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Abstract 
Geographic information science and systems face challenges related to understanding 
the instinctive heterogeneity of geographic space, since conventional geospatial anal-
ysis is mainly founded on Euclidean geometry and Gaussian statistics. This thesis 
adopts a new paradigm, based on fractal geometry and Paretian statistics for geospatial 
analysis. The thesis relies on the third definition of fractal geometry: A set or pattern 
is fractal if the scaling of far more small things than large ones recurs multiple times. 
Therefore, the terms fractal and scaling are used interchangeably in this thesis. The 
new definition of fractal is well-described by Paretian statistics, which is mathemati-
cally defined as heavy-tailed distributions. The topology of geographic features is the 
key prerequisite that enables us to see the fractal or scaling structure of geographic 
space. In this thesis, topology refers to the relationship among meaningful geographic 
features (such as natural streets and natural cities). 

The thesis conducts topological and scaling analyses of geographic space and its 
involved human activities in the context of geospatial big data. The thesis utilizes the 
massive volunteered geographic information coming from location-based social me-
dia platforms, which are the global OpenStreetMap database and countrywide, geo-
referenced tweets and check-in locations. The thesis develops geospatial big-data pro-
cessing and modeling techniques, and employs complexity science methods, includ-
ing heavy-tailed distribution detection and head/tail breaks, along with complex net-
work analysis. Head/tail breaks and the induced ht-index are a powerful tool for geo-
spatial big-data analytics and visualization. The derived scaling hierarchies, power-
law metrics, and network measures provide quantitative insights into the heterogene-
ity of geographic space and help us understand how it shapes human activities at city, 
country, and world scales.  
 
Keywords: third definition of fractal, scaling, topology, power law, head/tail breaks, 
ht-index, complex network, geospatial big data, natural cities, natural streets





Sammanfattning 
Geografisk informationsvetenskap och geografiska informationssystem står inför ut-
maningar kopplat till förståelsen av det geografiska rummets inneboende heterogeni-
tetet, i och med att den konventionella geospatiala analysen huvudsakligen är grundad 
på euklidisk geometri och Gaussisk statistik. Den här avhandlingen antar ett nytt pa-
radigm för geospatial analys baserad på fraktalgeometri och Paretostatistik. Avhand-
lingen bygger på fraktalgeometrins tredje egenskap: en uppsättning eller ett mönster 
kommer att uppvisa fraktala egenskaper om flertalet små saker än större, men med 
samma form, uppträder multipla gånger vid skalförskjutning (s.k. skalning). De två 
termerna fraktal och skalning används därmed på ett utbytbart sätt i avhandlingen. 
Den nya definitionen av fraktal kan väl beskrivas av Paretostatistik, vilket matema-
tiskt definieras som s.k. ”tung svans-fördelning” (eng. heavy-tailed distribution). To-
pologin hos geografiska företeelser fungerar som den viktigaste förutsättningen som 
möjliggör för oss att se det geografiska rummets fraktal- eller skalningsstruktur. I den 
här avhandlingen avses topologi som sambandet emellan geografiska formelement av 
betydelse (t.ex. s.k. naturliga städer och naturliga gator). 

Avhandlingen bedriver analyser av topologi och skalning för att undersöka det 
geografiska rummet och de mänskliga aktiviteter som berörs i kontexten av geospati-
ala stordata (eng. big data). Avhandlingen nyttjar den enorma mängden frivilligt given 
geografisk information som härrör från platsbaserade sociala mediaplattformar, som 
den globala databasen OpenStreetMap, samt landsomfattande georefererade tweets 
och incheckningsplatser. Avhandlingen utvecklar geospatial stordatabehandling och 
modelleringstekniker, och tar sig an metoder i komplexitetsvetenskap, vilka inklude-
rar detektion av tungsvansfördelning och s.k. ”huvud/svans-brytpunkter” (eng. 
head/tail breaks), tillsammans med komplex nätverksanalys. Head/tail breaks och det 
föranledda ht-indexet är ett kraftfullt verktyg för analys och visualisering av geospa-
tiala stordata. Den erhållna skalningshierarkin, power law-metriken och nätverksåt-
gärder ger kvantitativa insikter till det geografiska rummets heterogenitet, och hjälper 
oss att förstå hur det formar mänskliga aktiviteter på olika skalnivåer; såsom stad-, 
land-, och världsskala. 
 
Keywords: tredje fraktalegenskapen, skalning, topologi, power law, head/tail breaks, 
ht-index, komplexa nätverk, geospatiala stordata, naturliga städer, naturliga gator
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Glossary of terms 
Fractal: Fractal means broken or irregular shapes. The 

shapes of geographic features, such as rivers and 
mountains, are essentially irregular. Therefore, frac-
tal geometry well-describes them. Fractal geometry 
is self-similar, meaning that a part of the shape is 
similar to the whole. Based on self-similarity, there 
are three definitions of fractal: The first refers to 
strict self-similarity; the second relaxes the first def-
inition to statistical self-similarity; and the third fur-
ther relaxed self-similarity to the recurrence of a pat-
tern of far more small things than large ones. 

Scaling: Scaling refers to the notion of far more small things 
than large ones. In other words, if a pattern or phe-
nomenon is scaling, the majority of things must be 
small, whereas the minority of things are large. Ac-
cording to the third definition of fractal, scaling and 
fractal are interchangeable in this thesis.  

Topology: Topology focuses on the relationships among mean-
ingful geographic features (such as a continuous nat-
ural street, rather than its contained, meaningless 
segments) and neglects their geometric details (such 
as location, length, and sinuosity).  

Head/tail breaks: Head/tail breaks define a data-classification scheme 
with the scaling pattern. It separates the values of 
data into two imbalanced parts: The head (a minor-
ity of values greater than the arithmetic mean) and 
the tail (the rest of the values). This process can be 
iteratively applied to the head until the new head is 
no longer the minority. The derived heads are the 
resulting classes.  
 

Ht-index: The ht-index is equal to one plus the number of de-
rived heads during the process of head/tail breaks. It 
measures how fractal a geographic feature or phe-
nomenon is.  
 

Natural streets: Natural streets are a collection of individual street 
segments with good continuity. 
 

Natural cities: Natural cities refer to spatially clustered human ac-
tivities, such as agglomerated patches grouped from 



night-time image pixels, street blocks and junctions, 
and social media users’ individual tweet and check-
in locations.  
 

Power law: Mathematically, a power law indicates the probabil-
ities of a value (y) being proportional to some power 
of a quantity (x). It is the most typical member in the 
heavy-tailed distribution family. If data is a power 
law, it possesses a very strikingly fractal or scaling 
property.  
 

Complex network: A network comprises nodes and links. A complex 
network indicates that the nodes of a network hold a 
scaling pattern of far more less-connected nodes 
than well-connected ones, or can connect within a 
small number of steps.  
 

Geospatial big data: Geospatial big data is a massive, geo-referenced da-
taset that is hard to store, process, analyze, and vis-
ualize in the current geographic information system 
(GISystem). 
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1. Introduction 

1.1. Background  
Geographic space, or the Earth’s surface, encompasses many of the factors that 
shape how people behave. Research in understanding geographic space from 
physical and human aspects has become a hot topic in the fields of geographic 
information science (GIScience) over the past few decades (Langlois 2013). 
Issues such as the environment, climate change, consumption of resources, and 
public health have been triggered by the increasingly urbanized world and ac-
celerating socioeconomic development (Knox 1994, Bettencourt and West 
2010). Therefore, it is extremely important to study the geographic forms and 
functions to develop a reasonable, quantitative theory for sustainable develop-
ment. In this thesis, geographic forms refer to how geographic space looks; 
that is, the geometry of geographic space at various levels of resolution, in-
cluding individual geographic features, cities, countries, and the entire world. 
Geographic functions refer to how geographic space works, indicating the in-
fluence of geographic forms on human activities within the space.  

Geographic space is inherently heterogeneous and diverse, represented by 
its containing geographic features regarding their geometric and statistical as-
pects (Jiang and Yin 2014). Geometrically, the shapes of geographic features, 
such as mountains and rivers, look neither simple nor regular. Statistically, 
small geographic features constitute the majority, whereas big geographic fea-
tures only constitute the minority. One good example of this is city size, which 
follows Zipf’s Law (Zipf 1949): The size of a city is equal to the reciprocal of 
its rank. In other words, the largest city is twice as big as the second largest 
city, and so on. Human activities are very complex over the geographic space 
because it is affected by this inherent heterogeneity (e.g. Penn 2003, Brock-
mann et al. 2006, Song et al. 2010, Jiang and Jia 2011a, 2012, Osaragi 2013, 
Omer and Jiang 2015). However, conventional geospatial analysis is insuffi-
cient for dealing with such heterogeneity, as it is mainly founded on Euclidean 
geometry and Gaussian statistics (Jiang 2015a, Jiang and Brandt 2016, Jiang 
2016). Euclidean geometry refers to simple, regular shapes such as triangles, 
rectangles, and circles. Gaussian statistics indicate that things are more or less 
similar around a well-defined mean and always follow a normal-like distribu-
tion. People tend to investigate geographic space and human activities from a 
local perspective through conventional geospatial analysis. Many things might 
look regular and more or less similar at a local level. However, geographic 
space may exhibit great heterogeneity from a holistic or global perspective be-
cause there is no average place on the Earth’s surface (Goodchild 2004).  
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To better understand the geographic forms and functions, we must adopt a 
novel paradigm to carry out in-depth studies that characterize the heterogene-
ous geographic space and its involved human activities (Jiang 2015b). Jiang 
(2015b) suggested a new paradigm based on fractal geometry and Paretian sta-
tistics to morphologically and statistically better understand such heterogene-
ity. Fractal means broken or irregular shapes. Fractal geometry, coined by Be-
noit Mandelbrot, denotes rough, infinitely heterogeneous shapes. The concept 
of fractal geometry has been adopted to study the urban layout (Batty and 
Longley 1994, Frankhauser 1994, Chen 2009, 2011, Jiang 2015a). Mandelbrot 
(1967, 1982, and 2004) used the power-law relationship between the measure-
ment scale and the measured size to describe how fractal geometry works. 
However, this thesis is not limited to this framework, but relies on a new defi-
nition of fractal (Jiang and Yin 2014): A set or pattern is fractal if the scaling 
of far more small things than large ones recurs multiple times. Therefore, the 
terms fractal and scaling are used interchangeably in this thesis. The new def-
inition of fractal indicates the scaling hierarchy of numerous smallest things, a 
few largest things, and some things that are between the smallest and the larg-
est things. This definition of fractal is well-described by Paretian statistics. 
This type of statistics refers to the Pareto distribution: The well-known 80/20 
principle (Koch 1998) and long-tail distribution. Mathematically, the Pareto 
distribution should be defined as heavy-tailed distributions. Typical heavy-
tailed distributions are power-law distribution, exponential distribution, and 
lognormal distribution. Therefore, fractal or scaling structure of geographic 
space implies heavy-tailed distributions of the geographic features. 

Topology of geographic features is the necessary, sufficient condition for 
us to see the fractal or scaling structure. Topology focuses on the relationships 
among geographic features, yet neglects geometric details such as location, 
length, and sinuosity. Unlike topology in conventional GISystems, which ex-
amines how graphic primitives (points, polylines, polygons, and pixels) inter-
connect, topology in this study refers to the relationship among meaningful 
geographic features (such as a continuous named street, rather than its con-
tained, meaningless segments or vertices). This refined topology leads us to 
perceive the fractal or scaling structure of the geographic space. As is the case 
with the road network at a city or country scale, the street-street topology re-
veals the underlying scaling pattern of far more less-connected streets than 
well-connected ones (Jiang and Claramunt 2004). In this connection, topology, 
and fractal or scaling, link closely with each other and form a theoretical foun-
dation. 

The rapid development at the end of the 20th century of geospatial technol-
ogies such as satellites, light detection and ranging (LiDAR), and Remote 
Sensing (RS) have generated very detailed information on the physical aspect 
of geographic space. Recently, GIScience has considerably benefitted from 
massive amounts of data from location-based social media (LBSM) such as 
Twitter, OpenStreetMap (OSM), Gowalla, and Brightkite (Jiang 2013c, Gao 
and Liu 2014). Data from LBSM has been developed into diverse forms sup-
ported by web 2.0 technologies, ranging from check-in locations to various 
location-embedded media (such as video, photos, and text) and has gradually 
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become a tool for people to communicate with each other. Technological ad-
vancements open up a new horizon to study geographic space because of the 
notable shift from authoritative, to crowd-sourced data (Crooks et al. 2015), or 
from geospatial small data to big data in general. We are now at the stage of 
the fourth scientific paradigm, which is also called data-intensive science 
(Watts 2007, Gray and Szalay 2007, Bell et al. 2009, Ball 2012). Unlike tradi-
tional geospatial data, which was only up to the size of kilobyte or only covered 
a small scale of geographic space (such as a neighborhood), today’s geospatial 
big data exceeds gigabytes or terabytes, and is country- or worldwide. In Open-
StreetMap (OSM), billions of geographic features (nearly all types) across the 
globe have been created and shared through the Internet. Rather than tradi-
tional data, which was contributed by authorities and often at the aggregated 
level, geospatial big data stores each individual’s information at a very fine, 
spatio-temporal level that leads to enormous observed data about human activ-
ities. The wide coverage of the datasets enables people to view geographic 
space globally, rather than locally. The fine-grained level of data creates new 
geographic units to organically decompose geographic space from the bottom 
up, so that people can inspect the diversity of geographic space instead of the 
homogeneity. Geospatial big data offers a powerful basis for studying the scal-
ing structure of geographic space, which helps further develop new insights 
into general human activities. The emergence of geospatial big data provides 
not only an effective means of studying geographic space, but also an invalu-
able opportunity to shift our paradigm for geospatial analysis. 

Through the topological and scaling way of thinking in the big-data con-
text, some intriguing findings have emerged about the structure and patterns of 
the geographic space. The scaling structure not only describes what the geo-
graphic space looks like, but is vital in explaining how it shapes human activ-
ities. The most prominent examples are natural cities, which refer to the basic 
clustering unit of human activities on the Earth’s surface, which is represented 
by social media data (Jiang and Jia 2011b, Jiang and Liu 2012, Jiang and Miao 
2015, Long 2016, Long et al. 2016). The extraction of natural cities is neither 
a subjective view, nor is human intervention included. The derived natural cit-
ies exhibit a strikingly scaling pattern of far more small cities than large ones, 
and the boundary shape of each city is extremely irregular. In this way, natural 
cities provide a completely new scientific perspective for better understanding 
urban forms and dynamics. Furthermore, studies have found that a majority of 
human activities (up to 80 percent) are shaped by the underlying scaling struc-
ture of far more less-connected streets than well-connected ones (Jiang 2009a, 
2009b). This topological perspective is based on the notion of natural streets 
that are generated from individual street segments. Eventually, the street-street 
topological relationship forms the foundation for the scaling analysis. This 
street-street topology is a de facto complex network (Jiang and Claramunt 
2004, Gao et al. 2013), bearing not only the scaling property, but many other 
clustering properties of complex networks such as community structure (New-
man 2003, 2010), and assortativity (or disassortativity) (Zhou and Mondragón 
2007). These clustering properties, as well as the scaling property, may sub-
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stantially shape human activities over geographic space at different scales. Be-
sides, detecting cities’ scaling patterns can trigger a sense of beauty in peoples’ 
deep psyche (Jiang and Sui 2014). This beauty is the structural or objective 
beauty. Therefore, the topological characteristics and scaling pattern of geo-
graphic space have far-reaching implications for geospatial research. Given the 
growing complexity of big data, it becomes increasingly essential to adopt this 
paradigm to analyze geospatial big data to understand geographic forms and 
their relationships with human behavior. 

1.2. Research objectives 
Driven by big data, the overall goal of this thesis is to investigate the scaling 
structure of geographic space and examine how this structure influences hu-
man activities at city, country, and world scales. To achieve this goal, it is nec-
essary to follow and adopt a complexity science methodology (Miller and Page 
2007, Newman 2011), including both topological and scaling analyses for 
characterizing the heterogeneity of geographic space and its involved human 
activities. Additionally, plausible technique solutions for data processing and 
modeling should be proposed, given the size and complexity of datasets that 
are difficult for the conventional GISystem to handle.  

To achieve the overall goal, the thesis must conduct in-depth research to 
obtain new insights on the fractal or scaling of geographic space and human-
movement behavior from both theoretical and practical perspectives. There-
fore, there are three specific aims, as follows: 
 

Aim A: Develop new understandings of fractal geometry under 
the third definition 

Aim B: Design effective data-processing and modeling tech-
niques to cope with geospatial big-data computing 

Aim C: Adopt complexity science methods to explore and better 
understand the heterogeneity of geographic space and 
how it further shapes human behavior or activities 

1.3. Thesis organization 
The thesis is based on the papers listed below. The Roman numerals will be 
used to refer to the corresponding papers in the text.  
 
I: Ma D., Sandberg M., and Jiang B. (2015), Characterizing the heterogeneity 
of the OpenStreetMap data and community, ISPRS International Journal of 
Geo-Information, 4(2), 535–550. 
 
II: Ma D., Sandberg M., and Jiang B. (2016), A socio-geographic perspective 
on human activities in social media, Geographical Analysis, 49(3), 328–342.  
 
III: Ma D. and Jiang B. (In press), A smooth curve as a fractal under the third 
definition, Cartographica. 
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IV: Ma D., Omer I., Osaragi T., and Jiang B. (Submitted), Why topology mat-
ters in predicting human activities? 
 
V: Jiang B. and Ma D. (2015), Defining least community as a homogeneous 
group in complex networks, Physica A: Statistical Mechanics and its Applica-
tions, 428, 154–160. 
 
VI: Jiang B., Ma D., Yin J., and Sandberg M. (2016), Spatial distribution of 
city tweets and their densities, Geographical Analysis, 48, 337–351. 
 
VII: Jiang B. and Ma D. (In press), How complex is a fractal? Head/tail breaks 
and fractional hierarchy, Journal of Geovisualization and Spatial Analysis. 

 
Table 1.1: Overview of seven papers in this thesis 

 
 

Table 1.1 summarizes these listed papers from three aspects: analysis, scope, 
and research focus. As the table shows, seven papers conducted both topolog-
ical and scaling analysis on geospatial big data at four different levels, from 
local to global. It should be stressed that it is difficult to have a sharp boundary 
between theory and application when conducting studies. Most studies have an 
integrated focus on both theory and application. Additionally, head/tail breaks 
and ht-index are the primary means for data analytics throughout the studies.  

Specifically, Paper III reviewed three definitions of fractal and develops a 
novel perspective on viewing individual smooth curves as a fractal under the 
third definition through power-law metrics and the ht-index. Paper VII ex-
tended the previous integral ht-index to a fractional one, in order to more ac-
curately measure fractal degrees. Therefore, Papers III and VII developed a 
new understanding of fractal geometry (Aim A) and further consolidated the 
theoretical framework of this thesis.  
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A set of techniques were designed and implemented for data processing 
and modeling (Aim B) to effectively handle the massive amounts of geospatial 
data from LBSM platforms such as OSM and Twitter. Paper I designed an 
OSM data-processing workflow, which successfully took out related attributes 
of more than 2 billion OSM elements and modeled co-contribution relation-
ships, based on roughly 1 million users. Paper II constructed big socio-geo-
graphic networks by mapping the social connections of 50,000 users into their 
6 million check-in locations. Paper VI obtained natural cities by using millions 
of street blocks from six European countries.  

Based on processed data, implemented geographic representations and con-
structed networks, the thesis further employs several complexity science meth-
ods, including power-law detection, head/tail breaks, and complex network 
analysis to investigate the scaling property of geographic space and its influ-
ence on human-movement behavior (Aim C). Papers I, II, III, V, IV, and VI 
demonstrated the existence of fractal or scaling structure of the geographic 
space at individual, urban, national, and global levels. The second issue was 
covered by Papers I, II, IV, and VI, from which we can see how the spatial 
scaling structure shapes human activities.  

Among seven papers, Ding Ma was responsible for research design, pro-
gramming, data collection, processing, analysis, and manuscript writing for 
Papers I, II, III, and IV. Ding Ma contributed to data processing, modeling, and 
programming for Papers V, VI, and VII. 

The remainder of this thesis is organized as follows. Chapter 2 reviews the 
literature and argues for a new paradigm for geospatial analysis by comparing 
Tobler’s Law and scaling law, Gaussian and Paretian statistics, Euclidean and 
fractal geometry, geometric and topological representation, and geospatial 
small and big data. Chapter 3 introduces the datasets and study areas applied 
in the thesis and details each technique and algorithm concerning data pro-
cessing and modeling, respectively. Chapter 4 describes the complexity sci-
ence methods used for geospatial big-data analytics and visualization, includ-
ing heavy-tailed distribution, mathematical detection, head/tail breaks and ht-
index, and complex network analysis. Chapter 5 presents the results from the 
seven papers and discusses the implications of each study. Finally, Chapter 6 
concludes the thesis and points to future work.   
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2. Literature review 

2.1. Overview 
This chapter reviews the literature and argues for a new paradigm for geospa-
tial analysis in the big-data context. To be more specific, the chapter lists fun-
damental differences in geospatial analysis between Tobler’s Law and scaling 
law, Gaussian and Paretian statistics, Euclidean and fractal geometry, geomet-
ric and topological representation, and geospatial small data and big data. 
These differences are emphasized in order to call for changes in ways of think-
ing about, and performing, geospatial analysis. To sum up: scaling law, Pare-
tian thinking, fractal geometry, and topology-based geographic representations 
should be employed for developing in-depth insights and better understanding 
of the inherent heterogeneity of geographic space and human activities.  

2.2. Tobler’s Law versus scaling law 
Tobler’s Law (1970) echoes strongly in the geography field (Miller 2004) and 
has been one of the most important principles in GIScience research. It states: 
Everything is related to everything else, but near things are more related than 
distant things. Under Tobler’s Law, things are more or less similar. More pre-
cisely, nearby things tend to be similar and more related to each other. The law 
further states that spatial phenomena are not random, but auto-correlated, or 
dependent. From a statistical perspective, the law states that things in geo-
graphic space tend to follow a Gaussian-like distribution, which is well-known 
as a 50/50 principle and shaped as a bell curve. Following a Gaussian-like dis-
tribution, things can be characterized by using a well-defined mean and a very 
small deviation.  

Tobler’s Law denotes a fact in geographic space, but only appears locally 
or at local scales (Sui 2004). As is the case with housing prices, spatial auto-
correlation can effectively characterize the housing market of a local area (Du-
bin 1988). The market for geographically adjacent houses behaves in a homo-
geneous manner, indicating that prices are more or less similar. At a larger 
scale, such as at a city or country scale, whether or not this law holds become 
questionable. Specifically, the housing prices at a city or country scale would 
likely to show that the majority of housing prices are low, while only a few 
prices are very high. The majority and minority underlie the Paretian-like dis-
tribution, which is well-known as the 80/20 principle and long-tail distribution. 
The values of a long-tail distribution do not center on the mean. In this regard, 
the mean value and deviation are no longer effective.  

The Paretian-like distribution describes a global fact that is the existence of 
scaling or scaling hierarchy over the geographic space. Geographic space, or 
the Earth’s surface, cannot be described using the concept of an average place 
(Goodchild 2004). Scaling or scaling hierarchy denotes that: There are far 
more small things than large ones across all scales, ranging from the smallest 
to the largest. Numerous studies have found that geographic features follow 
this type of uneven distribution. For example, there are far more small bends 
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than large ones in an individual coastline feature (Jiang et al. 2013, Paper III); 
far more short, poorly connected streets/axial lines than long, well-connected 
ones (Kalapala et al. 2006, Jiang 2007, Jiang and Liu 2009, Jiang 2013b, Paper 
IV); far more small street blocks than large ones (Jiang and Liu 2012, Lämmer 
et al. 2006, Paper VI); and far more small cities than large ones (Zipf 1949, 
Jiang and Miao 2015, Jiang 2016, Paper II).  

Let us further examine statistical difference between Gaussian- and Pare-
tian-like distributions using two variables: temperature of Stockholm city and 
population of Swedish cities. The former is based on raw individual tempera-
ture observations from 2013 to 2016 at a daily basis (Bolin Centre Database 
2018), while the latter is according to the statistics from world population re-
view (2018). As shown in the histograms (Figure 2.1), temperature well-obeys 
the Gaussian-like distribution since its values center around the mean (8.4), 
however, the population follows Paretian-like distribution where the values are 
highly right-skewed, indicating that the mean value (29,721) makes little sense 
for description of urban population in Sweden. The difference between Gauss-
ian- and Paretian-like distributions also lies on the lengths on their “tails”. 
Gaussian-like distributions possess short or light tails, and the values at the tail 
drop exponentially. Paretian-like distributions have long or heavy tails, and the 
values at the tail continuously approach zero but never reach it.  

Even more, Gaussian- and Paretian-like distributions fundamentally differ 
in their ways of thinking. McKelvey and Andriani (2005) noted that the Gauss-
ian way of thinking treats the world as simple, static, and equilibrium, while 
the Paretian mindset views the world as complex, dynamic, and non-equilib-
rium. Since many studies have validated that geographic phenomena are the 
result of complex processes through interactions and interdependence among 
human and geographic features, rather than just a simple series of actions (e.g., 
Benguigui and Czamanski 2004, Jiang and Jia 2011a), Paretian thinking should 
be very suitable for characterizing the heterogeneity of geographic space.  
 

 
Figure 2.1: (Color online) Histograms of (a) a city’s temperature and (b) population of 

cities  

(Note: The city’s temperature follows a Gaussian-like distribution, whereas population of 
cities follows a Paretian-like distribution.)  

 
Scaling is not limited to geographic studies, but has long resonated strongly in 
many other sciences, including biology (e.g. Jungers 1984) and physics (e.g. 
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Bak 1996, Brockmann et al. 2006, Song et al. 2010, Chen 2015). Furthermore, 
numerous laws in different disciplines are rooted in scaling, such as Zipf’s Law 
(1949) for city sizes, Pareto’s Law for people’s wealth, Korcak’s Law for sizes 
of lakes and islands, Gutenberg-Richter’s Law for earthquakes, and Benford’s 
Law for anomalous numbers. In line with these examples, scaling should be 
formulated as another law in geography and deserves attention equal to To-
bler’s Law. However, scaling law, or Paretian thinking, has not yet been suffi-
ciently embraced for geospatial analysis (Jiang 2015b).  

 
Table 2.1: The comparison between Tobler’s Law and scaling law 

 (Source: Jiang 2015b) 
 

Tobler’s law Scaling law 
Local Global 

Short-tailed  Long-tailed 
Equilibrium  Non-equilibrium 

Spatial homogeneity  Spatial heterogeneity 
Gaussian statistics (50/50) Paretian statistics (80/20) 

 
Tobler’s Law and scaling law complement each other. Table 2.1 summa-

rizes the comparisons between Tobler’s Law and scaling law.  Tobler’s Law 
portrays geographic space at the local scale, and scaling law depicts the space 
across all scales. The former describes things at the local extent, while the latter 
looks at them globally. Tobler’s Law focuses on homogeneity, while scaling 
law focuses on on heterogeneity. Tobler’s Law is characterized by Gaussian 
statistics (50/50), while scaling law is characterized by Paretian statistics 
(80/20). Through these connections, we must utilize Tobler’s Law and scaling 
law together to more comprehensively understand geographic space. Section 
2.3 will illustrate the association of two laws with Euclidean and fractal geom-
etry, respectively.  
 

2.3. Euclidean versus fractal geometry 
Euclidean geometry was founded approximately 2,000 years ago. It is the basis 
of geometry math, through which people understand its theories and axioms 
that are used to measure objects with different dimensionalities, such as points 
(one-dimensional), lines (two-dimensional), and surfaces (three-dimensional). 
In GIScience, or geography in general, Euclidean geometry is also the most 
important tool for gauging and describing geographic space. One of its most 
important applications is projecting the surface of the Earth globe into 2D 
maps. 

Euclidean geometry uses geometric primitives, such as points, polylines, 
and polygons to describe geographic features. Using an example of a carto-
graphic line, the elements of Euclidean geometry include length, orientation, 
and sinuosity. In this way, Euclidean geometry concentrates on the measure-
ments of geographic features and its effectiveness at this was universally 
acknowledged until the second half of the 20th century. Scientists gradually 
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realized that Euclidean geometry has limitations in describing geographic fea-
tures or phenomena, since they are neither regular nor simple, but inherently 
irregular and heterogeneous. Mandelbrot (1982) claimed that Euclidean geom-
etry treats shapes and patterns of nature in a simple manner: Clouds are not 
spheres, mountains are not cones, coastlines are not circles, and bark is not 
smooth, nor does lightning travel in a straight line.  

Mandelbrot (1967) coined the term fractal geometry for irregular and com-
plex shapes in nature. The word fractals originally comes from Latin word 
fractus, meaning broken. The Koch curve is a classic example of a fractal curve 
(Von Koch 1904). The Koch curve starts from one straight line with a scale 
(length) of 1, which is then replaced by four segments of an equal scale of 1/3. 
Each segment is further substituted by four subsequent segments of an equal 
scale of 1/9, and so on and so forth. This evolution from a simple, regular shape 
to a complex, irregular one can be deemed as the first definition of a fractal.  

The essence of the Koch curve lies in its self-similarity. In other words, the 
shape of a part can be similar to that of a whole (Irving and Segerman 2013). 
Because of its self-similarity, the Koch curve has no characteristic length. This 
curve is not measurable because the total length is always increasing as there 
are more and more segments of smaller scales. Although such self-similarity 
cannot be measured, it can be characterized. Mandelbrot (1967) introduced the 
concept of fractal dimension to describe the self-similarity in a quantitative 
manner. To be specific, fractal dimension refers to the exponent of a power-
law relationship between measurement scales and details (number of segments; 
Figure 2.2). For example, the scale (x) of the Koch curve decreases at a power 
of 1/3, and the number of segments (y) increases at a power of 4, so these two 
variables would constitute a power-law relationship: ݕ =  ଵ.ଶ଺. The exponentିݔ
is fractal dimension. 

Under the first definition of a fractal, two variables strictly follow the equa-
tion for the fractal construction. Mandelbrot (1967) noted that there is no need 
to follow such a strict way of fractal construction, but added some randomness 
to both scales (1 + ɛ1, 1/3 + ɛ2…) and a number of segments (1 + d1, 4 + d2…), 
as well as maintained the same power-law relationship (Figures 2.2b and 2.2d). 
In this way, a Koch curve can resemble the British coastline. This is the second 
definition of fractal, which extends or relaxes the concept of fractal from strict 
to statistical. The second definition grew in popularity because it helped ad-
dress the famous question: “How long is a coastline,” known as the coastline 
paradox (Richardson 1961, Steinhaus 1983).  
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Figure 2.2: (Color online) First and second definitions of fractal  
(Note: The plots use Koch curve as an example in relation to strict self-similarity (the left 

column) and statistical self-similarity (the right column)) 
 
However, the second definition may still confine us when characterizing how 
a geographic feature is fractal. To a certain extent, the power-law relationship 
between scales and details is an idealistic model to fit with real-world fractals. 
Additionally, a power-law relationship could be too difficult for a fractal pat-
tern at earlier stages. In this respect, Jiang and Yin (2014) further relaxed the 
second definition. Instead of a power-law relationship between scales and de-
tails, they proposed that: A set or pattern is fractal if the scaling of far more 
small things than large ones recurs multiple times. This is further recognized 
as the third definition of fractal (Jiang 2015, Gao et al. 2017). Fractal and scal-
ing are then interchangeable according to the third definition.  

This new, third definition (Jiang and Yin 2014) provides a holistic view of 
all scales of the Koch curve during its evolution and introduces a new metric 
ht-index for fractal characterization. The ht-index is derived based on head/tail 
breaks (Jiang 2013a), which is a novel classification scheme for data with a 
heavy-tailed distribution (see Chapter 4). To illustrate, as shown in Figure 2.3a, 
the Koch curve at phase three has 21 segments (1 + 4 + 16). The head/tail 
breaks then recursively use defined mean values of segment-length to partition 
those segments into heads (lengths above or equal to the mean) and tails 
(lengths below the mean), through which we can know how many times the 
fractal or scaling pattern occurs (Figure 2.3b). The number of occurring times 
plus one is the value of the ht-index. In this working example, the ht-index is 
3, since the scaling pattern occurred twice. The higher the ht-index value, the 
more fractal a feature will be. In addition, the ht-index can help characterize 
the degrees of fractal at different phases of fractal construction or development. 
In Figure 2.3, the ht-index at the second iteration is smaller than that at the 
third iteration. In this connection, this new definition is from the bottom-up, 
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whereas the first and second definitions are top-down. Top-down means the 
fractal construction moves from a simple Euclidean shape to a complex, irreg-
ular one by iteratively following a defined rule iteratively, such as a Koch curve.  
 

 
Figure 2.3: (Color online) The third definition of fractal 

(Note: Three iterations of a Koch curve (a) and the nested, rank-size plot (b) showing 
two iterations of the recurring pattern of far more small segments (blue points) than 

large segments (red points)) 
 
It is interesting to note that these three definitions of fractal have inheritance 
relationships. As illustrated, the second definition is relaxed from the first, and 
the third definition is further relaxed from the second. The first definition refers 
to the classic fractal, under which only a strict mathematical model, such as a 
Koch curve, is fractal. Under the second definition, the strict model changes to 
statistical one (Cattani and Ciancio 2016), so that both the Koch curve and a 
coastline are fractal. The third definition takes other long-tail statistics into 
consideration. Under the third definition, other regular curves, whose geomet-
ric shapes were previously considered Euclidean (such as a highway) are frac-
tal.  

The third definition brings the scaling law or Paretian statistics into geom-
etry and helps us shift our thinking of geographic features from Euclidean to 
fractal geometric. The comparison between Euclidean and fractal geometry is 
very much in line with Tobler’s Law and scaling law, and Gaussian distribution 
and Paretian distribution. The third definition recognizes that the shape of a 
geographic feature comprises far more small things than large ones. This is 
different from Euclidean geometric thinking, which decomposes the shape into 
more or less similar geometric primitives. It should be stressed that, under the 
third definition, all geographic features are fractal, given the right scope and 
perspective. Section 2.2 demonstrated that a bigger scope (such as a country or 
city, rather than neighborhood) is essential for seeing fractal. Section 2.4 will 
illustrate that topology is the right perspective for seeing the fractal or scaling 
structure of geographic space.  

2.4. Geometric versus topological representation 
Geographic data representation is vital for both GISystem and GIScience be-
cause it stores and displays the geographic features or real-world entities in a 
computer. Current GIS mainly relies on geometric representation for the spa-
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tial component of geographic features. The most common geometric represen-
tations are vector and raster, which contain different types of geometric ele-
ments, such as points, polylines, polygons, and pixels (Longley et al. 2015). In 
the past few decades, people have made extensive use of geometric represen-
tations to describe and analyze geometric details of different geographic fea-
tures. The counterpart of geometric representation is topological representa-
tion. Topology in mathematics refers to the properties that remain unchanged 
under the distortion of geometric space. In the GIS literature (Corbett 1979, 
Egenhofer and Herring 1990), topology is employed for topological data struc-
tures and cartograms. Without paying attention to geometric details (such as 
lengths and angles), topological representation only stores the relationships (0 
and 1).  

The lack of geometric information in a topological representation of geo-
graphic information does not lose information on a map, but makes it more 
informative. One clear example is the London Underground map, created in 
1933 by Harry Beck. Figure 2.4 shows both geometric and topological repre-
sentations of the London Underground map. The geometric map keeps all the 
tube lines’ geometric details correct, as well as other geographic features, such 
as the Thames River and residential areas. The topological map distorts the 
geometric shape of the tube lines and ignores other geographic features, but 
retains the intersectional relationships among tube lines. It is apparent that the 
topological representation conveys more information on route plans for travel-
ers. The reason why the topological representation is effective is that it reveals 
the structure of the tube system by omitting unrelated geometric aspects.  

However, this kind of topological representation is still not enough to see 
a more in-depth structure because the adopted topology is established at the 
geometric level. More specifically, such a topological relationship is built upon 
individual geometric primitives, such as points and lines, which only contain 
metric information such as location and length. Furthermore, geometric prim-
itives are mechanistic, as they are only the spatial component of geographic 
features, but have little meaning in our perception. In the most well-known GIS 
data structure, TIGER (topologically integrated geographic encoding and ref-
erencing), topological relationships among geometric primitives (such as dis-
joint, within, overlap, and covers) are used to organize geospatial data 
(Egenhofer and Herring 1990). Additionally, the type of topology is also used 
for geospatial analysis. For example, a street network in the ArcGIS network 
analysis extension (ESRI 2017c) is constructed using a node-node or segment-
segment topology, in which a single line must be separated at a street junction 
node (Figure 2.5a). It is a good model for calculating distances in navigation, 
but it does not capture street-street topology, so lacks the ability to reveal the 
underlying street structure. 
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Figure 2.4: (Color online) Two representations of the London underground map 

(Note: (a) Traditional map without geometric distortion and (b) Topological relationship 
of stations with relatively distorted geometric details) 

 
To establish street-street topology, we must transform the individual, mean-
ingless segments to meaningful streets. Jiang et al. (2008) proposed the concept 
of natural streets as joined street segments that have good continuity based on 
the Gestalt principle. There are three principles for joining the street segments: 
Every-best-fit, self-best-fit, and self-fit. Three principles represent three 
choices of a small deflection angle when a segment meets other candidate seg-
ments at a junction node. Axwoman 6.3 (Jiang 2015e) is a research prototype 
for automatic generation of natural streets. The resulting natural streets, com-
pared to street segments, possess a more organic structure. Both lengths and 
connectivities among segments are more or less similar, but those among nat-
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ural streets are rather different. Their connectivity graph exhibits a scaling pat-
tern of far more less-connected streets than well-connected ones. As we can 
see in Figure 2.5, the street-street topology (without geometric details such as 
locations, lengths, and directions) can help us detect the scaling structure. 
 

 
Figure 2.5: (Color online) Transformation of geometric representation into topological 

one (Source: Jiang and Claramunt 2004) 
(Note: Geometric representation is represented by street segments (a) and segment-
segment connectivity graph (b), whereas topological representation is represented by 

natural streets (c) and street-street connectivity graph (d)) 
 
This kind of topology is the true topology for geospatial analysis (Jiang et al. 
2008) because it considers spatially coherent entities, such as morphologically 
continuous streets (rather than segments), as the basic unit (Jiang and Ren 
2018) and enables us to perceive the scaling structure of geographic space. 
Such topology is fundamentally different from the existing topology applied in 
GIS. As mentioned, conventional GIS views geographic space mechanically 
through geometry-based geographic representations. Unlike conventional GIS, 
the topological representations apply the introduced topology to better under-
stand geographic forms or city structures, and their nonlinearity (Jiang 2015d).  

The structure of urban space is complex and hard to directly understand 
(Brelsford et al. 2015). Topological representations are effective means for us 
to overcome this difficulty. Street-based topological representation depicts 
mostly the structure inside the city. To view the structure among cities, another 
topological representation is developed, which takes cities in a country as a 
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coherent whole (Jiang 2018). This representation enables us to conduct a coun-
try-wide, spatial, configurational analysis so we can clearly examine how in-
dividual cities relate to each other both visually and statistically for better un-
derstanding cities’ structure. Before illustrating how this topological represen-
tation works, it is important to introduce the concept of natural cities, which 
are the basic unit for the representation. 

A city can be regarded as a large area with a high concentration of human 
settlements (Lynch 1960). However, this definition does not give any qualifi-
cation or criterion for determining what a city should look like. Traditionally, 
the boundary of a city is decided by local authorities or administration (Eeck-
hout 2004). This leads to the notion that cities vary tremendously from one 
country to another. For example, a middle-sized city in Sweden is not compa-
rable to a town in China. The conventional way of delimiting a city area is not 
very objective or natural. Therefore, an interesting research question arises: 
Can the areas of cities or urban spaces be naturally and objectively defined 
(regardless of administrative boundaries) across a country, or even all over the 
world? 

Using massive geospatial datasets, we applied the head/tail division rule to 
successfully derive cities that objectively and naturally represent human activ-
ities or settlements (Jiang and Jia 2011b, Jiang and Liu 2012, Jiang and Miao 
2015, Jiang et al. 2015). These derived cities are so-called natural cities. The 
head/tail division rule is: Given a variable X, if its values x follow a heavy-
tailed distribution, then the mean (m) of the values can divide all the values 
into two parts: A high percentage in the tail, and a low percentage in the head. 
To elaborate how the head/tail division rule works for obtaining natural cities, 
Figure 2.6 presents four examples related to previous studies. Jiang and Jia 
(2011b) used the nearest-neighborhood algorithm to cluster 7 million street 
nodes and grouped nearby nodes into natural cities. Jiang and Miao (2015) 
constructed a huge TIN model of 3 million check-in locations and converted 
short TIN edges (lengths smaller than the average length of all edges) into city 
patches.1 Jiang et al. (2015) used the mean pixel value as the cutoff value to 
delineate natural cities’ boundaries. Jiang and Liu (2012) extracted natural cit-
ies by clustering small blocks (block sizes smaller than the mean of all block 
sizes). There was a universal mean effect for extracting the natural cities. 
Moreover, all obtained natural cities at either national or cross-national levels 
possessed striking scaling property of far more small cities than large ones.  
 

                   
1 An online video on using a TIN-based method to extract natural cities: 
https://www.youtube.com/watch?v=DzeDFULHaEs 
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Figure 2.6: (Color online) Different examples of natural city derivation 

(Note: The natural city can be extracted from (a) street nodes (Jiang and Jia 2011b), (b) 
check-in locations (Jiang and Miao 2015), (c) night light image (Jiang et al. 2015), and 

(d) street blocks (Jiang and Liu 2012)) 
 
The topological representation is built upon the constructed natural cities and 
inspired by central place theory (CPT, Christaller 1933). CPT describes a hi-
erarchical urban layout in which a central place is surrounded hexagonally by 
its next lowest-level place, and so on (Figure 2.7a). This representation puts 
theory into practice. To do so, the hierarchical levels of cities are first obtained 
through the head/tail breaks method (Jiang 2013a, 2015a). Thiessen polygons 
are then created, according to cities’ locations and hierarchical levels, respec-
tively (Figure 2.7b). Polygon-polygon relationships are then used to construct 
a complex network. There are two types of polygon-polygon relationships: 
Small polygons that point to large ones at the same level; and contained poly-
gons that point to containing polygons between two consecutive levels. The 
network model can help detect how cities are spatially adaptive with each 
other, according to their sizes. The model can also be further applied to under-
stand how human activities are shaped by space in the big-data context (Jiang 
and Ren 2018). 
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Figure 2.7: (Color online) Two types of spatial configuration of cities  

(Note: (a) CPT and (b) topological representation)   
 
Geographic space inherently bears a diverse and heterogeneous structure. Ge-
ographic representation is designed and implemented for geospatial analysis 
over the geographic space to give us deep insights into geographic entities and 
phenomena. Conventional geographic representations, such as raster and vec-
tor, are good for modeling the geometric aspects of geographic objects and 
phenomena, but fall short of representing geographically meaningful features. 
Therefore, such models fail to reveal the relationships between every mean-
ingful feature to every other one. This drawback largely prevents us from see-
ing the underlying spatial heterogeneity – the scaling structure of far more 
small things than large ones – of geographic space.  

We have entered the geospatial big-data era, in which geographic data has 
been disruptively changed. Massive geographic datasets with rich attributes are 
generated at a very fast rate and freely available (see Section 2.5 for more de-
tails). On the one hand, geospatial analysis is confronting the big challenges of 
dealing with such data using basic geographic representations. On the other 
hand, big data offers an unprecedented opportunity to comprehensively inves-
tigate the diverse, heterogeneous geographic space and involved human activ-
ities. Triggered by geospatial big data, topological representations, based on 
natural streets and natural cities, will be very useful for developing new in-
sights into geographic forms and functions, and better understanding the inter-
relationship between space and society.   

2.5. Geospatial small versus big data 
In the 20th century, people were accustomed to relying on small data for 
analysis. Small data literally means data with a limited volume and that is 
accessible, informative, and actionable (TechTarget 2017). In the mid-1990s, 
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the term big data was just a fresh idea in the scientific communities. About 
five years ago, the concept of big data went viral and drew worldwide attention. 
Nowadays, big data has become part of our life, since we experience and 
contribute big data on a daily basis through mobile sensors, messaging 
applications, and social-network software. There is no clear-cut boundary of 
how to define big data. It cuts across many fields such as technology, industry, 
and academics (Chen et al. 2014). Generally, big data refers to large, diversely 
sourced, unstructured datasets that are difficult to manage by conventional 
technologies (Li et al. 2016). Basically, big data can be characterized by four 
Vs: Volume, variety, velocity, and veracity (Lazer et al. 2009). Volume refers 
to the vast amount of data; variety refers to diverse formats and sources of data; 
velocity refers to the speed of data generation and processing; and veracity re-
fers to data uncertainty, integrity, and quality. There are many other Vs to make 
understanding big data more comprehensive such as value, validity, and visi-
bility.  

Geospatial data is data that is geo-referenced with xy coordinates in a 
spatial referencing system. Geospatial data was previously collected through 
ground surveying, supported by GPS, RS, photogrammetry, and LiDAR. Now 
there is another big resiportary of geospatial data in LBSM, supported by the 
Internet and Web 2.0 technology. The rapid growth of geospatial data in both 
size and diversity lets us step into the geospatial big-data era. We can use the 
four Vs to specifically characterize geospatial big data. Volume can now refer 
to gigatype, terabyte, petabyte, or even exabyte for geospatial datasets. Variety 
means not only the numerous types of geospatial datasets (such as remotely 
sensing imagery data and LBSM data), but also complex structures (Li et al. 
2016). Velocity refers to fast geospatial data generation and processing via the 
Internet (Dasgupta 2013). Finally, veracity means varying degrees of quality 
of geospatial data from diverse sources.  

The most prominent type of geospatial big data is volunteered geographic 
information (VGI; Goodchild 2007). This refers to geographic information 
created, assembled, and voluntarily disseminated by individual people through 
the web. VGI has developed into diverse forms, ranging from check-in loca-
tions, to geo-tagged web content (videos, photos, and texts), to online mapping. 
One of the most famous VGI projects is OpenStreetMap, in which the site 
receives a large amount of geo-related data creation and edits from users all 
over the world. It is now the most popular VGI platform, with billions of 
geographic elements. In recent years, the widespread use of social media, such 
as Twitter and Facebook (Boyd and Ellison 2008), enables us to create 
enormous amount of location-related information from hundreds of millions 
of users (Kaplan and Haenlein 2010, Cho et al. 2011, Sui and Goodchild 2011, 
Ferrari et al. 2011, Wakamiya et al. 2011, Takhteyev et al. 2012, Kulshrestha 
et al. 2012, Cranshaw et al. 2012, Hawelka et al. 2014, Li et al. 2014). VGI has 
the potential to make great contributions to social decision-making and prob-
lem-solving, such as disaster surveillance and response (Zook et al. 2010), 
transportation planning (Wang et al. 2018), and environmental monitoring 
(Gouveia and Fonseca 2008).  
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In essence, the difference between geospatial big data and small data is 
much more than size. Table 2.2 lists five aspects, three of which are fundamen-
tal (Mayer-Schonberger and Cukier 2013, Jiang and Thill 2015). For more de-
tails, given a big population, big data refers to the whole population while small 
data refers to the sampled part. Big data is measured with timestamps and co-
ordinates, while small data estimates these things. Big data is collected at an 
individual level, while small data is collected at an aggregated level. These 
three characteristics make big data more capable than small data of reflecting 
the diversity and heterogeneity of the Earth’s surface. Therefore, geospatial 
data analytics must be updated accordingly, in both geometric and statistical 
aspects. As mentioned in Sections 2.2 and 2.3, Gaussian statistics and Euclid-
ean geometry were widely adopted for conventional geospatial analysis in the 
small-data era. In the context of geospatial big data, fractal geometry (espe-
cially the third definition) should be employed for understanding the complex-
ity of geographic forms (Jiang 2015). Statistically, the heterogeneous geo-
graphic space is likely to bear a scale-free or scaling effect and exhibit a long-
tail distribution, which is better captured by Paretian statistics. Big data is a 
new paradigm for geospatial analysis, which fundamentally differs from anal-
ysis in the small-data era (Hey et al. 2009, Jiang and Thill 2015).  
 

Table 2.2: The comparison between geospatial small data and big data  
(Source: Jiang and Thill 2015) 

 

Small data Big data 
Simple Complex 

Structured Unstructured 
Sampled All 
Estimated Measured 

Aggregated Individual 
 
Handling geospatial big data is another important issue that requires broad 
scientific and technological advances. With respect to underlying data-
intensive computing (Yang et al. 2011b, Jiang 2013c, Hey et al. 2009), Apache 
Hadoop (Apache 2017a, White 2012) is one of the most popular open-source 
software packages for scalable, distributed computing from a single desktop to 
thousands of computers. It contains two major components: MapReduce and 
Hadoop Distributed File System (HDFS). MapReduce works as a parallel data-
processing and computing paradigm for big data and has been used by Google 
(Maitrey and Jha 2015). HDFS is a distributed file system written in Java and 
comprises a NameNode and multiple DataNodes for distributed storage of Ha-
doop applications (Apache 2017b). Emerging cloud computing and CyberGIS 
(Wang 2010, Wright and Wang 2011, Wang 2013), which is a synthesis of 
cyberinfrastructure, GIScience, and spatial analysis and modeling, offer a 
promising direction of high-performance and distributed computing for 
knowledge discovery, collaborative problem-solving and decision-making. 
There are also a large number of studies in big-data analytics and visualization, 
quality assessment, and other topics. Regarding big-data analytics and 
visualization, existing geometry-based data models for raster and vector are 
insufficient. The topological models developed based on natural streets or 
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natural cities capture or predict human activities in the big-data context (Jiang 
and Ren 2018, Paper IV). Cheshire and Batty (2012) visualized the transporta-
tion network in reference to individual and collective travel trips using the Lon-
don Oyster and provided valuable information to planners for optimizing travel 
scheduling. For quality assessment, Neis et al. (2012) studied the completeness 
of the street-network data in OSM and found that OSM data differs signifi-
cantly between city and rural areas. The next part of this section briefly intro-
duces some of the most well-known LBSMs and describes the characteristics 
of geospatial big data from these platforms.  

2.5.1. OpenStreetMap 
OpenStreetMap (OSM) is the most famous and successful VGI platform in the 
world. It follows the philosophy of Wikipedia by letting users freely create and 
edit geographic objects on the platform and collaborate with each other, using 
their own knowledge. The OSM project was started in August 2004 by Steve 
Coast at University College London (Bennett 2010). From that point until now, 
there has been an enormous surge in the amount of users and geographic ele-
ments. During this period, the OSM community also received continuous help 
from different organizations. Yahoo! donated digital images in December 2006 
to facilitate direct mapping. In April 2007, Automotive Navigation Data do-
nated a complete dataset of Dutch roads. In October 2007, the US Census 
TIGER road dataset was transformed into the OSM database. This data is 
freely available for anyone, without restriction. As Table 1 shows, there were 
more than 4.6 billion geographic elements contributed by 4.35 million regis-
tered users in OSM’s global database, as of November 2017 (OSM 2017).  

 
Table 2.3: OSM statistics in November 2017  

(Note: # = number) 
 

# of users 4,355,579 
# of uploaded GPS points 5,938,674,424 
# of nodes 4,176,936,518 
# of ways 451,452,429 
# of relations 5,363,304 
  

 
OSM is essentially not just a map that visualizes geographic features, but more 
importantly, is also a system with advanced architecture. The OSM system has 
five general components: Geodata, map editing, backend (database), map ren-
dering, and visualization (Figure 2.8). Popular map-editing applications are 
Potlatch, Java OpenStreetMap Editor (JOSM), Merkaartor, and plugins in GIS 
software such as ArcGIS and QGIS. The most often used applications are Pot-
latch and JOSM. The former is a web-based online editor for beginners, written 
in Flash. The latter is a desktop application offering features and tools for pro-
fessional editing styles, and targeted at advanced users. Map-rendering appli-
cations are categorized into either server- or client-side. The most popular 
server-side map renderer is Mapnik, which needs PostgreSQL and C++ as pre-
requisites. Mapnik aims for fast generating, high-quality map tiles at high-end 
servers. On the client side, users can also choose applications to make on-the-
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fly renderings in 2D or 3D from their own OSM data, as is the case with Ken-
dzi3d, Kosmtik, and TileMill. Many of these client-side tools are based on 
Mapnik. The following content will focus on the database part. 

 
Figure 2.8: (Color online) The overview of OSM components  

(Source: http://wiki.openstreetmap.org/wiki/Component_overview) 
 

The database controls terabytes of dynamic geographic data. Furthermore, the 
schema of the database must maintain and support wiki-like operations by al-
lowing users to edit a geographic object and track the edit history on the object 
(Hakley 2008).  The database is hosted by a PostgreSQL server. The OSM 
database uses a data model comprising three principal data elements: Nodes, 
ways, and relations. A node ܰ is a geographic point or an XY coordinate pair. 
A way represents a polyline or a polygon in the form of a series of nodes with 
a sequence. A relation is used to determine the relationship between at least 
two geographic elements. Therefore, these three data types have a nested struc-
ture. OSM data can be stored in eXtensible Markup Language (XML) format. 
As the Figure 2.9 shows, each way contains nodes, and each relation contains 
ways and nodes. In addition to storing information about the shape of each 
element, the database stores other information, such as ID, timestamp, user ID, 
and version (Figure 2.9). Each element can contain a set of tags, which are 
demonstrated as key-value pairs. For example, if a way element is a motorway 
in reality, it should be tagged <tag k= “highway” v= “motorway”/>. Users can 
also define their own tags to describe the elements.  
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Figure 2.9:  (Color online) An example of three OSM data types in XML 
 

There are numerous applications developed for people to use OSM data for 
different purposes. Generally, the applications range from information brows-
ing, to map comparing, to track collecting, to routing, to data-quality assess-
ment and control (OSM Wiki 2017). Software applications have been devel-
oped for data-quality assessment and control. Keep Right is a widespread OSM 
street-data assurance tool. It automatically detects errors for all OSM data, such 
as dead-ends, one-way streets, ways without nodes, and missing tags. There 
are also applications for specific OSM data elements. For example, OSM Re-
lation Analyzer (http://ra.osmsurround.org/) is a web-based application for rat-
ing OSM relations in terms of several criteria, including tags, type of ways, 
and existence of gaps. 

2.5.2. Twitter, Brightkite, and Gowalla  
Twitter is a social-media site providing social-networking and microblogging 
services. Microblogging means that users can post short texts (the so-called 
tweet, which has a limit of 140 characters) in real time. Twitter was founded 
in March 2006 in San Francisco. Just a few years later, it developed a huge 
global user base. Currently, Twitter has an average of 330 million monthly 
active users (Statista 2017), who produce tens of millions of tweets every day 
(Kumar et al. 2013). Generally, users can post tweets in two ways. One is an 
original tweet a user can create. The other way is by retweeting another user’s 
original tweet (Kwak et al. 2010). Tweets can be in different forms, such as 
text, image, and video. In addition, each user can add a geo-tag to their original 
tweet. The geo-tag is formatted as longitude and latitude. Approximately 1 per-
cent of tweets are geo-tagged (Twitter Help Center 2017).  

Brightkite and Gowalla both started in 2007 and ended in 2012 when Fa-
cebook bought them. These social media sites were similar to the most popular, 
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location-based, social-media site Foursquare, but without gaming features. 
Britekite and Gowalla were primarily intended for networking registered users 
all over the world via places they visited; namely, check-in locations from mo-
bile devices. Users could establish mutual friendship connections, share loca-
tions and photos, and leave comments for each other. The location was a useful 
tool through which users could check for other nearby users and see who had 
been there before. In Gowalla, users could also check a user’s recent history in 
a given place (Scellato et al. 2011).  

The most direct way to fetch LBSM data is by a web search on the official 
webpage. However, the data is not directly downloadable this way, so it is dif-
ficult to keep it for later use. To effectively collect data, such as users’ friends 
list, tweet content and check-in records, one can use a public application pro-
gram interface (API). In Twitter, there are two types of APIs (Twitter Devel-
oper 2017): Representational state transfer (REST) APIs and streaming APIs. 
REST APIs allow users to use script to read someone else’s profile and col-
lected tweets. The results response to users can be in XML or JavaScript Object 
Notation (JSON) format. The streaming APIs mainly include public, user, and 
site streams. Public streams are suitable for following trending topics and data 
mining. User streams are for tracking one user’s tweeting activities. Site 
streams are multi-user streams for obtaining tweet data corresponding to a 
group of users. REST APIs are different from streaming APIs in three aspects: 
REST APIs help find the historical tweets (up to the past week), while stream-
ing APIs show new tweets in real time; REST APIs do not require a solid in-
frastructure, while the streaming APIs do; and REST APIs are limited in the 
number of calls that users can make to the server, whereas the limitation for 
streaming APIs is the number of tweets that can be delivered.  
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3. Experimental design 

3.1. Overview 
The experimental design plays a very important role, since this study is situated 
in the big-data context, which requires data-intensive geo-computation. This 
chapter presents some technical details for processing and modeling the VGI 
datasets. More specifically, the datasets mainly come from four sources: OSM, 
Twitter, Brightkite, and Gowalla. Each dataset comprises at least hundreds of 
thousands geographic features and tens of thousands of users. Data is collected 
from each individual user in a bottom-up manner. As the framework (Figure 
3.1) shows, this chapter will illustrate the data-processing method, including 
how to extract relevant information, build up the data structure, and remove 
redundant parts. This chapter will also show the data modeling method for 
converting the raw datasets into different geographic and network representa-
tions. It should be noted that not all the implementation details are included in 
this chapter, due to space limitations.  
 

 
Figure 3.1:  The framework of data processing and modeling in this thesis 

 

3.2. The study areas 
The study areas in this thesis were selected at a wide range of scales, ranging 
from the entire world, to country, city, and individual geographic features. The 
reason we chose such a range of study areas was because we think that fractal 
or scaling is universal across the geographic space. Apart from the study at the 
global level, we chose the US and six big European big cities (London, Bir-
mingham, Paris, Toulouse, Berlin and Munich) (Figure 3.2). The VGI datasets 
mainly came from OSM, Twitter, Brightkite, and Gowalla, of which OSM data 
was relied on the most. To a large extent, the selection of study areas was di-
rected by the quality and availability of datasets, since there was an imbalance 
of data from one area to another, e.g. the popularity of Twitter in Europe is 
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totally different from that in China. Table 3.1 shows which social-media data 
was used at which scale of the study area. Specifically, the study was stimu-
lated by the global coverage of OSM data to explore the scaling property of 
the entire world. The high concentration of Brightkite and Gowalla check-in 
locations in the US are good for analyzing human activities at the country level. 
The completeness of street data and active tweeting activities among European 
capital cities were suitable for studying human intra-city movements.  
 

Table 3.1: VGI datasets and their applied study areas 
 

OSM World 
OSM, Brightkite, Gowalla Country 

OSM, Twitter City 
 

 
 

Figure 3.2: (Color online) The study areas in the thesis 
 

3.3. Data processing   

3.3.1. Geospatial data extraction 

Extraction of OSM element 
The OSM full-history dataset is a huge XML file (692 GB after being decom-
pressed by February 2013) and can be directly downloaded at the official OSM 
website (http://planet.openstreetmap.org/). The XML file is well-organized. 
Specifically, the file starts with node content, moves on to way content, and 
then relation content. Every element is in sequence of its element ID. By know-
ing this, we created a workflow that easily and efficiently extracted all required 
information for each element (Figure 3.3). As the flowchart shows, two types 
of attributes were saved for each element (The latest version of the element 
attributes, including its shape information in terms of one, or a set of, ordered 
xy coordinate pairs and a list of its member ID (if applicable); and the historical 
attributes including time, user ID, and version number. For the practical part, 
the workflow was based on .Net environment in Visual Studio 2010 and the 
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C# XML library was used to process the file. Since there were billions of ele-
ments to be read, it was impossible for us to put all elements and their relation 
attributes into memory using an ordinary desktop. Instead, we wrote every el-
ement onto the hard disk with a structure that could be recognized and loaded 
by our program for later use. The resulting file contained attributes of approx-
imately 2.1 billion elements and used approximately 130 GB in .txt format, 
including both the latest and historic attributes for all elements. Thanks to the 
sequentially organized element, there was no need to sort the elements for 
searching after loading the content. We applied the binary search for the inher-
ently sorted array for any element using its ID, which normally takes less than 
one second to pinpoint the element and get its related information.  
 

 
Figure 3.3: The workflow of the data extraction of OSM planet history dump 

 
We refined the data structure for the OSM element extraction. As introduced 
in the previous chapter, OSM elements have a hierarchical structure that ena-
bles them to embed within each other. Figure 3.4 shows this nested relation-
ship. A relation can have nodes, ways, and another relation that contains other 
ways, nodes, and possible relations. In fact, there are numerous complex rela-
tions containing some member relations that are also the parents of other rela-
tions in the OSM database. Therefore, it would be insufficient to only rely on 
the member ID to extract the precise geometric information of a complex rela-
tion element such as the number of all containing nodes. To solve this problem, 
we refined the data structure of the three OSM elements by adding their parent 
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id(s). Namely, we added a list of way IDs and a list of relation IDs to which 
that node pertained for each node element. We applied the same strategy to 
each way and relation element as well. By using this data structure, a set of 
simple and straightforward algorithms could be used to iteratively find the 
shape information. As was the case with computing the size of an element in 
terms of the number of nodes, the recursive algorithm as pseudo-code is pre-
sented as:  
 
Recursive function CountOSMElementNode (OSM element): 
Foreach member element in the input elelment: 

   If (member element is node): 
       NodeCount = NodeCount + 1; 
   Else: 
       CountOSMElementNode (member element); 
End Function 

 
We found a beneficial byproduct from this refined data structure – the 

worldwide street junctions could be directly extracted if a node satisfied the 
condition of having more than one highway element (the tag value of the way 
element was “highway”) as parents. This condition could be improved using 
tag information to avoid the intersection node between a highway bridge and 
its underlying highway(s). Because there were no spatial operations performed 
(such as a spatial query), and each node element was well-structured in terms 
of its node ID and parent highway ids, the extraction could be extremely fast 
and avoid intensive computing. It could also save a lot of storage in keeping 
the junction nodes, since it only required updating the “street junction flag” of 
a node to the value of true in the predefined data structure, rather than storing 
all the attributes again in a separate file.  

 
Figure 3.4: The nested OSM element structure  
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Extraction of human activities from LBSM data 
For the study of LBSM, the first step is obtaining the geo-related data. The 
study used two types of geo-related data: Check-in locations and geo-tagged 
tweets. The check-in location data was from Brightkite and Gowalla, respec-
tively. The data could be directly downloaded from the official site of Stanford 
Network Analysis Project (http://snap.stanford.edu/index.html). Both datasets 
had several millions check-in locations and tens of thousands of users over 
approximately a two-year time span. Each check-in location was recorded with 
a user ID, x, y, and timestamp. For the geo-tagged tweets, we extensively used 
Twitter’s streaming APIs that allowed us to partially access Twitter’s database 
through an HTTP request. We wrote some Python scripts to do the crawling 
and deployed the crawler remotely to have multiple instances in the Linux sys-
tem running at the same time. Finally, it took several days for us to get one 
week of tweets from June 1 to June 8 in Western Europe. We did not fetch the 
data for a longer period of time because of the data stream limitation. If the 
data stream exceeded the 1-percent limit, it would randomly drop some of the 
messages. Furthermore, since only the spatial-temporal information is of inter-
est, we filter out the tweet content and only keep the user ID, location, and time 
stamp (the same as the check-in location format). These were some statistics 
about the tweet location data for the three biggest countries: 4,127,159 in 
France, 837,627 in Germany, and 3,704,351 in the UK.  

The next step was to extract the human activities from the obtained geo-
data. Since each location was associated with a user ID and timestamp, it was 
very easy to extract each user’s movement trajectory during the time period. 
The trajectory can be denoted as a set of time-stamped locations: 
(ݑ)ݕݎ݋ݐ݆ܿ݁ܽݎܶ  = ሼ(ݔଵ, ,ଵݕ ,(ଵݐ ,ଶݔ) ,ଶݕ (ଶݐ ,௜ݔ) … ,௜ݕ  ௜)ሽ (3.1)ݐ
 
in which u is a user; x and y are the geographic coordinates; and t is the 
timestamp. The pseudo-code below describes how the extraction was imple-
mented. After extracting the movement trajectories, we recorded not only the 
location history for each user, but also the list of users at each location. Both 
types of information can be useful for conducting research in human dynamics 
in either an urban or country space. Furthermore, this data can also be used to 
construct a socio-geographic network (more details in Section 3.4.3).  
 
Function ExtractMovementTrajectory (Check-in locations): 
  While(Not the end of file): 
    Store XY coordinates, user id, and timestamp into list; 
    Sort the list by user id then sort by timestamp; 
    Generate each user’s trajectory by grouping the list by id; 
End Function 

3.3.2. Quadtree indexing 
Quadtree (Samet 1990) is a common approach in GISystem that is widely ap-
plied for hierarchically structuring spatial data. For this study, it was impera-
tive to build up such a structure to recursively decompose the input VGI data. 
Taking an example of an OSM element, if we used a standard linear index to 
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conduct a simple spatial point-in-polygon query to know how billions of ele-
ments spatially distribute in each country, it might take years to get the answer. 
Although R-tree is recommended nowadays for spatial indexing at multi-di-
mensions (Murray 2003), quadtree was suitable for this study since all datasets 
to be applied were only 2D geometric objects and quadtree supports a faster, 
more stable structure. Building quadtree can also help organically partition the 
geographic space and give a better overview of the geospatial data because the 
size of the grid can indicate spatial density (Figure 3.5).  

Two points must be clarified for building up a quadtree in this study. First, 
the tree was not a full tree, as each quadtree subdivision (quadrant) stopped 
when the resolution condition was met. The resolution of the quadrant (or to 
which detail level) depended on the number of the containing geo-data. For 
example, the resolution was 100 for point data because an ordinary spatial 
query can instantly return the result for 100 points with little computing re-
sources. Second, each quadrant was indexed based on its depth. Neighboring 
quadrants were always saved and iteratively updated. The process of quadtree 
implementation is described by the pseudo-code shown below. The introduced 
quadtree structure greatly facilitated processing and modeling the big datasets 
in terms of computing speed and capacity. 
 
Recursive function CreateQuadtreeIndex(Input Geo-data): 
Create envelope polygon for the input geo-data; 

Divide the envelope into 4 sub-regions  
Foreach sub-region:  
 Assign the sub-region an index based on the recursion depth;  

   Let sub-data = the geospatial data within the sub-region;  
If (number of sub-data > threshold): 

CreateQuadtreeIndex(sub-data) 
Else:  

Assign each feature in the sub-dataset the index of the 
sub-region 

End Function 
 

 
Figure 3.5: Quadtree indexing on the global data set 



31 
 

3.3.3. Data cleaning 
Cleaning the input VGI removed topological errors. Three of the most common 
topological errors among the geospatial datasets were duplication, self-over-
lapping, and self-intersection. Duplication exists in three vector types (point, 
polyline and polygon), indicating that more than one feature shared an identical 
shape. Self-overlapping only exists in the polyline type of data, meaning that 
a single line overlapped itself, or comprises segments that are partially identi-
cal. Self-intersection occurs in both polyline and polygon types of data, in 
which one or more parts of a polyline or polygon cross another part. Since the 
data quality could probably affect the final results, it was necessary to perform 
an error check and resolve any errors before doing further analysis.  

Current GIS software provides mature solutions for detecting and correct-
ing the listed topological errors for vector data. For example, the tools in 
ArcMap, such as Delete Identical Features and Repair Geometry, can help 
correct errors that were previously mentioned. However, these software solu-
tions are generally unable to cope with big data. In this regard, the study de-
signed a batch-processing procedure to perform the topological correction. The 
input data is first partitioned through its quadtree structure. Namely, the fea-
tures are grouped with the same quadrant index. In this way, the data is effec-
tively split into numerous operable batches for the processing program. For 
each data slice, the program uses the ITopologicalOperator interface of 
ArcObjects library (ESRI 2017a) to identify and correct the topological errors. 
The ITopologicalOperator.Simplify method can effectively deal with self-in-
tersection, self-overlapping, and duplicated parts removal.  

3.4. Data modeling 

3.4.1. Natural streets and street blocks from street segments 
The natural streets can be automatically generated by Axwoman 6.3 (Jiang 
2015e). Jiang et al. (2008) provided the related algorithms for three types of 
joining principles (self-fit, self-best-fit, and every-best-fit). In practice, Ax-
woman can calculate the deflection angles among street segments, do the con-
nections in real time, and provide good results. However, there are two defi-
ciencies. First, this solution fails to deal with the complex junction situation. 
For example, the natural-road tracking process would stop when meeting a 
roundabout. It made the natural roads less connected than what they should be. 
Another problem was that the program did not consider the importance of each 
segment and always started the joining process from a random segment. This 
could lead to a suboptimal natural road result (Jing et al. 2015).  

In this regard, this study made related improvements using a workflow 
(Figure 3.6). The first step was to generate street segments at street junctions. 
This step can be done directly through the transformation from inputted street 
data to street segments using the Data Interoperability extension of ArcGIS. 
The resulting file format was Esri ArcInfo Coverage, and the segment file was 
in arc type. In addition, the segment-segment topology was correctly created 
for the data. The street blocks, which were the closed areas of street segments, 
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could subsequently be generated using the Feature to Polygon tool of ArcMap 
with street segments as input. We then detected the roundabout from the street-
block data by calculating the circularity using the equation ܥ = ସగ௔௣మ  for each 
block, in which ܽ was the block area and ݌ was the block perimeter. The closer 
the circularity value was to 1, the more circular a shape the polygon would 
have. Since roundabouts are usually circle-like shapes, we selected street 
blocks with a big circularity value (for example, 0.95 < ܥ) and an acceptable 
area (that could not be too big) as the roundabout. The segments that inter-
sected with each roundabout were then locally connected, based on the good-
continuity principle through the maximum-matching solution (Edmonds 
1965), as recommended by Yang et al. (2011a). Each roundabout was deleted 
from the dataset after the connection of its intersected segments was finished. 

The following steps were designed to produce the optimal set of natural 
roads by assigning the importance of each segment. In order to know how im-
portant each segment was, we needed to build up the connectivity graph of the 
segments. At this point, the isolated segments could easily be detected by 
checking if they were outside the largest component of the graph (equal to the 
graph itself if there was no isolated line). After the isolated lines were removed, 
the length of each segment and its network centrality measures (degree, close-
ness, and betweenness) were used to determine the segment’s importance. The 
importance ܫ of each segment could be obtained by integrating four measures, 
as the equation denotes:  
ܫ  = 1ݓ ∗ ℎݐ݈݃݊݁ + 2ݓ ∗ ݁݁ݎ݃݁݀ + 3ݓ ∗ ݏݏ݁݊݁ݏ݋݈ܿ + 4ݓ ∗  (3.2) ݏݏ݁݊݊݁݁ݓݐܾ݁
 

Four weights of 1ݓ, ,2ݓ ,3ݓ and 4ݓ were objectively determined using 
the CRITIC method (Diakoulakli et al. 1995), based on each parameter’s own 
characteristics (variance), and the relationship between the four parameters 
(correlation coefficient). The resulting importance values ranged from 0 (un-
important) to 1 (most important). Finally, the sorted segments with a descend-
ing order were the input for generating the natural streets. Under this condition, 
the sequence of tracking natural streets is preset. Specifically, the process 
started tracking the segments to be connected with the most important seg-
ments, and then the segments for the second-most important segment, and so 
on. This ensured the unique, optimal solution of natural roads. Furthermore, 
the most important segments tended to be located in the central part of the 
street network, so it was also very effective and efficient to prioritize them in 
the tracking algorithm for the sake of reducing computation time.  
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Figure 3.6: The workflow for generating natural streets  
  

3.4.2. Natural cities from individual locations and street blocks 
The natural cities objectively depict human activities or settlements. Two types 
of natural cities were generated in this thesis: Individual locations and street 
blocks. Different techniques were applied to generate different types of natural 
cities. To be more specific, natural cities generated from individual locations 
were based on the triangulated irregular network (TIN) (Jiang and Miao 2015). 
Natural cities generated from street blocks were created by iterative clustering 
of small street blocks (Jiang and Liu 2012). We developed some improvements 
to existing solutions to handle the big geospatial datasets. 

As mentioned previously, the individual locations from different VGI 
sources (such as tweet locations and OSM nodes) can be tens, or even hun-
dreds, of millions of points at the country level. It becomes a problem to build 
up a TIN based on such a large number of points using GIS software. As was 
the case with ArcMap, 10 million to 15 million nodes are the largest sizes to 
process (ESRI 2017b). We designed a workflow (Figure 3.7) based on the 
batch processing method to conduct the TIN-based clustering of a huge point 
set to derive the natural cities. Based on the quadtree structure, the individual 
locations were first partitioned into operable batches, each of which contained 
a limited number of points. The TIN was then locally constructed for a set of 
points in each quadrant. The convex hull for each point set can be subsequently 
derived by dissolving all the triangles of each local TIN. The points touching 
the boundary of a convex hull were then marked as the border points for each 
point set. Each local TIN connected to its neighbor’s TINs using only the bor-
der points to form the global TIN. Since the process of TIN generation was a 
bottom-up approach, it could be used for any number of points. Each TIN edge 
was stored each time it was created during each local process so it would not 
create a problem with computer memory. Finally, the points were grouped us-
ing the mean edge length of edges from all local TINs and the global TIN. 
Natural city patches were then produced via Feature to Polygon and Dissolve 
tools in ArcMap. See more details about generating natural cities in Jiang and 
Miao (2015). 
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Figure 3.7: The workflow for generating natural cities from individual locations 
 

A street block refers to a minimum area closed by neighboring street segments 
(Jiang and Liu 2012). The street blocks could be directly produced, based on 
street segments, by using ArcMap (see Section 3.4.1). If the size of input seg-
ments exceeded the limitation of the software, the street blocks could also be 
created programmatically by following the previous work (Jiang and Liu 
2012). The street blocks were categorized into two types: City blocks and field 
blocks. City blocks were those smaller than the mean size of all street blocks, 
whereas field blocks were those larger than the mean size. The natural cities 
could then be generated through an iterative clustering algorithm for grouping 
the city blocks. The pseudo-code describes how the algorithm worked. This 
algorithm could be very slow for countrywide searching because it consumed 
a lot of memory when the recursion went very deep. One way to efficiently 
alleviate this problem was to first traverse all city blocks to mark those whose 
neighboring blocks were also all city blocks. This saved a lot of computation 
time and resources.  
 
Recursive Function NaturalCityGeneration (Street Block) 
   If (this block is a city block): 

Add this block into Blocklist; 
Get its neighboring blocks; 
Foreach neighboring blocks: 
   If (all its neighboring blocks are city blocks): 

NaturalCityGeneration (this block); 
   Return Blocklist as a Natural City; 
End Function 
 

3.4.3. Network construction from human activities 
We constructed two types of networks for modeling human activities in differ-
ent LBSMs: A binary network and a weighted network. Both of these were 
undirected networks. In a binary network, the nodes represented individual us-
ers and links for relationships. There are two kinds of relationships based on: 
Users’ interactions about their co-contributions to OSM elements; and co-lo-
cation of users’ movement trajectories, respectively. The network was built 
using Equation 3.3: 
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݈݅݊݇௜௝ = ൜ ௜ܧ ݂݅               ,1 ∩ ௝ܧ ് ௜ܶ  ݎ݋ ∅ ∩ ௝ܶ ്  (3.3)                                                  ݁ݏ݈݁               ,0  ∅
 
in which i and j refer to a pair of individual users, E stands for a user’s edit 
history, and T is a user’s movement trajectory (location history). Figure 3.8 
illustrates a co-contribution network. For example, element b exists in the edit 
history of users 1, 3, and 4. Therefore, these three users have a co-contribution 
relationship between every two of them. This same rule applies to the co-loca-
tion network.  
 

 
Figure 3.8: Illustration of a binary network construction  

(Source: Paper I) 
 
A weighted network is used to establish socio-geographic networks (Zheng 
2011) based upon a user’s location and social connections. The user location 
can be a single location or a natural city, either of which can be shared by other 
users. The network can be described by Equation 3.4:  
 ݈݅݊݇௜௝ = |ܵ|, ܵ = ௜ܷ ∩ ௝ܷ (3.4) 
 
in which i and j refer to a pair of individual locations or natural cities; Ui or Uj 
stands for the users who visited the location/city i or j; and S stands for the 
pairs of users who are friends in their social network. The link between a pair 
of locations/cities is weighted by the number of pairs of socially connected 
users. As Figure 3.9 illustrates, the socio-geographic network maps user social 
connections into locations/cities.  
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Figure 3.9: (Color online) Illustration of a weighted network construction  
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4. Methodology 

4.1. Overview 
Following the topological and scaling way of thinking, the thesis employs a set 
of complexity science methods, including heavy-tailed distribution statistics 
(e.g., Clauset et al. 2009), head/tail breaks (Jiang 2013a), ht-index (Jiang and 
Yin 2014), topological analysis (Jiang and Claramunt 2004), and complex net-
work analysis (Figure 4.1). This methodology helps uncover the scaling prop-
erty of geospatial big data in a quantitative manner, and, more importantly, 
illustrate the underlying fractal or scaling pattern of geographic space and its 
involved human activity. Overall, the methodology can be seen from both scal-
ing and topology. Scaling analysis comprises heavy-tailed distribution statis-
tics (or power-law metrics in particular), and head/tail breaks and its induced 
ht-index. Topological analysis mainly utilizes the complex network structural 
parameters and community structure. Note that the two parts were not sepa-
rated. Instead, they complemented each other to provide deep insights into 
scaling pattern and topological properties while performing the analysis. For 
example, the topological parameters helped detect the underlying scaling pat-
tern of a network, and vice versa, the scaling hierarchy and power-law metrics 
of network measures help uncover the network community structure. Through 
a series of studies, we found that this methodology could cope with geospatial 
big-data analytics.  
 

 
 

Figure 4.1: (Color online) The overview of the complexity science methodology  
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4.2. Mathematical detection of heavy-tailed distributions 

4.2.1. Different types of heavy-tailed distributions 
Heavy-tailed distribution was one of the theoretical foundations in this study. 
Compared to a normal, or normal-like distribution, in which data tended to 
distribute evenly around the mean, the data of a heavy-tailed distribution 
tended to have much more data to the right side of the mean (rightly skewed). 
In general, data with a heavy-tailed distribution refers to a nonlinear relation-
ship between quantity x and its probability (Clauset, Shalizi and Newman 
2009). The most common types of heavy-tailed distributions are power-law 
distribution, exponential distribution, lognormal distribution, and their varia-
tions: power law with an exponential cutoff, and stretched exponential. The 
distributions are as follows:  

A power law distribution indicates the probabilities of a value (y) being 
proportional to some power of a quantity (x), which is denoted as follows:  
 y =  ఈିݔ݇

 (4.1) 

in which ݔ௠௜௡ is the smallest value from which the power law is obeyed, and α 
is the power-law exponent.  

A power law with an exponential cutoff is a degenerated form of the power 
law. Simply put, it is not an ideal power law, but a hybrid between a power law 
and an exponential, which can be expressed as:  
 y =  ఈ݁ିఒ௫  (4.2)ିݔ݇
 

An exponential distribution simply denotes the exponential relationship be-
tween y and x, given by:  
 y = ݇݁ିఒ௫  (4.3) 
 

The degenerated version of an exponential distribution is the stretched ex-
ponential, which can be described as:  
 y = ఈିଵ݁ିఒ௫ഀݔ݇   (4.4) 
 

The lognormal distribution is another common type of heavy-tailed distri-
bution. Lognormal means that if we take the logarithm of quantity x, it results 
in a normal distribution. The lognormal distribution can be formatted as:  
  y = ݇ ଵ௫ ݁൤൫ౢ౤౮ష ഋమ൯మ഑మ ൨  (4.5) 
 

4.2.2. Mathematical detection 
The mathematical detection of the heavy-tailed distribution in this study 
adopted the method from previous studies (Clauset et al. 2009, Jiang and Jia 
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2011b). The procedures for mathematical detection included two main steps: 
(1) Examine if quantity x is power-law distributed and, if not; (2) see if quantity 
x follows any of the four alternative distributions. Figure 4.1 shows the work-
flow of the mathematical detection. The workflow primarily focuses on if the 
data fits the power-law distribution with an acceptable ߙ and p value. The 
power-law detection is based on a rigorous method suggested by Clauset et al. 
(2009) that combines the maximum likelihood estimation (MLE) (Shanbhag 
and Rao 2001) and Kolmogorov-Smirnov (KS) test. The other four types of 
heavy-tailed distribution (as presented in Equations 4.2, 4.3, 4.4, and 4.5) were 
examined by the likelihood ratio to see which model had the largest similarity 
to the input quantity x. Since the power-law distribution was the mainstay 
throughout the study, the following content in this section will only concentrate 
on power-law detection. For the other four members, Table 4.1 presents their 
estimated constant ݇ based on MLE method. Interested readers can refer to 
Clauset et al. (2009) and Jiang and Jia (2012) for more details on how the es-
timated parameters were calculated.  
 

 
 

Figure 4.2: The workflow of the mathematical detection of heavy-tailed distributions 
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Table 4.1: The estimated constant k for four heavy-tailed distributions 
 

Exponential ݇ =  ఒ௫೘೔೙݁ߣ 
 

Stretched exponential ݇ = ఒ௫೘೔೙ഀ݁ߣߙ 
 

Power law with an exponential cutoff 

 ݇ = ଵିఈ߬(1ߣ  − ,ߙ  (௠௜௡ݔߣ

 

Lognormal ݇ =  ඨ ଶߪߨ2 ቈ(lnݔ௠௜௡ − ଶߪଶ)2ߤ  ቉ିଵ
 

 
 
For power-law detection, the simplest way was to plot quantity x from the larg-
est to smallest, and then take logarithms on the x- and y-axes. According to 
Equation 4.6, the distribution line should become a straight line if the quantity 
x is a power law. However, it only suited the data that was perfectly power-law 
distributed. For more general data, taking logarithms can lead to very noisy 
results (numerous fluctuations) in the tail (Newman 2005) (Figure 4.2). Fur-
thermore, the assessment of fitness is based on the linear regression that cannot 
further provide probability distribution estimations.   
 ln(ݕ) = ߙ−  ln(ݔ) + ln(݇) (4.6) 
 

 
Figure 4.3: (Color online) A working example showing a general power law distribution 
(Note: The rank-size plot on a fake dataset (a) and its log-log plot (b). Panel b exhibits 

the noisy tail of the plot line after taking logarithm) 
 

Instead of a rough estimation, Newman (2005) and Clauset et al. (2009) sug-
gested using the MLE method to accurately estimate parameters, such as ݔ௠௜௡ 
and α, in order to calculate the probability distribution. It advances traditional 
methods in many aspects, since it makes full use of each value in quantity x by 
avoiding binning. To elaborate, assuming that a quantity x is continuous and 
follows a power-law distribution, and its probability distribution function 
(PDF) according to Equation 4.1 can be formatted as:  
(ݔ)ܲ   = ݔ݀(x)݌ =  (4.7) ݔఈ݀ିݔ݇ 
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Since the integral of ܲ(ݔ) is 1 of the PDF, the following equation can be 
derived: 
 1 =  න ఈஶିݔ݇

௫೘೔೙ ݔ݀  =  ݇1 − ߙ ሾିݔఈାଵሿ௫೘೔೙ஶ  (4.8) 

 
The constant ݇ can be obtained as: 
 ݇ = ߙ) −  ௠௜௡ఈିଵ (4.9)ݔ(1
 
In this case, the power-law distribution is:  
(x)݌  = ߙ  − ௠௜௡ݔ1 ൬ ௠௜௡൰ିఈݔݔ

 

 
(4.10) 

 
Considering that there are n values of quantity x, the probability of quantity x 
is proportional to:  
(ߙ|x)݌  = ෑ ௡(௜ݔ)݌

௜ୀଵ   = ෑ ߙ − ௠௜௡ݔ1 ൬ ௠௜௡൰ିఈ௡ݔݔ
௜ୀଵ   

 
(4.11) 

Equation 4.11 denotes the likelihood of quantity x. If we use the logarithmic 
form, likelihood ℒ is:  
 ℒ = ln (ߙ|x)݌ = ݊ ln(ߙ − 1) − ݊ ln ௠௜௡ݔ − ߙ ෍ ln ௠௜௡ݔ௜ݔ

௡
௜ୀଵ  

 
(4.12) 

To get the maximum likelihood, we set డℒ డఈ = 0, so the exponent ߙ could then 
be expressed by: 
 α = 1 + n ൥෍ ln ௠௜௡ݔ௜ݔ

௡
௜ୀଵ ൩ିଵ   (4.13) 

 
It should be noted that the acceptable range of the exponent α is normally 
from 1 to 3 to formulate a power-law distribution. 

The next step was to use a KS test to evaluate to what extent the quantity x 
fits a power-law distribution based on the estimated parameters (goodness of 
fit, GoF). The KS statistics used the maximum distance between the cumula-
tive density functions (CDF) of the estimated power-law model and the CDF 
of the quantity x.  
௘ܦ  = (ݔ)݂| − ௫ஹ௫೘೔೙௠௔௫|(ݔ)݃  (4.14) 
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in which ܦ௘ was the maximum distance, ݂(ݔ) is the CDF of the quantity x with 
a value of at least ݔ௠௜௡, and ݃(ݔ) is the CDF for the power-law model that best 
fits the data in which ݔ ≥  .௠௜௡ݔ

Since we know that ߙ  was dependent with ݔ௠௜௡ , the fitted power-law 
model would change every time a new ݔ௠௜௡ was employed. Therefore, before 
assessing the GoF, ݔ௠௜௡ can be refined through a loop process of the KS sta-
tistics. To be specific, we selected a set of ݔ௠௜௡ candidates as inputs and cal-
culated a series of maximum distances ܦ between each estimated model and 
real data, using Equation 4.14. Finally, we found the proper ݔ௠௜௡ through the 
estimated model with the smallest ܦ. 

After identifying the suitable ݔ௠௜௡, we made 1,000 artificial datasets by 
using the estimated model ݃(ݔ) to conduct a solid assessment of GoF. Each of 
the 1,000 datasets could be separated into two parts: The values above ݔ௠௜௡ 
completely followed a power-law distribution, while the values below ݔ௠௜௡ 
were non-power-law distributed. We employed Equation 4.14 again for com-
puting maximum distances ܦ௜  for each artificial dataset and the estimated 
model ݃(ݔ). The GoF p value could be derived using the following equation:  
݌  = ௜ܦ) ݂݋ #  > ௘)   1000ܦ  (4.15) 
 

Since ܦ௘ denotes the maximum distance between the estimated power law 
model and the real dataset, Equation 4.15 illustrates the idea that the more ar-
tificial datasets than the real dataset do not fit well with the estimated model 
௜ܦ) > -௘), the higher the chance for the real dataset being a power law distriܦ
bution. The p value ranges from 0 to 1, where 0 means rejection of the hypoth-
esis of a dataset being a power law distribution. Empirically, if the p value is 
greater than 0.01, the dataset follows a power law distribution (Marta et al. 
2008). 

4.3. Head/tail breaks and its induced ht-index 

4.3.1. Concept and definitions 
Head/tail breaks (Jiang 2013a) is a classification scheme for data with a heavy-
tailed distribution. Data with a heavy-tailed distribution inherently possess a 
scaling pattern or hierarchy. It developed from the head/tail division rule (Jiang 
and Liu 2012): Given data with a heavy-tailed distribution, the arithmetic 
mean, or average, can split all the data values into two unbalanced parts: A 
minority of big values above the mean, called the head(for example, < 40%); 
and a majority of small values below the mean, called the tail. The unbalance 
between the head and tail parts refers to the scaling pattern of far more small 
things than large ones. This process recursively continued for the head part 
until the head part bore no scaling property or was no longer heavy-tailed dis-
tributed. Figure 4.4 uses a working example of a classic fractal – a Koch 
Snowflake – to clearly explain the process of head/tail breaks. 
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Figure 4.4a shows the original snowflake which contains 64 equilateral 
triangles of different sizes. More specifically, there are 48, 12, 3, and 1 
triangles, with side lengths of 1/27, 1/9, 1/3 and 1, respectively. The area of 
equilateral triangles, according to the formula ܣ = √ଷସ  ݈ଶ (݈ is side length), are 
approximately 0.43, 0.14, 0.05, and 0.016, respectively. The areas of the 
triangles obviously followed a heavy-tailed distribution, in which there were 
far more small triangles than big ones. Therefore, we conducted head/tail 
breaks. The first mean was ݉1 = (1 ൈ 0.43 + 3 ൈ 0.14 + 12 ൈ 0.05 + 48 ൈ0.016)/64 = 0.03. This split the triangles into 16 triangles above ݉1, and 48 
triangles below ݉1. Those 16 triangles were the head part (16/64 = 0.25, < 
40%) and selected to be the first class (Figure 4.4b). The rest could be 
determined in the same manner. The second mean ݉2 = (1 ൈ 0.43 + 3 ൈ 0.14 +12 ൈ 0.05)/16 = 0.09 helped us to obtain the new head with four triangles 
(Figure 4.4c). Finally there was only one triangle above the third mean ݉3 =(1 ൈ 0.43 + 3 ൈ 0.14)/4 = 0.21, which was the third class (Figure 4.4d). We 
observed that three levels of snowflakes were derived during the head/tail 
breaks process; namely the scaling hierarchy of all triangles (Figure 4.4e). 
 

  
Figure 4.4: (Color online) Illustration of the process of head/tail breaks using Koch 

snowflake 
(Note: Red triangles indicate the head part, and blue triangles the tail part at each recur-

sion) 
 
The number of arithmetic means that were iteratively derived during the pro-
cess resulted in the number of classes or hierarchical levels. The number of 
classes of the data + 1 is the ht-index (Equation 4.16; Jiang 2014). It captured 
how many times the scaling pattern recurred in the data. It quantified the fractal 
or scaling characteristic of the data. In other words, the higher the ht-index 
was, the more fractal or scaling the data became. Note that data with a power-
law distribution always has a relatively high ht-index value. In this respect, 
power-law detection and ht-index complement each other. Head/tail breaks 
and its induced ht-index are the underlying foundation of the third definition 
of fractal. Unlike mostly widely used classification K-means (MacQueen 
1967) and natural breaks (Jenks 1967) in traditional geospatial analysis, 
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head/tail breaks classification can effectively capture the underlying scaling 
hierarchy of geographic data. They have also been applied in many other fields, 
such as urban planning and transportation (Long et al. 2016), and biodiversity 
(Ontoy and Padua 2014).  
 ht = #classes + 1 (4.16) 
 

4.3.2. Applications for geospatial big data 
In most cases, geospatial big data comes from diverse sources and has very 
fine spatio-temporal granularity. These characteristics make big data full of 
nonlinearity. Previous studies have proven that such nonlinearity is exactly the 
right picture of the reality, as is the case with the structure of the natural cities 
from the massive check-in locations (Jiang and Miao 2015, Jiang 2015a). Since 
the reality is fractal (Bak 1996, Mandelbrot and Hudson 2004), there is an in-
herently fractal or scaling structure inside geospatial big data. In this regard, 
head/tail breaks can be used as an effective, efficient tool to analyze and visu-
alize big data.  

As mentioned earlier, geospatial big data sometimes appears too big to han-
dle. The strategy behind applying head/tail breaks to big data is that we can 
always recursively take the head part until the head part is small enough to 
analyze and visualize. The reason why we can use this strategy is because of 
the self-similarity property of fractals; that is, the head is self-similar to the 
whole dataset. Similarly, the red triangles in Figure 4.4 can geometrically and 
statistically represent the whole at different levels. In other words, dropping 
out the tail part(s) would not affect much about the scaling pattern of the whole 
dataset. In this regard, head/tail breaks help us greatly reduce the size of big 
data (where the tail part is the majority), but without distortion. In this way, 
big data becomes manageable for both analytics and visualization. Addition-
ally, the whole process of head/tail breaks only calculates the arithmetic means, 
which requires little computing capacity and a short waiting time for results.  

4.4. Complex network analysis 
Complex network analysis is an interdisciplinary research method shared 
across mathematics, physics, biology and geography. It analyzes nodes for in-
dividual features and links for their relationships (Cohen and Havlin 2010). 
This complex network fundamentally differs from its simple counterparts of 
regular and random networks. The major difference between complex and sim-
ple networks lies in their topological parameters (Helbing 2007, Flack and Kra-
kauer 2011, Jiang et al. 2014). For example, the degrees of nodes in a random 
or regular network vary little from one to the other. In contrast, the degrees of 
nodes in a complex network tend to be very heterogeneous or scaling. We con-
ducted a structural analysis of complex networks of various types, based on a 
set of network parameters that will be introduced in the following sections. 
Figure 4.5 presents the workflow of the complex network analysis in this the-
sis.  
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Figure 4.5: The overview of the structural analysis of complex networks  

4.4.1. Network topological measures 
A network can be denoted as a graph ܩ = (ܰ,  in which N stands for the set ,(ܧ
of k nodes ሼ݊ଵ, ݊ଶ, ݊ଷ … ݊௞ሽ, E is a set of edges or links among the nodes, and ∀ܧ ∈ ܰ ൈ ܰ (Harary 1969). In this study, two types of graphs are generated – 
a binary graph and a weighted network graph. We can use the adjacency matrix (ܩ)ܣ to store and represent both types of graphs. In a binary network, nodes ݅ 
and ݆  are connected if they have a relationship, and the weight of that 
edge is ܣ௜௝ = 1. A weighted network is generated by appending the weight 
value ܣ௜௝ ≥ 1 to the edge. 
௜௝ܣ  = ൜ ≥ 1,  (4.17)                                               ݁ݏ݈݁            ,0  ݈݀݁݇݊݅ ݁ݎܽ i ܽ݊݀ j ݁݀݋݊ ݂݅
 

Node degree 
Degree, also known as connectivity, is the simplest parameter for evaluating a 
network structure, as Equation 4.18 expresses. The degree of a node is equal 
to the number of directly linked nodes in a binary network. In a weighted net-
work, a node’s degree value equals the sum of the weights of the edges that 
directly link to that node.  
௜ܦ  = ෍ ௜௝௞ܣ

௝ୀଵ  (4.18) 

 

Node betweenness 
Node betweenness measures the extent to which a node acts as a bridge in a 
network (Freeman 1979, Barthelemy 2004). For a node i, its betweenness score 
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is calculated by the ratio of the number of shortest paths between any two node 
m and j passing through itself. 

௜ܤ  = ෍ ℎ௠,௝ݐܽܲ ݂݋ #ℎ௠,௜,௝ݐܽܲ ݂݋ #
௞

௠,௝∈ே,௠ஷ௜ஷ௝  (4.19) 

 

Node closeness 
Node closeness calculates how close a node is to every other node in a net-
work, which is denoted by: ܥ௜ = ݇ − 1∑ ݀௜௝௞௝ୀଵ,௜ஷ௝  (4.20) 

 
in which k is the number of nodes in a network, and ݀௜௝ is the shortest topolog-
ical distance between nodes i and j. 

Path length 
The path length of a node describes how far the node is from all other nodes in 
a graph, which is formatted by: 
௜ܮ  = ෍ ݀௜௝௞

௝ୀଵ  (4.21) 

 
It should be noted that ݀௜௝ is the shortest path between nodes ݅ and ݆. In a bi-
nary graph, the shortest path means that it contains the minimum number of 
edges from node ݅ to ݆. In a weighted graph, the shortest path means the small-
est sum of the edge weights among all possible paths.  
 

Clustering coefficient 
The clustering coefficient (CC; Watts and Strogatz 1998) is an important pa-
rameter, together with average path length to determine if a network possesses 
small-world property. As Equation 4.22 shows, k is the number of nodes, #ܧ௜ 
is the number of actual edges between node i and its neighbors, and ܦ௜(ܦ௜ − 1)/2 calculates the maximum number of edges between node i and its 
neighbors. The ratio of each node’s actual edges to their maximum edges can 
indicate the extent to which nodes clustered with each other in a network. 
(ܩ)ܥܥ  = 1݇ ෍ ௜ܦ)௜ܦ௜ܧ ݂݋ # − 1)/2௞

௜ୀଵ  (4.22) 
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Edge betweenness 
For an edge in a network, its edge betweenness value equals the number of 
shortest paths between any two nodes that pass along it (Girvan and Newman 
2002). 
௘ܤ  = ෍ ℎ௜,௝ݐܽܲ ݂݋ #ℎ௜,௘,௝ݐܽܲ ݂݋ #

௞
௜,௝∈ே,௜ஷ௝  (4.23) 

 

4.4.2. Community detection using head/tail breaks 
A community in a network, also called a cluster or a module, means a group of 
nodes in which the links are denser than in nodes outside the group (Newman 
2004, Fortunato 2010). Since the degrees of nodes in a random or regular net-
work vary little from one node to another, it is difficult to have many commu-
nities or clusters in such a network. In contrast, the degrees of nodes in a com-
plex network tend to be very heterogeneous, which leads to a network with a 
community structure (Girvan and Newman 2002, Newman 2003, 2004). Com-
munity structure is a very critical aspect of a complex network because it re-
flects the internal relationship among nodes and a network’s organization 
(Lancichinetti et al. 2008).  

Many algorithms or methods have been proposed over the past 20 years to 
detect communities. One of the most fundamental works is by Girvan and 
Newman (2002). It introduces edge betweenness (Equation 4.23) as a key 
measurement for detecting communities because each edge of high between-
ness value is probably the only connection between one community and an-
other. In other words, edge betweenness reflects how important a role one edge 
plays as a bridge between different groups in the network. Removing such 
edges can reveal the network’s community structure. Girvan and Newman 
(2002) implemented a hierarchical decomposition process by deleting edges, 
one at a time, in the descending order of their edge betweenness values. The 
resulting community structure is a dendrogram, from which we can see that 
clusters have an overlapped or nested relationship.  

For a complex network, we tend to think not just in terms of degrees of 
nodes, but also that the nested clusters are inclined to exhibit a scaling hierar-
chy. This means that there are far more small clusters than large ones. To ef-
fectively discover such scaling structures of complex networks, we propose a 
community-detection method using head/tail breaks. It applies iterative 
head/tail breaks on edge betweenness scores. It will keep retrieving the head 
part of the edges as the sub-network until the head percentage of the sub-net-
work disobeys the preset threshold, as the pseudo-code shows.  
 
Recursive Function Head/tailCommunity (network, head) 
  Extract all subnetworks of the input network;  
  Foreach subnetwork  
   Calculate edge betweenness for each edge; 
   Calculate head percentage in this subnetwork;  
   If (head percentage >= head) //this subnetwork is homogenous   
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     Add subnetwork into EdgeList; 
   Else 
     Head/tailCommunity (subnetwork, head); 
  Return EdgeList; 
End Function 
 

 
Figure 4.6: (Color online) Illustration of the community-detection algorithm using 

head/tail breaks  
(Source: Paper V)  

 
To objectively determine the preset threshold, we used an equivalent random 
graph which contained the same number of nodes and edges as the original 
network. In this algorithm, the preset threshold was the head percentage of the 
random graph. We also introduced the concept of least, or homogenous, com-
munity, in which the head percentage was larger than, or equal to, one of its 
equivalent random graphs. As Figure 4.6 presents, a fictive social network 
comprised 12 nodes and 20 links (Figure 4.6A), its head percentage of edge 
betweenness was 35 (Figure 4.6D), and the head percentage in its random 
counterpart was 40 (Figure 4.6C and 4.6E). Community detection using 
head/tail breaks could then be applied to the fictive network. After removing 
the edges below the mean value, three sub-networks and an isolated node re-
mained (Figure 4.6B). This procedure was then repeated for each sub-network 
until we found all of them were least communities. As a result, we found four 
groups with sizes 5, 3, 3, and 1. In this way, we revealed the community struc-
ture of a complex network using head/tail breaks.  
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5. Results and discussion 

5.1. Overview 
This chapter summarizes the outcome of the seven papers and discusses their 
scientific contributions. The main results concentrate on the topological and 
scaling analysis of geospatial big data for better understanding scaling struc-
ture of the geographic space and how it influences human activities. This sec-
tion presents results and discussion from the applications of complexity sci-
ence methods; to geographic space at different scales (global, country, and city 
levels); to related human activities, as reflected by several LBSM datasets; to 
development of theories of fractal geometry and scaling law in terms of smooth 
curves, fractional ht-index, and community structure. The following content is 
organized according to this sequence, and the results of each paper are subse-
quently presented and discussed.  

5.2. Paper I: The heterogeneity of OSM data and community 
This paper investigated the global OSM historical database to study the under-
lying scaling property of geographic space and involved human activities. This 
XML-format database stores approximately 2 billion geographic features, 1 
million users, and 2.7 billion contributions. Therefore the dataset in this study 
is very big (692 GB when uncompressed, with an eight-year time span from 
April 9, 2005 to February 5, 2013). This study extracted the related historical 
and attribute information of all the elements of the entire OSM history dump 
(see details in Section 3.3.1). The paper then employed head/tail breaks and 
power-law detection to characterize the scaling pattern of the global OSM da-
tabase from both the user and the element perspectives.  

The findings from the element perspective were as follows: (1) The number 
of edits, users, and size of each element greatly varied from one to another. (2) 
The scaling patterns among each attribute were remarkable, indicated by very 
high ht-index values and power-law metrics (Table 5.1). The statistical results 
reflected a great heterogeneity of the Earth’s surface, or far more small ele-
ments than large ones. (3) The global spatial distribution of elements (at the 
country level) demonstrated a notable power law. (4) Head/tail breaks and the 
induced ht-index effectively complemented the mathematical heavy-tailed dis-
tribution characterization, especially when the data was too big to handle. 
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Table 5.1: The results of scaling analysis of OSM elements 
(Note: The scaling analysis is conducted in terms of users, edits, and sizes, respec-

tively, #examined = number of elements at top hierarchical levels for power law detec-
tion) 

 
 ht-index #examined alpha  p max 

#users 15 745,943 4.95 0 197 
#edits 15 548,914 3.39 0.006 3,084 
#size 12 479,004 2.37 0.13 5,118,276 

 
 

 
Figure 5.1: (Color online) The rank-size plot of degree distribution of co-contribution net-

work from 2007 to 2013 
 
The nonlinearity also existed from the user perspective. Approximately 30 per-
cent of users made contributions to OSM elements. A clear scaling pattern was 
also detected in regard to the number of contributions among those users, in-
dicating that there were far more inactive users than active ones. Furthermore, 
we built up co-contribution networks per annum from 2007 to 2013. We found 
that online mapping participation grew at a nonlinear pace, and the degree dis-
tribution of the co-contribution network also grew more power law-distributed 
annually (Figure 5.1). This was also seen by the increasing ht-index values of 
node degrees of networks year by year.  

5.3. Paper II: A socio-geographic perspective on human 
activities 
This paper investigates the relationship between social and geographic aspects 
of human activities in social media. To be more specific, it seeks correlation 
between social connections and check-in locations, through the scaling analy-
sis of human movement behavior and socio-geographic networks. The data 
came from the former LBSM platforms of Brightkite and Gowalla in the US.  

To accomplish the task, we extracted each user’s first, or most recent, 
check-in locations as user locations, and then used them to build up natural 
cities through a TIN-based clustering method (Figure 2.6b). The study 
constructed three types of socio-geographic networks for each social media 
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platform: A people-people network, a location-location network, and a city-
city network. The socio-geographic networks contained up to tens of thousands 
of nodes and tens of millions of links, based on social-media information from 
approximately 50,000 users and their 6 million check-in locations. The details 
of network construction are illustrated in Section 3.4.3. The constructed 
networks were then utilized for correlation analysis between social and 
geographic aspects of human activities.  
 

Table 5.2: The related metrics of location-location and city-city network 
 (Note: # = number, ht-index = ht-index value of edge weight, R2 (population) = the R-
square value between node weighted degree and population, R2 (location #) = the R-

square value between node weighted degree and location number) 
  

Location-location City-city 
# of nodes 19,450 451 
#of edges 3,261,608 9,450 
ht-index 11 6 

R2(population) 0.66 0.90 
R2(location #) 0.39 0.91 

 
The study illustrates the underlying complexity and scaling hierarchy of human 
activities in social media from a socio-geographic perspective. Relying on the 
head/tail breaks, the study found that there clearly were scaling patterns in the 
user check-in patterns, edge weights of socio-geographic networks, and the 
population at user locations and natural cities. As Table 5.2 presents, it was 
significant that the node degree of the constructed socio-geographic networks 
was highly correlated with the population at locations (mostly with R-square 
= 0.7) or cities (greater than 0.9). The correlation results led to two new insights 
about human activities in social media: Either the first check-in or the most 
frequent check-in could possibly be a good proxy of the user location; and at 
the country level, the number of social connections did not correlate well with 
geographic proximity at the country level, but depended on the characteristics 
of a city. 

This paper is another showcase of how effective head/tail breaks method is 
for big-data analytics and visualization. Because the head part was important 
and was self-similar to the data with a scaling property, we could select the top 
few heads to measure and visualize the nonlinearity of human activity. 
Moreover, identifying the head and tail parts had large implication for 
geospatial big-data mining and analytics. In the case of Brightkite, the “head” 
of unique check-in locations was only a very small part (5 percent) but 
accounted for the majority of all check-in locations. It then led us to 
successfully capture the image between people’s social connections and 
physical locations.  

5.4. Paper IV: Why topology matters in predicting human 
activities? 
This paper studies why the topology of space, or the topological relationship 
of natural streets at the city scale, matters for predicting human activities. This 
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paper also made a comprehensive comparison between geometric and 
topological representations to see their effectiveness in capturing or predicting 
human activities, respectively. In this study, the geometric representations at 
the city level particularly refer to segment-based models, while topological 
representations refer to natural streets or axial lines. This paper showed that 
segment-analysis methods are ineffective to predict human activities because 
they are essentially geometric, focusing on details such as segment length and 
the turning angle of a pair of intersected segments, which hardly have scaling 
property. In comparison, topological models are effective, as they enable us to 
see the underlying scaling of far more less-connected streets than well-
connected ones.  

To support this argument, we conducted a series of experiments using 
London streets and one week of tweet location data, based on the related 
concepts of natural streets and natural street segments (or street segments for 
short), axial lines and axial line segments (or line segments for short). As 
shown in Figure 5.2, we found that the distributions of connectivity values for 
natural streets and axial lines possessed striking scaling properties, while the 
street and line segments did not, which was also indicated by some power-law 
fitting metrics. The scaling property of street connectitivity was further seen 
for predicting human activity.  
 

 
Figure 5.2: (Color online) Distributions of connectivity values in different street represen-

tations 
 (Note: (a) street segment, (b) line segment, (c) natural streets, and (d) axial lines) 

 
We chose nine study areas in London, of which five were from the city center 
to the periphery. The other four represented high concentrations of geo-located 
tweets that were scattered around the city. We subsequently found that natural 
streets were the best representation in terms of predicting human activity, 
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followed by axial lines. Neither street segments nor line segments bore good 
correlation between network parameters and tweet locations. To further 
support our argument that topology matters in predicting human activities, 
rather than do geometric factors, we conducted a segment analysis based on 
centrality measures of degree, betweenness, and closeness. Betweenness and 
closeness were computed under different kinds of segment-segment geometric 
relationships in terms of minimum length, least angle, and fewest turns (Hillier 
and Lida 2005). We select one study area that was located in the center of 
London to show the correlation results (Table 5.3). All correlations between 
segment metrics and the number of tweet locations were remarkably low (R 
square < 0.1). However, correlations significantly improved (R square > 0.5) 
when we added the centrality measures of street segments and line segments 
into individual natural streets. Note that the results of other study areas also 
followed this trend.  
 

Table 5.3: The correlation results in central London 
(Note: The correlation analysis is conducted between the centrality metrics and the 

number of tweet locations. M = Metric, F = Fewest turns, A = Angular) 
 

 Degree Betweenness Closeness 
  M F A M F A 

Street segment 0.003 0.022 0.041 0.052 0.014 0.111 0.083 
Line segment 0.02 0.009 0.009 0.031 0.001 0.077 0.073 
Natural streets 0.85 0.61 0.66 0.64 0.85 0.86 0.86 

Axial lines 0.31 0.37 0.07 0.28 0.42 0.41 0.42 
 
Based on these findings, we conclude that natural street- or axial line-based 
space syntax, or these general types of topological models, significantly 
coincide with human travel behavior or how humans conceptualize distances 
or spaces. Topology among natural streets or axial lines make it possible for 
us to perceive the underlying scaling hierarchy of streets, with numerous least-
connected streets, a very few most-connected streets, and some streets that are 
somewhere between the least- and most-connected. This scaling or fractal 
structure makes human activities or urban traffic predictable, but in the sense 
of collective behavior, rather than individual, human, moving behavior.  

5.5. Paper VI: Spatial distribution of city tweets and their 
densities 
The paper investigates urban space structures and how they shape the spatial 
distribution of human activities. More specifically, the paper describes the spa-
tial distribution of the number of geo-tagged tweets and their densities at the 
city level over street blocks, which are used to form the area of natural city (red 
patches in Figure 2.6d). Unlike previous studies using top-down geographic 
units such as administrative city boundaries and census tracts (e.g. Gehlke and 
Biehl 1934, Clark 1951, Wang and Zhou 1999), geographic units in this study 
were totally bottom-up (the OSM street network). Top-down units are imposed 
by government and may be outdated and subjective, whereas bottom-up ones 
are up-to-date (dynamic) and objective, and have very fine spatial-temporal 
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resolution (Figure 5.3 a and b). Therefore, this paper attempts to find the city 
forms and how they affect human activities in the geospatial big-data context.  

The study selected six cities (Paris, Toulouse, Berlin, Munich, London, and 
Birmingham) from three European countries (France, Germany, and the United 
Kingdom). City boundaries were extracted from the street blocks of the entire 
country (see Section 3.4.2 for details). Each city contains tens of thousands of 
street blocks. The study also crawled approximately 5 million geo-referenced 
tweets over three countries, including user ID, latitude, longitude, and 
timestamp. We then assigned a number of tweet locations to each city block. 
We calculated each city’s topological center as the city center. The topological 
center was determined by the adjacency relationship among street blocks. We 
started from the border blocks marked with zero, found their neighboring 
blocks, and marked those with 1, and so on until all blocks were traversed. The 
blocks with the highest numbers were the topological center. We used the top-
ological center, rather than the geometric one, because the topological center 
considers the spatial heterogeneity of street blocks. After pinpointing the city 
center, we derived the spatial distribution of tweets and their densities from the 
city center to the periphery.  

The findings of the study are multi-fold. Using much finer geographic units 
and the topological center, the tweet numbers first rose and then descended 
from the city centers to the borders (Figure 5.3c), and tweet densities followed 
an overall decreasing trend (Figure 5.3e). The plot lines of both tweet numbers 
and densities noticeably fluctuated. However, such fluctuations did not exist 
when using the authorized geographic units (Figure 5.3d and 5.3f). Further-
more, the decreasing trend of tweet densities could disappear if city boundaries 
were arbitrarily delimited. These observations gave us deep insight into geo-
graphic research in the geospatial big-data era. The remarkable ups and downs 
on the distribution line could be the real picture of human activities based on 
the scaling structure of urban space, given the assumption that geo-tagged 
tweets are a good proxy of population in cities. Additionally, the objectively 
defined natural cities provide a new, effective channel for better understanding 
the urban space.  
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Figure 5.3: (Color online) Spatial distribution of tweet numbers and densities in London  
(Note: The left column shows the results based on the natural city boundary and natural 
street blocks. The right column shows the administrative boundary and census tracts) 

 

5.6. Paper III: A smooth curve as a fractal under the third 
definition 
Previous empirical studies showed the fractal or scaling pattern of geographic 
space at different scales. This paper studies the fractal property of individual 
geographic features. Traditional fractal geometry claims that a curve is fractal 
if its shape bears the property of self-similarity by following the power-law 
distribution either strictly (definition 1) or statistically (definition 2) (Man-
delbrot 1982). Based on the two traditional definitions, many smooth curves, 
such as circles and smoothed cartographic curves, are not fractal. To make 
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fractals more accessible and universal, Jiang and Yin (2014) proposed a third 
definition of fractal (see Section 2.3 for more details). 

Figure 5.4 demonstrates how this new definition applies for a simple pol-
yline. The polyline consists of 10 bends, which are recursively calculated. Fur-
thermore, the scaling of far more small bends than large ones recurs twice (ht-
index = 3): x1 + x2 + x3 > x4 + x5 + x6 + x7 + x8 + x9 + x10, and x1 > x2 + x3, so 
the polyline is a fractal. Under the third definition, almost all smooth curves 
are fractal, so long as the scaling of far more small bends than large ones recurs 
multiple times. To further verify this viewpoint, the work presents related anal-
yses of four types of smooth curves: A half-circle, a half-ellipse, the logarith-
mic spiral (Thompson 1917, Bader 2013), and the British coastline (after being 
smoothed).  
 

 
 

Figure 5.4: Illustration of the new definition of fractal  
(Source: Paper III) 

 
For each smooth curve, we first partitioned it into numerous bends, as illus-
trated in Figure 5.4, and then examined if the sizes of bends were power-law 
distributed and the scaling pattern of far more small bends than large ones re-
curred multiple times (as indicated by the ht-index). This power-law detection 
method was based on maximum likelihood, which is the most rigorous detec-
tion method (Clauset et al. 2009). As a result, we found that these curves were 
all fractal under the new, relaxed, third definition. Table 5.4 shows that the 
sizes of bends for nearly each curve were power-law distributed, as the expo-
nent (alpha) and p-value indicate, and had an ht-index value greater than 3. 
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Table 5.4: Power law metrics and ht-index for smooth curves 
  

Curves Ht-index Power law 
Alpha p 

Half-circle(128) 4 1.61 0.65 
Half-circle(250) 4 1.61 1 
Half-circle(500) 5 1.61 1 

Half-circle(1000) 5 1.61 1 
Half-circle(6000) 5 1.61 1 

Half-ellipse(upper, 5998) 5 1.51 0.01 
Half-ellipse(left, 5998) 4 1.51 0.05 
Logarithmic spiral (37) NA NA NA 
Logarithmic spiral (74) 4 1.67 0.12 

Logarithmic spiral (138) 4 1.71 0.46 
Logarithmic spiral (300) 5 1.58 0.25 
Logarithmic spiral (720) 5 1.61 0.52 

Coastline (10,859) 7 2.15 0.83 
Smoothed coastline (62,550) 7 1.56 0.68 

Coastline (14) 3 2.52 0.02 
Smoothed coastline (25,612) 5 1.57 0.01 

 
This paper develops novel understandings of fractal geometry by demonstrat-
ing the universality of the fractal nature. The third definition gives not only a 
rule to determine if a shape is fractal, but also a completely new perspective 
on how to look at it, which is fundamentally different from the viewpoint of 
Euclidean geometry. Fractal geometric thinking leads us to decompose a line 
into a number of dissimilar bends, whose sizes are long-tail distributed, 
whereas Euclidean geometric thinking leads us to split it into a number of sim-
ilar segments, whose lengths follow a normal distribution. This finding has far-
reaching implications for understanding geographic features and helps us place 
geospatial big-data research into the introduced theoretical framework. 

5.7. Paper VII: How complex is a fractal?  
The third definition of fractal is based upon head/tail breaks, or its induced ht-
index. The ht-index ranges from one to positive infinity and measures effec-
tively how fractal a geographic feature is (the larger the ht-index value, the 
more fractal the geographic feature is). To make this section self-contained, 
here is a working example of calculating ht-index of a data series of 10 values 
following Zipf’s Law (Zipf 1949): {1, 1/2, 1/3,…, 1/10}. There are two mean 
values obtained using head/tail breaks (Table 5.2). The first mean of 0.28 split 
the data series into a head {1, 1/2, 1/3} and a tail {1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 
1/10}, and the second mean of 0.61 separated the head into a new head {1} 
and a new tail {1/2, 1/3}. Therefore, the ht-index of this data series is 3. More 
than that, each single value in the series can be assigned to an ht-index value 
during the head/tail breaks process. For example, {1} has an ht-index of 3, 
{1/2, 1/3} has an ht-index of 2, and the rest has an ht-index of 1. In this regard, 
the data series is hierarchically classified, and we know how fractal each single 
value is. However, ht-index is not sensitive in capturing the small changes from 
one data series to another. If we add five further values into this data series of 
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{1/11, 1/12, 1/13, 1/14, 1/15}, the ht-index value of the updated data series is 
still 3 (Table 5.5). This is a sensitivity issue with the ht-index.  
 

Table 5.5: The head/tail breaks statistics of 10 and 15 values respectively 
 

#Data #head %head #tail %tail mean 
10 3 30% 7 70% 0.28 
3 1 33% 2 67% 0.61 

 
#Data #head %head #tail %tail mean 

15 4 26% 11 74% 0.22 
4 1 25% 3 75% 0.52 

 
Some studies have noted the lack of sensitivity of the ht-index. Gao et al. 
(2016a, 2016b, 2017) proposed three different indexes for improvements: Cu-
mulative rate of growth (CRG), ratio of areas (RA) in a rank-size plot, and 
unified metrics. All three indexes can well handle the sensitivity issue, as the 
data series becomes more complex than in its previous state. However, there 
are certain disadvantages for each of these indexes. To be specific, both CRG 
and RA suffer from their interpretability (Gao et al 2017), and all three only 
calculate how fractal the entire data series is, but fail to capture the contribution 
of each single value to the fractal.  

This paper develops the so-called fractional ht-index (fht-index) as an im-
provement of ht-index to address these above-mentioned problems. Given a 
data series, fht-index provides decimals after the integral ht-index to overcome 
the sensitivity problem. Moreover, fht-index assigns a continuously hierar-
chical level to each value of the data series. The idea behind fht-index is the 
concept of a whole and sub-wholes. To determine if a data series containing k 
values is a whole, we first sorted the list from the largest value to the lowest 
and calculated the ht-index for each single value. We then examined if it met 
the condition ht-index(k) - ht-index(k-1) = 1. If the condition was satisfied, the 
data series could be considered as a whole. If not, we conducted the heavy-
tailed distribution detection, as Section 4.2 introduced, to find its most-fitted 
function. This was done so that we could keep appending small numbers indi-
cated by its fitting function until the data series became a whole. Within the 
whole, all sub-wholes could then be determined using the same condition, so 
we assigned the corresponding integral ht-index to the border value of each 
sub-whole. For those values between any pair of the border values, we calcu-
lated an equal interval using ଵ௡௨௠௕௘௥ ௢௙ ௩௔௟௨௘௦. The fht-indexes were assigned to 
each value using the function ݂൫݅݊ܽݒݎ݁ݐ ௝݈൯ = (݆ ∗  ଶ, in which j is(݈ܽݒݎ݁ݐ݊݅
the index of each interval. The fht-index of the data series was assigned to the 
largest value. FHTcalculator (2017) was developed for conducting the above 
processes. Table 5.6 shows both ht- and fht-indexes for each of the 10-number 
arrays. It is worth noting that the fht-index increases from 3.004 to 3.05 with 
the addition of five small values.  
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Table 5.6: Fht-index versus ht-index of a data series using FHTcalculator 
 

Size Ht-index FHt-index 
1 3 3.004 

1/2 2 3.000004 
1/3 2 3 
1/4 1 2.694 
1/5 1 2.444 
1/6 1 2.25 
1/7 1 2.111 
1/8 1 2.028 
1/9 1 2 

1/10 1 1.925 
 
This paper contributes to both understanding and development of fractal ge-
ometry theory from several aspects. Fht-index transforms the formerly discrete 
ht-index values into continuous ones. Therefore, fht-index provides a more ac-
curate way of quantifying the fractal or scaling structure of geographic fea-
tures. The increased accuracy of fht-index conquers the sensitivity issue and, 
more importantly, uncovers a continuous-scaling hierarchy that is compatible 
with ht-index. The fht-index is not only accurate, it can also help detect differ-
ent levels of fractal of a dataset from its immature stage (not whole) to a mature 
one (whole). In this way, we can investigate the fractal geometry from a dy-
namic perspective.  

5.8. Paper V: Least community as a homogeneous group in 
complex networks  

Community is an important aspect of the topological structure of a complex 
network. As mentioned earlier, a complex network tends to have communities 
because the distribution of links can vary significantly from one node to an-
other. Bearing such heterogeneity of links, fractals can emerge from the com-
munities of a complex network. This paper attempts to extend the application 
of third definition of fractal and scaling law to the network space, by uncover-
ing the fractal or scaling pattern of the community structure of a complex net-
work.  

As Girvan and Newman (2002) suggested, edge betweenness is vital for 
finding communities. In this work, the heterogeneity of links is characterized 
by the scale-free property of edge-betweenness scores. In order to describe 
precisely such heterogeneity, this paper relies on a new concept of least com-
munity, whose links are as homogeneous as a random graph (see section 4.4.2 
for details). For any real-world network, we found its random graph counter-
part that maintains the same number of nodes and links. Next, we derived edge-
betweenness scores of all links in both the real-world network and its random 
counterpart, respectively. By applying the head/tail division rule, the heteroge-
neity of the real-world network was determined by whether or not the net-
work’s head percentage was smaller than that of its random graph.  
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Table 5.7: Scaling analysis of derived communities from 8 networks  
(Note: #comm = number of all communities, head/tail = head/tail ratio of the correspond-

ing random graphs with respect to their edge betweenness, NA = not available.) 
 

 #comm alpha p ht-index head/tail 
Internet 8,398 3.3 0.05 5 43/57 
Scientist 7,222 2.82 0.11 5 43/57 
Protein 3,767 2.45 0.03 5 43/57 

Brightkite 206 2.21 0.35 5 48/52 
Erdos 3,262 2.69 0.16 5 39/61 
Street 2,642 2.05 0.16 4 41/59 

Gowalla 453 1.92 0.12 4 49/51 
WWW 6 NA NA 2 48/52 

 
We developed a new community detection algorithm, as Section 4.4.2 illus-
trated, by recursively applying the head/tail breaks method on edge between-
ness in the entire network and its sub-networks. The study applied the new 
algorithm on eight complex networks, ranging from social networks in Bright-
kite and Gowalla, to biological networks (protein interaction), to informational 
networks (the World Wide Web), to a technological network (the Internet). 
Furthermore, we also applied the algorithm to each network’s random (Erdős 
and Rényi 1959), scale-free (Barabási and Albert 1999), small-world (Watts 
and Strogatz 1998) counterparts using the same numbers of nodes and edges. 
Table 5.7 shows the results. Interestingly, the study found: The edge-between-
ness values in those networks were very heterogeneous, as indicated by power-
law metrics and large ht-index values; and that there were nested relationships 
among heterogeneous and homogenous communities. These nested relation-
ships were akin to the human brain whose structure is organic and fractal. To 
statistically describe the complex structure, we also found that the sizes of the 
derived communities of each network followed a power-law distribution, indi-
cating that there were far more small communities than large ones. In other 
words, the fractal or scaling structure was revealed in each network’s commu-
nities. 
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6.  Conclusions and future work 

6.1. Conclusions 
Today’s global issue of urbanization has created a great interest in better un-
derstanding the underlying mechanism of geographic space and its relationship 
with human activities. Conventional geospatial analysis is geometrically and 
statistically limited in describing the heterogeneous nature of the geographic 
space, as it is based on Euclidean geometry and Gaussian statistics. Mean-
while, it has become increasingly difficult for traditional GIS tools and meth-
ods to tackle the massive geospatial big data. In this respect, we should explore 
geographic space by a different way of thinking and doing.  

The thesis was initially motivated by the shortage of conventional geospa-
tial analysis, and was further triggered by emerging geospatial big data. Geo-
spatial big data offers not only a large, fine-grained data source, but also a new 
paradigm for geospatial analysis. The new paradigm is fundamentally different 
from the analysis in the small-data era in both geometric and statistical man-
ners. Geometrically, big data obviously exhibits a fractal structure that is hard 
to capture by Euclidean geometry. Statistically, big data is likely to show a 
heavy-tailed distribution, in which there is no well-functioning mean value for 
characterization. Therefore, a new theoretic framework, based on fractal ge-
ometry and Paretian statistics, should be designed for geospatial analysis in the 
big-data era. Together with the new paradigm, big-data analytics also must be 
equipped with data-intensive computing techniques. In line with these require-
ments, the three objectives of this thesis (Section 1.2) are established to better 
understand geographic space in terms of how it looks and works.  

The first objective of this thesis was to develop new understanding of frac-
tal geometry. Based on the third definition of fractal, Paper III observed that 
not only do irregular shapes tend to be fractal, but regular shapes, like smooth 
curves, are also fractal, given the right perspective and scope. Conventionally 
speaking, a smooth curve is just a collection of vertices or segments, so it has 
no chance of being fractal. However, changing the perspective to a set of re-
cursively defined bends can lead us to see the fractal property of the line fea-
ture. This bottom-up examination of fractal opened up a new horizon of look-
ing at geographic features. Furthermore, Paper VII improved the quantification 
of fractal by proposing the fht-index. This novel index extended the integral 
ht-index to fractional to provide a more accurate, continuous scaling hierarchy 
of a fractal structure. This improvement greatly helped overcome the sensitiv-
ity issue. Moreover, fht-index can measure the fractal of every single part of 
geographic features or space. 

To meet the second objective, the thesis developed techniques of geospatial 
big-data processing and modeling, and designed a complexity science method-
ology, including heavy-tailed distribution detection and head/tail breaks, along 
with some complex network analysis. On the one hand, massive amounts of 
geospatial data from LBSM platforms, such as OSM and Twitter, were handled 
by the developed techniques. Paper I processed and extracted billions of rec-
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ords of element-attributed information and construct a network of approxi-
mately 1 million users from the global OpenStreetMap history database (ap-
proximately 700 GB). Paper II built up big socio-geographic networks, which 
contain up to tens of thousands of nodes and tens of millions of links. Paper VI 
derived natural cities from countrywide street blocks. On the other hand, the 
complexity science methodology was effective to obtain the scaling hierarchy 
and examine the scaling properties of geographic features, network space, ur-
ban space, and human activities (Papers I, II, III, IV, V, and VI). Relying on 
head/tail breaks, the methodology fit very well to the big-data analytics. 
Through the studies, head/tail breaks proved to be a very powerful analysis and 
visualization tool, and its induced ht-index complemented mathematical 
heavy-tailed distribution characterization.  

The third objective was accomplished by investigating two major issues: 
How geographic space looks and how it shapes human activities. The first issue 
was comprehensively examined by six papers. Paper III revealed the fractal of 
individual line features such as the UK coastline. Papers IV and VI examined 
the scaling structure of a city in terms of natural streets and street blocks. Paper 
II found the scaling pattern of natural cities in the US mainland. Paper I found 
the global scaling property through the sizes of OSM elements. Paper V iden-
tified the striking scaling property of communities in the network space.  

The second issue was covered by four papers. Paper I illustrated that both 
user contribution to the OSM database and the degree of the co-contribution 
network showed a clear power-law distribution, due to the heterogeneous na-
ture of the Earth’s surface. Paper II detected a high correlation between users’ 
social connections and spatial distribution based on natural cities across the 
country. Paper IV employed the scaling structure of natural streets to capture 
and predict human activities. Paper VI explored the spatial distribution of hu-
man activities shaped by the scaling structure of street blocks.  

The thesis accomplished the tasks of understanding the scaling structure of 
geographic space and its involved human activities in the big-data context. 
First, the new paradigm of geospatial analysis based on fractal geometry, par-
ticularly the third definition of fractal and power-law statistics, is widely used 
throughout this study. Second, this thesis devised a number of effective and 
efficient data-processing and modeling techniques, which were applied to mas-
sive LBSM data for uncovering knowledge of geographic space and its in-
volved human activities. Third, the derived scaling hierarchies, power-law 
metrics, and network measures provide new insights into the heterogeneity of 
the geographic space and help us to understand how it shapes human behavior 
and activities. Furthermore, this work generated valuable data and correspond-
ing source codes, which could be useful in the field of GIScience in the geo-
spatial big-data era. 

6.2. Future work  
Although the thesis provided useful knowledge of the underlying scaling struc-
ture of geographic space and its involved human activities, with the help of 
geospatial big data, it is far from enough to say the findings are definitive or 
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exhaustive. There should be more effort to extend or consolidate the findings. 
Additional studies should address several latent research problems in the fu-
ture.  

The primary focus of the thesis was studying geographic forms or city 
structures. Geospatial big data provides us with not only enormous location-
related information, but also vast amounts of temporal information. In addition 
to the structure of geographic space, endeavors in the future can examine geo-
graphic processes and urban dynamics. For example, we can study the nonlin-
ear dynamics of the evolution of global user-mapping activities in OSM, apply 
the fht-index to capture the subtle change of the unfolding process of urbani-
zation, or identify the change of the scaling pattern of human movement be-
havior from time to time at different temporal granularities (day, week, and 
month).  

This thesis relies heavily on head/tail breaks and ht-index in two aspects: 
To determine if a set or pattern is fractal; and to derive the scaling hierarchy or 
hierarchical levels of data with a heavy-tail distribution. Although this method 
is straightforward and well-known, there is a sensitivity issue when setting the 
head percentage. Throughout the studies, we employed 40 as the default head 
percentage, since it made good sense for the minority. However, it needs more 
experiments to find statistical support for the default setting of head percent-
age. Additionally, it is worthy of considering the sensitivity issue on the ob-
tained arithmetic mean values. For example, a sensitivity study on how differ-
ent mean values lead to different sets of natural cities would develop new and 
deep insights on scaling analysis.  

The thesis showed some data-intensive computing on geospatial big data at 
various scales. Further improvements concerning big-data computation can be 
made in two areas. First, there is still some space to improve algorithm perfor-
mance in terms of speed and memory consumption. Second, it is imperative to 
develop a scalable, distributed system that supports parallel computing, such 
as a system based on Hadoop. These improvements can greatly cope with a 
larger dataset, such as the construction of worldwide natural cities and natural 
streets. Additionally, we will integrate machine-learning algorithms into geo-
spatial big-data modeling to more effectively detect the human mobility pat-
terns or urban clusters.  

In addition to extending present findings, it is also necessary to bring the 
developed methodology and procured knowledge to other geospatial research 
fields. One potential field is map generalization. The research community in 
cartography has long paid too much attention to generalizing geographic fea-
tures based on Euclidean geometry, but ignored the inherent fractal or scaling 
structure (Jiang et al. 2013, Jiang 2015c). Future studies can focus on this area 
to implement map generalization based on the scaling law and fractal geome-
try. Another promising direction should be the morphological design at the 
individual level (a geographic object) or the collective level (the layout of a 
building complex) by adopting the characterized heterogeneity or scaling prop-
erty.  
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