers, it is possible to simulate floods using high reso-
lution data. The effect of the quality of the DEM should also be looked at in 
relation to the boundary conditions, the discharge as well as in different study 
areas having different characteristics. Moreover, when performing flood vali-
dation studies, investigation of both the flood extents and the depth of flood 
must be taken in consideration. This is because the horizontal expanse of water 
can also be affected by the vertical changes in the profile.   

It has been explored in the study how the different performance measures 
affected the deterministic maps produced. Since these measures are also used 
in probabilistic mapping when employing the GLUE methodology, the effects 
of the goodness-of-fit methods in these maps should also be looked at. This is 
to see how the probability flood maps can also be affected by uncertainties in 
the performance measure used.  

In estimating model prediction uncertainties as effect of the DEM and the 
river side slope, the ܦௗ algorithm was implemented. However, the applicability 
of the said algorithm to different study areas and rivers with different charac-
teristics need to be examined further. Currently, only the Testebo River (aside 
from the Eskilstuna river, where the equation was derived), has been tested for 
its implementation. Expanding the research to other study areas may give val-
uable results that help to adjust the equations, and to determine the validity of 
the results produced by the algorithm.  

More user evaluations that will assess user comprehension in the usage of 
flood uncertainty maps are needed. This is to understand how they decide using 
these maps. In the evaluations to be conducted, it is further suggested to incor-
porate practical problem-solving tasks where they can employ decisions using 
these maps. Moreover, users (particularly planners who use the flood maps) 
coming from different backgrounds are also suggested to be involved in more 
studies, as these differences can affect how they decide using the map infor-
mation presented to them, or how they take risks in their decisions, as shown 
in this research.   

It is also suggested to future studies to incorporate uncertainty in flood 
depth maps and risk maps. Uncertainties in flood depths are often graphically 
represented instead of visualising them in maps. In addition, since flood risk 
maps depend on the different hazard maps, there will be uncertainties in the 
risk maps as effect of these underlying maps. Therefore, flood risk maps show-
ing uncertainties should also be explored.  

An important recommendation for scientists and modellers who investigate 
uncertainties is to make the results more comprehendible, less complex and the 
visualisation simpler. The usage of maps to present information should be used 
to visually represent uncertainty information. In producing these maps, it is 
suggested in this research that the application of basic cartographic design prin-
ciples is adopted to facilitate communicating information.  

As earlier stated, most practitioners do not have the same modelling back-
ground as hydraulic modellers and scientists. They may have difficulty to un-
derstand the modelling process and the uncertainties involved in these pro-
cesses. It must also be considered that flood uncertainty information and maps 
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are only some of the information that is needed by practitioners when making 
decisions. There are numerous considerations that they need in planning or in 
the decision-making process. Hence, simplifying the information can help 
them extract the main information they need from the map. 

It is also suggested to modellers and scientists to provide ways on how flood 
uncertainty maps can be adopted practically in planning and decision-making 
tasks. In this way, it will be easier for practitioners to understand and possibly 
use the information.    
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Appendix 

Different uncertainty maps derived from the uncertainty analyses 
 

FLOOD 

UNCERTAINTY 

REPRESENTA-

TION 

CHAR. AND 

SOURCE OF IN-

FORMATION 

SUGGESTED  
MAP TYPE AND VISUAL 

VARIABLE 

ADVANTAGES DISADVANTAGES 

Dual-ended cer-
tainty map 

‒ Two opposing 
certain status at 
both ends: dry 
(minimum) and 
flooded (maxi-
mum). Uncer-
tainty is in the 
middle. 

 ௝ equationܥ ‒

 

‒ Surface map for continu-
ous data and choropleth 
map for discrete data. 

‒ Certain to be dry and 
flooded are represented 
by the darkest brown 
and blue colours, respec-
tively. Degrees of cer-
tainty is represented by 
lightness, wherein the 
more uncertain, the 
lighter the colour it be-
comes.  

‒ The application of the 
colour map design sug-
gested in Paper V (Sec. 
3.6.2) can also be an al-
ternative. Here, the indi-
cated pivot points are 
used for colour interpo-
lation. 

‒ Easy for identi-
fying flooded 
and dry zones. 

‒ Highly pre-
ferred by users 
in the evalua-
tions. 

‒ When deciding 
on an uncertain 
location using 
value as to indi-
cate degrees of 
certainty, the 
lightest 
(blue/brown) 
colours in the 
continuous map 
became confus-
ing as to 
whether it is 
safe or unsafe. 

‒ The choropleth 
map can lead to 
more choices of 
uncertain loca-
tions, but they 
have high cer-
tain to be dry 
status.  

Flood probability 
map 

‒ Shows the 
probability to 
be flooded sta-
tus. Values 
range from 0 to 
100, where 100 
has the highest 
probability to 
be flooded  

 ௝ equationܥ ‒

‒ Surface map for continu-
ous data and choropleth 
map for discrete data. 

‒ Blue as the base colour. 
Lightness increases as 
the probability de-
creases. 

‒ Easy to identify 
areas that are to 
be flooded, with 
the dark colour, 
as well as safe 
areas. Uncertain 
areas are also 
can be identi-
fied and 
avoided due to 
the medium 
blue colour.  

‒ The continuous 
map is not 
highly preferred 
by novices 
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FLOOD 

UNCERTAINTY 

REPRESENTA-

TION 

CHAR. AND 

SOURCE OF IN-

FORMATION 

SUGGESTED  
MAP TYPE AND VISUAL 

VARIABLE 

ADVANTAGES DISAD-

VANTAGES 

Certainty map ‒ Shows the 
degree of 
certainty of 
the predic-
tion (from 
low to certain 
conditions). 

‒ Inverted ௝ܵ 
equation 

 

‒ Choropleth map 
where  

white represents the 
lowest certainty and 
black for the certain 
condition. 

‒ Graduated symbol 
map with size as the 
only visual variable. 
Lowest certainty rep-
resented by smallest 
size and largest is cer-
tain condition. All 
symbols should have 
the same [black] col-
our. 

‒ Elimination of the big 
certain to be dry area 
facilitates reading the 
map information.  

‒ These two 
maps are eas-
ier to read 
than the con-
tinuous cer-
tainty map 
from the 
original in-
verted data.  

‒ Both maps 
can also lead 
to more 
choices of lo-
cations that 
have uncer-
tain status. 

Uncertainty 
map 

‒ Emphasises 
the degree of 
uncertainty is 
emphasised 
(from 
low/mini-
mum to 
high/maxi-
mum uncer-
tainty) 

‒ ௝ܵ equation 

‒ Continuous: black for 
the lowest/minimum 
uncertainty and white 
for the highest/maxi-
mum uncertainty 

 

‒ Good for in-
dicating un-
certain areas. 

‒ Confusing in 
indicating 
flooded/non-
flooded areas 

‒ Led to poor 
user perfor-
mance when 
used in the 
tasks 

Binary map ‒ Represents 
two condi-
tions: 
flooded and 
uncertain.  

‒ Discretisa-
tion of the re-
sulting map 
from the ܥ௝ 
equation or 
from the ap-
plication of 
the ܦௗequa-
tion. 

‒ Discrete map repre-
senting certain to be 
flooded locations 
with, while uncertain 
is red. 

‒ More direct 
in indicating 
the status of 
certain to be 
flooded and 
uncertain lo-
cations. 

‒  Uncertain 
condition can 
be interpreted 
as either safe 
or unsafe lo-
cation. 
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FLOOD 

UNCERTAINTY 

REPRESENTA-

TION 

CHAR. AND 

SOURCE OF IN-

FORMATION 

SUGGESTED  
MAP TYPE AND VISUAL 

VARIABLE 

ADVANTAGES DISAD-

VANTAGES 

Overlain flood 
extent map 

‒ Flood bound-
aries as re-
sults of dif-
ferent cali-
brations that 
are overlain 
to each other  

‒ Line representation 
with varying colours 
and/or thickness to 
distinguish the bound-
aries from each other.  

‒ Easy for dif-
ferentiating 
the extents of 
flooding pro-
duced 

‒ The number 
of boundaries 
overlain can 
affect the 
legibility of 
the map 

Performance 
bars 

‒ Interactive 
method for 
visualising 
flood uncer-
tainty from 
ensemble 
modelling 

‒ Each bar rep-
resents the 
flooding sta-
tus from sim-
ulation result.  

 

‒ Flooding status is rep-
resented by the colour 
of the bar 
(blue=flooded; 
brown=dry) 

‒ Size of the bar indi-
cates the likelihood of 
the model result to the 
observed data (longest 
bars=highest likeli-
hood) 

‒ Effective for 
determining 
flooded areas   

‒ Number of 
bars visual-
ised with a 
specific col-
our can indi-
cate degrees 
of certainty 
and uncer-
tainty in the 
map.  

‒ Point-based. 
The status is 
determined at 
the cell 
where the 
cursor is 
pointed.  

‒ Overall spa-
tial pattern of 
uncertainty 
and flooding 
could not be 
determined 
from the vis-
ualisation 

‒ Can lead us-
ers to choose 
more uncer-
tain locations 
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