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Abstract

In model-based diagnosis there are often more candidate residual generators than what is needed and residual selection is
therefore an important step in the design of model-based diagnosis systems. The availability of computer-aided tools for
automatic generation of residual generators have made it easier to generate a large set of candidate residual generators for
fault detection and isolation. Fault detection performance varies significantly between different candidates due to the impact
of model uncertainties and measurement noise. Thus, to achieve satisfactory fault detection and isolation performance, these
factors must be taken into consideration when formulating the residual selection problem. Here, a convex optimization problem
is formulated as a residual selection approach, utilizing both structural information about the different residuals and training
data from different fault scenarios. The optimal solution corresponds to a minimal set of residual generators with guaranteed
performance. Measurement data and residual generators from an internal combustion engine test-bed is used as a case study
to illustrate the usefulness of the proposed method.

Key words: Fault detection and isolation, feature selection, model-based diagnosis, convex optimization, computer-aided
design tools

1 Introduction

A model-based diagnosis system is typically based on a
set of residual generators, sometimes referred to as mon-
itors, to detect if faults have occurred or not [3]. Each
residual generator is designed to monitor a specific part
of the system and then, based on which residuals that
trigger, a set of diagnosis candidates (fault hypotheses)
can be computed [6].

There are two main motivational observations for this
work. First, the number of possible residual generator
candidates in general grows exponentially with the de-
gree of redundancy of the model [18]. This means that in
many cases there are significantly more candidates pos-
sible than what is needed to detect and isolate the faults.
A second observation is that in realistic scenarios all can-
didate residual generators do not perform equally well,
mainly due to the inherent uncertainties in the model
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Fig. 1. A comparison of residuals sensitive to the same fault
but with different detection performance. The gray-shaded
intervals indicate where the fault is active.

and measurement noise. Fig. 1 shows a typical situation
with a set of residuals that are all sensitive to the same
fault. In an ideal case, all residuals in the plot should re-
act in the gray regions, but clearly the detection perfor-
mance varies and some has no clear reaction at all, mak-
ing them less useful for this particular fault. Thus, se-
lecting an appropriate subset of residual generators is a
key step in the design process to ensure that satisfactory
detection and isolation performance can be achieved at
low computational cost.

Even though residual selection is important to achieve
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satisfactory fault detection and isolation performance,
it has received relatively little attention compared to
other steps in the model-based diagnosis system design,
e.g., sensor selection [2,19,21] and residual generator de-
sign [1,10,29]. In previous works, for example [21,23,27],
the residual generators are assumed ideal when formu-
lating the residual selection problem. Residual selection
by optimization has been proposed in [21] using a Bi-
nary Integer Linear Programming approach, in [27] us-
ing a greedy heuristic, and in adaptive on-line solutions
in [5,20], also here assuming ideal performance. A main
limitation with these methods is that quantitative resid-
ual performance is not taken into consideration in the
residual selection process, i.e., assuming that the detec-
tion performance of all residuals in Fig. 1 are equal which
is clearly not the case.

The main property to consider in the selection process
is robustness in the detector with respect to model un-
certainties and noise. One approach would be to model
noise and model uncertainty using, e.g., probabilistic
methods, see for example [7,30]. However, in general this
is difficult unless uncertainties are well modeled by sta-
tionary random processes. The approach adopted here
is to let measured data model the uncertainties and the
effects of different faults.

Residual selection is closely related to the feature selec-
tion problem in machine learning [4,11,14]. Different fea-
ture selection algorithms for data-driven fault diagnosis
have been proposed, for example [15,16]. Performance
of feature selection algorithms depends on the quality
of available training data [28]. Collecting representative
data from different faults is time-consuming, costly, and
often infeasible since it is not known exactly how differ-
ent faults manifest. This means that available data from
different faults is often limited and not representative of
all fault scenarios [24] and then a data-driven classifier
trained on this data is not expected to achieve reliable
performance [28] for new fault manifestations and sizes.

In [17], a residual selection algorithm is proposed which
uses information from both models and training data.
The residual selection problem is there solved as a set
of separate optimization problems, one for each require-
ment. This univariate approach is clearly suboptimal
and a main contribution here is that all performance re-
quirements are solved simultaneously in one optimiza-
tion problem. This means smaller solution sets since the
residual selection algorithm can identify residuals that
fulfill multiple requirements and utilizes residual corre-
lations.

A main contribution here is the formulation of a residual
selection problem, combining model-based and data-
driven methods, as a convex optimization problem,
which can be solved efficiently using general-purpose
solvers. A key contribution is the re-formulation of the

Table 1
Fault signature matrix of residual set R∗.

Residual fWaf fpim fpic fTic

r2 X X

r19 X X

r26 X X

r27 X X

r29 X

r30 X

inherently multi-objective problem as a single optimiza-
tion problem that finds a set of residual generators given
all performance requirements. It is assumed that train-
ing data is available from all relevant fault modes and,
most importantly, it is also assumed that data is limited
and not representative of all realizations of each fault. A
main contribution of this work is systematic utilization
of the analytic model in the data-driven feature selec-
tion process, alleviating the fundamental problem of
limited training data from different fault scenarios. The
proposed residual selection algorithm can handle both
single-fault and multiple-fault isolation. To illustrate
the proposed algorithm, it is applied to a real industrial
use-case with data from an internal combustion engine.

2 Model-based diagnosis

Before defining the residual selection problem, a sum-
mary of some model-based diagnosis notions needed is
given in this section. Structural properties of residual
generators are defined which will be used to formulate
the fault isolability constraints in the residual selection
problem. An ideal residual generator is defined as

Definition 1 (Ideal residual generator) An ideal
residual generator rk(z) for a given system is a function
of sensor and actuator data z where a fault-free system
implies that the residual output rk(z) = 0.

An ideal residual generator rk(z) is said to be sensitive
to a fault fi if there exists a realization of the fault that
implies that the residual output rk(z) 6= 0 [27]. Infor-
mation about which set of faults each residual is sensi-
tive to can be summarized in a Fault Signature Matrix
(FSM). An example is shown in Fig. 1 where a mark at
position (k, l) means that residual rk is sensitive to fault
fl. A fault fl is said to be decoupled in rk if the residual
is not sensitive to that fault.

Instead of discussing single-faults and multiple-faults,
the term fault-mode is used to describe the system state.
A fault mode Fi ⊆ F describes which faults that are
present in the system and the no-fault case Fi = ∅ is
denoted NF. Based on fault modes, the following defini-
tion of fault detectability and isolability will be used to
formulate the residual selection problem [27].
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Definition 2 (Fault detectability and isolability)
Let R ⊆ Rall denote a set of residual generators. A
fault mode Fi is detectable in R if there exists a residual
rk ∈ R that is sensitive to at least one fault fi ∈ Fi. A
fault mode Fi is isolable from another fault mode Fj if
there exists a residual rk ∈ R that is sensitive to at least
one fault fi ∈ Fi but not any fault fj ∈ Fj.

To determine if any of the residuals has deviated from its
nominal behavior, different test quantities are used, such
as thresholded residuals or cumulative sum (CUSUM)
tests [22].

3 Problem formulation

A first thing to observe is that for a given model there
can be many possible residual generators. In general, the
number of candidates grows exponentially with the de-
gree of model redundancy [18]. To illustrate this, con-
sider the small example

x = g(u), yi = x, i = 1, . . . , n

where u is a known control input and there are n mea-
surements of the unknown variable x. With n = 1 there
is only one possible residual generator, i.e., r = y1−g(u),
but with an increasing n the number of possibilities in-
creases. It is straightforward to realize that the number
of residual generators based on a minimal number of
equations is given by

|{minimal residual generators}| =
(
n+ 1

2

)
since any pair of two equations, from the set of n+1
equations, can be used to compute a residual. This sim-
ple observation generalizes to more general models [18].

Now, consider a set of nr residual generator candidates
Rall = {r1, r2, . . . , rnr

} that is sensitive to a set of nf
faults F = {f1, f2, . . . , fnf

}. Each residual generator is,
if the model is perfect, sensitive to a subset of the faults.
As stated above, it is assumed that there are training
data available from all faults in F but data can not be
assumed to be representative of all possible realizations
of each fault. To illustrate this assumption, consider the
use-case in Section 6. In the experimental test-bed, a set
of specific fault realizations, for example different biases
on sensors, are implemented and measurement data is
obtained. However, these data are generally not repre-
sentative for other fault realizations, e.g., intermittent
faults or fault realizations with dynamic profiles.

The residual selection problem has a set of np perfor-
mance requirements, including both fault detection and
isolation requirements. Each requirement l will be as-
sociated with a performance function denoted as Φl(R)

where R ⊆ Rall. The function Φl(R) uses training data,
but for brevity this dependence is implicit in the nota-
tion. The larger the value of Φl(R), the better the resid-
ual set R is for performance property l.

Utilization of the model structure in the formulation of
the optimization problem, i.e., which faults each residual
is sensitive to, will show to be beneficial. All candidate
residual generators are not useful for each performance
requirement and the fault signature matrix contains this
information. Let the set Rl denote the set of candidate
residual generators useful for property l. For example,
if the performance criterion is a detection property, Rl
is all residuals structurally sensitive to that fault. If the
performance criterion is an isolation property, Rl is all
residuals that structurally isolate the fault [12].

The residual selection problem seeks a minimal set of
residuals, given some objective function Ω(R), that sat-
isfies a set of performance constraints and formulated as:

min
R⊆Rall

Ω(R)

s. t. Φl(R∩Rl) ≥ Cl, l = 1, 2, . . . , np
(1)

where each performance requirement l is bounded from
below by Cl. For minimal cardinality solutions, the ob-
jective function is Ω(R) = |R|. However, this choice
makes (1) an NP-complete combinatorial problem which
is not suitable for direct implementation. A key contri-
bution of this work is a convex re-formulation of (1), that
takes both residual detection performance and struc-
tural fault isolability of the residual candidates into con-
sideration. This convex problem can then be efficiently
solved using general-purpose solvers.

4 Evaluating residual performance using logis-
tic regression

In the optimization problem (1) the residual set perfor-
mance functions Φl(·) play crucial roles. Here, the ap-
proach to measure the performance of a set of residual
generators R is based on how well they can distinguish
faulty data from fault-free data. The data-driven tech-
nique logistic regression [11] is used to evaluate classifica-
tion performance. Regularized logistic regression models
have been shown useful for feature selection since they
can be formulated as convex optimization problems [17].

Let r[t] = (r1[t], r2[t], . . . , r|R|[t]) denote the sample of
all residuals inR at time t. The logistic regression model
is composed of a linear combination of the independent

variables, here the residuals, as r̃[t] =
∑|R|
k=1 rk[t]βk +β0

and the logit-function. The classifier parameters β =
(β1, β2, . . . , β|R|)T and β0 are the residual weights and

the bias, respectively. Since r̃[t] = r̄[t]β̄, where r̄[t] =
(r[t], 1) and β̄ = (βT, β0)T, the logistic regression model
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can be written as

P (Ψ = ψ[t]|r[t];β, β0) =
1

1 + e−ψ[t]r̄[t]β̄
(2)

where ψ[t] = 1 corresponds to that there is a fault fi at
time t, ψ[t] = −1 that there is no fault, and β, β0 are
the tuning parameters of the classifier.

For a given set of training data, the optimal choice of
parameters β and β0 can be selected using Maximum
Likelihood (ML) which is a convex problem [11]. The
log-likelihood function is

`(β, β0;ψ,R) = −
N∑
t=1

log
(

1 + e−ψ[t]r̄[t]β̄
)

(3)

where R is a matrix where the rows consist of the dif-
ferent samples r[t] and ψ is a response vector with the
same number of rows as R. The ML estimation of β and
β0 is achieved by minimizing the negative log-likelihood,
e.g., using a Newton method where the gradient g and
Hessian H of (3) can be computed as

g =
∂`

∂β̄
= −RT(p− ψ), H =

∂2`

∂β̄∂β̄T
= −RTWR

where p is a column vector and element t is p(r̄[t]; β̄) =
P (Y = ψ[t]|r[t];β, β0) andW is a diagonal matrix where
the diagonal element at position (t, t) is p(r̄[t]; β̄)(1 −
p(r̄[t]; β̄)) [11].

5 A convex formulation of the residual selection
problem

A convex formulation of the residual selection problem
(1) is presented using L1-regularized logistic regression
where multiple fault detection and isolation constraints
are taken into consideration. First, the residual selection
problem is considered for a single performance require-
ment where it is described how fault detection and iso-
lation constraints are formulated for each requirement.
Then, the global optimization problem is formulated in-
cluding multiple requirements.

Let R(i) ∈ RNi×nr , where i = 1, 2, . . . , nf , denote sets
of residual training data with Ni samples including both
nominal data and data when fault fi is present. The
corresponding response vector is denoted ψ(i) ∈ RNi .

Fault detection performance of a set of residuals to de-
tect a fault fi is evaluated using the subset of residual
data Rl that contains the columns of R(i) correspond-
ing to Rl ⊆ Rall. The residual set Rl is used to formu-
late the fault isolability requirement depending on which
residual generators that are included in the set.

To ensure that the solution set is able to isolate a fault
fi from another fault fj , the set of residual generator
candidates is defined such that fj is decoupled in all can-
didates. Let Jl = {ρ = 1, 2, . . . , nr : fj 6∈ rρ} denote
the indices of the subset of residual generators where
fj is decoupled. Then, the candidate set is given by
Rl = {rk}∀k∈Jl and the data set Rl is given by the cor-
responding columns in R(i).

Consider first a single performance criteria. Finding a
minimal subset of Rl corresponds to finding β0 and a
sparse vector β in (3) such that the log-likelihood ex-
ceeds some lower boundCl. It is assumed that the perfor-
mance requirement Cl is defined such that there exists a
feasible solution. The parameter Cl can be selected, for
example, by tuning a logistic regression model (3), for all
individual residual candidates, and then select a lower
bound that corresponds to a satisfactory residual detec-
tion performance. Finding a minimal subset is a combi-
natorial problem but it is possible to force sparsity to
an optimization problem by imposing L1-regularization
[25]. Thus, the residual selection problem is formulated
as an L1-regularized logistic regression problem [11]

min
β,β0

‖β‖1 s.t. `(β, β0;Rl) ≥ Cl. (4)

The fault detection performance constraint Cl will de-
termine the sparsity of the solution, i.e., how many resid-
uals are required. A lower Cl, i.e., a less restrictive con-
straint, will give a more sparse solution and vise versa.
Note that Rl contains residuals that are not sensitive to
fault fi because if noise in the residuals are correlated,
fault detection performance can be improved by using
residuals not sensitive to the fault as well. Note that
residuals are typically correlated since noise originating
from model errors are common to several residuals.

The objective is to find a minimal set of residual genera-
tors fulfilling a set of np performance requirements. One
approach is to solve (4) for each requirement and then
select the global solution as the union of the solutions
to each individual problem [17]. However, this approach
does not utilize that some residual generators could be
used to solve multiple constraints and thus reducing the
total number of residual generators even though the so-
lution is not minimal for each individual constraint.

To distinguish the optimization variables for the np dif-
ferent requirements, the parameters for each require-
ment l are denoted βl and βl0. A new cost variable α ∈
Rnr is added where each element αk is given by

αk = max{|βlk| : rk ∈ Rl,∀l = 1, 2 . . . np}. (5)

Equation (5) defines the cost αk as the maximum pa-
rameter value |βlk| in all constraints where residual gen-
erator rk is a candidate. This means that if rk is used
to fulfill one performance constraint, it is free to use for
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other performance constraints, i.e., the total cost of us-
ing rk in other performance constraints is not affected
as long as the maximum value is not changed.

The global residual selection problem (1) can be formu-
lated as the following convex optimization problem:

min
α,βl,βl

0
l=1,2,...,np

nr∑
k=1

αk (6)

s. t. Φl(R∩Rl;βl, βl0) ≥ Cl (7)

− αJl � βl � αJl (8)

∀l = 1, 2, . . . , np (9)

where Φl(R ∩ Rl;βl, βl0) = `(βl, βl0;ψl, Rl), � denotes
elementwise ≤, and αJl is a column vector containing
the elements in vector α at indices Jl. The objective
function Ω(R) is given by

∑nr

k=1 αk where the solution
set can be determined as R = {rk ∈ Rall : αk > 0}.
Note that multiple-fault isolability can be included in
the optimization problem as additional constraints by
defining candidate residual sets Rl where the multiple
faults are decoupled.

Let α∗ denote the solution found by the optimization
problem. Since α∗ is likely, due to numerical reasons, to
contain values close to zero instead of exactly zero, the
solution residual generator set R∗ ⊆ Rall is determined
by thresholding each element in α∗ as R∗ = {rk ∈ Rall :
α∗k ≥ ε} where ε ≥ 0 is a threshold.

For efficient implementation of an interior-point method,
the gradient and Hessian of the non-linear constraints
(7) can be formulated as ḡT = (0T

n , g
T
1 , g

T
2 , . . . , g

T
np

) and

H̄ = diag(0n×n, H1, H2, . . . ,Hnp
), respectively. The

Hessian of (7) is block-diagonal and since the matrix
H̄ can be large if there are large training data sets and
many performance requirements in (7), memory is saved
by using a sparse representation.

6 Case study

To evaluate the residual selection algorithm a set of
residual generator candidates is generated to monitor a
passenger car four cylinder turbo-charged internal com-
bustion engine [17].

6.1 System description and data collection

The available measurements from the engine are the
following eight sensor signals: pressure before throttle
ypic, pressure in intake manifold ypim, ambient pressure
ypamb, temperature before throttle yTic, ambient tem-
perature yTamb, air mass flow after air filter yWaf , en-
gine speed yω, and throttle position yxpos, and two ac-
tuator signals: wastegate actuator uwg and injected fuel
mass into the cylinders umf .

flow flow

paf

pempc

pt

pimpic Intake man.

Air

ExhaustAir Filter

Throttle

Wastegate

uwg

uth

Exhaust man.

Intercooler Engine

Comp. & Turb.

Exhaust

Fig. 1. Overview of the engine. The model consists
of six receivers for each of which the pressure
variable is shown.

speed at its highest possible level, which provides
a fast transient response, or to lower the back
pressure, which ensures good fuel economy. This
leads to two different control strategies that will
be described in section 6.

Matching up a compressor, a turbine, and an
engine is a complex task that involves several
steps. The following procedure is a simplification,
but it illustrates the key steps: 1) Determine
engine displacement and maximum engine power,
which results in data on the boost level and on
the maximum air mass flow. 2) Determine the
compressors that fulfill those requirements and
that reach the desired boost pressure without
surging at the lowest flows possible. 3) Determine
the turbines that drive the compressors as closely
to the surge line as possible without generating
too high a back pressure. Based on this procedure,
simulations and experiments are done to find the
compressor and the turbine that best match a set
of given performance criteria.

Three-way catalytic converters are typically used
to reduce emissions by requiring the engine to
operate at stoichiometric conditions, i.e., λ =
1. We thus focus our investigation on engines
operating at λ = 1, thus ignoring the problem
that current turbine materials cannot withstand
temperatures above 1300 K. Current practice is to
protect the turbine at high air mass flows by fuel
enrichment, which significantly raises the levels of
pollutants and the fuel consumption.

3. OPTIMAL FUEL ECONOMY:
FORMULATION OF THE PROBLEM

The brake-specific fuel consumption BSFC is de-

fined as the fuel mass flow
∗
mf divided by the

generated power P

BSFC !
∗
mf

P
=

∗
mf

Tq 2π N

where N is the engine speed in revolutions per
second. One problem with the definition of BSFC
is that there is a singularity at zero torque.
Therefore it is advantageous to look at 1

BSFC =

Tq 2π N/
∗
mf which then has to be maximized

for best fuel efficiency. Optimizing the cruising
scenario with constant speed for the best fuel

economy is thus the same as maximizing Tq/
∗
mf .

For cruising we now also consider the maximiza-
tion under limited resources, that is a desired fuel

flow
∗
mf,des, which now becomes

max Tq(uth, uwg,
∗
mf )

subject to
∗
mf (uth, uwg) =

∗
mf,des

A constant fuel flow corresponds to a constant
air flow, since we are restricting engine operation
to stoichiometric conditions. This leads to the
following formulation of the problem

max Tq(uth, uwg,
∗
ma)

subject to
∗
ma(uth, uwg) =

∗
ma,des

(1)

4. MODELING OF A TURBOCHARGED
ENGINE

The structure incorporates a number of control
volumes which are separated by flow restrictions
(see Figure 1). As a detailed explanation of the
complete model would exceed the scope of this
paper, only the components necessary for study-
ing the problem of fuel optimality are described
in the following paragraphs.

The formulation of the fuel-optimal operation of
turbocharged SI engines shows that models for
engine torque and engine air-mass flow are nec-
essary. Since the control inputs affect the intake
and exhaust manifold pressures, the models must
describe how these pressures influence the torque
levels and the air flow.

4.1 Engine Air Mass Flow

The air mass flow to the engine is modeled using
the volumetric efficiency ηvol which provides the
data necessary to calculate the amount of fresh

ypic

yTic

ypim

yWaf

yω

yxpos

ypamb

yTamb

uwg

umf

Fig. 2. A schematic of the model of the air flow through the
model. This figure is used with permission from [9].
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Fig. 3. Intake manifold pressure sensor data ypim with a
highlighted intermittent fault fpim.

A mathematical model that describes the air flow
through the engine is used with a similar model struc-
ture as described in [8], and is based on six control vol-
umes and mass and energy flows given by restrictions.
The model is a non-linear DAE and has 14 states. A
schematic illustration of the model is shown in Fig. 2.

The proposed method can be applied to any type of
faults, including system faults (leakages, clogging, etc.),
sensor faults, and actuator faults. In this case study, 4
sensor faults are considered: A fault in the sensor mea-
suring the air mass flow fWaf , the pressures at the inter-
cooler fpic and the intake manifold fpim, and the tem-
perature at the intercooler fTic.

The engine is controlled to follow a load cycle cor-
responding to a Highway Fuel Economy Test Cycle
(HWFET). Intermittent sensor faults are injected one
by one in the engine control unit when the engine is
running. The faults fWaf , fpic, and fpim, are injected
as multiplicative faults yi(t) = (1 + fi)xi(t) with a 20%
change in the measured value and the fault fTic as a
sensor bias yTic(t) = xTic(t) + fTic of 20◦C. Note that
some of the sensor faults affect the system operation.
For example, the control system compensates for a
change in sensor yWaf . An example of sensor data from
ypim is shown in Fig. 3 with an intermittent fault fpim.
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Fig. 4. Fault signature matrix for all residual generator can-
didates. Each plot illustrate the subset of the candidates
where each fault is decoupled, respectively.

Table 2
Two sets of constraints where the two values at position (i, j)
are the two values of constraint Cl isolating fault fi from fj
for each set, respectively.

fWaf fpim fpic fTic

fWaf - {−1000,−373} {−1000,−275} {-1000, -210}

fpim {−1000,−696} - {−1000,−770} {−1000,−675}

fpic {−1000,−733} {−1000,−885} - {−1000,−846}

fTic {−1000,−184} {−1000,−240} {−1000,−184} -

6.2 Residual selection

A set of nr = 64 residual generators is automatically
generated from the engine model as a candidate set us-
ing the Fault diagnosis toolbox [13]. The residual gen-
erators are implemented in a sequential form, i.e., the
set of model equations used in each residual generator
is solved sequentially where the final equation is used as
residual equation [26]. The FSM of the 64 residual gen-
erator candidates is shown in Fig. 4.

The residual selection problem (6)-(9) is formulated to
find a minimal residual set such that all single-faults can
be isolated from each other. This results in 12 isolation
requirements. The four candidate sets representing the
different residual sets where each fault is decoupled, are
shown in Fig. 4. The residual selection problem is imple-
mented in Matlab and solved using the general-purpose
interior-point method available in fmincon.

Two sets of constraints, i.e., different values of Cl for
each requirement (7), are evaluated, see Table 2. Posi-
tion (i, j) in the table shows the values of Cl to isolate
fault fi from fault fj . The two values of Cl in each posi-
tion represent the two sets to be evaluated. The first set
has lower values of the different Cl that represents less
restrictive performance requirements while the second
set has higher values representing tougher requirements.
To make sure that there exists a feasible solution, each
value Cl is selected within the range of values achieved
when tuning a logistic regression model (3) for each of
the residual candidates, separately.
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Fig. 5. The solutions α∗ to (6)-(9) for each set of require-
ments in Table 2, respectively. Each solution set corresponds
to the non-zero elements in α∗. In both cases, the solution
α∗k ≤ 0.001 for all k > 35.
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Fig. 6. Evaluation of residuals to data with fault fWaf . The
grey areas represents intervals when fault is present and
residuals sensitive to the faults are colored red.

The optimal solution vector α∗ for the less restric-
tive requirements is shown the left plot in Fig. 5.
The significant non-zero values in the vector, here
defined when α∗k > 0.001, gives the solution set
R∗ = {r2, r19, r26, r27, r29, r30} containing six residuals
and the corresponding FSM is shown in Table 1.

The solution set in Table 1 is compared to the solu-
tion when applying the residual selection algorithm pro-
posed in [17]. The algorithm is implemented to select
the single best residual generator for each requirement
l to find a minimal solution set. The resulting solution
set R′ = {r19, r26, r27, r29, r30, r34, r62} is found by tak-
ing the union of the selected residual generators for all
requirements. When comparing R∗ and R′, five residu-
als are the same in both sets but the proposed residual
selection strategy is able to find a smaller solution.

The solution set R∗ is evaluated using data from each
of the four faults and the different residual outputs are
shown in Figs. 6-9, respectively. The gray areas repre-
sent the intervals when the fault is present and resid-
uals that are sensitive to each fault are highlighted in
red. The dashed lines represent thresholds tuned based
on nominal data to illustrate nominal residual behavior.
Most residuals react as expected when a fault occurs,
except r19 in Fig. 6 which does not change significantly
when fWaf occurs. However, r19 is still useful since it is
used to detect and isolate fault fpic, see Fig. 8.
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Fig. 7. Evaluation of residuals to data with fault fpim.
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Fig. 8. Evaluation of residuals to data with fault fpic.
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Fig. 9. Evaluation of residuals to data with fault fTic.

As a second case, the set of tougher performance con-
straints is selected. This results in a larger number of
non-zero elements in the optimal vector α∗ which is visi-
ble in the right plot in Fig. 5. The corresponding solution
set is then R∗ = {r2, r19, r24, r26, r27, r29, r30, r32}. The
solution set contains a larger set of residual generators
to fulfill the tougher performance constraints.

Fig. 10 shows the solution vector α after each iteration of
the interior-point method. The elements αk that, even-
tually, are part of the solution α∗ are highlighted in the
plots. It is visible that the significant elements in vector
α can be identified already after about 1000 iterations in
these two cases while the other elements are decreasing

α
k

Iteration

α
k

Iteration

Fig. 10. The value of αk after each iteration of the optimiza-
tion. The left plot shows the less restrictive requirements and
the right plot the tougher requirements.

in a step-wise manner. However, the selected interior-
point method requires additional iterations to converge
within set tolerances. The robustness of the optimiza-
tion is evaluated by trying different randomly selected
starting points. The solution converges in all tested cases
and for this case study each optimization takes around
seven minutes on a standard desktop computer.

7 Conclusions

The engine case study illustrates the importance of resid-
ual selection to achieve satisfactory performance of a di-
agnosis system. By including structural fault sensitiv-
ity information about the candidate residual generators
in the residual selection problem, it is possible to fulfill
isolability requirements even though available training
data are limited. This is important in many fault diagno-
sis applications where collecting data can be both time-
consuming and expensive. A key contribution is that
the residual selection problem is formulated as a convex
optimization problem where the optimal solution corre-
sponds to a small set of residual generators that fulfills
multiple fault isolation and detection performance con-
straints simultaneously with guaranteed performance.
The residual selection approach can handle both single
and multiple-fault isolation performance requirements
and is successfully applied to an industrially relevant
use-case which illustrates the efficacy of the approach.

References

[1] M. Basseville. Information criteria for residual generation
and fault detection and isolation. Automatica, 33(5):783–803,
1997.

[2] M. Bhushan and R. Rengaswamy. Design of sensor location
based on various fault diagnostic observability and reliability
criteria. Computers & Chemical Engineering, 24(2-7):735–
741, 2000.

[3] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and
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