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Abstract 
Hadi Banaee (2018): From Numerical Sensor Data to Semantic Representations: 
A Data-driven Approach for Generating Linguistic Descriptions.  
Örebro Studies in Technology 78. 

In our daily lives, sensors recordings are becoming more and more ubiquitous. 
With the increased availability of data comes the increased need of systems that 
can represent the data in human interpretable concepts. In order to describe 
unknown observations in natural language, an artificial intelligence system must 
deal with several issues involving perception, concept formation, and linguistic 
description. These issues cover various subfields within artificial intelligence, such 
as machine learning, cognitive science, and natural language generation. 

The aim of this thesis is to address the problem of semantically modelling 
and describing numerical observations from sensor data. This thesis introduces 
data-driven approaches to perform the tasks of mining numerical data and 
creating semantic representations of the derived information in order to de-
scribe unseen but interesting observations in natural language. 

The research considers creating a semantic representation using the theory of 
conceptual spaces. In particular, the central contribution of this thesis is to 
present a data- riven approach that automatically constructs conceptual spaces 
from labelled numerical data sets. This constructed conceptual space then utilises 
semantic inference techniques to derive linguistic interpretations for novel 
unknown observations. Another contribution of this thesis is to explore an 
instantiation of the proposed approach in a real-world application. Specifically, 
this research investigates a case study where the proposed approach is used to 
describe unknown time series patterns that emerge from physiological sensor 
data. This instantiation first presents automatic data analysis methods to extract 
time series patterns and temporal rules from multiple channels of physiological 
sensor data, and then applies various linguistic description approaches (includ
ing the proposed semantic representation based on conceptual spaces) to generate 
human-readable natural language descriptions for such time series patterns and 
temporal rules. 

The main outcome of this thesis is the use of data-driven strategies that ena-
ble the system to reveal and explain aspects of sensor data which may other-
wise be difficult to capture by knowledge-driven techniques alone. Briefly put, 
the thesis aims to automate the process whereby unknown observations of data 
can be 1) numerically analysed, 2) semantically represented, and eventually 3) 
linguistically described. 

Keywords: Semantic representations, Conceptual spaces, Natural language 
generation, Temporal rule mining, Physiological sensors, Health monitoring system. 
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Chapter 1

Introduction

R
umi, the 13th century Persian poet and teacher of Sufism, has a story called
The Elephant in the Dark1 in his extensive book of poetry, Masnavi. In

his retelling:

Some Hindus bring an elephant to be exhibited in a dark room. A
number of men touch and feel the elephant in the dark and, de-
pending upon where they touch it, they believe the elephant to be
like a water spout (trunk), a fan (ear), a pillar (leg) and a throne
(back)... [191].

Figure 1.1: A part of the Rumi’s poem in Persian, together with an illustration
of the story, adapted from [7].

1This parable originated on the Indian subcontinent and is known as “Blind men and an ele-
phant” (See Figure 1.1).
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2 CHAPTER 1. INTRODUCTION

Rumi uses this parable to demonstrate the problem of perception limita-
tions. The individuals have their own perceptions of the elephant (an unknown
concept for them) and therefore use their own inference to explain it. This
problem is closely related to the problem of describing a concept based on
the perceived information. The behaviour of the men in this story relied on a
general cognitive process for learning concepts. They first perceived what they
could observe (or more generally, could sense in the case of touching the ele-
phant) and they then sought to map or categorise the perceived information
according to similar concepts that were known to them. This process is known
as exemplar theory in cognitive science. However, their failure to successfully
characterise or describe the concept of Elephant was due to the limitations of
their sensory perceptions, which led to overreaching misinterpretations [1].

Describing unknown observations in natural language appears to be an easy
task for humans. Both speakers and hearers have a great deal of common sense
understanding of the concepts and properties that they have encountered in
life, and that enable them to describe such observations. For example, when J.
K. Rowling presents the legendary creature of “Hippogriff” in her book Harry
Potter and the Prisoner of Azkaban, she describes it as follows:

Hippogriffs have the bodies, hind legs, and tails of horses, but the
front legs, wings, and heads of giant eagles, with cruel, steel-coloured
beaks and large, brilliantly orange eyes. The talons on their front
legs were half a foot long and deadly-looking... [190].

Rowling uses known or familiar concepts that are most similar (eagle and
horse), together with perceivable features (orange, long, large, etc.) to explain
the novel creature that she introduces2. In doing so, she uses linguistic terms
that are cognitively understandable for humans.

However, still, deriving descriptions for unknown concepts is no trivial task
in artificial intelligence (AI). The challenge is how an artificial intelligence sys-
tem can perform the task of semantically describing unknown observations by
relying on a set of perceived information. This task becomes more crucial if
the information given to the system is in the form of numeric or non-symbolic
measurements (e.g., sensor data).

1.1 Motivation

Deriving semantics from real-world numerical observations such as sensor data
has become increasingly important for creating a common understanding of
information with humans. Artificial intelligence systems that can augment ob-
servations from sensor data in order to create conceptual representations are
needed for applications that require interaction with humans in natural lan-
guage. The motivation for the problem of the semantic description of numeri-

2The hippogriff was first mentioned by the Roman poet Virgil in his Eclogues, but the word
hippogriff is derived from the ancient Greek.

2CHAPTER1.INTRODUCTION

Rumiusesthisparabletodemonstratetheproblemofperceptionlimita-
tions.Theindividualshavetheirownperceptionsoftheelephant(anunknown
conceptforthem)andthereforeusetheirowninferencetoexplainit.This
problemiscloselyrelatedtotheproblemofdescribingaconceptbasedon
theperceivedinformation.Thebehaviourofthemeninthisstoryreliedona
generalcognitiveprocessforlearningconcepts.Theyfirstperceivedwhatthey
couldobserve(ormoregenerally,couldsenseinthecaseoftouchingtheele-
phant)andtheythensoughttomaporcategorisetheperceivedinformation
accordingtosimilarconceptsthatwereknowntothem.Thisprocessisknown
asexemplartheoryincognitivescience.However,theirfailuretosuccessfully
characteriseordescribetheconceptofElephantwasduetothelimitationsof
theirsensoryperceptions,whichledtooverreachingmisinterpretations[1].

Describingunknownobservationsinnaturallanguageappearstobeaneasy
taskforhumans.Bothspeakersandhearershaveagreatdealofcommonsense
understandingoftheconceptsandpropertiesthattheyhaveencounteredin
life,andthatenablethemtodescribesuchobservations.Forexample,whenJ.
K.Rowlingpresentsthelegendarycreatureof“Hippogriff”inherbookHarry
PotterandthePrisonerofAzkaban,shedescribesitasfollows:

Hippogriffshavethebodies,hindlegs,andtailsofhorses,butthe
frontlegs,wings,andheadsofgianteagles,withcruel,steel-coloured
beaksandlarge,brilliantlyorangeeyes.Thetalonsontheirfront
legswerehalfafootlonganddeadly-looking...[190].

Rowlingusesknownorfamiliarconceptsthataremostsimilar(eagleand
horse),togetherwithperceivablefeatures(orange,long,large,etc.)toexplain
thenovelcreaturethatsheintroduces2.Indoingso,sheuseslinguisticterms
thatarecognitivelyunderstandableforhumans.

However,still,derivingdescriptionsforunknownconceptsisnotrivialtask
inartificialintelligence(AI).Thechallengeishowanartificialintelligencesys-
temcanperformthetaskofsemanticallydescribingunknownobservationsby
relyingonasetofperceivedinformation.Thistaskbecomesmorecrucialif
theinformationgiventothesystemisintheformofnumericornon-symbolic
measurements(e.g.,sensordata).

1.1Motivation

Derivingsemanticsfromreal-worldnumericalobservationssuchassensordata
hasbecomeincreasinglyimportantforcreatingacommonunderstandingof
informationwithhumans.Artificialintelligencesystemsthatcanaugmentob-
servationsfromsensordatainordertocreateconceptualrepresentationsare
neededforapplicationsthatrequireinteractionwithhumansinnaturallan-
guage.Themotivationfortheproblemofthesemanticdescriptionofnumeri-

2ThehippogriffwasfirstmentionedbytheRomanpoetVirgilinhisEclogues,buttheword
hippogriffisderivedfromtheancientGreek.

2 CHAPTER 1. INTRODUCTION

Rumi uses this parable to demonstrate the problem of perception limita-
tions. The individuals have their own perceptions of the elephant (an unknown
concept for them) and therefore use their own inference to explain it. This
problem is closely related to the problem of describing a concept based on
the perceived information. The behaviour of the men in this story relied on a
general cognitive process for learning concepts. They first perceived what they
could observe (or more generally, could sense in the case of touching the ele-
phant) and they then sought to map or categorise the perceived information
according to similar concepts that were known to them. This process is known
as exemplar theory in cognitive science. However, their failure to successfully
characterise or describe the concept of Elephant was due to the limitations of
their sensory perceptions, which led to overreaching misinterpretations [1].

Describing unknown observations in natural language appears to be an easy
task for humans. Both speakers and hearers have a great deal of common sense
understanding of the concepts and properties that they have encountered in
life, and that enable them to describe such observations. For example, when J.
K. Rowling presents the legendary creature of “Hippogriff” in her book Harry
Potter and the Prisoner of Azkaban, she describes it as follows:

Hippogriffs have the bodies, hind legs, and tails of horses, but the
front legs, wings, and heads of giant eagles, with cruel, steel-coloured
beaks and large, brilliantly orange eyes. The talons on their front
legs were half a foot long and deadly-looking... [190].

Rowling uses known or familiar concepts that are most similar (eagle and
horse), together with perceivable features (orange, long, large, etc.) to explain
the novel creature that she introduces2. In doing so, she uses linguistic terms
that are cognitively understandable for humans.

However, still, deriving descriptions for unknown concepts is no trivial task
in artificial intelligence (AI). The challenge is how an artificial intelligence sys-
tem can perform the task of semantically describing unknown observations by
relying on a set of perceived information. This task becomes more crucial if
the information given to the system is in the form of numeric or non-symbolic
measurements (e.g., sensor data).

1.1 Motivation

Deriving semantics from real-world numerical observations such as sensor data
has become increasingly important for creating a common understanding of
information with humans. Artificial intelligence systems that can augment ob-
servations from sensor data in order to create conceptual representations are
needed for applications that require interaction with humans in natural lan-
guage. The motivation for the problem of the semantic description of numeri-

2The hippogriff was first mentioned by the Roman poet Virgil in his Eclogues, but the word
hippogriff is derived from the ancient Greek.

2CHAPTER1.INTRODUCTION

Rumiusesthisparabletodemonstratetheproblemofperceptionlimita-
tions.Theindividualshavetheirownperceptionsoftheelephant(anunknown
conceptforthem)andthereforeusetheirowninferencetoexplainit.This
problemiscloselyrelatedtotheproblemofdescribingaconceptbasedon
theperceivedinformation.Thebehaviourofthemeninthisstoryreliedona
generalcognitiveprocessforlearningconcepts.Theyfirstperceivedwhatthey
couldobserve(ormoregenerally,couldsenseinthecaseoftouchingtheele-
phant)andtheythensoughttomaporcategorisetheperceivedinformation
accordingtosimilarconceptsthatwereknowntothem.Thisprocessisknown
asexemplartheoryincognitivescience.However,theirfailuretosuccessfully
characteriseordescribetheconceptofElephantwasduetothelimitationsof
theirsensoryperceptions,whichledtooverreachingmisinterpretations[1].

Describingunknownobservationsinnaturallanguageappearstobeaneasy
taskforhumans.Bothspeakersandhearershaveagreatdealofcommonsense
understandingoftheconceptsandpropertiesthattheyhaveencounteredin
life,andthatenablethemtodescribesuchobservations.Forexample,whenJ.
K.Rowlingpresentsthelegendarycreatureof“Hippogriff”inherbookHarry
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frontlegs,wings,andheadsofgianteagles,withcruel,steel-coloured
beaksandlarge,brilliantlyorangeeyes.Thetalonsontheirfront
legswerehalfafootlonganddeadly-looking...[190].
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2ThehippogriffwasfirstmentionedbytheRomanpoetVirgilinhisEclogues,buttheword
hippogriffisderivedfromtheancientGreek.
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cal data has its origin in the topic of knowledge representation in AI research.
However, the initial motivation in this thesis comes from a real-world appli-
cation for analysing sensor data in healthcare monitoring systems. The rest of
this section explains both the theoretical and the application-based motivations
that underlie the problem to be considered.

One goal of cognitive science is to construct artificial systems that can un-
derstand and model the cognitive activities of humans, such as concept learning
and semantic inference [14]. However, a key issue is how the given information
is to be modelled in knowledge representation frameworks [85, 87]. The two
paradigms of symbolic and sub-symbolic representations have been the two
dominant (and sometimes competing) approaches to addressing the issue of
representation in AI [85, 219]. Symbolic approaches use explicit symbols as
primitives when performing symbol manipulation in order to model high-level
abstract concepts [155]. Sub-symbolic (connectionist) approaches often focus
on the categorisation tasks per se. They process the activation patterns of input
concepts at the perceptual level, using internally connected units of artificial
neural networks [219].

With regard to the task of the semantic description of concepts by means of
perceived data (henceforth, concept description), this thesis highlights two AI
problems. The first is the problem of induction or, more generally, the issue of
learning. Inductive inference performs a generalisation from a limited number
of observations, which infers the characteristics of the concepts. Induction is
highly related to the task of concept learning or concept formation in cognitive
science [84]. The second problem is related to semantics or, in general terms, the
issue of explainability or interpretability in AI. Semantic inference is the process
of inferring meaningful descriptions or truth conditions from a set of (semanti-
cally enriched) information, which is usually represented in the form of logical
or natural sentences. Neither of the representational approaches (symbolic and
sub-symbolic) satisfactorily addresses the AI problems noted above (concept
learning and semantic inference) simultaneously. Concept learning is a diffi-
cult task for symbolic approaches, since the symbolic AI has been formalised
on the basis of rule-based representations of the logical source of knowledge,
rather than having intrinsically learnt rules from observations [219]. Semantic
inference cannot be addressed by the sub-symbolic approaches since there is
no interpretable transformation from the low-level information of the model to
the organised high-level symbols. In other words, the sub-symbolic approaches
are unable to explain what the emerging learnt model represents [89].

Consequently, the theory of conceptual spaces was introduced by Gärden-
fors [86] as a mid-level representation between the symbolic and the sub-symbolic
approaches to addressing both the concept learning and the semantic inference
problems [14,116]. The theory of conceptual spaces presents a framework that
consists of a set of quality dimensions in various domains. These are placed
within a geometrical structure in order to model, categorise, and represent the
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onthebasisofrule-basedrepresentationsofthelogicalsourceofknowledge,
ratherthanhavingintrinsicallylearntrulesfromobservations[219].Semantic
inferencecannotbeaddressedbythesub-symbolicapproachessincethereis
nointerpretabletransformationfromthelow-levelinformationofthemodelto
theorganisedhigh-levelsymbols.Inotherwords,thesub-symbolicapproaches
areunabletoexplainwhattheemerginglearntmodelrepresents[89].

Consequently,thetheoryofconceptualspaceswasintroducedbyGärden-
fors[86]asamid-levelrepresentationbetweenthesymbolicandthesub-symbolic
approachestoaddressingboththeconceptlearningandthesemanticinference
problems[14,116].Thetheoryofconceptualspacespresentsaframeworkthat
consistsofasetofqualitydimensionsinvariousdomains.Theseareplaced
withinageometricalstructureinordertomodel,categorise,andrepresentthe

1.1. MOTIVATION 3

cal data has its origin in the topic of knowledge representation in AI research.
However, the initial motivation in this thesis comes from a real-world appli-
cation for analysing sensor data in healthcare monitoring systems. The rest of
this section explains both the theoretical and the application-based motivations
that underlie the problem to be considered.

One goal of cognitive science is to construct artificial systems that can un-
derstand and model the cognitive activities of humans, such as concept learning
and semantic inference [14]. However, a key issue is how the given information
is to be modelled in knowledge representation frameworks [85, 87]. The two
paradigms of symbolic and sub-symbolic representations have been the two
dominant (and sometimes competing) approaches to addressing the issue of
representation in AI [85, 219]. Symbolic approaches use explicit symbols as
primitives when performing symbol manipulation in order to model high-level
abstract concepts [155]. Sub-symbolic (connectionist) approaches often focus
on the categorisation tasks per se. They process the activation patterns of input
concepts at the perceptual level, using internally connected units of artificial
neural networks [219].

With regard to the task of the semantic description of concepts by means of
perceived data (henceforth, concept description), this thesis highlights two AI
problems. The first is the problem of induction or, more generally, the issue of
learning. Inductive inference performs a generalisation from a limited number
of observations, which infers the characteristics of the concepts. Induction is
highly related to the task of concept learning or concept formation in cognitive
science [84]. The second problem is related to semantics or, in general terms, the
issue of explainability or interpretability in AI. Semantic inference is the process
of inferring meaningful descriptions or truth conditions from a set of (semanti-
cally enriched) information, which is usually represented in the form of logical
or natural sentences. Neither of the representational approaches (symbolic and
sub-symbolic) satisfactorily addresses the AI problems noted above (concept
learning and semantic inference) simultaneously. Concept learning is a diffi-
cult task for symbolic approaches, since the symbolic AI has been formalised
on the basis of rule-based representations of the logical source of knowledge,
rather than having intrinsically learnt rules from observations [219]. Semantic
inference cannot be addressed by the sub-symbolic approaches since there is
no interpretable transformation from the low-level information of the model to
the organised high-level symbols. In other words, the sub-symbolic approaches
are unable to explain what the emerging learnt model represents [89].

Consequently, the theory of conceptual spaces was introduced by Gärden-
fors [86] as a mid-level representation between the symbolic and the sub-symbolic
approaches to addressing both the concept learning and the semantic inference
problems [14,116]. The theory of conceptual spaces presents a framework that
consists of a set of quality dimensions in various domains. These are placed
within a geometrical structure in order to model, categorise, and represent the

1.1.MOTIVATION3

caldatahasitsorigininthetopicofknowledgerepresentationinAIresearch.
However,theinitialmotivationinthisthesiscomesfromareal-worldappli-
cationforanalysingsensordatainhealthcaremonitoringsystems.Therestof
thissectionexplainsboththetheoreticalandtheapplication-basedmotivations
thatunderlietheproblemtobeconsidered.

Onegoalofcognitivescienceistoconstructartificialsystemsthatcanun-
derstandandmodelthecognitiveactivitiesofhumans,suchasconceptlearning
andsemanticinference[14].However,akeyissueishowthegiveninformation
istobemodelledinknowledgerepresentationframeworks[85,87].Thetwo
paradigmsofsymbolicandsub-symbolicrepresentationshavebeenthetwo
dominant(andsometimescompeting)approachestoaddressingtheissueof
representationinAI[85,219].Symbolicapproachesuseexplicitsymbolsas
primitiveswhenperformingsymbolmanipulationinordertomodelhigh-level
abstractconcepts[155].Sub-symbolic(connectionist)approachesoftenfocus
onthecategorisationtasksperse.Theyprocesstheactivationpatternsofinput
conceptsattheperceptuallevel,usinginternallyconnectedunitsofartificial
neuralnetworks[219].

Withregardtothetaskofthesemanticdescriptionofconceptsbymeansof
perceiveddata(henceforth,conceptdescription),thisthesishighlightstwoAI
problems.Thefirstistheproblemofinductionor,moregenerally,theissueof
learning.Inductiveinferenceperformsageneralisationfromalimitednumber
ofobservations,whichinfersthecharacteristicsoftheconcepts.Inductionis
highlyrelatedtothetaskofconceptlearningorconceptformationincognitive
science[84].Thesecondproblemisrelatedtosemanticsor,ingeneralterms,the
issueofexplainabilityorinterpretabilityinAI.Semanticinferenceistheprocess
ofinferringmeaningfuldescriptionsortruthconditionsfromasetof(semanti-
callyenriched)information,whichisusuallyrepresentedintheformoflogical
ornaturalsentences.Neitheroftherepresentationalapproaches(symbolicand
sub-symbolic)satisfactorilyaddressestheAIproblemsnotedabove(concept
learningandsemanticinference)simultaneously.Conceptlearningisadiffi-
culttaskforsymbolicapproaches,sincethesymbolicAIhasbeenformalised
onthebasisofrule-basedrepresentationsofthelogicalsourceofknowledge,
ratherthanhavingintrinsicallylearntrulesfromobservations[219].Semantic
inferencecannotbeaddressedbythesub-symbolicapproachessincethereis
nointerpretabletransformationfromthelow-levelinformationofthemodelto
theorganisedhigh-levelsymbols.Inotherwords,thesub-symbolicapproaches
areunabletoexplainwhattheemerginglearntmodelrepresents[89].

Consequently,thetheoryofconceptualspaceswasintroducedbyGärden-
fors[86]asamid-levelrepresentationbetweenthesymbolicandthesub-symbolic
approachestoaddressingboththeconceptlearningandthesemanticinference
problems[14,116].Thetheoryofconceptualspacespresentsaframeworkthat
consistsofasetofqualitydimensionsinvariousdomains.Theseareplaced
withinageometricalstructureinordertomodel,categorise,andrepresentthe



4 CHAPTER 1. INTRODUCTION

concepts in a multi-dimensional space [86]. In the literature, conceptual spaces
are principally derived in a knowledge-driven manner. These spaces operate on
the assumption that there is prior knowledge from perceptual mechanisms or
experts that manually initialises the elements of the conceptual space (i.e., do-
mains, quality dimensions, and concepts’ regions) [10,189]. However, since this
thesis relies on observed input data, the motivational challenge arises of how to
automatically construct a conceptual space from the given information [131]
in order to perform concept learning and semantic inference tasks. Performing
these task are the required steps to address the problem of concept description
(especially to describe unknown observations). This is an important motiva-
tion, due to a growing class of problems that involves more complicated input
observations. These problems deal with raw sensor data that have little or no
prior knowledge concerning their semantic significance [188]. Therefore, spec-
ifying the interpretable elements of a representational model for such problems
is no trivial task.

New applications in several domains are increasingly required to rely on au-
tomatic methods for forming concepts directly from sensor data. One area that
sensor data is crucially used in is the field of health monitoring, particularly in
clinical conditions. Monitoring the vital signs of the subjects (whether healthy
or unhealthy) is essential if the medical domain is to identify the different be-
haviours of the health parameters as symptoms of various medical diseases [28].
Such physiological parameters include heart rate, respiration rate, blood pres-
sure, etc. Various sensors have been developed to measure these vital signs in
both clinical conditions and home healthcare systems, and these accumulate
a massive amount of data. With regard to wearable sensors, the continuous
parameters in the form of time series signals are of particular interest in this
research (in contrast to discrete ones), since it is more critical to consider the
high resolution sequence of information (with very small time-stamps).

Critical challenges in the field of health monitoring include not only statis-
tically mining massive amount of physiological time series data, but also dis-
covering understandable interpretations for the extracted information [32]. A
new aspect of analysing sensor data will involve going beyond expert knowl-
edge and recognising information (e.g., events, patterns, anomalies) that is not
pre-defined by the system. This aspect will lead to the analysis phase being con-
ducted in a data-driven way in order to reveal information that was not pre-
viously seen, but is worth analysing and interpreting. A motivational example
is the exploitation of interesting trends and patterns in sensor time series data.
A knowledge-based system may look for the known pre-defined trends asked
by the experts (e.g., peaks of heart rate signals). However, one can also anal-
yse the data itself in order to detect interesting and meaningful patterns found
throughout the data (e.g., repeated sudden drops of heart rate while sleeping).
These are not necessarily requested by or even visible to the experts, but they
are worth being reported. Nevertheless, the primary challenge remains finding
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a suitable way to describe such data-driven extracted information. Here is the
point where this thesis argues that a semantic representation can play the role of
modelling physiological time series in order to describe unknown observations
or patterns in natural language.

1.2 Problem Statement

The problem of semantically modelling and describing the unknown observa-
tion, which is termed the general semantic representation problem, forms the
core of this research. This thesis first considers the task of semantic representa-
tion in describing the numerical observations (i.e., the theoretical focus of this
thesis). The semantic representation task investigates representational models
in order to be able to bind perceived numerical data as input into a set of lin-
guistic characterisations as output.

In addition to considering this problem at the theoretical level, its instanti-
ation is also presented with regard to a practical problem in a real-world ap-
plication. This research proposes a specific use of semantic representation for
the task of linguistically describing the unknown time series patterns derived
from physiological sensor data (i.e., the application focus of this thesis). The
proposed approach investigates data mining methods for analysing a set of raw
physiological time series data as input, and it considers linguistic description
approaches to generate a set of human-readable natural language text as out-
put. Figure 1.2 presents a schematic overview of the tasks to be performed in
both the theoretical focus and the application framework of this research.

The primary assumption for the stated problem is that there is no adequate
expert or domain knowledge to be fed to the model in order to describe unseen
but interesting observations extracted from a data set. Therefore, the proposed
approach relies on the observed data and its own features in order to provide
linguistic descriptions. This means that the objective is not to describe the obser-
vations on the basis of a set of pre-defined knowledge within a given knowledge
representation (such as describing an eagle or a horse using an ontology of ani-
mals that perfectly defines the concepts of eagle and horse). Rather, the aim is to
build a semantic representation of the domain using the known data set and its
properties. Moreover, it is to extract and characterise the unseen but interesting
observations within this representation (such as describing a hippogriff within
a semantic representation of animals that includes the known concepts of eagle
and horse, but does not necessarily include the new concept of hippogriff).

All the tasks defined within this solution have some assumptions regarding
their inputs and outputs. For the semantic representation task, it is assumed
that the input is a set of perceived or processed numerical information. This
information is in the form of human understandable attributes (known as se-
mantic features). Depending on the format of the raw input data, the semantic
features can be either directly captured or be computed from the given data.
Skin colour is an example of the former type of features that can be included
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Figure 1.2: A schematic overview of the tasks to be performed in both theoret-
ical (inner box) and application (outer box) focuses of the thesis.

in a data set of animals. However, the fluctuation of a signal is an example of
the latter features that can be computed for a time series in a data set of sensor
records. Therefore, the considered application for the physiological sensor data
involves data analysis phase in order to extract the meaningful features that to
be supplied to the semantic representation. Nevertheless, the proposed model
for the task of semantic representation can be utilised on different types of data
sets that include semantic features in their observations.

The output of the semantic representation is assumed to be a set of in-
ferred linguistic information that characterises the input numerical observa-
tions. These linguistic characterisations (i.e., words) further need to be planned
and realised into natural language messages (i.e., sentences) by means of natu-
ral language generation (NLG) systems. Although the text generation phase is
particularised as a task in the framework for physiological sensor data, it can
generally be applied to any linguistic characterisation that emerges from the se-
mantic representation model. It is worth to mention that although the focus of
this research is on the specific set of physiological time series data (which was
the initial motivation for this thesis from the field of healthcare monitoring),
the development of the framework is applicable as a data-to-text system in a
variety of applications that deal with the problem of the linguistic description
of data.

1.3 Research Question

The overall objective that this dissertation aims to achieve can be expressed as
follows:

O: “Proposing data-driven approaches beyond expert knowledge to perform
the tasks of (1) mining numerical observation (e.g., sensor data), and (2)
the semantic representation of the derived information, in order to (3)
describe unseen but interesting observations in natural language.”
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As noted in the problem statement, the semantic representation problem
deals with a set of derived information (perceived or processed features). There-
fore, one research question related to the theoretical part of the research focuses
on the role of semantic representation and linguistic description, which is re-
lated to tasks (2) and (3) in objective O. Generally speaking, the question is

R1: “How can perceived numerical information be semantically represented
and described in a linguistic form?”

This can be divided into more specific research questions as follows:

• How can a semantic representation of a numerical data set automatically
be created in a data-driven manner, based on the observed exemplars and
their semantic features?

• How can these observations be conceptualised within the representation
constructed in order to form the concepts of the data set’s domain?

• How can this representation be utilised in order to infer linguistic char-
acterisations for a set of new unknown observations in natural language?

Likewise, with regard to the problem statement about the application part
of this thesis, the framework is dedicated to turning raw numerical data into
natural language text. More specifically, however, it is concerned with consid-
ering real-world data sets from the field of healthcare (i.e., time series patterns
derived from physiological sensor data). Therefore, the research question in the
application part focuses on the role of data analysis and the linguistic descrip-
tion of patterns, which is related to tasks (1) and (3) in objective O. Generally
speaking, the question is

R2: “How can unseen but interesting patterns in physiological sensor data be
extracted, represented, and linguistically described?”

This can also be divided into more specific research questions as follows:

• How can data-driven approaches be applied in order 1) to extract distinc-
tive time series patterns in different clinical settings, and 2) to mine the
temporal relations between multi-channels of physiological sensor data?

• How can a data-driven conceptual space be built as a semantic represen-
tation of the time series patterns in order to infer linguistic characterisa-
tions for the patterns?

• How can meaningful, interesting, and useful messages be generated in
natural language for numerical patterns and their temporal relations us-
ing the proposed semantic model?

1.4 Contributions

Given the general objective O, the core of the contributions in this thesis is
the notion of data-driven. This applies to both the research questions, which
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are concerned with semantically representing the perceived information, and
numerically extracting interesting sensor patterns.

The contributions of this thesis are organised into four items. The first two
contributions C1 and C2 (which address the research question R1), present
an automatic construction of a conceptual space from numerical data, which
can then be used to infer the semantic interpretation of novel unknown obser-
vations. The other two contributions C3 and C4 (which address the research
question R2), present the automatic ways of extracting prototypical time series
patterns from various physiological sensor data using temporal rule mining. In
addition, they apply various linguistic description methods (including the pro-
posed conceptual spaces) in order to generate text for such time series patterns.

C1: Data-driven construction of conceptual spaces:

In the theoretical part of this work, a data-driven approach is proposed
in order to automatically construct conceptual spaces and perform con-
cept formation based on the input exemplars of a numerical data set. In-
stead of initialising the domains and dimensions of the conceptual space
from a priori knowledge or forming concepts in a rule-based manner, the
proposed data-driven process automatically determines the relevant do-
mains and dimensions on the basis of its ability to distinguish between
exemplars of different concepts. This determination is performed using
machine learning (ML) techniques in order to identify the relevant fea-
tures of the observed data with the primitive concepts. Furthermore, an
instance-based approach is presented for concept formation in which a
concept is formed within the conceptual space on the basis of the spatial
representation of its observed instances.

C2: Semantic inference in the conceptual spaces:

This thesis further proposes a semantic inference process for the concep-
tual space, which is built in order to provide explainability for the novel
unknown observations in natural language descriptions. By grounding
a semantic representation, the conceptual space is employed in order to
provide a link between the numerical data and the semantic characterisa-
tion of the concepts. For a new observation, its representation within the
conceptual space specifies either its inclusion in the known concepts or
its values with regard the quality dimensions. This set of information is
then mapped to a symbol space that infers the linguistic characterisation
of the observation based on a set of concepts and features involved. This
work will demonstrate the utility of conceptual spaces as a solution to
the task of content determination within a natural language generation
(NLG) system.

C3: Data-driven mining of prototypical patterns and temporal rules in phys-
iological sensor data:

8CHAPTER1.INTRODUCTION

areconcernedwithsemanticallyrepresentingtheperceivedinformation,and
numericallyextractinginterestingsensorpatterns.

Thecontributionsofthisthesisareorganisedintofouritems.Thefirsttwo
contributionsC1andC2(whichaddresstheresearchquestionR1),present
anautomaticconstructionofaconceptualspacefromnumericaldata,which
canthenbeusedtoinferthesemanticinterpretationofnovelunknownobser-
vations.TheothertwocontributionsC3andC4(whichaddresstheresearch
questionR2),presenttheautomaticwaysofextractingprototypicaltimeseries
patternsfromvariousphysiologicalsensordatausingtemporalrulemining.In
addition,theyapplyvariouslinguisticdescriptionmethods(includingthepro-
posedconceptualspaces)inordertogeneratetextforsuchtimeseriespatterns.

C1:Data-drivenconstructionofconceptualspaces:

Inthetheoreticalpartofthiswork,adata-drivenapproachisproposed
inordertoautomaticallyconstructconceptualspacesandperformcon-
ceptformationbasedontheinputexemplarsofanumericaldataset.In-
steadofinitialisingthedomainsanddimensionsoftheconceptualspace
fromaprioriknowledgeorformingconceptsinarule-basedmanner,the
proposeddata-drivenprocessautomaticallydeterminestherelevantdo-
mainsanddimensionsonthebasisofitsabilitytodistinguishbetween
exemplarsofdifferentconcepts.Thisdeterminationisperformedusing
machinelearning(ML)techniquesinordertoidentifytherelevantfea-
turesoftheobserveddatawiththeprimitiveconcepts.Furthermore,an
instance-basedapproachispresentedforconceptformationinwhicha
conceptisformedwithintheconceptualspaceonthebasisofthespatial
representationofitsobservedinstances.

C2:Semanticinferenceintheconceptualspaces:

Thisthesisfurtherproposesasemanticinferenceprocessfortheconcep-
tualspace,whichisbuiltinordertoprovideexplainabilityforthenovel
unknownobservationsinnaturallanguagedescriptions.Bygrounding
asemanticrepresentation,theconceptualspaceisemployedinorderto
providealinkbetweenthenumericaldataandthesemanticcharacterisa-
tionoftheconcepts.Foranewobservation,itsrepresentationwithinthe
conceptualspacespecifieseitheritsinclusionintheknownconceptsor
itsvalueswithregardthequalitydimensions.Thissetofinformationis
thenmappedtoasymbolspacethatinfersthelinguisticcharacterisation
oftheobservationbasedonasetofconceptsandfeaturesinvolved.This
workwilldemonstratetheutilityofconceptualspacesasasolutionto
thetaskofcontentdeterminationwithinanaturallanguagegeneration
(NLG)system.

C3:Data-drivenminingofprototypicalpatternsandtemporalrulesinphys-
iologicalsensordata:

8 CHAPTER 1. INTRODUCTION

are concerned with semantically representing the perceived information, and
numerically extracting interesting sensor patterns.

The contributions of this thesis are organised into four items. The first two
contributions C1 and C2 (which address the research question R1), present
an automatic construction of a conceptual space from numerical data, which
can then be used to infer the semantic interpretation of novel unknown obser-
vations. The other two contributions C3 and C4 (which address the research
question R2), present the automatic ways of extracting prototypical time series
patterns from various physiological sensor data using temporal rule mining. In
addition, they apply various linguistic description methods (including the pro-
posed conceptual spaces) in order to generate text for such time series patterns.

C1: Data-driven construction of conceptual spaces:

In the theoretical part of this work, a data-driven approach is proposed
in order to automatically construct conceptual spaces and perform con-
cept formation based on the input exemplars of a numerical data set. In-
stead of initialising the domains and dimensions of the conceptual space
from a priori knowledge or forming concepts in a rule-based manner, the
proposed data-driven process automatically determines the relevant do-
mains and dimensions on the basis of its ability to distinguish between
exemplars of different concepts. This determination is performed using
machine learning (ML) techniques in order to identify the relevant fea-
tures of the observed data with the primitive concepts. Furthermore, an
instance-based approach is presented for concept formation in which a
concept is formed within the conceptual space on the basis of the spatial
representation of its observed instances.

C2: Semantic inference in the conceptual spaces:

This thesis further proposes a semantic inference process for the concep-
tual space, which is built in order to provide explainability for the novel
unknown observations in natural language descriptions. By grounding
a semantic representation, the conceptual space is employed in order to
provide a link between the numerical data and the semantic characterisa-
tion of the concepts. For a new observation, its representation within the
conceptual space specifies either its inclusion in the known concepts or
its values with regard the quality dimensions. This set of information is
then mapped to a symbol space that infers the linguistic characterisation
of the observation based on a set of concepts and features involved. This
work will demonstrate the utility of conceptual spaces as a solution to
the task of content determination within a natural language generation
(NLG) system.

C3: Data-driven mining of prototypical patterns and temporal rules in phys-
iological sensor data:

8CHAPTER1.INTRODUCTION

areconcernedwithsemanticallyrepresentingtheperceivedinformation,and
numericallyextractinginterestingsensorpatterns.

Thecontributionsofthisthesisareorganisedintofouritems.Thefirsttwo
contributionsC1andC2(whichaddresstheresearchquestionR1),present
anautomaticconstructionofaconceptualspacefromnumericaldata,which
canthenbeusedtoinferthesemanticinterpretationofnovelunknownobser-
vations.TheothertwocontributionsC3andC4(whichaddresstheresearch
questionR2),presenttheautomaticwaysofextractingprototypicaltimeseries
patternsfromvariousphysiologicalsensordatausingtemporalrulemining.In
addition,theyapplyvariouslinguisticdescriptionmethods(includingthepro-
posedconceptualspaces)inordertogeneratetextforsuchtimeseriespatterns.

C1:Data-drivenconstructionofconceptualspaces:

Inthetheoreticalpartofthiswork,adata-drivenapproachisproposed
inordertoautomaticallyconstructconceptualspacesandperformcon-
ceptformationbasedontheinputexemplarsofanumericaldataset.In-
steadofinitialisingthedomainsanddimensionsoftheconceptualspace
fromaprioriknowledgeorformingconceptsinarule-basedmanner,the
proposeddata-drivenprocessautomaticallydeterminestherelevantdo-
mainsanddimensionsonthebasisofitsabilitytodistinguishbetween
exemplarsofdifferentconcepts.Thisdeterminationisperformedusing
machinelearning(ML)techniquesinordertoidentifytherelevantfea-
turesoftheobserveddatawiththeprimitiveconcepts.Furthermore,an
instance-basedapproachispresentedforconceptformationinwhicha
conceptisformedwithintheconceptualspaceonthebasisofthespatial
representationofitsobservedinstances.

C2:Semanticinferenceintheconceptualspaces:

Thisthesisfurtherproposesasemanticinferenceprocessfortheconcep-
tualspace,whichisbuiltinordertoprovideexplainabilityforthenovel
unknownobservationsinnaturallanguagedescriptions.Bygrounding
asemanticrepresentation,theconceptualspaceisemployedinorderto
providealinkbetweenthenumericaldataandthesemanticcharacterisa-
tionoftheconcepts.Foranewobservation,itsrepresentationwithinthe
conceptualspacespecifieseitheritsinclusionintheknownconceptsor
itsvalueswithregardthequalitydimensions.Thissetofinformationis
thenmappedtoasymbolspacethatinfersthelinguisticcharacterisation
oftheobservationbasedonasetofconceptsandfeaturesinvolved.This
workwilldemonstratetheutilityofconceptualspacesasasolutionto
thetaskofcontentdeterminationwithinanaturallanguagegeneration
(NLG)system.

C3:Data-drivenminingofprototypicalpatternsandtemporalrulesinphys-
iologicalsensordata:



1.5. THESIS OUTLINE 9

With regard to the task of data analysis for raw sensor data, this work
focuses on data-driven approaches in order 1) to extract the prototypical
patterns that frequently occur in the recorded signals of various health
parameters such as heart rate, respiration rate, blood pressure, etc., and
2) to mine the temporal rules of the extracted patterns in order to find
interesting relations between them. This data analysis is performed using
unsupervised data mining techniques to discover unseen (but worthy of
extraction) information beyond the expert knowledge. Moreover, the in-
vestigation of the temporal rule mining leads to an interesting outcome
regarding the uniqueness of the extracted rules for different clinical con-
ditions. This study shows the distinctive co-occurrence of prototypical
patterns for each clinical condition.

C4: Linguistic description of time series patterns using semantic representa-
tions:

Given that the aim of the framework is to generate natural language text
for physiological data, the processed time series data in the form of pat-
terns are then used as input for the linguistic description approaches. In
addition to the template-based methods for directly generating text for
a pattern using stored features, one contribution of the work is to ap-
ply the proposed semantic representation in order to automatically build
the conceptual space of the time series pattern into a physiological sensor
data set. This conceptual space is then utilised to infer linguistic charac-
terisations for such numerical data. An empirical evaluation of the output
text for the time series pattern demonstrates the advantages of developing
such a conceptual space as a content determination solution for an NLG
system.

The intersection of the contributions is the idea of proposing data-driven ap-
proaches that are able to present new aspects of the sensor data (both numeri-
cally and symbolically) in a data set in which the observations are not catchable
by knowledge-driven approaches, are nevertheless worth being 1) numerically
extracted, 2) semantically represented, and 3) linguistically described.

1.5 Thesis Outline

This dissertation is composed of two parts, which consider the division of the
problem statement according to the theoretical and the application focuses. The
first part presents the theoretical focus which is the task of semantic represen-
tation, while the second part presents the application focus which is the tasks
of numerically analysing and generating linguistic descriptions for time series
patterns.
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10 CHAPTER 1. INTRODUCTION

Part I: Creating semantic representations for numerical data

The first part of this thesis presents the notion of data-driven conceptual spaces
as a semantic representation tool for linguistically describing the numerical
data. After an overview of the background and the related work (Chapter 2),
this part explains how a conceptual space can be constructed using the informa-
tion observed (Chapter 3), before proceeding to explain how it can be utilised
to infer semantics for the unseen observations (Chapter 4). This process is then
be assessed by applying the approach to a data set of leaf examples (Chapter 5).

Chapter 2 begins with a discussion about the notion of semantic representa-
tions in the literature. It then presents the background to the theory of
conceptual spaces, together with related work on the role of this the-
ory in AI. It also includes background and related work on the linguistic
description and natural language generation approaches. Finally, a brief
discussion summarises the need to apply conceptual spaces in order to
perform some tasks in existing NLG solutions.

Chapter 3 proposes a data-driven approach in order to automatically construct
conceptual spaces. It starts by defining the parameters of a numerical data
set. It then explains the steps involved in determining the quality dimen-
sions and the domains of a conceptual space based on the most relevant
features of the data. Furthermore, the chapter includes an instance-based
algorithm for concept representation in the domains of the derived space.

Chapter 4 presents the design of an inference approach in order to provide
a semantic characterisation of the novel unknown observations within
the proposed conceptual space in Chapter 3. This chapter demonstrates
the steps involved in checking the inclusion of a new instance within the
domains. It then assigns the related linguistic terms using a defined sym-
bol space based on the associated concepts and quality dimensions of the
instance. Finally, the chapter presents the steps for performing the realisa-
tion task in order to turn linguistic terms into natural language messages.

Chapter 5 presents a case study that demonstrates the applicability of the ap-
proach proposed in Chapters 3 and 4 using a data set of leaf images. This
chapter first describes the algorithms 1) to construct a conceptual space
of leaves, 2) to represent each concept of leaves within the domains, and
3) to generate linguistic descriptions for a set of unknown leaf examples.
Finally, it describes an empirical evaluation method for measuring the
appropriateness of the developed space by using the worthiness of the
messages generated.
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1.5. THESIS OUTLINE 11

Part II: Physiological sensor data: From data analysis to

linguistic descriptions

The second part of the thesis focuses on the entire framework of describing the
numerical data using the semantic model proposed in Part I, but specifically for
physiological sensor data. A series of data analysis approaches are investigated
in order to prepare suitable information (i.e., time series patterns) that is fed to
the semantic representation. Chapters 6 to 8 are largely dedicated to this task.
First, The current state of the art for the data mining approaches on sensor data
is discussed (Chapter 6). Then, after exacting unseen but interesting time series
patterns (Chapter 7) and the temporal rules between the patterns (Chapter 8),
it is demonstrated how the proposed semantic model in Part I can be applied
to linguistically describe these patterns in such a framework (Chapter 9).

Chapter 6 provides a survey of work on existing data mining approaches in
order to analyse wearable sensors in health monitoring systems. It also
considers the new trends in the field and the current challenges to data
analysis in the healthcare domain.

Chapter 7 introduces the processes of collecting and acquiring the input physi-
ological sensor data sets that were used in this work. It then describes the
various unsupervised approaches first used to detect partial trends and to
extract prototypical patterns in different channels of physiological time
series data.

Chapter 8 presents a novel modified temporal rule mining approach to dis-
covering the co-occurrence of prototypical patterns among various time
series data of vital signs in a clinical condition. This chapter further de-
scribes the algorithms for comparing the extracted rules in order to show
the uniqueness of the rules for different clinical conditions. Another cen-
tral aspect of this chapter is the presentation of a template-based natural
language generation method for describing temporal rules of patterns in
natural language.

Chapter 9 presents the process of applying the proposed semantic representa-
tion in Part I in order to automatically construct the conceptual space of
the abstracted physiological patterns. It then describes the process of in-
ferring semantic descriptions for a set of unknown patterns. Furthermore,
this chapter presents an evaluation to demonstrate the appropriateness of
the conceptual space of the patterns used for text generation, together
with a comparison between the output text of the physiological pattern
from the semantic model and the output text of the template-based ap-
proaches.
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12 CHAPTER 1. INTRODUCTION

See Figure 1.3 for the MindMap of the thesis, which illustrates the appearance
of the research tasks in the chapters, together with the thesis’ contributions.
After presenting parts I and II,

Chapter 10 concludes the thesis by presenting a summary of the contributions,
a discussion of the limitations of the proposed semantic representation
and application framework, and finally an overview of the possible direc-
tions for the future work.
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Part I

Creating Semantic
Representations for Numerical

Data

Part I of this thesis presents the notion of data-driven conceptual spaces as a
semantic representation tool for linguistically describing numerical data. After
an overview of the background and the related work (Chapter 2), this part ex-
plains how a conceptual space can be constructed using observed information
(Chapter 3), before proceeding to explain how it can be utilised to infer se-
mantics for unseen observations (Chapter 4). This process is then exemplified
by applying the approach to a data set of leaf examples, and performing an
empirical evaluation on the goodness of the derived descriptions for unknown
samples (Chapter 5).
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Chapter 2

Background and Related Work

“The world is my world: this is manifest in the fact that
the limits of language (of that language which alone I
understand) mean the limits of my world.”

— Ludwig Wittgenstein (1889–1951)

I
n this chapter, the background and related work for this thesis are presented.
This chapter focusses in particular on two fields: concept formation and

concept acquisition using conceptual spaces, and approaches for generating lin-
guistic descriptions from data. The chapter begins with a discussion about the
term of semantic representation and the way that it has been used throughout
this thesis. The theory of conceptual spaces then is introduced, together with a
discussion about its use in artificial intelligence research. The background and
the related work of linguistic descriptions of data (LDD) and natural language
generation (NLG) are presented, together with the role of knowledge acquisi-
tion (KA) within the field of NLG. Moreover, a brief discussion summarises the
advantage of using conceptual spaces as a semantic representation that can be
later used for to perform NLG tasks.

2.1 Semantic Representation

The notion of a semantic representation has been used in a variety of ways in
different areas such as knowledge representation in AI, cognitive science, and
philosophy of language. Two prominent traditions for semantic representations
exist [108]. One is to study the semantics of words by representing the relations
of the words in natural language. For such representations, also called amodal
approaches [78], input is linguistic information. Some computational models
such as semantic space and semantic networks are examples of this kind of
semantic representations in the field of linguistics [78, 108]. Another tradition
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20 CHAPTER 2. BACKGROUND & RELATED WORK

focuses on conceptual structures for the representation of meanings, which con-
siders the relations between concepts and percepts or actions to model the se-
mantics. In this case of semantic representations, also called experiential [225],
the input is a set of perceptual information such as sensory data, memory, etc.
The origin of this kind of semantic representation is the study of cognitive se-
mantics, wherein the focus is on the meaning of the concepts as a cognitive
phenomenon [19]. Cognitive semantics considers the meaning of linguistic ex-
pressions as mental entities coming from our perceptions. This perceptual in-
formation later is formed as concepts in our mind. This point of view is against
the realist approaches that define semantics as something out in the world [86].
From the realist point of view, semantics can be represented using e.g., ab-
stract propositions and description logic, and can be modelled and verified by
truth conditions. This definition is highly related to the way that semantics has
been used and modelled in the field of knowledge representation in AI [164].
The realist approach, also called truth-conditional semantics, seeks to connect
language with statements about the real-world in the form of meta-language
statements (e.g., in propositional or predicate calculus) [68, 164]. Within Cog-
nitive semantics, however, meaning is a conceptual structure that comes before
the truth [86]. Gärdenfors in his recent book, The geometry of meaning [90],
includes another principle to the cognitive semantics as: ‘a semantic theory shall
account for the relation between perceptual processes and meaning’1. In other
words, semantic representations, from the cognitive point of view, should be a
conceptual structure which represents both perceptual and linguistic informa-
tion.

The notion of a semantic representation in this thesis follows the latter men-
tioned definition, by first constructing a conceptual representation using percep-
tual information (numerical sensor data) and linguistic information (symbolic
annotations), and then inferring semantically enriched descriptions. Therefore,
in this thesis, a semantic representation of knowledge, as a core issue in the
field of cognitive science, provides a conceptual structure for the meaning of
perceived concepts [108]. This kind of representation eases the task of seman-
tic reasoning of the perceived information, i.e., inferring the meaning of the
concepts or words in language [14].

2.2 On the Theory of Conceptual Spaces

One approach to create semantic representations from perception is to use the
theory of conceptual spaces introduced by Gärdenfors [86] as a knowledge
representation framework at the conceptual level which relies on the paradigm
of cognitive semantics.

1Azzouni likewise discusses this principle in his book, Semantic Perception [25], where the
contents of human perception sometimes involve semantic properties (e.g., meaningfulness). Thus,
he argued that meaning is perceived, not inferred.
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In cognitive science, both explanatory goals and constructive goals are con-
sidered. Explanatory goals aim to formulate the theories of cognition by study-
ing the cognitive behaviour of humans or animals. Constructive goals aim to
construct systems to fulfil cognitive tasks by building artefacts such as chess-
playing programs and robots [87]. Both types of goals are dealing with the
problem of representations in cognitive science to model how humans under-
stand concepts.

From the AI point of view, two prominent approaches have been studied for
the problem of modelling representations. Symbolic approaches are top-down
representations that aim to model the high-level concepts using symbol manip-
ulation. Abstract concepts are labelled by symbols, and the relations between
the concepts are defined in a rule-based manner. Thus, inferences are logical
and often are the result of first-order operations between the symbols and con-
cepts [9, 116]. Associationism approaches aim to model cognition in a similar
way that the neural structure of the brain associates the properties into an as-
sumed concept. Connectionism as a particular case of this approach attempts
to model the brain. This approach represents the interactions between the sim-
ple units as artificial neural networks in order to model or generate complex
behaviours.

In both symbolic and associationism approaches, the main drawback is the
lack of modelling various tasks of cognition such as concept learning, seman-
tic similarity, and concept combination, simultaneously [9]. In the literature,
conceptual spaces have been introduced as a mid-level representation model in
cognitive systems between the high-level symbolic representation and low-level
associationistic representations [14]. The aim of representing knowledge in a
conceptual space is to develop an intuitive interpretation of the relationship
between symbolic and sub-symbolic information [14,87]. This theory explores
how various types of information can be conceptually represented, both from
an explanatory perspective and for constructing an artificial system [87]. Such
a conceptual representation is the most important cognitive function, that, ac-
cording to Hampton [111], “stands at the centre of the information processing
flow, with input from perceptual modules of differing kinds, and is centrally
involved in memory, planning, decision-making, inductive inferences and much
more besides”. The ability to perceived information on a conceptual level re-
lates the theory of conceptual spaces to the considering semantic representa-
tions.

Conceptual spaces are the geometric representations of how humans per-
ceive, understand and learn concepts. Mainly, conceptual spaces are defined as
geometric or topological structures that model, categorise and represent con-
cepts in a set of multi-dimensional domains [87, 116]. The following is the de-
scription of the elements of a conceptual space as proposed by Gärdenfors [86].
The formal reformulation of these elements is presented later in Chapter 3.
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• Quality Dimensions: A conceptual space consists of a set of quality di-
mensions (i.e., cognitively meaningful attributes). The quality dimensions
present the quality attributes of objects in a metric space based on their
measured quality values. Some examples of quality dimensions can be
notions like height, width, and depth. Quality dimensions can be either
interpreted as phenomenal (psychological) or scientific (theoretical) di-
mensions. The psychological interpretation of quality dimensions repre-
sents the phenomenal human responses in a semantically meaningful way,
which are coming from human perceptions. Colour perception is a phe-
nomenal example that can be described by three quality dimensions: hue,
saturation, and brightness. The scientific interpretation is defined based
on scientific theories which measure the values associated with e.g., sen-
sors that measure wavelengths [86]. This distinction is tightly related to
the mentioned goals of cognitive science. When the target is explanatory,
the phenomenal interpretations of dimensions are in focus, and when the
goal is constructive, the scientifically modelled dimensions are consid-
ered. Different scales of measurements including nominal, ordinal, in-
terval, and ratio are used to assign values to the observations [86]. The
values of these measurements on quality dimensions can be categorical
(e.g., blood type) or continuous (e.g., size). Thus, these measurements
enable the quality dimensions to calculate distance value between each
two measured values. Depending on the type of the features (categorical
or continuous) for the perceived information, different distance measures
can be defined for each domain, separately.

• Domains: A domain in a conceptual space is represented as a set of in-
terdependent quality dimensions which are logically integrated. A typical
example of a domain is colour which is presented as a three-dimensional
space in Figure 2.1. Shape, taste, size, and weight are other examples
of perceptual domains. Some of the domains, like weight can be pre-
sented by a single dimension. The main reason to decompose the struc-
ture of conceptual spaces into domains, as Gärdenfors proposed, is to
assign concepts to different quality attributes independently. As an exam-
ple, an object can be independently described by its colour, without any
need to consider its weight. According to the original definition of con-
ceptual spaces, quality dimensions that depend on each other in forming
a domain are considered to be integral dimensions, as opposed to sep-
arable ones [86]. Thus, within a domain, one cannot logically assign a
value to one dimension without assigning values to the other dimensions.
For example, a point within the colour domain cannot be defined with
brightness and hue but without saturation.

• Properties: A property is a region in a single domain. As an example,
green is a property corresponding to a region in the colour domain. Nat-
ural Properties are the convex regions expressing a particular attribute
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of the domain. In natural language, properties are often associated with
adjectives. Grasping the properties of a domain is not necessarily an intu-
itive task unless specified by the domain knowledge [86].

• Concepts: Concepts in a conceptual space are represented as a set of re-
gions through multiple domains, and are modelled as n-dimensional areas
in the space. A concept is described based on its properties in various do-
mains. For instance, the concept of Apple in a conceptual space of fruits
can be represented as a set of regions in the colour, shape, size, taste,
and weight domains respectively. In natural language, the concepts often
correspond to nouns. Some domains may be more salient while repre-
senting specific concepts. For example, to distinguish the concept Apple
from other concepts like Pear, the colour and taste domains will be more
salient than the weight domain.

• Instances (Objects): Instances of concepts are the sets of points in the
conceptual space. These points are located within the domains by taking
the values based on the quality dimensions.

Example 2.1. Assume a conceptual space for “fruits”. To define the Fruit space,
one can introduce different domains such as ‘colour’, ‘taste’, ‘size’, ‘shape’,
‘nutrition’, etc., where these domains are defined by quality dimensions (e.g.,
‘brightness’, ‘hue’, and ‘saturation’ dimensions for the colour domain). Now,
a fruit concept like apple can be presented in this space by a set of regions
(i.e., properties) within the domains. Verbally, the concept of an apple involves
a ‘green’ property (a region) in the colour domain, ‘sweet-sour’ property in
the taste domain, ‘roundish’ property in the shape domain, and so forth [89].
Now, one instance (or an object) of the concept apple can be presented by a
set of points belonging to the regions of the concept. A ‘sweet apple’ object in
the Fruit space has a multi-point presentation that contains a point in the e.g.,
sweet-sour region in the taste domain.

Following the above example, Figure 2.1 shows a schematic presentation of
a conceptual space of fruits, together with presenting the regions of the concept
of apple within the defined domains and quality dimensions.

The metric definition of domains allows one to depict the notion of seman-
tic similarity in a conceptual space. Measuring the similarity robustly eases the
consideration of cognitive tasks such as concept formation, semantic inferences,
induction, and concept learning [116]. Context is another notion that has been
considered in the theory of conceptual spaces. Since the semantics of concepts
are conceptual structures in individual minds, the meaning of elements differs in
various contexts. Thus, to formulate the context within the concept representa-
tion, it is possible to assign weights to the domains or dimensions to distinguish
between similar concepts in different contexts [87].
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Figure 2.1: A schematic presentation of a conceptual space of fruits. It
also shows the representation the concept of apple as a set of regions
within the defined domains and quality dimensions as apple = 〈‘sweet-
sour’,‘ green’,‘ medium’〉.

Various formalisations of the conceptual spaces theory have been proposed
in the literature, including [14, 116, 181, 189], which attempted to mathemati-
cally formalise how to construct and how to perform induction within concep-
tual spaces.

2.2.1 Identifying Quality Dimensions

The quality dimensions of human perceptions are revealed from the judgements
about the similarity of concepts in a cognitive process [87]. The origin of quality
dimensions is still an open question in the field of conceptual spaces [86]. Once
the process of constructing a conceptual space starts, as Quine noted in [176],
some innate quality dimensions are needed to make concept learning possible.
However, there is no unique way to specify which set of dimensions is sufficient
to characterise the concepts to be learned. There are two paradigms to identify
quality dimensions: being chosen or being inferred. For a conceptual space that
aims to model a scientific theory or an artificial cognitive task, quality dimen-
sions are usually chosen by the developers of the theories (experts or scientist).
In contrast, for phenomenal conceptual spaces, the quality dimensions need to
be inferred from the perceived behaviours of the subjects. In many developed
examples of conceptual spaces, determining the set of quality dimensions relies
on the background knowledge, which comes from phenomenal (human per-
ceptual) or scientific (sensory) quality dimensions [86]. Thus, in a real-world
application, there is a need for knowledge engineering from experts within the
application [188].
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However, the issue of identifying the quality dimensions is more challenging
when dealing with such systems where there is no prior knowledge to explain
the semantics of dimensions, or there is a lack of knowledge about relevant
quality dimensions [87]. This specific challenge motivates the investigations on
how to derive the domains and quality dimensions in a data-driven manner.

An agreed point in the literature of conceptual spaces is that it is almost im-
possible to provide a complete list of human perceptual quality dimensions [89].
This statement emerges from the task of concept learning, wherein learning a
new concept is often applicable by expanding a conceptual space with new
quality dimensions [209]. To initialise a conceptual space, it would be chal-
lenging to realise which set of input features from the data can be used as the
quality dimensions in order to form the target concepts. The work in this thesis
attempts to identify a meaningful set of features out of predefined features in
a numeric data set, relying on the hypothesis that the most discriminative fea-
tures of concepts (classes) are the most representative quality dimensions for
building a conceptual space.

2.2.2 Related Work on Conceptual Spaces and AI

As mentioned in the introduction, from the AI point of view, the aim of repre-
senting knowledge in a conceptual space is to develop an intuitive interpretation
of the relationship between symbolic and sub-symbolic information [14, 86].
Gärdenfors has discussed thoroughly the role of conceptual spaces as a knowl-
edge representation framework in AI systems [87], focusing on the tasks of
induction and reasoning [88, 92]. Recently, Lieto et al. [147] have detailed the
need of a conceptual representation as a mid-level of knowledge representation
in-between the symbolic and the sub-symbolic one. This offers cognitive archi-
tectures a common language enabling the interaction between different types
of representations. Schockaert and Prade [198] have focused on the problem of
interpolative and extrapolative inference for different properties and concepts
with the help of conceptual spaces. In addition to the theoretical AI problems,
the feasibility of using conceptual spaces has been studied in various appli-
cation domains of AI, such as geographical measurement [8, 199], cognitive
robotics [57, 66, 138], object recognition [46], and visual perception [56]. A
recent review [242] discusses further applications in diverse research areas (se-
mantic spaces, computing meanings, and philosophical perspectives).

Concept formation tightly connects the theory of conceptual spaces to the
induction (and particularly learning) problem. The aim of many learning sys-
tems is a general description of a category of observations as concepts [151].
If the input of a learning algorithm takes the form of instances, attributes,
and concepts, then the process of learning is called concept description [230].
Instance-based learning refers to a class of learning algorithms which predicate
the labels for unseen instances based on their similarity to the nearest train-
ing instances [129]. This model requires a similarity function to perform the

2.2.ONTHETHEORYOFCONCEPTUALSPACES25

However,theissueofidentifyingthequalitydimensionsismorechallenging
whendealingwithsuchsystemswherethereisnopriorknowledgetoexplain
thesemanticsofdimensions,orthereisalackofknowledgeaboutrelevant
qualitydimensions[87].Thisspecificchallengemotivatestheinvestigationson
howtoderivethedomainsandqualitydimensionsinadata-drivenmanner.

Anagreedpointintheliteratureofconceptualspacesisthatitisalmostim-
possibletoprovideacompletelistofhumanperceptualqualitydimensions[89].
Thisstatementemergesfromthetaskofconceptlearning,whereinlearninga
newconceptisoftenapplicablebyexpandingaconceptualspacewithnew
qualitydimensions[209].Toinitialiseaconceptualspace,itwouldbechal-
lengingtorealisewhichsetofinputfeaturesfromthedatacanbeusedasthe
qualitydimensionsinordertoformthetargetconcepts.Theworkinthisthesis
attemptstoidentifyameaningfulsetoffeaturesoutofpredefinedfeaturesin
anumericdataset,relyingonthehypothesisthatthemostdiscriminativefea-
turesofconcepts(classes)arethemostrepresentativequalitydimensionsfor
buildingaconceptualspace.

2.2.2RelatedWorkonConceptualSpacesandAI

Asmentionedintheintroduction,fromtheAIpointofview,theaimofrepre-
sentingknowledgeinaconceptualspaceistodevelopanintuitiveinterpretation
oftherelationshipbetweensymbolicandsub-symbolicinformation[14,86].
Gärdenforshasdiscussedthoroughlytheroleofconceptualspacesasaknowl-
edgerepresentationframeworkinAIsystems[87],focusingonthetasksof
inductionandreasoning[88,92].Recently,Lietoetal.[147]havedetailedthe
needofaconceptualrepresentationasamid-levelofknowledgerepresentation
in-betweenthesymbolicandthesub-symbolicone.Thisofferscognitivearchi-
tecturesacommonlanguageenablingtheinteractionbetweendifferenttypes
ofrepresentations.SchockaertandPrade[198]havefocusedontheproblemof
interpolativeandextrapolativeinferencefordifferentpropertiesandconcepts
withthehelpofconceptualspaces.InadditiontothetheoreticalAIproblems,
thefeasibilityofusingconceptualspaceshasbeenstudiedinvariousappli-
cationdomainsofAI,suchasgeographicalmeasurement[8,199],cognitive
robotics[57,66,138],objectrecognition[46],andvisualperception[56].A
recentreview[242]discussesfurtherapplicationsindiverseresearchareas(se-
manticspaces,computingmeanings,andphilosophicalperspectives).

Conceptformationtightlyconnectsthetheoryofconceptualspacestothe
induction(andparticularlylearning)problem.Theaimofmanylearningsys-
temsisageneraldescriptionofacategoryofobservationsasconcepts[151].
Iftheinputofalearningalgorithmtakestheformofinstances,attributes,
andconcepts,thentheprocessoflearningiscalledconceptdescription[230].
Instance-basedlearningreferstoaclassoflearningalgorithmswhichpredicate
thelabelsforunseeninstancesbasedontheirsimilaritytothenearesttrain-
inginstances[129].Thismodelrequiresasimilarityfunctiontoperformthe

2.2. ON THE THEORY OF CONCEPTUAL SPACES 25

However, the issue of identifying the quality dimensions is more challenging
when dealing with such systems where there is no prior knowledge to explain
the semantics of dimensions, or there is a lack of knowledge about relevant
quality dimensions [87]. This specific challenge motivates the investigations on
how to derive the domains and quality dimensions in a data-driven manner.

An agreed point in the literature of conceptual spaces is that it is almost im-
possible to provide a complete list of human perceptual quality dimensions [89].
This statement emerges from the task of concept learning, wherein learning a
new concept is often applicable by expanding a conceptual space with new
quality dimensions [209]. To initialise a conceptual space, it would be chal-
lenging to realise which set of input features from the data can be used as the
quality dimensions in order to form the target concepts. The work in this thesis
attempts to identify a meaningful set of features out of predefined features in
a numeric data set, relying on the hypothesis that the most discriminative fea-
tures of concepts (classes) are the most representative quality dimensions for
building a conceptual space.

2.2.2 Related Work on Conceptual Spaces and AI

As mentioned in the introduction, from the AI point of view, the aim of repre-
senting knowledge in a conceptual space is to develop an intuitive interpretation
of the relationship between symbolic and sub-symbolic information [14, 86].
Gärdenfors has discussed thoroughly the role of conceptual spaces as a knowl-
edge representation framework in AI systems [87], focusing on the tasks of
induction and reasoning [88, 92]. Recently, Lieto et al. [147] have detailed the
need of a conceptual representation as a mid-level of knowledge representation
in-between the symbolic and the sub-symbolic one. This offers cognitive archi-
tectures a common language enabling the interaction between different types
of representations. Schockaert and Prade [198] have focused on the problem of
interpolative and extrapolative inference for different properties and concepts
with the help of conceptual spaces. In addition to the theoretical AI problems,
the feasibility of using conceptual spaces has been studied in various appli-
cation domains of AI, such as geographical measurement [8, 199], cognitive
robotics [57, 66, 138], object recognition [46], and visual perception [56]. A
recent review [242] discusses further applications in diverse research areas (se-
mantic spaces, computing meanings, and philosophical perspectives).

Concept formation tightly connects the theory of conceptual spaces to the
induction (and particularly learning) problem. The aim of many learning sys-
tems is a general description of a category of observations as concepts [151].
If the input of a learning algorithm takes the form of instances, attributes,
and concepts, then the process of learning is called concept description [230].
Instance-based learning refers to a class of learning algorithms which predicate
the labels for unseen instances based on their similarity to the nearest train-
ing instances [129]. This model requires a similarity function to perform the

2.2.ONTHETHEORYOFCONCEPTUALSPACES25

However,theissueofidentifyingthequalitydimensionsismorechallenging
whendealingwithsuchsystemswherethereisnopriorknowledgetoexplain
thesemanticsofdimensions,orthereisalackofknowledgeaboutrelevant
qualitydimensions[87].Thisspecificchallengemotivatestheinvestigationson
howtoderivethedomainsandqualitydimensionsinadata-drivenmanner.

Anagreedpointintheliteratureofconceptualspacesisthatitisalmostim-
possibletoprovideacompletelistofhumanperceptualqualitydimensions[89].
Thisstatementemergesfromthetaskofconceptlearning,whereinlearninga
newconceptisoftenapplicablebyexpandingaconceptualspacewithnew
qualitydimensions[209].Toinitialiseaconceptualspace,itwouldbechal-
lengingtorealisewhichsetofinputfeaturesfromthedatacanbeusedasthe
qualitydimensionsinordertoformthetargetconcepts.Theworkinthisthesis
attemptstoidentifyameaningfulsetoffeaturesoutofpredefinedfeaturesin
anumericdataset,relyingonthehypothesisthatthemostdiscriminativefea-
turesofconcepts(classes)arethemostrepresentativequalitydimensionsfor
buildingaconceptualspace.

2.2.2RelatedWorkonConceptualSpacesandAI

Asmentionedintheintroduction,fromtheAIpointofview,theaimofrepre-
sentingknowledgeinaconceptualspaceistodevelopanintuitiveinterpretation
oftherelationshipbetweensymbolicandsub-symbolicinformation[14,86].
Gärdenforshasdiscussedthoroughlytheroleofconceptualspacesasaknowl-
edgerepresentationframeworkinAIsystems[87],focusingonthetasksof
inductionandreasoning[88,92].Recently,Lietoetal.[147]havedetailedthe
needofaconceptualrepresentationasamid-levelofknowledgerepresentation
in-betweenthesymbolicandthesub-symbolicone.Thisofferscognitivearchi-
tecturesacommonlanguageenablingtheinteractionbetweendifferenttypes
ofrepresentations.SchockaertandPrade[198]havefocusedontheproblemof
interpolativeandextrapolativeinferencefordifferentpropertiesandconcepts
withthehelpofconceptualspaces.InadditiontothetheoreticalAIproblems,
thefeasibilityofusingconceptualspaceshasbeenstudiedinvariousappli-
cationdomainsofAI,suchasgeographicalmeasurement[8,199],cognitive
robotics[57,66,138],objectrecognition[46],andvisualperception[56].A
recentreview[242]discussesfurtherapplicationsindiverseresearchareas(se-
manticspaces,computingmeanings,andphilosophicalperspectives).

Conceptformationtightlyconnectsthetheoryofconceptualspacestothe
induction(andparticularlylearning)problem.Theaimofmanylearningsys-
temsisageneraldescriptionofacategoryofobservationsasconcepts[151].
Iftheinputofalearningalgorithmtakestheformofinstances,attributes,
andconcepts,thentheprocessoflearningiscalledconceptdescription[230].
Instance-basedlearningreferstoaclassoflearningalgorithmswhichpredicate
thelabelsforunseeninstancesbasedontheirsimilaritytothenearesttrain-
inginstances[129].Thismodelrequiresasimilarityfunctiontoperformthe



26 CHAPTER 2. BACKGROUND & RELATED WORK

task of concept descriptions. However, in instance-based learning, the similar-
ity functions are usually applied within a single-domain feature space [12]. A
comparison of the practicality and effectiveness in instance-based learning and
conceptual spaces was presented in [140]. However, in this work, the authors
did not include the model construction process in their discussion. In this thesis,
an instance-based approach is proposed for concept formation that considers
the role of the features involved to derive a multi-domain space and represent
the concepts in such a space.

Using data mining approaches in the process of deriving conceptual spaces
has been studied in a few isolated works. Keßler [131] outlined the idea of us-
ing conceptual spaces to describe data, with some discussions on the possibility
of automatically generating such spaces from databases. Lee [139] proposed a
data mining method coupled with conceptual spaces, which addresses cognitive
tasks such as concept formation using clustering techniques. The main draw-
back of these approaches is that they rely on knowing about the semantics of
a domain (i.e., an application area) beforehand in order to directly determine
the domains and the quality dimensions of a conceptual space. However, an es-
sential challenge is to automatically find the most related features as integrated
quality dimensions, without importing extra knowledge to the model. More
precisely, the data-driven side of this thesis relies on the automatically finding
the best subset of features and then grouping them into the domains, without
expert knowledge.

The proposed approach in this thesis holds for certain classes of problems.
It explores applications wherein the input data is complicated to be inter-
preted at first glance. Within such applications, the task of specifying the in-
terpretable domains and dimensions based on human perceptions is no trivial.
These classes of problems usually deal with raw sensor data (sometimes multi-
variate data) with little or no prior knowledge about their semantics [188]. The
process of learning for these problems are typically performed by connectionist
approaches (i.e., neural network architectures [219]) as solution for represent-
ing the relation of instances on a perceptual level [14]. But the main drawback
of such solutions is that it neglects the explainability of the involved concepts
or the interpretability of the learned model (i.e., features) from a semantic per-
spective.

This thesis aims to enable domain formation of a conceptual space that
is highly data-driven. The motivation is to create a semantic model able to
preserve induction and semantic inference. The motivation of the proposed
approach is to deal with a class of learning problems that need a clear inter-
pretation of the overall model (not only interpretability of the decisions made),
but there is no prior knowledge to specify the relations within the model along
with a vast number of input data. Thus, this thesis presents a method to create
a semantic representation of sensor data and its interpretation using conceptual
spaces, which facilitates the task of explaining concepts. This facilitation is per-
formed in this work by applying approaches to generate linguistic descriptions
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for unknown instances of concepts, using the constructed semantic represen-
tations as conceptual spaces. For this reason, the next section will provide an
overview of linguistic description and natural language generation approaches
that have been addressed in the literature.

2.3 Generating Linguistic Descriptions

In general, the task of generating linguistic descriptions is the process of gen-
erating understandable information in the form of natural linguistic expres-
sions for the target user. This task is addressed in the literature in two research
fields: linguistic descriptions of data (LDD), and natural language generation
(NLG) [178]. LDD has its roots in fuzzy set theory and deals with summarising
perception-based attributes of numeric data set using linguistic characterisa-
tions defined by fuzzy sets that are able to deal with the imprecision of human
language. NLG, on the other hand, aims to automatically generate natural lan-
guage text in the form of sentences that are as close as possible to human cre-
ated text. Both of LDD and NLG fields contain elements which are relevant to
this thesis. Herein, the definitions and the usage of these fields are presented.

2.3.1 Linguistic Descriptions of Data (LDD)

The field of linguistic descriptions of data has emerged from the use of fuzzy
set theory and soft computing to perform linguistic computations on data. This
task studies the necessity of automatically describing numeric data sets by em-
ploying a set of linguistic terms. Fuzzy set theory is a well-studied approach to
bridge between numeric and linguistic information, specifically in perception-
based systems [35, 126]. The basic idea of linguistic descriptions comes from
the works of Zadeh [239] and Yager [233] on developing the paradigms of
computing with words [239], and later, the computational theory of percep-
tion [238, 241], which express the ability of computing systems in a linguistic
manner [73]. Within these paradigms, developed approaches are often based on
fuzzy quantification models [70] to generate simple linguistic summaries on the
variables, such as “most of the apples are red”. Although there is no high-level
abstraction to present a generic model of linguistic descriptions, Ramos-Soto et
al., [178] have listed the essential elements of linguistic description approaches
as follows:

• Input data, usually including numerical and sequential data, which rep-
resents temporal or spatial properties. Temperature, height, weight, and
size are some examples of input data. The input data is also called nu-
meric variables or numeric properties of a domain.

• Linguistic variables, defining the fuzzy sets on the provided input data to
categorise and annotate the input variable. Linguistic variables are tightly
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related to the definition of fuzzy granulation of input variables. An exam-
ple of such fuzzy granulation to map the numerical values of an input
variable like size is a set of linguistic labels (i.e., words) such as small,
medium, or large. These linguistic variables are characterised by fuzzy
intervals with non-determined boundaries using fuzzy membership func-
tions. (More details will be presented in Section 4.2.2).

• Fuzzy quantifiers, are the fuzzy granulations which lead to provide propo-
sitions like low, increasing, and significant for the input variables [240].
These quantifiers are also characterised by fuzzy membership functions.

• Evaluation criteria, defined to assess the appropriation of the generated
descriptions based on several criteria such as data coverage degree, fulfil-
ment degree, relevance and the length of the descriptions.

The algorithms that are employed in linguistic descriptions of data are in-
fluenced by fuzzy techniques to construct quantified sentences. LDD methods
produce all the possible combinations of the sentences using the provided quan-
tifiers and linguistic variables for a set of input data. Depending on the com-
plexity of the domain, type-I or type-II of quantified sentences (which are the
statements with simple or complex relations between quantifiers and variables,
respectively [44]) may be employed [70, 163]. Afterwards, the generated sen-
tences are ranked, added or removed from the output text based on the defined
criteria. The generated linguistic sentences are simple from the natural language
point of view with usually template-based messages to handle the sentences.

The theoretical works on developing linguistic descriptions started with the
topic of fuzzy quantification as the task of computing with words [239]. The
work of Kacprzyk [125, 126] introduced a way to relate the computation of
words in fuzzy logic to an implementable linguistic summarisation of data.
According to [126], a linguistic summarisation of a data set consists of a sum-
mariser S (e.g., young), a quantity agreement Q (e.g., most), and a truth degree
T . Then, an abstract prototype of a linguistic summary can be in the form
“Q Y’s are S”, where Y is a set of observed objects. As an example, “most
of the employees are young” is the result of a linguistic summarisation us-
ing fuzzy logic [126]. Practically, linguistic descriptions are applied in several
applications. The granular linguistic model of phenomena (GLMP) [224] is a
general framework that works based on applying fuzzy rules on a set of com-
putational perceptions as inputs. This solution is employed for a verity of ap-
plications [178]. In [49], the concept of linguistic summarisation is employed
to fulfil the precision and brevity on data related to the patient inflow, where
the descriptions are for example: “most of the days of June, patient inflow
is medium”. The work in [179] presents the use of LDD in meteorology to
generate monthly reports emphasising related contrast descriptions, e.g.: “The
temperature was high for October, ... with very cold temperatures during the
fourth week”.
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2.3.2 Natural Language Generation (NLG)

Studies on generating linguistic descriptions also encompass the field of natural
language generation (NLG). An NLG system aims to generate human-readable
natural language from non-linguistic information [185]. Typically, NLG sys-
tems generate text based on acquired knowledge about both language and the
application domain. Based on the requirements of the system, NLG solutions
follow two different goals: 1) Automatically generating useful text from non-
textual inputs to comply with a specific set of needs, and/or 2) Automatically
producing human-like text from non-textual inputs, to simulate an already
known corpus of human-written text.

While a variety of NLG architectures and implementations are proposed in
the literature, a generic architecture for an NLG system has been formulated
and presented by Reiter and Dale [184,185] based on the fact that the primary
task of a natural language generation system is to convert acquired knowledge
from underlying non-linguistic data into an understandable set of messages as
output text. The proposed architecture consists of three main modules: docu-
ment planning, microplanning, and realisation. Each of these modules performs
a set of tasks related to the goal of the system. Table 2.1 depicts the modules
and their corresponding tasks in a typical NLG system. The main content tasks
of an NLG system are shortly described as follows. Note that in this thesis,
the use of NLG systems is mostly limited to the task of content determination,
where its related work will be further explained.

• Content determination is the task to decide what information will ap-
pear in the output text, based on the provided input information. Content
determination is the most relevant aspect of NLG regarding the linguis-
tic characterisation of numerical data [187, 237]. This task determines
whether or not an acquired set of numerical information is able to be
represented linguistically and be semantically labelled to appear in the
final text. Thus, the content determination is the core of bridging from
numerical data to the semantic representations in NLG systems. A recent
survey on the task of content determination and content selection can be
found in [103].

Table 2.1: Typical modules and tasks of an NLG system [185].

Modules Content task Structure task

Document Planning Content determination Document structuring
Microplanning

Lixicalisation; Referring
expression generation

Aggregation

Realisation Linguistic realisation Structure realisation
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final text. Thus, the content determination is the core of bridging from
numerical data to the semantic representations in NLG systems. A recent
survey on the task of content determination and content selection can be
found in [103].

Table 2.1: Typical modules and tasks of an NLG system [185].

Modules Content task Structure task

Document Planning Content determination Document structuring
Microplanning

Lixicalisation; Referring
expression generation

Aggregation

Realisation Linguistic realisation Structure realisation
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• Lexicalisation is the task to decide what specific words should be selected
to express the determined content. For example, the actual nouns, verbs,
adjectives and adverbs to appear in the text are chosen from a lexicon.
Lexicalisation determines the particular linguistic terms to be used to ex-
plain the domain concepts and their relations. In an NLG system, the role
of lexicalisation is essential since the mapping between extracted numer-
ical information to the predefined lexicon is not a trivial task.

• Referring expression generation is the task to decide what expressions
should be used to refer to domain concepts and entities, in a way that
the reader of the system recognises what the message refers to. So, refer-
ring expression generation is about selecting proper names and reason-
able pronouns, or providing a sufficient set of descriptions for an entity
or object in order to distinguish that entity from the rest.

• Linguistic realisation is the task to apply grammatical rules of the target
language considering both morphology (the study of word forms) and
syntax (the study of sentence structure). This task converts the provided
abstract symbolic representations of the messages into the actual final
sentences in natural language.

An important class of NLG frameworks is data-to-text systems, wherein a
linguistic summarisation of numeric data is produced with the help of data min-
ing and AI algorithms. The main architecture of data-to-text systems has been
introduced by Reiter [182] that includes the following stages: signal analysis,
data interpretation, document planning, microplanning and realisation (Fig-
ure 2.2). These systems identify and abstract the patterns of the numeric data,
determine the most useful and relevant information, and generate a natural
language text for the acquired knowledge in an understandable form [119].

A complete survey on reviewing NLG tasks, architectures, and applica-
tions has recently been provided by Gatt and Krahmer [93]. According to
[93], the developed NLG systems can be divided into three approaches: rule-
based (modular), planning-based, and data-driven approaches. Rule-based ap-
proaches consider a crisp division among the NLG tasks. These methods usu-
ally follow a set of pre-defined rules in order to perform each of sub-tasks
within the NLG architecture. Planning approaches aim to look at the goal of
generating text from data as the process of determining a sequence of actions.
These approaches combine slightly the sub-tasks of NLG to generate text. Data-
driven approaches are the new dominant trend in NLG, which consider the
goal of text generation as an integrated task. Data-driven approaches perform
this goal usually by applying statistical learning on the alignment of the input
non-linguistic information and the output texts. This automatic learning of the
correspondences between data and text make these approaches data-driven.
Several pieces of research have been done from this perspective, especially by
focusing on the neural network and deep learning methods (a wide review can
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•Lexicalisationisthetasktodecidewhatspecificwordsshouldbeselected
toexpressthedeterminedcontent.Forexample,theactualnouns,verbs,
adjectivesandadverbstoappearinthetextarechosenfromalexicon.
Lexicalisationdeterminestheparticularlinguistictermstobeusedtoex-
plainthedomainconceptsandtheirrelations.InanNLGsystem,therole
oflexicalisationisessentialsincethemappingbetweenextractednumer-
icalinformationtothepredefinedlexiconisnotatrivialtask.

•Referringexpressiongenerationisthetasktodecidewhatexpressions
shouldbeusedtorefertodomainconceptsandentities,inawaythat
thereaderofthesystemrecogniseswhatthemessagerefersto.So,refer-
ringexpressiongenerationisaboutselectingpropernamesandreason-
ablepronouns,orprovidingasufficientsetofdescriptionsforanentity
orobjectinordertodistinguishthatentityfromtherest.

•Linguisticrealisationisthetasktoapplygrammaticalrulesofthetarget
languageconsideringbothmorphology(thestudyofwordforms)and
syntax(thestudyofsentencestructure).Thistaskconvertstheprovided
abstractsymbolicrepresentationsofthemessagesintotheactualfinal
sentencesinnaturallanguage.

AnimportantclassofNLGframeworksisdata-to-textsystems,whereina
linguisticsummarisationofnumericdataisproducedwiththehelpofdatamin-
ingandAIalgorithms.Themainarchitectureofdata-to-textsystemshasbeen
introducedbyReiter[182]thatincludesthefollowingstages:signalanalysis,
datainterpretation,documentplanning,microplanningandrealisation(Fig-
ure2.2).Thesesystemsidentifyandabstractthepatternsofthenumericdata,
determinethemostusefulandrelevantinformation,andgenerateanatural
languagetextfortheacquiredknowledgeinanunderstandableform[119].

AcompletesurveyonreviewingNLGtasks,architectures,andapplica-
tionshasrecentlybeenprovidedbyGattandKrahmer[93].Accordingto
[93],thedevelopedNLGsystemscanbedividedintothreeapproaches:rule-
based(modular),planning-based,anddata-drivenapproaches.Rule-basedap-
proachesconsideracrispdivisionamongtheNLGtasks.Thesemethodsusu-
allyfollowasetofpre-definedrulesinordertoperformeachofsub-tasks
withintheNLGarchitecture.Planningapproachesaimtolookatthegoalof
generatingtextfromdataastheprocessofdeterminingasequenceofactions.
Theseapproachescombineslightlythesub-tasksofNLGtogeneratetext.Data-
drivenapproachesarethenewdominanttrendinNLG,whichconsiderthe
goaloftextgenerationasanintegratedtask.Data-drivenapproachesperform
thisgoalusuallybyapplyingstatisticallearningonthealignmentoftheinput
non-linguisticinformationandtheoutputtexts.Thisautomaticlearningofthe
correspondencesbetweendataandtextmaketheseapproachesdata-driven.
Severalpiecesofresearchhavebeendonefromthisperspective,especiallyby
focusingontheneuralnetworkanddeeplearningmethods(awidereviewcan
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Figure 2.2: The architecture of data-to-text systems, proposed by Reiter [182].

be found in [93]). However, the remaining question is how much the learning
process is dependent on the goodness of provided set of training information
(aligned data and text).

Recently, there is a growing demand for NLG and data-to-text systems in
real-world applications. Examples of well established NLG applications include
the generation of weather forecasting reports from meteorological data [104,
186, 215], communicating financial and statistical information [79, 120]. BT-
Nurse [119] and BabyTalk [94, 174] are the recent examples of data-to-text
systems in order to generate documents in medical domains which produce
summaries of data sets about the state of neonatal babies from intensive care
data. Most of these applications use small amounts of homogeneous data and
are supported by a significant amount of predefined knowledge.

Knowledge Acquisition for Content Determination

Knowledge acquisition (KA) is an essential part of building natural language
generation systems. Two types of KA techniques including corpus-based KA
and structured expert-oriented KA have been previously studied for NLG sys-
tems in [187]. These techniques aim to enrich the similarities between generated
texts and natural human-written texts. Both of the techniques use rule-based
methods to improve the quality of the acquired knowledge for such systems.

Export-oriented techniques use experts of the domain to acquire knowledge
in a structured manner (e.g., direct interviews, questionnaires). As an example
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in the medical area, one can ask doctors or nurses about the necessary informa-
tion that are needed to be captured and presented in the final generated text.
Corpus-based techniques rely on the analysis of available corpus, and learn
from provided sources of information such as data sets themselves. For ex-
ample, one can use previous corpora of human-written reports (e.g., clinical
reports) to acquire the necessary elements and information, to reproduce the
same knowledge in the final generated text.

In data-to-text systems, the acquired knowledge, also called domain knowl-
edge, is usually organised in the form of taxonomies or ontologies of infor-
mation. All the stages of a data-to-text architecture (shown in Figure 2.2)
then use these provided taxonomies of knowledge to perform their tasks. In
particular, signal analysis stage extracts information that is determined in tax-
onomies such as simple patterns, events, and trends. Also, the data interpreta-
tion stage abstracts information into symbolic messages using the represented
taxonomies. The most recent data-to-text frameworks developed by Reiter’s
architecture [182] have acquired the taxonomies or ontologies corresponding
to the domain knowledge. For instance, the work on summarising gas turbine
time series [237] has used expert knowledge to provide a taxonomy of the
primitive patterns (i.e., spikes, steps, oscillations). Similarly, systems related to
the BabyTalk project [94, 174] have stored medically known observation (e.g.,
bradycardia) in local ontologies. The core of such systems is based on the rich-
ness of the domain knowledge in the provided taxonomies which are usually
bounded by expert rules. This organised domain knowledge is usually an in-
flexible input to the framework which restricts the output of the stages in data-
to-text architectures. For instance, the taxonomy in [237] does not allow the
system to represent unexpected observations (e.g., wave or burst) out of the
predefined domain knowledge. Likewise, in the medical domain, an unknown
physiological pattern will be ignored if it does not have a corresponding entity
in the provided ontology by the domain experts.

Determining suitable content is mostly addressed using knowledge-driven
and rule-based approaches to comply with the domain or user requirements [102,
237]. However, there is a new trend of data-driven approaches to performing
such task without relying on a set of pre-defined knowledge to map data to lex-
icons. Instead, these approaches aim to use learning techniques, such as hidden
Markov models [33] and optimisation methods [133], in order to automatically
ground language acquisition and align numerical observation to their proper
descriptions [93]. These approaches are independent of rules, however, they
are still dependent on a set of well-defined correspondences between input data
and the output text in a supervised manner. The way that this thesis aims to do
the data-driven content determination is to rely on the observed data and its
behaviours that can be beyond the user requirements, though still meaningful
to represent [31].

Although some studies in NLG, like SumTime [186], claim that building a
complete data-to-text system is good enough to be used for producing text as
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inthemedicalarea,onecanaskdoctorsornursesaboutthenecessaryinforma-
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good as a human does, there is still the lack of modelling cognitive task in NLG
systems to study e.g., how humans model observations in their mind, and then
explain them by linguistic terms. This issue in rule-based data-to-text systems
reveals the necessity of reorganising the way of modelling domain knowledge
in order to also cover explaining unseen information across the data.

2.4 Conclusions

A semantic representation of numerical data is the key point to bridge between
conceptual spaces theory and linguistic description approaches by modelling
descriptive features of data. On one hand, concept formation based on per-
ceived information in a conceptual space relies on the descriptive features in
order to determine the domains and quality dimensions of the spaces. This
data-driven manner of modelling features leads to a semantic representation of
non-linguistic information in order to infer meaningful descriptions. Importing
descriptive features to computational systems includes the possibility of oper-
ating with linguistic information [35]. On the other hand, deriving linguistic
descriptions for a set of numerical perceived data is dependent on the semantic
level of its descriptive features. This set of information can be obtained from
various sources such as observations, sensor measurements, mathematical anal-
ysis or visual perceptions [35]. Since conceptual spaces have been developed
to model the descriptive features of concepts for further reasoning, it can be
employed as a robust framework to perform content determination task in lin-
guistic descriptions using semantic inferences.

Regarding the relation of these two fields in the literature, the problem of
modelling natural language using conceptual spaces has been investigated in
a few isolated works [10, 72]. Evidently, in most of the proposed conceptual
representations, the primary interest is not the relation of concepts and natural
language [108]. Aisbett et al., [15] recently investigated the integration of con-
ceptual spaces theory with the topic of computing with words by introducing a
fuzzy representation of conceptual spaces’ elements. Domains and dimensions
in their work, however, are crisp elements with no role concerning the qualifi-
cation of objects within the space. Also, [72] attempted to derive the semantic
relations within conceptual spaces built upon text documents. However, to the
best of our knowledge, there is no study on the conceptual spaces to derive
natural language descriptions for the numeric inputs through a conceptual rep-
resentation.

As the final point to conclude this chapter, it worth mentioning that the
proposed approach is called semantic representation (and not only conceptual
representation), because it goes beyond representing the concepts as structures
in mind. The proposed approach links the perceived information to natural
language by “linking concepts to meaning” [111] using semantic inferences.
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Chapter 3

Data-Driven Construction of

Conceptual Spaces

“Solving a problem simply means representing it so as to
make the solution transparent.”

— Herb Simon (1916–2001)

T
his chapter presents one of the leading contributions of this thesis, that is
how to automatically construct a conceptual space in a data-driven man-

ner from a numeric data set. The approach to constructing conceptual spaces is
considered to be data-driven as it is automatically constructed by processing the
data matrix of the observations based on the variable values and class labels.
This is in contrast with knowledge-driven approaches that have to be manu-
ally constructed using psychologically or scientifically pre-defined knowledge
about the relations between quality dimensions, domains and the concepts’ re-
gions [10, 87]. Practically, the process of constructing a conceptual space is
about determining its essential elements. According to [14, 181], the definition
of a conceptual space is as follows:

Definition 3.1. A conceptual space S is defined as a 4-tuple 〈Q,Δ,C, Γ〉, where
Q is a set of quality dimensions, Δ is a set of domains, C is a set of concepts in
the space S, and Γ is a set of instances representing the concepts.

The representations of the elements are rigorously explained in further def-
initions (from 3.2 to 3.5). To automate the process of constructing conceptual
spaces, the definitions of the conceptual spaces’ elements are modified slightly
compared to previous formulations (e.g., [9,189]). These modifications are nec-
essary to use the constructed conceptual space as a model of a semantic repre-
sentation for the inference of unknown observations.
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36 CHAPTER 3. CONSTRUCTION OF CONCEPTUAL SPACES

To begin, it is assumed that a given data set M contains a set of possible class
labels, a set of predefined features, and the input observations with known class
labels, which are characterised by feature values. Given a set of class labels
Y = {y1, . . . ,ym} and a set of features F = {X1, . . . ,Xn}, let D be the set of
known observations, denoted by D = {oi : (xoi

,yoi
)}, where oi consists of a

n-dimensional feature vector xoi
= [x1, . . . , xn], and an output label yoi

∈ Y.
The component xj (j = 1, . . .n) in the vector xoi

is the measured value of the
corresponding feature Xj ∈ F.

Here, each feature X is defined as a couple of values X : 〈HX, IX〉, where HX

indicates the linguistic name of the feature, and IX is either a numeric interval
or a categorical set that presents the possible range of values for X.

Example 3.1. Consider the leaf data set [206] which is a set of photographed
leaf samples (observation set Dl) from various plant species (classes) such as:
Y = { yqr : ‘Quercus Robur’, yap : ‘Acer Palmatum’, yno : ‘Nerium Oleander’,
ytt : ‘Tilia Tomentosa’, . . .}. This data set includes a set of measurable
features to characterise the features of each leaf sample, such as: F = {

Xel : elongation, Xlo : lobedness, Xco : convexity, Xro : roundness,
Xso : solidity, Xin : indentation, . . .}. An observed leaf such as oi ∈ Dl

that is labelled by ytt takes the feature values as: oi : (xoi
,ytt), where

xoi
= [xel, xlo, xco, xro, xso, xin].

The goal described in this chapter is to find a mapping from the elements of
a data set M to various components needed to define a conceptual space S. In
short, this mapping is achieved by performing the following steps:

• Initialise the primitive known concepts using the class labels. Conse-
quently, the conceptual space S, which models the data set M, will consist
of a set of concepts C = {C1, . . . ,Cm}, where |C| = |Y|. Thus, the notation
Cy indicates the concept which corresponds to the class label y ∈ Y.1

• Specify the quality dimensions Q and domains Δ. The quality dimensions
are specified via selecting a subset of the features such that Q ⊂ F, and
the domains are determined based on ranking and grouping the set of
selected features as the quality dimensions (Section 3.1).

• Form the representation of each concept Cy within the domains Δ, based
on the known corresponding instances (Section 3.2).

The following sections will outline how the two latter steps are achieved in
detail. Figure 3.1 illustrates the steps of constructing a conceptual space from a
set of numeric data, which are explained in the following sections.

1This approach follows the assumption that any semantic modelling needs an innate set of
knowledge [176]. Learning concepts without any initialised knowledge is not the scope of this
work.
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Figure 3.1: Illustration of the main steps for constructing a conceptual space
from a set of numeric data. The domain and dimension specification is ex-
plained in Section 3.1, and the concept representation is described in Sec-
tion 3.2.

3.1 Domain and Quality Dimension Specification: A

Feature Selection Approach

A data-driven approach to build a conceptual space makes no prior assump-
tion about the domains. Preferably, the known labelled observations and fea-
tures are the inputs from which the quality dimensions and domains will be
extracted. This approach aims to propose a set of observation-based associa-
tions between classes of data as concepts and the grouped subsets of features
as domains. As a domain is an integrated subset of quality dimensions, and the
quality dimensions are the subset of the initialised features, the first step is to
determine a subset of informative features. This determination is performed by
applying feature selection methods. Before explaining these methods, the for-
mal definitions of a quality dimension and a domain is recalled. As mentioned
before, these definitions are reshaped in a novel manner to be utilised in the
task of semantic inference.

Definition 3.2. A quality dimension qX ∈ Q is a triple 〈Hq, Iq,μq〉, which
corresponds to a selected feature X ∈ F. Hq is the linguistic name of the quality
dimension qX, which is equal to HX and Iq indicates the range of possible
values for the quality dimension qX, which is equal to IX. μq is defined as a
family of fuzzy membership functions2 to map the subintervals of Iq onto a set
of linguistic terms.

Definition 3.3. A domain δ is a triple 〈Q(δ),C(δ),ωδ〉, where Q(δ) ⊂ Q is the
set of integral quality dimensions involved in δ, C(δ) ⊂ C is the set of concepts
that are represented in δ, and ω(δ) is a weight function3 presenting the assigned
salient weight between a concept and a quality dimension in δ.

2More details on the fuzzy membership functions μ, which quantify the changes in the val-
ues of a feature by assigning linguistic labels to the subintervals of dimension, will be given in
Section 4.2.1.

3The weight function ω(δ) is further explained in Section 3.1.2.
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Example 3.2. Consider the leaf data set from Example 3.1, suppose that a qual-
ity dimension is elongation, which is defined as qel = 〈 ‘elongation’, [0, 1],
μel〉, and another one is lobedness, defined as qlo = 〈 ‘lobedness’, (0, inf),
μlo〉. One can conceptualise the leaves in various domains such as Shape, Tex-
ture, Colour, etc. Then, both the elongation and lobedness quality dimensions
can belong to the shape domain. Moreover, μel can return the linguistic labels
for elongation as: ‘circular’, ‘elliptical’, ‘elongated’.

Since the domains are constructed in a data-driven way without involv-
ing prior knowledge, it can be difficult to assign a semantic interpretation to
the constructed domains that reflect human perception. However, the provided
space still constitutes a conceptual one because of its ability to represent the
concept formation and the semantic similarities between concepts and instances
across the domains [87]. With quality dimensions in place, domain is then an
integral subset of quality dimensions which are relevant to each other.

Identifying the most characteristic features of the data from the initialised
set of features is an essential task, which is performed by feature extraction
approaches [42]. There are two principal ways to extract informative features:
feature transformation and feature selection [110]. The first approach finds
a projection from the original feature space into a lower dimensional feature
space. Transforming the original features into this lower dimensional space al-
ters typically any associated descriptive attributes connected to the features.
Therefore, the semantic meaning of the resulting features is often difficult, if
not impossible, to assess [109]. The second approach selects a subset of origi-
nal features by keeping relevant features and discarding the irrelevant ones. The
retained features are not altered and the original semantic meaning of those fea-
tures stays intact. Since the goal is to exploit external knowledge of the original
features, feature subset selection techniques are applied.

Both relevance, and redundancy are important criteria to consider in feature
selection. A subset of features is optimal if the relevance between selected fea-
tures and the target classes is maximal, and the redundancy among the selected
features is minimal. These two criteria guarantee that the selected features are
adequate to distinguish the classes of data with the smallest number of fea-
tures [75].

The proposed approach employs feature selection methods to specify the
quality dimensions and domains using two phases: feature subset ranking and
feature subset grouping. The feature subset ranking phase determines which
features are most representative for every single target class, independent from
other classes. Since a concept can rather be represented by one or several groups
of features as domains, the feature subset grouping phase categorises the ranked
features in a way to recognise what subset of features are most related to each
other based on their relevancy to the concepts.

Figure 3.2 shows the two phases of (1) feature subset ranking and (2) fea-
ture subset grouping, along with the input and output parameters, to specify
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Figure 3.2: Two phases of the domain and quality dimension specification, with
input and output parameters of each phase.

the suitable quality dimensions within a set of domains (the middle block in
Figure 3.1). The following sections explain these two phases in details.

3.1.1 Feature Subset Ranking

Feature subset selection algorithms are categorized as either filter methods or
wrapper methods [230]. Filter methods determine the subset of features based
on the statistical characteristics of the input data set without referring to the
used classifier. Wrapper methods are dependent on the learning algorithm (i.e.,
target classifier) that evaluates the selected subset of features based on the per-
formance of the used learning algorithm. In the present work, the aim is to
identify the meaningful set of understandable attributes out of predefined fea-
tures, but not to classify the input data. Filter methods are chosen to be used
for feature selection since this category of methods is independent of the final
classifier approach, and it derives an informative subset of features concerning
the input data set labels. It is worth to note that although the filter methods are
more computationally efficient, the evaluation of such methods is not a trivial
task [230] since there is no universally accepted relevance measure between a
subset of selected features and the target class labels.

Filter methods rank the features using a scoring function, usually by em-
ploying a statistical measure or the measures from information theory to quan-
tify relevance and redundancy. The top scored features are kept as selected
features (or low scored ones are removed from the resulting subset). In this
work, mutual information, one of the commonly employed scoring functions,
is used [47]. One such technique is MIFS (mutual information-based feature
selection) [34]. For an input set of features F and 2-class labelled data D, MIFS
adds the feature Xi ∈ F to the already chosen subset of features F ′, to maximise

I(D,Xi) − β
∑

Xj∈F ′
I(Xi,Xj), (3.1)
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isused[47].OnesuchtechniqueisMIFS(mutualinformation-basedfeature
selection)[34].ForaninputsetoffeaturesFand2-classlabelleddataD,MIFS
addsthefeatureXi∈FtothealreadychosensubsetoffeaturesF′,tomaximise
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Xj∈F′

I(Xi,Xj),(3.1)
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where I(Y,X) is the mutual information between the variables Y and X [223].
This mutual information is defined based on the probability density func-
tions [65], denoted by:

I(X, Y) =
∫
x

∫
y

p(x,y) log
p(x,y)
p(x)p(y)

dydx. (3.2)

The first term in Equation 3.1 attempts to maximise the relevance of feature
Xi to target labelled data, and the second term tries to minimise the redundancy
between Xi and the already selected features in F ′ (using a balancing parameter
β). In this work, the term I(Y,X) is estimated via histograms, but other estima-
tion methods are applicable as well [196]. The MIFS technique is a heuristic
approximation, since there is no independent assessment of the joint mutual
information to determine when a feature is relevant to the class labels [223].
The proposed method is not dependent on the use of the MIFS algorithm. It
can be substituted by other approximations of the joint mutual information
[48, 80, 171]. It is notable that different filter methods do not necessarily pro-
duce the same ranking of the features. However, the focus here is to reach to
a good enough set of features representing the data classes with high relevance
and low redundancy [228].

The proposed method for feature subset ranking starts with defining a new
set of input data for each target label y, wherein the data set of known observa-
tions D is split into two classes: class y including all the observations labelled
by class y, denoted by Dy, and class y = {Y\y} including the rest of obser-
vations labelled by other classes than class y, denoted by Dy. Then the MIFS
procedure is applied to the feature set F considering the generated 2-class data
set Dyy = {Dy ∪Dy}.

Example 3.3. In the leaf data set from Example 3.1, for the class of the leaf
species Tilia (ytt), the set of Dytt is the leaf samples in Dl that are labelled
with ytt, and Dytt

is the set of samples in Dl that are not labelled with ytt, or
consequently, are labelled with one of the labels yqr, yap, or yia.

By separating one class (concept) of data from the other classes, the out-
put of the feature ranking algorithm will return the features that individually
characterise the observations of this concept and separate it from the rest. The
output of the filter method for each label is a sorted list of features with a score
for each feature. Formally, the output for a class y is a ranked list of features
with the highest scores according to y, as

R(y) = { (X,wy,X) | X ∈ F , wy,X ∈ [0, 1] } (3.3)

where wy,X is the normalised weight (or the score) that is assigned to the re-
lation of feature X and label y. The features in R(y) are the k most relevant
features of the class label y. From a conceptual point of view, these k features
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Algorithm 3.1: Feature Subset Ranking

Function FeatureRanking(D,Y,F)
R,F ′ ← ∅
foreach y ∈ Y do

// Define 2-class data set
Dy = {oi : (xi,yi) ∈ D | yi = y}

Dy = {oi : (xi,yi) ∈ D | yi 	= y}

Dyy ← Dy ∪Dy

// Find the list of top scored features (X,wy,X)
R(y) ← MIFS(Dyy,F)
F ′ ← F ′ ∪ {X | ∃ (X,wy,X) ∈ R(y)∧ X ∈ F,w ∈ [0, 1]}

return R, F ′

of R(y) are the suitable candidates to be the quality dimensions that distin-
guishes the concept Cy from the other concepts. The score wy,X determines
the importance of the selected feature X to represent the class label y. From
the conceptual space point of view, the scores indicating the weights show the
significance of the chosen quality dimensions for Cy.

Algorithm 3.1 shows the steps for finding the ranked scored list of features
for each label y. The output of the algorithm is then a set of filter method results
for all the class labels, denoted by R = {R(y1), . . . ,R(ym)}. In this algorithm,
F ′ is the set of all features that appeared (at least once) in the ranked features:

F ′ =
⋃
y∈Y

{X| ∃ (X,wy,X) ∈ R(y)∧ X ∈ F,wy,X ∈ [0, 1]}, (3.4)

where F ′ ⊂ F. The set of features F ′ is the set of potential features to become
quality dimensions. However, in feature grouping, some of these features may
be filtered out from the target set of quality dimensions.

Example 3.4. Continuing of the leaf data set in Example 3.1, suppose that
after applying the MIFS method, elongation, lobedness, and roundness are
selected as the top features for ytt, R(ytt) = {(Xel,wytt,Xel), (Xlo,wytt,Xlo),
(Xro,wytt,Xro)}. Also, elongation, roundness, and indentation are selected for
yno, R(yno) = {(Xel,wyno,Xel), (Xro,wyno,Xro), (Xin,wyno,Xin)}. Then, F ′ =
{Xel,Xlo,Xro,Xin}.

3.1.2 Feature Subset Grouping

In order to specify a set of domains as subsets of integral quality dimensions
out of selected features, the method should partition features into a number
of subsets regarding their relevancy to the defined class labels. Based on the
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Algorithm3.1:FeatureSubsetRanking

FunctionFeatureRanking(D,Y,F)
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returnR,F′

ofR(y)arethesuitablecandidatestobethequalitydimensionsthatdistin-
guishestheconceptCyfromtheotherconcepts.Thescorewy,Xdetermines
theimportanceoftheselectedfeatureXtorepresenttheclasslabely.From
theconceptualspacepointofview,thescoresindicatingtheweightsshowthe
significanceofthechosenqualitydimensionsforCy.

Algorithm3.1showsthestepsforfindingtherankedscoredlistoffeatures
foreachlabely.Theoutputofthealgorithmisthenasetoffiltermethodresults
foralltheclasslabels,denotedbyR={R(y1),...,R(ym)}.Inthisalgorithm,
F′isthesetofallfeaturesthatappeared(atleastonce)intherankedfeatures:

F′=⋃
y∈Y

{X|∃(X,wy,X)∈R(y)∧X∈F,wy,X∈[0,1]},(3.4)

whereF′⊂F.ThesetoffeaturesF′isthesetofpotentialfeaturestobecome
qualitydimensions.However,infeaturegrouping,someofthesefeaturesmay
befilteredoutfromthetargetsetofqualitydimensions.

Example3.4.ContinuingoftheleafdatasetinExample3.1,supposethat
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yno,R(yno)={(Xel,wyno,Xel),(Xro,wyno,Xro),(Xin,wyno,Xin)}.Then,F′=
{Xel,Xlo,Xro,Xin}.

3.1.2FeatureSubsetGrouping

Inordertospecifyasetofdomainsassubsetsofintegralqualitydimensions
outofselectedfeatures,themethodshouldpartitionfeaturesintoanumber
ofsubsetsregardingtheirrelevancytothedefinedclasslabels.Basedonthe
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definitions in conceptual space theory, a quality dimension usually appears in
a single domain along other relevant dimensions to represent a specific aspect
of conceptualised observations [86,242]. It might be possible to have the same
dimension in various domains, but this requires a priori knowledge [31]. More-
over, repeating dimensions in a multi-domain space increases the redundancy,
and consequently decreases the accuracy of learning concepts. Therefore, the
selected features are divided into distinct partitions of features as target do-
mains, to avoid either creating a single domain of full features or repeating
features in all of the constructed domains.

Here, a heuristic method is proposed to detect distinct subsets of features,
where the features in each subset are highly representative of the most relevant
classes. The output set R in Algorithm 3.1 is a set of ranked features for each
label. It is obvious that some features might be repeated in the ranked set of
different class labels in R. From the information in the set R, the goal is to
extract those subsets of features that are associated with each other based on
their co-appearance in the ranked features of each class. This section first intro-
duces a graph representation of the label-feature relation, and then it explains
how to derive the correlated features using a greedy search on this graph. More
specifically, this approach proposes to build up a bipartite graph and search for
the bicliques that identify the most associated feature subsets (i.e., domains).

Let G = (VY ∪ VF ′ ,E,w) be a bipartite graph with two sets of vertices
VY and VF ′ , a set of edges E, and w : VY × VF ′ → IR as a weight function
for the edges. The vertex set VY denotes the class labels in Y. The vertex set
VF ′ denotes the top-ranked features in F ′. A vertex vy ∈ VY is connected to
a vertex vX ∈ VF ′ if X ∈ F ′ has been selected for y ∈ Y in Algorithm 3.1. In
other words, for each pair (X,wy,X) ∈ R(y) a new edge vyvX is added to the
edge set E of bipartite graph G between vertices vy and vX, where the weight
of the edge vyvX is denoted by w(vyvX) = wy,X. Figure 3.3 is an illustration of
such weighted bipartite graph G.

The idea of grouping features is to find the maximal connected subgraphs in
G. More precisely, a subset of features which are all connected to the same set of
classes is a suitable subset of features for feature grouping. A biclique Ĝ ⊂ G is
a special bipartite graph where every vertex in one part of vertices is connected
to all the vertices in the other part of the vertices. The highlighted edges in
Figure 3.3 depicts an example of a biclique in the given bipartite graph. Let Ĝ
be a biclique denoted by Ĝ = (V̂Y ∪ V̂F ′ , Ê,w), where V̂Y ⊂ VY, V̂F ′ ⊂ VF ′ .
In this biclique, assume |V̂Y| = m̂, |V̂F ′ | = n̂, thus |Ê| = m̂ × n̂. The proposed
approach is looking for a biclique with the highest score as Ĝmax among all the
bicliques in G. The score of a biclique Ĝ is calculated using a scoring function
ScoreĜ, based on the weights of its edges, as follows:

ScoreĜ =
∑

vy∈V̂Y

( ∏
vX∈V̂F ′

w(vyvX)
)
/ n̂ (3.5)
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definitionsinconceptualspacetheory,aqualitydimensionusuallyappearsin
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dimensioninvariousdomains,butthisrequiresaprioriknowledge[31].More-
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andconsequentlydecreasestheaccuracyoflearningconcepts.Therefore,the
selectedfeaturesaredividedintodistinctpartitionsoffeaturesastargetdo-
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featuresinalloftheconstructeddomains.

Here,aheuristicmethodisproposedtodetectdistinctsubsetsoffeatures,
wherethefeaturesineachsubsetarehighlyrepresentativeofthemostrelevant
classes.TheoutputsetRinAlgorithm3.1isasetofrankedfeaturesforeach
label.Itisobviousthatsomefeaturesmightberepeatedintherankedsetof
differentclasslabelsinR.FromtheinformationinthesetR,thegoalisto
extractthosesubsetsoffeaturesthatareassociatedwitheachotherbasedon
theirco-appearanceintherankedfeaturesofeachclass.Thissectionfirstintro-
ducesagraphrepresentationofthelabel-featurerelation,andthenitexplains
howtoderivethecorrelatedfeaturesusingagreedysearchonthisgraph.More
specifically,thisapproachproposestobuildupabipartitegraphandsearchfor
thebicliquesthatidentifythemostassociatedfeaturesubsets(i.e.,domains).

LetG=(VY∪VF′,E,w)beabipartitegraphwithtwosetsofvertices
VYandVF′,asetofedgesE,andw:VY×VF′→IRasaweightfunction
fortheedges.ThevertexsetVYdenotestheclasslabelsinY.Thevertexset
VF′denotesthetop-rankedfeaturesinF′.Avertexvy∈VYisconnectedto
avertexvX∈VF′ifX∈F′hasbeenselectedfory∈YinAlgorithm3.1.In
otherwords,foreachpair(X,wy,X)∈R(y)anewedgevyvXisaddedtothe
edgesetEofbipartitegraphGbetweenverticesvyandvX,wheretheweight
oftheedgevyvXisdenotedbyw(vyvX)=wy,X.Figure3.3isanillustrationof
suchweightedbipartitegraphG.

Theideaofgroupingfeaturesistofindthemaximalconnectedsubgraphsin
G.Moreprecisely,asubsetoffeatureswhichareallconnectedtothesamesetof
classesisasuitablesubsetoffeaturesforfeaturegrouping.AbicliqueĜ⊂Gis
aspecialbipartitegraphwhereeveryvertexinonepartofverticesisconnected
toalltheverticesintheotherpartofthevertices.Thehighlightededgesin
Figure3.3depictsanexampleofabicliqueinthegivenbipartitegraph.LetĜ
beabicliquedenotedbyĜ=(V̂Y∪V̂F′,Ê,w),whereV̂Y⊂VY,V̂F′⊂VF′.
Inthisbiclique,assume|V̂Y|=m̂,|V̂F′|=n̂,thus|Ê|=m̂×n̂.Theproposed
approachislookingforabicliquewiththehighestscoreasĜmaxamongallthe
bicliquesinG.ThescoreofabicliqueĜiscalculatedusingascoringfunction
ScoreĜ,basedontheweightsofitsedges,asfollows:

ScoreĜ=∑
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of conceptualised observations [86,242]. It might be possible to have the same
dimension in various domains, but this requires a priori knowledge [31]. More-
over, repeating dimensions in a multi-domain space increases the redundancy,
and consequently decreases the accuracy of learning concepts. Therefore, the
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the bicliques that identify the most associated feature subsets (i.e., domains).
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Figure 3.3: A weighted bipartite graph with two sets of vertices from the labels
Y and the selected features F ′. Also, an example of a biclique shown in the
highlighted edges.

This scoring function calculates the average of the weights associated with
the biclique. This scoring function will return higher values for the bicliques
with the higher number of class labels, and lower number of features4.

In the selected biclique (Ĝmax), the involved features V̂F ′ then will be the
subset of features as the quality dimensions of a domain δ. To identify the
next domain, the set of features V̂F ′ is eliminated from the graph G since these
features are already assigned to a domain. After that, the process of finding the
best biclique repeats on the updated graph G to find the next maximal biclique.
Algorithm 3.2 shows the steps of determining the domains with feature subset
grouping.

As stated in Definition 3.3, a domain δ is a triple 〈 Q(δ),C(δ),ωδ 〉. The
weight function ωδ = C(δ) × Q(δ) → IR is a function presenting the as-
signed salient weight between a concept Cy ∈ Y(δ) and a quality dimension
qX ∈ Q(δ). For a chosen biclique Ĝmax = (V̂Y ∪ V̂F ′ , Ê,w), a domain δ can
be constructed as a triple 〈 Q(δ),C(δ),ωδ 〉 = 〈 V̂F ′ , V̂Y,w 〉. More specifically,
for a constructed domain δ = 〈 Q(δ),C(δ),ωδ 〉, the set of quality dimensions
is Q(δ) = {qX | vX ∈ V̂F ′ }. Also, the set of concepts related to δ is defined as
C(δ) = {Cy | vy ∈ V̂Y}. Then ωδ(Cy,qX) = w(vyvX).

It is worth noting that for the next iteration of finding bicliques, the ver-
tices with the labels V̂Y of a chosen biclique are not eliminated while updating
the bipartite graph, because a class label can be involved in other bicliques in
further iterations. From a conceptual space point of view, it is also meaningful,
since a concept can be represented in several domains.

Example 3.5. The corresponding bipartite graph to the ranked features from
Example 3.4 is illustrated in Figure 3.4. In this bipartite graph, one biclique is
highlighted, which can potentially be the best biclique. If so, then the features
elongation and roundness will become the quality dimensions of a new domain
δ as: Q(δ) = {qel, qro} and C(δ) = {Ctt,Cno}.

4Assume that all the weights of the edges in a biclique Ĝ are equal to a constant weight wc.
Then Score

Ĝ
= m̂

n̂ (wc)
n̂.
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Figure3.3:Aweightedbipartitegraphwithtwosetsofverticesfromthelabels
YandtheselectedfeaturesF′.Also,anexampleofabicliqueshowninthe
highlightededges.

Thisscoringfunctioncalculatestheaverageoftheweightsassociatedwith
thebiclique.Thisscoringfunctionwillreturnhighervaluesforthebicliques
withthehighernumberofclasslabels,andlowernumberoffeatures4.

Intheselectedbiclique(Ĝmax),theinvolvedfeaturesV̂F′thenwillbethe
subsetoffeaturesasthequalitydimensionsofadomainδ.Toidentifythe
nextdomain,thesetoffeaturesV̂F′iseliminatedfromthegraphGsincethese
featuresarealreadyassignedtoadomain.Afterthat,theprocessoffindingthe
bestbicliquerepeatsontheupdatedgraphGtofindthenextmaximalbiclique.
Algorithm3.2showsthestepsofdeterminingthedomainswithfeaturesubset
grouping.

AsstatedinDefinition3.3,adomainδisatriple〈Q(δ),C(δ),ωδ〉.The
weightfunctionωδ=C(δ)×Q(δ)→IRisafunctionpresentingtheas-
signedsalientweightbetweenaconceptCy∈Y(δ)andaqualitydimension
qX∈Q(δ).ForachosenbicliqueĜmax=(V̂Y∪V̂F′,Ê,w),adomainδcan
beconstructedasatriple〈Q(δ),C(δ),ωδ〉=〈V̂F′,V̂Y,w〉.Morespecifically,
foraconstructeddomainδ=〈Q(δ),C(δ),ωδ〉,thesetofqualitydimensions
isQ(δ)={qX|vX∈V̂F′}.Also,thesetofconceptsrelatedtoδisdefinedas
C(δ)={Cy|vy∈V̂Y}.Thenωδ(Cy,qX)=w(vyvX).

Itisworthnotingthatforthenextiterationoffindingbicliques,thever-
ticeswiththelabelsV̂Yofachosenbicliquearenoteliminatedwhileupdating
thebipartitegraph,becauseaclasslabelcanbeinvolvedinotherbicliquesin
furtheriterations.Fromaconceptualspacepointofview,itisalsomeaningful,
sinceaconceptcanberepresentedinseveraldomains.

Example3.5.Thecorrespondingbipartitegraphtotherankedfeaturesfrom
Example3.4isillustratedinFigure3.4.Inthisbipartitegraph,onebicliqueis
highlighted,whichcanpotentiallybethebestbiclique.Ifso,thenthefeatures
elongationandroundnesswillbecomethequalitydimensionsofanewdomain
δas:Q(δ)={qel,qro}andC(δ)={Ctt,Cno}.

4AssumethatalltheweightsoftheedgesinabicliqueĜareequaltoaconstantweightwc.
ThenScoreĜ=

m̂
n̂(wc)

n̂
.
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features are already assigned to a domain. After that, the process of finding the
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Algorithm 3.2 shows the steps of determining the domains with feature subset
grouping.
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weight function ωδ = C(δ) × Q(δ) → IR is a function presenting the as-
signed salient weight between a concept Cy ∈ Y(δ) and a quality dimension
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the bipartite graph, because a class label can be involved in other bicliques in
further iterations. From a conceptual space point of view, it is also meaningful,
since a concept can be represented in several domains.

Example 3.5. The corresponding bipartite graph to the ranked features from
Example 3.4 is illustrated in Figure 3.4. In this bipartite graph, one biclique is
highlighted, which can potentially be the best biclique. If so, then the features
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Algorithm 3.2: Feature Subset Grouping

Function FeatureGrouping(R, F ′, Y)
Δ,Q ← ∅
// Build bipartite graph
VY ← Y

VF ′ ← F ′

foreach (X,wy,X) ∈ R(y) : y ∈ Y do
E ← E ∪ vyvX
w(vyvX) ← wy,X

G = (VY ∪ VF ′ ,E,w)
// Find max cliques as domains
do

Ĝmax(V̂Y ∪ V̂F ′ , Ê,w) ← MaxBiclique(G)

if Ĝmax = ∅ then
break

δ : 〈 Q(δ),C(δ),ωδ 〉 ← 〈V̂F ′ , V̂Y,w〉
Δ ← Δ ∪ δ

Q ← Q ∪ Q(δ)
// Update bipartite graph
G ← (

VY ∪ (VF ′\V̂F ′), (E\Ê),w
)

until (Q = F ′)
return Δ, Q

So far, a methodology to extract domains including their distinct quality
dimensions out of a given data set of observations and features is introduced.
Now, each class or label of the observations needs to be represented as concepts
in the proposed conceptual space.

3.2 Concept Representation: An Instance-based

Approach

The vital concern to represent a concept in a conceptual space is to decide
which are the most relevant quality dimensions and consequently most relevant
domains. A concept may be represented in one domain or several domains. An
important point is that a concept is not necessarily associated with a certain
subset of domains5, but usually, one domain or a few numbers of domains are
prominent to represent a concept [86]. In Section 3.1, the selected features are
grouped into a set of domains out of the extracted bicliques. Using the fact

5For example, the concept of ‘apple’ is mainly represented by colour, texture, and shape do-
mains. But it can be associated with further biological features and domains.
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do
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break
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until(Q=F′)
returnΔ,Q

Sofar,amethodologytoextractdomainsincludingtheirdistinctquality
dimensionsoutofagivendatasetofobservationsandfeaturesisintroduced.
Now,eachclassorlabeloftheobservationsneedstoberepresentedasconcepts
intheproposedconceptualspace.

3.2ConceptRepresentation:AnInstance-based

Approach

Thevitalconcerntorepresentaconceptinaconceptualspaceistodecide
whicharethemostrelevantqualitydimensionsandconsequentlymostrelevant
domains.Aconceptmayberepresentedinonedomainorseveraldomains.An
importantpointisthataconceptisnotnecessarilyassociatedwithacertain
subsetofdomains5,butusually,onedomainorafewnumbersofdomainsare
prominenttorepresentaconcept[86].InSection3.1,theselectedfeaturesare
groupedintoasetofdomainsoutoftheextractedbicliques.Usingthefact

5Forexample,theconceptof‘apple’ismainlyrepresentedbycolour,texture,andshapedo-
mains.Butitcanbeassociatedwithfurtherbiologicalfeaturesanddomains.
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Figure 3.4: A bigraph graph and one selected biclique (blue edges) for the leaf
example (explained in Example 3.5).

that each class label will be involved in at least one selected biclique, then the
corresponding concept is assigned to (or associated with) a certain number of
domains (at least one). With the output of Algorithm 3.2 it is already known
which concepts are associated with which domains.

Example 3.6. For the selected biclique Ĝ in Figure 3.4, the concepts Ctt and
Cno are associated with a generated domain δi including the quality dimensions
qel and qro.

It is possible that one concept appears in two bicliques, which means the
concept is relevant to both specified domains. This fact is consistent with the
conceptual spaces theory since a concept is not always represented within a sin-
gle domain. The common example is the concept of ‘apple’ which is represented
with more than a single domain, such as colour, taste, size, etc. A concept with
merely one related domain is called property [86]. In fact, a property is a spe-
cial form of a concept defined in a single domain [91]. For example, the colour
‘green’ is a property which is represented only in the colour domain. Thus, a
concept can be specified as a single property within a single domain (e.g., green),
or as a collection of properties within several domains (e.g., apple). Depending
on the domain specification process, a class label in the input data set might
be represented either as a property in one domain or as a concept in several
domains. The problem of deriving the domains in a data-driven manner is that
for a concept represented in several domains, there is no trivial interpretation
for the meaning of its properties within the domains. This issue comes from the
fact that the interpretation of the data-driven domains themselves is also tricky.

For a set of concepts C = {Cy1 , . . . ,Cyn
}, the problem is how to formulate

the geometrical representation of concepts in the conceptual space with the
extracted set of domains Δ. In general, a natural concept is a collection of
regions across one or more domains along with a set of salient weights to the
domains [86]. For a concept Cy, let Δ(y) ∈ Δ be a subset of domains that
contain concept Cy in their concept sets, as Δ(y) = {δi| δi ∈ Δ ∧ Cy ∈ C(δi)},
assuming that |Δ(y)| = k. The concept Cy is presented by a collection of sub-
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Figure3.4:Abigraphgraphandoneselectedbiclique(blueedges)fortheleaf
example(explainedinExample3.5).
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conceptualspacestheorysinceaconceptisnotalwaysrepresentedwithinasin-
gledomain.Thecommonexampleistheconceptof‘apple’whichisrepresented
withmorethanasingledomain,suchascolour,taste,size,etc.Aconceptwith
merelyonerelateddomainiscalledproperty[86].Infact,apropertyisaspe-
cialformofaconceptdefinedinasingledomain[91].Forexample,thecolour
‘green’isapropertywhichisrepresentedonlyinthecolourdomain.Thus,a
conceptcanbespecifiedasasinglepropertywithinasingledomain(e.g.,green),
orasacollectionofpropertieswithinseveraldomains(e.g.,apple).Depending
onthedomainspecificationprocess,aclasslabelintheinputdatasetmight
berepresentedeitherasapropertyinonedomainorasaconceptinseveral
domains.Theproblemofderivingthedomainsinadata-drivenmanneristhat
foraconceptrepresentedinseveraldomains,thereisnotrivialinterpretation
forthemeaningofitspropertieswithinthedomains.Thisissuecomesfromthe
factthattheinterpretationofthedata-drivendomainsthemselvesisalsotricky.

ForasetofconceptsC={Cy1,...,Cyn},theproblemishowtoformulate
thegeometricalrepresentationofconceptsintheconceptualspacewiththe
extractedsetofdomainsΔ.Ingeneral,anaturalconceptisacollectionof
regionsacrossoneormoredomainsalongwithasetofsalientweightstothe
domains[86].ForaconceptCy,letΔ(y)∈Δbeasubsetofdomainsthat
containconceptCyintheirconceptsets,asΔ(y)={δi|δi∈Δ∧Cy∈C(δi)},
assumingthat|Δ(y)|=k.TheconceptCyispresentedbyacollectionofsub-
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Figure 3.4: A bigraph graph and one selected biclique (blue edges) for the leaf
example (explained in Example 3.5).
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Algorithm 3.3: Concept Representation

Input: Dy ⊂ D: set of observations that are labelled by y ∈ Y and
Δ(y) ⊆ Δ: domains that contain Cy in their concept sets.

Output: A Concept Cy = {c1
y, . . . , cky}, representing label y in the

conceptual space.
foreach o ∈ Dy do

γo ← Vectorise(o,Δ(y),Q) // determine p1
γ, . . . ,pk

γ in δ1, ..., δk
Γ(y) ← Γ(y) ∪ γo

foreach δi ∈ Δ(y) // δi = 〈Q(δi),C(δi),ωδi
〉 , 1 � i � k

do
ciy ← ∅
foreach γ ∈ Γ(y) do

Pi
y ← Pi

y ∪ {pi
γ}

η ← ConvexHull(Pi
y)

φ ← {ωδi
(Cy,qi)|Cy ∈ C(δi),qi ∈ Q(δi)}

ciy ← 〈η,φ〉
Cy ← Cy ∪ ciy

concepts, denoted: Cy = {c1
y, . . . , cky}, where each ciy is the representation of

Cy within the domain δi ∈ Δ(y)6.

Definition 3.4. A sub-concept ciy, representing the concept Cy in the domain
δi, is defined as a tuple 〈η,φ〉, where η is the region representing the geometrical
area of Cy in the domain δi, and φ is a set of weights indicating the assigned
degrees of salience between Cy and each quality dimension q ∈ Q(δi).

In order to represent a concept, the representation of its sub-concepts is de-
fined. The following two sections describe the way to formally represent a con-
cept, by defining its regions and its set of weights, respectively. Algorithm 3.3
shows the steps of the concept representation, with the required parameters to
represent a concept Cy.

3.2.1 Convex Regions of Concepts

The identification of the geometrical regions of concepts is based on the loca-
tion of the known observations. The concept Cy ∈ C is represented using the
subset of observations Dy = {o1,o2, . . . ,ony

} which are labelled with y ∈ Y.
The set of instances Γ(y) is defined related to the observations in Dy, denoted

6 If a concept is associated with only one domain, then the representation of the concept is in
fact equivalent to the representation of its sub-concept in that domain.
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Algorithm3.3:ConceptRepresentation

Input:Dy⊂D:setofobservationsthatarelabelledbyy∈Yand
Δ(y)⊆Δ:domainsthatcontainCyintheirconceptsets.

Output:AConceptCy={c1
y,...,c

k
y},representinglabelyinthe

conceptualspace.
foreacho∈Dydo

γo←Vectorise(o,Δ(y),Q)//determinep1
γ,...,p

k
γinδ1,...,δk

Γ(y)←Γ(y)∪γo

foreachδi∈Δ(y)//δi=〈Q(δi),C(δi),ωδi〉,1�i�k

do
c
i
y←∅

foreachγ∈Γ(y)do
P
i
y←P

i
y∪{p

i
γ}

η←ConvexHull(P
i
y)

φ←{ωδi(Cy,q
i
)|Cy∈C(δi),q

i
∈Q(δi)}

c
i
y←〈η,φ〉
Cy←Cy∪c

i
y

concepts,denoted:Cy={c1
y,...,c

k
y},whereeachc

i
yistherepresentationof

Cywithinthedomainδi∈Δ(y)6.

Definition3.4.Asub-conceptc
i
y,representingtheconceptCyinthedomain

δi,isdefinedasatuple〈η,φ〉,whereηistheregionrepresentingthegeometrical
areaofCyinthedomainδi,andφisasetofweightsindicatingtheassigned
degreesofsaliencebetweenCyandeachqualitydimensionq∈Q(δi).

Inordertorepresentaconcept,therepresentationofitssub-conceptsisde-
fined.Thefollowingtwosectionsdescribethewaytoformallyrepresentacon-
cept,bydefiningitsregionsanditssetofweights,respectively.Algorithm3.3
showsthestepsoftheconceptrepresentation,withtherequiredparametersto
representaconceptCy.

3.2.1ConvexRegionsofConcepts

Theidentificationofthegeometricalregionsofconceptsisbasedontheloca-
tionoftheknownobservations.TheconceptCy∈Cisrepresentedusingthe
subsetofobservationsDy={o1,o2,...,ony}whicharelabelledwithy∈Y.
ThesetofinstancesΓ(y)isdefinedrelatedtotheobservationsinDy,denoted

6Ifaconceptisassociatedwithonlyonedomain,thentherepresentationoftheconceptisin
factequivalenttotherepresentationofitssub-conceptinthatdomain.
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δi, is defined as a tuple 〈η,φ〉, where η is the region representing the geometrical
area of Cy in the domain δi, and φ is a set of weights indicating the assigned
degrees of salience between Cy and each quality dimension q ∈ Q(δi).

In order to represent a concept, the representation of its sub-concepts is de-
fined. The following two sections describe the way to formally represent a con-
cept, by defining its regions and its set of weights, respectively. Algorithm 3.3
shows the steps of the concept representation, with the required parameters to
represent a concept Cy.

3.2.1 Convex Regions of Concepts

The identification of the geometrical regions of concepts is based on the loca-
tion of the known observations. The concept Cy ∈ C is represented using the
subset of observations Dy = {o1,o2, . . . ,ony

} which are labelled with y ∈ Y.
The set of instances Γ(y) is defined related to the observations in Dy, denoted

6 If a concept is associated with only one domain, then the representation of the concept is in
fact equivalent to the representation of its sub-concept in that domain.
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fined.Thefollowingtwosectionsdescribethewaytoformallyrepresentacon-
cept,bydefiningitsregionsanditssetofweights,respectively.Algorithm3.3
showsthestepsoftheconceptrepresentation,withtherequiredparametersto
representaconceptCy.

3.2.1ConvexRegionsofConcepts

Theidentificationofthegeometricalregionsofconceptsisbasedontheloca-
tionoftheknownobservations.TheconceptCy∈Cisrepresentedusingthe
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by Γ(y) = {γ1,γ2, . . . ,γny
}. These instances then specify the geometrical repre-

sentation of the concept Cy as a set of regions within the domains. The set of
all instances Γ in a conceptual space S is defined as: Γ =

⋃
y∈Y Γ(y).

Definition 3.5. An instance γ related to the concept Cy is a finite set of n-
dimensional points γ = {p1

γ, . . . ,pk
γ} with a one-to-one mapping from the in-

stance points to the domains Δ(y), where |Δ(y)| = |Cy| = k.

An instance γo ∈ Γ(y) is the representation of the observation o ∈ Dy. The
points of γo are basically the values of the associated quality dimensions, which
are stored in the feature vector xo. Formally, each point pi

γ ∈ γo in a domain
δi ∈ Δ(y) is a numeric vector of the values of the quality dimensions in δi,
denoted: pi

γ =< q1(γo), . . . ,q|Q(δi)|(γo) >, which is a sub-vector of the feature
vector xo that includes the features associated with the quality dimensions in
Q(δi). This process of determining the points of an instance γo using the feature
vector of the observation o is called vectorisation.

Since all the instances with the label y have a point pi in domain δi ∈ Δ(y),
to identify the convex region η of a sub-concept ciy, it is necessary to know
the location of all these points in the domain. Let Pi

y be the collection of all
the points which their corresponding instances are labelled by y, and these
points are located in domain δi. So, Pi

y = {pi
γ1

,pi
γ2

, . . . ,pi
γny

}, where pi
γj

∈ γj,
γj ∈ Γ(y), and j = 1...ny.

Example 3.7. Figure 3.5a consists of two domains δa and δb with two and
three quality dimensions, respectively. Assume a concept Cy has two sub-
concepts cay and cby within these domains. So, each instance γj ∈ Γ(y) includes
two points pa

j and pb
j located in the domains. Figure 3.5a depicts the set of

points Pa
y and Pb

y, which will be used to represent sub-concepts cay and cby,
respectively.

The convexity, connectedness, and betweenness are the geometrical criteria
required to define a region for a concept in the theory of conceptual spaces [86].
The convexity of concepts is crucial to facilitate the learnability of concepts
through the instances [90]. Also, with the convexity, this approach satisfies the
notion of betweenness notion as an essential relation of observations in a same
region. So, if two observations of a concept are located at points p1 and p2,
then any instance located between p1 and p2 also belongs to the same con-
cept [86]. A convex region is a geometric structure within a multidimensional
domain which satisfies convexity and connectedness criteria. There are various
approaches to identify the convex region covering a set of giving points, such
as convex hull and Voronoi tessellations algorithms, or defining an ellipsoid
around the points [9, 86]. For the purpose of this work, the convex hull (CH)
is a more convenient choice among others, because it also satisfies the between-
ness criterion. Since the concepts’ regions are formed by its instances, both
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byΓ(y)={γ1,γ2,...,γny}.Theseinstancesthenspecifythegeometricalrepre-
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requiredtodefinearegionforaconceptinthetheoryofconceptualspaces[86].
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throughtheinstances[90].Also,withtheconvexity,thisapproachsatisfiesthe
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cept[86].Aconvexregionisageometricstructurewithinamultidimensional
domainwhichsatisfiesconvexityandconnectednesscriteria.Therearevarious
approachestoidentifytheconvexregioncoveringasetofgivingpoints,such
asconvexhullandVoronoitessellationsalgorithms,ordefininganellipsoid
aroundthepoints[9,86].Forthepurposeofthiswork,theconvexhull(CH)
isamoreconvenientchoiceamongothers,becauseitalsosatisfiesthebetween-
nesscriterion.Sincetheconcepts’regionsareformedbyitsinstances,both
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then any instance located between p1 and p2 also belongs to the same con-
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ellipsoid and Voronoi regions assign some points of the space to a concept’s
region, which are not necessarily between the concept’s known instances.

For a sub-concept ciy, the convex region η is defined as the convex hull (i.e.,
convex polytope) of the points in Pi

y, as: η(ciy) = CH(Pi
y).

Example 3.8. Figure 3.5b shows the convex regions of the sub-concepts cay and
cby. The convex hull η(cay) is a 2D polygon in δa, and η(cby) is a 3D polytope in
δb. These convex hulls are calculated based on the points Pa

y and Pb
y from the

instances in Γ(y) in Figure 3.5a.

(a) Instances in Γ(y) and their corresponding set of points, Pa
y and Pb

y.

(b) Convex regions of the sub-concepts cay and cby.

Figure 3.5: A concept representation example in a conceptual space with do-
mains δa and δb.
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3.2.2 Context-dependent Weights of Concepts

Depending on the context, the salience given to various aspects of a concept
may vary [86]. In the example of the apple concept, in one context the taste
domain might be more prominent, but in another context, shape domain can
be salient. In contrast, in such examples of concepts that there is no common
knowledge about the salience of the domains in various concepts, the data it-
self determines the salience of domains and quality dimensions and defines the
context-based weights for the concepts. In other words, the observations from
different contexts define which domain and quality dimensions are more im-
portant to represent the given concepts.

Example 3.9. For the example of leaf data set, suppose that shape and colour
are the domains, and suppose that one wants to differ between the contexts
of Swedish leaves and Japanese leaves. Knowing the common-sense knowledge
about these contexts might be useless to determine the weights of the domains
and dimensions. However, based on the observed data in each of these contexts,
one can realise that e.g., the quality dimensions in the shape domain are more
salient rather than the colour domain to represent the Swedish leaves, but this
inference may not be necessarily valid for Japanese leaves.

These relative degrees of salience assigned to the dimensions of the domains
implicitly represent the notion of context. Here, the context-dependent weights
are already embedded in the representation by calculating the relevance of qual-
ity dimensions to the concepts (i.e., the weights of the bipartite graph) while
specifying the domains. The salient weights φ for a sub-concept ciy come from
the assigned weights ωδi

in δi between Cy ∈ C(δi) and the any quality dimen-
sion in Q(δi). Formally:

φ(ciy) = {ωδi
(Cy,qi) | Cy ∈ C(δi), qi ∈ Q(δi)}. (3.6)

So, each sub-concept has its own set of weights in relation to the do-
main’s quality dimensions. This point individualises the definition of context-
dependent weights from the definition of context weights in other developed
conceptual spaces. In other conceptual spaces, a set of overall weights is as-
signed to the domains without considering the role. But here, for two indepen-
dent sub-concepts, the assigned weights in the same domain might vary.

3.3 Discussion

This chapter has introduced a data-driven construction of conceptual spaces
from known observations in a given numeric data set. The framework proposed
here has employed machine learning algorithms for the task of identifying rel-
evant features and concepts in a numerical data set, to shape the domains and
quality dimensions of a conceptual space. It has been argued that a set of se-
lected and grouped features that provide discrimination between concepts are
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adequate to specify the domains and dimensions while preserving the semantic
interpretation of the features and concepts. Then, an instance-based approach
has been shown for the task of concept formation within the derived concep-
tual space. A key finding from the data-driven construction of conceptual space
is that it provides a generalisation for concept representation, where the model
can be constructed or extend by different types of input instances.

This work has demonstrated how to generate a model with which it is pos-
sible to create semantic interpretations of new observations. Keßler [131] states
that any data-driven approach to generating conceptual spaces cannot be fully
automated and require at some point external (symbolic) information. Follow-
ing his statement, the presented approach in this thesis also relies to some degree
on pre-defined concepts related to the input data set, which make it a supervised
process. However, the processes of domain/quality dimension specification and
concept formation perform automatically based on the data. In other words,
performing these processes to create conceptual spaces is not dependent on the
symbolic information of the provided knowledge about concepts and features.

In the following, some issues inherent to the data-driven approach are dis-
cussed.

Interpretation of features: One important issue to address is to determine how
interpretable the selected features are for representing the derived concepts. In-
herently, the quality dimensions capture the attributes that can cognitively cat-
egorise the concepts [92]. Thus, it makes sense that the feature selection con-
siders the separability between concepts when generating conceptual spaces in
a data-driven manner. At the same time, a data-driven approach cannot be sep-
arated entirely from meaningful semantics. Hence, a further implicit selection
criterion has been to select features that can be expressed in natural language,
or as stated by [86], features which can be given a meaningful perceptual in-
terpretation. The interpretability of features is certainly context-dependent and
occurs at different levels of feature abstractness [214]. As an example, for a
given leaf sample, a large or small area of a leaf is not informative whereas
knowing the elongation or wideness enables the model to depict a more mean-
ingful description.

Semantics of domains: Another issue is how to form the domains in a con-
ceptual space without human perception (Section 3.1). While the quality di-
mensions can be mapped to the feature selection methods, the domains which
are formed by grouping the features should be semantically meaningful. In this
approach, grouping the features is based on how well a subset of the features
distinctly represents the various concepts. However, there still exists the prob-
lem of verifying the semantic dependency of the quality dimensions within a
domain, to realise what quality dimensions are integral and what are separa-
ble without necessarily involving background knowledge. While no solution is

50CHAPTER3.CONSTRUCTIONOFCONCEPTUALSPACES

adequatetospecifythedomainsanddimensionswhilepreservingthesemantic
interpretationofthefeaturesandconcepts.Then,aninstance-basedapproach
hasbeenshownforthetaskofconceptformationwithinthederivedconcep-
tualspace.Akeyfindingfromthedata-drivenconstructionofconceptualspace
isthatitprovidesageneralisationforconceptrepresentation,wherethemodel
canbeconstructedorextendbydifferenttypesofinputinstances.

Thisworkhasdemonstratedhowtogenerateamodelwithwhichitispos-
sibletocreatesemanticinterpretationsofnewobservations.Keßler[131]states
thatanydata-drivenapproachtogeneratingconceptualspacescannotbefully
automatedandrequireatsomepointexternal(symbolic)information.Follow-
inghisstatement,thepresentedapproachinthisthesisalsoreliestosomedegree
onpre-definedconceptsrelatedtotheinputdataset,whichmakeitasupervised
process.However,theprocessesofdomain/qualitydimensionspecificationand
conceptformationperformautomaticallybasedonthedata.Inotherwords,
performingtheseprocessestocreateconceptualspacesisnotdependentonthe
symbolicinformationoftheprovidedknowledgeaboutconceptsandfeatures.

Inthefollowing,someissuesinherenttothedata-drivenapproacharedis-
cussed.

Interpretationoffeatures:Oneimportantissuetoaddressistodeterminehow
interpretabletheselectedfeaturesareforrepresentingthederivedconcepts.In-
herently,thequalitydimensionscapturetheattributesthatcancognitivelycat-
egorisetheconcepts[92].Thus,itmakessensethatthefeatureselectioncon-
siderstheseparabilitybetweenconceptswhengeneratingconceptualspacesin
adata-drivenmanner.Atthesametime,adata-drivenapproachcannotbesep-
aratedentirelyfrommeaningfulsemantics.Hence,afurtherimplicitselection
criterionhasbeentoselectfeaturesthatcanbeexpressedinnaturallanguage,
orasstatedby[86],featureswhichcanbegivenameaningfulperceptualin-
terpretation.Theinterpretabilityoffeaturesiscertainlycontext-dependentand
occursatdifferentlevelsoffeatureabstractness[214].Asanexample,fora
givenleafsample,alargeorsmallareaofaleafisnotinformativewhereas
knowingtheelongationorwidenessenablesthemodeltodepictamoremean-
ingfuldescription.

Semanticsofdomains:Anotherissueishowtoformthedomainsinacon-
ceptualspacewithouthumanperception(Section3.1).Whilethequalitydi-
mensionscanbemappedtothefeatureselectionmethods,thedomainswhich
areformedbygroupingthefeaturesshouldbesemanticallymeaningful.Inthis
approach,groupingthefeaturesisbasedonhowwellasubsetofthefeatures
distinctlyrepresentsthevariousconcepts.However,therestillexiststheprob-
lemofverifyingthesemanticdependencyofthequalitydimensionswithina
domain,torealisewhatqualitydimensionsareintegralandwhataresepara-
blewithoutnecessarilyinvolvingbackgroundknowledge.Whilenosolutionis

50 CHAPTER 3. CONSTRUCTION OF CONCEPTUAL SPACES

adequate to specify the domains and dimensions while preserving the semantic
interpretation of the features and concepts. Then, an instance-based approach
has been shown for the task of concept formation within the derived concep-
tual space. A key finding from the data-driven construction of conceptual space
is that it provides a generalisation for concept representation, where the model
can be constructed or extend by different types of input instances.

This work has demonstrated how to generate a model with which it is pos-
sible to create semantic interpretations of new observations. Keßler [131] states
that any data-driven approach to generating conceptual spaces cannot be fully
automated and require at some point external (symbolic) information. Follow-
ing his statement, the presented approach in this thesis also relies to some degree
on pre-defined concepts related to the input data set, which make it a supervised
process. However, the processes of domain/quality dimension specification and
concept formation perform automatically based on the data. In other words,
performing these processes to create conceptual spaces is not dependent on the
symbolic information of the provided knowledge about concepts and features.

In the following, some issues inherent to the data-driven approach are dis-
cussed.

Interpretation of features: One important issue to address is to determine how
interpretable the selected features are for representing the derived concepts. In-
herently, the quality dimensions capture the attributes that can cognitively cat-
egorise the concepts [92]. Thus, it makes sense that the feature selection con-
siders the separability between concepts when generating conceptual spaces in
a data-driven manner. At the same time, a data-driven approach cannot be sep-
arated entirely from meaningful semantics. Hence, a further implicit selection
criterion has been to select features that can be expressed in natural language,
or as stated by [86], features which can be given a meaningful perceptual in-
terpretation. The interpretability of features is certainly context-dependent and
occurs at different levels of feature abstractness [214]. As an example, for a
given leaf sample, a large or small area of a leaf is not informative whereas
knowing the elongation or wideness enables the model to depict a more mean-
ingful description.

Semantics of domains: Another issue is how to form the domains in a con-
ceptual space without human perception (Section 3.1). While the quality di-
mensions can be mapped to the feature selection methods, the domains which
are formed by grouping the features should be semantically meaningful. In this
approach, grouping the features is based on how well a subset of the features
distinctly represents the various concepts. However, there still exists the prob-
lem of verifying the semantic dependency of the quality dimensions within a
domain, to realise what quality dimensions are integral and what are separa-
ble without necessarily involving background knowledge. While no solution is

50CHAPTER3.CONSTRUCTIONOFCONCEPTUALSPACES

adequatetospecifythedomainsanddimensionswhilepreservingthesemantic
interpretationofthefeaturesandconcepts.Then,aninstance-basedapproach
hasbeenshownforthetaskofconceptformationwithinthederivedconcep-
tualspace.Akeyfindingfromthedata-drivenconstructionofconceptualspace
isthatitprovidesageneralisationforconceptrepresentation,wherethemodel
canbeconstructedorextendbydifferenttypesofinputinstances.

Thisworkhasdemonstratedhowtogenerateamodelwithwhichitispos-
sibletocreatesemanticinterpretationsofnewobservations.Keßler[131]states
thatanydata-drivenapproachtogeneratingconceptualspacescannotbefully
automatedandrequireatsomepointexternal(symbolic)information.Follow-
inghisstatement,thepresentedapproachinthisthesisalsoreliestosomedegree
onpre-definedconceptsrelatedtotheinputdataset,whichmakeitasupervised
process.However,theprocessesofdomain/qualitydimensionspecificationand
conceptformationperformautomaticallybasedonthedata.Inotherwords,
performingtheseprocessestocreateconceptualspacesisnotdependentonthe
symbolicinformationoftheprovidedknowledgeaboutconceptsandfeatures.

Inthefollowing,someissuesinherenttothedata-drivenapproacharedis-
cussed.

Interpretationoffeatures:Oneimportantissuetoaddressistodeterminehow
interpretabletheselectedfeaturesareforrepresentingthederivedconcepts.In-
herently,thequalitydimensionscapturetheattributesthatcancognitivelycat-
egorisetheconcepts[92].Thus,itmakessensethatthefeatureselectioncon-
siderstheseparabilitybetweenconceptswhengeneratingconceptualspacesin
adata-drivenmanner.Atthesametime,adata-drivenapproachcannotbesep-
aratedentirelyfrommeaningfulsemantics.Hence,afurtherimplicitselection
criterionhasbeentoselectfeaturesthatcanbeexpressedinnaturallanguage,
orasstatedby[86],featureswhichcanbegivenameaningfulperceptualin-
terpretation.Theinterpretabilityoffeaturesiscertainlycontext-dependentand
occursatdifferentlevelsoffeatureabstractness[214].Asanexample,fora
givenleafsample,alargeorsmallareaofaleafisnotinformativewhereas
knowingtheelongationorwidenessenablesthemodeltodepictamoremean-
ingfuldescription.

Semanticsofdomains:Anotherissueishowtoformthedomainsinacon-
ceptualspacewithouthumanperception(Section3.1).Whilethequalitydi-
mensionscanbemappedtothefeatureselectionmethods,thedomainswhich
areformedbygroupingthefeaturesshouldbesemanticallymeaningful.Inthis
approach,groupingthefeaturesisbasedonhowwellasubsetofthefeatures
distinctlyrepresentsthevariousconcepts.However,therestillexiststheprob-
lemofverifyingthesemanticdependencyofthequalitydimensionswithina
domain,torealisewhatqualitydimensionsareintegralandwhataresepara-
blewithoutnecessarilyinvolvingbackgroundknowledge.Whilenosolutionis



3.3. DISCUSSION 51

presented to this problem by this study, the problem itself has been discussed
in the literature. For example, Gärdenfors in [86] suggests that the verification
of deciding whether two quality dimensions are integral or not can be done
by empirical testing based on the subject judgements as of the domain experts,
and not necessarily using statistical or analytical techniques. It is seemingly
difficult, if not impossible, to realise the semantic dependency of the features
analytically. For example, by looking at the values of RGB as the dimensions
of the colour domain for a set of observations, there is no indication to realise
their semantic relations. At the very least in the proposed approach, with re-
lying on the associations between the observations and features, the method
considers quality dimensions to be integral if they have high relevance to each
other that measured by their high relevance to the concepts. Indeed, solving
the issue of how to derive a grouping of features for domain specification, can
lead to forming a general solution to the problem of determining an evaluation
criterion to choose between competing conceptual spaces, an issue raised by
Gärdenfors in [88].

Quality and quantity of known instances: On concept representation (Sec-
tion 3.2), convex regions and the salient weights are induced in a data-driven
way by considering the observations as the instances of the concepts. Still, these
representations suppose that there are sufficient known instances that are repre-
sentative of the concepts to determine geometric regions and the weights. This
is a crucial point which is inherent in all data-driven methods. In the litera-
ture of conceptual spaces, the knowledge-driven approaches have used simple
thresholds or cutoffs to determine the regions, as illustrated in the definition of
the regions for the mountain and hill concepts described by [8]. However, in
such systems like the leaf data set, it is not trivial to initialise in advance the
specific geometric boundaries for the categories of the leaf species as the con-
cepts, or the precise salient weights the provided domains. So, in a data-driven
approach it is essential to have an adequate set of the known instances of the
concepts, and thus an area that is worth to study is to determine on how to
dynamically adjust a conceptual space when a set of new observations emerge.

In sum, this chapter has explained the process of deriving the elements of
a conceptual space in a data-driven manner in order to represent concepts.
This data-driven conceptual space will then be utilised for the task of semantic
inference, which is explained in Chapter 4.
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Chapter 4

Semantic Inference in

Conceptual Spaces

“There are no facts, only interpretations.”
— Friedrich Nietzsche (1844–1900)

T
he aim of this chapter is to design an approach for inference in order to
provide a semantic characterisation for unknown observations. The focus

of this chapter is on solving two central questions (1) how a new (unknown)
observation is represented in a conceptual space, and (2) how this representa-
tion enables the inference of semantic descriptions for the observation.

The first question refers to the problem of induction in conceptual spaces
theory [88]. To develop such inductions in a conceptual space, it is important to
realise which concepts represent a new observed instance. Due to the geometri-
cal representation of the conceptual space, the similarity between the instances
in the space enables the model to define the notion of inclusion as an operator
to measure the similarity of new observations to the specified concepts within
metric domains.

The second question refers to the problem of symbol grounding in con-
ceptual spaces theory [14]. The inference of a semantic representation for any
input observation in natural language is enabled by defining a symbol space in
the conceptual space. With the use of the symbol space, the inference can be
done by semantic reasoning in which new observations are assigned to a set of
linguistic symbols in the symbol space.

This chapter first introduces the notion of a symbol space. Then, it proposes
a process for semantic inference to provide linguistic descriptions for the new
observations based on the symbol space. In general, the proposed inference in
a conceptual space consists of the following steps:
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Figure 4.1: Illustration of the steps of inferring linguistic descriptions for an un-
known observation via the constructed conceptual spaces and its correspond-
ing symbol space. The details of the semantic inference step is explained in
Section 4.2.

• Defining the symbol space, based on the prior knowledge for linguistic
characterisation of the concepts and quality dimensions,

• Inferring linguistic descriptions, for each new unknown observation,
based on the inclusion of its corresponding instance in the concepts:

– Inference in conceptual space: specifying the geometrical location of
a new instance within the conceptual space, examining the inclusion
of the instance, and determining the linguistic labels in the symbol
space based on the associated concepts and dimensions,

– Inference in the symbol space: annotating and characterising the in-
stance from the provided set of symbolic terms, and generating lin-
guistic descriptions.

Example 4.1. Consider the concepts and quality dimensions of the leaf con-
ceptual space in Example 3.5. A new observed leaf can be either linguistically
represented by a known concept (e.g., Cno) where “The new observation is a
Nerium leaf.”, or by a set of related quality dimensions (e.g., qel and qro), such
as “The new observation is an elongated and lance-shaped leaf.”

Figure 4.1 illustrates the step of inferring linguistic descriptions for an un-
known observation through the constructed conceptual spaces and its corre-
sponding symbol space. The details of each component are explained in Sec-
tion 4.2, after formally defining the symbol space in Section 4.1.

4.1 Symbol Space Definition

According to a general formulation proposed by Aisbett and Gibbon [14], a
conceptual space can be augmented with a symbol space. This extension pro-
vides an internal mapping between geometrical elements in conceptual space
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Conceptual Space

C = {C1,C2 . . .}

Q = {q1,q2 . . .}

Symbol Space

Concept Layer
LC =

[
dC1 , dC2 , . . .

]

Quality Layer
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dq1 , dq2 , . . .

]

Figure 4.2: Schematic of a conceptual space and the coupled symbol space.

(such as concepts, dimensions, domains, etc.) and the symbolic labels (typically
words) in symbol space.

Definition 4.1. A symbol space S of size n is a space containing n symbol
dimensions LS, wherein each concept and quality dimension in the conceptual
space is linked to a symbol dimension. Symbol dimensions are isomorphic to
the real number interval [0, 1].

Each concept and quality dimension in the conceptual space is linked to
a symbol dimension in the symbolic space. Based on the definition of Aisbett
and Gibbon, the symbol dimensions need to be named by the primitive input
labels of the associated concepts (classes) and quality dimensions (features). The
construction of the symbol space is a knowledge-based process, wherein the
prior knowledge is encoded [14]. The prior knowledge specifies the symbolic
expressions in natural language form, related to the elements of conceptual
space S.

This study proposes a two-layer symbol space containing the symbol dimen-
sions of the concepts, LC =

[
dC1 , dC2 , . . .

]
, as concept layer, and the symbol

dimensions of quality dimensions, LQ =
[
dq1 , dq2 , . . .

]
, as quality layer. The

symbol dimensions LC and LQ are acquired from the set of input labels Y, and
set of selected features F ′, respectively. So, for every concept Cy ∈ C, there is a
symbol dimension in the concept layer, and for each quality dimension q ∈ Q,
there is a symbol dimension in the quality layer. Figure 4.2 shows a schematic
presentation of the associations between the elements in a conceptual space and
the two-layer symbol dimensions in a symbol space.

Example 4.2. Consider the conceptual space of leaves Sl in Example 3.5. The
associated symbol space Sl is defined with two-layer symbol dimensions, de-
noted by LC =

[
dtt : label(Ctt), dno : label(Cno)

]
in the concept layer, and

LQ =
[
del : label(qel), dro : label(qro)

]
in the quality layer.

Any instance in a conceptual space is then associated with a point in the
symbol space, namely a symbol vector. For a given instance γ, the associated
symbol vector Vγ in S specifies the applicability of the symbol dimensions for
γ in the range 0 to 1 for each dimension [14]. The symbol vector Vγ is a
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concatenation of two vectors Vγ :< VC
γ,VQ

γ >, one vector in the concept layer
and one vector in quality layer, respectively. Thus, |VC

γ| = |LC|, and |VQ
γ | = |LQ|.

Example 4.3. Consider the conceptual space of leaves Sl in Example 3.5. For a
new leaf instance γ, the symbol vector Vγ is defined as a 4-dimensional vector
with concatenation of VC

γ =< vdtt , vdno >, and ,VQ
γ =< vdel , vdro >.

The symbol vector is defined as a two-element vector, wherein each vi ∈ Vγ
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symbolic term and the value shows how representative is the instance to the
dimension di (either how similar to its concepts or how related to the quality
dimensions). The notion VC
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indicates the value of the symbol vector

in the concept layer for the dimension related to the concept Cy, and similarly,
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indicates the value of the symbol vector in the quality layer for
the dimension related to the quality dimension qj. The further sections explain
how the elements of a symbol vector for a new instance are assigned values
based on the inclusion of the instance within the domains.

4.2 Inferring Linguistic Descriptions for Unknown

Observations

For any given unknown observation, the goal is to infer a semantic descrip-
tion in natural language form. The core of the inference process is to cope with
the notion of similarity in conceptual spaces. To place the new instances in the
space and choose the best concepts that include (or are similar enough to) an
observation [189]. The metric structure of a geometrical conceptual space en-
ables the model to measure the semantic similarity of concepts and instances
in the space [9]. The proposed construction of the conceptual space in Chap-
ter 3 facilitates these measurements since the representations of concepts and in-
stances span across domains using the geometric elements, i.e., convex regions
and points. From the point of view of NLG, inferring linguistic descriptions
for unknown observations covers the main tasks of an NLG pipeline for gener-
ating natural language text out of non-linguistic data: Content determination,
Microplanning (including lexicalisation), and Realisation [185]. This phase em-
ploys various developed methods for linguistic descriptions (i.e., fuzzy set the-
ory [177]) to ease the process of quantifying the location of unknown samples
within a conceptual space, and infer the proper linguistic terms.

The process of inferring linguistic descriptions for an instance γ ′ is pre-
sented in two following phases.

• Phase A: Inference in Conceptual Space, that first determines the inclu-
sion of the new instance γ ′ in the concepts within the domains Δ(γ ′)
using semantic similarity, and then sets the values of symbol vector Vγ′

(performing the content determination task).

56CHAPTER4.SEMANTICINFERENCE

concatenationoftwovectorsVγ:<V
C
γ,V

Q
γ>,onevectorintheconceptlayer

andonevectorinqualitylayer,respectively.Thus,|V
C
γ|=|L

C
|,and|V

Q
γ|=|L

Q
|.

Example4.3.ConsidertheconceptualspaceofleavesS
l

inExample3.5.Fora
newleafinstanceγ,thesymbolvectorVγisdefinedasa4-dimensionalvector
withconcatenationofV

C
γ=<vdtt,vdno>,and,V

Q
γ=<vdel,vdro>.

Thesymbolvectorisdefinedasatwo-elementvector,whereineachvi∈Vγ

consistsofapairofvaluesvi=(label,value).Thelabelshowstherelated
symbolictermandthevalueshowshowrepresentativeistheinstancetothe
dimensiondi(eitherhowsimilartoitsconceptsorhowrelatedtothequality
dimensions).ThenotionV

C
γ(Cy)=vdCyindicatesthevalueofthesymbolvector

intheconceptlayerforthedimensionrelatedtotheconceptCy,andsimilarly,
V
Q
γ(qj)=vdqjindicatesthevalueofthesymbolvectorinthequalitylayerfor

thedimensionrelatedtothequalitydimensionqj.Thefurthersectionsexplain
howtheelementsofasymbolvectorforanewinstanceareassignedvalues
basedontheinclusionoftheinstancewithinthedomains.

4.2InferringLinguisticDescriptionsforUnknown

Observations

Foranygivenunknownobservation,thegoalistoinferasemanticdescrip-
tioninnaturallanguageform.Thecoreoftheinferenceprocessistocopewith
thenotionofsimilarityinconceptualspaces.Toplacethenewinstancesinthe
spaceandchoosethebestconceptsthatinclude(oraresimilarenoughto)an
observation[189].Themetricstructureofageometricalconceptualspaceen-
ablesthemodeltomeasurethesemanticsimilarityofconceptsandinstances
inthespace[9].TheproposedconstructionoftheconceptualspaceinChap-
ter3facilitatesthesemeasurementssincetherepresentationsofconceptsandin-
stancesspanacrossdomainsusingthegeometricelements,i.e.,convexregions
andpoints.FromthepointofviewofNLG,inferringlinguisticdescriptions
forunknownobservationscoversthemaintasksofanNLGpipelineforgener-
atingnaturallanguagetextoutofnon-linguisticdata:Contentdetermination,
Microplanning(includinglexicalisation),andRealisation[185].Thisphaseem-
ploysvariousdevelopedmethodsforlinguisticdescriptions(i.e.,fuzzysetthe-
ory[177])toeasetheprocessofquantifyingthelocationofunknownsamples
withinaconceptualspace,andinfertheproperlinguisticterms.

Theprocessofinferringlinguisticdescriptionsforaninstanceγ′ispre-
sentedintwofollowingphases.

•PhaseA:InferenceinConceptualSpace,thatfirstdeterminestheinclu-
sionofthenewinstanceγ′intheconceptswithinthedomainsΔ(γ′)
usingsemanticsimilarity,andthensetsthevaluesofsymbolvectorVγ′

(performingthecontentdeterminationtask).

56 CHAPTER 4. SEMANTIC INFERENCE

concatenation of two vectors Vγ :< VC
γ,VQ

γ >, one vector in the concept layer
and one vector in quality layer, respectively. Thus, |VC

γ| = |LC|, and |VQ
γ | = |LQ|.

Example 4.3. Consider the conceptual space of leaves Sl in Example 3.5. For a
new leaf instance γ, the symbol vector Vγ is defined as a 4-dimensional vector
with concatenation of VC

γ =< vdtt , vdno >, and ,VQ
γ =< vdel , vdro >.

The symbol vector is defined as a two-element vector, wherein each vi ∈ Vγ

consists of a pair of values vi = (label, value). The label shows the related
symbolic term and the value shows how representative is the instance to the
dimension di (either how similar to its concepts or how related to the quality
dimensions). The notion VC

γ(Cy) = vdCy
indicates the value of the symbol vector

in the concept layer for the dimension related to the concept Cy, and similarly,
VQ
γ(qj) = vdqj

indicates the value of the symbol vector in the quality layer for
the dimension related to the quality dimension qj. The further sections explain
how the elements of a symbol vector for a new instance are assigned values
based on the inclusion of the instance within the domains.

4.2 Inferring Linguistic Descriptions for Unknown

Observations

For any given unknown observation, the goal is to infer a semantic descrip-
tion in natural language form. The core of the inference process is to cope with
the notion of similarity in conceptual spaces. To place the new instances in the
space and choose the best concepts that include (or are similar enough to) an
observation [189]. The metric structure of a geometrical conceptual space en-
ables the model to measure the semantic similarity of concepts and instances
in the space [9]. The proposed construction of the conceptual space in Chap-
ter 3 facilitates these measurements since the representations of concepts and in-
stances span across domains using the geometric elements, i.e., convex regions
and points. From the point of view of NLG, inferring linguistic descriptions
for unknown observations covers the main tasks of an NLG pipeline for gener-
ating natural language text out of non-linguistic data: Content determination,
Microplanning (including lexicalisation), and Realisation [185]. This phase em-
ploys various developed methods for linguistic descriptions (i.e., fuzzy set the-
ory [177]) to ease the process of quantifying the location of unknown samples
within a conceptual space, and infer the proper linguistic terms.

The process of inferring linguistic descriptions for an instance γ ′ is pre-
sented in two following phases.

• Phase A: Inference in Conceptual Space, that first determines the inclu-
sion of the new instance γ ′ in the concepts within the domains Δ(γ ′)
using semantic similarity, and then sets the values of symbol vector Vγ′

(performing the content determination task).

56CHAPTER4.SEMANTICINFERENCE

concatenationoftwovectorsVγ:<V
C
γ,V

Q
γ>,onevectorintheconceptlayer

andonevectorinqualitylayer,respectively.Thus,|V
C
γ|=|L

C
|,and|V

Q
γ|=|L

Q
|.

Example4.3.ConsidertheconceptualspaceofleavesS
l

inExample3.5.Fora
newleafinstanceγ,thesymbolvectorVγisdefinedasa4-dimensionalvector
withconcatenationofV

C
γ=<vdtt,vdno>,and,V

Q
γ=<vdel,vdro>.

Thesymbolvectorisdefinedasatwo-elementvector,whereineachvi∈Vγ

consistsofapairofvaluesvi=(label,value).Thelabelshowstherelated
symbolictermandthevalueshowshowrepresentativeistheinstancetothe
dimensiondi(eitherhowsimilartoitsconceptsorhowrelatedtothequality
dimensions).ThenotionV

C
γ(Cy)=vdCyindicatesthevalueofthesymbolvector

intheconceptlayerforthedimensionrelatedtotheconceptCy,andsimilarly,
V
Q
γ(qj)=vdqjindicatesthevalueofthesymbolvectorinthequalitylayerfor

thedimensionrelatedtothequalitydimensionqj.Thefurthersectionsexplain
howtheelementsofasymbolvectorforanewinstanceareassignedvalues
basedontheinclusionoftheinstancewithinthedomains.

4.2InferringLinguisticDescriptionsforUnknown

Observations

Foranygivenunknownobservation,thegoalistoinferasemanticdescrip-
tioninnaturallanguageform.Thecoreoftheinferenceprocessistocopewith
thenotionofsimilarityinconceptualspaces.Toplacethenewinstancesinthe
spaceandchoosethebestconceptsthatinclude(oraresimilarenoughto)an
observation[189].Themetricstructureofageometricalconceptualspaceen-
ablesthemodeltomeasurethesemanticsimilarityofconceptsandinstances
inthespace[9].TheproposedconstructionoftheconceptualspaceinChap-
ter3facilitatesthesemeasurementssincetherepresentationsofconceptsandin-
stancesspanacrossdomainsusingthegeometricelements,i.e.,convexregions
andpoints.FromthepointofviewofNLG,inferringlinguisticdescriptions
forunknownobservationscoversthemaintasksofanNLGpipelineforgener-
atingnaturallanguagetextoutofnon-linguisticdata:Contentdetermination,
Microplanning(includinglexicalisation),andRealisation[185].Thisphaseem-
ploysvariousdevelopedmethodsforlinguisticdescriptions(i.e.,fuzzysetthe-
ory[177])toeasetheprocessofquantifyingthelocationofunknownsamples
withinaconceptualspace,andinfertheproperlinguisticterms.

Theprocessofinferringlinguisticdescriptionsforaninstanceγ′ispre-
sentedintwofollowingphases.

•PhaseA:InferenceinConceptualSpace,thatfirstdeterminestheinclu-
sionofthenewinstanceγ′intheconceptswithinthedomainsΔ(γ′)
usingsemanticsimilarity,andthensetsthevaluesofsymbolvectorVγ′

(performingthecontentdeterminationtask).



4.2. INFERRING LINGUISTIC DESCRIPTIONS 57

Symbol Space
Inference

(algorithm 4.2)

Conceptual
Space Inference
(algorithm 4.1)

γ ′,Vγ′o ′ ∈ D ′

S : 〈Q,Δ,C, Γ〉
Tγ′(o ′)

Semantic Inference of Linguistic Descriptions

Figure 4.3: Two phases of the semantic inference for generating linguistic de-
scriptions, with the input and output parameters of each phase.

• Phase B: Inference in Symbol Space, that verbalises the symbol vector
Vγ′ into a set of lexical items which are human-readable descriptions.
(performing the lexicalisation and realisation tasks).

For a given set of new observations D ′ = {o ′
i : (xo′

i
)}, let γ ′ be the corre-

sponding instance to the unknown observation o ′ ∈ D ′ which is not assigned
to any of the known class labels of Y. Also, let Δ(γ ′) ⊆ Δ be a set of domains
that γ ′ has corresponding points in each of them1, where |Δ(γ ′)| = k ′.

Figure 4.3 illustrates the phases of inferring a linguistic description for a
new observation, with their input and output parameters. The details of the
phases A and B are explained in the following sections.

4.2.1 Phase A: Inference in Conceptual Space (Content

Determination)

This phase first presents the comparison of the new instance with each of the
concepts using the similarity measure to check whether it is included within
concept regions or not. Then, based on the result of this inclusion, it describes
how to initialise a symbol vector and set its values in both concept layer and
quality layer. From the NLG perspective, this performs the task of content de-
termination [182], that decides which set of information is required to charac-
terise a new observation in the final description. The process of checking the
inclusion is a simple fuzzy extension of an instance-based method that measures
the membership of the new instance to the nearest labelled region of instances.
Although any classification approach can do it, the process is formulated here
with respect to the definitions of the introduced conceptual space.

For an instance γ ′, the symbol vector Vγ′ is calculated based on the in-
clusion of the instance points pγ′ in different regions within the domains. As
defined before, γ ′ is represented with a set of points γ ′ = {p1

γ′ , . . . ,pk′
γ′ }. In

1It is notable that a new observation is not necessarily defined in all domains, since there might
be no calculated values for some of the features/quality dimensions. So, the corresponding instance
may not have points in all the provided domains.
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inclusionisasimplefuzzyextensionofaninstance-basedmethodthatmeasures
themembershipofthenewinstancetothenearestlabelledregionofinstances.
Althoughanyclassificationapproachcandoit,theprocessisformulatedhere
withrespecttothedefinitionsoftheintroducedconceptualspace.

Foraninstanceγ′,thesymbolvectorVγ′iscalculatedbasedonthein-
clusionoftheinstancepointspγ′indifferentregionswithinthedomains.As
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general, with placing a new instance in a conceptual space, four cases can oc-
cur. Without losing generality, assume γ ′ consists of two points in two domains
δa and δb, denoted by γ ′ = {pa

γ,pb
γ}. Also assume that there are two concepts

Cy1 and Cy2 that have been represented in one or both of these two domains.
Figure 4.4 shows the four different cases with respect to various positions of
the points pa and pb, and their relations to the sub-concepts’ regions within
the domains. One instance can be located in the space differently as follows:

1. Totally included in a concept within all the domains (case one, Fig-
ure 4.4a),

2. Partially included in just a concept (case two, Figure 4.4b),
3. Partially included in two distinct concepts (case three, Figure 4.4c),
4. Not included in any concept (case four, Figure 4.4d).

(a) Case one: γ ′ is totally included in concept Cyi
(in all the domains).
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(b) Case two: γ ′ is partially included in concept Cyi
(in one domain).

(c) Case three: γ ′ is partially included in two concepts Cyi
and Cyj

.
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(b)Casetwo:γ′ispartiallyincludedinconceptCyi(inonedomain).

(c)Casethree:γ′ispartiallyincludedintwoconceptsCyiandCyj.
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(d) Case four: γ ′ is not included in any concept.

Figure 4.4: An illustration of four different cases with respect to the various
positions of an instance points γ ′ = {pa,pb} within two domains δa and δb,
together with the assigned values to symbol vector Vγ′ , according to the inclu-
sion of the points in the presented sub-concepts.

To assign a concept to γ ′, it is necessary to check the inclusion of the in-
stance points in the concept’s regions within Δ(γ ′) using a similarity measure.
Within a single domain, two states need to be considered: 1) If the instance
point is included in a region, then the region’s concept will be assigned to γ ′.
So, the corresponding symbol dimension of the concept will be activated in the
symbol vector of γ ′ (in the concept layer). 2) If there is no region that the in-
stance belongs to, then no concept will be assigned to γ ′ within that domain.
The symbol dimensions related to the quality dimensions of the domain will be
activated in the symbol vector of γ ′ (in the quality layer). Formally, the symbol
vector Vγ′ gets the values in each domain δi ∈ Δ(γ ′) as follows: First a func-
tion called Graded Membership function, G(pi

γ′ , ci), is defined as an inclusion
operator to determine the similarity degree of a point pi

γ′ to the region of a
sub-concept ci ∈ δi within δi. If pi

γ′ is similar enough to the sub-concept’s con-
vex region with a certain membership degree, then the value of G(pi

γ′ , ci) is set
to VC

γ′(Cy), where Cy 
 ci. Moreover, another function called Graded Qual-
ity function, H(pi

γ′ ,qi), is defined to measure to what degree pi
γ′ belongs to a

quality dimension qi ∈ Q(δi). If pi
γ′ is not included in any of the sub-concepts,

then the value of H(pi
γ′ ,qi) is set to VQ

γ′(qi).
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(d)Casefour:γ′isnotincludedinanyconcept.

Figure4.4:Anillustrationoffourdifferentcaseswithrespecttothevarious
positionsofaninstancepointsγ′={p

a
,p

b
}withintwodomainsδaandδb,

togetherwiththeassignedvaluestosymbolvectorVγ′,accordingtotheinclu-
sionofthepointsinthepresentedsub-concepts.

Toassignaconcepttoγ′,itisnecessarytochecktheinclusionofthein-
stancepointsintheconcept’sregionswithinΔ(γ′)usingasimilaritymeasure.
Withinasingledomain,twostatesneedtobeconsidered:1)Iftheinstance
pointisincludedinaregion,thentheregion’sconceptwillbeassignedtoγ′.
So,thecorrespondingsymboldimensionoftheconceptwillbeactivatedinthe
symbolvectorofγ′(intheconceptlayer).2)Ifthereisnoregionthatthein-
stancebelongsto,thennoconceptwillbeassignedtoγ′withinthatdomain.
Thesymboldimensionsrelatedtothequalitydimensionsofthedomainwillbe
activatedinthesymbolvectorofγ′(inthequalitylayer).Formally,thesymbol
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(d) Case four: γ ′ is not included in any concept.

Figure 4.4: An illustration of four different cases with respect to the various
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together with the assigned values to symbol vector Vγ′ , according to the inclu-
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Algorithm 4.1: Inference in Conceptual Space

Function ConceptualSpaceInference(γ ′,Q,Δ,C)
foreach δi ∈ Δ(γ ′) do

p ← pi
γ′ ∈ γ ′

// Set the symbol vector in concept layer
foreach c ∈ δi do

simγ′,Cy
= max(simγ′,Cy

,G(p, c)) // Cy 
 c

if simγ′,Cy
	= 0 // cases 1 and 3 (and partially 2)

then
labelγ′,Cy

= label(Cy)
else

labelγ′,Cy
= ∅

VC
γ′(Cy) = (labelγ′,Cy

, simγ′,Cy
)

// Set the symbol vector in quality layer
if VC

γ′(Cy) == (∅, 0) // case 4 (and partially 2)
then

foreach q ∈ δi do
degreeγ′,q = H(p,q)
labelγ′,q = label(Abest

γ′,q )

VQ
γ′(qi) ← (labelγ′,q,degreeγ′,q)

return Vγ′ : 〈 VC
γ′ ,VQ

γ′ 〉

Example 4.4. Consider the instance γ ′ in Figure 4.4b. Point pb is included to
the region of cbyi

within δb. So, VC
γ′(Cyi

) in concept layer will get the graded
membership value between pb and cbyi

. But, point pa is not included in any
of the regions within δa. So, VQ

γ′(qa
1 ) and VQ

γ′(qa
2 ) in quality layer will get

the graded quality values between pa and two quality dimensions qa
1 and qa

2 ,
respectively. but pa is not included in any of the regions within δa. So, the
symbol vector Vγ′ will get values at three indices: VC

γ′(Cyi
) in concept layer,

and VQ
γ′(qa

1 ) and VQ
γ′(qa

2 ) in quality layer.

Algorithm 4.1 shows the steps to set the symbol vector values while iterating
through all the involved domains Δ(γ ′). Both graded membership function and
graded quality function are formally defined in the following sections.

Graded Membership function

In Section 3.2, a sub-concept c is defined as a pair c : 〈ηc,φc〉, where ηc is
the convex region representing the geometrical area of the corresponding con-
cept in domain δ, and φc is a set of weights showing the assigned degrees of
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V
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ifV

C
γ′(Cy)==(∅,0)//case4(andpartially2)

then
foreachq∈δido

degreeγ′,q=H(p,q)
labelγ′,q=label(A

best
γ′,q)

V
Q
γ′(q

i
)←(labelγ′,q,degreeγ′,q)

returnVγ′:〈VC
γ′,V

Q
γ′〉

Example4.4.Considertheinstanceγ′inFigure4.4b.Pointp
b

isincludedto
theregionofc

b
yiwithinδb.So,V

C
γ′(Cyi)inconceptlayerwillgetthegraded

membershipvaluebetweenp
b

andc
b
yi.But,pointp

a
isnotincludedinany

oftheregionswithinδa.So,V
Q
γ′(q

a
1)andV

Q
γ′(q

a
2)inqualitylayerwillget

thegradedqualityvaluesbetweenp
a

andtwoqualitydimensionsq
a
1andq

a
2,
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a
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Q
γ′(q

a
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Q
γ′(q

a
2)inqualitylayer.

Algorithm4.1showsthestepstosetthesymbolvectorvalueswhileiterating
throughalltheinvolveddomainsΔ(γ′).Bothgradedmembershipfunctionand
gradedqualityfunctionareformallydefinedinthefollowingsections.

GradedMembershipfunction

InSection3.2,asub-conceptcisdefinedasapairc:〈ηc,φc〉,whereηcis
theconvexregionrepresentingthegeometricalareaofthecorrespondingcon-
ceptindomainδ,andφcisasetofweightsshowingtheassigneddegreesof
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salience between sub-concept and each quality dimension within the domain.
The problem of inclusion has been studied in the literature of the conceptual
spaces theory with various definitions such as inclusion operator [9], graded
similarity [92], and graded membership [69, 112]. These definitions calculate
the similarity of the instance points to the regions based on their geometrical
distances, with or without considering the gradedness of membership. Here,
since the convex regions of concepts are constructed based on the observed
instances, it does not make sense to adhere to the crisp boundaries of the cal-
culated regions rigidly. So, a point which is not certainly inside the calculated
boundaries a region, but is similar enough to the region, can be counted as a
member of the region’s concept.

The Graded Membership function G(p, c) is defined as an inclusion operator
between a given point p and a defined sub-concept c : 〈ηc,φc〉. This function
shows how similar is p to the convex region ηc of c with the certain set of
weights φc within a metric domain δ. The graded membership is calculated by
applying geometrical algorithms that consider whether an n-dimensional point
is included in the n-dimensional convex hull or not. If point p is certainly in-
cluded in the region ηc, then G(p, c) is equal to one. But if p is outside the
region, then the similarity of point p to the region is defined as a monotonic
decreasing function [69] which is measured using a fuzzy membership function
of distance sim(p, c) = f[d(p, c)]. This similarity takes values between [0, 1]
and expresses the graded degree of inclusion of p in c. From the experiments
on similarity cognition, the similarity can be measured as an exponential decay
function of the distance: sim(d) = e−rd [202] (where r is a constant factor).
Using a fuzzy membership function to measure the similarity has the advantage
of using the notions from the fuzzy set theory that provide linguistic descrip-
tions for the output fuzzy degrees [188].

Several methods have been proposed to compute the distance of a point p to
a convex region ηc. The Hausdorff distance dH(p,ηc) [14] is a proper choice,
which relies on the definition of a distance measure between two n-dimensional
points (namely Weighted Minkowski Metric). As a function of similarity mea-
sure, a graded membership function is defined inspired by Hampton’s defini-
tion [112] in which a determinate boundary region of membership is assumed.
For the points inside the region, the membership value is one. For the points
out of the region, with a given lower-bound threshold θL, if d(p,ηc) � θL, then
p is similar enough to be counted as a member of c, and if d(p,ηc) > θL, then
p is far to be counted as an instance of c [188]2.

2The definition of graded membership function in [69,112] is slightly different, where it is based
on three thresholds to define the lower, upper, and the middle level of the boundary regions.
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TheGradedMembershipfunctionG(p,c)isdefinedasaninclusionoperator
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Definition 4.2. The graded membership function G : δ → [0, 1] is the similarity
measure between a point p and a sub-concept c ∈ Cy as:

G(p, c) =

⎧⎪⎨
⎪⎩

1 if p ∈ ηc

e−rdH(p,ηc) if p /∈ ηc & dH(p,ηc) � θL

0 if p /∈ ηc & dH(p,ηc) > θL

(4.1)

The symbol vector of a new instance in the concept layer (VC
γ′ ) is set by

the graded membership function by measuring the similarity of an instance
point to each region of the sub-concept within the domains (Algorithm 4.1).
As mentioned in Section 4.1, each vi ∈ Vγ consists of a pair of values
vi = (label, value). The similarity values greater than zero will lead to as-
sign a non-empty label to the corresponding concept’s index in symbol vector.
Formally, for a given γ ′ and Cy, two elements (label, value) are calculated as:
VC
γ′(Cy) = (labelγ′,Cy

, simγ′,Cy
), where

simγ′,Cy
= maxpi∈γ′,cj∈Cy

(G(pi, cj)), (4.2)

and

labelγ′,Cy
=

{
label(Cy) if simγ,Cy

> 0
∅ o.w

(4.3)

Example 4.5. Figures 4.4a, 4.4b, and 4.4c show the example values of the
graded membership function (G) calculated for the points pa and pb based on
their positions and distances to the convex regions of the sub-concepts in the
space. For example in Figure 4.4c, suppose in δa, G(pa

γ′ , cayj
) = 0.9. Then, the

elements of VC
γ′(Cyj

) are set to (label(Cyj
), 0.9).

Graded Quality Function

According to Algorithm 4.1, if a point p in a domain δ is not similar enough
to any sub-concept within δ, then the values of the symbol vector in the qual-
ity layer will be set based on the graded value of p for each quality dimension
of δ. Recall from Chapter 3, a quality dimension q : 〈Hq, Iq,μq〉 contains a
family of membership functions μq, representing the linguistic terms related
to graded values of q. In particular, this function is defined as a fuzzy gran-
ulation to exploit the linguistic characterisation of feature values, which are
identified by prior knowledge. To formalise μq, fuzzy membership functions
are defined for a set of pre-defined label classes which forms a fuzzy partition
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guistic label tall for feature height). The corresponding fuzzy set is defined as:
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certain parameters to define the lower and upper boundaries of the function3.
Then, μq = {μA1 , . . . ,μAn

}.

Example 4.6. Consider the elongation, described in Example 3.2. A set of label
classes to describe the elongation is { Acir =‘circular’, Aelp =‘elliptical’, and
Aeld =‘elongated’}. Then the family of membership functions for qel is μqel =
{μAcir ,μAelp ,μAeld }. Figure 4.5 depicts the defined membership functions for the
elongation quality dimension.

This linguistic mapping provides a symbolic representation for numeric in-
terval values of the quality dimensions. The graded quality value of an instance
γ ′ for a quality dimension q is calculated based on the quality dimension value
of the instance point as pq = pγ′(q), where pq ∈ Iq. Using the defined fuzzy
membership functions, pq is mapped into the fuzzy set best matching to the
given value. Using the functions in μ, the values of the symbol vector can be
set in the quality layer. Recall p = 〈pq1 , . . . ,pq|Q(δ)|

〉 as the vector of quality
dimension values for the point p in δ.

Definition 4.3. Graded quality function H : Iq → [0, 1] is the degree of mem-
bership, wherein for a quality dimension q, it returns the maximum degree of
membership of pq using the membership functions in μq, as:

H(p,q) = maxμAi
∈μq

μAi
(pq) (4.4)

The symbol vector of a new instance in the quality layer (VQ
γ′ ) is filled with

the values of the graded quality function (Algorithm 4.1). Similar to the con-
cept layer, each vi ∈ Vγ consists of a pair of values vi = (label, value).
The value of the graded quality function, which is the maximum degree of
membership of vi assigns the best match fuzzy subset (i.e., symbolic label)
to the corresponding quality dimension’s index in symbol vector. Formally,
for a given γ ′ and Cy, two elements (label, value) of are calculated as:
VQ
γ′(q) = (labelγ′,q,degreeγ′,q), where

degreeγ′,q = H(p,q), (4.5)

and

labelγ′,q = label(Abest
γ′,q ). (4.6)

Here, Abest
γ′,q is the fuzzy subset with the maximum degree of membership

such that μAbest
γ′ ,q

∈ μq and ∀(μAi
∈ μq) : μAbest

γ′ ,q
(pq) � μAi

(pq).

Example 4.7. Considering the functions μqel in Example 4.6 (Figure 4.5), as-
sume that for a given instance point pγ′ , its elongation value is pq = 0.75. So,

3Sigmoidal membership function is defined as: f(x,a,c) = 1
1+e−a(x−c)
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Figure 4.5: Example of the membership functions of the linguistic terms circu-
lar, elliptical, and elongated, describing the elongation quality dimension.

μAcir(pq) = 0, μAelp(vq) = 0.15, and μAeld(pq) = 0.9. Then, H(pγ′ ,qel) =

0.9, and Abest
γ′,qel

= Aeld. Thus, one can say that “the given instance is elongated
to a degree 0.9”.

Example 4.8. Figures 4.4b and 4.4d show the example values of graded quality
function (H) calculated for the points pa and pb based on their values related
to the quality dimensions of two domains. For example in Figure 4.4b, suppose
pa is not included in any region in δa. Then, two vector indices of the symbol
vector in the quality layer get values as: VQ

γ′(qa
1 ) = (label(Abest

γ′,qa
1
), 0.7) and

VQ
γ′(qa

2 ) = (label(Abest
γ′,qa

2
), 0.6).

4.2.2 Phase B: Inference in Symbol Space (Lexicalisation and

Realisation)

In this phase, the aim is to infer a linguistic lexicon from the symbol vector
of an unknown instance, to generate descriptions in natural language form.
From the NLG perspective, this is the task of lexicalisation, that decides which
linguistic terms (i.e., natural words) should be selected from the determined
content [182]. This can be done by verbalising the linguistic labels that are cal-
culated and stored in the symbol vector. This verbalisation is done either with
annotating a new instance via the concept labels, or with characterising the
instance via the quality dimension labels. The tasks of annotation and char-
acterisation will assign a set of lexical items to an unknown observation. This
collection of linguistic terms is then turned to the natural language phrases (i.e.,
sentences) using the realisation tools in NLG systems. Algorithm 4.2 shows the
steps of the tasks in phase B.

Annotation in the Concept Layer

Annotation for an instance γ ′ is to annotate a set of linguistic labels which
are derived from the associated concepts in the concept layer of symbol vec-
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Algorithm 4.2: Inference in Symbol Space

Function SymbolSpaceInference(Vγ′ )
// Annotation in the concept layer
foreach Cy ∈ C do

if Vγ′,C(Cy) 	= (∅, 0) then
C(γ ′) ← C(γ ′) ∪ {Cy}

OC(γ
′) ← OrderConceptLabels(C(γ ′))

TC(γ
′) ← Annotate(OC(γ

′),Vγ′,C) // in concept layer
// Characterisation in the quality layer
foreach δ /∈ Δ(C(γ ′)) do

Q(γ ′) ← Q(γ ′) ∪ {Q(δ)}

OQ(γ
′) ← OrderQualityLabels(Q(γ ′))

TQ(γ
′) ← Characterise(Q(γ ′),Vγ′,Q) // in quality layer

// Linguistic Realisation
Tγ′ ← Realise(TC(γ

′),TQ(γ
′))

return Tγ′

tor Vγ′,C. Each Cy is included in the set of associated concepts of the in-
stance, C(γ ′), if the corresponding element in Vγ′,C is not empty. Formally,
Cy ∈ C(γ ′) ⇐⇒ Vγ′,C(Cy) 	= (∅, 0).

Example 4.9. Considering Figures 4.4a and 4.4b, γ ′ is associated with only
one concept Cyi

. So, C(γ ′) = {Cyi
}. In Figure 4.4c, γ ′ is associated with two

concepts Cyi
and Cyj

. So, C(γ ′) = {Cyi
,Cyj

}. Finally, in Figure 4.4d, there are
no associated concepts. So, C(γ ′) = ∅.

After determining C(γ ′), if γ ′ is associated with two or more distinct con-
cepts as C(γ ′) = {Cyi

,Cyj
, . . .}, then γ ′ is an instance of all the associated

concepts. In this case, an extra process is needed to sort and combine the con-
cept labels to annotate γ ′ with a new set of linguistic labels.

The task of concept combination is discussed widely in the literature of
conceptual space theory [86, 142, 188]. What is important for the inference is
to distinguish which concept labels are the modifiers and which are the mod-
ified concepts. This distinction leads to order the labels in the final linguis-
tic expression [9]. In particular, an ordered set4 of the associated concepts,
OC(γ

′) = {C ′
1,C ′

2, . . .} is defined to prioritise the modifier concepts over mod-
ified ones. Since there is no background knowledge to define the semantic or-
der of the associated concepts, the ordering process relies based on the graded
membership values that can be retrieved from Vγ′,C.

4In the set theory, an ordered set is defined as a set of elements, plus a relation � between each
pair of the elements that presents the order of them [229].
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Example 4.10. Considering the case three in Figure 4.4c, since γ ′ is located in
sub-concept cbyi

with graded membership 1 and in sub-concept cayj
with graded

membership 0.9, then the corresponding ordered set of concepts for γ ′ will be:
OC(γ

′) = {Cyi
,Cyj

}. Suppose there is an unknown instance γ ′ in a conceptual
space including Colour and Taste domains. If γ ′ is located in both ’red’ sub-
concept with grading degree 0.95 and ’sweet’ sub-concept with grading degree
0.7 (in colour and taste domains, respectively), then the corresponding ordered
set of concepts is: OC(γ

′) = {Cred,Csweet}.

The set of annotations for γ ′ then is defined as an ordered set of lexical items
TC(γ

′) = {label(C ′
1), label(C

′
2), . . .}. These annotations are the corresponding

linguistic terms to the ordered concepts in OC(γ
′), that are retrieved from the

labels in Vγ′,C for the concepts in C(γ ′).

Example 4.11. For the conceptual space of leaves presented in Example 3.5,
suppose an unknown leaf sample γ ′ is associated with both known con-
cepts Tilia and Nerium. Assume that Vγ′,C(Ctt) = (label(Ctt), 0.5) and
Vγ′,C(Cno) = (label(Cno), 0.9). Then, TC(γ

′) = {label(Cno) = ‘Nerium’,
label(Ctt) = ‘somewhat Tilia’}.

Characterisation in the Quality Layer

Characterisation for γ ′ is to assign the linguistic descriptions of the associated
quality dimension based on the values in the quality layer of the symbol vector
Vγ′,Q. The motivation behind the characterisation comes from the lack of the
concept annotation in the cases with no associated concept within the domains
(like case four and partially case two in Figure 4.4). This is especially important
for those instances that are completely unknown for the systems and are not
representable by any of the defined concepts, but still are explainable with their
quality dimensions’ values.

According to Algorithm 4.1, if γ ′ within a domain does not belong to any
sub-concept, then Vγ′,Q gets values from the domain’s quality dimensions. Ob-
viously, if γ ′ has even one associated concept within the domain, there is no
need to involve the quality dimensions of that domain in the characterisation
process. For the calculated Vγ′,Q, each quality dimension q is included in the
set of associated quality dimensions Q(γ ′), if the corresponding elements in the
Vγ′,Q are not empty. Formally, q ∈ Q(γ ′) ⇐⇒ Vγ′,Q(q) 	= (∅, 0).

Example 4.12. Considering Figure 4.4b, γ ′ is not associated with any con-
cepts within δa. So, Q(γ ′) = {qa

1 ,qa
2 }. Also, in Figure 4.4d, there are no as-

sociated concepts in any of the domains. So, Q(γ ′) = {qa
1 ,qa

2 ,qb
1 ,qb

2 ,qb
3 }. In

Figures 4.4a and 4.4c, Q(γ ′) = ∅.
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Based on Equation 4.6, labelγ′,q = label(Abest
γ′,q ) is the linguistic term re-

lated to the best interval of the quality dimension with the maximum degree of
membership.5

Similar to the process of annotation, a sorting operation is needed to derive
the order of quality dimension labels in the final linguistic descriptions. Relying
on the graded quality values in Vγ′,Q, an ordered set of the associated quality
dimensions, OQ(γ

′) = {q ′
1,q ′

2, . . .}, is defined. The characterisation set for γ ′

then is simply defined as an ordered set of lexical items TQ(γ
′) = {label(Abest

γ′,q′
1
),

label(Abest
γ′,q′

2
), . . .}. These characterisations are retrieved from the correspond-

ing labels in Vγ′.Q, for the quality dimensions in Q(γ ′).

Example 4.13. Considering Example 4.12, suppose γ ′ is not associated with
any known concepts. Assume that for the quality dimensions elongation and
roundness, Vγ′,Q(qel) = (label(Aeld), 0.9) and Vγ′,Q(qro) = (label(Aro), 0.7)
(referring to Example 4.6). Then, TQ(γ

′) = {label(Aeld) = ‘elongated’,
label(Aro) = ‘lanced shape’}. For the above example, if the values of dimen-
sions (with the value range [0 1]) are vweight = 0.9 and vhight = 0.2, then the
corresponding characterisation set will be TQ(γ

′) = {label(αqweight) =
′ heavy ′,

label(αqlength) =
′ short length ′}.

Phrase Specification and Linguistic Realisation

Before applying the linguistic realisation, there is a need to specify an abstract
representation of the provided set of lexicons. According to [185], messages
are the abstractions that mediates between the set of lexicons and eventual
text. Here, based on the annotation and characterisation lexicons, two types of
messages can be defined as: AnnotationMsg and CharacterisationMsg. Phrase
specification is a structure to specify the elements of a message for a single
sentence, which is the proper representation of the output for microplanning
and the input for realisation. Various levels of abstraction have been proposed
for phrase specification such as Syntactic structure, Canned text, Case frame,
etc. [185]. Since the aim was to describe an observation with its attribute labels,
the complexity of the final sentence is limited to a reasonably straightforward
template of abstract representation. Here the syntactic structure is employed,
which describes the linguistic elements to be used as uninflected words, plus a
set of features to determine how to realise the final text. Figure 4.6 illustrates
the simple template for the final text in an attribute value matrix (AVM) for-
mat [185,237].

5The linguistic name of a quality dimension label(q) is Hq, as defined in Definition 3.2, but
this name can be also added to the linguistic label of the fuzzy intervals on quality dimension. As
an example, for two dimensions ‘time’ and ‘length’, the linguistic labels of the first intervals in both
can be ‘short’, but to be precise, the labels can consist of the dimension names to be defined as
‘short time’ and ‘short length’, respectively.
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the complexity of the final sentence is limited to a reasonably straightforward
template of abstract representation. Here the syntactic structure is employed,
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the simple template for the final text in an attribute value matrix (AVM) for-
mat [185,237].
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Figure 4.6: An abstract representation for the annotation and characterisation
messages in the AVM format.

Linguistic realisation is the process of applying a set of rules to abstract
representations of the lexical items in order to specify well-formed sentences in
natural language, which are syntactically and morphologically correct. More
specifically, the realisation maps the acquired abstract phrase specifications into
the surface text [185]. Some of the linguistic realisations represent sentences by
template-like structures when only limited syntactic variability is needed in the
output description [184]. One instance of an output format for the sentences
to describe the observations is as follows:

“This [Obs.] [be/be not/be like] [a con.label1] [and [a con.label2] and ...],
[but/also] it [be/have] [dim.label1] [and/with [dim.label2] and/with ... ].”

As this descriptive sentence is linguistically formed in a simple format, ap-
plying any realisation technique (e.g., SimpleNLG engine) will produce gram-
matically correct sentences as the output text. The standard architecture of
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messagesintheAVMformat.

Linguisticrealisationistheprocessofapplyingasetofrulestoabstract
representationsofthelexicalitemsinordertospecifywell-formedsentencesin
naturallanguage,whicharesyntacticallyandmorphologicallycorrect.More
specifically,therealisationmapstheacquiredabstractphrasespecificationsinto
thesurfacetext[185].Someofthelinguisticrealisationsrepresentsentencesby
template-likestructureswhenonlylimitedsyntacticvariabilityisneededinthe
outputdescription[184].Oneinstanceofanoutputformatforthesentences
todescribetheobservationsisasfollows:

“This[Obs.][be/benot/belike][acon.label1][and[acon.label2]and...],
[but/also]it[be/have][dim.label1][and/with[dim.label2]and/with...].”

Asthisdescriptivesentenceislinguisticallyformedinasimpleformat,ap-
plyinganyrealisationtechnique(e.g.,SimpleNLGengine)willproducegram-
maticallycorrectsentencesastheoutputtext.Thestandardarchitectureof
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NLG systems provides a well-defined realisation for the abstracted represen-
tations, which the details of the architecture can be found in [185] and the
implementation details are available in [95].

Example 4.14. Consider the set of annotations and characterisations from Ex-
amples 4.11 and 4.13. Then, the output of realisation will be a message like:
“This unknown leaf observation is like Nerium leaves and somewhat Tilia
leaves, but it is an elongated and a lance-shaped leaf.”

4.3 Discussion

This chapter has presented the utility of extending conceptual spaces as seman-
tic inference models to generate linguistic descriptions for unknown observa-
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conceptual space facilitates the process of inferring linguistic characterisations
for the unknown observations. One advantage of this inference model is that
the generated descriptions include adequate set of interpretable features that
are derived from the inclusion of unknown observations within the conceptual
space. following, a number of issues related to the semantic inference approach
are discussed.

Lexicalisation: On the inference process, one point related to the lexicalisa-
tion task is to determine the most descriptive terms to use in order to linguis-
tically represent a new observation. As seen in the Leaf example, the most ob-
vious psychological description could be regarding a leaf’s similarity or dissim-
ilarity to the known concepts. Thus, either the linguistic labels of the known
concepts or the linguistic terms of quality dimensions which are stored in sym-
bol space can be used. So, the semantic interpretability of such labels will affect
directly on the descriptive quality of the natural output text.

Concepts as nouns or adjectives: One point related to the lexicalisation and
realisation is that from the natural language point of view, the concepts in a
conceptual space typically represent the nouns while the sub-concepts or prop-
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input learning data set6. Preferably, one region within a domain is considered as
a concept or sub-concept that can be either nouns or adjectives, and be used to
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quality [64].
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describe an observation. For example, descriptions of an object in a conceptual
space of fruits can be either “the object is an apple” or “the object is red”. In
the former, the label refers to the concept apple as a noun, and in the latter one,
the label refers to the sub-concept red as an adjective. It is assumed that all the
linguistic terms of the quality dimensions are considered as the adjectives. For
instance, if weight is involved in the description of an object, the term heavy is
considered as the adjective in such descriptions like “the object is heavy”.

In sum, this chapter together with chapter 3 has shown the process of creat-
ing data-driven conceptual spaces and inferring linguistic description from such
spaces. The presented approaches in these two chapters will be exemplified in
chapter 5 to show the goodness of the developed semantic representation for
real-world data samples.

4.3.DISCUSSION71

describeanobservation.Forexample,descriptionsofanobjectinaconceptual
spaceoffruitscanbeeither“theobjectisanapple”or“theobjectisred”.In
theformer,thelabelreferstotheconceptappleasanoun,andinthelatterone,
thelabelreferstothesub-conceptredasanadjective.Itisassumedthatallthe
linguistictermsofthequalitydimensionsareconsideredastheadjectives.For
instance,ifweightisinvolvedinthedescriptionofanobject,thetermheavyis
consideredastheadjectiveinsuchdescriptionslike“theobjectisheavy”.

Insum,thischaptertogetherwithchapter3hasshowntheprocessofcreat-
ingdata-drivenconceptualspacesandinferringlinguisticdescriptionfromsuch
spaces.Thepresentedapproachesinthesetwochapterswillbeexemplifiedin
chapter5toshowthegoodnessofthedevelopedsemanticrepresentationfor
real-worlddatasamples.

4.3. DISCUSSION 71

describe an observation. For example, descriptions of an object in a conceptual
space of fruits can be either “the object is an apple” or “the object is red”. In
the former, the label refers to the concept apple as a noun, and in the latter one,
the label refers to the sub-concept red as an adjective. It is assumed that all the
linguistic terms of the quality dimensions are considered as the adjectives. For
instance, if weight is involved in the description of an object, the term heavy is
considered as the adjective in such descriptions like “the object is heavy”.

In sum, this chapter together with chapter 3 has shown the process of creat-
ing data-driven conceptual spaces and inferring linguistic description from such
spaces. The presented approaches in these two chapters will be exemplified in
chapter 5 to show the goodness of the developed semantic representation for
real-world data samples.

4.3.DISCUSSION71

describeanobservation.Forexample,descriptionsofanobjectinaconceptual
spaceoffruitscanbeeither“theobjectisanapple”or“theobjectisred”.In
theformer,thelabelreferstotheconceptappleasanoun,andinthelatterone,
thelabelreferstothesub-conceptredasanadjective.Itisassumedthatallthe
linguistictermsofthequalitydimensionsareconsideredastheadjectives.For
instance,ifweightisinvolvedinthedescriptionofanobject,thetermheavyis
consideredastheadjectiveinsuchdescriptionslike“theobjectisheavy”.

Insum,thischaptertogetherwithchapter3hasshowntheprocessofcreat-
ingdata-drivenconceptualspacesandinferringlinguisticdescriptionfromsuch
spaces.Thepresentedapproachesinthesetwochapterswillbeexemplifiedin
chapter5toshowthegoodnessofthedevelopedsemanticrepresentationfor
real-worlddatasamples.





Chapter 5

Results and Evaluation: A Case

Study on Leaf Data Set

“It doesn’t matter how beautiful your theory is, it doesn’t
matter how smart you are. If it doesn’t agree with
experiment, it’s wrong.”

— Richard Feynman (1918–1988)

T
his chapter presents an assessment of the formal methods described in the
chapters 3 and 4. A case study from a data set of leaves is investigated

to show the feasibility and the plausibility of the proposed approach in real-
world applications. This chapter also describes an empirical evaluation that is
designed to assess the goodness of the developed methods for describing un-
known observations using the conceptual spaces. Finally, the results of this
empirical assessment for the leaf data set are presented.

The leaf data set [206] is a set of photographed leaf samples from differ-
ent plant species. Here, six species are selected as the labelled data set (See
Figure 5.1), and the rest of the species are used as unlabelled data. The leaf
data set is a good first example, as it provides a tangible example of physical
objects while the vocabulary used to describe the leaves is not necessarily famil-
iar to non-specialists. For the case study on the leaf data set, the primitive set
of features is initialised by expert-oriented questionnaires or domain-oriented
background knowledge. These semantically interpretable features are describ-
able in natural language and are able to distinguish the known classes from
each other perceptually.
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74 CHAPTER 5. RESULTS: LEAF CASE STUDY

Figure 5.1: Six species as the known leaves in the leaf data set. The first row of
labels shows the scientific names [206], and the second row of labels shows the
common names [231].

5.1 Constructing a Conceptual Space of Leaves

The leaf data set includes 72 known leaf samples that are categorised in six
species. Formally, Dl = {o1, . . . ,o72} and Yl = { ysa : ‘Salix Atrocinera’,
yqr : ‘Quercus Robur’, yia : ‘Ilex Aquifolium’, yno : ‘Nerium Oleander’, ytt :
‘Tilia Tomentosa’, yap : ‘Acer Palmatum’ }. Figure 5.1 shows the prototypi-
cal samples of leaf species for the leaf labels in Y, along with their popular
names.1 According to the set of class labels Yl, the set of concepts is defined
as Cl = {Cia,Ctt,Cno,Cqr,Cap,Csa}. Here, the concepts are initiated, but the
representation of each concept will be formally presented later.

The first step to build a conceptual space of leaves is to specify the initial set
of features that characterises the leaves. The primary criterion while initialising
the features is how descriptive or interpretable the chosen features are in the
linguistic form. In other words, this approach is looking for such features that
are representable in natural language with a perceptual interpretation. For ex-
ample, the values of area and perimeter features might be useful for statistical
analysis or classification tasks, but these features do not carry meaningful infor-
mation to describe and distinguish the leaf observations. In contrast, a feature
like elongation meaningfully describes a perceptual feature of a leaf observa-
tion.

Besides the leaf samples in different species, Silva et al. [206] have provided
a set of attributes that describe the shape and texture features of leaves. Among
the semantic attributes, the following features and used in the model as the
initial set of features Fl = {Xi : 〈HXi

, IXi
〉}:

1Note that in the model, the scientific names of the leaves have been applied as labels used in the
original data set [206]. However, in the final descriptions for the evaluation, the common names of
leaves are used [231] which were more familiar to the general users.
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Figure 5.2: The bipartite graph presenting the relevance of features and labels
in leaf data set. Also, three chosen bicliques (as the domains) are highlighted
with blue, red, and grey edges.

Xec : 〈‘Eccentricity’, [0, 1]〉 (eccentricity of the ellipse),
Xar : 〈‘Aspect Ratio’, [1, inf)〉 (values close to 1 indicate an elongated shape),
Xel : 〈‘Elongation’, [0, 1]〉 (minimum is achieved for a circular region),
Xso : 〈‘Solidity’, (0, 1)〉, (how well the leaf fits a convex shape),
Xif : 〈‘Isoperimetric Factor’, [1, inf)〉 (curvy intertwined contours yield low
values),
Xlo : 〈‘Lobedness’, (0, inf)〉 (characterises how lobed a leaf is),
Xmi : 〈‘Maximal Indentation Depth’, (0, 1)〉, (how deep are the indentations),
Xsc : 〈‘Stochastic Convexity’, [0, 1]〉 , (probability of a random segment in a
leaf to be fully contained).

5.1.1 Domain Specification for Leaf Data set

The values of these features for every observation are acquired from [206]. Af-
ter that, the construction of the conceptual space is performed with the inputs
of the labelled observations Dl, label set Yl, and feature set Fl. The algorithm
first applies the feature filtering approach, i.e. MIFS (Algorithm 3.1) to pro-
vide a ranking matrix which shows the mutual relations of features and labels.
Then, using Algorithm 3.2, a feature subset grouping is performed. Figure 5.2
illustrates the created bipartite graph, which leads to determining the domains
and quality dimensions.

The chosen bicliques (with the highest scores) determine the three domains
Δl = {δ1, δ2, δ3}, where each domain is specified as follows:

• Domain δ1 = 〈Q(δ1),C(δ1),ωδ1〉, wherein
Q(δ1) = {qar, qel, qec},
C(δ1) = {Cia,Ctt,Cno}.

• Domain δ2 = 〈Q(δ2),C(δ2),ωδ2〉, wherein
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Figure 5.3: The conceptual space of leaf data set: a graphical presentation of the
determined domains with the corresponding quality dimensions and concepts.

• Domain δ3 = 〈Q(δ3),C(δ3),ωδ3〉, wherein
Q(δ3) = {qlo},
C(δ3) = {Csa,Cap}.

Figure 5.3 depicts a graphical presentation of the determined domains
with the corresponding quality dimensions and concepts. As an exam-
ple, domain δ2 is specified by two quality dimensions ‘solidity’ and
‘isoperimetric factor’, and is associated with two concepts ‘Quercus’ and
‘Acer’. An example of calculated weights in a domain is ωδ2(Cap,qso) = 0.61,2,
which shows the salience of the relation between leaf concept ‘Acer’ and quality
dimension ‘solidity’ within δ2. Although the process of deriving the domains
is data-driven, there may be an interpretation of each specified domain. For in-
stance, one can say that δ1 illustrates the convexity of the known leaves, while
δ2 shows the indentation of the known leaves (see Figure 5.3).

As an output of the domain specification phase for the conceptual space
of leaves, the set of quality dimensions is Ql = {qar, qel, qec, qso, qif, qlo},
and the set of instances is Γ l = ∪y∈Y Γ(y), where |Γ l| = |Dl|. Each γ ∈ Γ l

corresponds to a known leaf sample o ∈ Dl, and consists of three points (one
in each domain).

2It is notable that the values of weights, calculating with filter method (MIFS), are not inter-
pretable individually. However, they are involved in the model, since they are helpful to compare
and measure the similarities between the concepts and instances.
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Asanoutputofthedomainspecificationphasefortheconceptualspace
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76 CHAPTER 5. RESULTS: LEAF CASE STUDY

Figure 5.3: The conceptual space of leaf data set: a graphical presentation of the
determined domains with the corresponding quality dimensions and concepts.

• Domain δ3 = 〈Q(δ3),C(δ3),ωδ3〉, wherein
Q(δ3) = {qlo},
C(δ3) = {Csa,Cap}.

Figure 5.3 depicts a graphical presentation of the determined domains
with the corresponding quality dimensions and concepts. As an exam-
ple, domain δ2 is specified by two quality dimensions ‘solidity’ and
‘isoperimetric factor’, and is associated with two concepts ‘Quercus’ and
‘Acer’. An example of calculated weights in a domain is ωδ2(Cap,qso) = 0.61,2,
which shows the salience of the relation between leaf concept ‘Acer’ and quality
dimension ‘solidity’ within δ2. Although the process of deriving the domains
is data-driven, there may be an interpretation of each specified domain. For in-
stance, one can say that δ1 illustrates the convexity of the known leaves, while
δ2 shows the indentation of the known leaves (see Figure 5.3).

As an output of the domain specification phase for the conceptual space
of leaves, the set of quality dimensions is Ql = {qar, qel, qec, qso, qif, qlo},
and the set of instances is Γ l = ∪y∈Y Γ(y), where |Γ l| = |Dl|. Each γ ∈ Γ l

corresponds to a known leaf sample o ∈ Dl, and consists of three points (one
in each domain).

2It is notable that the values of weights, calculating with filter method (MIFS), are not inter-
pretable individually. However, they are involved in the model, since they are helpful to compare
and measure the similarities between the concepts and instances.

76CHAPTER5.RESULTS:LEAFCASESTUDY

Figure5.3:Theconceptualspaceofleafdataset:agraphicalpresentationofthe
determineddomainswiththecorrespondingqualitydimensionsandconcepts.

•Domainδ3=〈Q(δ3),C(δ3),ωδ3〉,wherein
Q(δ3)={qlo},
C(δ3)={Csa,Cap}.

Figure5.3depictsagraphicalpresentationofthedetermineddomains
withthecorrespondingqualitydimensionsandconcepts.Asanexam-
ple,domainδ2isspecifiedbytwoqualitydimensions‘solidity’and
‘isoperimetricfactor’,andisassociatedwithtwoconcepts‘Quercus’and
‘Acer’.Anexampleofcalculatedweightsinadomainisωδ2(Cap,qso)=0.61,2,
whichshowsthesalienceoftherelationbetweenleafconcept‘Acer’andquality
dimension‘solidity’withinδ2.Althoughtheprocessofderivingthedomains
isdata-driven,theremaybeaninterpretationofeachspecifieddomain.Forin-
stance,onecansaythatδ1illustratestheconvexityoftheknownleaves,while
δ2showstheindentationoftheknownleaves(seeFigure5.3).

Asanoutputofthedomainspecificationphasefortheconceptualspace
ofleaves,thesetofqualitydimensionsisQ

l
={qar,qel,qec,qso,qif,qlo},

andthesetofinstancesisΓ
l
=∪y∈YΓ(y),where|Γ

l
|=|D

l
|.Eachγ∈Γ

l

correspondstoaknownleafsampleo∈D
l
,andconsistsofthreepoints(one

ineachdomain).

2Itisnotablethatthevaluesofweights,calculatingwithfiltermethod(MIFS),arenotinter-
pretableindividually.However,theyareinvolvedinthemodel,sincetheyarehelpfultocompare
andmeasurethesimilaritiesbetweentheconceptsandinstances.



5.2. SEMANTIC INFERENCE FOR UNKNOWN LEAF SAMPLES 77

5.1.2 Concept Representation for Leaf Concepts

According to the output of concept representation, each leaf concept in Cl ap-
pears in only one domain and thus has exactly one sub-concept, except con-
cept Cap which has two sub-concepts in two different domains. Using Algo-
rithm 3.3, the elements of the sub-concepts for each known leaf concept in C is
calculated as follows.

• Leaf concepts ‘Ilex’, ‘Tilia’, and ‘Nerium’ are represented in δ1 as, re-
spectively:
Cia = {c1

ia : 〈η1
ia,φ

1
ia〉},

Ctt = {c1
tt : 〈η1

tt,φ
1
tt〉},

Cno = {c1
no : 〈η1

no,φ
1
no〉}.

• Leaf concept ‘Acer’ is represented in two domains δ2 and δ3 as:
Cap = {c2

ap : 〈η2
ap,φ

2
ap〉, c3

ap : 〈η3
ap,φ

3
ap〉}.

• Leaf concept ‘Quercus’ is represented in δ2 as:
Cqr = {c2

qr : 〈η2
qr,φ

2
qr〉}.

• Leaf concept ‘Salix’ is represented in δ3 as:
Csa = {c3

sa : 〈η1
sa,φ

1
sa〉}.

In these representations, for example, η2
qr shows the 2D convex polygon

of leaf concept ‘Quercus’ within δ2 (see Figure 5.3). Also, as an example
for the weights, φ2

qr = {ωδ2(Cqr,qso), ωδ2(Cqr,qif)} shows the salience
between leaf concept ‘Quercus’ and two quality dimensions ‘solidity’ and
‘isoperimetric factor’ within δ2. In Figure 5.3, the graphical presentation of
leaf concepts is shown by illustrating the convex hulls of their corresponding
sub-concepts.

Now, with the provided elements, the conceptual space of the leaf data set
is presented as: Sleaf = 〈 Ql, Δl, Cl, Γ l 〉.

5.2 Semantic Inference for Unknown Leaf Samples

Inference step aims to derive a semantic description for unknown observa-
tions using the developed conceptual space. The utility of the conceptual space
of leaves is presented using a set of unknown leaf samples from the plant
species. Figure 5.4 presents the selected set of unknown leaf samples to be
represented. Here, It is shown how to apply the inference approach on one
the samples (e.g., leaf (a) in Figure 5.4). According to the inference process,
an unknown observation like (a) is firstly vectorised to an instance γa. Then
a linguistic description for a is inferred in two phases: setting symbol vectors
by inferring in conceptual space and setting the lexical items by inferring in
symbol space. Instance γa is a set of points within the domains Δl(γa) de-
noted by γa = {p1

γa
,p2

γa
,p3

γa
}, where the numeric values of each point are
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pearsinonlyonedomainandthushasexactlyonesub-concept,exceptcon-
ceptCapwhichhastwosub-conceptsintwodifferentdomains.UsingAlgo-
rithm3.3,theelementsofthesub-conceptsforeachknownleafconceptinCis
calculatedasfollows.
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Intheserepresentations,forexample,η2

qrshowsthe2Dconvexpolygon
ofleafconcept‘Quercus’withinδ2(seeFigure5.3).Also,asanexample
fortheweights,φ2

qr={ωδ2(Cqr,qso),ωδ2(Cqr,qif)}showsthesalience
betweenleafconcept‘Quercus’andtwoqualitydimensions‘solidity’and
‘isoperimetricfactor’withinδ2.InFigure5.3,thegraphicalpresentationof
leafconceptsisshownbyillustratingtheconvexhullsoftheircorresponding
sub-concepts.

Now,withtheprovidedelements,theconceptualspaceoftheleafdataset
ispresentedas:Sleaf=〈Q
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〉.

5.2SemanticInferenceforUnknownLeafSamples

Inferencestepaimstoderiveasemanticdescriptionforunknownobserva-
tionsusingthedevelopedconceptualspace.Theutilityoftheconceptualspace
ofleavesispresentedusingasetofunknownleafsamplesfromtheplant
species.Figure5.4presentstheselectedsetofunknownleafsamplestobe
represented.Here,Itisshownhowtoapplytheinferenceapproachonone
thesamples(e.g.,leaf(a)inFigure5.4).Accordingtotheinferenceprocess,
anunknownobservationlike(a)isfirstlyvectorisedtoaninstanceγa.Then
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the feature values of (a) for each quality dimension in Sleaf . For example in δ2,
p2
γa

=〈qso(a), qif(a)〉=〈0.86, 0.45〉.

5.2.1 Inference in Conceptual Space of Leaves

Here, it is determined whether γa is included in any defined concept’s regions,
and then infer the semantic labels based on the inclusion of the instance to
the regions. Considering the leaf sample (a) in Figure 5.4, γa belongs to the
sub-concept c1

tt in δ1, however, it does not belong to any sub-concept in δ2

and δ3. Thus, based on Algorithm 4.1, the symbol vector for γa is set as fol-
lows: In the concept layer, using the graded membership function (defined in
Definition 4.2): Vγa,C(Ctt) = (‘Tilia Tomentosa’, 0.85). In the quality layer,
for the quality dimensions of δ2 and δ3, using the graded quality function (de-
fined in Definition 4.3): Vγa,Q(q

2
if) = (‘tipped/toothed’, 0.75), Vγa,Q(q

2
so) =

(‘smooth edges/entire’, 0.86), and Vγa,Q(q
3
lo) = (‘low lobedness’, 0.6).

5.2.2 Inference in Symbol Space of Leaves

By retrieving the information of the symbol vector V(γa), it is possible to
verbalise the elements of symbol vectors into a set of natural language de-
scriptions. As mentioned in Section 4.2.2, γa is annotated using the values
of Vγa,C, and characterised by the values of Vγa,Q. In particular, the anno-
tation set is TC(γa) = {‘Tilia Tomentosa’}, and the characterisation set will
be TQ(γa) = { ‘tipped’, ‘smooth edges’, ‘low lobedness’ }. Then the real-
isation for γa is as follows: Tγa

= ‘like Tilia Tomentosa(Silver Lime),
also with smooth and tipped edges, and low lobedness’.

The same approach is applicable for other unknown leaf samples (shown in
Figure 5.4) to describe them in natural language. Table 5.1 presents the gener-
ated descriptions derived from the semantic inference.

5.3 Empirical Evaluation: Design and Procedure for

Leaf Samples

Finding a direct solution for assessing the applicability of the proposed con-
ceptual space representation is not a trivial problem. Instead, the usefulness of
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Figure 5.4: A set of unknown leaf samples.

Leaves Linguistic Description
Fig. 5.4(a) This leaf is like Grey Willow, but it is round with a slightly

serrated margin.

Fig. 5.4(b) This leaf is like Japanese Maple, but it is oval with lobed mar-
gin.

Fig. 5.4(c) This leaf is like Silver Lime, but it is tipped with a slightly
toothed margin.

Fig. 5.4(d) This leaf is not like any known leaf species, but it is linear and
elongated with entire margin.

Fig. 5.4(e) This leaf is like Grey Willow, but it is round and tipped.

Fig. 5.4(f) This leaf is not like any known leaf species, but it is oval and
tipped with toothed margin.

Fig. 5.4(g) This leaf is like Silver Lime, also it is tipped with low lobed and
toothed margin.

Fig. 5.4(h) This leaf is not like any known leaf species, but it is round with
toothed and lobed margin.

Fig. 5.4(i) This leaf is like English Holly, but it is tipped with serrated
margin.

Fig. 5.4(j) This leaf is like Oleander, and it is also tipped.

Table 5.1: The linguistic descriptions derived for the unknown leaf samples in
Figure 5.4.
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1. identify specific leaf based on their linguistic description derived from the
conceptual space, and

2. rate the goodness of descriptions produced by different models on a Lik-
ert scale.

5.3.1 Survey: Design and Procedure

The survey was conducted online3. After an introduction to the used vocabu-
lary, the participants self-evaluated their familiarity with the terminology. The
main body of the survey was composed of two parts.

The first part is designed as a set of 4 multiple choices questions wherein
the participants have been asked to read the conceptual space description of a
randomly selected sample (among 15 leaves) and to choose the corresponding
image of the leaf from four shown options. The three incorrect options were
also randomly selected from a pool of unknown examples. This task-based
(or extrinsic) evaluation [183] allowed evaluation process not only to measure
how well the participants can connect a description of an unknown sample to
its correct image, but to investigate the incorrectly identified examples and their
relation in the conceptual space.

For the second part, a set of rating scale questions has been designed, again
using four questions per participant. In each question, an image of one un-
known observation is randomly selected and shown to the participants, along
with the three generated descriptions for that observation from three different
models. Participants then are asked to rate each text from 1 to 5 (Likert-scale
scoring) concerning how well each of the descriptions helps them to refer to
the image. This simultaneous human-rating (or intrinsic) evaluation [183] of
descriptions enables the evaluation process to compare the approaches relative
to each other, as well as to evaluate the absolute goodness of each approach.

In total 207 responses have been received4, out of which 102 valid responses
have been considered for the leaf data set.The survey was publicly distributed
online to anyone who was interested in participating. However, the outcome
for both data sets showed that most of the participants were in the range of 25-
44 years old and they are mostly educated in computer science or equivalent.
Besides, most of the participants were fluent in English speaking. About the
expertise level of the participants, The participants were not quite familiar with
the terminology that has been used for the leaf data. From the responses, 20%
of the participants knew none of the lexical items, 70% knew few or some of
them, and just 10% knew almost all of them.

3The survey can be accessed at https://survey.bana.ee
4The exact number of individuals is unknown since each participant could decide to perform

one of the data sets each time or even redo it with a new set of random questions.
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(a) A multi choice question

(b) A rating scale question

Figure 5.5: The screenshots from two types of questions designed for the survey:
(a) An example of multi choice question that shows a generated description,
and it asks the participants to identify which given image of leaf (from the
choices) is related to the description, (b) An example of rating scale question
that shows three different descriptions generated for a single leaf image, and it
asks the participant to rate the goodness of each given descriptions.
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Figure 5.6: The description of leaf (a) has been shown 31 times to the partici-
pants. In 19 responses, the correct image of leaf (a) is chosen by the participants
(61%). The most common misidentified example (7 responses, 23%) was the
image of leaf (x), which subjectively is quite similar, and interestingly, it is the
closest instance to the leaf (a) in the conceptual space. However, the closest
instance to leaf (a) in the full feature space is leaf (y) that its image is rarely
misidentified by the participants (only 1 response, 3%).

5.3.2 Identifying Leaf Observations from Linguistic

Descriptions

Participants were able to successfully identify all the unknown observations (15
leaves) with the help of the corresponding conceptual space descriptions. The
success rate to identify the correct image for each description in the leaf data
set was 73% ± 13%.

For further investigation of the incorrectly identified (i.e., misidentified) ex-
amples, the geometrical similarity of these answers was calculated in order to
the correct one in the conceptual space (multi-domain). According to [86], the
similarity in conceptual spaces can be calculated by applying Euclidean dis-
tance with the domains and city-block distance between them. To assess of the
similarities in conceptual space, the geometrical similarity of the same instances
is also calculated, but in a full feature space (single-domain) by applying Eu-
clidean distance. Two interesting results have been obtained: First, the misiden-
tified examples are not uniformly distributed between all possible choices, but
instead, participants tended to make similar mistakes. Second, the common
misidentified examples are most of the times (73% leaves) the closest instance
to the correct one in the conceptual space. In the full feature space, this was
only occasionally true (46% leaves). This shows that the confused examples
with each other are commonly the nearest instances within the multi-domain
conceptual space, which is mostly not true in the full feature space. One exam-
ple regarding this outcome is illustrated in Figure 5.6.

The results from the first part of the survey show that the proposed con-
ceptual space representation a) is applicable to derive semantic descriptions for
unknown observations, and b) is suitable to represent the cognitively similar
observations among the multiple domains.
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The results from the first part of the survey show that the proposed con-
ceptual space representation a) is applicable to derive semantic descriptions for
unknown observations, and b) is suitable to represent the cognitively similar
observations among the multiple domains.
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5.3.3 Rating Various Linguistic Descriptions of a Leaf

Observation

In the results of the rating scale questions, the description derived from the
conceptual space model is compared with the descriptions derived from the
two models of concept formation within the full feature space, one using a gen-
erative model and the other a discriminative model [122, 162]. The generative
model forms the concepts by modelling the distribution of individual classes
(i.e., bound each of them with a convex region). Then a new observation either
belongs to an existing class or none of them. On the other hand, the discrimina-
tive model forms the concepts by learning the (hard or soft) boundary between
classes (i.e., divide them into Voronoi regions). Hence, a new observation al-
ways belongs to at least one class label.

Concerning these two models of concept formation, two base-line ap-
proaches have been developed to generate linguistic descriptions. Inspired by
the idea of fuzzy sets for the linguistic description of data [177, 180], the gen-
erative and discriminative models have been extended to quantify the inclusion
of new observations within the full feature space. This will allow the model
to verbalise the numeric output of the models with linguistic descriptions. In a
generative model, fuzzy sets are employed to quantify the numeric values of the
features within the full-feature space. the same semantic inference algorithm is
applied (Chapter 4) on this model to derive such descriptions that most likely
involves only the quantified terms of the characteristic features. In a discrimi-
native model, with the help of fuzzy sets, the model is extended to multi-label
classification [211], which quantifies the membership of the instances to the
concepts. The inference algorithm is applied to this model to derive descrip-
tions that involve only the assigned labels of concepts with a quantification of
their membership degrees.

Example 5.1. For leaf (a) in Figure 5.4, here are the output descriptions from
three various approaches:

• Conceptual: “This leaf is like Grey Willow, but it is round with slightly
serrated margin.”

• Generative: “This leaf is round, wide, connected and entire, with smooth
margin and no indentation.”

• Discriminative: “This leaf is similar to English Holly, also has some sim-
ilarity to Grey Willow.”

Table 5.2 shows the statistical summary of the rating scores received for the
descriptions derived from each of the approaches in leaf data set. Also, these
scores are depicted in the form of boxplots in Figure 5.6.

An ANOVA test has been applied to show that the conceptual space de-
scription (Conceptual) is significantly preferable rated than the two alterna-
tives (Generative and Discriminative). Here, the Likert-scale scores were used

5.3.EMPIRICALEVALUATIONFORLEAFSAMPLES83

5.3.3RatingVariousLinguisticDescriptionsofaLeaf

Observation

Intheresultsoftheratingscalequestions,thedescriptionderivedfromthe
conceptualspacemodeliscomparedwiththedescriptionsderivedfromthe
twomodelsofconceptformationwithinthefullfeaturespace,oneusingagen-
erativemodelandtheotheradiscriminativemodel[122,162].Thegenerative
modelformstheconceptsbymodellingthedistributionofindividualclasses
(i.e.,boundeachofthemwithaconvexregion).Thenanewobservationeither
belongstoanexistingclassornoneofthem.Ontheotherhand,thediscrimina-
tivemodelformstheconceptsbylearningthe(hardorsoft)boundarybetween
classes(i.e.,dividethemintoVoronoiregions).Hence,anewobservational-
waysbelongstoatleastoneclasslabel.

Concerningthesetwomodelsofconceptformation,twobase-lineap-
proacheshavebeendevelopedtogeneratelinguisticdescriptions.Inspiredby
theideaoffuzzysetsforthelinguisticdescriptionofdata[177,180],thegen-
erativeanddiscriminativemodelshavebeenextendedtoquantifytheinclusion
ofnewobservationswithinthefullfeaturespace.Thiswillallowthemodel
toverbalisethenumericoutputofthemodelswithlinguisticdescriptions.Ina
generativemodel,fuzzysetsareemployedtoquantifythenumericvaluesofthe
featureswithinthefull-featurespace.thesamesemanticinferencealgorithmis
applied(Chapter4)onthismodeltoderivesuchdescriptionsthatmostlikely
involvesonlythequantifiedtermsofthecharacteristicfeatures.Inadiscrimi-
nativemodel,withthehelpoffuzzysets,themodelisextendedtomulti-label
classification[211],whichquantifiesthemembershipoftheinstancestothe
concepts.Theinferencealgorithmisappliedtothismodeltoderivedescrip-
tionsthatinvolveonlytheassignedlabelsofconceptswithaquantificationof
theirmembershipdegrees.

Example5.1.Forleaf(a)inFigure5.4,herearetheoutputdescriptionsfrom
threevariousapproaches:

•Conceptual:“ThisleafislikeGreyWillow,butitisroundwithslightly
serratedmargin.”

•Generative:“Thisleafisround,wide,connectedandentire,withsmooth
marginandnoindentation.”

•Discriminative:“ThisleafissimilartoEnglishHolly,alsohassomesim-
ilaritytoGreyWillow.”

Table5.2showsthestatisticalsummaryoftheratingscoresreceivedforthe
descriptionsderivedfromeachoftheapproachesinleafdataset.Also,these
scoresaredepictedintheformofboxplotsinFigure5.6.

AnANOVAtesthasbeenappliedtoshowthattheconceptualspacede-
scription(Conceptual)issignificantlypreferableratedthanthetwoalterna-
tives(GenerativeandDiscriminative).Here,theLikert-scalescoreswereused

5.3. EMPIRICAL EVALUATION FOR LEAF SAMPLES 83

5.3.3 Rating Various Linguistic Descriptions of a Leaf

Observation

In the results of the rating scale questions, the description derived from the
conceptual space model is compared with the descriptions derived from the
two models of concept formation within the full feature space, one using a gen-
erative model and the other a discriminative model [122, 162]. The generative
model forms the concepts by modelling the distribution of individual classes
(i.e., bound each of them with a convex region). Then a new observation either
belongs to an existing class or none of them. On the other hand, the discrimina-
tive model forms the concepts by learning the (hard or soft) boundary between
classes (i.e., divide them into Voronoi regions). Hence, a new observation al-
ways belongs to at least one class label.

Concerning these two models of concept formation, two base-line ap-
proaches have been developed to generate linguistic descriptions. Inspired by
the idea of fuzzy sets for the linguistic description of data [177, 180], the gen-
erative and discriminative models have been extended to quantify the inclusion
of new observations within the full feature space. This will allow the model
to verbalise the numeric output of the models with linguistic descriptions. In a
generative model, fuzzy sets are employed to quantify the numeric values of the
features within the full-feature space. the same semantic inference algorithm is
applied (Chapter 4) on this model to derive such descriptions that most likely
involves only the quantified terms of the characteristic features. In a discrimi-
native model, with the help of fuzzy sets, the model is extended to multi-label
classification [211], which quantifies the membership of the instances to the
concepts. The inference algorithm is applied to this model to derive descrip-
tions that involve only the assigned labels of concepts with a quantification of
their membership degrees.

Example 5.1. For leaf (a) in Figure 5.4, here are the output descriptions from
three various approaches:

• Conceptual: “This leaf is like Grey Willow, but it is round with slightly
serrated margin.”

• Generative: “This leaf is round, wide, connected and entire, with smooth
margin and no indentation.”

• Discriminative: “This leaf is similar to English Holly, also has some sim-
ilarity to Grey Willow.”

Table 5.2 shows the statistical summary of the rating scores received for the
descriptions derived from each of the approaches in leaf data set. Also, these
scores are depicted in the form of boxplots in Figure 5.6.

An ANOVA test has been applied to show that the conceptual space de-
scription (Conceptual) is significantly preferable rated than the two alterna-
tives (Generative and Discriminative). Here, the Likert-scale scores were used

5.3.EMPIRICALEVALUATIONFORLEAFSAMPLES83

5.3.3RatingVariousLinguisticDescriptionsofaLeaf

Observation

Intheresultsoftheratingscalequestions,thedescriptionderivedfromthe
conceptualspacemodeliscomparedwiththedescriptionsderivedfromthe
twomodelsofconceptformationwithinthefullfeaturespace,oneusingagen-
erativemodelandtheotheradiscriminativemodel[122,162].Thegenerative
modelformstheconceptsbymodellingthedistributionofindividualclasses
(i.e.,boundeachofthemwithaconvexregion).Thenanewobservationeither
belongstoanexistingclassornoneofthem.Ontheotherhand,thediscrimina-
tivemodelformstheconceptsbylearningthe(hardorsoft)boundarybetween
classes(i.e.,dividethemintoVoronoiregions).Hence,anewobservational-
waysbelongstoatleastoneclasslabel.

Concerningthesetwomodelsofconceptformation,twobase-lineap-
proacheshavebeendevelopedtogeneratelinguisticdescriptions.Inspiredby
theideaoffuzzysetsforthelinguisticdescriptionofdata[177,180],thegen-
erativeanddiscriminativemodelshavebeenextendedtoquantifytheinclusion
ofnewobservationswithinthefullfeaturespace.Thiswillallowthemodel
toverbalisethenumericoutputofthemodelswithlinguisticdescriptions.Ina
generativemodel,fuzzysetsareemployedtoquantifythenumericvaluesofthe
featureswithinthefull-featurespace.thesamesemanticinferencealgorithmis
applied(Chapter4)onthismodeltoderivesuchdescriptionsthatmostlikely
involvesonlythequantifiedtermsofthecharacteristicfeatures.Inadiscrimi-
nativemodel,withthehelpoffuzzysets,themodelisextendedtomulti-label
classification[211],whichquantifiesthemembershipoftheinstancestothe
concepts.Theinferencealgorithmisappliedtothismodeltoderivedescrip-
tionsthatinvolveonlytheassignedlabelsofconceptswithaquantificationof
theirmembershipdegrees.

Example5.1.Forleaf(a)inFigure5.4,herearetheoutputdescriptionsfrom
threevariousapproaches:

•Conceptual:“ThisleafislikeGreyWillow,butitisroundwithslightly
serratedmargin.”

•Generative:“Thisleafisround,wide,connectedandentire,withsmooth
marginandnoindentation.”

•Discriminative:“ThisleafissimilartoEnglishHolly,alsohassomesim-
ilaritytoGreyWillow.”

Table5.2showsthestatisticalsummaryoftheratingscoresreceivedforthe
descriptionsderivedfromeachoftheapproachesinleafdataset.Also,these
scoresaredepictedintheformofboxplotsinFigure5.6.

AnANOVAtesthasbeenappliedtoshowthattheconceptualspacede-
scription(Conceptual)issignificantlypreferableratedthanthetwoalterna-
tives(GenerativeandDiscriminative).Here,theLikert-scalescoreswereused



84 CHAPTER 5. RESULTS: LEAF CASE STUDY

Table 5.2: The overall scores calculated from rating responses to the different
models in leaf data set. The numbers show average scores (and standard devi-
ations) in the range of 1 to 5.

Mean (SD)
Conceptual 3.62 (1.19)
Generative 3.27 (1.33)

Discriminative 2.72 (1.24)

Figure 5.7: The box plot of the rating scores received for each of the models,
deriving descriptions in leaf data set.

as the dependent variable, and the models were used as the independent vari-
ables (groups). Then, the Post-hoc Tukey test was employed to identify the
significant difference between the models. The one-way ANOVA test showed a
significant effect of the models on the scores. For leaf data set, Conceptual has
the mean significantly different from Generative and Discriminative, p < .0001
(two-tailed). The details of the test has been shown in Table 5.3.

Moreover, since the ratings are ordinal, also a non-parametric test (i.e.,
Wilcoxon Test) has been carried out to identify the significant differences be-
tween ratings by comparing each pair of the scores. Table 5.3 shows the p-
values of this method for each pair of models. The output showed that Concep-
tual model is significantly different from Generative and Discriminative models
(p < .0001).

Overall, the results from this part of the survey show that the proposed
conceptual space representation a) is an appropriate semantic inference model
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Table 5.3: Summary of the one-way ANOVA and Wilcoxon tests for the rating
scores with respect to the models deriving descriptions.

leaf data set

ANOVA Test
Conceptual vs.

Generative & Discriminative
F(2, 1221)=52.82,

p<10−21

Wilcoxon Test
Conceptual vs. Generative p<10−4

Conceptual vs. Discriminative p<10−23

Generative vs. Discriminative p<10−07

to derive linguistic descriptions for unknown observations, and b) successfully
derives descriptions (from multi-domain space) that are naturally preferred by
participants, in comparison to the other alternative models (from single-domain
space).

5.4 Discussion

In this chapter, the feasibility of the approach has been demonstrated in a case
study of the real-world numerical data set. But it is notable that the framework
proposed in this work is introduced for general use in any numeric data sets
wherein the known features and categories are available, but the perceptual
domains and the concept formation need to be determined. By performing an
empirical evaluation, it has been assessed how well linguistic descriptions that
are generated based on the derived conceptual space enable human users first
to identify the unknown observations. This followed by a comparison between
different semantic models of generating linguistic descriptions to show how
well human users prefer the descriptions from the conceptual space model to
refer to unknown observations. Following, a number of issues related to the
inference approach are discussed.

Multi-domain representation: The evaluation results indicate that a multi-
domain representation of concepts (i.e., conceptual spaces) can lead to a better
presentation of output descriptions in comparison to a single-domain represen-
tation, since the multi-domain spaces preserve the various semantic aspects of
the attributes for a concept, while the others combine all the attributes into a
single space.

Generalisation: While the proposed approach has been tested on two case
studies to verify its plausibility, it would be necessary to identify a general class
of problems that the proposed approach can address. Many AI problems deal-
ing with numeric data as the input of learning systems require semantic inter-
pretation for these data, which is needed for interaction with humans. How-
ever, in most of the cases, there is no a priori or expert knowledge to explain the
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aspects of the input observations. This is more problematic when connection-
ist approaches are applied since they cannot explain what the learnt emerging
model represents. Hence, the introduced framework to construct and utilise
conceptual spaces is generally applicable for those AI applications wherein: (1)
there is a need for concept learning and concept description only based on the
known available observations, and (2) there is a lack of interpretability while
creating a learning model, as well as the lack of explainability while testing the
model by completely unknown observations.

In sum, Part I of this thesis is concluded with the investigation on how the
semantic representations proposed in Chapter 3 and Chapter 4 can be applied
to a real-world data set, and the utility of this representation for describing new
observations.
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Part II

Physiological Sensor Data:
From Data Analysis to
Linguistic Descriptions

Part II of this thesis focuses on the full framework of describing the numerical
data, specifically considering physiological sensor data. This part shows how to
mine physiological patterns from sensor data, and how to use the semantic rep-
resentations proposed in Part I to linguistically describe such patterns. First, the
state of the art on data mining approaches for sensor data is discussed (Chap-
ter 6). After mining unseen but interesting time series patterns (Chapter 7) and
temporal rules between the patterns (Chapter 8), it is shown how the proposed
semantic model in Part I can be applied to linguistically describe these patterns
(Chapter 9).
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Chapter 6

An Overview of Health

Monitoring with Mining

Physiological Sensor Data

“Without data you’re just another person with an
opinion.”

— W. Edwards Deming (1900–1993)

A
s noted in chapter 1, a framework to deal with the problem of representing
and describing numerical data needs first to acquire a proper set of raw

data. Subsequently, the framework needs to turn this data into information that
is suitable to be fed to a semantic representation or any other data to text sys-
tem. The second part of the thesis presents the task of mining and analysing the
raw measured physiological data in order to provide a set of valuable informa-
tion for the semantic model. For this reason, before going through the proposed
methods for analysing physiological data and extracting valuable information,
this chapter presents an overview of current health monitoring systems within
mining physiological sensor data. This overview gives a better understanding
of the existing methods for analysing such data, along with investigating their
strengths and weaknesses to be used for the goal of data explanation in natural
language.

The past few years have witnessed an increase in the development of wear-
able sensors for health monitoring systems. With the increase of healthcare
services in non-clinical environments using vital signs provided by wearable
sensors, the need to mine and process physiological measurements is growing
significantly. This increase has been due to several factors such as development
in sensor technology as well as directed efforts on political and stakeholder lev-
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els to promote projects which address the need for providing new methods for
care given challenges with an ageing population. An important aspect in such
system is how the data is treated and processed. This chapter provides a review
of the recent methods and algorithms used to analyse data from wearable sen-
sors, which are used for monitoring of physiological vital signs in healthcare
services. More precisely, it outlines the common data mining tasks that have
been recently applied for health monitoring, such as anomaly detection, pre-
diction and decision making when considering continuous time series measure-
ments. Moreover, the chapter details the suitability of particular data mining
and machine learning methods used to process physiological data.

In health monitoring systems the focus has been recently shifting from
the obtaining data to developing intelligent algorithms to perform a variety
of tasks [23]. Such tasks not only include traditional pattern recognition and
anomaly detection, but also consider decision-based systems which can handle
context awareness, subject-specific models, and personalisation. As the litera-
ture in this field is vast, the scope of this thesis has been limited to only cover
wearable sensors that measure health parameters such as vital signs for disease
management and prevention. Specifically, this review is concentrated on the
following vital sign parameters: electrocardiogram (ECG), oxygen saturation
(SpO2), heart rate (HR), Photoplethysmography (PPG), blood glucose (BG),
respiratory rate (RR), and blood pressure (BP).

Works such as [51] and [27] have focused on the needs of involving wear-
able sensors and overcoming essential bottlenecks for the use of wearable sen-
sors such as the clinical acceptability and interoperability in health records.
Most of the recent review articles on data mining of physiological sensor
data are related to general studies for healthcare, i.e., well-known problems
in healthcare with simple and routine data mining approaches [159]. Recently,
Sow [212] categorised the main challenges of sensor data mining in five fol-
lowing stages: acquisition, preprocessing, transformation, modelling and eval-
uation. The authors in [235] and [37] have used the data mining algorithms
mainly in two categories 1) descriptive or unsupervised learning (i.e. clustering,
association, summarisation) and 2) predictive or supervised learning (i.e. classi-
fication, regression). However, they are lacking deeper insight into the suitabil-
ity of the algorithms for handling the special characteristics of the sensor data
in health monitoring systems.

6.1 Data Mining Tasks in Health Monitoring

Systems

Recently, the research area of health monitoring systems has shifted from the
pure reasoning of wearable sensor readings (like calculating the sleep hours
or the number of steps per day) to the higher level of data processing to give
more valuable information to the end users. Therefore, healthcare services have
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been focusing on more in-depth data mining tasks to be achieved. Based on
the selected literature, three types of data mining tasks as the objectives of
healthcare systems are predominant. These three tasks are: 1) prediction, 2)
anomaly detection which include the subtask of raising alarms, and 3) diagnosis
as a decision making process.

Figure 6.1 provides a depiction of each task concerning three dimensions or
aspects. The first dimension involves the setting in which the health monitoring
occurs (home/remote or clinical settings). Most monitoring applications which
consider remote settings deal predominantly with prediction and anomaly de-
tection tasks, whereas the applications in clinical settings are typically focused
on diagnosis task [27, 216]. This fact is explained by the growing desire to
have a more preventative approach (prediction) via wearable sensors and to
consider the possibility to facilitate independent living in home environments
by increasing the sense of security (alarm). Similarly, in clinical settings much
more information is available to provide diagnosis and assist in decision mak-
ing [37]. The second dimension in the figure shows the type of subjects that are
under observation (healthy or patient). For patients with known disease and
medical records, both diagnosis and precisely the possibility to raise alarms are
the essential tasks. For health monitoring which typically include healthy in-
dividuals who want to ensure the maintenance of good health, prediction and
anomaly detection are the considered tasks in the literature [158]. The final di-
mension depicted in the figure considers how the acquired data sets have been
processed (online/offline). For all three mentioned tasks, the data sets have been
addressed both online and offline manners. However, most of the alarm-related
tasks are naturally investigated in the context of online and continuous moni-
toring [212].

Anomaly Detection

Anomaly detection is the task of identifying unusual patterns which do not
conform to the expected behaviour of the data [52]. Detected unusual patterns
in health parameters, especially for home monitoring systems, enables the clin-
icians to make accurate decisions in short time [53]. Anomaly detection tech-
niques are often developed based on classification methods to distinguish the
data set into the regular classes and the outliers [97]. For example, support vec-
tor machines [141], Markov models [243] and Wavelet analysis [100] are used
in healthcare systems for anomaly detection. Most of the related works using
the anomaly detection approach usually deal with short-term [118] and multi-
variate data sets [61] to characterise the entire the data to find discords. Some
of the studies considered finding irregular patterns in vital signs time series such
as abnormal episodes in ECG [61, 222] and SpO2 [54], which mostly discover
unusual temporal patterns in continuous data. In online healthcare systems,
alarms as soon as detecting any anomaly in vital signs will be triggered to have
an instant reaction. Such alarm system is designed for monitoring patients in

6.1.DATAMININGTASKSINHEALTHMONITORINGSYSTEMS93

beenfocusingonmorein-depthdataminingtaskstobeachieved.Basedon
theselectedliterature,threetypesofdataminingtasksastheobjectivesof
healthcaresystemsarepredominant.Thesethreetasksare:1)prediction,2)
anomalydetectionwhichincludethesubtaskofraisingalarms,and3)diagnosis
asadecisionmakingprocess.

Figure6.1providesadepictionofeachtaskconcerningthreedimensionsor
aspects.Thefirstdimensioninvolvesthesettinginwhichthehealthmonitoring
occurs(home/remoteorclinicalsettings).Mostmonitoringapplicationswhich
considerremotesettingsdealpredominantlywithpredictionandanomalyde-
tectiontasks,whereastheapplicationsinclinicalsettingsaretypicallyfocused
ondiagnosistask[27,216].Thisfactisexplainedbythegrowingdesireto
haveamorepreventativeapproach(prediction)viawearablesensorsandto
considerthepossibilitytofacilitateindependentlivinginhomeenvironments
byincreasingthesenseofsecurity(alarm).Similarly,inclinicalsettingsmuch
moreinformationisavailabletoprovidediagnosisandassistindecisionmak-
ing[37].Theseconddimensioninthefigureshowsthetypeofsubjectsthatare
underobservation(healthyorpatient).Forpatientswithknowndiseaseand
medicalrecords,bothdiagnosisandpreciselythepossibilitytoraisealarmsare
theessentialtasks.Forhealthmonitoringwhichtypicallyincludehealthyin-
dividualswhowanttoensurethemaintenanceofgoodhealth,predictionand
anomalydetectionaretheconsideredtasksintheliterature[158].Thefinaldi-
mensiondepictedinthefigureconsidershowtheacquireddatasetshavebeen
processed(online/offline).Forallthreementionedtasks,thedatasetshavebeen
addressedbothonlineandofflinemanners.However,mostofthealarm-related
tasksarenaturallyinvestigatedinthecontextofonlineandcontinuousmoni-
toring[212].

AnomalyDetection

Anomalydetectionisthetaskofidentifyingunusualpatternswhichdonot
conformtotheexpectedbehaviourofthedata[52].Detectedunusualpatterns
inhealthparameters,especiallyforhomemonitoringsystems,enablestheclin-
icianstomakeaccuratedecisionsinshorttime[53].Anomalydetectiontech-
niquesareoftendevelopedbasedonclassificationmethodstodistinguishthe
datasetintotheregularclassesandtheoutliers[97].Forexample,supportvec-
tormachines[141],Markovmodels[243]andWaveletanalysis[100]areused
inhealthcaresystemsforanomalydetection.Mostoftherelatedworksusing
theanomalydetectionapproachusuallydealwithshort-term[118]andmulti-
variatedatasets[61]tocharacterisetheentirethedatatofinddiscords.Some
ofthestudiesconsideredfindingirregularpatternsinvitalsignstimeseriessuch
asabnormalepisodesinECG[61,222]andSpO2[54],whichmostlydiscover
unusualtemporalpatternsincontinuousdata.Inonlinehealthcaresystems,
alarmsassoonasdetectinganyanomalyinvitalsignswillbetriggeredtohave
aninstantreaction.Suchalarmsystemisdesignedformonitoringpatientsin

6.1. DATA MINING TASKS IN HEALTH MONITORING SYSTEMS 93

been focusing on more in-depth data mining tasks to be achieved. Based on
the selected literature, three types of data mining tasks as the objectives of
healthcare systems are predominant. These three tasks are: 1) prediction, 2)
anomaly detection which include the subtask of raising alarms, and 3) diagnosis
as a decision making process.

Figure 6.1 provides a depiction of each task concerning three dimensions or
aspects. The first dimension involves the setting in which the health monitoring
occurs (home/remote or clinical settings). Most monitoring applications which
consider remote settings deal predominantly with prediction and anomaly de-
tection tasks, whereas the applications in clinical settings are typically focused
on diagnosis task [27, 216]. This fact is explained by the growing desire to
have a more preventative approach (prediction) via wearable sensors and to
consider the possibility to facilitate independent living in home environments
by increasing the sense of security (alarm). Similarly, in clinical settings much
more information is available to provide diagnosis and assist in decision mak-
ing [37]. The second dimension in the figure shows the type of subjects that are
under observation (healthy or patient). For patients with known disease and
medical records, both diagnosis and precisely the possibility to raise alarms are
the essential tasks. For health monitoring which typically include healthy in-
dividuals who want to ensure the maintenance of good health, prediction and
anomaly detection are the considered tasks in the literature [158]. The final di-
mension depicted in the figure considers how the acquired data sets have been
processed (online/offline). For all three mentioned tasks, the data sets have been
addressed both online and offline manners. However, most of the alarm-related
tasks are naturally investigated in the context of online and continuous moni-
toring [212].

Anomaly Detection

Anomaly detection is the task of identifying unusual patterns which do not
conform to the expected behaviour of the data [52]. Detected unusual patterns
in health parameters, especially for home monitoring systems, enables the clin-
icians to make accurate decisions in short time [53]. Anomaly detection tech-
niques are often developed based on classification methods to distinguish the
data set into the regular classes and the outliers [97]. For example, support vec-
tor machines [141], Markov models [243] and Wavelet analysis [100] are used
in healthcare systems for anomaly detection. Most of the related works using
the anomaly detection approach usually deal with short-term [118] and multi-
variate data sets [61] to characterise the entire the data to find discords. Some
of the studies considered finding irregular patterns in vital signs time series such
as abnormal episodes in ECG [61, 222] and SpO2 [54], which mostly discover
unusual temporal patterns in continuous data. In online healthcare systems,
alarms as soon as detecting any anomaly in vital signs will be triggered to have
an instant reaction. Such alarm system is designed for monitoring patients in

6.1.DATAMININGTASKSINHEALTHMONITORINGSYSTEMS93

beenfocusingonmorein-depthdataminingtaskstobeachieved.Basedon
theselectedliterature,threetypesofdataminingtasksastheobjectivesof
healthcaresystemsarepredominant.Thesethreetasksare:1)prediction,2)
anomalydetectionwhichincludethesubtaskofraisingalarms,and3)diagnosis
asadecisionmakingprocess.

Figure6.1providesadepictionofeachtaskconcerningthreedimensionsor
aspects.Thefirstdimensioninvolvesthesettinginwhichthehealthmonitoring
occurs(home/remoteorclinicalsettings).Mostmonitoringapplicationswhich
considerremotesettingsdealpredominantlywithpredictionandanomalyde-
tectiontasks,whereastheapplicationsinclinicalsettingsaretypicallyfocused
ondiagnosistask[27,216].Thisfactisexplainedbythegrowingdesireto
haveamorepreventativeapproach(prediction)viawearablesensorsandto
considerthepossibilitytofacilitateindependentlivinginhomeenvironments
byincreasingthesenseofsecurity(alarm).Similarly,inclinicalsettingsmuch
moreinformationisavailabletoprovidediagnosisandassistindecisionmak-
ing[37].Theseconddimensioninthefigureshowsthetypeofsubjectsthatare
underobservation(healthyorpatient).Forpatientswithknowndiseaseand
medicalrecords,bothdiagnosisandpreciselythepossibilitytoraisealarmsare
theessentialtasks.Forhealthmonitoringwhichtypicallyincludehealthyin-
dividualswhowanttoensurethemaintenanceofgoodhealth,predictionand
anomalydetectionaretheconsideredtasksintheliterature[158].Thefinaldi-
mensiondepictedinthefigureconsidershowtheacquireddatasetshavebeen
processed(online/offline).Forallthreementionedtasks,thedatasetshavebeen
addressedbothonlineandofflinemanners.However,mostofthealarm-related
tasksarenaturallyinvestigatedinthecontextofonlineandcontinuousmoni-
toring[212].

AnomalyDetection

Anomalydetectionisthetaskofidentifyingunusualpatternswhichdonot
conformtotheexpectedbehaviourofthedata[52].Detectedunusualpatterns
inhealthparameters,especiallyforhomemonitoringsystems,enablestheclin-
icianstomakeaccuratedecisionsinshorttime[53].Anomalydetectiontech-
niquesareoftendevelopedbasedonclassificationmethodstodistinguishthe
datasetintotheregularclassesandtheoutliers[97].Forexample,supportvec-
tormachines[141],Markovmodels[243]andWaveletanalysis[100]areused
inhealthcaresystemsforanomalydetection.Mostoftherelatedworksusing
theanomalydetectionapproachusuallydealwithshort-term[118]andmulti-
variatedatasets[61]tocharacterisetheentirethedatatofinddiscords.Some
ofthestudiesconsideredfindingirregularpatternsinvitalsignstimeseriessuch
asabnormalepisodesinECG[61,222]andSpO2[54],whichmostlydiscover
unusualtemporalpatternsincontinuousdata.Inonlinehealthcaresystems,
alarmsassoonasdetectinganyanomalyinvitalsignswillbetriggeredtohave
aninstantreaction.Suchalarmsystemisdesignedformonitoringpatientsin



94 CHAPTER 6. AN OVERVIEW OF HEALTH MONITORING

Figure 6.1: A schematic overview of the position of the main data mining tasks
(anomaly detection, prediction, and diagnosis/decision making) concerning the
different aspects of wearable sensing in the health monitoring systems.

clinical units [54]. However, anomaly detection task can be obtained by offline
techniques in a sense to detect abnormal readings for subjects based on their
historical measurements [243].

Prediction

Prediction task has been widely considered in data mining field that identifies
the upcoming events based on the previously recorded information. This ap-
proach is getting more interesting for the healthcare providers in the medical
domain since it prevents further chronic problems [37] and leads to make deci-
sions about prognosis [38]. The role of the predictive data mining considering
wearable sensors is non-trivial due to the requirement of modelling sequential
patterns acquired from vital signs. This approach is also known as a supervised
learning model [235]. As the typical examples of the predictive models, authors
in [205, 218] presented a method which predicts the further stress levels of a
subject. A similar case of using predictive models in healthcare are blood glu-
cose level prediction [55], mortality prediction by clustering electronic health
data [153], and a predictive decision making system for dialysis patients [234].
Recently, there are new studies concerning prediction tasks, which have used
experimental wearable sensor data to perform in non-clinical settings [60,97].
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Diagnosis/Decision Making

Decision making in diagnosis is one of the main tasks of clinical monitoring
systems which is often based on retrieved knowledge using vital signs, and
also other information such as electronic health records and metadata [210].
Some examples of recent works on diagnosis/decision making tasks consist
of: estimating the severity of health episodes of patients suffering chronic dis-
ease [40, 41, 101], sleep issues such as polysomnography and apnea [43, 232],
estimation and classification of health conditions [169, 226], and emotion
recognition [81]. Most of these studies have used online databases with an-
notated episodes to have sufficient and trustable real-world disease labels to
evaluate the decision making process. Considering the complexity of the data
to infer diagnosis, some researchers frequently used classification methods such
as neural network [128] and decision trees [81] on short-term clinical data sets.

6.2 Data Mining in Health Monitoring Systems

In health monitoring systems, the role of data analysis is to extract information
from the low-level sensor data and bridge them to the high-level knowledge
representation. For this reason, recent health monitoring systems have given
more attention to the data processing phase to catch more valuable informa-
tion based on the expert user requirements. Data mining techniques that have
been applied to wearable sensor data in health monitoring systems have varied,
and it is also not uncommon that several techniques are used within the same
architecture.

Regardless of the data mining technique used, the most standard and widely
used approaches to mining information from sensor data sets are given in Fig-
ure 6.2. Acquiring the data sets as the input of the architecture is discussed
in Section 6.3, and the data mining tasks as the goals of the architecture are
presented in Section 6.1. The main steps of the data mining approach consist
of 1) data preprocessing, 2) feature extraction, and 3) modelling and learning
the information (considering expert knowledge and metadata) to perform the
defined tasks.

It should be noted that parameters such as expert knowledge, histori-
cal data measurements, electronic health records, and stable parameters (e.g.
sex, age) are essential in a data mining method. These parameters (metadata)
provide contextual analysis and improve the process of knowledge extrac-
tion [100, 227]. One example is that every healthcare system, that uses HR
sensor data, needs to investigate the effect of metadata such as age, sex, weight,
and medicine in order to have meaningful reasoning in order to find i.e., basic
abnormal heart rates or to personalise the critical pulses based on the men-
tioned metadata [98,115].
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Figure 6.2: A generic architecture of the primary data mining approach for
wearable sensor data.

6.2.1 Preprocessing

Due to the occurrence of noise, motion artefacts, and sensor errors in any wear-
able sensor networks, preprocessing of the raw data is necessary. Preprocess-
ing in the healthcare domain involves 1) filter unusual data to remove arte-
facts [22, 152, 208], and 2) remove high frequency noise [81, 117, 137]. The
main challenges of the preprocessing phase in healthcare systems are addressed
in [212] which includes data formatting, data normalisation, and data synchro-
nisation. Since the gathered sensor data is often unreliable and massive, studies
working with large-scale and continuous data have necessarily employed a pre-
processing step [101].

6.2.2 Feature Extraction/Selection

According to the magnitude and complexity of the raw data, feature extraction
provides a representation of the sensor data which can formulate the relation
of raw data with the expected knowledge for decision making [39]. Moreover,
reducing the amount of sensor data is another task in feature extraction and
selection phases which leads to having an arranged vector of features as an
input of data mining techniques like classifier methods [101,152].

Since Wearable sensor data that provide monitoring of vital sign parameters
tend to be continuous time series readings, most of the considered features
are related to the properties of time series signals [60]. Two main aspects of
analysing signals are time domain and spectral domain [24]. In physiological
data, the time-domain features are common, because the traditional decision
making frameworks on vital signs have relied on the observable trends in the
signal [54]. However, for extra knowledge about the periodic behaviour of time
series, research in the medical field has given more attention to the features
acquired from frequency-domains [100, 101]. Table 6.1 summarises the most
appeared features in the literature that extracted from wearable sensor data.
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Time Domain Spectral Domain Other Features

ECG

mean R-R, std R-R, mean
HR, std HR [218], number
of R-R interval [141], mean
R-R, std R-R interval [39]

spectral energy [117,141],
power spectral density [222],

low-pass filter [101],
low/high frequency [39,218]

-

SpO2

mean, zero crossing counts,
entropy [232], mean,

slope [22],
self-similarity [152]

energy, low frequency [152]
drift from normal-
ity range [22], en-
tropy [152]

HR
mean, slope [22], mean,
self-similarity, std [152]

energy, low/high
frequency [152], low/high
frequency [208], wavelet

coefficients of data
segments [101], low/high
frequency, power spectral

density [60]

Drift from nor-
mality range [22],
Entropy, Co-
occurrence coeffi-
cients [152]

PPG
rise times, max, min,

mean [208]
low/high frequency [208] -

BP Mean, Slope [22] - rule based [13]

RR max, min, mean [39]. -
residual and tidal
volume [39].

Other
Sensor
Data

zero crossings count, peak
value, rise time

(EMG) [175], mean,
duration (GSR) [208], pick
value, min, max (SCR) [81],

total magnitude, duration
(GSR) [218].

spectral energy (EEG) [141],
median and mean frequency,

spectral energy
(EMG) [175], energy

(GSR) [208].

bandwidth,
peaks count
(GSR) [208].

Table 6.1: The summarisation of the most commonly used features of each
wearable sensor data in the literature.

6.2.3 Modelling and Learning Methods

Appropriate data processing techniques are essential, in order to make sense
of the data [212]. This section briefly outlines the most common data mining
algorithms used for modelling and learning sensor data.

Neural networks Neural Network (NN) is an artificial intelligence approach
which is widely used for classification and prediction [168]. Due to the pre-
dictive performance of NN, it is presently the most popular data modelling
method used in the medical domain [38]. The NN is able to profoundly model
nonlinear systems such as physiological records where the correlation of the
input parameters is not easily detectable [21]. A wide range of the diagno-
sis and decision making tasks has been done by NN in the healthcare sys-
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Appropriatedataprocessingtechniquesareessential,inordertomakesense
ofthedata[212].Thissectionbrieflyoutlinesthemostcommondatamining
algorithmsusedformodellingandlearningsensordata.

NeuralnetworksNeuralNetwork(NN)isanartificialintelligenceapproach
whichiswidelyusedforclassificationandprediction[168].Duetothepre-
dictiveperformanceofNN,itispresentlythemostpopulardatamodelling
methodusedinthemedicaldomain[38].TheNNisabletoprofoundlymodel
nonlinearsystemssuchasphysiologicalrecordswherethecorrelationofthe
inputparametersisnoteasilydetectable[21].Awiderangeofthediagno-
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tems [143,167]. Since the progress of learning in NN is to some extent compli-
cated, the method is commonly used in clinical conditions with large and com-
plicated data sets [101]. Also, as the modelling in NN is a black box progress,
NN methods need to be adjusted for different input data [55].

Decision trees Decision tree is a vital learning technique which provides an
efficient representation of rule classification [81]. The decision tree is a reli-
able technique to use in different areas of the medical domain in order to
make a right decision [150, 173]. Nowadays, upon dealing with complex and
noisy sensor data, the C4.5 algorithm is the used characteristic version of this
method [234]. More attention has been given to decision trees in the med-
ical domain when short-term data with few numbers of subjects have been
used [40, 97, 100]. This method is also suitable for handling multivariate sen-
sors due to the construction of independent levels in the decision tree [218].

Support vector machines Support vector machine (SVM) is a statistical learn-
ing method to classify unseen information by deriving a high dimensional hy-
perplane for the features in order to make a decision model [63]. Common
health parameters considered by SVM methods are ECG, HR, and SpO2 which
are mostly used in the short-term and annotated form [117, 141, 222]. In
general, SVM techniques are often proposed for anomaly detection and deci-
sion making tasks in healthcare services. However, SVM is not an appropriate
method to integrate domain knowledge in order to use metadata or symbolic
knowledge seamlessly with the sensor measurements [141].

Gaussian mixture models Gaussian mixture model (GMM) is a statistical ap-
proach that used for classification and pattern recognition [227]. Studies using
GMM usually deal with annotated medical data in order to assess the per-
formance of the model [61, 227]. Despite the fact that the GMM method can
detect unseen information in physiological data, it has rarely been used for
prediction tasks because the computation time of the constructing models is
relatively high [101].

Other methods Out of the considered methods, there are other data mining
techniques, which are roughly used in physiological data analysis. Some exam-
ples are: Hidden Markov Models for anomaly detection task [26,243], Bayesian
networks for prediction task [97, 143], Rule-based reasoning for anomaly
(event) recognition [16,127], Fourier and wavelet transforms for mostly feature
selection [100,128] and noise reduction in physiological data [74,195], and fi-
nally Association rule mining for prediction and diagnosis tasks [114, 234].
More details can be found in a literature review article [28] that have been
done by the author of this thesis.
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6.3 Data Sets: Acquisition and Properties

In any health monitoring system, having a robust data processing stage requires
adequate information about the data itself. Knowing about the way of collect-
ing data and its properties while recording process will allow the data analysis
system to perform the tasks such as selecting the proper data mining approach,
designing new methods, and tuning the parameters. This section examines the
types of data and the methods for acquiring data that have been used in dif-
ferent experimental validations in the literature. This information gives the op-
portunity to distinguish the data processing methods that are applied based on
the type of sensor data.

6.3.1 Sensor Data Acquisition

Several input sources and data acquisition methods have been considered in the
literature for wearable sensor data in health monitoring systems. Here, three
major data gathering approaches have been identified:

Experimental wearable sensor data: Studies developed health monitoring sys-
tems have mostly used their own data gathering experiments to design,
model and test the data analysis step [97,200,205]. In this case, the gath-
ered data are usually obtained based on the predefined scenarios due to
the test and evaluate the performed results [208]. But usually, these stud-
ies do not provide the precise annotations and meaningful labels on phys-
iological signals.

Clinical or online databases of sensor data: Despite the attention of the lit-
erature is on the role of data mining on vital signs in health moni-
toring, several studies in this area have used the stored clinical data
sets [61, 195]. The most of the works used categorised and complex
multivariate data sets with formal definitions and annotations by do-
main expert [101, 118, 153]. One common online database is the Phy-
sioNet [4, 105] that consists a wide range of physiological data sets
with categorised and robust annotations for complex clinical signals.
Several studies in the literature have used two main data sets in Phys-
ioNet bank, MIMIC data sets (e.g. [22, 152, 161]) and MIT data sets
(e.g. [74, 141, 170]) that contain the time series of patients vital signs
obtained from hospital medical information systems.

Simulated sensor data: For the sake of having a comprehensive controlled
analysis system, few works have designed and tested their data mining
methods through simulated physiological data [226]. Data simulation
would be useful when the focus of data processing method is on the
efficiency and the robustness of the information extraction [227, 243],
rather than on handling real-world data including artefact and errors.
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Another reason to create and use simulated data is the lack of long-term
and large-scale data sets [243], where simulated data helps the proposed
data mining systems to work with huge amount of data.

6.3.2 Sensor Data Properties

In addition to data acquisition methods, the following properties of wearable
sensor data have been collected from the literature. These properties present
which kind of data sets are usually used in healthcare systems.

Time horizon (long-term/short-term): The length of time for considering data
set measurements is a particular challenge for wearable sensor data in
order to orientate data mining techniques and the manner of data inter-
pretation. Here, the time horizon of considered sensor data is categorised
to short-term and long-term data. Some data analysis systems in health-
care were designed to process short signals such as a few minutes of ECG
data [123,170], a few hours of heart rate or oxygen saturation [22,152]
or the measurement of blood pressures over a day [13]. On the other
hand, dealing with long-term data is a significant portion of some data
mining methods for handling and processing. This period could be longer
than a number of days or even a year of measurements. Blood glucose
monitoring is an example of long-term data analysis for the sake of right
decision making [55,243].

Scale (large/small): A big challenge of data analysis in any health monitor-
ing system is the examination of the proposed method on more than an
individual. Depending on the design of sensor network, data gathering,
and the goal of decision making, the scale of subjects in the frameworks
would differ. Here, the studies considering 50 or more subjects (patient
or healthy) are counted as large-scale studies [118], which can handle the
same data modelling for large-scale of monitoring [61].

Labelling (annotated/unlabelled): Health monitoring systems need to evalu-
ate their results to show the correctness of the decision making process.
Due to having significant data analysis step, the attention of the most re-
search is given to annotated data. By considering the behaviour of vital
signs the domain expert is able to mark the data with several annota-
tions such as arrhythmia disease [141], sleep discords [43], the severity of
health [22], stress levels [208], and abnormal pulse in ECG [222]. These
annotations also acquired using another source of knowledge like elec-
tronic health record (EHR), coronary syndromes, and also the history
of vital signs [153]. On the other hand, working with unlabelled data
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data to consider uncontrolled situations for especially experimental data
sets [41,200,218].

Single Sensor/Multiple Sensors: Commonly, single sensor data have been used
for specific analysis on individual physiological data such as ECG signal
analysis [74, 170, 222] or blood glucose monitoring [55, 243]. Besides,
some of the researchers have used several sensors [41, 118, 144, 153]
to have global reasoning in health monitoring. Although using several
wearable sensors in health monitoring frameworks are common, but few
pieces of research have performed the multivariate data analysis to ex-
tract useful information through multi sensor data [118].

6.4 Discussion and Challenges

This chapter has presented an overview of the data mining approaches used
for analysing the measured vital signs from the wearable sensing devices. For
each approach, a reflection of its suitability for health monitoring was pro-
vided. From these reflections, the following guidelines for applying data mining
methods were extracted:

• The selected data mining technique is highly dependent on which data
mining task is in focus. According to the data mining tasks mentioned
in Section 6.1, for anomaly detection task, SVM, HMM, statistical tools
and frequency analysis are more commonly applied. Prediction tasks have
often used decision tree methods as well as other supervised techniques.
But rule-based methods, GMM, and frequency analysis have not been
employed for prediction due to the shortcoming in modelling the data
behaviours. Finally, any decision making task needs a modelling and
inferring system with considering the contextual information. So, non-
statistical methods like SVM, NN, and decision tree techniques have usu-
ally applied with success.

• The requirements for a real-time system should guide the selection of the
data mining methods. To design a real-time health monitoring system,
such methods like NN, GMM, and frequency analysis are not efficient for
the sake of their computational complexities. But simple methods such as
rule-based, decision tree and statistical techniques can quickly handle the
online data processing requirements.

• The properties of the data set and experimental condition also influence
the choice of method. Data mining methods (e.g., rule-based, decision
tree) have been used in the clinical situation with the controlled con-
ditions and clear data sets, but the efficiency of them are not tested in
real experiments of healthcare services. In contrast, NN, HMM, and fre-
quency techniques have been used to handle complex physiological data
and discover the unexpected patterns in real-world situations.
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• The level of supervision and labelled data is a crucial factor. Methods
like SVM, NN, and GMM have been designed and justified to model
long-term data. However, they could not deal with the unlabelled data to
model the raw data in an unsupervised manner. For multivariate analysis
of sensor data, the methods such as rule-based, decision tree, and statisti-
cal tools are more usable, while, e.g., GMM and HMM cannot play this
role in healthcare systems.

While these guidelines can assist implementing technical systems to select
appropriate methods for data analysis, the field is still challenged by some fac-
tors which have been discussed below. These are general challenges in the area
of health monitoring and have been emerged from the literature studies inves-
tigated in this chapter. They include:

Need for large-scale monitoring: One challenge is still many applications us-
ing more massive data sets, and also still consider the monitoring task in the
clinical contexts. This challenge will become more important for applications
which examine target groups such as elderly, healthy persons etc. to make the
significant effort in collecting reliable data sets for processing.

Dealing with annotated data sets: Data mining approaches gain increasing
attention in this field, open data sets, as well as benchmark data sets, become
essential to validate different approaches. Still however in this area, few bench-
mark data sets are available. The last mentioned point raises a second challenge
of how data annotation (labelling) can be best done for such target groups. The
process of annotating data is expensive, time-consuming and non-trivial con-
sidering long-term continuous data. To confront this challenge, an exciting av-
enue of study will be the efficacy of data mining in unsupervised contexts using
unlabelled data sets. This type of data mining applies both to the modelling as
well as eventual preprocessing of data, where for example, unsupervised feature
learning techniques [136] for time series data could show promise.

Multiple measurements: Another challenge in this field is to exploit the mul-
tiple measurements of vital signs simultaneously. In particular, sensor fusion
techniques which are able to consider dependencies and correlations between
different vital sign parameters could assist in performing the primary data min-
ing tasks of prediction, decision making and anomaly detection. Some attention
to this issue has been given in the literature such as [118].

Contextual information: The usage of contextual information to assist in data
mining is of ever increasing importance. Such contextual information could
include meta information about subjects such as weight, height, age, sex, his-
tory of vital signs, as well as the history of previous decisions. It is also pos-

102CHAPTER6.ANOVERVIEWOFHEALTHMONITORING

•Thelevelofsupervisionandlabelleddataisacrucialfactor.Methods
likeSVM,NN,andGMMhavebeendesignedandjustifiedtomodel
long-termdata.However,theycouldnotdealwiththeunlabelleddatato
modeltherawdatainanunsupervisedmanner.Formultivariateanalysis
ofsensordata,themethodssuchasrule-based,decisiontree,andstatisti-
caltoolsaremoreusable,while,e.g.,GMMandHMMcannotplaythis
roleinhealthcaresystems.

Whiletheseguidelinescanassistimplementingtechnicalsystemstoselect
appropriatemethodsfordataanalysis,thefieldisstillchallengedbysomefac-
torswhichhavebeendiscussedbelow.Thesearegeneralchallengesinthearea
ofhealthmonitoringandhavebeenemergedfromtheliteraturestudiesinves-
tigatedinthischapter.Theyinclude:

Needforlarge-scalemonitoring:Onechallengeisstillmanyapplicationsus-
ingmoremassivedatasets,andalsostillconsiderthemonitoringtaskinthe
clinicalcontexts.Thischallengewillbecomemoreimportantforapplications
whichexaminetargetgroupssuchaselderly,healthypersonsetc.tomakethe
significanteffortincollectingreliabledatasetsforprocessing.

Dealingwithannotateddatasets:Dataminingapproachesgainincreasing
attentioninthisfield,opendatasets,aswellasbenchmarkdatasets,become
essentialtovalidatedifferentapproaches.Stillhoweverinthisarea,fewbench-
markdatasetsareavailable.Thelastmentionedpointraisesasecondchallenge
ofhowdataannotation(labelling)canbebestdoneforsuchtargetgroups.The
processofannotatingdataisexpensive,time-consumingandnon-trivialcon-
sideringlong-termcontinuousdata.Toconfrontthischallenge,anexcitingav-
enueofstudywillbetheefficacyofdatamininginunsupervisedcontextsusing
unlabelleddatasets.Thistypeofdataminingappliesbothtothemodellingas
wellaseventualpreprocessingofdata,whereforexample,unsupervisedfeature
learningtechniques[136]fortimeseriesdatacouldshowpromise.

Multiplemeasurements:Anotherchallengeinthisfieldistoexploitthemul-
tiplemeasurementsofvitalsignssimultaneously.Inparticular,sensorfusion
techniqueswhichareabletoconsiderdependenciesandcorrelationsbetween
differentvitalsignparameterscouldassistinperformingtheprimarydatamin-
ingtasksofprediction,decisionmakingandanomalydetection.Someattention
tothisissuehasbeengivenintheliteraturesuchas[118].

Contextualinformation:Theusageofcontextualinformationtoassistindata
miningisofeverincreasingimportance.Suchcontextualinformationcould
includemetainformationaboutsubjectssuchasweight,height,age,sex,his-
toryofvitalsigns,aswellasthehistoryofpreviousdecisions.Itisalsopos-

102 CHAPTER 6. AN OVERVIEW OF HEALTH MONITORING

• The level of supervision and labelled data is a crucial factor. Methods
like SVM, NN, and GMM have been designed and justified to model
long-term data. However, they could not deal with the unlabelled data to
model the raw data in an unsupervised manner. For multivariate analysis
of sensor data, the methods such as rule-based, decision tree, and statisti-
cal tools are more usable, while, e.g., GMM and HMM cannot play this
role in healthcare systems.

While these guidelines can assist implementing technical systems to select
appropriate methods for data analysis, the field is still challenged by some fac-
tors which have been discussed below. These are general challenges in the area
of health monitoring and have been emerged from the literature studies inves-
tigated in this chapter. They include:

Need for large-scale monitoring: One challenge is still many applications us-
ing more massive data sets, and also still consider the monitoring task in the
clinical contexts. This challenge will become more important for applications
which examine target groups such as elderly, healthy persons etc. to make the
significant effort in collecting reliable data sets for processing.

Dealing with annotated data sets: Data mining approaches gain increasing
attention in this field, open data sets, as well as benchmark data sets, become
essential to validate different approaches. Still however in this area, few bench-
mark data sets are available. The last mentioned point raises a second challenge
of how data annotation (labelling) can be best done for such target groups. The
process of annotating data is expensive, time-consuming and non-trivial con-
sidering long-term continuous data. To confront this challenge, an exciting av-
enue of study will be the efficacy of data mining in unsupervised contexts using
unlabelled data sets. This type of data mining applies both to the modelling as
well as eventual preprocessing of data, where for example, unsupervised feature
learning techniques [136] for time series data could show promise.

Multiple measurements: Another challenge in this field is to exploit the mul-
tiple measurements of vital signs simultaneously. In particular, sensor fusion
techniques which are able to consider dependencies and correlations between
different vital sign parameters could assist in performing the primary data min-
ing tasks of prediction, decision making and anomaly detection. Some attention
to this issue has been given in the literature such as [118].

Contextual information: The usage of contextual information to assist in data
mining is of ever increasing importance. Such contextual information could
include meta information about subjects such as weight, height, age, sex, his-
tory of vital signs, as well as the history of previous decisions. It is also pos-

102CHAPTER6.ANOVERVIEWOFHEALTHMONITORING

•Thelevelofsupervisionandlabelleddataisacrucialfactor.Methods
likeSVM,NN,andGMMhavebeendesignedandjustifiedtomodel
long-termdata.However,theycouldnotdealwiththeunlabelleddatato
modeltherawdatainanunsupervisedmanner.Formultivariateanalysis
ofsensordata,themethodssuchasrule-based,decisiontree,andstatisti-
caltoolsaremoreusable,while,e.g.,GMMandHMMcannotplaythis
roleinhealthcaresystems.

Whiletheseguidelinescanassistimplementingtechnicalsystemstoselect
appropriatemethodsfordataanalysis,thefieldisstillchallengedbysomefac-
torswhichhavebeendiscussedbelow.Thesearegeneralchallengesinthearea
ofhealthmonitoringandhavebeenemergedfromtheliteraturestudiesinves-
tigatedinthischapter.Theyinclude:

Needforlarge-scalemonitoring:Onechallengeisstillmanyapplicationsus-
ingmoremassivedatasets,andalsostillconsiderthemonitoringtaskinthe
clinicalcontexts.Thischallengewillbecomemoreimportantforapplications
whichexaminetargetgroupssuchaselderly,healthypersonsetc.tomakethe
significanteffortincollectingreliabledatasetsforprocessing.

Dealingwithannotateddatasets:Dataminingapproachesgainincreasing
attentioninthisfield,opendatasets,aswellasbenchmarkdatasets,become
essentialtovalidatedifferentapproaches.Stillhoweverinthisarea,fewbench-
markdatasetsareavailable.Thelastmentionedpointraisesasecondchallenge
ofhowdataannotation(labelling)canbebestdoneforsuchtargetgroups.The
processofannotatingdataisexpensive,time-consumingandnon-trivialcon-
sideringlong-termcontinuousdata.Toconfrontthischallenge,anexcitingav-
enueofstudywillbetheefficacyofdatamininginunsupervisedcontextsusing
unlabelleddatasets.Thistypeofdataminingappliesbothtothemodellingas
wellaseventualpreprocessingofdata,whereforexample,unsupervisedfeature
learningtechniques[136]fortimeseriesdatacouldshowpromise.

Multiplemeasurements:Anotherchallengeinthisfieldistoexploitthemul-
tiplemeasurementsofvitalsignssimultaneously.Inparticular,sensorfusion
techniqueswhichareabletoconsiderdependenciesandcorrelationsbetween
differentvitalsignparameterscouldassistinperformingtheprimarydatamin-
ingtasksofprediction,decisionmakingandanomalydetection.Someattention
tothisissuehasbeengivenintheliteraturesuchas[118].

Contextualinformation:Theusageofcontextualinformationtoassistindata
miningisofeverincreasingimportance.Suchcontextualinformationcould
includemetainformationaboutsubjectssuchasweight,height,age,sex,his-
toryofvitalsigns,aswellasthehistoryofpreviousdecisions.Itisalsopos-



6.4. DISCUSSION AND CHALLENGES 103

sible to automate the retrieval of high-level information via available ontolo-
gies [17,132] and link this information to the data.

Discovering of unseen features: Still, important features of the data which
may be unintuitive, e.g., frequency domain features may be needed for provid-
ing proper analysis and uncovering essential characteristics from the data which
cannot be obtained by hand-engineered features. It is also worth noting that in
real-world system such as home monitoring, it would be difficult to model the
unexpected features with straightforward techniques.

Post-processing and representation: As a result of healthcare systems, an
upcoming approach could use classical data mining techniques together with
methods such as natural language generation which uncover trends in the data
but also explain the process to both expert and non-expert users. Works such
as [29,119] have demonstrated the possible uses of such systems in both clinical
and experimental contexts.

In sum, this chapter has provided an overview of the current trends and
challenges of mining physiological sensor data within health monitoring sys-
tems. The chapter investigated 1) the main data mining tasks in health moni-
toring systems, 2) the dominant data mining approaches that have been used,
and 3) various data types and their properties.

In relation to the rest of this thesis, this chapter has shown the need of con-
sidering new data analysis approaches to extract valuable information from the
data beyond expert knowledge. This need of data-driven mining of sensor data
is then performed in chapters 7 and 8, as the first step within the framework of
describing physiological sensor data.
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Chapter 7

Physiological Time Series Data:

Preparation and Processing

“We are drowning in information but starved for
knowledge.”

— John Naisbitt (1929–)

T
his chapter presents the first steps of data analysis to process the raw data
of physiological sensors and exploit a set of meaningful and interesting

information. This processing includes data collection/acquisition and mining
in order to extract trends and patterns. This kind of information is then used
for the tasks of creating semantic representations and linguistic descriptions for
physiological sensor data (chapter 9).

With the increase of wearable sensor technology in both clinical and at
home settings, the accumulation of physiological sensor data requires a con-
centrated effort on the analysis and modelling of this data [58]. Via sensor
data analysis and modelling, it is possible to achieve a deeper understanding
of the correlations between long-term measurements of physiological parame-
ters and medical conditions. Typically, this process involves diverse data min-
ing techniques on sensor data to acquire patient-specific models [28, 213]. In
general, such approaches are either knowledge-driven or data-driven. Using a
knowledge-driven approach leads to a supervised model of information extrac-
tion, but information is restricted to expert domain knowledge [235]. On the
other hand, data-driven methods enable a system to discover hidden and po-
tentially useful information through the physiological sensor data and to build
models based on the experimental data [28]. In order to leverage from data-
driven approaches, a solution whereby hidden patterns can be captured and
made explicit in human consumable terms, i.e., semantics, is beneficial. Such
an approach would not only facilitate automatic monitoring but contribute to
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Figure 7.1: The wearable sensor, Bioharness3 [5], worn on the chest is able to
locally store the measured data or wirelessly transmit it via Bluetooth.

a deepening and betterment of our knowledge in understanding the relationship
between specific ailments and large-scale physiological time series and continu-
ous data. This chapter aims to present some of data mining models to find such
patterns in physiological sensor measurements.

7.1 Input Time Series Sensor Data: Collection and

Acquisition

This section describes the process of collecting and acquiring sensor data in
non-clinical and clinical conditions. In this thesis, the collected non-clinical data
is used for the trend detection and trend descriptions. The acquired clinical data
tough is used wider for pattern abstraction, and later on in chapters 8 and 9
for linguistic description of such patterns.

7.1.1 Wearable Sensors, Non-clinical Data

The proposed approach here is designed to consider several continuous health
parameters which are collected by wearable sensors or clinical records of phys-
iological data. In this work, a wearable sensing device called Bioharness3 [5] is
used which records various vital signs of the body including heart rate, respira-
tion rate, skin temperature, activity, and electrocardiogram (ECG).1 This sensor
is worn on the chest and is able to locally store data or wirelessly transmitting
it via Bluetooth (Figure 7.1). In this process of data analysis, the input data is
continuous measurements which include physiological time series signals for a
specific period.

Within the non-clinical condition, focus is primarily given to health param-
eters heart rate (HR) and respiration rate (RR), which are common vital signs
in the health monitoring domain [28]. In this study, each health parameter is

1 This specific product is now available on the provider’s web page with another commercial
name: Zephyr™ Strap [6].
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Figure 7.2: An example of non-clinical measurements depicting thirteen hours
of heart rate (HR, top) and respiration rate (RR, down) during sequential ac-
tivities. The unit bpm is used for both signals (beats per minute for heart rate
and breaths per minute for respiration rate).

considered independently. An example of the input measurements is shown in
Figure 7.2. The data in this figure has been recorded for thirteen continuous
hours during the sequential activities such as exercising, walking, watching TV,
and sleeping.

7.1.2 Clinical Physiological Data

A challenge in the evaluation is to find reliable data sets consisting of long-
term measurements of physiological parameters (vital signs) where such sen-
sor data is annotated with ground truth information about patients’ condi-
tions. Although the proposed approach is applicable to a variety of settings
(Intensive care unit or ICU, ambulatory, and at-home monitoring), established
benchmarks are more readily available from sensor data sets in a clinical
setting. Thus, a data set of physiological sensor data from the online Phy-
sioNet database is used [105]. In particular, a numeric data set within this
database called MIMIC (multi parameter intelligent monitoring for intensive
care) database [3] in considered. This data set contains periodic numeric mea-
surements of physiological variables, such as heart rate, blood pressure, respi-
ration rate, and oxygen saturation, obtained from bedside ICU monitors [156].
The entire database includes multiple recordings with various lengths of mea-
surements (from 1 hour to 77 hours) which are acquired from 90 subjects (pa-
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Table 7.1: Clinical conditions and their subjects in mimic database, after re-
moving unreliable measurements.

Clinical
conditions

No. of
subjects
(records)

No. of
male/female

Age:
[min,max],

average

Average
length of
records

Resp. failure 10 (17) 7/3 [38,90], 67 32h25m

Bleed 2 (4) 1/1 [45,70], 57 44h45m

CHF 13 (17) 6/7 [54,92], 75 33h15m

Brain injury 2 (3) 1/1 [68,75], 70 21h30m

Sepsis 4 (5) 3/1 [27,88], 64 31h20m

MI 6 (8) 2/4 [63,80], 68 42h35m

Angina 2 (4) 1/1 [67,68], 67 41h10m

Post-op Valve 2 (5) 0/2 [49,67], 58 40h45m

Post-op CABG 3 (3) 1/2 [49,80], 66 40h20m

tients) with different ages and genders. The subjects in this database have been
manually labelled different clinical categories related to their medical problems.
In this work, the numeric records of the subjects from nine major clinical con-
ditions have been selected to be analysed and modelled. The considered clinical
conditions include Respiratory failure, Bleed (loss of blood from the circula-
tory system), CHF (chronic heart failure), Brain injury, Sepsis, MI (myocardial
infarction, i.e. heart attack), Angina, Post-op Valve (heart valve surgery), and
Post-op CABG (coronary artery bypass grafting surgery). General properties of
the nine clinical conditions and the information about the selected subjects are
listed in Table 7.1.

Here, the subjects with records consisting of at least 12 hours of continuous
readings are considered to facilitate the identification of patterns over longer
time horizons. Three physiological variables have been chosen to be processed:
heart rate (HR), means of blood pressure (BP), and respiration rate (RR). Each
measurement consists of long-term sequential data (i.e. time series) with a reso-
lution of 1Hz. As an example, Figure 7.3 shows seven hours of sensor readings
from the raw sensor data of a patient suffering from the CHF condition for
variables HR, BP, and RR.

Working with the clinical measurements in the MIMIC database is challeng-
ing, due to dealing with incomplete, sparse, non-uniform, and irregular raw
data [154]. Before analysing the records of the subjects, the measurements are
cleaned in the following steps:

1. All records that include three mentioned physiological variables are
picked for analysis,
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Clinical
conditions

No. of
subjects
(records)

No. of
male/female

Age:
[min,max],

average

Average
length of
records
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Bleed 2 (4) 1/1 [45,70], 57 44h45m
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Sepsis 4 (5) 3/1 [27,88], 64 31h20m

MI 6 (8) 2/4 [63,80], 68 42h35m

Angina 2 (4) 1/1 [67,68], 67 41h10m

Post-op Valve 2 (5) 0/2 [49,67], 58 40h45m

Post-op CABG 3 (3) 1/2 [49,80], 66 40h20m

tients) with different ages and genders. The subjects in this database have been
manually labelled different clinical categories related to their medical problems.
In this work, the numeric records of the subjects from nine major clinical con-
ditions have been selected to be analysed and modelled. The considered clinical
conditions include Respiratory failure, Bleed (loss of blood from the circula-
tory system), CHF (chronic heart failure), Brain injury, Sepsis, MI (myocardial
infarction, i.e. heart attack), Angina, Post-op Valve (heart valve surgery), and
Post-op CABG (coronary artery bypass grafting surgery). General properties of
the nine clinical conditions and the information about the selected subjects are
listed in Table 7.1.

Here, the subjects with records consisting of at least 12 hours of continuous
readings are considered to facilitate the identification of patterns over longer
time horizons. Three physiological variables have been chosen to be processed:
heart rate (HR), means of blood pressure (BP), and respiration rate (RR). Each
measurement consists of long-term sequential data (i.e. time series) with a reso-
lution of 1Hz. As an example, Figure 7.3 shows seven hours of sensor readings
from the raw sensor data of a patient suffering from the CHF condition for
variables HR, BP, and RR.

Working with the clinical measurements in the MIMIC database is challeng-
ing, due to dealing with incomplete, sparse, non-uniform, and irregular raw
data [154]. Before analysing the records of the subjects, the measurements are
cleaned in the following steps:

1. All records that include three mentioned physiological variables are
picked for analysis,
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Figure 7.3: An example of clinical sensor data from MIMIC data set with vari-
ables heart rate (HR), blood pressure (BP), and respiration rate (RR).

2. Measurements with short episodes (less than 12 hours) were discarded,
because finding meaningful patterns in a short period of data is not rea-
sonable,

3. Since the data is collected in a clinical environment with wearable sen-
sors, the signal readings involve plenty of artefacts and noise. To avoid
processing incorrect information

(a) Sensor readings with unreliable values (e.g. zero value for heart rate)
are discarded2,

(b) A local regression method (LOESS) as a smoothing function [99] is
applied on readings to reduce the amount of noisy data.

After cleaning the data set, 45 subjects in nine clinical conditions are chosen
to be analysed, which include reliable measurements with all three variables.

7.2 Partial Trend Detection in Physiological Time

Series Data

Mining of physiological time series data is significant not only to model but also
to detect specific health-related vital signs. One of the main challenges in the
healthcare area is how to analyse physiological data such that valuable infor-
mation can help the end user (physician or layman). The data analysis module
aims to detect and represent the principal events and significant trends which
are relevant for the end user. The proposed data processing method is unsu-
pervised i.e., without expert knowledge or pre-defined rules, and can discover
information which is not necessarily recognisable by an expert at first glance.

2The ranges of accepted values for three health parameters are: 20 < HR < 200, 30 < BP <
220, and 5 < RR < 100.
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(b)Alocalregressionmethod(LOESS)asasmoothingfunction[99]is
appliedonreadingstoreducetheamountofnoisydata.

Aftercleaningthedataset,45subjectsinnineclinicalconditionsarechosen
tobeanalysed,whichincludereliablemeasurementswithallthreevariables.

7.2PartialTrendDetectioninPhysiologicalTime

SeriesData

Miningofphysiologicaltimeseriesdataissignificantnotonlytomodelbutalso
todetectspecifichealth-relatedvitalsigns.Oneofthemainchallengesinthe
healthcareareaishowtoanalysephysiologicaldatasuchthatvaluableinfor-
mationcanhelptheenduser(physicianorlayman).Thedataanalysismodule
aimstodetectandrepresenttheprincipaleventsandsignificanttrendswhich
arerelevantfortheenduser.Theproposeddataprocessingmethodisunsu-
pervisedi.e.,withoutexpertknowledgeorpre-definedrules,andcandiscover
informationwhichisnotnecessarilyrecognisablebyanexpertatfirstglance.

2Therangesofacceptedvaluesforthreehealthparametersare:20<HR<200,30<BP<
220,and5<RR<100.
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are discarded2,
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After cleaning the data set, 45 subjects in nine clinical conditions are chosen
to be analysed, which include reliable measurements with all three variables.
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mation can help the end user (physician or layman). The data analysis module
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are relevant for the end user. The proposed data processing method is unsu-
pervised i.e., without expert knowledge or pre-defined rules, and can discover
information which is not necessarily recognisable by an expert at first glance.

2The ranges of accepted values for three health parameters are: 20 < HR < 200, 30 < BP <
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sors,thesignalreadingsinvolveplentyofartefactsandnoise.Toavoid
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(a)Sensorreadingswithunreliablevalues(e.g.zerovalueforheartrate)
arediscarded2,

(b)Alocalregressionmethod(LOESS)asasmoothingfunction[99]is
appliedonreadingstoreducetheamountofnoisydata.

Aftercleaningthedataset,45subjectsinnineclinicalconditionsarechosen
tobeanalysed,whichincludereliablemeasurementswithallthreevariables.

7.2PartialTrendDetectioninPhysiologicalTime

SeriesData

Miningofphysiologicaltimeseriesdataissignificantnotonlytomodelbutalso
todetectspecifichealth-relatedvitalsigns.Oneofthemainchallengesinthe
healthcareareaishowtoanalysephysiologicaldatasuchthatvaluableinfor-
mationcanhelptheenduser(physicianorlayman).Thedataanalysismodule
aimstodetectandrepresenttheprincipaleventsandsignificanttrendswhich
arerelevantfortheenduser.Theproposeddataprocessingmethodisunsu-
pervisedi.e.,withoutexpertknowledgeorpre-definedrules,andcandiscover
informationwhichisnotnecessarilyrecognisablebyanexpertatfirstglance.

2Therangesofacceptedvaluesforthreehealthparametersare:20<HR<200,30<BP<
220,and5<RR<100.



110 CHAPTER 7. PHYSIO. DATA: PREPARATION & PROCESSING

The data analysis module includes preprocessing and segmentation steps which
help the system to perform statistical information and trend detection compo-
nents.

Preprocessing

In comparison with clinical data, noise and artefacts (i.e., disturbances or ab-
normalities within the signals) are more predominant in the signal from wear-
able sensors. Thus, the preprocessing of signals is a necessary task. In this work,
artefacts are eliminated heuristically by setting some thresholds for each health
parameter. Then, the local regression method (LOESS) has been applied to re-
duce the noise in signals. This method is a non-parametric regression method
which is commonly used as smoothing function [149]. Figure 7.4b shows an
example of the LOESS smoothing model for heart rate and respiration rate
for the raw data presented in Figure 7.4a. The bandwidth parameter in this
method is adapted depending on the requirements of the output for resolution
of information. The output of this step is a prepared time series data for further
analysis.

Signal Segmentation

After the smoothed signals are generated, a representation for each time series
that captures temporal changes in the data is generated. Several methods have
been introduced such as Fourier and Wavelet transforms, Symbolic Mappings,
and Piecewise Linear models etc. [148] to represent the primary apparent at-
tributes of the signals. Here, piecewise linear approximation (PLA) [130] as a
segmentation method is selected for this system which can make a significant
representation of the time series simply and efficiently. The output of the PLA
method on a time series with length n is a set of linear segments with size
m (m � n). The most popular approach to calculate the PLA is Bottom-up
method. This approach starts with n/2 segments and merges the two next seg-
ments which have minimum distance error after merging. This process repeats
till some stopping criteria are satisfied. The criteria could be setting a threshold
on the maximum distance error and on the number of segments.

There are several methods to find the optimal number of segments [82]. In
this work, the threshold parameter is heuristically tuned based on the requested
resolution of the output trends.

Figure 7.4c and Figure 7.4d show the examples of output of PLA method for
the smoothed heart rate and respiration rate time series presented in Figure 7.4b
with m=10 and m=25, respectively. Based on the request from the end user, it
is possible to provide all the details of events during the measurements or just
reporting the major trends and changes with tuning the number of segments.

110CHAPTER7.PHYSIO.DATA:PREPARATION&PROCESSING

Thedataanalysismoduleincludespreprocessingandsegmentationstepswhich
helpthesystemtoperformstatisticalinformationandtrenddetectioncompo-
nents.

Preprocessing

Incomparisonwithclinicaldata,noiseandartefacts(i.e.,disturbancesorab-
normalitieswithinthesignals)aremorepredominantinthesignalfromwear-
ablesensors.Thus,thepreprocessingofsignalsisanecessarytask.Inthiswork,
artefactsareeliminatedheuristicallybysettingsomethresholdsforeachhealth
parameter.Then,thelocalregressionmethod(LOESS)hasbeenappliedtore-
ducethenoiseinsignals.Thismethodisanon-parametricregressionmethod
whichiscommonlyusedassmoothingfunction[149].Figure7.4bshowsan
exampleoftheLOESSsmoothingmodelforheartrateandrespirationrate
fortherawdatapresentedinFigure7.4a.Thebandwidthparameterinthis
methodisadapteddependingontherequirementsoftheoutputforresolution
ofinformation.Theoutputofthisstepisapreparedtimeseriesdataforfurther
analysis.

SignalSegmentation

Afterthesmoothedsignalsaregenerated,arepresentationforeachtimeseries
thatcapturestemporalchangesinthedataisgenerated.Severalmethodshave
beenintroducedsuchasFourierandWavelettransforms,SymbolicMappings,
andPiecewiseLinearmodelsetc.[148]torepresenttheprimaryapparentat-
tributesofthesignals.Here,piecewiselinearapproximation(PLA)[130]asa
segmentationmethodisselectedforthissystemwhichcanmakeasignificant
representationofthetimeseriessimplyandefficiently.TheoutputofthePLA
methodonatimeserieswithlengthnisasetoflinearsegmentswithsize
m(m�n).ThemostpopularapproachtocalculatethePLAisBottom-up
method.Thisapproachstartswithn/2segmentsandmergesthetwonextseg-
mentswhichhaveminimumdistanceerroraftermerging.Thisprocessrepeats
tillsomestoppingcriteriaaresatisfied.Thecriteriacouldbesettingathreshold
onthemaximumdistanceerrorandonthenumberofsegments.

Thereareseveralmethodstofindtheoptimalnumberofsegments[82].In
thiswork,thethresholdparameterisheuristicallytunedbasedontherequested
resolutionoftheoutputtrends.

Figure7.4candFigure7.4dshowtheexamplesofoutputofPLAmethodfor
thesmoothedheartrateandrespirationratetimeseriespresentedinFigure7.4b
withm=10andm=25,respectively.Basedontherequestfromtheenduser,it
ispossibletoprovideallthedetailsofeventsduringthemeasurementsorjust
reportingthemajortrendsandchangeswithtuningthenumberofsegments.

110 CHAPTER 7. PHYSIO. DATA: PREPARATION & PROCESSING

The data analysis module includes preprocessing and segmentation steps which
help the system to perform statistical information and trend detection compo-
nents.

Preprocessing

In comparison with clinical data, noise and artefacts (i.e., disturbances or ab-
normalities within the signals) are more predominant in the signal from wear-
able sensors. Thus, the preprocessing of signals is a necessary task. In this work,
artefacts are eliminated heuristically by setting some thresholds for each health
parameter. Then, the local regression method (LOESS) has been applied to re-
duce the noise in signals. This method is a non-parametric regression method
which is commonly used as smoothing function [149]. Figure 7.4b shows an
example of the LOESS smoothing model for heart rate and respiration rate
for the raw data presented in Figure 7.4a. The bandwidth parameter in this
method is adapted depending on the requirements of the output for resolution
of information. The output of this step is a prepared time series data for further
analysis.

Signal Segmentation

After the smoothed signals are generated, a representation for each time series
that captures temporal changes in the data is generated. Several methods have
been introduced such as Fourier and Wavelet transforms, Symbolic Mappings,
and Piecewise Linear models etc. [148] to represent the primary apparent at-
tributes of the signals. Here, piecewise linear approximation (PLA) [130] as a
segmentation method is selected for this system which can make a significant
representation of the time series simply and efficiently. The output of the PLA
method on a time series with length n is a set of linear segments with size
m (m � n). The most popular approach to calculate the PLA is Bottom-up
method. This approach starts with n/2 segments and merges the two next seg-
ments which have minimum distance error after merging. This process repeats
till some stopping criteria are satisfied. The criteria could be setting a threshold
on the maximum distance error and on the number of segments.

There are several methods to find the optimal number of segments [82]. In
this work, the threshold parameter is heuristically tuned based on the requested
resolution of the output trends.

Figure 7.4c and Figure 7.4d show the examples of output of PLA method for
the smoothed heart rate and respiration rate time series presented in Figure 7.4b
with m=10 and m=25, respectively. Based on the request from the end user, it
is possible to provide all the details of events during the measurements or just
reporting the major trends and changes with tuning the number of segments.

110CHAPTER7.PHYSIO.DATA:PREPARATION&PROCESSING

Thedataanalysismoduleincludespreprocessingandsegmentationstepswhich
helpthesystemtoperformstatisticalinformationandtrenddetectioncompo-
nents.

Preprocessing

Incomparisonwithclinicaldata,noiseandartefacts(i.e.,disturbancesorab-
normalitieswithinthesignals)aremorepredominantinthesignalfromwear-
ablesensors.Thus,thepreprocessingofsignalsisanecessarytask.Inthiswork,
artefactsareeliminatedheuristicallybysettingsomethresholdsforeachhealth
parameter.Then,thelocalregressionmethod(LOESS)hasbeenappliedtore-
ducethenoiseinsignals.Thismethodisanon-parametricregressionmethod
whichiscommonlyusedassmoothingfunction[149].Figure7.4bshowsan
exampleoftheLOESSsmoothingmodelforheartrateandrespirationrate
fortherawdatapresentedinFigure7.4a.Thebandwidthparameterinthis
methodisadapteddependingontherequirementsoftheoutputforresolution
ofinformation.Theoutputofthisstepisapreparedtimeseriesdataforfurther
analysis.

SignalSegmentation

Afterthesmoothedsignalsaregenerated,arepresentationforeachtimeseries
thatcapturestemporalchangesinthedataisgenerated.Severalmethodshave
beenintroducedsuchasFourierandWavelettransforms,SymbolicMappings,
andPiecewiseLinearmodelsetc.[148]torepresenttheprimaryapparentat-
tributesofthesignals.Here,piecewiselinearapproximation(PLA)[130]asa
segmentationmethodisselectedforthissystemwhichcanmakeasignificant
representationofthetimeseriessimplyandefficiently.TheoutputofthePLA
methodonatimeserieswithlengthnisasetoflinearsegmentswithsize
m(m�n).ThemostpopularapproachtocalculatethePLAisBottom-up
method.Thisapproachstartswithn/2segmentsandmergesthetwonextseg-
mentswhichhaveminimumdistanceerroraftermerging.Thisprocessrepeats
tillsomestoppingcriteriaaresatisfied.Thecriteriacouldbesettingathreshold
onthemaximumdistanceerrorandonthenumberofsegments.

Thereareseveralmethodstofindtheoptimalnumberofsegments[82].In
thiswork,thethresholdparameterisheuristicallytunedbasedontherequested
resolutionoftheoutputtrends.

Figure7.4candFigure7.4dshowtheexamplesofoutputofPLAmethodfor
thesmoothedheartrateandrespirationratetimeseriespresentedinFigure7.4b
withm=10andm=25,respectively.Basedontherequestfromtheenduser,it
ispossibletoprovideallthedetailsofeventsduringthemeasurementsorjust
reportingthemajortrendsandchangeswithtuningthenumberofsegments.



7.2. TREND DETECTION IN PHYSIOLOGICAL TIME SERIES 111

0 1 2 3 4 5 6 7

x 10
4

0

20

40

60

80

100

120

140

160

time

b
p

m
(a) Raw data

 

 

0 1 2 3 4 5 6 7

x 10
4

0

20

40

60

80

100

120

140

160

time

b
p

m

(b) Smoothness

 

 

0 1 2 3 4 5 6 7

x 10
4

0

20

40

60

80

100

120

140

time (sec)

b
p

m

(d) Segmentation, m=10

0 1 2 3 4 5 6 7

x 10
4

0

20

40

60

80

100

120

140

time (sec)

b
p

m

(c) Segmentation, m=25

HR (beat per minute) RR (breath per minute)

Figure 7.4: An example of physiological time series data preprocessing and
segmentation: (a) the raw data of heart rate (HR, top) and respiration rate
(RR, down) for 22 hours, (b) an instance of smoothing raw signals using
LOESS method, (c) and (d) examples of the segmentation method (PLA) of
the smoothed time series in Figure b with m=25 and m=10, respectively.

Partial Trends

Trends are the essential features to detect in physiological time series data as
it can provide indications at an early stage of potential health issues and fa-
cilitate prevention. The acquired segments from the PLA approach are used to
detect trends by applying a trend detection algorithm. The aim of this method
is finding specific trends such as dropping, rising, or unstable changes in the
measurements. Several studies have previously examined partial trends on time
series segmentation [45, 124]. However, the challenge here is to determine
which number of segments corresponds to significant events in the data. In
other words, if the number of generated segments is high and each corresponds
to a human understandable event, then the approach will produce too many
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Figure7.4:Anexampleofphysiologicaltimeseriesdatapreprocessingand
segmentation:(a)therawdataofheartrate(HR,top)andrespirationrate
(RR,down)for22hours,(b)aninstanceofsmoothingrawsignalsusing
LOESSmethod,(c)and(d)examplesofthesegmentationmethod(PLA)of
thesmoothedtimeseriesinFigurebwithm=25andm=10,respectively.

PartialTrends

Trendsaretheessentialfeaturestodetectinphysiologicaltimeseriesdataas
itcanprovideindicationsatanearlystageofpotentialhealthissuesandfa-
cilitateprevention.TheacquiredsegmentsfromthePLAapproachareusedto
detecttrendsbyapplyingatrenddetectionalgorithm.Theaimofthismethod
isfindingspecifictrendssuchasdropping,rising,orunstablechangesinthe
measurements.Severalstudieshavepreviouslyexaminedpartialtrendsontime
seriessegmentation[45,124].However,thechallengehereistodetermine
whichnumberofsegmentscorrespondstosignificanteventsinthedata.In
otherwords,ifthenumberofgeneratedsegmentsishighandeachcorresponds
toahumanunderstandableevent,thentheapproachwillproducetoomany
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Figure 7.4: An example of physiological time series data preprocessing and
segmentation: (a) the raw data of heart rate (HR, top) and respiration rate
(RR, down) for 22 hours, (b) an instance of smoothing raw signals using
LOESS method, (c) and (d) examples of the segmentation method (PLA) of
the smoothed time series in Figure b with m=25 and m=10, respectively.

Partial Trends

Trends are the essential features to detect in physiological time series data as
it can provide indications at an early stage of potential health issues and fa-
cilitate prevention. The acquired segments from the PLA approach are used to
detect trends by applying a trend detection algorithm. The aim of this method
is finding specific trends such as dropping, rising, or unstable changes in the
measurements. Several studies have previously examined partial trends on time
series segmentation [45, 124]. However, the challenge here is to determine
which number of segments corresponds to significant events in the data. In
other words, if the number of generated segments is high and each corresponds
to a human understandable event, then the approach will produce too many
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cilitateprevention.TheacquiredsegmentsfromthePLAapproachareusedto
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events and overburden the user. In contrast, if the number of segments is low,
then valuable information about meaningful events could be lost.

To find a proper solution to represent the trends, a partial trend is consid-
ered to be a subset of segments, which has a similar tendency as the segments
and relates to the orientation of data. Each time series is therefore represented
as a collection of partial trends. The preliminary step of the algorithm is to
normalise both axes of data by scaling them between 0 and 1. With this nor-
malisation, the features of detected trends will be independent of the duration
and range of the data (either long-term or short-term data).

The set of segments obtained from the previous step is considered as the in-
put of the proposed trend detection method. After normalising, this method
characterises the main attributes of the segments, which are longitude and
gradient. For each segment si, the length of segment (lensi

) and its gra-
dient (gradsi

), the trend detection algorithm starts with a set of segments,
S = {s1 . . . sm}. Based on the defined parameters, the algorithm decides for
the segment si: keep it and concatenate it with the current trend, keep it as
the first segment of a new trend, or ignore it. The following function has been
defined to make a balance between the features of si:

f(gradsi
, lensi

) = (α− gradsi
) − 1/(λ− lensi

)× k (7.1)

where the α and λ are the heuristic thresholds for gradient and length, respec-
tively and k is a coefficient to adjust the dependency of features. In this function,
if f(gradsi

, lensi
) is more than zero then si is kept, otherwise it will be elim-

inated (except some conditions related to length of si and the gradients of its
adjacent). Algorithm 7.1 illustrates the trend detection method with showing
in which cases the algorithm makes a new trend or merges the segments in the
current trend. Figure 7.5 presents an output of trend detection algorithm for the
segmented heart rate and respiration signals. The annotations on the detected
trends will be described in Section 8.2.

Depending on the end user requirements, the proposed system supports
multi-resolution processing of the input signal and is able to summarise both
long and short-term measurements. Figure 7.6 shows the output of the trend
detection algorithm for two different resolutions of one measurement on heart
rate. The first one is long-term data in 22 hours (Figure 7.6, top) and the second
one is short-term data in 4.5 hours (Figure 7.6, bottom). The algorithm has de-
tected several partial trends in the second diagram within 4.5 hours. However,
the same portion of data has been identified as a single partial trend within 20
hours of time series data in the first diagram.
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adjacent).Algorithm7.1illustratesthetrenddetectionmethodwithshowing
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currenttrend.Figure7.5presentsanoutputoftrenddetectionalgorithmforthe
segmentedheartrateandrespirationsignals.Theannotationsonthedetected
trendswillbedescribedinSection8.2.
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longandshort-termmeasurements.Figure7.6showstheoutputofthetrend
detectionalgorithmfortwodifferentresolutionsofonemeasurementonheart
rate.Thefirstoneislong-termdatain22hours(Figure7.6,top)andthesecond
oneisshort-termdatain4.5hours(Figure7.6,bottom).Thealgorithmhasde-
tectedseveralpartialtrendsintheseconddiagramwithin4.5hours.However,
thesameportionofdatahasbeenidentifiedasasinglepartialtrendwithin20
hoursoftimeseriesdatainthefirstdiagram.
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Algorithm 7.1: Partial Trend Detection

Input: Set of segments, S = {s1 . . . sm}

Output: Set of trends, A = {a1 . . .al}, l � m

A ← ∅
new trend a

foreach si ∈ S do
if f(gradsi

, lensi
) > 0 then

if si and si−1 are in different gradient then
add a to A

new trend a

add si to a

else
if lensi

< λ then
if si and si−1 are in different gradient then

if si and si+1 are in same gradient then
add a to A

new trend a

add si to a

else
add si to a

else if gradsi
< α then

add a to A

new trend a

7.3 Prototypical Pattern Abstraction in Physiological

Time Series Data

7.3.1 Background on Pattern Abstraction

Dealing with large time series with high granularities is typically a chal-
lenge [134]. One of the objectives of this section is to find prototypical pat-
terns in sequential data. This is mainly related to the general task of pattern
abstraction [82]. The main goal of prototypical pattern abstraction is to pro-
vide a set of representative patterns from raw time series data, which includes
two phases: 1) discretisation and 2) clustering.

Discretisation or segmentation is a solution to transform a time series
t = (t1,· · · , tn) with n time points into a discrete sequence of segments
S(t) : s1s2· · · sm, where generally m � n. Within different approaches for
time series discretisation [82], a sliding window method is the most commonly
used algorithm. In a sliding window approach, a time series t is discretised to a
set of segments S(t) by sliding a window of size w with a given overlap on two
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abstraction[82].Themaingoalofprototypicalpatternabstractionistopro-
videasetofrepresentativepatternsfromrawtimeseriesdata,whichincludes
twophases:1)discretisationand2)clustering.

Discretisationorsegmentationisasolutiontotransformatimeseries
t=(t1,···,tn)withntimepointsintoadiscretesequenceofsegments
S(t):s1s2···sm,wheregenerallym�n.Withindifferentapproachesfor
timeseriesdiscretisation[82],aslidingwindowmethodisthemostcommonly
usedalgorithm.Inaslidingwindowapproach,atimeseriestisdiscretisedtoa
setofsegmentsS(t)byslidingawindowofsizewwithagivenoverlapontwo
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Figure 7.5: The output of partial trend detection algorithm for two segmented
time series (HR on top and RR on bottom).

consecutive windows. Each segment si = (ti1 ,· · · , tiw) is a subsequence of the
time series t, (1 � i � m). The provided segments are potentially the candidate
to describe the unique attributes of the input data.

Clustering techniques are used for categorising the subsequences of time se-
ries, in order to exploit a reasonable number of representative patterns from
numerous segments. The advantage of using a clustering algorithm is that the
prototypical patterns are provided in a data-driven way without involving any
domain knowledge to customise the typical patterns. Applying a mean normal-
isation on each segment is a part of clustering progress to minimise the effect
of amplitudes of segments. Clustering subsequences of time series is a challeng-
ing matter discussed in the literature [71] and dependent on the discretisation
algorithm and distance method. Several clustering algorithms (e.g. k-means,
hierarchical, DBscan, etc.) along the various distance measures [145] can be
applied on the data to cluster all the subsequences si ∈ S(t) of time series t into
a specific number of clusters (k). Cluster centres are considered as the proto-
typical patterns of the time series. In other words, these patterns are captured
by averaging on the subsequences of clusters. Suppose Ct = {c1,· · · , ck} is the
set of prototypical patterns (clustering centres) of time series t, in which a pro-
totypical pattern cj = (t ′j1

,· · · , t ′jw) is not necessarily an exact subsequence of
time series t. Thus, in the sequence of segments S(t), by replacing each segment
si with its cluster centre, the corresponding sequence of prototypical patterns
P(t) is generated as: P(t) : p1· · ·pm, where pi ∈ Ct.
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Figure 7.6: An example of trend detection outputs for two different resolutions
of heart rate data. Top: 22 hours data with detected trends. Bottom: 4.5 hours
data captured from the last trend in the first diagram.

7.3.2 Prototypical Pattern Abstraction

The considered measurement for each condition includes three mentioned vari-
ables HR, BP, and RR. Suppose three time series tHR, tBP, and tRR, with the
same length of n corresponds to the measurements in HR, BP, and RR, respec-
tively.

Discretisation: In order to provide the sequence of prototypical patterns for
each time series, the first step is a discretisation method, introduced in Sec-
tion 7.3.1. Discretisation of time series data needs first to determine the size
of sliding window (w). Since this approach aims to provide a set of descriptive
rules based on the patterns, a meaningful range of values for the size of the slid-
ing window (w) is tested. The length of overlap of two consecutive windows is
set to half of the window’s size, in order to avoid certain breaks in the signals
that might lead to losing a segment involving prototypical patterns. By applying
the discretisation method to the time series tHR, tBP, and tRR, the sequences of
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segments will be obtained for physiological variables as S(tHR), S(tBP), and
S(tRR), where |S(tv)| = 2 × (n/w) − 1, and v ∈ {HR, BP, RR}.

Clustering: The next phase is to extract the prototypical patterns of each
time series using clustering methods. Here, a k-means clustering is applied to
each set of segments, to categorise the segments into a set of clusters (k). In
this algorithm, k segments are selected as initial centres. Then other segments
are assigned to these centres based on their similarity, and the centre of each
cluster is updated. This process is repeated until the centres do not change
[106]. To optimise the number of clusters [121], a range of values is validated
by considering the modelling results while the clustering approach is used for
temporal rule mining task (this will be described in Section 8.1.4).

Before applying clustering, each subsequence is prepared as follows: If there
are several artefacts in a subsequence, then this subsequence is not considered
for further processing. The maximum number of allowed artefacts in a subse-
quence should be less than half of the length of the subsequence. If the number
of artefacts in the segment’s values exceeds a defined threshold, the segment
si is removed from S(tv). Otherwise, the artefacts will be replaced with the
values given by an interpolation method (i.e. cubic interpolation). After that,
each segment si ∈ S(tv) (with the average value μsi

) is normalised to get zero
mean by subtracting the μsi

from all values of si. This normalisation will inval-
idate the amplitude of segment values. So, the focus will be given to the trends
of segments while clustering applies. The normalisation is crucial, because the
segments with the same shape and trend need to be categorised in the same
cluster, rather than the segments with a similar range of values. The k-means
algorithm classifies the pre-processed segments of S(tv) into k clusters, with the
set of centres Ctv . Then the corresponding sequence of the prototypical patterns
P(tv) is defined as: P(tv) : p1· · ·p|S(tv)|, where pi ∈ Ctv and 1 � i � |S(tv)|.

It is worth noting that applying various distance functions implies the var-
ious amount of computational effort. The Euclidean distance is employed in
the clustering algorithm since it provides an efficient computation of the dis-
tances between segments. Moreover, different clustering algorithms with var-
ious distance functions (e.g. Euclidean distance, dynamic time warping, etc.)
will provide distinct clusters and construct multiple prototypical patterns [172].
However, due to the time complexity of the other algorithms on big data, the k-
means algorithm with Euclidean distance is employed in the clustering progress,
which is not guaranteed to be the optimal, but sufficient for the goal of finding
meaningful patterns.

An example of abstracted prototypical patterns from a sensor reading is
shown in Figure 7.7a, which depicts the cluster centres obtained from HR sen-
sor data in CHF condition (w = 180, k = 7). Figure 7.7b presents the sequence
of prototypical patterns (PtHR

) for the first two hours of HR data shown in
Figure 7.3.
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Figure 7.7: An example of prototypical patterns for HR data in CHF condition.

7.4 Discussion and Summary

This chapter has first presented the process of collecting and acquiring the input
physiological sensor data sets. This process involved collecting data from wear-
able sensors as well as acquiring proper physiological sensor data from clinical
conditions. Afterwards, this chapter has provided two main processes to anal-
yse time series sensor data to catch the crucial behaviours of data. First, a trend
detection method has been presented to capture the partial trends among the
time series. Then, a pattern abstraction approach is introduced to extract the
prototypical patterns throughout the time series. These prototypical patterns
are the representative abstractions of the all possible time series subsequences
within the data. The importance of extracting such prototypical patterns is to
be able to determine which behaviours repeatedly occur in the time series. This
information is data-driven in a sense that there is no prior knowledge about
the patterns or no expert knowledge to define them beforehand. Also, detecting
such prototypical patterns is not a trivial task for an expert such as clinicians
or doctors by just exploring the recorded time series data. Therefore, these pro-
totypical patterns are beneficial for further investigations.

There are some limitations related to the data preprocessing and data clean-
ing methods. For both trend detection and pattern abstraction algorithms, sev-
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beabletodeterminewhichbehavioursrepeatedlyoccurinthetimeseries.This
informationisdata-driveninasensethatthereisnopriorknowledgeabout
thepatternsornoexpertknowledgetodefinethembeforehand.Also,detecting
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eral parameters have been set (either learned or just selected heuristically) that
are dependent on the input recorded data. For example, in the pattern abstrac-
tion approach, an automatic approach has been suggested to select the param-
eters of window size and number of clusters by using the given set of data.
However, providing a general method to automatically perform the parameter
selection task for any input data set is not investigated in this study. Besides,
the computational cost of the proposed algorithms (especially for pattern ab-
straction) is not optimised. There is a lack studying the suitable mechanism to
minimise the computational cost of the approaches. This point will be critical
if the size of input data grows.

In sum, this chapter shows how the raw numerical sensor data can be pre-
pared and processes in order to either 1) be used for more complex data min-
ings such as temporal rule mining among the patterns (Section 8.1), 2) be di-
rectly mapped to linguistic descriptions using template-based approaches (Sec-
tion 8.2), or 3) be fed as perceived information to a semantic representation to
be turned to linguistic descriptions using the semantic inference (Chapter 9).

118CHAPTER7.PHYSIO.DATA:PREPARATION&PROCESSING

eralparametershavebeenset(eitherlearnedorjustselectedheuristically)that
aredependentontheinputrecordeddata.Forexample,inthepatternabstrac-
tionapproach,anautomaticapproachhasbeensuggestedtoselecttheparam-
etersofwindowsizeandnumberofclustersbyusingthegivensetofdata.
However,providingageneralmethodtoautomaticallyperformtheparameter
selectiontaskforanyinputdatasetisnotinvestigatedinthisstudy.Besides,
thecomputationalcostoftheproposedalgorithms(especiallyforpatternab-
straction)isnotoptimised.Thereisalackstudyingthesuitablemechanismto
minimisethecomputationalcostoftheapproaches.Thispointwillbecritical
ifthesizeofinputdatagrows.

Insum,thischaptershowshowtherawnumericalsensordatacanbepre-
paredandprocessesinordertoeither1)beusedformorecomplexdatamin-
ingssuchastemporalruleminingamongthepatterns(Section8.1),2)bedi-
rectlymappedtolinguisticdescriptionsusingtemplate-basedapproaches(Sec-
tion8.2),or3)befedasperceivedinformationtoasemanticrepresentationto
beturnedtolinguisticdescriptionsusingthesemanticinference(Chapter9).

118 CHAPTER 7. PHYSIO. DATA: PREPARATION & PROCESSING

eral parameters have been set (either learned or just selected heuristically) that
are dependent on the input recorded data. For example, in the pattern abstrac-
tion approach, an automatic approach has been suggested to select the param-
eters of window size and number of clusters by using the given set of data.
However, providing a general method to automatically perform the parameter
selection task for any input data set is not investigated in this study. Besides,
the computational cost of the proposed algorithms (especially for pattern ab-
straction) is not optimised. There is a lack studying the suitable mechanism to
minimise the computational cost of the approaches. This point will be critical
if the size of input data grows.

In sum, this chapter shows how the raw numerical sensor data can be pre-
pared and processes in order to either 1) be used for more complex data min-
ings such as temporal rule mining among the patterns (Section 8.1), 2) be di-
rectly mapped to linguistic descriptions using template-based approaches (Sec-
tion 8.2), or 3) be fed as perceived information to a semantic representation to
be turned to linguistic descriptions using the semantic inference (Chapter 9).

118CHAPTER7.PHYSIO.DATA:PREPARATION&PROCESSING

eralparametershavebeenset(eitherlearnedorjustselectedheuristically)that
aredependentontheinputrecordeddata.Forexample,inthepatternabstrac-
tionapproach,anautomaticapproachhasbeensuggestedtoselecttheparam-
etersofwindowsizeandnumberofclustersbyusingthegivensetofdata.
However,providingageneralmethodtoautomaticallyperformtheparameter
selectiontaskforanyinputdatasetisnotinvestigatedinthisstudy.Besides,
thecomputationalcostoftheproposedalgorithms(especiallyforpatternab-
straction)isnotoptimised.Thereisalackstudyingthesuitablemechanismto
minimisethecomputationalcostoftheapproaches.Thispointwillbecritical
ifthesizeofinputdatagrows.

Insum,thischaptershowshowtherawnumericalsensordatacanbepre-
paredandprocessesinordertoeither1)beusedformorecomplexdatamin-
ingssuchastemporalruleminingamongthepatterns(Section8.1),2)bedi-
rectlymappedtolinguisticdescriptionsusingtemplate-basedapproaches(Sec-
tion8.2),or3)befedasperceivedinformationtoasemanticrepresentationto
beturnedtolinguisticdescriptionsusingthesemanticinference(Chapter9).



Chapter 8

Mining and Describing

Physiological Time Series Data

“Nothing in the world is more exciting than a moment of
sudden discovery or invention, and many more people are
capable of experiencing such moments than is sometimes
thought.”

— Bertrand Russell (1872–1970)

F
ollowing the structure of the thesis (Figure 1.2), a data preparation ap-
proach has been presented in Chapter 7 to provide information for seman-

tic representations. But before showing how to apply the semantic representa-
tion approaches on physiological patterns, this chapter considers, mining more
complex information, and using template-based NLG approaches to map the
numerical data to the linguistic descriptions directly.

The output trends and patterns from data analysis can be considered as
input for different aspects of the work on the application side. Two sections
of this chapter present two aspects of data processing and interpreting such
prepared patterns and trends. 1) The first section introduces a data processing
upon the abstracted patterns by automatically mining temporal rules from the
physiological sensor data in clinical conditions. This mining of temporal rules
will enrich the processed information into more useful knowledge. 2) The sec-
ond section proposes simple linguistic description approaches to interoperate
the mind information in natural language, for all the processed information:
detected trends, abstracted patterns, and temporal rules.
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tionapproachesonphysiologicalpatterns,thischapterconsiders,miningmore
complexinformation,andusingtemplate-basedNLGapproachestomapthe
numericaldatatothelinguisticdescriptionsdirectly.

Theoutputtrendsandpatternsfromdataanalysiscanbeconsideredas
inputfordifferentaspectsoftheworkontheapplicationside.Twosections
ofthischapterpresenttwoaspectsofdataprocessingandinterpretingsuch
preparedpatternsandtrends.1)Thefirstsectionintroducesadataprocessing
upontheabstractedpatternsbyautomaticallyminingtemporalrulesfromthe
physiologicalsensordatainclinicalconditions.Thisminingoftemporalrules
willenrichtheprocessedinformationintomoreusefulknowledge.2)Thesec-
ondsectionproposessimplelinguisticdescriptionapproachestointeroperate
themindinformationinnaturallanguage,foralltheprocessedinformation:
detectedtrends,abstractedpatterns,andtemporalrules.
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8.1 Mining Temporal Rules in Physiological Sensor

Data

This section is dedicated to present temporal rule mining as a data-driven anal-
ysis of the abstracted patterns. The generated set of rules captures the temporal
relationships between patterns of physiological data. This rule mining approach
is presented in this thesis to be used later in a template-based linguistic descrip-
tion approach (explained in Section 8.2). This section first presents an overview
of association rule mining methods in general and mining temporal rules in the
medical domain. Afterwards, it gives details on the proposed approach to ex-
tract temporal rules from multi-channels of physiological time series data. The
output rules for clinical conditions are then compared using a rule similarity
measure that highlights the uniqueness of the rules in each condition.

8.1.1 Background on Temporal Rule Mining

Temporal rule mining is a promising approach to generate meaningful associa-
tion rules from sequential data [197]. This section first describes the standard
association rule mining method. Then it reviews rule mining approaches for
temporal data in the medical domain.

Association Rule Discovery

Suppose I = {i1,· · · , id} is a set of items (e.g. all the products in a store), and
D = {d1,· · · ,dN} is a transactional database with N transactions (e.g. all the
shopping lists in a year). The support of an itemset A ⊂ I is the frequency of
the occurrence of A in all the transactions of D. The standard association rule
mining provides a set of rules in form of A ⇒ B. In this rule, A is antecedent and
B is the consequent, which are disjoint itemsets. Generally, a rule like A ⇒ B

means if the items of A occur in a transaction di, then the items of B also
will plausibly appear in di. Typical measures to show the strength of a rule
are support (sup) and confidence (conf). Support of a rule shows how often
the rule itemsets occur in the database. Further, the confidence of rule A ⇒ B

determines how frequently the itemset B occurs in transactions which contain
itemset A. Let PD(A) be the probability of the occurrence of an itemset A in D.
Then, support and confidence of the rule A ⇒ B are defined as [220]:

sup(A ⇒ B) = PD(A ∪ B), (8.1)

conf(A ⇒ B) = pD(A|B) = sup(A ⇒ B)/pD(A) (8.2)

The rules with sufficient support and confidence are typically known as
strong rules. The values of minsup and minconf are specified as the thresholds
for strong and meaningful rules. Association rules with low support may have
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occurred accidentally that will not be interesting as significant rules. Similarly,
a rule with low confidence cannot represent the frequent relations. Thus, the
thresholds minsup and minconf given by the user can avoid involving the inef-
fective rules in the result.

Temporal Relations in Association Rules

Several versions of association rule mining algorithms have been introduced
to deal with non-transactional data which consist sequential items (i.e., time
series) to give temporal rules [134]. These algorithms adapt the definition of
elements in association rules based on the time-stamped data to involve tem-
poral constraints between the antecedent and the consequent of a rule. As in

the case of A T
=⇒ B, which intends “If A happens, B will happen within time

T” [67]. Defining the temporal rules needs a reasonably good understanding of
time-dependent relations between the temporal observations (items) [193].

Based on the Allen’s temporal logic [18], 13 possible relationships between
each pair of temporal patterns can be specified. For association rule mining of
temporal data, the abstracted patterns from time series are defined as the items.
Then the set of transactions in rule mining method is constructed by all the
combinations of Allen’s operations between temporal patterns. Then all these
combinations of related temporal patterns from single or multivariate time se-
ries build the set of transactions. For instance, suppose two time series t1 and
t2, with the prototypical patterns Ct1 and Ct2 , also sequences of prototypical
patterns P(t1) : p1· · ·pm and P(t2) : q1· · ·qm. To find the coincident rules be-
tween t1 and t2, the set of items is I = Ct1 ∪ Ct2 , and the set of transactions
D is constructed with all pairs of di : (pi,qi) according to the ‘equal’ opera-
tion (1 � i � m). The next step would be to apply the described association
rule mining algorithm to the provided transactions D and items I. The out-
put of rule mining is a set of temporal rules R = {r1, r2,· · ·}, where each rule
ri : A

ρ
=⇒ B represents the repetitive relation of itemsets A and B along the

operation ρ, where A,B ⊂ I and ρ ∈ {‘equal’, ‘start’, ‘meet’, . . .}. While
these approaches have been applied to physiological data [62, 166], they lack
comparing the provided rule sets in various medical conditions. This compari-
son can reveal valuable insights about the data. The approach presented in this
chapter attempts to address this problem.

Temporal Rule Mining in Clinical Settings

Recently, temporal association rule mining methods have been applied on the
clinical data stream to identify complex relationships of the physiological sen-
sor observations. Sacchi et al. [192] presented a knowledge-based approach for
rule mining from labelled temporal patterns in biomedical data. In [62], the
authors present temporal rule extraction for physiological data and address the
problem of visually analysing this kind of data. The study in [113] proposes a
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novel multivariate association rule mining based on change detection for com-
plex data sets including numerical data streams. The authors in [157] introduce
an approach to generate the rules automatically from the linguistic data of coro-
nary heart disease using subtractive clustering and fuzzy inference to determine
the diagnosis. In [20], a temporal technique for discovering frequent temporal
patterns is proposed to extract well-known patterns of sleep apnea-hypopnea
syndrome.

Although these systems have used rule mining techniques for health moni-
toring, none of them has focused on modelling the individual behaviours, along
with a descriptive approach to represent the output of the system (i.e. generated
rules). Also, those are mostly dependent on the initial knowledge provided by
the user.

8.1.2 A New Approach for Temporal Rule Mining

To apply an association rule mining approach on each clinical condition from
the MIMIC data set, all the selected records of the subjects with the same con-
dition are accumulated to be analysed together. In this way, a more significant
amount of data is involved in the process of rule mining, which leads to having
more robust rules for each clinical condition. Recall from Chapter 7, the con-
sidered measurements of physiological data for each condition includes three
variables HR, BP, and RR. Suppose three time series tHR, tBP, and tRR, with
the same length of n corresponded to the measurements in HR, BP, and RR,
respectively.

The sequences of patterns P(tHR), P(tBP), and P(tRR), with size of m, are
obtained from the prototypical pattern abstraction, explained in Section 7.3.
Association rule mining is a suitable approach to discover the coherence rela-
tions between the patterns occurred among the multi-variables. In this work,
the focus is on the association rules between two pairs of physiological time
series, i.e. heart rate with blood pressure (HR&BP), and heart rate with respi-
ration rate (HR&RR), although, more compound relations are also applicable
by applying complex temporal abstraction techniques [201]. As discussed in
Section 8.1, the main requirement for association rule mining is to identify the
set of items I and the set of transactions D. While considering the relation of
HR and BP patterns, the set of items I includes all the prototypical patterns in
both CtHR

and CtBP
.

Different temporal relations can be defined on the discovered patterns to
specify the transactions, but in this study, a modified set of relations between
the patterns in physiological data is specified. Consider two multivariate signals
HR and BP with the sequences of patterns P(tHR) and P(tBP), respectively. Let
P1 represents one pattern in P(tHR) and P2 represents at most two patterns in
P(tBP). Three temporal relations between P1 and P2 are considered: ‘P1 equals
P2’, ‘P1 before P2’, and ‘P1 after P2’. It is worth noting that further temporal
relations such as meets and overlaps are only slightly different with before and
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Figure 8.1: Three temporal relations between one pattern P1 in P(tHR) and at
most two patterns P2 in P(tBP).

after relations. Likewise, the relations during, starts, and finishes are mostly
covered by equals relation. Thus, for all the patterns in the sequences P(tHR)
and P(tBP), three corresponding transactions for ‘equals’, ‘before’, and ‘after’
relations are defined as follows:

pi equals qi : de
i = (pi, qi), (8.3)

pi before qi+1, qi+2 : db
i = (pi, qi+1), (pi, qi+2), (8.4)

pi after qi−1, qi−2 : da
i = (pi, qi−1), (pi, qi−2), (8.5)

where pi ∈ P(tHR) and qi ∈ P(tBP). Note that the relation ‘P1 before P2’
is equivalent to the relation ‘P2 after P1’, which means the opposite relations
between BP and HR are also covered by this definition. Figure 8.1 shows the
relational positions of patterns pi, and qi−2· · ·qi+2 in their corresponding pat-
tern sequences for three defined temporal relations.

The Apriori algorithm introduced in [11] is an efficient algorithm for as-
sociation rule mining from a set of transactions D, which initialises all possi-
ble itemsets from the items I and then generates a set of sufficient rules like
A ⇒ B based on the co-occurrence of A and B in the transactions. This algo-
rithm is based on the symbolic order of items, which can destroy the tem-
poral relations in sequential data. However, in this approach, the temporal
relations of the patterns are implicitly specified in the definition of the intro-
duced transactions. In other words, the Apriori algorithm is applied, but with
an adapted set of transactions Dρ including defined temporal relations as their
items: Dρ = {de

i ,db
i ,da

i | 1 � i � |P(tHR)|}. Using the defined set of temporal
transactions and the set of items (prototypical patterns), the generated rule is
formulated as: r : A

ρ
=⇒ B, where the antecedent (A) and consequent (B) can

be any of two subsequences P1 and P2 that are co-occurred in Dρ. The rule r

also expresses additional information about the temporal relation ρ between p

and q, such that ρ ∈ {‘equal’, ‘before’, ‘after’}. Applying the Apriori algorithm
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with accurate values for minsup and minconf leads to have a set of temporal
rules R = {r1, r2,· · · , rn} as a result. This rule set consists of the main repetitive
relations of physiological data in sensor observations.

8.1.3 Temporal Rule Set Similarity

In this work, a similarity function is proposed to compute a ratio between the
number of rules from one rule set which occur in another rule set. The provided
temporal rules can be extended to represent the individual behaviour of vital
signs in a given condition. This similarity function can evaluate the distinction
between temporal rule sets. Suppose there are two rule sets R1 = {r1,· · · , rn1 }

and R2 = {r1,· · · , rn2 } including m and n rules, respectively. The overlapping
ratio of rule sets is a primary measure to investigate the characteristic properties
of rule sets with the same sets of items [76]. The overlapping ratio as a similarity
function between a pair of rule sets is typically defined as:

Overlap(R1,R2) = |R1 ∩ R2| / |R1 ∪ R2|. (8.6)

In a standard rule association mining with a constant database of items,
counting the intersection of the rules in R1 and R2 is straightforward, since it
is easy to check the equivalence of rules. Two rules ri : A ⇒ B and rj:C⇒D

are equivalent if their corresponding itemsets are equal: A = C and B = D.
However, the main issue with temporal rule sets produced by this approach is
that the sets of items in different rule sets are entirely distinct. In other words,
for different cases, there are different sets of prototypical patterns (items), and
consequently different itemsets in the final rules. Thus, finding the overlap of
temporal rule sets using Equation 8.6 utilising this function is not informative.
Here, an alternative solution is proposed.

Occurrence Ratio

Suppose IR1 and IR2 are the most likely distinct sets of items (patterns) for
the temporal rule sets R1 and R2, respectively. To find the equivalent rule to
ri : A

ρ
=⇒ B ∈ R1 in rule set R2 (if exists), the approach searches for the most

analogous rule r ′j : A ′ ρ′
=⇒ B ′ ∈ R2 which is sufficiently similar to ri. Here,

the similarity of itemsets is measured through the use of the pattern matching
algorithms to find the best-matched patterns [59]. If r ′j exists, then one overlap
is found between R1 and R2, which means A ≈ A ′, B ≈ B ′, and ρ = ρ ′.
It is notable that the corresponding itemsets need to be approximately equal,
whereas, the temporal relations have to be the same.

Searching for the occurrence of one rule in a rule set is presented in Algo-
rithm 8.1. This algorithm shows how to find the most analogous rule from R

to an input rule r (with the assumption of r/∈R). If such a matched rule rm can
be detected in R, it derives that the rule r most likely appears in R as well.
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withaccuratevaluesforminsupandminconfleadstohaveasetoftemporal
rulesR={r1,r2,···,rn}asaresult.Thisrulesetconsistsofthemainrepetitive
relationsofphysiologicaldatainsensorobservations.

8.1.3TemporalRuleSetSimilarity

Inthiswork,asimilarityfunctionisproposedtocomputearatiobetweenthe
numberofrulesfromonerulesetwhichoccurinanotherruleset.Theprovided
temporalrulescanbeextendedtorepresenttheindividualbehaviourofvital
signsinagivencondition.Thissimilarityfunctioncanevaluatethedistinction
betweentemporalrulesets.SupposetherearetworulesetsR1={r1,···,rn1}

andR2={r1,···,rn2}includingmandnrules,respectively.Theoverlapping
ratioofrulesetsisaprimarymeasuretoinvestigatethecharacteristicproperties
ofrulesetswiththesamesetsofitems[76].Theoverlappingratioasasimilarity
functionbetweenapairofrulesetsistypicallydefinedas:

Overlap(R1,R2)=|R1∩R2|/|R1∪R2|.(8.6)

Inastandardruleassociationminingwithaconstantdatabaseofitems,
countingtheintersectionoftherulesinR1andR2isstraightforward,sinceit
iseasytochecktheequivalenceofrules.Tworulesri:A⇒Bandrj:C⇒D

areequivalentiftheircorrespondingitemsetsareequal:A=CandB=D.
However,themainissuewithtemporalrulesetsproducedbythisapproachis
thatthesetsofitemsindifferentrulesetsareentirelydistinct.Inotherwords,
fordifferentcases,therearedifferentsetsofprototypicalpatterns(items),and
consequentlydifferentitemsetsinthefinalrules.Thus,findingtheoverlapof
temporalrulesetsusingEquation8.6utilisingthisfunctionisnotinformative.
Here,analternativesolutionisproposed.

OccurrenceRatio

SupposeIR1andIR2arethemostlikelydistinctsetsofitems(patterns)for
thetemporalrulesetsR1andR2,respectively.Tofindtheequivalentruleto
ri:A

ρ
=⇒B∈R1inrulesetR2(ifexists),theapproachsearchesforthemost

analogousruler′
j:A′ρ′

=⇒B′∈R2whichissufficientlysimilartori.Here,
thesimilarityofitemsetsismeasuredthroughtheuseofthepatternmatching
algorithmstofindthebest-matchedpatterns[59].Ifr′

jexists,thenoneoverlap
isfoundbetweenR1andR2,whichmeansA≈A′,B≈B′,andρ=ρ′.
Itisnotablethatthecorrespondingitemsetsneedtobeapproximatelyequal,
whereas,thetemporalrelationshavetobethesame.

SearchingfortheoccurrenceofoneruleinarulesetispresentedinAlgo-
rithm8.1.ThisalgorithmshowshowtofindthemostanalogousrulefromR

toaninputruler(withtheassumptionofr/∈R).Ifsuchamatchedrulermcan
bedetectedinR,itderivesthattherulermostlikelyappearsinRaswell.
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Algorithm 8.1: RuleMatch(r,R, IR)

Data: r : A
ρ
=⇒ B, R = {r1,· · · , rn} with set of items IR, (r /∈ R).

Result: rm : Am
ρ
=⇒ Bm, where rm ∈ R and Am,Bm ⊂ IR.

Am ← best patterns matched to A from IR;
Bm ← best patterns matched to B from IR;
rm ← Am

ρ
=⇒ Bm;

foreach ri : Ai
ρi
=⇒ Bi ∈ R do

if ri = rm (Ai = Am & Bi = Bm & ρi = ρ) then
return rm;

return ∅; //rule not found

Algorithm 8.2: Occurrence(R1, R2, IR2 )

Data: Rule set R1, and rule set R2 with set of items IR2 .
Result: ratioR1inR2 : Occurrence ratio of R1 in R2.
weightR1inR2 ← 0;
WeightR2 ← 0;
foreach ri ∈ R1 do

r ′ ← RuleMatch(ri,R2, IR2 );
if r ′ 	= ∅ then

weightR1inR2 ← weightR1inR2 + supR2(r
′)× confR2(r

′);

foreach rj ∈ R2 do
WeightR2 ← WeightR2 + supR2(rj)× confR2(rj);

ratioR1inR2 ← weightR1inR2/WeightR2 ;
return ratioR1inR2

The next step is to measure how strong a rule occurs in another rule set. The
method for checking the occurrence of a rule in another rule set leads to define
a non-symmetric similarity measure, called Occurrence R1(R2), the occurrence
ratio of R1 in R2 (previously called Appearance ratio in [30]). This measure
represents how often rules with high support and confidence that appear in R1

also occur in R2, considering their strength in R2. It means that while finding
the closest rules of R2 to the rules in R1, the values of support and confidence
of matched rules are also considered in the occurrence ratio.

Algorithm 8.2 presents computing the occurrence ratio measure, which is
scaled by the summation on the support and confidence of the rules in R2.
Evidently, if the occurrence ratio of a rule set in another is considerably high, it
shows these two rule sets are meaningfully associated. In contrast, if the ratio
is considerably low, it indicates of few connections between rule sets, in a sense
that two rule sets are distinct.
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Algorithm8.1:RuleMatch(r,R,IR)

Data:r:A
ρ
=⇒B,R={r1,···,rn}withsetofitemsIR,(r/∈R).

Result:rm:Am
ρ
=⇒Bm,whererm∈RandAm,Bm⊂IR.

Am←bestpatternsmatchedtoAfromIR;
Bm←bestpatternsmatchedtoBfromIR;
rm←Am

ρ
=⇒Bm;

foreachri:Ai
ρi
=⇒Bi∈Rdo
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return∅;//rulenotfound
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Data:RulesetR1,andrulesetR2withsetofitemsIR2.
Result:ratioR1inR2:OccurrenceratioofR1inR2.
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anon-symmetricsimilaritymeasure,calledOccurrenceR1(R2),theoccurrence
ratioofR1inR2(previouslycalledAppearanceratioin[30]).Thismeasure
representshowoftenruleswithhighsupportandconfidencethatappearinR1

alsooccurinR2,consideringtheirstrengthinR2.Itmeansthatwhilefinding
theclosestrulesofR2totherulesinR1,thevaluesofsupportandconfidence
ofmatchedrulesarealsoconsideredintheoccurrenceratio.

Algorithm8.2presentscomputingtheoccurrenceratiomeasure,whichis
scaledbythesummationonthesupportandconfidenceoftherulesinR2.
Evidently,iftheoccurrenceratioofarulesetinanotherisconsiderablyhigh,it
showsthesetworulesetsaremeaningfullyassociated.Incontrast,iftheratio
isconsiderablylow,itindicatesoffewconnectionsbetweenrulesets,inasense
thattworulesetsaredistinct.
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Algorithm 8.1: RuleMatch(r,R, IR)

Data: r : A
ρ
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ρ
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ρ
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return ∅; //rule not found
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The next step is to measure how strong a rule occurs in another rule set. The
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the closest rules of R2 to the rules in R1, the values of support and confidence
of matched rules are also considered in the occurrence ratio.
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is considerably low, it indicates of few connections between rule sets, in a sense
that two rule sets are distinct.
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8.1.4 Results: Distinctive Rules in Clinical Settings

This section presents the experimental results of the rule sets in clinical settings
from MIMIC database records. As discussed in Section 7.1.2, the raw data is
fetched from the online MIMIC database. This data set includes a set of physio-
logical measure nets that each belongs to a subject (i.e., patient) with a certain
type of clinical condition. In this data set, only records that include three health
parameters heart rate (HR), blood pressure (BP) and respiration rate (RR) are
considered. The average length of all the measurements for a clinical condition
in the data set is about 250 hours, and this average for a subject is around 50
hours. For each of the nine clinical conditions described in Table 7.1, tempo-
ral rule mining approach is applied to two pairs of sensor data: HR&BP and
HR&RR. The output model of the rule mining approach is thus a collection of
rule sets for clinical conditions.

Parameter Selection

To select the optimal values during pattern abstraction and rule mining phases,
a voting approach is used considering the strength of the generated rules. Four
parameters are optimised: window size, number of clusters, and the best thresh-
olds for support and confidence. The window size is applied between 1 to 5
minutes, and the number of clusters is set between 5 to 9. Due to the small
number of patients in the data set, optimising the parameters by applying rule
mining on the entire measurements will lead to overfitting the model, and it
does not indicate how well the method will generalise to unknown data sets. So,
to avoid overfitting the model, a leave-one-out cross-validation approach [50] is
used for finding the best parameters. For each clinical condition, this approach
leaves out a patient’s records in each fold of the validation as the hold-out set
and applies the modelling on the rest of the patients as the training set.

After preparing the data for both training and hold-out sets for each com-
bination of parameters, the validation of parameters are examined with two
measures: Interest and J-measure. These measures indicate the quality of rules
in different aspects [221].

By voting between the top rules with the highest values in these measures
on the hold-out sets in all the iterations (folds), this approach is able to find the
parameters that achieve the best average results. More precisely, with different
values of w and k, all the models (on the train and test data sets) are gener-
ated in each clinical condition. Then, with different thresholds on support and
confidence, the measures Interest and J-measure are calculated.

By voting again on the highest results of measures in the entire models, the
best values of parameters are selected as w = 180 and k = 7. These values
are obtained with the best cut-off values minsup = 0.05 and minconf =
0.45. Figure 8.2 depicts an example of applying the cross-validation approach
for the MI clinical condition. This run includes six iterations (folds) for six
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Figure 8.2: Result of cross-validation approach on a selected iteration for MI
condition. The diagram shows the values of measures Interest and J-measure
for various values of parameters w and k in both training set and holding set.

patients with the MI condition. But just to illustrate the values of two measures
for each parameter, the figure shows the results of one iteration. As shown in
Figure 8.2, the best values of measures Interest and J-measure are achieved by
the mentioned values of w and k for a selected hold-out set.

Output Temporal Rule Sets

The results of rule sets in clinical conditions have been published in two ver-
sions by the author of this thesis. In the first version, only the after relation
in patterns of HR and the other two variables has been considered. The re-
sults of this version are published in [30]), but not detailed in this chapter. The
explained approach in this chapter (published in [32]) is the extension of the
early version to consider more temporal relations. It is worth mentioning that
the number of temporal relations is just one aspect of the distinctions between
these two approaches. To compare the results of the extended version with the
previous one, let’s call the first approach TRM-ρ1 (temporal rule mining with
one relation), and the extended approach TRM-ρ3 (temporal rule mining with
three relations). Figure 8.3 shows the number of rules provided in both TRM-ρ1

and TRM-ρ3 approaches concerning the multivariate time series HR&BP and
HR&RR in each clinical condition. The output sets of temporal rules indicate
a collection of data-driven features which are independently able to describe
their corresponding clinical conditions. To illustrate the variation of prototyp-
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foreachparameter,thefigureshowstheresultsofoneiteration.Asshownin
Figure8.2,thebestvaluesofmeasuresInterestandJ-measureareachievedby
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Figure 8.3: The number of rules for clinical conditions in TRM-ρ3 and TRM-ρ1

methods, in relation to the multivariate time series HR&BP and HR&RR.

ical patterns among the temporal rules, a selection of distinct temporal rules
from different rule sets with different temporal relations is represented in Fig-
ure 8.4.

8.1.5 Evaluation of Rule Set Similarity in Clinical Conditions

This section evaluates the uniqueness of rule sets for clinical conditions. For this
reason, the new evaluation method based on the similarity function proposed
in Section 8.1.3 is applied to measure the occurrence ratio of rules in other rule
sets. This evaluation is first applied to the rule sets of clinical conditions to show
the distinctness of rule sets. Besides, the rule sets for a selection of subjects in
the same data set are compared with all the clinical conditions to consider the
closeness of subjects to their corresponding conditions.

Occurrence Ratio of Rule Sets in Clinical Conditions

Based on the rule sets achieved from the TRM-ρ3 method for clinical condi-
tions, the evaluation approach is applied to each pair of rule sets. For nine
clinical categories, the occurrence ratios for temporal rule sets are calculated.
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methods, in relation to the multivariate time series HR&BP and HR&RR.

ical patterns among the temporal rules, a selection of distinct temporal rules
from different rule sets with different temporal relations is represented in Fig-
ure 8.4.

8.1.5 Evaluation of Rule Set Similarity in Clinical Conditions

This section evaluates the uniqueness of rule sets for clinical conditions. For this
reason, the new evaluation method based on the similarity function proposed
in Section 8.1.3 is applied to measure the occurrence ratio of rules in other rule
sets. This evaluation is first applied to the rule sets of clinical conditions to show
the distinctness of rule sets. Besides, the rule sets for a selection of subjects in
the same data set are compared with all the clinical conditions to consider the
closeness of subjects to their corresponding conditions.

Occurrence Ratio of Rule Sets in Clinical Conditions

Based on the rule sets achieved from the TRM-ρ3 method for clinical condi-
tions, the evaluation approach is applied to each pair of rule sets. For nine
clinical categories, the occurrence ratios for temporal rule sets are calculated.

128CHAPTER8.MINING&DESCRIBINGPHYSIO.DATA

Resp. failureBleedCHFBrain injurySepsisMIAnginaValveCABG
0

5

10

15

20

N
u
m

b
e
r o

f R
u
le

s

HR&BP

 

 

TRM−ρ
3

TRM−ρ
1

Resp. failureBleedCHFBrain injurySepsisMIAnginaValveCABG
0

5

10

15

20

25

N
u
m

b
e
r o

f R
u
le

s

HR&RR

 

 

TRM−ρ
3

TRM−ρ
1

Figure8.3:ThenumberofrulesforclinicalconditionsinTRM-ρ3andTRM-ρ1

methods,inrelationtothemultivariatetimeseriesHR&BPandHR&RR.

icalpatternsamongthetemporalrules,aselectionofdistincttemporalrules
fromdifferentrulesetswithdifferenttemporalrelationsisrepresentedinFig-
ure8.4.

8.1.5EvaluationofRuleSetSimilarityinClinicalConditions

Thissectionevaluatestheuniquenessofrulesetsforclinicalconditions.Forthis
reason,thenewevaluationmethodbasedonthesimilarityfunctionproposed
inSection8.1.3isappliedtomeasuretheoccurrenceratioofrulesinotherrule
sets.Thisevaluationisfirstappliedtotherulesetsofclinicalconditionstoshow
thedistinctnessofrulesets.Besides,therulesetsforaselectionofsubjectsin
thesamedatasetarecomparedwithalltheclinicalconditionstoconsiderthe
closenessofsubjectstotheircorrespondingconditions.

OccurrenceRatioofRuleSetsinClinicalConditions

BasedontherulesetsachievedfromtheTRM-ρ3methodforclinicalcondi-
tions,theevaluationapproachisappliedtoeachpairofrulesets.Fornine
clinicalcategories,theoccurrenceratiosfortemporalrulesetsarecalculated.
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Figure 8.4: A selection of distinct temporal rules generated from physiological
data in clinical conditions using TRM-ρ3 approach.

As an example of output ratios, the matrix in Table 8.1 shows the obtained
values of the occurrence ratio for temporal rule sets in HR&RR time series.
Since the occurrence ratio is a non-symmetric similarity function, the values in
Table 8.1 are not symmetric. For instance, the Occurrence RMI

(RCHF) is 27%,
whereas Occurrence RCHF

(RMI) is 16%. The main reason for this variation is
that the occurrence ratio is a weighted function which is calculated based on
the support and confidence of the rules in only the second rule set. So, a subset
of temporal rules with strong support and confidence values in their own rule
set may appear in another rule set with weak corresponding support and con-
fidence in the second one. The results in the matrix show the low occurrence
ratios between the rule sets of clinical conditions.

In comparison with the former method TRM-ρ1, the proposed approach for
temporal rule mining TRM-ρ3 is also providing much lower values of occur-
rence ratios between clinical conditions since the temporal rules are more spe-
cialised using the extra temporal relations. Figure 8.5 depicts a graphical com-
parison between the results of the occurrence ratios based on two approaches
TRM-ρ1 and TRM-ρ3 in a box plot diagram. This figure shows most of the ratio
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Figure8.4:Aselectionofdistincttemporalrulesgeneratedfromphysiological
datainclinicalconditionsusingTRM-ρ3approach.

Asanexampleofoutputratios,thematrixinTable8.1showstheobtained
valuesoftheoccurrenceratiofortemporalrulesetsinHR&RRtimeseries.
Sincetheoccurrenceratioisanon-symmetricsimilarityfunction,thevaluesin
Table8.1arenotsymmetric.Forinstance,theOccurrenceRMI(RCHF)is27%,
whereasOccurrenceRCHF(RMI)is16%.Themainreasonforthisvariationis
thattheoccurrenceratioisaweightedfunctionwhichiscalculatedbasedon
thesupportandconfidenceoftherulesinonlythesecondruleset.So,asubset
oftemporalruleswithstrongsupportandconfidencevaluesintheirownrule
setmayappearinanotherrulesetwithweakcorrespondingsupportandcon-
fidenceinthesecondone.Theresultsinthematrixshowthelowoccurrence
ratiosbetweentherulesetsofclinicalconditions.

IncomparisonwiththeformermethodTRM-ρ1,theproposedapproachfor
temporalruleminingTRM-ρ3isalsoprovidingmuchlowervaluesofoccur-
renceratiosbetweenclinicalconditionssincethetemporalrulesaremorespe-
cialisedusingtheextratemporalrelations.Figure8.5depictsagraphicalcom-
parisonbetweentheresultsoftheoccurrenceratiosbasedontwoapproaches
TRM-ρ1andTRM-ρ3inaboxplotdiagram.Thisfigureshowsmostoftheratio
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Figure 8.4: A selection of distinct temporal rules generated from physiological
data in clinical conditions using TRM-ρ3 approach.

As an example of output ratios, the matrix in Table 8.1 shows the obtained
values of the occurrence ratio for temporal rule sets in HR&RR time series.
Since the occurrence ratio is a non-symmetric similarity function, the values in
Table 8.1 are not symmetric. For instance, the Occurrence RMI

(RCHF) is 27%,
whereas Occurrence RCHF

(RMI) is 16%. The main reason for this variation is
that the occurrence ratio is a weighted function which is calculated based on
the support and confidence of the rules in only the second rule set. So, a subset
of temporal rules with strong support and confidence values in their own rule
set may appear in another rule set with weak corresponding support and con-
fidence in the second one. The results in the matrix show the low occurrence
ratios between the rule sets of clinical conditions.

In comparison with the former method TRM-ρ1, the proposed approach for
temporal rule mining TRM-ρ3 is also providing much lower values of occur-
rence ratios between clinical conditions since the temporal rules are more spe-
cialised using the extra temporal relations. Figure 8.5 depicts a graphical com-
parison between the results of the occurrence ratios based on two approaches
TRM-ρ1 and TRM-ρ3 in a box plot diagram. This figure shows most of the ratio
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Figure8.4:Aselectionofdistincttemporalrulesgeneratedfromphysiological
datainclinicalconditionsusingTRM-ρ3approach.

Asanexampleofoutputratios,thematrixinTable8.1showstheobtained
valuesoftheoccurrenceratiofortemporalrulesetsinHR&RRtimeseries.
Sincetheoccurrenceratioisanon-symmetricsimilarityfunction,thevaluesin
Table8.1arenotsymmetric.Forinstance,theOccurrenceRMI(RCHF)is27%,
whereasOccurrenceRCHF(RMI)is16%.Themainreasonforthisvariationis
thattheoccurrenceratioisaweightedfunctionwhichiscalculatedbasedon
thesupportandconfidenceoftherulesinonlythesecondruleset.So,asubset
oftemporalruleswithstrongsupportandconfidencevaluesintheirownrule
setmayappearinanotherrulesetwithweakcorrespondingsupportandcon-
fidenceinthesecondone.Theresultsinthematrixshowthelowoccurrence
ratiosbetweentherulesetsofclinicalconditions.

IncomparisonwiththeformermethodTRM-ρ1,theproposedapproachfor
temporalruleminingTRM-ρ3isalsoprovidingmuchlowervaluesofoccur-
renceratiosbetweenclinicalconditionssincethetemporalrulesaremorespe-
cialisedusingtheextratemporalrelations.Figure8.5depictsagraphicalcom-
parisonbetweentheresultsoftheoccurrenceratiosbasedontwoapproaches
TRM-ρ1andTRM-ρ3inaboxplotdiagram.Thisfigureshowsmostoftheratio
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Table 8.1: Occurrence ratios of rule sets for each pair of clinical conditions in
multivariate time series HR&RR, using TRM-ρ3.
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Resp. failure - 67% 0.2% 0% 3% 3% 2% 3% 7%
Bleed 61% - 1% 6% 8% 2% 8% 3% 0.5%
CHF 8% 4% - 1% 3% 16% 3% 0% 38%

Brain injury 11% 8% 0% - 0% 1% 0.5% 2% 13%
Sepsis 3% 3% 3% 0% - 0% 1% 0% 0%

MI 2% 14% 27% 4% 0% - 3% 32% 15%
Angina 1% 49% 5% 1% 0.1% 1% - 3% 27%

Post-op Valve 12% 2% 1% 10% 1% 16% 9% - 55%
Post-op CABG 1% 0.5% 32% 41% 0.5% 6% 14% 65% -

values are close to the zero in both versions, but much closer to the zero for the
TRM-ρ3 method. More precisely, for the occurrence ratios in clinical conditions
for time series, more than 90% of all occurrence ratios are lower than 30%.
Also, 83% of them are lower than 15% (in TRM-ρ1 it was 70% lower than 15%).
So, this evaluation to some extent can guarantee that the temporal rule mining
methods generate relatively distinctive rule sets, which the rules in one category
of the clinical condition can sufficiently provide an individual behaviour of its
vital signs.

Occurrence Ratio of Subjects in Clinical Conditions

Another aspect of validating the performance of rule set similarity measure is
to show the robustness of this measure for analogous rule sets. For this reason,
some individual subjects with specific clinical condition labels are considered
through the use of TRM-ρ3. The temporal rule set of each subject is then com-
pared with the rule sets of each clinical category via measuring their occurrence
ratio in the rule sets of clinical conditions, using a leave-one-out method to
avoid overfitting the modelling and the comparison of rule sets. If the occur-
rence ratio of a subject is higher in its corresponding clinical condition, rather
than other conditions, then it shows the closeness of the subject’s rule set and its
corresponding condition’s model. In other words, every provided rule set can
represent a descriptive model of specific features which is recognisable from the
other models.

Since the number of subjects in some clinical conditions is not enough, to
avoid having biased results, the subjects with four major clinical labels, Res-
piratory failure, CHF, MI, Sepsis (33 subjects in total) are tested. The other
clinical conditions do not have enough subjects to perform this evaluation. The
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Table8.1:Occurrenceratiosofrulesetsforeachpairofclinicalconditionsin
multivariatetimeseriesHR&RR,usingTRM-ρ3.
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valuesareclosetothezeroinbothversions,butmuchclosertothezeroforthe
TRM-ρ3method.Moreprecisely,fortheoccurrenceratiosinclinicalconditions
fortimeseries,morethan90%ofalloccurrenceratiosarelowerthan30%.
Also,83%ofthemarelowerthan15%(inTRM-ρ1itwas70%lowerthan15%).
So,thisevaluationtosomeextentcanguaranteethatthetemporalrulemining
methodsgeneraterelativelydistinctiverulesets,whichtherulesinonecategory
oftheclinicalconditioncansufficientlyprovideanindividualbehaviourofits
vitalsigns.

OccurrenceRatioofSubjectsinClinicalConditions

Anotheraspectofvalidatingtheperformanceofrulesetsimilaritymeasureis
toshowtherobustnessofthismeasureforanalogousrulesets.Forthisreason,
someindividualsubjectswithspecificclinicalconditionlabelsareconsidered
throughtheuseofTRM-ρ3.Thetemporalrulesetofeachsubjectisthencom-
paredwiththerulesetsofeachclinicalcategoryviameasuringtheiroccurrence
ratiointherulesetsofclinicalconditions,usingaleave-one-outmethodto
avoidoverfittingthemodellingandthecomparisonofrulesets.Iftheoccur-
renceratioofasubjectishigherinitscorrespondingclinicalcondition,rather
thanotherconditions,thenitshowstheclosenessofthesubject’srulesetandits
correspondingcondition’smodel.Inotherwords,everyprovidedrulesetcan
representadescriptivemodelofspecificfeatureswhichisrecognisablefromthe
othermodels.

Sincethenumberofsubjectsinsomeclinicalconditionsisnotenough,to
avoidhavingbiasedresults,thesubjectswithfourmajorclinicallabels,Res-
piratoryfailure,CHF,MI,Sepsis(33subjectsintotal)aretested.Theother
clinicalconditionsdonothaveenoughsubjectstoperformthisevaluation.The
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Figure 8.5: Boxplot diagram of the occurrence ratios between one clinical con-
dition’s rule set and the other conditions with TRM-ρ3 (each row in Table 8.1),
in comparison with the results of TRM-ρ1.

rule set of a subject sbj is compared with every rule set achieved from nine
clinical conditions Ci through the calculation of Occurrence Rsbj

(RCi
), where

1 � i � 9. For each subject, two clinical conditions with top occurrence ratios
have been selected as nearest conditions to the subject. If the closest conditions
to a subject involve the same clinical label as the subject’s label, it shows a
rich similarity between the rule sets of the subject and its corresponding clinical
condition. The number of subjects with the same clinical label in their nearest
conditions can indicate the correctness of the proposed evaluation.

Table 8.2 shows the three significant clinical conditions, with the number of
subjects in each of them, in which their clinical labels have been revealed as one
of their nearest conditions. For the subjects in CHF, MI, and Sepsis conditions,
most of the rule sets were significantly close to their clinical model. However,
the behaviour of rule sets for the Respiratory failure condition and its subjects
are not adequately similar.

8.2 Linguistic Descriptions for Patterns and

Temporal Rules

This section presents how a set of data-driven information can be turned into
a set of natural language sentences that are humanly understandable. In par-
ticular, it explains template-based approaches which directly map the output
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Table 8.2: Subjects with the same condition in their nearest rule sets.

Selected clinical
condition

No. of Subjects
No. of nearest

conditions with
same label

percentage (%)

CHF 13 11 85%

MI 6 5 83%

Resp. failure 10 6 60%

Sepsis 4 3 75%

numerical information to linguistic characterisations. These approaches are ap-
plied to three sets of information derived from data analysis methods: partial
trends, prototypical patterns, and temporal rules of patterns. It is notable that
the proposed approaches here are heuristic and are the first attempt to generate
natural language text for derived numerical information. It will be shown in
Chapter 9 that how semantic representations can be involved in the process of
text generation in order to enrich the final description of such information.

8.2.1 Trend and Pattern Description

A text generation method proposed in [29] provides a framework to detect
and represent partial trends in sequential patterns. The method first detects the
partial trends of an input time series based on their numeric features such as
slope and duration. Then it characterises the partial trends in a textual form
using a mapping function between numeric and symbolic terms such as sudden
increase, steady decay, much fluctuated, and so on. By employing this method,
the patterns in a temporal rule can be described based on their partial trends.
The benefit of using natural language generation to represent the trends is that
all the temporal events from a set of physiological time series data could be
summarised in a textual output, which helps the end user to get a global per-
spective of the repetitive patterns and their temporal correlations in a massive
amount of measurements.

The linguistic description approach applied for trend characterisation is in-
spired by the NLG architecture proposed by Reiter and Dale [185]. As pre-
sented in Chapter 2, this architecture includes the steps of data interpretation,
document planning, microplanning and realisation (See Section 2.3.2 for more
details). This section describes the linguistic characterisation of the detected
trends only in the data analysis phase which is a part of microplanning mod-
ule. For other tasks in NLG system, the framework follows the developed NLG
methods in [185] or more recently in [119].

While extracting partial trends from time series data to represent them in
natural language, the orientation of detected trends is interpreted in linguistic
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Table 8.3: The instances of linguistic terms used for describing trends.

���������Range
Duration

Short Medium Long

Small steadily,
nor-
mally

slowly

Medium gradually Adverb

Big suddenly sharply regularly

rise,
drop

increase,
decrease,
recover

- Verb

terms. For this reason, two following features of each trend are considered:
(1) the duration of trend and (2) the range of values that trend belongs to. To
meet the requirements of the end user and domain specificity, the system uses
a fuzzy granulation. A heuristic method is used to map between the mentioned
features and the linguistic terms considering the following behaviours of trends:
the duration of the trend to be represented (short, medium, long), and the range
of trend would be represented (small, medium, big). Note that depending on
some criteria like the goal of the system, the end user’s needs and the type of
input health parameter, the function of identifying these terms may vary.

With this categorisation, the system can fetch the linguistic terms to describe
each trend (with specified duration and range) in natural language sentences.
These sentences include particular portions such as subject, verb, adverb etc.
which have to be clarified by the system. An example of defined lexicons for the
trend’s behaviour is illustrated in Table 8.3 which includes a set of suggestions
for the proper verbs and adverbs in each combination of specified duration and
range. Figure 8.6 shows some instances of linguistic terms for extracted trends
in HR (top) and RR (down) signals.

8.2.2 Temporal Rule Representation

One descriptive way of representing the rules is to generate a textual repre-
sentation of them for the end user of the system. A simple representation of
a typical rule, r : A ⇒ B in natural language text is to put the relation and
the definition of the itemsets as the antecedent and consequent in a textual for-
mat such as: “When (If/while) A occurs (happens), then (after that, at the same
time) B will occur”. For instance, in the example of market basket [207], a rule
could be explained as: “Customers who buy bread and cheese are likely to buy
milk.” The main challenge in the textual representation of the temporal rules
r : A

ρ
=⇒ B is to involve the temporal relation (ρ) into the rule representation.
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Figure 8.6: The output of the partial trends for two segmented time series (HR
on top and RR on bottom), shown in Figure 7.5.

As mentioned before, for two subsequences of patterns P1 and P2 with the re-
lation ρ, both temporal rules P1

ρ
=⇒ P2 and P2

ρ
=⇒ P1 can be generated through

the association rule mining method. Although the temporal relation is same for
these two rules, the meaning and interpretation of them are practically differ-
ent, because the roles of antecedent and consequent have been swapped. For
this reason, a linguistic mapping from temporal rules to their messages should
be defined. Table 8.4 illustrates a mapping for these two rules with the itemsets
P1 and P2 while considering the defined temporal relations ρ ∈ {‘equal’, ‘before’,
‘after’}.

Another challenge of textual rule representation while dealing with pat-
terns is how to explain the antecedent and consequent patterns as temporal
subsequences in a meaningful way. Since a data-driven approach extracts the
prototypical patterns, there is no predefined characterisation of them by the
expert. Therefore, a linguistic description of the prototypical patterns of the
subsequences P1 and P2 should be generated in the place-holders denoted by
[P1] and [P2] in Table 8.4. For instance, an output text like “After a gradual
decrease in pattern P1, then pattern P2 has a big rise and then a sharp drop”
is understandable, to interpret the behaviour of patterns in discovered rules for
the end user.

134CHAPTER8.MINING&DESCRIBINGPHYSIO.DATA

Figure8.6:Theoutputofthepartialtrendsfortwosegmentedtimeseries(HR
ontopandRRonbottom),showninFigure7.5.

Asmentionedbefore,fortwosubsequencesofpatternsP1andP2withthere-
lationρ,bothtemporalrulesP1

ρ
=⇒P2andP2

ρ
=⇒P1canbegeneratedthrough

theassociationruleminingmethod.Althoughthetemporalrelationissamefor
thesetworules,themeaningandinterpretationofthemarepracticallydiffer-
ent,becausetherolesofantecedentandconsequenthavebeenswapped.For
thisreason,alinguisticmappingfromtemporalrulestotheirmessagesshould
bedefined.Table8.4illustratesamappingforthesetworuleswiththeitemsets
P1andP2whileconsideringthedefinedtemporalrelationsρ∈{‘equal’,‘before’,
‘after’}.

Anotherchallengeoftextualrulerepresentationwhiledealingwithpat-
ternsishowtoexplaintheantecedentandconsequentpatternsastemporal
subsequencesinameaningfulway.Sinceadata-drivenapproachextractsthe
prototypicalpatterns,thereisnopredefinedcharacterisationofthembythe
expert.Therefore,alinguisticdescriptionoftheprototypicalpatternsofthe
subsequencesP1andP2shouldbegeneratedintheplace-holdersdenotedby
[P1]and[P2]inTable8.4.Forinstance,anoutputtextlike“Afteragradual
decreaseinpatternP1,thenpatternP2hasabigriseandthenasharpdrop”
isunderstandable,tointerpretthebehaviourofpatternsindiscoveredrulesfor
theenduser.

134 CHAPTER 8. MINING & DESCRIBING PHYSIO. DATA

Figure 8.6: The output of the partial trends for two segmented time series (HR
on top and RR on bottom), shown in Figure 7.5.

As mentioned before, for two subsequences of patterns P1 and P2 with the re-
lation ρ, both temporal rules P1

ρ
=⇒ P2 and P2

ρ
=⇒ P1 can be generated through

the association rule mining method. Although the temporal relation is same for
these two rules, the meaning and interpretation of them are practically differ-
ent, because the roles of antecedent and consequent have been swapped. For
this reason, a linguistic mapping from temporal rules to their messages should
be defined. Table 8.4 illustrates a mapping for these two rules with the itemsets
P1 and P2 while considering the defined temporal relations ρ ∈ {‘equal’, ‘before’,
‘after’}.

Another challenge of textual rule representation while dealing with pat-
terns is how to explain the antecedent and consequent patterns as temporal
subsequences in a meaningful way. Since a data-driven approach extracts the
prototypical patterns, there is no predefined characterisation of them by the
expert. Therefore, a linguistic description of the prototypical patterns of the
subsequences P1 and P2 should be generated in the place-holders denoted by
[P1] and [P2] in Table 8.4. For instance, an output text like “After a gradual
decrease in pattern P1, then pattern P2 has a big rise and then a sharp drop”
is understandable, to interpret the behaviour of patterns in discovered rules for
the end user.
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Figure8.6:Theoutputofthepartialtrendsfortwosegmentedtimeseries(HR
ontopandRRonbottom),showninFigure7.5.
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Table 8.4: A template-based textual representation of rules with temporal rela-
tions.

P1
ρ
=⇒ P2 P2

ρ
=⇒ P1

P1equalsP2
when [P1], at the same time

[P2].
when [P2], at the same time

[P1].

P1beforeP2 when [P1], after that [P2].
when [P2], before that [P1].

P1afterP2 when [P1], before that [P2]. when [P2], after that [P1].

Textual Representation of Temporal Rules

As described in Section 8.2.2, the significant tasks in temporal rule representa-
tion are 1) characterising the main trends in each of antecedent and consequent
as patterns and 2) realising the form of temporal relation in a provided rule
(Table 8.4). The partial trends in the patterns of a temporal rule are textually
represented based on their numeric features and conduct, which is proposed
in Section 7.2. The linguistic demonstrations of the temporal relation between
the antecedent (here, HR) and consequent (here, BP and RR) of a rule are pro-
vided by a variety of words which are employed from expert knowledge. For
instance, the equal relation is presented with the terms “at the same time, si-
multaneously, concurrently, etc.” or the relations before and after are shown
with “before that, earlier, just after that, later, afterwards, etc.”. Moreover, the
strength of a temporal rule based on its support and confidence values can be
also represented in the corresponding sentence. It provides a meaningful im-
pression on the rule strength for the reader of the textual messages. Various
terms and phrases for the values of support and confidence can be used. As an
example the sentence of a temporal rule with a high confidence value is started
with the terms like: “most of the time” or “commonly”. In this work, since
the rules are generated to show the sequential happenings in the entire data,
the general conditional (if-then) sentence is implemented to characterise the an-
tecedent and consequent of rules. It is worth to note that to make the final text
more natural, different templates of conditional sentences have been applied
(e.g. using “when” or “after”, instead of “if”).

Table 8.5 shows the generated textual representation of the acquired tem-
poral rules in Figure 8.4. In these output examples, each sentence describes a
discovered temporal rule to specify the temporal relation inside the rule with
the partial trends in each of the appeared prototypical patterns, followed by
the corresponding clinical condition. An advantage of generating final output
in natural language is a textual description that is understandable and inter-
pretable by the end user of the system.
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tionare1)characterisingthemaintrendsineachofantecedentandconsequent
aspatternsand2)realisingtheformoftemporalrelationinaprovidedrule
(Table8.4).Thepartialtrendsinthepatternsofatemporalrulearetextually
representedbasedontheirnumericfeaturesandconduct,whichisproposed
inSection7.2.Thelinguisticdemonstrationsofthetemporalrelationbetween
theantecedent(here,HR)andconsequent(here,BPandRR)ofarulearepro-
videdbyavarietyofwordswhichareemployedfromexpertknowledge.For
instance,theequalrelationispresentedwiththeterms“atthesametime,si-
multaneously,concurrently,etc.”ortherelationsbeforeandafterareshown
with“beforethat,earlier,justafterthat,later,afterwards,etc.”.Moreover,the
strengthofatemporalrulebasedonitssupportandconfidencevaluescanbe
alsorepresentedinthecorrespondingsentence.Itprovidesameaningfulim-
pressionontherulestrengthforthereaderofthetextualmessages.Various
termsandphrasesforthevaluesofsupportandconfidencecanbeused.Asan
examplethesentenceofatemporalrulewithahighconfidencevalueisstarted
withthetermslike:“mostofthetime”or“commonly”.Inthiswork,since
therulesaregeneratedtoshowthesequentialhappeningsintheentiredata,
thegeneralconditional(if-then)sentenceisimplementedtocharacterisethean-
tecedentandconsequentofrules.Itisworthtonotethattomakethefinaltext
morenatural,differenttemplatesofconditionalsentenceshavebeenapplied
(e.g.using“when”or“after”,insteadof“if”).

Table8.5showsthegeneratedtextualrepresentationoftheacquiredtem-
poralrulesinFigure8.4.Intheseoutputexamples,eachsentencedescribesa
discoveredtemporalruletospecifythetemporalrelationinsidetherulewith
thepartialtrendsineachoftheappearedprototypicalpatterns,followedby
thecorrespondingclinicalcondition.Anadvantageofgeneratingfinaloutput
innaturallanguageisatextualdescriptionthatisunderstandableandinter-
pretablebytheenduserofthesystem.
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Table 8.5: Textual representation of the acquired rules in Figure 8.4.

Rules Linguistic Description

Fig. 8.4 (a)
In the Bleed condition, occasionally when the heart rate
normally rises (7 beats) and steadily decreases (4 beats), at
the same time the blood pressure normally rises (10 units).

Fig. 8.4 (b)
In the MI condition, usually when the respiration rate de-
cays and then rises in a very small range, simultaneously
the heart rate decays and rises very slowly.

Fig. 8.4 (c)
In the Angina condition, most frequently if the heart rate
sharply decreases (10 beats) and suddenly rises (13 beats),
later, the blood pressure reduces very slowly.

Fig. 8.4 (d)

In the Post-op Valve condition, most of the time the respira-
tion rate sharply increases (7 breaths) and steadily reduces
(3 breaths, just before that, the heart rate decreases in a
very small range.

Fig. 8.4 (e)
In the MI condition, usually after the heart rate steadily in-
creases (5 beats) and normally reduces (2 beats), the blood
pressure fluctuates in a very small range.

Fig. 8.4 (f)
In the Sepsis condition, most of the time before the respira-
tion rate normally rises (2 breaths) and suddenly decreases
(5 breaths), the heart rate steadily decreases (6 breaths).

8.3 Discussion and Summary

The approach introduced in the first section of this chapter presents a descrip-
tive model of temporal rule mining to generate meaningful rules for physiologi-
cal sensor data in a clinical setting. This modelling also underlies the uniqueness
of the rule sets for considering cases, which means each provided rule set con-
tains distinct rules that are unique to their model. The advantage of providing
distinctive rules for clinical conditions is to enable physicians to discover spe-
cific behaviours of vital signs, which are not necessarily recorded in medical
ontologies. The proposed approach is able to exploit unseen and distinctive in-
formation per patient or condition. This information can assist the clinicians in
individual decision making.

The second section of this chapter introduces the approaches to describe
the mind information linguistically. First, it is shown how linguistic terms can
annotate the partial trends and prototypical patterns (extracted in data analysis
phase in Chapter 7). Then, with the use of the annotated trends and patterns, a
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Table8.5:TextualrepresentationoftheacquiredrulesinFigure8.4.

RulesLinguisticDescription

Fig.8.4(a)
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normallyrises(7beats)andsteadilydecreases(4beats),at
thesametimethebloodpressurenormallyrises(10units).

Fig.8.4(b)
IntheMIcondition,usuallywhentherespirationratede-
caysandthenrisesinaverysmallrange,simultaneously
theheartratedecaysandrisesveryslowly.

Fig.8.4(c)
IntheAnginacondition,mostfrequentlyiftheheartrate
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Fig.8.4(d)
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Fig.8.4(e)
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Fig.8.4(f)
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tionratenormallyrises(2breaths)andsuddenlydecreases
(5breaths),theheartratesteadilydecreases(6breaths).

8.3DiscussionandSummary

Theapproachintroducedinthefirstsectionofthischapterpresentsadescrip-
tivemodeloftemporalruleminingtogeneratemeaningfulrulesforphysiologi-
calsensordatainaclinicalsetting.Thismodellingalsounderliestheuniqueness
oftherulesetsforconsideringcases,whichmeanseachprovidedrulesetcon-
tainsdistinctrulesthatareuniquetotheirmodel.Theadvantageofproviding
distinctiverulesforclinicalconditionsistoenablephysicianstodiscoverspe-
cificbehavioursofvitalsigns,whicharenotnecessarilyrecordedinmedical
ontologies.Theproposedapproachisabletoexploitunseenanddistinctivein-
formationperpatientorcondition.Thisinformationcanassistthecliniciansin
individualdecisionmaking.

Thesecondsectionofthischapterintroducestheapproachestodescribe
themindinformationlinguistically.First,itisshownhowlinguistictermscan
annotatethepartialtrendsandprototypicalpatterns(extractedindataanalysis
phaseinChapter7).Then,withtheuseoftheannotatedtrendsandpatterns,a
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template-based approach is presented to generate linguistic descriptions for the
mined temporal rules involving the temporal relation of the unknown but in-
teresting patterns. Although the output results are reasonably human-readable
text, the limitation of this approach is the richness of the provided annotations
and labels for the partial trends and patterns. This method has been only rely-
ing on the shape and the trends of the time series patterns. So, an alternative
pass to describe unknown patterns and temporal rules is to describe them by a
model that is constructed on the basis of the known annotated patterns. Seman-
tic representations that are presented in Part I can play this role in a linguistic
description method.

In sum, this chapter provides a more in-depth analysis of the extracted pat-
terns of physiological data to find temporal rules among those patterns. After,
it presented linguistic description approaches to turn patterns and rules into
natural language texts. Chapter 9 shows how a semantic representation can
help the linguistic description approaches to enrich the final text, and how it
can help to describe further (and possibly unknown) observations.
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ingontheshapeandthetrendsofthetimeseriespatterns.So,analternative
passtodescribeunknownpatternsandtemporalrulesistodescribethembya
modelthatisconstructedonthebasisoftheknownannotatedpatterns.Seman-
ticrepresentationsthatarepresentedinPartIcanplaythisroleinalinguistic
descriptionmethod.

Insum,thischapterprovidesamorein-depthanalysisoftheextractedpat-
ternsofphysiologicaldatatofindtemporalrulesamongthosepatterns.After,
itpresentedlinguisticdescriptionapproachestoturnpatternsandrulesinto
naturallanguagetexts.Chapter9showshowasemanticrepresentationcan
helpthelinguisticdescriptionapproachestoenrichthefinaltext,andhowit
canhelptodescribefurther(andpossiblyunknown)observations.
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Chapter 9

Linguistic Descriptions for

Time Series Patterns using

Conceptual Spaces

“Long before worrying about how to convince others, you
first have to understand what’s happening yourself.”

— Andrew Gelman (1965–)

T
his chapter presents the application of the proposed semantic representa-
tions in Part I in the area of physiological sensor data. As mentioned in

Part I, the input of a semantic representation needs to be a set of perceived
information with certain attributes (namely involving labels and features for
observations). This thesis has employed data analysis approaches to extract
meaningful and interesting information. These approaches have already been
widely discussed in chapters 7 and 8. The abstracted patterns from sensor data
are now used in a semantic representation, and then be utilised to infer linguis-
tic descriptions, as will be presented in this chapter. The distinctive approach
presented here is the ability of modelling and interpreting new observations
that are could be unknown (i.e., not pre-defined) for the system.

Within the field of time series data mining, the perception-based analysis of
patterns attempts to formalise knowledge and simulate human reasoning [35].
Linguistic descriptions can represent the perceptions (i.e., words such as low,
increasing, most of the time, etc.) of time series patterns. A time series pat-
tern is a subsequence of a univariate time series containing a meaningful be-
haviour or trend of the data. Many studies consider the problem of qualitative
analysis of time series patterns and its manipulation with linguistic informa-
tion [32, 36, 124, 165, 237]. However, in most of them, the required linguistic
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haviour or trend of the data. Many studies consider the problem of qualitative
analysis of time series patterns and its manipulation with linguistic informa-
tion [32, 36, 124, 165, 237]. However, in most of them, the required linguistic
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information is limited by the expert or domain knowledge. In other words, the
developed systems are designed to cover specific trends and shapes of patterns
with a particular set of the requested linguistic characterisations as the general
vocabulary. For example, Yu et al. [237] developed a natural language genera-
tion (NLG) framework to summarise the patterns in large time series in a few
sentences. This framework uses an ontology of patterns as general vocabulary
like a spike, a step, etc. to comply with the linguistic requirements. The major
drawback of such a system is that any other observation (pattern) which is not
matched with the provided vocabulary cannot be described and reported in the
final summary.

Here, the conceptual spaces theory is used to represent the linguistic char-
acterisation of time series patterns in a semantic model. According to the pro-
posed approach in Part I, this model provides a symbolic representation of both
known and unknown patterns. This chapter shows how to construct such con-
ceptual space for a given set of time series patterns, also shows how to inference
in the conceptual space for the linguistic characterisation of time series patterns.

9.1 Constructing a Conceptual Space of Time Series

Patterns

Assume that there is a set of time series patterns with varying lengths, which
are labelled with a set of linguistic terms (See Figure 9.1). Here, the same set of
physiological patterns that are extracted from the MIMIC data set (explained in
Chapter 7) are used. The time series patterns are exploited from heart rate and
respiration rate recorded in several clinical conditions [32]. From this data set,
78 patterns are used as known observations with varying time durations, which
are categorised (i.e., labelled by experts) into four known classes: increasing,
decreasing, spike, and oscillation. These class labels of time series patterns are
acquired from the common behavioural labels used in the literature of mining
and linguistic characterisation of shapes and trends in time series data [35,107,
165,236].

Formally, the data set and the labels of the patterns are defined as: Dp =
{o1, . . . ,o78} and Yp = { yin : ‘Increasing’, yde : ‘Decreasing’, ysp : ‘Spike’,
yos : ‘Oscillation’ }. Although there many other types of behaviours for time
series patterns, these four classes are primarily chosen to simplify the process
of conceptualising the patterns. Figure 9.1 shows the typical examples of such
patterns for each of the mentioned classes of the data set. Regarding the set of
class labels Yp, the set of concepts is defined as: Cp = {Cin, Cde, Csp, Cos}.

Initialising the primitive set of characteristic features is another input to
build the conceptual space of time series patterns. There are many charac-
teristic features for analysing and modelling time series data, from simple
statistical features to frequency related ones. As mentioned in the leaf data
set, the criterion is how describable or interpretable the features are in lin-
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informationislimitedbytheexpertordomainknowledge.Inotherwords,the
developedsystemsaredesignedtocoverspecifictrendsandshapesofpatterns
withaparticularsetoftherequestedlinguisticcharacterisationsasthegeneral
vocabulary.Forexample,Yuetal.[237]developedanaturallanguagegenera-
tion(NLG)frameworktosummarisethepatternsinlargetimeseriesinafew
sentences.Thisframeworkusesanontologyofpatternsasgeneralvocabulary
likeaspike,astep,etc.tocomplywiththelinguisticrequirements.Themajor
drawbackofsuchasystemisthatanyotherobservation(pattern)whichisnot
matchedwiththeprovidedvocabularycannotbedescribedandreportedinthe
finalsummary.

Here,theconceptualspacestheoryisusedtorepresentthelinguisticchar-
acterisationoftimeseriespatternsinasemanticmodel.Accordingtothepro-
posedapproachinPartI,thismodelprovidesasymbolicrepresentationofboth
knownandunknownpatterns.Thischaptershowshowtoconstructsuchcon-
ceptualspaceforagivensetoftimeseriespatterns,alsoshowshowtoinference
intheconceptualspaceforthelinguisticcharacterisationoftimeseriespatterns.
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arelabelledwithasetoflinguisticterms(SeeFigure9.1).Here,thesamesetof
physiologicalpatternsthatareextractedfromtheMIMICdataset(explainedin
Chapter7)areused.Thetimeseriespatternsareexploitedfromheartrateand
respirationraterecordedinseveralclinicalconditions[32].Fromthisdataset,
78patternsareusedasknownobservationswithvaryingtimedurations,which
arecategorised(i.e.,labelledbyexperts)intofourknownclasses:increasing,
decreasing,spike,andoscillation.Theseclasslabelsoftimeseriespatternsare
acquiredfromthecommonbehaviourallabelsusedintheliteratureofmining
andlinguisticcharacterisationofshapesandtrendsintimeseriesdata[35,107,
165,236].

Formally,thedatasetandthelabelsofthepatternsaredefinedas:D
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statisticalfeaturestofrequencyrelatedones.Asmentionedintheleafdata
set,thecriterionishowdescribableorinterpretablethefeaturesareinlin-
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Figure 9.1: Four sets of time series patterns, presenting the known classes of
patterns in the data set.

guistic form. For example, in time series pattern data set, the values of in-
tegral or mean features can be useful for analytical tasks in time series min-
ing, but these values are meaningless to the end user of the system to visu-
alise or distinguish it from other patterns. In contrast, a feature like slope of a
pattern is perceptually interpretable for the user in natural language. Among
the various features in the literature of feature-based time series data min-
ing [83,107,160,203], the following features have been chosen as the initial set
of features Fp = {Xi = 〈HXi

, IXi
〉}:

Xα : 〈‘Slope’, (−π,π)〉 (the slope of pattern),
XΔmm : 〈‘Min− Max Diff’, [0, inf)〉 (absolute difference between min and max
values),
XΔse : 〈‘Start− End Diff’, [0, inf)〉 (difference between start and end values),
XΔt : 〈‘Time interval’, (0, inf)〉 (time duration of pattern),
Xen : 〈‘Entropy’, [0, inf)〉 (how chaotic is the pattern),
Xfft : 〈‘Frequency’, [0, 1]〉1,
X∂x : 〈‘First Derivative’, [0, 1]〉,
X∂∂x : 〈‘Second Derivative’, [0, 1]〉,
Xσ : 〈‘Standard Deviation’, [0, inf)〉.

9.1.1 Domain Specification for Time Series Pattern Data Set

After calculating all these features for every known observation, the conceptual
space construction approach has been applied with the inputs of known la-
belled observations Dp, label set Yp, and feature set Fp. The approach first

1For some features, Ii needs to be set manually based on a mapping function from feature’s
values to one value in an interval. For example, the outputs of Fourier transform (fft) function of a
pattern is mapped to the values in the interval [0.1], likewise for first and second derivatives
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Figure 9.2: The bipartite graph presenting the relevance of the features and the
labels in data set of time series patterns. Also, two chosen bicliques (as the
domains) are highlighted with the blue and red edges.

utilises the feature filtering approach, i.e. MIFS (Algorithm 3.1) to provide
a ranking matrix which shows the mutual correlation of features and labels.
Then, the feature subset grouping determines which subsets of features as do-
mains represent which labels as concepts using the Algorithm 3.2. Figure 9.2
illustrates the created bipartite graph, which presents the specified domains and
quality dimensions. Two selected maximum bicliques determines two domains
Δ = {δ1, δ2}, where each domain is specified as follows:

• Domain δ1 = 〈Q(δ1),C(δ1),ωδ1〉, wherein
Q(δ1) = {qα, qΔse},
C(δ1) = {Cin,Cde}.

• Domain δ2 = 〈Q(δ2),C(δ2),ωδ2〉, wherein
Q(δ2) = {qΔt,qΔmm,qfft},
C(δ2) = {Csp,Cos}.

Figure 9.3 depicts a graphical presentation of the determined domains
with the corresponding quality dimensions and concepts for the known
time series patterns. As an example, δ1 is specified by two quality dimen-
sions ‘start− end diff’ and ‘slope’, and is associated with two concepts
‘Increasing’ and ‘Decreasing’. An example of the calculated weights in a do-
main is ωδ1(Cin,qα) = 0.62, which shows the salience of the relation between
pattern concept ‘Increasing’ and quality dimension ‘slope’ within δ1. Similar
to the leaf conceptual space, although the process of specifying the domains is
data-driven, there may be an interpretation for each determined domain. Here,
the interpretation of perceived domains is more sensible. For instance, one can
say that δ1 illustrates the trend direction of the known patterns, while δ2 shows
the shape of the known patterns (see Figure 5.3). As the output of the do-
main specification phase for the conceptual space of patterns, the set of quality
dimensions will be Qp = {qα, qΔse, qΔt, qΔmm, qfft}. Moreover, the set of
instances is defined as: Γp = ∪y∈Y Γ(y), where |Γp| = |Dp|.
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Figure 9.3: The conceptual space of time series pattern data set: a graphical
presentation of the determined domains with the corresponding quality dimen-
sions and concepts.

9.1.2 Concept Representation for Pattern Concepts

Regarding the output of the domain specification process, each concept in Cp

appears in only one domain (has precisely one sub-concept), as Cy = {cy}. By
applying Algorithm 3.3, the elements of the sub-concept for each concept in Cp

is derived as follows.

• Pattern concepts ‘Increasing’ and ‘Decreasing’ are represented in δ1 as,
respectively:
Cin = {c1

in : 〈η1
in,φ

1
in〉},

Cde = {c1
de : 〈η1

de,φ
1
de〉}.

• Pattern concepts ‘Spike’ and ‘Oscillation’ are represented in δ1 as, re-
spectively:
Csp = {c2

sp : 〈η2
sp,φ

2
sp〉},

Cos = {c2
os : 〈η2

os,φ
2
os〉}.

In these representations, for example, η2
inc shows the 3D convex polytope

of pattern concept ′Spike ′ within δ2 (see Figure 9.3). Also, as an example
for the weights, φ2

sp = {ωδ2(Csp,qΔt), ωδ2(Csp,qΔmm), ωδ2(Csp,qfft)} shows
the salience between pattern concept ‘Spike’ and three quality dimensions
‘time interval’, ‘min− max diff’, and ‘frequency’ within δ2. In Figure 9.3,
the graphical presentation of time series pattern concepts is shown by illustrat-
ing the convex hulls of their corresponding sub-concepts.
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Figure 9.4: A set of unknown samples of time series patterns.

Now, with the provided elements, the conceptual space of the time series
pattern data set is presented as: Spatterns = 〈 Qp, Δp, Cp, Γp 〉.

9.2 Semantic Inference for Unknown Patterns

The aim is to derive a linguistic description for unknown time series patterns.
Figure 9.4 shows a number of examples of unknown patterns that are chosen to
be considered. According to the proposed inference process, an unknown pat-
tern sample (e.g., pattern (a) in Figure 9.4) is first vectorised to an instance γa.
Then, a linguistic description for (a) is inferred in two phases: set the values of
symbol vector and set the lexicons, by inferring in conceptual space and sym-
bol space, respectively. γa is a set of points within Δp(γa) as: γa = {p1

γa
,p2

γa
},

where the numeric values of each point are the feature value of (a) for each
quality dimension. For example, in δ1: p2

γa
=〈qα(a), qΔse(a)〉=〈0.34, 0.28〉.

9.2.1 Inference in Conceptual Space of Patterns

In task of this phase is basically to check whether or not the new instance γa is
included in any defined concept’s regions, and then infer semantic descriptions
based on the closeness of its values to the regions. Considering the pattern sam-
ple (a) in Figure 9.1, γa belongs to the sub-concept c1

de in δ1, but it does not
belong to any sub-concept in δ2. Based on Algorithm 4.1, the symbol vector
for γa is set as follows: In the concept layer, using the graded membership
function (defined in Definition 4.2): Vγa,C(Cde) = (‘Decreasing’, 1). In the
quality layer, for the quality dimensions of δ2, using the graded quality func-
tion (defined in Definition 4.3): Vγa,Q(q

2
Δt) = (‘long’, 0.75), Vγa,Q(q

2
Δmm) =

(‘medium range’, 0.62), and Vγa,Q(q
2
fft) = (‘fluctuate’, 0.7).
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9.2.2 Inference in Symbol Space of Patterns

By retrieving the information of symbol vector V(γa), it is possible to ver-
balise the elements of symbol vectors into a set of natural language descrip-
tions. As mentioned in Section 4.2.2, γa is annotated by the values of Vγa,C,
and characterised by the values of Vγa,C. In particular, the annotation set is
TC(γa) =‘Decreasing’, and the characterisation set will be TQ(γa) = { ‘long’,
‘medium range’, ‘fluctuate’ }. Then the realisation for γa is as follows: Tγa

=
‘Decreasing, also fluctuates and it is long with medium range’. Table 9.1
present more results derived from the semantic inference in the conceptual
space for the time series patterns shown in Figure 9.4.
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Patterns Linguistic Description
Fig. 9.4(a) This pattern is an Increasing pattern, but it is smooth and very

short, within a medium range of values.

Fig. 9.4(b) This pattern is like a Spike pattern, but it is noisy with a sharp
decreasing trend in a high range of values.

Fig. 9.4(c) This pattern is an Oscillation pattern, within a very short range of
values.

Fig. 9.4(d) This pattern is an Increasing pattern, but it fluctuates in a very long
duration, within a large range of values.

Fig. 9.4(e) This pattern is an Increasing pattern, but it fluctuates within a
medium range of values.

Fig. 9.4(f) This pattern is not like any known pattern, but it fluctuates within
a high range of values.

Fig. 9.4(g) This pattern is an Increasing pattern, but it is long, within a
medium range of values.

Fig. 9.4(h) This pattern is like Decreasing Spike pattern, in a short duration.

Fig. 9.4(i) This pattern is like a Spike pattern, but it has a sharp rise and
fluctuation, within a medium range of values.

Fig. 9.4(j) This pattern is a Decreasing pattern, but it fluctuates in a long
duration, within a medium range of values.

Fig. 9.4(k) This pattern is a Spike pattern, with the same start and end values.

Fig. 9.4(l) This pattern is like a Spike pattern, but it has a smooth and slow
increasing trend, within a medium range of values.

Fig. 9.4(m) This pattern is not like any known pattern, but it wavy within a
medium range, and very long duration. Also, it has the same start
and end values.

Fig. 9.4(n) This pattern is not like any known pattern, but it has a normal
decreasing trend in a very long duration. Also, it is very fluctuating
in a large range of values.

Fig. 9.4(o) This pattern is like Decreasing Oscillation pattern.

Fig. 9.4(p) This pattern is like a Spike pattern, but it is very short and smooth,
within a high range of values

Fig. 9.4(q) This pattern is like Spike and Decreasing patterns.

Table 9.1: The linguistic descriptions derived for the unknown samples of time
series patterns in Figure 9.4.
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Fig.9.4(l)ThispatternislikeaSpikepattern,butithasasmoothandslow
increasingtrend,withinamediumrangeofvalues.
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9.3 Evaluation: Descriptions from Conceptual

Spaces vs. Other Semantic Models

As described in Section 5.3 in Part I, assessing the benefits of the proposed
conceptual space representation directly is not a trivial problem. Instead, the
usefulness of the constructed conceptual space of the time series patterns has
been evaluated via the linguistic descriptions derived from such space. Again,
the experiment evaluates the following aims: (1) to measure the feasibility of de-
riving accurate descriptions to distinguish unknown pattern observations, and
(2) to assess the goodness of the descriptions derived from conceptual spaces in
comparison to the descriptions derived from other base-line models. To these
ends, a survey was conducted in which participants were asked to

1. identify specific time series pattern based on their linguistic description
derived from the conceptual space, and

2. rate the goodness of descriptions produced by different models on a Lik-
ert scale.

9.3.1 Survey: Design and Procedure for Pattern Data Set

Similar to the survey used for leaf data set, the main body of the survey for pat-
terns was composed of two parts, with the same designs of questions explained
in Section 5.3.1. Here, it is worth to mention that the evaluation considered
the results of 17 unknown patterns from a pool of unknown pattern examples.
Moreover, among all responses to the survey, 89 valid responses have been stud-
ied for the pattern data set. Most of the participants were in the range of 25-44
years old, and they were mostly educated in computer science or equivalent.
Besides, most of the participants were fluent in English speaking.

About the expertise level of the participants, the results show that the partic-
ipants were more familiar with the terminology that have been used for pattern
data set, rather than leaf. As shown in Figure 9.5, for the leaf data set, 20%
of the participants knew none of the lexical items, 70% knew few or some of
them, and only 10% almost all of them (See Figure 9.5a). But for the pattern
data set, 30% of the participants knew few, or some of the lexical items, more
than 40% knew most of them, and more than 25% knew all the introduced ter-
minology (See Figure 9.5b). Comparing the percentages of the expertise level
shows that the lexicon used in the descriptions of the patterns was more famil-
iar to the participants.

9.3.2 Identifying Pattern Observations from Linguistic

Descriptions

Participants were able to successfully identify all the unknown observations
(17 patterns) with the help of the corresponding conceptual space descriptions.

9.3.EVALUATION:DESCRIPTIONSFROMCONCEPTUALSPACES147

9.3Evaluation:DescriptionsfromConceptual

Spacesvs.OtherSemanticModels

AsdescribedinSection5.3inPartI,assessingthebenefitsoftheproposed
conceptualspacerepresentationdirectlyisnotatrivialproblem.Instead,the
usefulnessoftheconstructedconceptualspaceofthetimeseriespatternshas
beenevaluatedviathelinguisticdescriptionsderivedfromsuchspace.Again,
theexperimentevaluatesthefollowingaims:(1)tomeasurethefeasibilityofde-
rivingaccuratedescriptionstodistinguishunknownpatternobservations,and
(2)toassessthegoodnessofthedescriptionsderivedfromconceptualspacesin
comparisontothedescriptionsderivedfromotherbase-linemodels.Tothese
ends,asurveywasconductedinwhichparticipantswereaskedto

1.identifyspecifictimeseriespatternbasedontheirlinguisticdescription
derivedfromtheconceptualspace,and

2.ratethegoodnessofdescriptionsproducedbydifferentmodelsonaLik-
ertscale.

9.3.1Survey:DesignandProcedureforPatternDataSet

Similartothesurveyusedforleafdataset,themainbodyofthesurveyforpat-
ternswascomposedoftwoparts,withthesamedesignsofquestionsexplained
inSection5.3.1.Here,itisworthtomentionthattheevaluationconsidered
theresultsof17unknownpatternsfromapoolofunknownpatternexamples.
Moreover,amongallresponsestothesurvey,89validresponseshavebeenstud-
iedforthepatterndataset.Mostoftheparticipantswereintherangeof25-44
yearsold,andtheyweremostlyeducatedincomputerscienceorequivalent.
Besides,mostoftheparticipantswerefluentinEnglishspeaking.

Abouttheexpertiseleveloftheparticipants,theresultsshowthatthepartic-
ipantsweremorefamiliarwiththeterminologythathavebeenusedforpattern
dataset,ratherthanleaf.AsshowninFigure9.5,fortheleafdataset,20%
oftheparticipantsknewnoneofthelexicalitems,70%knewfeworsomeof
them,andonly10%almostallofthem(SeeFigure9.5a).Butforthepattern
dataset,30%oftheparticipantsknewfew,orsomeofthelexicalitems,more
than40%knewmostofthem,andmorethan25%knewalltheintroducedter-
minology(SeeFigure9.5b).Comparingthepercentagesoftheexpertiselevel
showsthatthelexiconusedinthedescriptionsofthepatternswasmorefamil-
iartotheparticipants.

9.3.2IdentifyingPatternObservationsfromLinguistic

Descriptions

Participantswereabletosuccessfullyidentifyalltheunknownobservations
(17patterns)withthehelpofthecorrespondingconceptualspacedescriptions.

9.3. EVALUATION: DESCRIPTIONS FROM CONCEPTUAL SPACES 147

9.3 Evaluation: Descriptions from Conceptual

Spaces vs. Other Semantic Models

As described in Section 5.3 in Part I, assessing the benefits of the proposed
conceptual space representation directly is not a trivial problem. Instead, the
usefulness of the constructed conceptual space of the time series patterns has
been evaluated via the linguistic descriptions derived from such space. Again,
the experiment evaluates the following aims: (1) to measure the feasibility of de-
riving accurate descriptions to distinguish unknown pattern observations, and
(2) to assess the goodness of the descriptions derived from conceptual spaces in
comparison to the descriptions derived from other base-line models. To these
ends, a survey was conducted in which participants were asked to

1. identify specific time series pattern based on their linguistic description
derived from the conceptual space, and

2. rate the goodness of descriptions produced by different models on a Lik-
ert scale.

9.3.1 Survey: Design and Procedure for Pattern Data Set

Similar to the survey used for leaf data set, the main body of the survey for pat-
terns was composed of two parts, with the same designs of questions explained
in Section 5.3.1. Here, it is worth to mention that the evaluation considered
the results of 17 unknown patterns from a pool of unknown pattern examples.
Moreover, among all responses to the survey, 89 valid responses have been stud-
ied for the pattern data set. Most of the participants were in the range of 25-44
years old, and they were mostly educated in computer science or equivalent.
Besides, most of the participants were fluent in English speaking.

About the expertise level of the participants, the results show that the partic-
ipants were more familiar with the terminology that have been used for pattern
data set, rather than leaf. As shown in Figure 9.5, for the leaf data set, 20%
of the participants knew none of the lexical items, 70% knew few or some of
them, and only 10% almost all of them (See Figure 9.5a). But for the pattern
data set, 30% of the participants knew few, or some of the lexical items, more
than 40% knew most of them, and more than 25% knew all the introduced ter-
minology (See Figure 9.5b). Comparing the percentages of the expertise level
shows that the lexicon used in the descriptions of the patterns was more famil-
iar to the participants.

9.3.2 Identifying Pattern Observations from Linguistic

Descriptions

Participants were able to successfully identify all the unknown observations
(17 patterns) with the help of the corresponding conceptual space descriptions.

9.3.EVALUATION:DESCRIPTIONSFROMCONCEPTUALSPACES147

9.3Evaluation:DescriptionsfromConceptual

Spacesvs.OtherSemanticModels

AsdescribedinSection5.3inPartI,assessingthebenefitsoftheproposed
conceptualspacerepresentationdirectlyisnotatrivialproblem.Instead,the
usefulnessoftheconstructedconceptualspaceofthetimeseriespatternshas
beenevaluatedviathelinguisticdescriptionsderivedfromsuchspace.Again,
theexperimentevaluatesthefollowingaims:(1)tomeasurethefeasibilityofde-
rivingaccuratedescriptionstodistinguishunknownpatternobservations,and
(2)toassessthegoodnessofthedescriptionsderivedfromconceptualspacesin
comparisontothedescriptionsderivedfromotherbase-linemodels.Tothese
ends,asurveywasconductedinwhichparticipantswereaskedto

1.identifyspecifictimeseriespatternbasedontheirlinguisticdescription
derivedfromtheconceptualspace,and

2.ratethegoodnessofdescriptionsproducedbydifferentmodelsonaLik-
ertscale.

9.3.1Survey:DesignandProcedureforPatternDataSet

Similartothesurveyusedforleafdataset,themainbodyofthesurveyforpat-
ternswascomposedoftwoparts,withthesamedesignsofquestionsexplained
inSection5.3.1.Here,itisworthtomentionthattheevaluationconsidered
theresultsof17unknownpatternsfromapoolofunknownpatternexamples.
Moreover,amongallresponsestothesurvey,89validresponseshavebeenstud-
iedforthepatterndataset.Mostoftheparticipantswereintherangeof25-44
yearsold,andtheyweremostlyeducatedincomputerscienceorequivalent.
Besides,mostoftheparticipantswerefluentinEnglishspeaking.

Abouttheexpertiseleveloftheparticipants,theresultsshowthatthepartic-
ipantsweremorefamiliarwiththeterminologythathavebeenusedforpattern
dataset,ratherthanleaf.AsshowninFigure9.5,fortheleafdataset,20%
oftheparticipantsknewnoneofthelexicalitems,70%knewfeworsomeof
them,andonly10%almostallofthem(SeeFigure9.5a).Butforthepattern
dataset,30%oftheparticipantsknewfew,orsomeofthelexicalitems,more
than40%knewmostofthem,andmorethan25%knewalltheintroducedter-
minology(SeeFigure9.5b).Comparingthepercentagesoftheexpertiselevel
showsthatthelexiconusedinthedescriptionsofthepatternswasmorefamil-
iartotheparticipants.

9.3.2IdentifyingPatternObservationsfromLinguistic

Descriptions

Participantswereabletosuccessfullyidentifyalltheunknownobservations
(17patterns)withthehelpofthecorrespondingconceptualspacedescriptions.



148 CHAPTER 9. LINGUISTIC DESCRIPTIONS FOR PATTERNS

(a) familiarity with leaf terminology. (b) familiarity with pattern terminology.

Figure 9.5: Pie charts, showing the expertise level of the participants by mea-
suring how familiar they are with the introduced terminology for class labels
and features in (a) leaf and (b) pattern data sets. Participants’ choices were: I
am familiar with none/a few/some/most/all of the terminology.

The success rate to identify the correct image for each description in the pattern
data set was 79%±11%. As mentioned in Section 5.3, this success rate for leaf
data set was 73%±13%. The difference is reasonable to assume that the higher
familiarity of participants with the pattern data set is a possible explanation for
the better success rates.

For further investigation of the incorrectly identified (i.e., misidentified) ex-
amples, the geometrical similarity of these answers to the correct one is calcu-
lated in the conceptual space (multi-domain). According to [86], the similarity
in conceptual spaces can be calculated by applying Euclidean distance with the
domains and the city-block distance between them. To assess the similarities in
conceptual space, also the geometrical similarity of the same instances is calcu-
lated but in a full feature space (single-domain) by applying Euclidean distance.
Two interesting results have been obtained: First, the misidentified examples are
not uniformly distributed between all possible choices, but instead, participants
tended to make similar mistakes. Second, the common misidentified examples
are most of the times (76% for patterns) the closest instance to the correct one
in the conceptual space. In the full feature space this was only occasionally true
(29% for patterns). This shows that the confused examples with each other
are commonly the nearest instances within the multi-domain conceptual space,
which is mostly not true in the full feature space.

The results from the first part of the survey show that the proposed con-
ceptual space representation a) is applicable to derive semantic descriptions for
unknown pattern observations, and b) is suitable to represent the cognitively
similar pattern observations among the multiple domains.
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Table 9.2: The overall scores calculated from the rating responses to the differ-
ent models in pattern data set. The numbers show average scores (and standard
deviations) in the range of 1 to 5.

Mean (SD)
Conceptual 3.76 (1.07)
Generative 3.18 (1.29)

Discriminative 3.36 (1.22)

Figure 9.6: The box plot of the rating scores received for each of the models
deriving descriptions in pattern data set.

9.3.3 Rating Various Linguistic Descriptions of a Pattern

Observation

In the results of the rating scale questions, the description derived from the con-
ceptual space model is compared with the descriptions derived from the two
other semantic models that are explained in details in Section 5.3.3. Table 9.2
shows the statistical summary of the rating scores received for the descriptions
derived from each of the approaches (Conceptual, Generative and Discrimina-
tive) in pattern data set. Also, these scores are depicted in the form of box plot
in Figure 9.6.

Similar to the analysis for leaf data set, an ANOVA test has been applied to
show that the conceptual space description (Conceptual) is significantly prefer-
able rated than the two alternatives (Generative and Discriminative). The one-
way ANOVA test showed a significant effect of the models on the scores. For
the pattern data set, Conceptual has the mean significantly different from Gen-
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wayANOVAtestshowedasignificanteffectofthemodelsonthescores.For
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Table 9.3: Summary of the one-way ANOVA and Wilcoxon tests for the rating
scores with respect to the models deriving descriptions.

pattern data set

ANOVA Test
Conceptual vs.

Generative & Discriminative
F(2, 1173) = 23.72,

p < 10−13

Wilcoxon Test
Conceptual vs. Generative p < 10−12

Conceptual vs. Discriminative p < 10−07

Generative vs. Discriminative p > 0.05 (∗)

erative and Discriminative, p < .0001 (two-tailed). The details of the test has
been shown in Table 9.3.

Moreover, since the ratings are ordinal, also a non-parametric test (i.e.,
Wilcoxon Test) is carried out to identify the significant differences between rat-
ings by comparing each pair of the scores. Table 9.3 shows the p-values of this
method for each pair of models. The output showed that Conceptual model is
significantly different from Generative and Discriminative models (p < .0001).
Beside the significant difference of conceptual model, an interesting outcome
of the tests is the scores of Generative and Discriminative for two data sets.
In the leaf data set, participants have given higher scores to Generative than
Discriminative (p < .0001). But in the pattern data set, there is no significant
difference between these two models (p > .05). It can be interpreted that beside
Conceptual which is the most preferred description, subjects preferred to see all
the features as the description for leaf samples. But about the pattern samples,
there is no preference between the descriptions including either the features or
the concept labels related to the shown patterns.

Overall, the results from this part of the survey show that the proposed
conceptual space representation a) is an appropriate semantic inference model
to derive linguistic descriptions for unknown pattern observations, and b) suc-
cessfully derives descriptions (from multi-domain space) that are naturally pre-
ferred by participants, in comparison to the other alternative models (from
single-domain space).

9.4 Discussion and Summary

This chapter has presented the process of applying the semantic representa-
tion proposed in Part I on the physiological pattern data sets. This process
automatically constructs the conceptual space of the abstracted physiological
patterns, and then, it infers semantic descriptions for a set of unknown pat-
terns. The constructed conceptual space of patterns involves two domains that
include five quality dimensions in total. This space represents four class of pat-
terns: Increasing, Decreasing, Spike, and Oscillation. As it was expected before
applying the data-driven approach to construct the conceptual spaces, the con-
cepts of increasing and decreasing have been represented in the same domain.
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been shown in Table 9.3.
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ings by comparing each pair of the scores. Table 9.3 shows the p-values of this
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significantly different from Generative and Discriminative models (p < .0001).
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In the leaf data set, participants have given higher scores to Generative than
Discriminative (p < .0001). But in the pattern data set, there is no significant
difference between these two models (p > .05). It can be interpreted that beside
Conceptual which is the most preferred description, subjects preferred to see all
the features as the description for leaf samples. But about the pattern samples,
there is no preference between the descriptions including either the features or
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Overall, the results from this part of the survey show that the proposed
conceptual space representation a) is an appropriate semantic inference model
to derive linguistic descriptions for unknown pattern observations, and b) suc-
cessfully derives descriptions (from multi-domain space) that are naturally pre-
ferred by participants, in comparison to the other alternative models (from
single-domain space).

9.4 Discussion and Summary

This chapter has presented the process of applying the semantic representa-
tion proposed in Part I on the physiological pattern data sets. This process
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terns. The constructed conceptual space of patterns involves two domains that
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terns: Increasing, Decreasing, Spike, and Oscillation. As it was expected before
applying the data-driven approach to construct the conceptual spaces, the con-
cepts of increasing and decreasing have been represented in the same domain.
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Beside the ‘slope’ feature, the other selected quality dimension (i.e., ‘start-end
diff ’) to represent these concepts was not the obvious choice. However, it seems
that the values of this feature were dominant enough to play the distinguish the
Increasing and Decreasing concepts from the rest of the concepts. The other
domain that represents Spike and Oscillation concepts also contains interest-
ing quality dimensions. The ‘time interval’, ‘min-max diff ’, and ‘frequency’ are
the features that are more or less the obvious choices to distinguish or describe
these two concepts. However, as one can see, some features like ‘entropy’ or
‘standard deviation’ have not been appeared in the conceptual space, meaning
that their values were not good enough (in comparison with the other features)
to separate any concept from the rest.

Furthermore, this chapter has performed an empirical evaluation, similar to
the assessment presented in Chapter 5, to show the goodness of the conceptual
space of the patterns used for text generation. This assessment has conducted
a survey by asking the human subjects to identify the instances by reading the
generated texts by conceptual spaces model, along with rating three different
generated texts by different semantic models to compare the output text of the
physiological patterns.

In sum, this chapter has shown the ability of the semantic representation
approach proposed in Part I to infer linguistic descriptions for physiological
sensor patterns, which are not necessarily known for the end user. An empirical
evaluations was performed to evaluate the goodness of the generated texts.
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Chapter 10

Conclusions

“And you may ask yourself: Well, how did I get here?”
— Talking Heads (1975–1991)

T
his chapter summarises the contributions of this thesis. It provides an
overview of the limitations of different aspects presented in the thesis.

Finally, the chapter concludes by presenting an outlook of the future research
in different directions.

10.1 Summary of Contributions

The overall contribution of this thesis has been to provide different data-driven
strategies for mining and representing numerical data into a semantic repre-
sentation and then generate linguistic descriptions for such information. The
process, in summary, has been presented in three steps: 1) extracting and min-
ing numerical information (e.g., physiological sensor data), 2) modelling the
information in a semantic representation, and 3) generating linguistic descrip-
tions for such information.

To present the achievements of this thesis, the rest of this section revis-
its the introduced contributions (C1 to C4), given in Chapter 1 by explaining
how each of the contributions has been accomplished using the proposed ap-
proaches.

10.1.1 Construction of Conceptual Spaces (C1)

This thesis has first introduced a data-driven approach to automatically con-
struct conceptual spaces based on the input observations and their semantic
attributes (Chapter 3). The following contributions have addressed the task of
constructing a conceptual space:
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1) The specification of domains and quality dimensions was presented using
feature selection and feature grouping methods, which exploit the relevance of
the selected features to the known concepts. The approach has applied a feature
selection method based on mutual information for feature selection (MIFS) to
rank the relevance of features and concepts. This ranking algorithm has been
applied to each concept individually by applying the MIFS method on the input
data set. After that, grouping the selected features has been introduced through
first constructing a bipartite graph representation of the feature-concept asso-
ciations, and then exploiting the most representative subsets of features as the
domains by finding the best bicliques in such graph.

2) The concept representation was described in an instance-based manner.
To form the concepts within the specified domains, the approach has calculated
the convex regions of concepts and the salient weights of concept in relation to
the quality dimensions of the domains. Note that this calculation was entirely
formulated based on the associated observations to the concepts, without in-
volving external knowledge.

A key finding in this contribution is that the proposed approach to construct
conceptual spaces provides a generalisation for concept representation, where
this representation can be derived from different types of input instances.

10.1.2 Semantic Inference in Conceptual Spaces (C2)

This thesis has introduced a semantic inference process to linguistically rep-
resent a new observation within the built conceptual space (Chapter 4). The
following contributions have addressed the task of semantic inferring in a con-
ceptual space:

1) A symbol space was introduced as the complementary space to the con-
ceptual space, which includes the semantics of the corresponding concepts and
quality dimensions. This space enables the approach to determine the relevant
symbolic terms to represent a new observation.

2) The inference process to generate linguistic descriptions for an unknown
observation was presented in two phases: To determine associated concepts and
quality dimensions of an unknown instance, its location within the constructed
conceptual space has been investigated. This determination has been done by
considering the inclusion of the instance in the regions of the space and the use
of similarity measures in such space. After that, the lexicalisation of the instance
has been induced by extracting the semantic labels of the associated concepts
and quality dimensions. Finally, microplanning and realisation techniques have
been applied in order to generate natural language descriptions.

One advantage of such inference model is that the proposed approach con-
cerns which features and concepts should be inferred as the most suitable set of
interpretable contents to describe an unknown observation.
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10.1.3 Mining Prototypical Patterns and Temporal Rules in

Physiological Sensor Data (C3)

From the application point of view, this thesis has focused on the field of health-
care monitoring to analyse the physiological sensor data. The data analysis
phase has addressed the task of mining partial trends, prototypical patterns and
distinctive temporal rules using data-driven approaches. The following contri-
butions have addressed the task of mining physiological sensor data:

1) A literature review on mining physiological sensor data was presented.
This review has considered several health monitoring systems that use wearable
sensors to monitor the vital signs. Different data mining tasks for healthcare
systems have been studied, as well as various machine learning techniques to
address such tasks (Chapter 6).

2) This thesis has introduced an unsupervised approach to extract proto-
typical patterns from a physiological time series data. This approach has been
designed based on desensitising the time series and clustering the sub-sequences
of data to exploit the final patterns. Besides, a partial trend detection method
has also been proposed to capture the partial behaviours of a time series con-
cerning the shape and trend of the data (Chapter 7).

3) The central data analysis part of this work was the process of mining
temporal rules from various channels of sensor data in clinical conditions. This
process has introduced a new temporal rule mining method to extract the re-
peated co-occurrences of the physiological patterns in a set of long recorded
sensor data. The significant output of such temporal rule mining was the fact
that the extracted rules from the data of each clinical condition are distinguish-
able from the temporal rules that are derived from other conditions. A new
approach proposed to compare temporal rules has confirmed this uniqueness
of rules in each condition (Chapter 8).

The key outcome of the data analysis phase in this thesis is that the entire
process relies on the measured data itself to express the valuable information.
The proposed data-driven approaches have shown that there are some aspects
of the sensor data (i.e., unseen patterns and temporal rules) that are not known
or not readily observable by the domain experts, but they are still interesting to
be extracted and moreover are valuable to be interpreted.

10.1.4 Linguistic Description of Time Series Patterns using

Semantic Representations (C4)

After data analysis phase, this thesis considered the task of representing numer-
ical information into linguistic descriptions. This representation has been done
using both template-based approaches and the proposed semantic representa-
tion based on data-driven conceptual spaces. The following contributions have
addressed the task of describing physiological sensor data:
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1) A template-based linguistic description approach was presented to turn
the partial trends and patterns into a set of natural language terms. Also, for
the extracted temporal rules, this thesis has applied a fuzzy mapping method
to annotate the co-occurrence of the patterns and also the frequency of their
happening using linguistic terms, and then it has generated natural language
sentences for the rules in each clinical condition (Chapter 8).

2) Applying the proposed semantic representation using data-driven con-
ceptual spaces was one of the leading contributions for describing time series
patterns. The proposed approach in the first part of this thesis has been applied
to a collection of processed known time series patterns as input numerical in-
formation. Then, using the constructed conceptual space of time series patterns,
the inference process has generated linguistic descriptions for a set of unknown
time series patterns. The presented empirical evaluation has shown the good-
ness of the generated texts using the proposed semantic over the introduced
generative and descriptive models (Chapter 9).

The advantage of applying the semantic model to the physiological data is
to be able to interpret data-driven extracted patterns that are unknown by def-
inition. Involving semantic representation helps the system to not be restricted
to analyse and mine only the pre-defined patterns requested by the domain ex-
pert, but to search for any interesting information and be sure that the semantic
model can generate a description for such information.

10.2 Limitations

The approaches proposed in both parts of this thesis have presented data-driven
strategies (numerically, and semantically) for linking numerical information to
linguistic descriptions. The discussions given at the end of each chapter have
shown the key points and critical issues of the contributions. In this section, a
list of more general issues and limitations related to the accomplished contri-
butions are discussed.

Construction of conceptual spaces Regarding the proposed approach for con-
struction of conceptual spaces, one limitation is the assumption of having se-
mantic features as inputs. These features are assumed to be understandable or
be interpretable by the human, which means they can be used as semantic terms
in the final linguistic descriptions. Besides, another assumption for the input of
constructing conceptual spaces is the set of labelled or annotated observations
with known classes or concepts. With this assumption, the process of concept
forming can be categorised as a supervised modelling, since the labelled data
leads the process of the domain specification and concept representation.1

1Note that regardless of being supervised or not, still the approach is data-driven in a sense that
there is no extra knowledge rather than the known input instances to influence the processes of
constructing the space.
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Another limitation of constructing conceptual spaces is related to the pro-
posed algorithms. The algorithms for the domain and quality dimension spec-
ification have been introduced heuristic approaches to filter and to group the
features, which are not the optimal ways to do so. Therefore, there is a lack
of studying on how to measure the goodness of the specified domains in com-
parison with other non-greedy approaches. It is worth mentioning that these
algorithms have not aimed to perform classification task to discriminate the
classes of data with high accuracy. Instead, they have attempted to select the
most distinctive features for each class of data to enrich the descriptivity of the
model by presenting multi-domain space. Therefore, it might be meaningless
to apply classification measures like recall or precision in order to measure the
goodness of the model.

Semantic inference in conceptual spaces: Regarding the semantic inference in
conceptual spaces, the structure of the introduced symbol space is dependent
on domain knowledge, which is the set of linguistic annotations and symbols
of the input features and concepts. An important point to mention is that there
is no inference to exploit or generate a new semantic label or term by reasoning
among the relation of the provided symbols or words based on any knowledge-
based system (e.g., ontologies). Instead, the inference process chooses the most
representative terms and labels for a new unknown observation among all the
already provided information.

Another constraint in the inference process is related to the unknown obser-
vations as the inputs. The unknown observations should have the same proper-
ties that the known observations have. More precisely, the unknown observa-
tions should be able to be vectorised within the constructed conceptual space.
Thus, any unknown observation with missing data or out-of-range values will
be problematic in the current version of the proposed inference approach.

The linguistic description task in the inference process has also some limita-
tions. The main one is that the semantic role of the concepts, sub-concepts, and
quality dimensions are reduced or simplified to some specific linguistic roles in a
sentence. The concepts are restricted to be the nouns and sub-concepts or prop-
erties are constrained to be the adjectives in the final realisation task. Regarding
the quality of the inferred descriptions, one limitation is that the generated text
is subject to questions related to some criteria such as conciseness versus ver-
bosity of the descriptions, the target audience of the system, and the ultimate
aim the text is expected to support.

Case study and evaluation: Regarding the evaluation of the semantic represen-
tation approach, it is not trivial to find a general solution to evaluate each com-
ponent or step of the approach, separately. For the construction part, there is
not yet a measure to compare the constructed conceptual spaces in term of ap-
plicability or sufficiency. Moreover, the inference process within the conceptual
space cannot be isolated and be evaluated individually. Therefore, this thesis
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spacecannotbeisolatedandbeevaluatedindividually.Therefore,thisthesis
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has assessed the final output of the inference step in order to evaluate the good-
ness of multi-domain model in comparison with the single-domain models. This
comparison accesses the idea of constructing multi-domain conceptual spaces
out of numerical data, but not the individual components of the construction
process.

Mining physiological sensor data: There are some limitations related to data
analysis of physiological data. First of all, the source of data itself is a chal-
lenge. There are few available data sets including the vital signs recorded for
a long time from different subjects. This limitation has made the constraint to
only test the approach on open access data sets, rather than collecting data via
wearable sensors (e.g., within a controlled environment). The main reason to
rely on long-term data is that the proposed algorithms for pattern abstraction
and temporal rule mining will return meaningful information when the input is
a long stream of the sensor data with minimum interruptions or noises.

Regarding the temporal rule mining, the presented approach has consid-
ered the frequency of the co-occurrence of the patterns throughout the different
channels of data. The current approach has only provided rules which are tem-
poral correlations of the patterns from the co-occurrence aspects. Thus, there is
a lack of considering other ways of analysing data to capture more meaningful
information, such as the causes and effects of the patterns.

Linguistic description of physiological patterns: The main limitation of the pro-
posed approach for describing time series patterns is the richness of the pro-
vided features. In general. there is a limited number of semantic features, repre-
senting the behaviour of the time series patterns, in the literature. In addition,
most of the features to analyse the time series are complicated to be interpreted
or are not relevant to the context. For example, wavelet coefficients are the
useful features for numerical time series analysis, but they are complex to be
translated into understandable natural language terms. Some features like the
area under the signal might be explainable but are not interpretable or mean-
ingful when e.g., the shape and the trend of the time series are in the focus. So,
the proposed conceptual space of the patterns is limited to a small number of
input features which are more or less understandable by the human subjects to
show the behaviour of the time series.

10.3 Societal and Ethical Impacts

Nowadays sensors are everywhere to collect various kinds of information. Un-
derstanding and interpreting this information is a significant challenge, espe-
cially when the information is related to crucial aspects of people’s life. This
thesis has provided a system to process and describe unknown observations de-
rived from sensor data. Within a society, this research might be applicable in
different scenarios. In any situation that the perceived information is not explic-
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itly recognisable, the proposed system can help to interpret those observations.
An example of the usage of the system in society could be to help particu-
lar groups of people (e.g., children, persons with disabilities) in order to make
sense about the observations around them. This goal can be achieved by cou-
pling the approach with other perception or/and decision making systems. The
impact of the proposed approach will be more critical in the medical domain
since it can help the patients of clinicians to see new aspects of the perceived
information that have been unknown beforehand.

Besides the societal impacts of this research, several ethical impacts must be
considered. The ethical issues in this thesis can be seen from three perspectives:
input data, proposed approach, and output text. Regarding the input data, the
primary ethical challenge (especially in the medical domain) is the anonymity
of the subjects who use the sensors. Systems that use the recorded data from
users should ensure to protect the privacy of them under regulations such as
the General Data Protection Regulation (GDPR) [2]. In this thesis, all the ac-
quired physiological sensor data have been kept anonymous. The ethical issue
related to the approach is the problem of blindly applying data-driven strate-
gies. A potential risk within the data-driven approaches is that the constructed
models ((e.g., learning or decision making models) can be easily biased if the
input observations are biased. Thus, one might think about which observations
are suitable to be fed to such blind models. Last but not least, ethical issues
are related to the output linguistic descriptions. A generated text for a specific
end-user might involve ambiguous, inadequate content, or even might misplace
the provided contents in the sentence. These problems can lead to critical issues
such as misinterpreting the content of the text, and consequently making inac-
curate or incorrect decisions. This thesis has not directly addressed this ethical
issue in its case studies, but it is worth to keep it in mind for further develop-
ments upon such a framework.

10.4 Future Research Directions

Besides the limitations of the proposed approaches mentioned above, there is
a number of future research directions that require further investigation. This
section presents the future work regarding each part of the thesis.

Conceptual Spaces: Construction and Inference

One possible direction of the future work is to focus on acquiring semantic
features that are contextually understandable by the human and are able to
differentiate distinct concepts in the domain [77, 96, 217]. There has been a
preliminary ongoing study on this topic by the author of this thesis, which
needs to be extended and be evaluated. Two possible approaches can be ap-
plied for the task of semantic feature acquisition. One way is to specify the
attributes coming from the human perceptions of instances that bridges be-
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Figure 10.1: Human-specified semantic features for animal domain.

tween low-level features and linguistic words [204]. Directly asking the experts
or users to specify the attributes is an obvious way to provide both understand-
able and discriminative features. As an example one can differ between differ-
ent animals by specifying the semantic features like hair type, domestic/wild, or
having horns (See Figure 10.1 for some examples of human-specified semantic
features). Another way is to verify the attributes that are scientifically measur-
able and potentially interpretable in natural language but are not obvious to
specify by humans in the first glance. Such examples of these features for an-
imal domain are agility or hibernation which are discriminative features for
categorising animal species [135]. These ways of acquiring semantic features
then guarantee that the input features to the construction of conceptual spaces
are human explainable information that can be later used for inferring linguistic
descriptions of unknown observations as well.

Construction of conceptual spaces has the advantage of using labelled input
observations to form the concepts. Another way to look at the problem of
turning numerical data into the conceptual spaces is to deal with unlabelled
data sets. In this case, there will be no pre-defined classes or concepts for the
data. An unsupervised approach to specify the domains and quality dimensions
can be a new way to build a data-driven conceptual space. This suggestion
might need to use clustering methods and clustering index criteria to form the
clusters of data as concepts that are not labelled by any specific term, but still
are explainable by their quality dimensions.

Moreover, the proposed concept representation provides a set of geometri-
cal domains, which has been used in the inference process. This representation
has the potential to be utilised for other cognitive tasks such as concept combi-
nation, inductive inference, and property reasoning. This would be a promising
research direction, especially when it comes to data-driven representations of
the cognitive architectures.

While evaluating the proposed approach, a new hypothesis has been raised
related to the topic of referring expression generation in the NLG area. The idea
of comparing the descriptions from multi-domain spaces versus from single-
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domain spaces brings up the question of referring to an unknown object by
whether describing its features or mentioning its closest known concepts. From
the cognitive point of view, one question is how humans prefer to use the fea-
tures in order to refer to an object. One possible solution is to to use a mixture
of known associated concepts and the relevant descriptive features. For exam-
ple, in the domain of animals, one can describe a Unicorn (an unknown animal
let’s say) as “This animal is like a Horse (a known class of animals), but it has
a single large horn (a feature for animals) on its head.” Throughout the eval-
uation of this work, some textual results have been provided to support this
hypothesis, along with some comparisons using an empirical evaluation. How-
ever, this hypothesis is not formalised as a new aspect of referring expression
generation in NLG.

Another direction for the future work would be to assess the quality of
the automatically derived domains and dimensions. As Gärdenfors discussed
in [88], there is a need to determine evaluation criteria to choose among com-
peting conceptual spaces. The proposed framework has the potential to address
this need by defining statistical measures to compare the specified domains in a
data-driven manner.

Physiological Sensor Data: Mining and Describing

Turning to the data analysis of the physiological sensor data, there are many
future research directions to improve or extend the proposed approaches. One
of the critical updates might be to extend the pattern abstraction approach to
deal with newly recorded data in a streaming data set. In the current version,
the prototypical patterns are abstracted by analysing the entire time series at
once. It could be interesting to extend the algorithm to incrementally update
the patterns using the new bunch of recorded data. This extension will also
help to handle any large-scale recording sensor data that is crucial for rule
mining approach.

Additionally, involving the causality to the process of rule mining is another
direction of research, which impacts profoundly on the level of explainability
of the derived information. One extension would be to use data-driven ways
to identify causes and effects of the patterns’ behaviours using causal inference
approaches and then describing them in the form of e.g., if-else statements.
This identification will help the system to obtain more enriched (still unseen,
but more interesting) information.

The proposed approach for generating linguistic descriptions of the phys-
iological patterns has the ability to be improved in future research. First, it
would be worth to compare the generated text by conceptual spaces with the
template-based generated text. Although these two approaches aim to capture
the same behaviours of the pattern, still they might be differently accepted or
used by the end user. Second, there is a lack of extrinsic evaluation of the frame-
work in a real-world application within the medical domain to see the actual
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impact of the generated text to experts such as clinicians, medical doctors, or
even caregivers. This task-based evaluation is needed to assess the usability of
the generated text for patterns in the real-world, meaning that how much this
data-driven information (in the form of natural language) are interesting or/and
helpful to the end users for any further decision making task. Here, the focus
in the evaluation studies has largely been on identification of the observations,
but adapting the proposed methods to other uses, such as decision support in a
medical setting, or other audiences, such as experts versus non-experts, would
be an interesting road for future work.

In a more general perspective, the approaches for generating linguistic de-
scriptions and natural language generation can be more involved in the field of
healthcare monitoring. Besides considering the wearable sensor data, there is
much other information within a healthcare system that will be more accept-
able by using the natural language to explain them. This information such as
medical history, environmental sensors, activity records, personal reports, etc.
(which are often ontological knowledge) can be merged with the data-driven
information in order to analyse the health monitoring scenarios and to per-
form high-level reasoning for medical purposes. Then, it would be worth to
use approaches to generate linguistic descriptions in order to explain such in-
ferred or reasoned information in a natural language which is understandable
by humans.
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10.5 Final Words

To conclude this thesis, let’s revisit the story of The Elephant in the Dark and
the problem of perception limitations or, as called in this thesis, the problem
of concept description. The proposed approach in this thesis made valuable
contributions to address this problem by applying data-driven methods to link
unknown perceived data to understandable linguistic descriptions. This thesis
can be called a success if a reader of the thesis will be able to “adequately”
describe an elephant to a person who has neither encountered the notion of an
elephant previously or seen one in real life. Hopefully, such a description would
be better than the one shown in Figure 10.2.

Figure 10.2: Yet another illustration for the story of The Elephant in the Dark,
adapted from [194].
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dez,PetrVaňhara,AlešHampl,andJosefHavel.Artificialneuralnet-
worksinmedicaldiagnosis.JournalofAppliedBiomedicine,11:47–58,
2013.(Citedonpage97.)

[22]DanieleApiletti,ElenaBaralis,GiuliaBruno,andTaniaCerquitelli.
Real-timeanalysisofphysiologicaldatatosupportmedicalapplica-
tions.IEEETransactionsonInformationTechnologyinBiomedicine,
13(3):313–321,May2009.(Citedonpages96,97,99,and100.)

[23]LouisAtallah,BennyLo,andGuang-ZhongYang.Canpervasivesensing
addresscurrentchallengesinglobalhealthcare?JournalofEpidemiology
andGlobalHealth,2(1):1–13,2012.(Citedonpage92.)

[24]AkinAvci,StephanBosch,MihaiMarin-Perianu,RalucaMarin-Perianu,
andPaulHavinga.Activityrecognitionusinginertialsensingforhealth-
care,wellbeingandsportsapplications:Asurvey.InProceedingsofthe
23thInternationalConferenceonArchitectureofComputingSystems,
pages167–176,Berlin,February2010.VDEVerlag.(Citedonpage
96.)

[25]JodyAzzouni.Semanticperception:Howtheillusionofacommonlan-
guagearisesandpersists.OxfordUniversityPress,2015.(Citedonpage
20.)

[26]JoonbumBaeandMasayoshiTomizuka.Gaitphaseanalysisbasedona
hiddenmarkovmodel.Mechatronics,21(6):961–970,2011.(Citedon
page98.)

[27]MirzaMansoorBaigandHamidGholamhosseini.Smarthealthmoni-
toringsystems:Anoverviewofdesignandmodeling.JournalofMedical
Systems,37(2):1–14,2013.(Citedonpages92and93.)

[28]HadiBanaee,MobyenUddinAhmed,andAmyLoutfi.Dataminingfor
wearablesensorsinhealthmonitoringsystems:areviewofrecenttrends
andchallenges.Sensors,13(12):17472–17500,2013.(Citedonpages
4,98,105,and106.)

[29]HadiBanaee,MobyenUddinAhmed,andAmyLoutfi.Aframeworkfor
automatictextgenerationoftrendsinphysiologicaltimeseriesdata.In
Systems,Man,andCybernetics(SMC),2013IEEEInternationalConfer-
enceon,pages3876–3881.IEEE,2013.(Citedonpages103and132.)

BIBLIOGRAPHY 167

[20] Miguel R Álvarez, Paulo FéLix, and PurificacióN CariñEna. Discovering
metric temporal constraint networks on temporal databases. Artificial
intelligence in medicine, 58(3):139–154, 2013. (Cited on page 122.)

[21] Filippo Amato, Alberto López Rodríguez, Eladia María PeñaandMén-
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