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A Combined Data-Driven and Model-Based
Residual Selection Algorithm for Fault Detection

and Isolation
Daniel Jung and Christofer Sundström

Abstract—Selecting residual generators for detecting and iso-

lating faults in a system is an important step when designing

model-based diagnosis systems. However, finding a suitable set

of residual generators to fulfill performance requirements is

complicated by model uncertainties and measurement noise

which have negative impact on fault detection performance. The

main contribution is an algorithm for residual selection which

combines model-based and data-driven methods to find a set of

residual generators that maximizes fault detection and isolation

performance. Based on the solution from the residual selection

algorithm, a generalized diagnosis system design is proposed

where test quantities are designed using multi-variate residual

information to improve detection performance. To illustrate the

usefulness of the proposed residual selection algorithm, it is

applied to find a set of residual generators to monitor the air

path through an internal combustion engine.

Index Terms—Fault diagnosis, Fault detection, Machine learn-

ing, Change detection algorithms, Automotive applications.

I. INTRODUCTION

F
AULT diagnosis is used to detect faults that occur in a
system, but also pinpoint what part of the system that is

faulty. There are data-driven diagnostic approaches available
as well as model-based approaches.

In model-based diagnosis, a model of the system to be mon-
itored is used to compute residuals to detect inconsistencies
between the model and system measurements to detect when
faults occur [21]. A general model-based design of diagnosis
systems is based on a set of residual generators where different
residual generators are sensitive to, i.e. they should respond
to, different sets of faults that can occur in the system, see
for example [28] and [41]. Based on the residuals that have
triggered, a fault isolation algorithm [8] computes a set of
diagnosis candidates, or fault hypotheses, that can explain the
triggered residuals.

There are efficient methods based on the so called structural
analysis, described in for example [1], [24], [25], [35], and
[40], to find sets of residual generators to ideally achieve a high
degree of fault isolability. However, these methods only con-
sider which faults each residual generator is sensitive to, in the
ideal case. Therefore, the signal to noise ratio in the residuals
is not taken into consideration in the diagnosis system design
process. Fig. 1 shows a set of residuals, computed from a set
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Fig. 1. A comparison of residuals sensitive to the fault fWaf , but with
different detection performance, when evaluated using data with fault fWaf .
The intervals with intermittent faults are gray-shaded.

of model-based residual generators, where the presence of an
intermittent fault is highlighted. All residuals in the figure are
ideally sensitive to the fault, but it is clear that only a few of
the residuals significantly deviate from their nominal behavior
presented in the non-shaded areas. Residual selection considers
the problem of finding residual generators that fulfill some
given fault detection and isolation performance requirements
that should be achieved by a diagnosis system. The figure
motivates why it is important to include the quantitative
residual performance when formulating the residual selection
problem.

To reduce complexity of the diagnostic system, it is pre-
ferred to use as small set of residual generators as possible
fulfilling the performance requirements. Different search al-
gorithms finding such sets have been proposed, for example
Binary Integer Linear Programming (BILP) [31] and different
greedy search algorithms [43], [22], [33]. However, in these
papers it is assumed that fault detection performance is equal
for all residual generator candidates. With respect to previous
works, the proposed residual selection algorithm takes quan-
titative residual performance into consideration.

On the other hand, data driven methods use measurement
data to model how the model accuracy and measurement
noise affect the diagnostic performance [7], [37]. There are
several previous works proposing data-driven classifiers for
fault diagnosis, see for example [17] and [47]. One advantage
of data-driven fault diagnosis methods is that they can be
applied in systems where models are not available [49], [50].
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However, the performance of data-driven classifiers depends
on training data. It is often difficult and time-consuming to
collect a sufficient amount of faulty data to represent each
fault mode. Thus, training data is often limited and not always
representative of the possible fault realizations that could occur
in the system [38]. In this case, a data-driven classifier trained
on this data is not expected to achieve reliable fault detection
and isolation performance [44].

Given a system model, it is possible to construct residual
generators with different fault sensitivity properties meaning
that different residual generators will be sensitive to different
sets of faults. There are multiple methods to design residual
generators, for example Kalman Filters [16] and Particle
Filters [48], [51]. By using computer-aided tools, such as [15],
it is possible to automatically generate residual generators
as executable code in, for example, C or Matlab. Note that
the number of residual generators can be significantly larger
compared to the set of sensors in the system [24]. Thus, as
illustrated in Fig. 1, residual selection is an important step
in the diagnosis system design process where the detection
performance of the different residual generators must be taken
into consideration, for example from faulty data.

Even though training data is not representative of all possi-
ble realizations of each fault, it is possible to achieve a diag-
nosis system that can isolate a fault by utilizing the structural
information of the different model-based residual generators.
In machine learning, a related problem to residual selection
is referred to as feature selection [18]. Feature selection is
an important topic when designing data-driven models to
reduce complexity and the risk of over-fitting. Using data-
driven feature selection to select a suitable set of model-based
residual generators should take advantage of both model-based
and data-driven approaches to maximize fault detection and
isolation performance.

A. Main idea and contributions

The main idea in this work is to combine machine learning
and model-based methods for residual selection in uncertain
systems where model uncertainties and measurement noise
cannot be neglected. It is assumed that there exists a model
that is used for residual generation, as well as measurement
data collected from nominal and faulty system behavior. For
example, model information is used to find sets of residual
generators that ideally are sensitive to specific faults, but not
sensitive to other faults in order to achieve fault isolability
properties. A data-driven approach is then used to select
residual sets for detecting and isolating different faults, based
on the model analysis as well as training data.

The residuals are post-processed to form test quantities.
Traditionally, the test quantities are based on selecting the, in
some sense, single best residual generators found in the struc-
tural analysis. Here, the correlation between different residual
generators is considered when designing the diagnostic system
to improve detection performance without necessarily adding
more residual generators to the diagnostic system.

The proposed diagnostic method is illustrated by design-
ing a diagnosis system to monitor the air path through an

internal combustion engine. Real measurement data have been
collected from an engine test bench, including data with
injected faults. The residual selection approach is described
and demonstrated by applying it to the engine system. The
results from the case study shows that the proposed method
works well for a system with significant model uncertainties
and is able to identify sets of residuals which give good fault
detection and isolation performance.

B. Outline
A short summary of basic fault diagnosis definitions is

presented in Section II. The combustion engine and the model
used is described in Section III. In Section IV residual gener-
ator candidates are designed and in Section V the method for
selecting the residuals to be used in the diagnosis system is
described. Validation of the fault isolability properties using
real residual data is presented in Section VI and examples of
how the residual generators can be used in the design of the
diagnosis system is covered in Section VII, and finally the
conclusions are given in Section VIII.

II. BACKGROUND

Before describing the proposed method, some notations and
definitions are presented that will be used. Consider a system
and a set of nf faults F = {f1, f2, . . . , fnf } to be monitored
by a diagnosis system. A residual generator is defined as
follows [43].

Definition 1 (Residual generator): A residual generator r(z)
for a given system is a function of sensor and actuator data
z where a fault-free system implies that the residual output
r(z) = 0.
An important property of a residual generator is whether or
not it will respond to the presence of a fault in the system.

Definition 2 (Fault sensitivity): A residual generator r(z)
is sensitive to a fault fi if the fault implies that the residual
output r(z) 6= 0.

It is assumed there exists a set of nr residual generator
candidates Rall = {r1, r2, . . . , rnr} and a description of which
faults Fk ✓ F each residual generator rk 2 Rall is sensitive to.
Since the detection performance varies significantly between
different residuals, the exoneration assumption is not valid
[6], i.e. it is not certain that a fault will trigger all residuals
sensitive to the fault.

Since the residual selection problem is considered, the
following definitions of fault detectability and isolability are
used [43].

Definition 3 (Fault detectability with residual generators
R): A fault fi is detectable given a residual set R if there
exists a residual generator rk 2 R that is sensitive to fi.

Definition 4 (Fault isolability with residual generators R):
A fault fi is isolable from another fault fj given a residual set
R if there exists a residual generator rk 2 R that is sensitive
to fi but not fj .

In order to isolate faults from each other in model-based
diagnosis, residual generators are needed that are sensitive to
different sets of faults. If a residual generator rk is not sensitive
to a fault fj it is said that fj is decoupled in rk. If the residual
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TABLE I
THE INCIDENCE MATRIX OF THE SMALL EXAMPLE MODEL GIVEN IN

EXAMPLE 1.

x1 x2 y u f
e1 X X X
e2 X X
e3 X X

generator rk, where fj is decoupled, is sensitive to a fault fi,
then, it can be used to isolate the fault fi from fault fj .

A. Structural analysis of engine model
To analyze fault diagnosis properties of complex models,

several papers propose the use of a structural representation of
the system model, see for example, [26] and [28]. A structural
model describes which variables that are included in each
model equation and can be represented by a logical matrix
where an X at position (i, j) means that a variable xj is
included in equation ei [23], [24]. A small example is used to
illustrate the concept.

Example 1: Consider the model

e1 : x1 = g1(x2) + f

e2 : x2 = g2(u)

e3 : y = x1

with 3 equations, 2 unknown variables x1 and x2, known input
variable u, measurement variable y, and arbitrary functions gi.
The variable f models a system fault such that, if the fault is
present, it will affect equation e1. The incidence matrix for
this model is given in Table I. ⇤

The structural analysis is based on this information instead
of the model equations and is here performed using the Fault
Diagnosis Toolbox in Matlab [15].

III. COMBUSTION ENGINE

A passenger car four cylinder turbo-charged internal com-
bustion engine is used to illustrate the proposed diagnostic
approach. This section includes a brief description of the
engine as well as the available data.

The engine is mounted in a test bench, see Fig. 2, and can
be operated both at steady state and at transients, for example,
during different driving cycles. The available measurements
from the engine are the following eight sensor signals:

• Pressure before throttle ypic

• Pressure in intake manifold ypim

• Ambient pressure ypamb

• Temperature before throttle yTic

• Ambient temperature yTamb

• Air mass flow after air filter yWaf

• Engine speed y!

• Throttle position yxpos

and the two actuator signals:
• Wastegate actuator uwg

• Injected fuel mass into the cylinders umf

These signals represent a standard setup in a production
vehicle.

Fig. 2. A picture of the engine test bench.

A. Engine model summary
A mathematical model used here describes the air flow

through the engine. The model structure is similar to the model
described in [11], and is based on six control volumes and
mass and energy flows given by restrictions.

The model has 94 equations, 14 states, and 10 known
signals. Non-linear relations, such as if-constraints, and maps,
are included in the model. A schematic illustration of the
model is shown in Fig. 3, where paf , pc, pic, pim, pem, and
pt denote the pressures in the air filter, after the compressor,
intercooler, intake manifold, exhaust manifold, and after the
turbine, respectively. These pressures indicate where the con-
trol volumes are modelled.

In this case study, four sensor faults are considered: A fault
in the sensor measuring the air mass flow fWaf , the pressures
at the intercooler fpic and the intake manifold fpim, and
the temperature at the intercooler fTic. It is possible to also
consider other types of faults, such as, leakages, clogging, and
actuator faults. However, the four sensor faults are considered
to easier illustrate the concept of the proposed diagnostic
approach.

B. Data collection
The engine is controlled to follow a selected driving cycle

using a simple driver model and longitudinal vehicle model
implemented in Simulink. Measurement data is generated
when the FTP75 highway cycle (see for example [19] for
the speed profile) is used as a speed reference. Intermittent
sensor faults are injected one by one in the engine control
unit. The faults fWaf , fpic, and fpim, are injected as mul-
tiplicative faults yl(t) = (1 + fl)xl(t) with a 20% change
in the measured value and the fault fTic as a sensor bias
yTic(t) = xTic(t) + fTic of 20�.

An example of sensor data from yWaf is shown in Fig. 4
with an intermittent fault fWaf . The signal fluctuates signif-
icantly due to the transients in the requested torque from the
engine caused by the transients in the driving cycle. These
fluctuations in the signal makes it difficult to, for example,
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Fig. 1. Overview of the engine. The model consists
of six receivers for each of which the pressure
variable is shown.

speed at its highest possible level, which provides
a fast transient response, or to lower the back
pressure, which ensures good fuel economy. This
leads to two di�erent control strategies that will
be described in section 6.

Matching up a compressor, a turbine, and an
engine is a complex task that involves several
steps. The following procedure is a simplification,
but it illustrates the key steps: 1) Determine
engine displacement and maximum engine power,
which results in data on the boost level and on
the maximum air mass flow. 2) Determine the
compressors that fulfill those requirements and
that reach the desired boost pressure without
surging at the lowest flows possible. 3) Determine
the turbines that drive the compressors as closely
to the surge line as possible without generating
too high a back pressure. Based on this procedure,
simulations and experiments are done to find the
compressor and the turbine that best match a set
of given performance criteria.

Three-way catalytic converters are typically used
to reduce emissions by requiring the engine to
operate at stoichiometric conditions, i.e., � =
1. We thus focus our investigation on engines
operating at � = 1, thus ignoring the problem
that current turbine materials cannot withstand
temperatures above 1300 K. Current practice is to
protect the turbine at high air mass flows by fuel
enrichment, which significantly raises the levels of
pollutants and the fuel consumption.

3. OPTIMAL FUEL ECONOMY:
FORMULATION OF THE PROBLEM

The brake-specific fuel consumption BSFC is de-

fined as the fuel mass flow
�
mf divided by the

generated power P

BSFC �
�
mf

P
=

�
mf

Tq 2� N

where N is the engine speed in revolutions per
second. One problem with the definition of BSFC
is that there is a singularity at zero torque.
Therefore it is advantageous to look at 1

BSFC =

Tq 2� N/
�
mf which then has to be maximized

for best fuel e�ciency. Optimizing the cruising
scenario with constant speed for the best fuel

economy is thus the same as maximizing Tq/
�
mf .

For cruising we now also consider the maximiza-
tion under limited resources, that is a desired fuel

flow
�
mf,des, which now becomes

max Tq(uth, uwg,
�
mf )

subject to
�
mf (uth, uwg) =

�
mf,des

A constant fuel flow corresponds to a constant
air flow, since we are restricting engine operation
to stoichiometric conditions. This leads to the
following formulation of the problem

max Tq(uth, uwg,
�
ma)

subject to
�
ma(uth, uwg) =

�
ma,des

(1)

4. MODELING OF A TURBOCHARGED
ENGINE

The structure incorporates a number of control
volumes which are separated by flow restrictions
(see Figure 1). As a detailed explanation of the
complete model would exceed the scope of this
paper, only the components necessary for study-
ing the problem of fuel optimality are described
in the following paragraphs.

The formulation of the fuel-optimal operation of
turbocharged SI engines shows that models for
engine torque and engine air-mass flow are nec-
essary. Since the control inputs a�ect the intake
and exhaust manifold pressures, the models must
describe how these pressures influence the torque
levels and the air flow.

4.1 Engine Air Mass Flow

The air mass flow to the engine is modeled using
the volumetric e�ciency �vol which provides the
data necessary to calculate the amount of fresh

ypic

yTic

ypim

yWaf

y!

yxpos

ypamb

yTamb

uwg

umf

Fig. 3. A schematic of the model of the air flow through the model. This
figure is used with permission from [12].
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Fig. 4. The air mass sensor data yWaf with an intermittent fault fWaf
where the shaded intervals highlight when the fault is present.

threshold the sensor signal to detect whether the sensor is
faulty or not. The signal for ypim also varies in a wide span
as can be seen in Fig. 5, while the signals for ypic and yTic

are more constant.
The data collected in the study consist of four runs of the

highway part of FTP75, one run for each fault. Each data set
is 765 seconds and the fault induced in the specific data set
is assumed to be intermittent and active approximately half
of the time, see for example Fig. 1 where the shaded areas
indicate the time slots when the fault fWaf is active.

IV. RESIDUAL GENERATOR CANDIDATES

Generating model-based residual generators require a set of
equations with analytical redundancy, i.e., a set of equations
where the number of equations is larger than the number of
unknown variables. One specific type of such equation sets are
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Fig. 5. The air mass sensor data ypim with an intermittent fault fpim.

those that have no redundancy if any additional equation is
removed from the set. These sets are referred to as minimally
structurally over-determined (MSO) sets of equations and [24]
describes an algorithm that finds all MSO sets for a given
structural model. Other methods for finding candidate sets of
redundancy equations are described in, for example, [25] and
[35].

One complicating factor is that the number of redundancy
equation sets grows exponentially with the level of redundancy
of a system. For the given engine model, the number of MSO
sets is 4 496, but by adding two additional sensors to the
model, the number of MSO sets can increase to approximately
100 000 [22]. Based on an MSO set it is possible to design
several residual generators. If the model is non-linear, the
different residual generators are likely to have different signal
to noise ratios, even though they are generated from the same
equation set. Thus, since there commonly are thousands of
residual generator candidates, residual selection is a non-trivial
problem even for systems with relatively low redundancy.

The residual selection algorithm and test design approach
described in this paper is generic and independent on the
method used for finding residual generator candidates. How-
ever, to illustrate the overall approach, the Fault Diagnosis
Toolbox [15] is here used to generate a set of sequential
residual generator candidates. A sequential residual generator
is a sequential computation form of a residual generator based
on an MSO set [42]. One equation is selected as the redundant
equation, and the remaining set of equations is ordered such
that all unknown variables can be computed sequentially based
on known signals. This is illustrated by the following example.

Example 2: Note that the nominal model in Example 1
is an MSO set which can be used for residual generation.
A sequential residual generator can be formulated in the
following computational form

e2 : x2 := g2(u)

e1 : x1 := g1(x2)

e3 : r := y � x1

where the nominal equations are solved in the following order,
e2, e1, e3. The last equation e3 is the redundant equation used
for computing the residual r. Note that since equation e1
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Fig. 6. Fault signature matrix for all residual generator candidates.

is used, where fault f is included, the sequential residual
generator is sensitive to the fault f . ⇤
By selecting different redundant equations, each MSO set
can be used to generate different sequential residual gener-
ators with different diagnostic performance. Each sequential
residual generator is automatically generated from the Fault
Diagnosis Toolbox and implemented as c-code. Some of the
sequential residual generator candidates are not realizable, for
example, if a variable is to be computed from an equation that
is not invertible.

In this specific case, a set of 64 residual generator candidates
is generated and the corresponding fault signature matrix is
shown in Fig. 6. Since some residual generators are based
on the same MSO set, they are sensitive to the same set of
faults. All dynamic equations in the used residual generators
are computed by integration, i.e., no differentiation is carried
out in the computation of the residuals [14].

Evaluating one residual using approximately 13 min data
(FTP75 highway driving cycle) with sampling rate 1 kHz takes
around 0.8 s on a standard laptop. The residuals are evaluated
using data from the different fault scenarios described above
with intermittent faults. Fig. 1 shows data including intermit-
tent fault fWaf from the subset of residuals that are sensitive
to fWaf , and the residuals not sensitive to the fault in Fig. 7.
Each data set is divided into training data and validation data,
which is illustrated by the vertical black line in the figures. The
corresponding residuals with fault fpim are shown in Fig. 8
and Fig. 9, respectively. It is visible that the residual outputs
where the fault is decoupled, i.e. residuals not expected to
react to the fault, do not change significantly. This is expected,
however, note that only a few of the residuals sensitive to a
specific fault significantly reacts to the fault. This indicates that
measurement data is needed in the design process of selecting
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Fig. 7. The residual outputs from the subset of residual generators where
fault fWaf is decoupled, when evaluated using data with fault fWaf .
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Fig. 8. The residual outputs from the subset of residual generators sensitive
to fpim when evaluated using data with fault fpim.

the residual generators to be used in the diagnosis system.

V. RESIDUAL SELECTION

If the performance of each residual is considered indepen-
dently of each other, the problem of finding a residual set that
fulfills a set of performance requirements can be formulated as
a minimal hitting set problem [42]. One complicating factor is

Residual candidates where fpim is decoupled
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u
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Time

Training data Validation data

Fig. 9. The residual outputs from the subset of residual generators where
fpim is decoupled when evaluated using data with fault fpim.
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that solving the minimal hitting set problem is NP-complete,
and thereby it is not feasible to find the minimal solution even
for relatively small systems. The two common approaches
are either to apply a heuristic search strategy to the residual
selection process or try to relax the optimization problem to a
form that is easier to solve but still gives relevant results. The
approach proposed here is to reformulate the residual selection
problem as a relaxed convex optimization problem.

To take quantitative detection performance of the candidate
residual generators into consideration, a data-driven approach
is proposed for the residual selection problem. Since the
available data from faulty cases is limited, the fault signature
matrix in Fig. 6 is used to find residual generator candidates
with specific fault isolability properties. The residual selection
problem is formulated as a convex optimization problem which
guarantees that any local optimum is also global. Each fault
isolability requirement is solved individually and a number of
different candidate residual sets are computed with varying
trade offs between solution cardinality and detection perfor-
mance. The best residual set is then selected using cross-
validation.

A. Data-driven residual selection
The problem of finding a subset of residuals that achieves

satisfactory detection performance is similar to a research
problem in machine learning usually referred to as the feature
selection problem [18]. There are a couple of reasons why it
is relevant to apply a feature selection algorithm instead of
using all available residual generator candidates. Two of the
most important factors from a residual selection perspective
are

• Robustness against overfitting
• Computational cost

Overfitting is a general problem in feature selection when a
model becomes dependent of artifacts in the training data and
is not able to make reliable predictions on validation data. In
this case, it is important to find a set of residual generators that
can distinguish faulty behavior from model uncertainties and
measurement noise. The second aspect of reducing the number
of residuals is that on-line computational cost is reduced if
only a small set of residual generators are computed in the
diagnosis system.

Since the purpose of the diagnosis system is to detect and
isolate a set of different faults, one option is to use data
from all faults at once and train one multi-class data-driven
classifier, see for example [17]. However, if the amount of
training data only contains a limited set of fault realizations
from the different faults, it is possible that the classifier
incorrectly rejects a fault if it occurs with a different fault
realization compared to training data. Thus, it is not desirable
that the performance of a test quantity is too dependent on
available training data.

Evaluating fault detection performance of a set of residual
generators corresponds to evaluating their ability to distinguish
faulty behavior from nominal behavior. Here, the residual
selection problem is formulated independently for each fault
isolation performance requirement, i.e., the goal is to find
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Fig. 10. Sets of remaining residual generator candidates Rfj when decou-
pling one fault at the time.

different residual sets for isolating each fault fi 2 F from
another fault fj 2 F where fi 6= fj . Let Rfj ✓ Rall denote the
subset of residual generators where the fault fj is decoupled.
These subsets of residuals are used in the residual selection
algorithm to select residuals with specific isolability properties.
The corresponding subsets Rfj , when the residual generators
sensitive to each of the four faults are removed, are shown in
Fig. 10.

B. A convex relaxation of the residual selection problem

Let r̄[t] be a column vector representing a sample at time
t from the residual generator candidates R ✓ Rall from the
model analysis. It is assumed that all residuals in Rall are
normalized to have the same noise variance in the nominal
case. Let �0 + �Tr̄[t] be an affine function of vector r̄ such
that the sample r̄[t] belongs to Class 0 if �0 +�Tr̄[t] � 0 and
Class 1 if �0 + �Tr̄[t] < 0. The vector � is a column vector
with the same number of elements as the number of elements
in R where element �m in � corresponds to residual generator
rm 2 R. The parameter �0 can be interpreted as a threshold
that divides the two classes of data.

There are different methods of quantifying residual detec-
tion performance, such as the Kullback-Leibler divergence
[2], [10] or power functions [42]. The approach used here
is to use the logistic function [20] to evaluate fault detection
performance.

The logistic function can be written as

�(r̄[t]) =
1

1 + e�(�0+�Tr̄[t])
(1)

which maps any real value R, to the interval [0, 1]. The logistic
function can be used to model a probabilistic binary classifier
as

P (Class = 1|r̄[t]; �0, �) =
e�0+�Tr̄[t]

1 + e�0+�Tr̄[t]
,

P (Class = 0|r̄[t]; �0, �) =
1

1 + e�0+�Tr̄[t]

(2)

which is called logistic regression where P (Class =
i|r̄; �0, �) denotes the conditional probability that Class = i
given sample r̄ and parameters �0 and �.
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Fig. 11. A logistic regression model.

An example of a logistic regression model is shown in
Fig. 11 where the two histograms represent two classes of
data and the curve is the probability that data belongs to the
right class and one minus the curve that data belongs to the left
class. Here, Class 0 represents the fault-free case and Class 1
the faulty case.

Let r̄[1], r̄[2], . . . , r̄[N ] denote N samples and c[t] is a class
variable which is one if the sample r̄[t] at time t belongs
to Class 1 and zero if it belongs to Class 0. The maximum
likelihood estimation of the parameters �0, � can be found by
maximizing the log-likelihood

max
�0,�

NX

t=1

log pc(r̄[t]; �0, �) =

min
�0,�

�
NX

t=1

h
c[t](�0 + �Tr̄[t]) � log(1 + e�0+�Tr̄[t])

i

(3)
where pc(r̄[t]; �0, �) = P (Class = c[t]|r̄[t]; �0, �) [20].

An advantage of the logistic regression model is that it
is convex [4] which guarantees that any locally optimal
parameters �0 and � are also globally optimal. If training data
contains both fault-free data and data from fault fi, the weights
� in (3) can be interpreted as a measure of how important each
candidate residual generator in Rfj is to detect the fault fi in
the training data set.

Since the goal is to find a subset of the best residuals in Rfj

to detect a fault fi, an L1 penalty to the parameter vector � is
added in (3) which gives the L1-regularized logistic regression
[20]. Let r̄j [t] denote a column vector which is a sample of
all residuals in Rfj , i.e., all residuals where fj is decoupled.
Then, the L1-regularized logistic regression can be written as

min
�0,�

(
�

NX

t=1

h
c[t](�0 + �Tr̄j [t]) � log(1 + e�0+�Tr̄j [t])

i

+�
X

8rk2r̄j

|�k|

9
=

; .

(4)

Thus, by performing residual selection using training data
including fault fi on the subset of residuals Rfj where fj is
decoupled, the solution will be a residual set which can isolate
fi from fj . This is an important step in the residual selection

approach that the structural information is used to assure that
the solution set to (4) has certain isolability properties. By
solving (4) for different faults fi and fj , different solution sets
can be found with different fault isolability properties. Note
that the final residual set in the diagnosis system is the union
of all selected solution sets to (4) for different fi, fj 2 F .

A residual rk is considered part of the solution set to (4)
if the corresponding parameter �k 6= 0. The parameter � is a
penalty parameter forcing sparsity to the solution � [20]. A
large value of � will result in a solution with few non-zero
elements in � corresponding to most important residuals to
detect fi. By decreasing the value of �, more elements in �
will become non-zero. However, it is non-trivial to select �
that achieves a solution that gives the best trade-off between
detection performance and number of residuals.

C. Identify candidate sets using regularization paths
Solving (4) for different values of � will give different

solution sets with different trade-offs between detection perfor-
mance and number of residual generators. In [9], an algorithm
is proposed that efficiently finds the regularization path of the
� vector for linear models, i.e., how the solution � depends
on �. In [13] an algorithm for generalized linear models,
including logistic regression, is presented and the analysis is
performed using the implementation in the GLMmet toolbox
in Matlab [36].

The regularization path of each element in the vector �
based on data from fault fWaf is shown in Fig. 12 and from
fault fpim in Fig. 13. For each value of � where one of the
elements in � goes from zero to non-zero, or vice versa, is
marked in the figure. Note that in each interval between the
vertical lines, the set of non-zero elements in � is the same.
Then, each interval represents a candidate set of residuals
where the leftmost interval is the candidate set with highest
� penalty. For each following interval, the corresponding
candidate residual sets are ordered based on reduced sparsity
penalty, i.e. with reducing �. In most cases, the cardinality
of the candidate set increases when � decreases. However,
depending on the L1 penalty cost of adding residuals to the
solution set, there are cases where a parameter �i becomes
zero again (while the absolute value of another non-zero
parameter �j increases) and the cardinality instead decreases.

The corresponding candidate residual generator sets for
Fig. 12 and Fig. 13, i.e., the non-zero elements in � in each
interval are summarized in Table II and Table III, respectively.
Note that the cardinality does not increase for each candidate
residual set when � decreases. Even though the sets can
be smaller, it is important to note that since the penalty
� decreases for higher candidate set indices, the risk of
overfitting increases. This can be avoided by increasing the
amount of training data or to use cross-validation [29].

D. Candidate residual set selection using cross-validation
To decide which residual candidate set to select, the dif-

ferent candidates are evaluated using cross-validation [29].
Validation data is selected as shown in Fig. 1 and Fig. 7 for
fWaf , and in Fig. 8 and Fig. 9 for fpim, respectively. Then, a
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Fig. 12. The regularization path for each element in � in (4) given data
from fWaf . Each vertical line marks when one curve becomes either zero or
non-zero, meaning that the number of non-zero elements changes in �. Each
of the 48 intervals corresponds to one candidate set of residuals.

TABLE II
RESIDUAL GENERATOR CANDIDATE SETS CORRESPONDING TO THE

NON-ZERO ELEMENTS OF � IN EACH INTERVAL IN FIG. 12. THE
HIGHLIGHTED SET IS THE SELECTED RESIDUAL SET.

Candidate set index Set of residual generators
1 {62}
2 {29, 62}
3 {24, 29, 45, 62}
4 {24, 45, 62}
5 {24, 38, 45, 62}
6 {24, 38, 45, 59, 62}
7 {6, 24, 38, 45, 59, 62}
8 {6, 24, 38, 45, 50, 59, 62}
9 {6, 24, 30, 38, 45, 50, 59, 62}
10 {6, 9, 24, 30, 38, 45, 50, 59, 62}
11 {6, 9, 24, 30, 38, 45, 50, 55, 59, 62}
12 {6, 9, 24, 38, 45, 50, 55, 59, 62}
13 {6, 9, 24, 38, 45, 50, 55, 59, 62, 64}
...

...
48 {1, 3, 6, 8, 10, 11, 12, 13, 15, 23, 24, 26, 34,

37, 38, 45, 49, 55, 57, 58, 63}
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Fig. 13. The regularization path for each element in � in (4) given data from
fpim. Each of the 43 intervals corresponds to one candidate set of residuals.

TABLE III
RESIDUAL GENERATOR CANDIDATE SETS CORRESPONDING TO THE

NON-ZERO ELEMENTS OF � IN EACH INTERVAL IN FIG. 13. THE
HIGHLIGHTED SET IS THE SELECTED RESIDUAL SET.

Candidate set index Set of residual generators
1 {27}
2 {26,27}
3 {26, 27, 53}
4 {26, 27, 36, 53}
5 {26, 36, 53}
6 {26, 36, 43, 53, 57}
7 {26, 36, 39, 43, 53, 57}
8 {16, 26, 36, 39, 43, 53, 57}
9 {16, 26, 35, 36, 39, 43, 53, 57}
10 {16, 26, 35, 39, 43, 53, 57}
11 {12, 16, 26, 35, 39, 43, 53, 57}
12 {12, 16, 26, 35, 39, 43, 52, 53, 57}
13 {12, 14, 16, 26, 35, 39, 43, 52, 53, 57}
...

...
43 {1, 3, 7, 9, 10, 12, 13, 14, 15, 16, 19, 26, 28,

30, 32, 34, 35, 36, 37, 38, 41, 42, 43, 45, 52,
53, 55, 57, 60, 63}
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Fig. 14. Cross-validation of residual sets using data with fault fWaf showing
model fit with respect to residual set.

new logistic regression model (3), without any regularization
term, is trained using only the residual generator candidates r̄
in each candidate set. The results from the cross-validation are
shown in Fig. 14 for each candidate set in Table II. Evaluation
of validation data shows that candidate sets after index six
have over-fitting behavior. Note that the candidate sets have
been selected using L1-regularization and the cost without
the regularization term is not monotonically decreasing when
evaluated using training data. However, the cross-validation
still gives an indication of the relation between fault detection
performance and number of residual generators.

For easier interpretation of the cross-validation, from a
fault detection point of view, the mis-classification rate of the
logistic regression model for each residual set is computed
for both the training set and validation set and the results
are shown in Fig. 15 and Fig. 16, for detection of fWaf and
fpim respectively. This is computed by counting the number
of mis-classified samples in the solution to (3). For each fault
in Fig. 15 and Fig. 16 respectively, the mis-classification rate
starts to increase for validation data after around candidate set
five which indicates that those models suffer from over-fitting.

In this case study, since the difference in performance
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Fig. 15. Cross-validation of residual sets using data with fault fWaf showing
mis-classification rate with respect to residual set.
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Fig. 16. Cross-validation of residual sets using data with fault fpim showing
mis-classification rate with respect to residual set.

is relatively small for the different candidate sets with low
cardinality, candidate sets with either one or two residuals are
selected for each fault detection and isolation case.

The residual selection algorithm is applied for each fault
isolation case, including fault detection and single-fault iso-
lation. The results from the residual selection are sum-
marized in Table IV where the set in position (i, j) is
the selected set of residual generators to isolate fault fi

from fj . In total, seven residuals were selected, R⇤ =
{r24, r26, r27, r29, r30, r34, r62}, that together achieve satisfac-
tory detection and isolation performance of all considered
faults. The fault signature matrix for R⇤ is shown in Table V.

To illustrate fault detection performance of the selected
residual sets in Table IV, validation data from two different
sets of two residuals are plotted against each other. Fig. 17
and Fig. 18 show the residual sets {r29, r62} and {r26, r27}
which are selected to detect sensor faults fWaf and fpim, re-
spectively, see Table IV. The two figures show the correlation

TABLE IV
SELECTED RESIDUAL SETS FOR EACH CASE OF DETECTING OR ISOLATING

EACH FAULT.

NF fWaf fpim fpic fTic

fWaf {r29, r62} - {r29, r62} {r24, r29} {r29, r62}
fpim {r26, r27} {r26, r27} - r26 r27
fpic r34 r34 r34 - r34
fTic {r26, r30} r30 {r26, r30} {r26, r30} -

TABLE V
FAULT SIGNATURE MATRIX OF RESIDUAL SET R⇤ .

Residual fWaf fpim fpic fTic

r24 X X
r26 X X
r27 X X
r29 X
r30 X
r34 X
r62 X X
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Fig. 17. Residuals r29 and r62 plotted against each other for a data set with
intermittent fault fWaf .

between the residual generators which illustrates that detection
of the two faults is improved by analyzing the multi-variate
information instead of analyzing each residual individually.

E. Summing up
The data-driven residual selection strategy to find a residual

set to isolate a fault fi from a fault fj is summarized as
follows.

1) Evaluate the selected residual generators Rfj ✓ Rall
where fj is decoupled using data including both nominal
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Fig. 18. Residuals r26 and r27 against each other for a data set with
intermittent fault fpim.



IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOLOGY 10

data and fault fi.
2) Compute regularization paths of (4), using for example

[36], to get candidate residual generator sets.
3) Evaluate performance using cross-validation for all can-

didate sets and select the smallest set with satisfactory
performance for validation data.

This procedure is performed for all fault pairs (fi, fj) and the
final residual set R⇤ is the union of the solution sets selected
for each fault isolation requirement.

VI. A DATA-DRIVEN VALIDATION OF STRUCTURAL
RESIDUAL PERFORMANCE

The set of residuals in Table V is selected to detect and
isolate a set of faults with satisfactory detection and isola-
tion performance. This is based on the assumption that they
fulfill the structural detectability and isolability performance
requirements specified in the fault signature matrix. Here,
a data-driven approach is proposed to analyze if the fault
isolability properties are fulfilled in the situation where the
residual generators are affected by model uncertainties and
measurement noise.

Even though faults are ideally decoupled in each residual
generator, model uncertainties could be significant. This could
result in faults influencing residual generators even though
they should not. If this is true, the residuals will cause false
alarms and increase the risk of falsely rejecting the true fault
hypothesis. If the model uncertainties cannot be neglected, it
is relevant to verify that the faults are correctly decoupled in
the different residual generators, i.e., the fault signature matrix
is correct. The approach here is to evaluate all residuals with
data from the different faults and analyze whether the output
from the residual set deviates from its nominal behavior or not
when each fault is decoupled.

A common approach to visualize fault detection and isola-
tion performance of a set of residuals is to draw each residual
in a separate plot to compare the residual distribution in the
nominal and the faulty case. This can be evaluated using, for
example, the Receiver Operating Characteristic (ROC) curve
[3] or power functions [42]. One limitation with applying these
methods is that important information regarding correlation
between residuals is lost. Thus, it is relevant to plot residual
outputs in a way that can visualize this type of multi-variate
information.

A. t-Student Stochastic Nearest Embedding
Visualizing multi-dimensional data is a difficult task for

dimensions larger than three. An interesting unsupervised
non-linear visualization method is the t-Student Stochastic
Nearest Embedding (t-SNE) algorithm [46], which can trans-
form multi-dimensional data to low-dimensional space. The
algorithm tries to preserve local structures in data using the
Kullback-Leibler divergence as a similarity measure. Thus,
samples that are similar in the original space are kept close
to each other. A fast heuristic implementation of the t-SNE
algorithm to handle larger data sets is used here [45].

The results of the t-SNE algorithm when analyzing residual
time data, including all four sensor fault scenarios, from all
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Fig. 19. t-SNE plot analyzing faulty data from the residual set in Table IV.

seven residuals R⇤ at the same time are shown in Fig. 19 for
the residual set in Table V. To decrease the size of the figure,
the information is down-sampled to every 400th sample. Each
point is a time sample of the residual set evaluated with real
engine data and the different colors represent different fault
modes, i.e., the fault that is present in each sample. Note
that the dimensionality reduction is performed using non-
linear optimization, meaning that the generated plot will look
different in each run [46].

The t-SNE plot in Fig. 19 is interpreted as follows. If data
from two classes are on top of each other, these samples are
overlapping in the original space as well. This means that they
are difficult to distinguish from each other, i.e., the residual
set outputs are similar. If there are data from two classes
that do not lie on top of each other, i.e., they are located
at different areas in the t-SNE figure, these samples of data
are distinguishable from each other. It is visible that some
samples from fault fpim are located among the fault-free data
in Fig. 19. This is expected since the results from the residual
selection showed that this fault is more difficult to detect.
However, most of the faulty data are located in a different
location compared to the fault-free case showing that the fault
is detectable as concluded in the residual selection.

As discussed in the introduction in Section I, note that since
residual data contain a limited amount of fault realizations it
is only possible to evaluate if a fault is detectable, for a given
residual set, in the t-SNE plot. This means that if there are
regions of faulty data that are not overlapping with nominal
data, the fault should be detectable. Even though data from
the different faults are located in different parts of Fig. 19, it
is not possible to state that the faults are isolable from each
other, since the faulty data is not representative of all fault
realizations. To evaluate fault isolation properties using t-SNE,
the structural information in the fault signature matrix is used
in the analysis.
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Fig. 20. t-SNE plot visualizing data from the subset of residuals in Table IV
where fWaf is decoupled.

B. Analyzing fault isolation properties using t-SNE

The fault signature matrix shows the ideal fault sensitivity
of each residual. If a fault is decoupled, then faulty data should
not be different from nominal data. By selecting the subset of
residuals where a fault fj is decoupled and analyze the output
from the subset using the t-SNE algorithm, then residual data
from fault fj should not differ from nominal residual data if
the fault is ideally decoupled. Then, if the other faults are
detectable when fj is decoupled, it is possible to isolate the
other faults from fj . If data from fj is separated from nominal
data, then it is an indication that the fault is not correctly
decoupled and the model must be improved.

Using the fault signature matrix makes it possible to evalu-
ate fault isolation properties using t-SNE on the residual set in
the same way as for fault detection in Fig. 19. As an example,
Fig. 20 shows the t-SNE plot of residuals {r26, r27, r30, r34},
i.e., the residuals where fWaf is decoupled. It is visible in
the plot that fWaf is decoupled since data from the fault
lies on top of fault-free data. Since the other faults are not
overlapping the nominal data they are still detectable using
only the subset {r26, r27, r30, r34}, i.e., they are isolable from
fWaf . Similar conclusions can be drawn when analyzing the
residuals {r29, r30, r34, r64} where fpim is decoupled since
residual data during fault fpim is now on top of fault-free
data in Fig. 21.

Note that evaluating the residual set using t-SNE is not
really part of the residual selection problem. However, it is
an important step to validate fault detectability and isolability
properties of the residual generators in cases when model
uncertainties cannot be neglected. The procedure to evaluate
the properties of isolating fault fi from another fault fj for the
selected residual set R⇤ can be summarized in the following
steps.

1) Select the subset of residuals in R⇤ where fj is decou-
pled and evaluate the residuals using data including both
nominal data and fault fj .
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Fig. 21. t-SNE plot visualizing data from the subset of residuals in Table IV
where fpim is decoupled.

2) Apply the t-SNE algorithm [46] to visualize the residual
data. The fault fi is isolable from fj if there are sets
of data points from fault fi which are separated from
nominal data.

One of the main results from the this analysis is that the
fault detection and isolation performance of the set of selected
residuals is consistent with the fault signature matrix in
Table V.

VII. DIAGNOSIS SYSTEM DESIGN

Section V described how the residual selection problem can
be relaxed and formulated as a convex optimization problem.
Also, for the engine case study, a set of residual generators
with satisfactory fault isolation performance was chosen for
each fault pair. Note that Fig. 15 and Fig. 16, show that it is
possible to improve fault detection and isolation performance
by taking multi-variate information from several residuals
into consideration instead of only considering the detection
performance of the residuals individually. Here, a modified
model-based diagnosis system design is proposed to take the
multi-variate information of the residual set into consideration.
The case study will be used to illustrate the proposed diagnosis
system design.

A. Diagnosis system design
A traditional model-based diagnosis system structure is to

post-process each residual rl 2 R⇤ independently by forming
a test quantity Tl(rl), for example, by using a CUmulative
SUM (CUSUM) test quantity [3], [32]. Then, given the test
quantities that have triggered, i.e. the test quantities Tl that
have exceeded their thresholds Jl, a set of diagnosis candidates
is computed, for example, using the fault isolation algorithm
described in [8].

The proposed modification of the traditional diagnosis sys-
tem structure is that the test quantities Tl can be functions of
multiple residuals. As an example, from the selected residual
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generator sets in Table IV, a test quantity is designed for
detecting and isolating each fault. The same residual set is
sometimes selected for isolating different faults from each
other, for example {r26, r27} which has been selected for
both detecting fault fpim and isolating it from fWaf . The
total number of unique residual generator sets in this case is
eight, one more than the number of residual generators in the
solution.
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Fig. 22. A schematic of the diagnosis system design where the test quantities
are based on residual sets given in Table IV. A test quantity Tl has here
reacted when Tl > Jl where Jl is a design parameter

The results from the cross-validation in Section V-D showed
that the detection performance can be improved by combin-
ing multiple residuals when designing test quantities. The
proposed diagnosis system structure is illustrated in Fig. 22.
The sensor data from the system are first processed by the
selected set of residual generators in Table V and then a set
of test quantities are computed based on the different subsets
of residuals. The residual subsets are given by the solution
sets in Table IV. However, note that the approach is generic
and that it is not necessary that the test quantities are designed
based on logistic regression.

The fault signature matrix of the designed test quantities
in Fig. 22 is shown in Table VI. The fault sensitivity of
each test quantity in Table VI is given by the union of the
fault sensitivities in Table V for the residuals used in the test
quantity. Thus, fault isolation can still be performed based on
the multi-variate set of test quantities using existing model-
based fault isolation algorithms, for example, consistency-
based diagnosis [8]. Furthermore, note that even though a
residual is used in several test quantities, it is only necessary
to compute it once every time step.

B. Multi-variate test quantity design
As discussed in Section I-A, since the amount of faulty

scenarios in the training data is limited, it is not a good
approach to train a binary or multi-class classifier using
training data without taking the fault sensitivity of the different
residual generators into consideration. Since the residual sets
in Table IV have good detection performance on training data,

TABLE VI
FAULT SIGNATURE MATRIX OF THE TEST QUANTITIES IN FIG. 22.

Test quantity fWaf fpim fpic fTic

T1 X X
T2 X X
T3 X X X
T4 X X
T5 X X
T6 X
T7 X
T8 X X
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Fig. 23. Residuals r26 and r27 evaluated with data from different faults are
plotted against each other. The two residuals are normalized to have identity
covariance matrix and are denoted r̃26 and r̃27. The black curve represent
the boundary of a one-class support vector machine trained on fault-free data
to have 1% false alarm rate.

it is assumed that they should have good detection perfor-
mance, i.e., they will deviate from their nominal behavior, on
other realizations of the same faults as well. Therefore, using
only nominal data to calibrate the threshold Jl of each test
quantity Tl should be satisfactory to assure high diagnostic
performance.

As an example, consider the design of test quantity T3 in
Fig. 22 which is a function of residual generators r26 and r27.
Fig. 23 shows residuals r26 and r27 plotted against each other
with data from different faults. Since the residual generators
in this case study are computed without feedback, there is a
bias between the different residuals caused by incorrect initial
state values. Therefore, the residual outputs for the different
fault data sets in the figure are normalized to have the same
mean when there is no fault in the data. The two residuals are
also normalized to have identity covariance matrix, and the
normalized residuals are denoted r̃26 and r̃27. The fault fWaf

is decoupled, which is visible as the data from the fault lies
on top of the fault-free data. The three other faults affect the
two residuals in different directions.

For linear systems with additive faults, each fault is pro-
jected in a specific direction in the linear residual space. Then,
the optimal linear residual generator to detect a specific fault
is the one corresponding to the vector pointing in the same
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Fig. 24. An example of a CUSUM test applied to a linear combination of
r26 and r27 applied to data including an intermittent fault fTic. Note that
the CUSUM test is manually reset after each intermittent fault disappears.

direction as the fault [10]. Since each fault appears to move
the residual outputs in a specific direction, one approach is to
generate different test quantities based on a linear combination
of the original set of residuals such that it maximizes the
detection of each fault, i.e.,

rnew[t] = �Tr[t]. (5)

where � can be determined using, for example, logistic regres-
sion (3). Then, for example, a CUSUM test can be applied to
the new residual rnew[t]

T [t] = max (0, T [t � 1] + rnew[t] � ⌫) , T [0] = 0 (6)

where ⌫ is a design parameter. As an example, Fig. 24 shows
a CUSUM test applied to a residual rnew, optimized to detect
fTic based on r26 and r27 using logistic regression, as

rnew[t] = 0.64r26[t] + 0.38r27[t] (7)

and ⌫ = 1.65. To illustrate the concept, the CUSUM test is
manually reset when the intermittent fault disappears. The new
row in the fault signature matrix for each new test quantity will
be the union of the fault sensitivities for the included residual
generators.

A data-driven approach to train classifiers when there is
mainly data from the nominal behavior and not much from
faults is often referred to as anomaly, or novelty, detec-
tion [34]. Some examples of anomaly detection algorithms
are Principal Component Analysis (PCA) [27], Partial Least
Squares (PLS) [30], and k-means [5]. The main principle is to
generate a model based on the nominal system behavior and
detect when data starts to deviate. An advantage of using the
residuals instead of the original measurements is that many
of the system non-linearities are captured by the residual
generators. This means that a less complex classifier should
in many situations be sufficient to detect faults.

One interesting anomaly classifier is the one-class support
vector machine [39] which uses support vectors to model one-
class training data from a given set of features, in this case the
residual set. In general when training one-class support vector

machines, there is no knowledge which features are the most
relevant to detect anomalies and all features will be used in the
model. However, if the residual selection step in Section V is
performed first, an anomaly classifier can be generated based
on a selected subset of residuals which is known to be relevant
for detecting or isolating a given fault. Thus, the anomaly
classifier is trained using only nominal data, but still detects
when faults occur. An example is shown in Fig. 23 where the
black curve represents the boundary of the one-class support
vector machine which is trained to correspond to a 1% false
alarm rate for the nominal training data. When evaluated on
the validation data shown in the figure the false alarm rate is
approximately 2%.

The proposed diagnosis system design in Fig. 22 allows for
both classical test quantity design using, for example, CUSUM
tests, but also multi-variate methods, such as one-class support
vector machines. After a residual set R⇤ has been selected, the
following diagnosis system design process can be summarized
in the following steps.

1) Implement all residual generators in R⇤ in the diagnosis
system.

2) For each fault pair (fi, fj):
a) Select the subset of residuals in R⇤ that was

found to isolate fault fi from fj as described in
Section V-E.

b) Design a test quantity, based on a combination of
the residual subset found in a), that maximizes
detection of fault fi and still achieves a satisfactory
false-alarm rate.

To illustrate the diagnosis system design shown in Fig. 22 a set
of eight test quantities is generated based on the seven residual
generators as described in the figure. The test quantities are
evaluated using data from an intermittent fault fTic and the
results are shown in Fig. 25. The dashed lines represent
thresholds tuned using nominal data. The fault signature matrix
in Table VI shows that test quantities T2, T3, T5, and T6,
are sensitive to the fault, which is also visible in the figure.
Also, note that the test quantities where fTic is decoupled are
not affected by the fault. This shows that the selected set of
residual generators, and the generated test quantities, work as
expected and are able to detect and isolate the fault.

VIII. CONCLUSIONS

Finding a suitable set of residual generators to design a
diagnosis system is crucial to be able to achieve satisfactory
fault detection and isolation performance. A residual selection
algorithm is proposed which combines model-based and data-
driven methods to find residuals with good fault detection
performance, where the set of residuals also fulfill certain
isolability properties. A main contribution is that structural
information, describing which faults affect which residuals,
is combined with training data to identify residual sets for
fault detection and isolation, even though training data is
limited. The engine case study shows the importance of
taking residual detection performance into consideration in the
residual selection process. The t-SNE algorithm is shown to be
a useful tool to analyze if faults are correctly decoupled. This
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Fig. 25. A set of test quantities, designed as described in Fig. 25, when
evaluated with data including an intermittent fault fTic.

is important, for example, if a simple model structure is used
for a complex system where the model uncertainties cannot be
neglected. A proposed model-based diagnosis system design
uses multi-variate information from several residuals, instead
of evaluating each residual independently, to improve fault
detection performance.
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[6] M. Cordier, P. Dague, F. Lévy, J. Montmain, M. Staroswiecki, and
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