
Exploring NAT Host Counting Using Network
Traffic Flows

Sebastian Salomonsson

Faculty of Health, Science and Technology

Degree Project for Master of Science in Engineering

Supervisor: Johan Garcia

Examiner: Kerstin Andersson

30 Hp

2017-06-09

i

Abstract

Network Address Translation (NAT) is used to represent a private internal
network which may consist of several hosts with a single outward IP-address. This is
an important method used to distribute Internet access, as the IP-addresses provided
by IPv4 are becoming scarce. NAT is therefore often used by home routers in order
to provide Internet access for local devices. The private network behind a NAT
becomes hidden from the public domain and only one IP-address may be visible
from the private network. It is of Internet Service Providers (ISPs) and network
operators interest to know how their services are used and with NAT it can be
difficult to know how many hosts that are using their Internet service. This study
will focus on analyzing data flows from real network traffic in order to identify
indications of NAT behavior and then count the number of hosts in the NAT
network. There exist several studies of how to determine the number of hosts
behind a NAT. However, some of the methods rely on signatures in the header
fields of communication protocols which can be unreliable and not possible to use
when the traffic is encrypted. This study focuses primarily on the detection of large
amounts of hosts which have a Windows Operating System (OS). An empirical study
is made to identify the distribution and characteristics of Windows Update flows and
the results are used in the NAT host counting methods. NAT characteristics were
found in the analyzed datasets as well as some indication of a number of hosts.
However to provide a higher accuracy on a number of hosts more research have to
be made.

Keywords: NAT, NAT host counting, Data analysis, NAT detection
using network traffic flows.

ii

iii

Acknowledgements

I would like to thank Procera Networks that gave me the opportunity to work
with this highly interesting project. A special thank to Anders Waldenborg who was
my supervisor at Procera and the one who provided me with some of the datasets. I
would also like to thank Johan Garcia who was my supervisor at Karlstad university
who helped me with the dissertation and gave me advices during the course of the
project.

iv

v

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Goal . 2
1.3 Disposition . 2

2 Background 5
2.1 TCP and IP header Information . 5
2.2 Network Address Translation . 8
2.3 Tools . 13
2.4 Chapter Summary . 14

3 Related Studies 15
3.1 Signature Based Detection Methods 15
3.2 Behavior Based Detection Methods 21
3.3 Chapter Summary . 26

4 Datasets and Detection Aspects 29
4.1 Data Sources . 29
4.2 Procera Network Datasets . 29
4.3 KAU Lab Datasets . 30
4.4 NAT Host Detection Aspects . 31
4.5 Chapter Summary . 32

5 Windows Update Empirical Study 35
5.1 Windows Update Evaluation Methods 35
5.2 Windows 7 Analysis . 36
5.3 Windows 8.1 Analysis . 38
5.4 Windows 10 Analysis . 42
5.5 Chapter Summary . 44

6 Design of Detection Methods 45
6.1 NAT Detection Method . 45
6.2 NAT Host Counting Methods . 45
6.3 Chapter Summary . 48

7 Procera Networks Dataset Evaluation 49
7.1 Small Cellular Dataset Evaluation . 49
7.2 Large Cellular Dataset Evaluation . 56
7.3 DSL and Cellular Dataset Evaluation 66

vi

7.4 Chapter Summary . 78

8 Conclusion 79
8.1 Summary . 79
8.2 Future Work . 80
8.3 Concluding Remarks . 81

References 83

vii

List of Figures
1 IPv4 Header. 6
2 TCP Header. 7
3 Static NAT. 10
4 Dynamic NAT. 11
5 NAPT. 12
6 Distribution of Windows 7 Update flows with the start time against

the amount of bytes they transfer. 37
7 Frequency of the start time difference between the Windows 7 Update

flows. 37
8 Windows 7 Update flow sizes versus start time difference. 38
9 Distribution of Windows 8.1 Update flows with the time plotted

against the amount of bytes they download. 39
10 Frequency of start time difference between the Windows 8.1 Update

flows. 40
11 Zoomed in on the frequency for the 5 hour start time difference for

Windows 8.1 Update flows. 41
12 Windows 8.1 Update flow sizes versus their start time difference. . . . 42
13 Distribution of Windows 10 Update flows with the start time against

the amount of bytes they transfer. 43
14 Frequency of start time difference between the Windows 10 Update

flows. 43
15 Windows 10 Update flow sizes versus start time difference. 44
16 Small Cellular dataset information. 50
17 CDF for the logarithmic amount of flows per individual IP-address

in the Small Cellular dataset. 51
18 The 15 IP-addresses which received the highest amount of flows in

the Small Cellular dataset. The left plot show the total amount of
flows per IP-address and the right plot shows the same IP-addresses
but with their amount of NAT detection flows. 52

19 CDF for the logarithmic amount of NAT detection flows per
individual IP-address in the Small Cellular dataset. The left plot
is zoomed in on the fraction of IP-addresses which received NAT
detection flows. The right plot shows the fraction of IP-addresses
which only received NAT detection flows. 53

20 Windows Update flow start time versus the number of flows for
different IP-addresses in the Small Cellular dataset. 55

21 Large Cellular dataset information. 57

viii

22 CDF for the logarithmic amount of flows per individual IP-address
in the Large Cellular dataset. 58

23 The 15 IP-addresses which received the highest amount of flows in
the Large Cellular dataset. The left plot show the total amount of
flows per IP-address and the right plot shows the same IP-addresses
but with their amount of NAT detection flows. 59

24 CDF for the logarithmic amount of NAT detection flows per
individual IP-address in the Large Cellular dataset. The left plot
is zoomed in on the fraction of IP-addresses which received NAT
detection flows. The right plot shows the fraction of IP-addresses
which only received NAT detection flows. 61

25 A third of all Windows Update flows present in the Large Cellular
dataset with each flows size versus the flow start time. 63

26 Zoomed in on all Windows Update flows with their flow size and start
time. 63

27 Windows Update flow arrival time versus the number of flows for
different IP-addresses in the Large Cellular dataset. 65

28 NAT detection flow distribution for IP-address 167784134, with the
size and amount of flows versus time. 66

29 DSL and Cellular dataset information. 67
30 CDF for the logarithmic amount of flows per individual IP-address

in the DSL and Cellular dataset. 68
31 The 15 IP-addresses which received the highest amount of flows in

the mixed DSL and Cellular dataset. The left plot shows the total
amount of flows per IP-address and the right plot shows the same
IP-address but with their amount of NAT detection flows. 69

32 CDF for the logarithmic amount of NAT detection flows per
individual IP-address in the DSL and Cellular dataset. The left plot
is zoomed in on the fraction of IP-addresses which received NAT
detection flows. The right plot shows the fraction of IP-addresses
which only received NAT detection flows. 71

33 A tenth of all Windows Update flows present in the DSL and Cellular
dataset with each flows size versus the flow start time. 73

34 Zoomed in on the time difference frequency for the DSL and Cellular
dataset. 74

35 Windows Update flow sizes versus start time difference for the DSL
and Cellular dataset. Shows every 10th flow in the dataset. 75

ix

36 The size and amount of flows versus the flow arrival time for the
1 - 5 IP-addresses which contained the highest amount of Windows
Update flows. 76

37 The size and amount of flows versus the flow arrival time for the 6
- 10 IP-addresses which contained the highest amount of Windows
Update flows. 76

38 The size and amount of flows versus the flow arrival time for the 11
- 15 IP-addresses which contained the highest amount of Windows
Update flows. 77

x

xi

List of Tables
1 The 8 features for network traffic analyzing. 21
2 Top NetFlow features based on unique IP-addresses. 23
3 Most important features classified by C4.5. 25
4 Features extracted from HTTP logs 25
5 Antivirus Flow Labels. 32
6 Software-update Flow Labels. 32
7 Size statistics for downloaded Windows 8.1 Updates. 36
8 Size statistics for downloaded Windows 8.1 Updates. 38
9 The largest Windows Update flows found in the dataset with their

date, compared to the updates found in Microsoft’s Update Catalog. 40
10 Size statistics for downloaded Windows 10 Updates. 42
11 Average number of flows in a flow burst. 47
12 The 10 IP-addresses with the highest number of NAT detection flows

in the Small Cellular dataset. 53
13 IP-addresses which received flows from two antiviruses. 55
14 The IP-addresses which contains Windows Update and two different

antivirus flows. 56
15 Large Cellular flow statistics. 57
16 The 15 IP-addresses which contained the highest number of flows and

with their number of NAT detection flows in the Large Cellular dataset. 60
17 The top 10 IP-addresses which contained the greatest number of NAT

detection flows in the Large Cellular dataset. 62
18 Downloaded Windows Update flow sizes for the Large Cellular dataset. 64
19 DSL and Cellular flow statistics. 68
20 The top 15 IP-addresses with their number of NAT detection flows

and total number of flows in the DSL and Cellular dataset. 70
21 The top 10 IP-addresses which contained the greatest amount of NAT

detection flows in the DSL and Cellular dataset. 71
22 Downloaded Windows Update flow size statistics for the DSL and

Cellular dataset. 72

xii

xiii

1 Introduction

1.1 Motivation

The number of Internet-connected devices and users have increased dramatically
during the last couple of years. Never before has the Internet usage and traffic been
so large. It is estimated that around 3.6 billion users and 20.35 billion devices have
access to the Internet today and it is still increasing [32], [33].

Internet Service Providers (ISP) provide Internet access to their customers, but
with many users and devices connected it is in their interest to know how the
connectivity is used and possibly redistributed. In order for all of these devices to
get a connection to the Internet, each of them will have to be provided with their
own unique IP-address. Unfortunately, the number of IP-addresses available from
the existing Internet Protocol IPv4 are becoming scarce. There have been issues
with the transition to the more modern IPv6 Protocol, which is why IPv4 is still
used to carry the majority of network traffic but with the help of Network Address
Translation (NAT).

NAT [29] can be used to represent a local network consisting of several devices
with just a single or a pool of IP-addresses. This makes it possible for an ISP
to distribute Internet access to its customers and all of their devices even if the
IP-addresses provided by IPv4 is limited. NAT can also be used to provide security
and anonymity by hiding the inner network topology, filter content etc. But
even if NAT solves the problem with depleted IP-addresses other issues have been
introduced. NAT can cause the ISP’s to not know how their services are used or
how large the inner network might be. Unauthorized NAT devices might be installed
to illegally sell and redistribute an Internet connection. Therefore it is of an ISP’s
interest to know if a single IP-address might represent a large network in order to
determinate if a customer is sharing their connection inappropriately with other
hosts. Since NAT is able to represent a network with several individual devices in it
with only one IP-address in the public address space, the customer is able to act as
an ISP of their own, possibly without permission. By determining how many hosts
that are in a network the ISP is able to suspect inappropriate sharing and also to
gain more knowledge of how their service are used.

Procera Networks [19] is a business company that offers several solutions to
network operators. They are able to structure, monitor, analyze and use the data
for the operators, in order to increase the quality of their service. They are able
to classify the Internet traffic with the help of their Deep Packet Inspection (DPI)
engine. DPI is a form of network packet examiner which has been in longtime use in
network management for monitoring and classifying of data directly from network

1

traffic flows [23]. With the help of Procera’s DPI engine real network traffic flows
was collected for this study and analyzed in order to evaluate different methods for
NAT host identification.

1.2 Goal

Given the problem formulation, this study will focus on detecting NAT and the
number of hosts for Windows computers by analyzing Internet traffic flows. The
host identification process will be based on the behavior and analysis of the Internet
traffic from anonymous hosts.

By analyzing specific flows for each IP-address, inferences will be made if an
IP-address might be a NAT device and the number of hosts in the network. There
exists several different methods that have been able to determine the number of
hosts behind a NAT. One of the first NAT host detection methods were conducted
by M. Bellovin [3] in 2002. Several other studies have also been conducted, which
shows promising results for determining the number of hosts behind a NAT [22], [12].
The analysis will focus on the identification of larger private networks, numbered in
20 - 100 hosts, where the amount of flows each NAT device receives should be much
larger than for a single host. The specific flows that will be used for the identification
will be selected based on expert knowledge provided by Procera Networks.

This thesis analyzes datasets from two different sources. The first data source
is used to analyze Windows Update flows from three VM’s with different Windows
Operating Systems (OS). This was done in order to provide ground truth data that
will be used for the detection of different hosts behind a NAT.

The other datasets are provided by Procera Networks and contain real network
traffic. Different methods are derived in this thesis in order to analyze the traffic
flows.

1.3 Disposition

Chapter 2 provides background information regarding IP, TCP, NAT and the
different tools used in this study. The chapter will explain what a NAT is, how it
works and what different types of NAT that exists. It will also provide background
information regarding TCP and IP header fields which is important information for
this study. The previous studies that have been researched are presented in Chapter
3. Several methods are explained for different approaches which can be used to
determine the number of hosts behind a NAT.

The different datasets and the specific flows used in the detection methods will
be explained in Chapter 4.

2

Chapter 5 presents the research and results from an empirical study made on
Windows Update flows from three different Windows OSes. The different methods
that are used to evaluate and analyze the Internet traffic flows for this study on
the datasets provided by Procera Networks are summarized in Chapter 6. Chapter
7 presents the results and evaluations for the datasets that were used for NAT
detection and host counting.

The summary and conclusions are presented in Chapter 8, as well as the future
work aiming to increase the accuracy of the host counting methods.

3

4

2 Background
This chapter will give an introduction to IPv4, TCP and NAT which will be referred
to later in the study. Information regarding what they are used for and how they
work will be explained. The various tools that are used in the study will also be
mentioned here.

2.1 TCP and IP header Information

This section contain information about the TCP, IP header and their fields. This
is done in order to get a better understanding of the fields that are affected by a
NAT and to introduce them as reference for further explanations. By examining the
fields in the headers they can be used to detect NAT and to determine the number
of hosts behind a NAT device. Therefore it is important to know what the header
fields are used for.

IPv4

Internet Protocol version 4 (IPv4) [25] is an Internet protocol that is used in order
to transmit packets, also referred to as datagrams, between hosts in a network. It
is a connectionless protocol with a limited scope of functions. In order to provide
reliability with the delivery of datagrams, it takes help of an upper laying transport
protocol such as TCP or UDP. Today it is one of the core protocols that routes traffic
on the Internet. IP is used for two major tasks, addressing and fragmentation. IP
delivers datagrams from a source to a destination host solely by using addresses
in its header. It also fragments and reassembles datagrams with the help of the
fields in the header. The header and fields can be seen in Figure 1. Each datagram
consists of an IP header and the data that is transported. Each header consists of
13 mandatory fields and one optional.

5

Figure 1: IPv4 Header.

The Version field contains which IP version in use, either IPv4 or IPv6.
The Internet Header Length (IHL) contains the length of the IP header in 32

bits words, ranging from value 5 to 15.
The Differentiated Services Code Point (DSCP) field is used to classify and

manage network traffic in order to provide a quality of service.
Explicit Congestion Notification (ECN) is used in order to provide end to end

notification of network congestion.
Total Length contains the value of the total length of the IP datagram in bytes,

which includes the header and the data.
The Identification field which will be referred to as IPid in this report, it is

used to identify the group of fragments for a single datagram. This field is used to
reassemble the correct fragments at the destination.

There are three flags in the IP header which are each one bit big. The X flag is
reserved and must be zero. Don’t Fragment (DF) is used to indicate if the segment
is allowed to be fragmented or not. If the More Fragments (MF) flag is zero it
indicates that it is the last fragment. If MF is set to one more fragments will come.

Fragment Offset is a 13-bit long field which indicates the position in the datagram
of the fragment.

Time to Live (TTL) is an eight-bit field which determines the maximum time a
datagram may remain on the Internet. It contains a value that will decrement by
one for each router that processes the datagram. When the value reaches zero the
datagram will be dropped. The default TTL values may be different for different
OSes, which can be used for NAT detection. Methods for this kind of NAT detection
will be further explained in section 3.

The Protocol field defines which transport protocol that will be used in the data
section of the datagram, where for example the value six is used for TCP and 17 for
UDP.

6

The Header Checksum is a 16-bit field that is used for error detection of the
header. When a datagram arrives at a router the checksum will be recalculated. If
the recalculated value does not match the value in the checksum field the datagram
will be dropped.

Source IP-address is a 32-bit sized field that contains the IPv4 address of the
sender which is changed when the datagram passes through a NAT.

Destination IP-address is a 32-bit sized field that contains the IPv4 address of
the destination. This field may also be altered when the datagrams pass through a
NAT.

The IP Options consist of one or more 32-bit optional fields that do not have to
be present if no IP options are used.

TCP

The Transmission Control Protocol (TCP) [26] is a common transport layer protocol
used for reliable host to host communication that sits just above the Internet
protocol. It is used to complement IP to transfer a stream of bytes between
applications on IP networks.

TCP divides the data from the data stream into chunks and adds a TCP header
to the data in order to create a TCP segment. The TCP segment contains a header
and data section and is forwarded to the IP layer to be sent as Internet datagrams.
The header follows the IP header and is used to supply TCP specific information.
It contains ten required fields and one optional field as can be seen in Figure 2. The
data section contains the data payload carried for the application.

Figure 2: TCP Header.

Source Port is a 16-bit field containing the host’s source port, which may be
altered if the datagram travels through an (Network Address and Port Translation)
NAPT.

7

Destination Port is a 16-bit field containing the host’s destination port. This
field may also be altered when traveling through an NAPT.

The Sequence Number field contains the initial sequence number generated by
the OS if the SYN flag is set. The corresponding Acknowledgment number will be
this number plus one. Otherwise, if the SYN flag is not set, this field will contain
the sequence number of the first data byte in the packet.

The Acknowledgement Number field contains the value of the next sequence
number of the TCP segment that the sender is expecting if the ACK flag is set.

Data Offset is a four-bit sized field that contains the total size of the TCP header
in 32-bit words.

The Reserved field is only for future use and must be set to zero.
TCP contains six standard and three extended control flags that are one bit each

to represent on and off. They are used to manage the data flow in specific situations.
The SYN flag, for example, is used to initiate a connection, only the first packet
in each direction should contain this flag. While the ACK flag acknowledges that
the receiving data is valid, the FIN flag indicates that the connection is being shut
down. Some of these flags can be used for NAT detection.

The Window Size is a 16-bit sized field that is used to regulate the amount of
data in bytes that the sender of the packet is willing to receive.

The Checksum is a 16-bit field that is used to detect errors in the header and the
data to let the receiver know if the data in the TCP segment have been altered. A
pseudo header is also calculated for the checksum which contains the Source Address,
the Destination Address, the Protocol, and TCP length carried in the IP header.
The pseudo header adds up to a 96-bit header and the checksum is then calculated
over the pseudo header as well as the TCP segment. This value is then placed in
the TCP checksum field. This is used in order to deliver the segment to the right
address and to verify that the data is error-free.

The Urgent Pointer field is used when the URG flag is set, in order to indicate
that a segment of data must be delivered immediately. The 16-bit field will point
to the position of the packet that holds the end of the urgent data.

2.2 Network Address Translation

The fundamental role of Network Address Translation (NAT) is to change address
information in the Internet Protocol (IP) header of network packets [24], [29]. It
was originally created as a solution to combat the shortage of IP-addresses provided
by Internet Protocol Version 4 (IPv4). IPv4 does not contain enough IP-addresses
in order for each device to have their own unique IP-address on the Internet. To
solve this problem the Internet Assigned Number Authority (IANA) provided a

8

range of private IP-addresses that for example, a company can use in their private
network. They have provided three blocks of private IP-address spaces which can
be used without coordinating with IANA or any other Internet registry. But if an
organization who uses a private address want to communicate with a public network
the address have to change because several organizations can use these address spaces
which makes routing impossible. The three blocks of IP-address that can be used
for private use is ranged from 10.0.0.0 - 10.255.255.255, 172.16.0.0 - 172.31.255.255,
192.168.0.0 - 192.168.255.255.

NAT is used in order to map private IP-addresses which anyone can use to the
more scarce public IP-addresses. The private network can consist of a number of
hosts, which are connected to an NAT-Gateway. The NAT modifies or translates the
private IP-addresses from the hosts to provide a connection to the public network,
most often the Internet. The only IP-addresses visible in the public domain will
be the public IP-addresses provided from an Internet Service Provider (ISP). This
makes it possible to change the public IP-addresses without changing the private
ones. The users are also able to change ISP without changing the addresses on the
local network. Because a NAT device modifies the fields in the IP-header, hosts in
the private domain are not visible for the hosts in the public domain. Therefore
companies and organizations might employ NAT for security purposes in order to
keep internal IP-addresses unreachable from external networks.

The NAT sits between the private and the public network and translates the
private IP-address to a public one. This is done by creating bindings between
addresses. In the next sections, the NAT types and the different binding methods
will be explained.

Static NAT

Static NAT is the simplest form of a NAT router and works by mapping one
IP-address in the private network space to one in the public network space. Each of
the private hosts has a single public IP-address mapped to their NAT IP-address.
The main reason to use a Static NAT is to hide the real IP-addresses but to allow
certain network resources to be accessible via a certain IP-address. For example,
if some customer has to access certain services from a database inside a private
network. As can be seen in Figure 3 the hosts private IP-addresses are each mapped
to their own public IP-address but the port numbers remain unchanged.

9

Figure 3: Static NAT.

Dynamic NAT

Dynamic NAT maps a private IP-address to a public IP-address chosen from a pool
of public IP-addresses. The public IP-addresses are stored in NAT tables which are
shared between all the hosts in the private network. When a private host initializes a
connection the NAT chooses a currently unused IP-address from the pool. The host
can be reached as long as the connection lives. When the connection is terminated
the binding expires and the public IP is returned to the pool and can be reused
for another host. As can be seen in Figure 4 the NAT router changes the private
IP-addresses of a packet to a public IP-address chosen from a pool of available
addresses in the Dynamic NAT table. When the packet returns the destination IP
is changed back to the original private IP-address of the client.

This type of NAT is mostly used for larger organizations where several of the
private network hosts have to communicate with hosts on a public network or vice
versa. This makes the method a bit more complex in comparison to static NAT but
increases the security because the mapping change which makes it hard to target a
single host.

10

Figure 4: Dynamic NAT.

NAT Overload / NAPT

NAT overload or Network Address Port Translation (NAPT) can be seen as a
combination of static and dynamic NAT but with the added functionality of Port
Address Translation (PAT). This is the most commonly used NAT configuration
and is often used in homes or small office networks which enable several computers
to connect to the Internet while only utilizing one IP-address.

Often when people talk about NAT it is actually NAPT they refer to. NAPT is
referred to by several different terms created by different groups, some of them are
PAT, NAT overload, many-to-one NAT and IP masquerading. IP masquerading is
often used to describe the security measure of hiding private IP-addresses behind a
single public IP-address.

PAT is a technique that is used to translate port numbers. In Figure 5 two
clients are represented by a single public IP-address but are differentiated by the
port number as can be seen in the NAPT table. This allows several hosts to share
one single IP-address. All the packets that leave the NAT gateway contain the same
NAT IP-address but have different source port numbers. When a host inside the
local network sends a packet to an address on the Internet, it goes through the NAT
gateway which will store the host’s IP-address and port number in the translation
table and replace it with the global IP-address and port number. The reply packet
will arrive at the public NAT IP-address and the IP-address and port number will be
replaced back using the NAPT table in order to be forwarded to the correct private
host IP-address in the local network. If a client wants to initialize a connection the
port number should be chosen from the range 1 024 - 65 535 as is recommended
according to RFC 2663[29].

11

Figure 5: NAPT.

Changes Made by NAT

When a packet traverses through a NAT, several fields are changed. The most
obvious changed fields are the source address of outgoing packets and destination
address of incoming packets in the IP packet header. When the IP-addresses are
changed the IP checksum have to be recomputed. This could otherwise cause
the packet to be dropped because the receiver would believe that the packet has
been corrupted. This also applies for TCP and UDP which are the most common
transport protocols used for Internet traffic. They have a checksum for all of their
data as well as a pseudo-checksum header that contain the source and destination
address. Therefore when there are a change in the address the checksum have to
be recalculated based on the translated IP-addresses and not the original ones. The
source and destination port numbers for TCP and UDP are also changed when a
packet is transferred through an NAPT.

The Time to Live (TTL) is a field in the IP-packet header that is affected by
a NAT device in a network. The field is decremented by one for each router the
packet goes through. Because of this, and the knowledge of original TTL values for
different OS’s, this field can been used for NAT detection.

12

Problems Caused by NAT

Unfortunately, NAT may cause some problems in certain circumstances where for
example if the TCP header is encrypted the checksum field will not be able to
get translated and the packet might be dropped. Some application protocols also
carry an IP-address that might have to be translated. In order to do this, an
Application-Level Gateway (ALG) is needed.

There is also problems where unauthorized NAT devices may provide
unrestricted access to for example a private company network, thereby causing a
significant security threat [28].

Another case is when NAT is used in order to distribute unauthorized Internet
access to more hosts than allowed for from an ISP without their knowledge of it.

2.3 Tools

This section explain the libraries, softwares and tools used in the study.

Python

Python[9] is the chosen programming language for this study. It is a popular
object-oriented high-level programming language. It is consistently designed, easy
to read and have a minimal syntax which makes it easy to learn and shorten the
development time. It was chosen because it contains a large library that can be
used for scientific computing, more specific the modules for machine learning and
handling of large datasets. It does have some disadvantages in that the execution can
be slower compared to other imperative languages, but the advantages are believed
to outweigh the disadvantages.

Jupyter Notebook

Jupyter Notebook[11] which was formerly known as IPython, is a web application
environment that can be used for Python. It contains a cell-based environment
where the project’s code were created. The cells are able to contain code, plots,
and text, which enabled the code to be organized in a structured way. This is very
helpful when working with several calculations and understanding large datasets.

NumPy

NumPy[7] is a package for Python which contains several functions for scientific
calculations. In this study, NumPy was used to handle large arrays and matrices
with higher dimensions. Operations could be performed on these datasets with the
provided functionalities from NumPy.

13

Pandas

Pandas[21] is a package for Python that is used to create data structures with high
performance and provides tools to easily analyze the data. In this study, it was used
to categorize and label the collected data into data structures to analyze it.

2.4 Chapter Summary

This chapter explained and gave an introduction to IP, TCP and NAT which will
be refereed to in upcoming parts of the study. The TCP and IP section explain how
TCP and IP work as well as explaining what the different fields in the headers are
used for. The NAT section explains how different types of NAT works and what it
is used for. The Tools section explains the various tools that have been used in the
evaluations.

14

3 Related Studies
NAT host identification is used in order to determine the number of hosts
that are connected behind a NAT device. This can be very valuable for
network managing purposes in order to get information on how many users
and devices that are connected to the network. There are several studies that
examine different methods in order to identify the number of hosts behind
the NAT. In this chapter, some of the methods will be explained in order
to gain a basic knowledge of how others have performed NAT host detection.

3.1 Signature Based Detection Methods

A technique for counting NATted hosts, Bellovin 2002

Steven M. Bellovin[3] wrote a paper which according to him contained the first
technique in order to determine the number of hosts behind a NAT device. The
technique was based on examining the IP headers identification field. It was observed
that the IPid acted as a simple counter for the packets of many operating systems.
Consecutive packets emitted from a host would carry sequential IPid fields. By
counting the number of consecutive packets grouped as strings from an IP-address
it is possible to determine the number of hosts behind a NAT.

The IPid field is used to order fragment packets. It has to be unique in all
fragmented packets that have the same protocol number, source and destination
address. This is done in order to allow fragmentation and reassembly for a packet.

The algorithm that was employed by Bellovin was made to build sets of IPid
sequences. When new a packet was received the algorithm scanned for the sets of
sequences in order to find the best match. If a match was found the IPid was added
to the sequence or else a new sequence was created.

A perfect match for the sequence and a new IPid was considered if the IPid was
exactly one higher than the last received packet within the reasonable gap and time
bounds.

The tests were performed by using real packet traces where the machines were
grouped together in order to behave as if they were behind a real NAT. The subnet
used was from their organization’s wireless LAN, which contained hundreds of
computers. The output of the algorithm was compared to the real IP-address data.
It showed good results, where the algorithm was able to identify nearly all hosts.

However the algorithm had some problem when there were collisions in the IPid
space. This could cause the algorithm to wrongly identify the number of hosts. The
algorithm does only look for IPids that increase sequentially which only makes it

15

applicable for operating systems and packets that do so. Another limitation is that
the IPid field does not have to behave as a counter, only that it is unique which
makes this method invalid. It is also possible that the Don’t Fragment bit in the IP
header is not set which would not set the IPid field. Some NAT devices also resets
the IPid to zero.

Bellovin conducted that the technique was best used for smaller networks
behind a NAT, where the data can be collected by an Internet Service Provider
(ISP) for analyzing the number of hosts in homes and small business networks.

Passive detection of NAT routers and client counting, Straka 2006

Kenneth Straka and Gavin Manes[34] wrote another NAT detection method and
the limits on some already existing methods. Bellovin wrote that NAT detection
using the IPid field can be somewhat unreliable to use for detecting different hosts,
since it does not have to behave as a counter. Their solution was to combine the
IPid field and the TTL values extracted from the IP packet header. Most OS’s have
default TTL values and can, therefore, be easily distinguished from each other. The
TTL value is also decremented by one for each router the packet pass through and
by examining the value of the TTL it can indicate if a NAT exists in the network.
Unfortunately, this method still has some limitations since a client can change
the default TTL values. Together with Bellovin’s method of grouping sequential
IPid’s together they were able to gain a more accurate estimation of the number of
clients in a network. In order to improve their method, they choose to also look at
application level packet patterns, where they gave an example of how the detection
would work for bursts of Post Office Protocol (POP) traffic. If the packets were
found within close intervals between each other it could be an indication of several
hosts who checks their e-mails. The usernames submitted to the POP-server could
also be used to separate hosts. This method of identification can also be used on
operating system updates such as Windows update and application updates such as
antivirus updates. Even though they did not perform any experiments on a dataset,
these types of host detections have been used in other research as will be seen below.

Application presence fingerprinting for NAT-aware router, Bi 2006

Bi et al.[4] conducted a new fingerprinting method based on application layer data in
order to discover NAT. This detection method was introduced because it is hard for
NAT routers to modify application layer data in order to avoid detection and that
the application developers don’t design features to avoid NAT detection. Usually,

16

one host has only one instance of an application, this fact can be used for host
separation. In their research, they used Instant Messaging (IM) applications to
distinguish hosts. Some IM applications only allow one instance to be active on a
desktop, they have a large user population and the applications are usually active
for long periods. They found that the IP-address of IM servers, TCP/UDP port
numbers, and certain IM packets have some characteristics that can be used for
fingerprinting.

Their algorithm checks each IP-address where IM packets come from. It checks
the destination IP-address and source port number in order to identify if the packets
belong to an existing channel between the client and the application server or
otherwise it will create a new channel. The algorithm then counts the number
of channels between the given IP-address and the IM application in order to make
a verdict. If the number of channels is equal or greater than the maximum of
allowed channels for each IM application it is concluded that the IP-address is a
NAT gateway address. The algorithm then removes each expired channel given a
maximum idle time.

Their experiment was conducted on a campus network and on the
China Education and Research Network (CERNET), which is a network
used for education and research. The IMs they used was MSN Messenger
and Google Talk. Even though they mention that they performed an
experiment, no results are presented to show the accuracy of the algorithm.

NAT usage in residential broadband networks, Maier 2011

Maier et al.[14] used an approach to detect NAT and estimate the number of
hosts behind it by using the TTL field in the IP header and HTTP user-agent
strings. Their approach used the knowledge from previous studies regarding TCP/IP
fingerprinting in order to come up with a more reliable NAT detection method.

Their dataset are based on packet-level observations in Digital Subscriber Lines
(DSL) connections from a large ISP. They were able to monitor 20,000 anonymized
DSL.

In order to detect if NAT was used on a DSL line, they used the fact that OS’s
have different TTL values on outgoing packets. Windows have an initial TTL value
of 128, MacOS and Linux have 64. For every router that the packet travels through
the TTL value will decrement by one. They did also know that the hop distance
from the customer’s equipment to their monitor point was one. They used this
knowledge to determine if there was a NAT in the customer’s network. To count
the number of hosts behind a NAT on the DSL line they counted the number of

17

TTL observations from each line to distinguish different OSes. HTTP user agent
strings of regular browsers contain information about OS and browser versions. By
combining the TTL values and observing the OS and the browser versions they
were able to identify the number of different hosts behind a NAT. They made the
conclusion that it was unlikely for several customers to have both the same OS and
browser family versions.

In their results, more than 90% of the lines they observed used NAT and
they also found that 30-50% of the lines had more than one active host.
In order to see if multiple hosts on one line were active at the same time
they computed a minimal interactivity time, which showed that 10% of the
DSL lines had more than one host active at the same time. They were not
able to distinguish between hosts with identical OS and browser. It is also
possible that they wrongly classify a computer that has two OS’s as two
hosts, or if a user updates his browser during the observation period. If a
NAT gateway does not decrement the TTL value it will not be classified as
a NAT. This method will also be unable to detect hosts based on the HTTP
knowledge if the flows are encrypted, which will hide the user agent information.

Counting NATted hosts by observing TCP/IP field behaviors, Mongkol-
luksamee 2012

Mongkolluksamee et al.[18] developed a technique to study long-term NAT trends
from 2001-2010 using traces from the Measurement and Analysis on the WIDE
Internet (MAWI) group. In their study, they examined the behavior of IPid,
TCP sequence number and source port to identify different operating systems. By
examining the behavior of these three fields they were able to identify patterns of
different operating systems.

They extended the work of Bellovin’s method in order to estimate the number of
NAT hosts from network traffic, where they included TCP source port and sequence
number. In contrast to Maier that looked on HTTP user agent strings to identify
different OS, they discovered that each OS has its own way of selecting a starting
TCP sequence number and a TCP source port for each connection. They added
this to Bellovin’s method to identify different host when the IPid is in a per flow or
random manner.

The method they used is divided into two part. In the first part, they collect
IPid sequences, TCP sequences, and TCP source ports and then they ordered the
sequences in an increasing order. The TCP sequence is created by calculating the
arrival time of the packet and gap limit in the sequence. Based on the results from

18

the difference of the previous packet and the arriving packet it is classified differently.
The IPid sequence was calculated in the same way, but they had to create two sets
for each new IPid which is added to the best matching sequence set. The parameters
chosen in the algorithm to construct the sequences are based on table parameters
from Bellovin.

When the sequence construction phase is done they start to classify hosts. This
is done in three steps where they first try to associate TCP sequence numbers with
IPid sequences. When a TCP sequence and IPid have been associated together they
observe patterns of the TCP sequence starting number to distinguish different OSes
from each other. Step two is when they only found one TCP sequence for each
IPid sequence and tries to distinguish which type of IPid the TCP connection is
associated with. The last part observes the TCP source port behavior, this is done
if a TPC sequence cannot be associated with any IPid sequence and therefore they
try to discover patterns by looking on to the source ports.

The method was evaluated by using two trace files, one from a synthetic NAT
and one from real NAT traffic collected from a wireless router. The synthetic NAT
traffic was collected from 16 hosts with different OSes. By using this method they
found 18 estimated hosts, with 15 true positives and three false positives. This
result was slightly better when they compared it with Bellovin’s method. Their
method was able to identify Windows, FreeBSD and MacOS with a high accuracy
but had problems with detecting OpenBSD, where the algorithm would count several
OpenBSD hosts as one host.

When evaluating the results from the real NAT traffic they compared their results
with pOf which is a passive OS fingerprinting tool, which gave similar results.

They used their method to study the long-term NAT trends on the data from
the MAWI traces from 2001 - 2010. Their results showed that around 2% of the
IP-addresses were NATed and on average there were five hosts behind every NAT.

A hybrid packet clustering approach for NAT host analysis, Zhang 2015

Zhang et al.[36] also performed a study in order to discover how many hosts that
were located behind a NAT. They used a method where they gathered HTTP
data and extracted cookie ID, application ID and user-agent information from
each packet group in order to gain knowledge of which IDs belongs to which
host. They created an environment where the network traffic was collected inside
two laboratory networks before a NAT device so all IP-addresses were visible.
Their method would work on the outside of the NAT network, but the traffic
captured before the NAT gateway was used to validate the results. A sliding

19

time window technique in combination with cookie ID verification was used to
verify when two HTTP’s requests belong to the same host. They analyzed the
HTTP header to employ the rules in each time window. If two HTTP requests
were sent to the same destination within in a small time period they made the
conclusion that they are probably from the same host. They also checked if the
User-agent was the same for each HTTP header. A cookie cluster was used which
contained cookies that would not change in short periods of time like session
cookies. This cookie cluster was combined with a cookie ID cluster in order to
verify if they were from the same host. Cookie ID’s were used to verify and
connect two HTTP requests from the sliding time window cluster or the cookies
cluster to see if there was any cookie ID conflict between them. They created a
cookie ID table that contained cookie IDs from different websites to check the
connections. Their results revealed that from their NAT networks with around 100
hosts, they had an average accuracy of more than 90% and a coverage of more
than 50%. However, this method will not work if the HTTP header is encrypted.

Identification of hosts behind a NAT device utilizing multiple fields of IP
and TCP, Park 2016

In a study made by Park H et al.[22] they tried to identify the number of hosts
behind a NAT by utilizing multiple IP and TCP header fields. They used the IPid,
TTL, SYN, source port and timestamp fields in order to separate the hosts. Their
method to identify the number of hosts was made in two phases. The first phase
was to determine what OS the packets were directed to. The algorithm examined if
the protocol in use was TCP and that the SYN flag was used. In order to determine
the OS a table with TTL initial values was used, similar to Maier’s research[14].

The next phase separated the individual hosts, they did this with two methods.
One of the methods was by using IPid and source port number and the other were
a method based on TCP timestamp. They generated a host list which contained
host information, if a packet came from a new host a host list item was created
and added to the list. If the packet came from a already existing host then the
packet items were added to the appropriate host list item. In order to determine
if a packet came from the same host, they used a table that contained already
determined parameter values such as the difference in packet arrival time, IPid
value, source port number and the number of items in the list. If the difference
between the arriving packet and the last packet in the list were in range according
to the parameter table, as well as if the number of items in the list was greater than
the value in the parameter table, the packets were considered to come from the

20

same host. Since Windows have sequential source port numbers in the TCP SYN
packets and IPid they were used to identify Windows hosts. The TCP timestamp
method can be used to identify the hosts by identifying the pattern of a linear
equation, which depends on the OS, the initial timestamp and the current time.
They performed the test by using two OS’s and in a local small-scale environment.
They were able to gain a result with an accuracy ranging from 71 - 100%,
precision of 83 - 100% and sensitivity of 83 - 100%.The results were considerably
better compared to only using IPid like Bellovin or just using user-agent strings.

3.2 Behavior Based Detection Methods

Remote NAT detect algorithm based on support vector machine, Rui
2009

Based on previous research, Rui et al.[13] proposed a new method for remote NAT
host detection that does not depend on any special fields in the packet header. The
technique uses a Support Vector Machine (SVM) method to analyze the network
traffic from a NAT together with a remote NAT detection algorithm.

They purposed a method to detect NAT devices passively by analyzing network
traffic based on eight features. The chosen features can be seen in Table 1.

Table 1: The 8 features for network traffic analyzing.

Features
1 The number of packets sent out
2 The number of packets received
3 The number of UDP packets
4 The number of TCP packets
5 The number of DNS request packets
6 The number of FIN packets
7 The number of RST packets
8 The number of SYN packets

The features were chosen based on the behavior of the NAT network traffic. A
NAT network will send out more bytes, connections, DNS requests, protocols and
have a more complex behavior than regular host traffic. These features are used to
represent the network traffic from a NAT and were filtered from data traces. The
network traffic is represented as eight dimension serial vectors during a set duration.

They discovered that sometimes the network traffic from hosts behind a NAT
and ordinary hosts does not differ that much, for example when all the hosts behind

21

a NAT are inactive. This makes it harder to see the difference between a NAT host
and an ordinary host. In order to gain a higher accuracy for their method, they
purposed a function to filter out the inactive hosts form the network traffic leaving
only the active ones left in the dataset.

After the network traffic had been filtered, the SVM was used to analyze the
vectors. The vectors were evaluated as a binary classification problem where
the SVM analyzed if the data were labeled to come from an ordinary host or a
NAT host. The network traffic was captured from five networks. Four of the
networks were placed behind a NAT and the number of hosts ranged from two -
five. One network only contained one host and was not placed behind a NAT. The
results showed that as the number of hosts behind the NAT device increased so
did the accuracy and the specification. When the number of hosts reached five
the accuracy and specificity reached nearly 100% with sensitivity reaching 80%.

Passive Remote Source NAT Detection Using Behavior Statistics Derived
from Netflow, Dietz 2013

Dietz et al.[1] proposed a passive NAT detection method in order to detect rogue
NAT devices. They did this by employing machine learning algorithms based on
behavior statics from NetFlow data. The machine learning algorithms used where a
Support Vector Machine (SVM) and a C4.5 decision tree algorithm. Their method
is based on the assumption that NAT traffic will behave differently than network
traffic with only one host. In order to model the NAT behavior, they used nine
features which they extracted from the NetFlows records.

The NetFlow data was collected from an ISP during eight days. Most of the
traffic belonged to DNS traffic. This counted up to a total of 6 631 383 anonymize
records with labeled NAT and non-NAT traffic.

The method is divided into two steps where they first train the machine learning
algorithm with the data from a NAT which is based on the features from the NetFlow
data. The trained classifier was then fed with unlabeled feature vectors to classify
NAT and non-NAT traffic.

Using several NetFlow records they computed feature vectors based on each
unique IP-address found in the records which started during a chosen time window.
The result from this is a set of feature vectors that is based on each unique
IP-address.

The features derived from NetFlow are visible in Table 2.

22

Table 2: Top NetFlow features based on unique IP-addresses.

Features
1 The number of TCP NetFlow records
2 The number of UDP NetFlow records
3 The number of NetFlow records belonging to DNS
4 The number of NetFlow records belonging to SMTP
5 The number of NetFlow records belonging to Email traffic
6 The number of NetFlow records with SYN flag set
7 The number of NetFlow records with RST flag set
8 The number of bytes exchanged within a flow
9 The number of packets transmitted within a specific flow

The machine learning algorithms were then fed with training and testing sets
from the feature vectors. In order to not introduce bias when applying the machine
learning algorithms, they derived a balanced dataset by randomly sample the feature
vectors on the NAT class. This was done because an imbalance was detected between
the nonNAT traffic and the feature vectors created. The number of feature vectors
created was rather small in comparison to the amount of nonNAT traffic.

The results showed that the C4.5 algorithm had an accuracy of 95.35% on the
unbalanced data and 89.35% on the balanced data. The SVM had an accuracy of
95.10% on the unbalanced data and 81.29% on the balanced data. This reveled
that the classifier presented better results when it was trained with biased data.
They also conducted that C4.5 performed better and faster compared to the SVM.
In their finding, they describe that they are not yet sure if the unbalanced dataset
should be classified as bias or if it could be used as a feature to discover NAT.
In their experiments, they also found two phenomenon’s that could be used for
NAT host identification. The first one was that source port translation done by
the NAT gateway on outgoing packets were made in a deterministic way according
to programmatic conditions. This was not further investigated but saved as future
work. The second phenomenon was that the SYN packet sizes extracted from the
NetFlow records had different packet sizes based on their OS, which might be used
to identify the number of different operating system behind a NAT.

They have also released a master thesis where they expanded their classifier to
include the use of source port sequences and average SYN-flow byte sizes, as well as
the user behavior which is based on 11 features instead for the NAT detection[8].
The SYN flows which the SYN-based detection is based on, appeared seldom which
resulted in a low detection rate for this approach. 0.22% of the total number of flows
were classified as SYN flows and only a subset of those could be used for detecting

23

NAT, but they were able to determine different OSes from those flows. The number
of source port sequences found in the dataset was also low because some flows which
could be part of a sequence was lost, because of the time frame of the flow exports
were set to five minutes by the provider, which resulted in a low detection rate.

Can we identify NAT behavior by analyzing Traffic Flows? Gokcen 2014

Gokcen et al.[10] identified behavior from a NAT by analyzing traffic flows using
machine learning principles. They did not try to estimate the number of hosts behind
a NAT but only wanted to discover the existence of NAT in the connection. The
Maier et al [14] approach was re-implemented and compared to their own machine
learning approach.

The datasets they used came from two different organizations, which included
encrypted and non-encrypted traffic. One of the datasets was collected during a
week on their own network and the other set was delivered to them through a
private partner. They performed tests on both of the datasets and labeled all flows
as NAT flows and OTHER flows. The number of flows used was 321 209.

From the TCP dump traffic, they computed the features for each flow. They
used NetMate which is an open-source flow generator to generate flows and to
retrieve statistical features from the traffic traces. They did not use IP-address
and port numbers because they believed they might cause bias in the results. In
their approach, they wanted to find patterns for the behavior of a NAT and did not
use any application layer information.

The fingerprinting approach was evaluated in four steps based on methods tested
by Maier et al[14]. They tested it by evaluating the TTL range, distinct TTL values
for each IP, different OS information and browser information in the HTTP user
agent strings.

This approach was then compared to their own proposed approach where they
employed two machine learning techniques. They used a C4.5 decision tree classifier
and a Naive Bayes probabilistic classifier. These two classifiers were then compared
to determine which worked best on the features.

Their results showed that the passive fingerprint classifiers worked on certain
NAT behaviors, but as the NAT behavior became more complex it was harder to
gain accurate results. On the datasets, the best detection rate for the NAT flows
were 100%, with a False positive rate of 6% and 2,7%.

The machine learning approach showed high-performance accuracy with a
detection rate of 98-99% for C4.5 on the NAT and OTHER flows, with a low false
positive rate of 2-4%. Naive Bayes was not as good and performed differently on
the two data sets. Compared to the results from the fingerprint approach it can

24

be shown that the C4.5 classification worked best on the two datasets. The C4.5
algorithm was also able to identify the most important features to detect NAT
behavior. These features are visible in Table 3.

Table 3: Most important features classified by C4.5.

Features
1 The average number of bytes in a sub flow in the forwarded direction
2 Total bytes in backwards direction
3 Mean size of packets sent in the forwarded direction
4 Maximum duration the flows were active
5 The size of the smallest packet in the forwarded direction
6 The size of the biggest packet in the backwards direction
7 Standard deviation from the mean of the packet sent in the backwards direction

Passive NAT detection using HTTP access logs, Komarek 2016

In one of the most recent papers, Komarek et al.[12]proposed a NAT detection
method using HTTP logs. Similar to Gokcen et al.[13] and Rui et al.[10] they
looked at the behavior of a NAT to discover it with the help of a machine learning
classifier. Their method is divided into two steps; in the first step, they analyzed
the host behavior. It consists of feature extraction, statics collection, and window
selection. In the second part, they trained a SVM in order to label IP-address as
NAT or end host.

For each host that was identified in the HTTP logs they performed feature
extraction based on eight features in Table 4

Table 4: Features extracted from HTTP logs

Features
1 The number of unique contacted IP-addresses
2 The number of unique User-Agent strings
3 The number of unique OSes
4 The number of unique Internet browsers
5 The number of persistent connections
6 The number of uploaded bytes
7 The number of downloaded bytes
8 The number of sent HTTP requests

These features were collected to identify a NAT from an ordinary end host. They

25

were collected in time windows sequences with 30 minutes for each sequence covering
24 hours.

They gathered the HTTP access logs from four different corporate networks
during two working days. The networks were selected to be of different sizes with 3
000, 5 000, 10 000 and 25 000 hosts. From these datasets, they generated an artificial
NAT by joining HTTP logs together to simulate hosts behind NAT. The data was
then labeled in two sets: Artificial NAT and end hosts to train the classifier.

To evaluate their NAT detection method they conducted an evaluation in five
separate scenarios:

• Time-drift: The classifier is trained on the data captured from the first day
and is then evaluated by the data captured from the second day. This is done
to show that the classifier can operate on data from the same network in future
days with a high accuracy.

• Cross-validation: In order to see if the classifier can be used on new network
data.

• Hosts with the same OS and/or Internet browser: To test if their method
were able to identify the host where both Beverly’s[3] and Maier’s[14] method
would fail.

• Sensitivity to contaminated training sets: In order to measure the impact of
the classifier if a real NAT was presented in the training set.

• Evaluation on the Network with real NATs: where they used HTTP logs from
a corporate network to test their classifier, which contained 1 717 end hosts
and 166 NAT devices.

All of the scenarios achieved an accuracy ranging from 93.91-99.36%,
precision 89.21-98% and recall of 84.35-95%. The test on the Network with
real NAT devices with the trained classifier achieved the highest score on
all the measurement. It was also observed that NAT devices that contained
five or more hosts were able to be detected in more than 96% or the times.

3.3 Chapter Summary

The different approaches described in this chapter can be categorized into two
detection methods namely signature or behavior-oriented.

The signature based or fingerprinting approaches are detection methods which
look for signatures in the IP, TCP and HTTP fields, such as the TTL, IPid,

26

User-agent strings, port numbers and more. By using these fields it is possible
to gain information about the number of hosts by observing a number of similar
sequences on the packets from an IP-address. It is also possible to detect OS’s,
browser versions and applications in use. By observing and making assumptions of
how different applications work they can be used to identify different hosts from one
IP-address. In order to increase the detection accuracy, some methods use different
fields together. There are some problems associated with this approach where the
fields associated with the detection might not be in use. For example, the IPid
might not be set or behave in an unpredictable manner or the TTL values might
not be set to the standard OS values. Some OSes creates the values in the header
fields differently than others which make them harder to detect, because of this some
hosts might avoid detection. Although there can be some problems by building a
method that uses fields that are not originally created for host detection, most of
the methods achieved a high accuracy during the tests.

The behavior-based approaches are methods that examine how the traffic from a
NAT behaves. Papers that use these methods are written by Gokchen et al, Dietz et
al, Rui et al and Komarek et al. By making the conclusion that traffic from a NAT
behaves differently than an ordinary host they are able to identify NATed networks.
Some of the most common features that are examined in these approaches are the
number of different packets sent and received, and the number of bytes exchanged.
A NAT usually sends out more traffic than a single ordinary host, because usually
there are several hosts hidden behind the NAT gateway. Often the accuracy of
these methods increases when the number of hosts in the NAT network was greater.
Usually, these methods use machine learning methods in order to classify if a host is
a NAT or not. They used different methods in order to first label the hosts and then
train the classifier on the data. Unfortunately, the machine learning methods are
only able to classify if a host is a NAT device or not, and is not able to determine
the number of hosts in an NATed network. The detection methods were able to
classify a NAT device with nearly 100% accuracy if the NAT network consisted of
more than five hosts.

Unfortunately, some of these methods might not be viable when the headers are
encrypted such as in HTTPS. The papers written by Komarek et al, Gokcen et al,
Zhang et al and Maier et al might not work with encrypted fields because they used
information from the HTTP header fields.

Those methods described in this section that are able to identify the number of
hosts behind a NAT device are described in papers written by Bellovin, Straka et
al, Bi et al, Maier et al, Mongkolluksamee et al, Zhang et al and Park H et al.

The next section will explain the datasets and the aspects used in the NAT host
detection methods.

27

28

4 Datasets and Detection Aspects
This section will explain the data sources and datasets used in the study. It will
explain the attributes of the different datasets, how they were collected and for how
long. This section will also present the NAT host aspects that were used in the
study. These aspects were used in the analysis in order to create an accurate NAT
host detection model.

4.1 Data Sources

The datasets used in this study is gathered from real network traffic traces from
two different sources. The first sources of data were provided by Procera Networks
which collected the data with a Deep Packet Inspection (DPI) engine. It collects
information from an ISP and inspects the header and the data of each packet that
passes through the inspection point.

The second dataset source were gathered from Karlstad’s University network.
The datasets do only consists of traffic that is related to how Windows receives
updates. This was done in order to gain ground-truth information of how the flows
looks like when a Windows computer downloads the updates to create an accurate
detection model. The datasets were collected by a Procera DPI appliance located
between the Internet and three VMs running different versions of Windows. The
traffic was processed and then transferred to an HDF file.

The gathered packets were grouped into traffic flows [5], which is a sequence of
packets that travels between a source and destination. The packets grouped into
flows will be identified based on a combination of source and destination address,
port numbers and transport protocols. By grouping the packets together into flows
it will minimize the amount of data in the datasets while still maintaining a good
representation of the traffic.

4.2 Procera Network Datasets

Three different real network traffic datasets were provided by Procera Networks
which are analyzed and used to detect different hosts behind a NAT based on the
detection models. These datasets consisted of traffic gathered from several different
IP-addresses, for different durations, and from different countries.

Small Cellular

The small cellular dataset was gathered by Procera’s DPI device. It was collected
during approximately three hours. The dataset consisted of 781 793 unique flows

29

with 12 features. It used anonymized IP-addresses and did not contain any
information regarding if the hosts were labeled as a NAT device or a regular host.
The dataset was used to gain knowledge of how the data looked like and to make
the first attempts for detecting the hosts behind a NAT. Different applications flows
were examined in order to detect the hosts. The flows used for the detection of the
hosts can be seen in Table 5 and 6. These applications were searched for in the
dataset but not all of them were present. The flows were created by grouping ten
or more packets which had the same properties.

Large Cellular

This was a much larger dataset than the previous one and contained 42 488 795 flows.
Like the first dataset, it was collected from a cellular network but for 18,7 hours.
It was similar to the first dataset in the sense that it did not have any information
regarding if NAT hosts existed in the dataset. All IP-addresses were anonymous and
each flow had the same attributes as the first dataset except that the size of each flow
in bytes was now present. The same measurements were performed on this dataset
as with the first one, in addition to some new measurements. Another difference is
that some of this datasets flows were grouped together differently. In the previous
dataset, a flow was only created if it contained ten or more packets that had similar
properties. In order to increase the presence of antivirus flows for this dataset they
were grouped on as few as one packet. This was done for the applications present
in Table 5 because these applications might send packets to check for new updates
and those flows may consist of less than ten packets.

DSL and Cellular

This was the largest dataset provided by Procera and originally it consisted of
102 866 346 flows, however some flows were not classified correctly and had to be
removed. The cleaned dataset instead consisted of 68 596 470 flows and the traffic
was collected during approximately seven days. As with the previous datasets, it
did not contain any ground truth regarding the presence of NAT routers and all
the IP-addresses was anonymous. The dataset contained the same attributes as the
Large Cellular dataset, and the same measurements were performed.

4.3 KAU Lab Datasets

Three Virtual Machines (VM’s) with different Windows OSes was setup on a
computer at Karlstad university. The VM’s did only have Windows installed on
them and the purpose was to receive Windows updates from Microsoft so the traffic

30

behavior could be analyzed. The VM’s was not used for anything else while the
traffic was collected. The conclusions drawn from the traffic behaviors are used as
ground truth for the detection models and are used to detect different NAT hosts.

Windows 7 Dataset

This dataset was gathered for around 15 days during the same time period as
the Windows 10 computer. This dataset contained 12 717 flows of which 82 were
classified as Windows Update flows, which is 0.64% of all the flows. The majority
of the flows in the dataset consisted of DNS and SSL v3 which represented 6 416
and 3 125 of the flows. In total 20 different services was observed for this dataset.

Windows 8.1 Dataset

The Windows 8.1 computer was connected and searched for updates for around 24
days. During this time the computer established 7 641 flows, where 147 of those
were classified as Windows Update. It was revealed that the computer received
Windows update flows constantly during the time it was connected to the Internet
with around six flows per day. DNS was the service that received the majority of
the flows and it consisted of 4 102 flows, in total 13 different services was found.

Windows 10 Dataset

The Windows 10 dataset was gathered around the same time as the Windows 7 VM
and for the same duration which was around 15 days. This dataset contained 20
058 flows and 267 of them were classified as Windows Update flows, which is around
1.33%. The services that received the highest number of flows in this dataset was
DNS with 8 891 flows and SSL v3 with 5 806 flows. 19 different services were
found in the dataset where the majority of services were the same as in the previous
datasets.

4.4 NAT Host Detection Aspects

The different application update flows examined and searched for in the datasets
are listed in Table 5 and 6. The flows created by the applications listed in these
tables will from here on be referenced to as NAT detection flows.

The antivirus software’s presented in Table 5 was chosen based on how common
they are and on the expert knowledge provided by Procera Networks. According to
AV-comparatives security survey [2] of 2017 and OPSWAT market share report [20],
the antiviruses listed in Table 5 are some of the most commonly used for protection.

31

For Windows users, it is very common to have an antivirus program installed in
order to protect, detect and remove harmful software from computers. According
to Microsoft Security Intelligence Report [6], 88% of all the users which have
the Malicious Software Removal Tool (MSRT) installed and enabled to provide
information to Microsoft, have a real-time security software installed on their
computer. The antivirus software’s do often receive a lot of updates from the
companies responsible for them in order to keep them up to date against the most
recent viruses. Therefore it is expected that several of the antiviruses presented in
Table 5 will be found in the provided datasets.

The software’s featured in Table 6 were chosen based on an expert knowledge
of application updates behavior in networks. These applications commonly retrieve
updates from their companies and are used by many Internet users.

Table 5: Antivirus Flow Labels.

Antivirus
360 AntiVirus Bitdefender QuickScan NOD32 update
AVG Bullguard update ProxyAV update
AVG Anti-Virus update ClamAV update Rising Antivirus
ArcaVir Antivirus update F-Prot Antivirus update Sophos Anti-Virus update
Ashampoo AntiVirus update F-Secure virus definition Symantec Anti-Virus
Avast! antivirus update Intego update Symantec LiveUpdate
Avira AntiVir update Kaspersky update Trend Micro AntiVirus
Bitdefender Antivirus update McAfee VirusScan update eScan update

Table 6: Software-update Flow Labels.

Software-updates
APT Microsoft Auto Update
Adobe Update Manager Microsoft BITS
Apple Software Update Nintendo DSi network update
Image Packaging System Tesla update
Java update Windows Update
Wireshark update

4.5 Chapter Summary

This chapter has explained the different datasets used in the study. The sources of
the datasets as well their properties were presented.

32

The detection aspects that is used to detect and count the NAT hosts were
presented in Section 4.4.

33

34

5 Windows Update Empirical Study
This study was performed to analyze Windows Update flows and to gain ground
truth data to determine methods for counting the hosts. The Windows Update
flows from three different OSes were examined because as previously mentioned this
study focuses on the detection of hosts with a Windows OS installed. Since Microsoft
releases Windows updates to the majority of their OSes on a frequent basis these
flows can be used in the detection [35].

A Windows OS can be configured to download and install updates automatically
which increases the chance that the users receives the updates [17]. From Windows
Vista to newer Operating Systems it is possible to activate automatic updates
through the control panel which will download and install new updates when they
are available. Automatic download and install are both recommend settings for
Windows and for Windows 10 these settings have been set to default.

According to a report made by Microsoft in 2008 [15] Windows update had
around 500 million clients which processed 350 million scans per day. Around
90% of all the clients used automatic updates which proves that there exists a
lot of automatic Windows Update traffic which can be collected and analyzed to
distinguish different hosts.

5.1 Windows Update Evaluation Methods

This section describes the methods which were used to analyses the traffic flows from
the three Windows OSes. This study focuses on analyzing the downloaded update
flows in order to be able to distinguish updates which several different hosts could
have received.

It was of interest to see how the flows were distributed over time to be able to
detect patterns which could be used for NAT host detection. Therefore the first
analysis were made on the downloaded byte size and arrival time of each flow. By
analyzing the distribution of the flows for the three OSes common traits between
them might be detected which could be an important key for the host detection.

The second method was performed on the time difference between a new flow
and a previous flow. The method calculated the time difference between all the flows
in the dataset and displayed the time difference frequencies. This analysis was done
in order to get a better knowledge of how long time it is between the updates. If
a common frequency in time difference can be found between the flows, this trait
could be used to identify individual hosts.

The last analysis was to study how the size of the flows could affect the time
differences between them. If flows of a certain size had the same time difference,

35

this information could possibly be used for the host detection.

5.2 Windows 7 Analysis

From the Windows 7 dataset 82 out of the total 12 717 flows were classified as
Windows Update with different downloaded sizes. Statistics of the downloaded
update sizes are presented in Table 7. The table shows that the majority of the
flows were quite small in their size and a few flows were really big.

Table 7: Size statistics for downloaded Windows 8.1 Updates.

Statistics Download Size (Bytes)
Mean 7 108 362
Standard Deviation 22 599 020
Minimum 667
25-Percentile 1 722
50-Percentile 2 532
75-Percentile 470 105
Maximum 108 654 248

In Figure 6 the byte size of each flow is displayed on the y-axis and the start time
for each flow is presented on the x-axis. As can be seen in the figure, the computer
received update flows every day. The majority of the flows were received alone but
some flows were downloaded in bursts with as many as 13 flows during the same
time interval. Most of the flows downloaded individually were of small sizes, with
an average of 3 465 bytes and a standard deviation of 8 442 bytes. The largest
individual flow were found to be 55 280 bytes big.

The sizes of the flows in the flow bursts were on average 11 812 210 bytes big,
but with a standard deviation of 27 431 260 bytes which shows that the sizes of the
flows in the bursts is varying a lot. The smallest flow found in the flow bursts was
667 bytes big and the largest flow was 108 654 248 bytes.

On average the computer received around 5.6 flows per day and the largest flow
burst arrived the first day.

36

Figure 6: Distribution of Windows 7 Update flows with the start time against the
amount of bytes they transfer.

Figure 7 shows the frequency of start times differences between two flows in
order to see how long the duration is between each download. As can be observed
more than half of the flows started directly after one other, these are the flows in
the flow bursts. The rest of the flows had a start time difference that ranged from
9.7 minutes to at most 20.5 hours, where the average start time difference was 8.74
hours. The flows which has the longest time difference is the first flow in the flow
bursts.

Figure 7: Frequency of the start time difference between the Windows 7 Update flows.

Figure 8 was created to see if there exist any connection between the start time
difference of the flows and their sizes. It shows that the flows ranging between 667
to 5 773 bytes had a varying time difference. The flows with sizes between 181 910
- 108 654 248 bytes had an average start time difference of eleven Seconds. This is
an indication that the first flows in the flow bursts are between 667 to 5 773 bytes

37

big and all the large flows arrive in flow bursts. The 55 280 bytes big flow that is
observed to arrive after twelve hours is not downloaded in a burst.

Figure 8: Windows 7 Update flow sizes versus start time difference.

5.3 Windows 8.1 Analysis

The Windows 8.1 computer was connected and searched for updates for around
24 days. During this time the computer established 7 641 flows, where 147 of
the flows were classified as Windows Update. It was reveled that the computer
received Windows update flows constantly during the time it was connected to the
Internet with around six flows per day. The statistics for downloaded update sizes
are presented in Table 8. The dataset consisted mostly of small updates around 1
300 bytes big, where only a small amount of the flows were really large.

Table 8: Size statistics for downloaded Windows 8.1 Updates.

Statistics Download Size (Bytes)
Mean 279 874
Standard Deviation 1 253 812
Minimum 513
25-Percentile 926
50-Percentile 1 288
75-Percentile 1 658
Maximum 7 073 794

In Figure 9 the size of each flow is plotted against the time in days when the
Windows machine downloaded the updates. The distance between each flow is the

38

duration from when a flow is finished to a new flow start. Out of the 147 flows two
flows were in the size of 53 000 - 55 000 byte and seven flows ranged from 5 188 152
- 7 073 794 bytes received by the host. Since these flows were so much larger than
the other flows in the dataset they were believed to be updates sent from Microsoft,
and the other flows were considered to be update checks that checked if any updates
were available. As can been seen in the figure most of the flows were downloaded
individually with a couple of hours in between each other. Some small flows bursts
can be observed when the larger flows are downloaded, where the duration between
the flows are just a couple of seconds.

Figure 9: Distribution of Windows 8.1 Update flows with the time plotted against
the amount of bytes they download.

In order to check this theory the size and the date when the updates were received
was compared to Microsoft’s Update Catalog [16] which contains information about
all updates they have sent out and the findings is presented in Table 9. As can be
observed in the table, the size and the date do not match the ones retrieved and
several large updates that have been downloaded are not present in the Microsoft
catalog.

39

Table 9: The largest Windows Update flows found in the dataset with their date,
compared to the updates found in Microsoft’s Update Catalog.

Windows Updates from file Windows Updates from catalog
Date Size Date Size
01/03/2017 4.9478 MB
03/03/2017 5.088598 MB
04/03/2017 5.156858 MB
08/03/2017 5.451539 MB
11/03/2017 5.651487 MB
14/03/2017 5.92254 MB 12/03/2017 4.8 MB
17/03/2017 6.746096 MB 16/03/2017 786 KB

When comparing the time differences between the different update flows it was
revealed that the seven largest flows present in Table 9 started on average 26 seconds
after a smaller flow. This is shown in Figure 9 where it it denser around the large
flows. A histogram of the time difference between the start times is presented in
Figure 10. The figure reveals that 77 of the 147 flows started around five hours
between each other.

Figure 10: Frequency of start time difference between the Windows 8.1 Update flows.

In order to examine these flows more closely a new histogram was created and is
presented in Figure 11, where the flows which started five hours between each other
appears. It shows that the majority of the flows start after a nearly constant time
have passed, in a interval of around two minutes. This indicates that the computer
checks for updates regularly after a constant time have passed.

40

Figure 11: Zoomed in on the frequency for the 5 hour start time difference for
Windows 8.1 Update flows.

In order to see if there is any difference in size between the flows with different
start times, a scatter plot was created and is visible in Figure 12. The figure plots
each flows size against the time difference between the start of each flow. As stated
previously the majority of the flows are around 1 300 bytes big where the majority
of the flows start five hours after each other. Two clusters are visible in the figure,
one cluster shows that all of the 7 flows start nearly instantly after a previous flow
have started. They are 5 188 152 - 7 073 794 bytes big. The other cluster consists of
all the flows which have a time difference of five hours. They are 526 - 2 537 bytes
big with an average of 1 277 bytes. This could be an indication that an update
check have been performed and an available update have been found. This starts
the download of the larger update directly after the smaller update.

41

Figure 12: Windows 8.1 Update flow sizes versus their start time difference.

5.4 Windows 10 Analysis

The Windows 10 dataset consisted of 20 058 flows gathered during the same time as
the Windows 7 which was approximately 15 days; out of these flows 267 flows were
classified as Windows Update flows. The statistics for the downloaded Windows 10
updates are presented in Table 10. As can be seen in the table most of the flows were
quite large in comparison to the flow size from the other datasets and the majority
of them were one MB big.

Table 10: Size statistics for downloaded Windows 10 Updates.

Statistics Download Size (Bytes)
Mean 2 533 946
Standard Deviation 3 571 159
Minimum 651
25-Percentile 1 088 050
50-Percentile 1 088 317
75-Percentile 1 092 812
Maximum 16 324 660

The size of each flow and their start time is displayed in Figure 13, here the
distribution of the flows and their sizes are clearly presented. As can be observed
nearly all of the flows have the same size and they arrive in 15 flow burst, where
the burst starts after a close to constant time has passed. The amount of flows in
the bursts varied from three up to 87 flows, with an average of 17.8 flows per burst
which was also the average amount of Windows Update flows per day.

42

Figure 13: Distribution of Windows 10 Update flows with the start time against the
amount of bytes they transfer.

In Figure 14 the frequency of start time differences is presented in order to get a
better presentation on how the flows are correlated. It reveals that nearly all of the
flows start instantly after each other and that 14 of the flow burst shown in figure
13 start 22 - 26 hours after each other, with an average of 24 hours between them.
These are the first flows in the flow bursts.

Figure 14: Frequency of start time difference between the Windows 10 Update flows.

Figure 15 reveals that nearly all of the flows which have a high time difference is
39 369 - 168 412 bytes big with an average of 56 729 bytes. One outlier is observed
that is 1 911 244 bytes big which is much larger than the other flows which have a
time difference of 22 - 26 hours.

The rest of the flows which start nearly instantly after each other have a varying
size ranging from 651 - 16 324 655 bytes, with an average size of 2 674 141 bytes.

This reveals that the first flows in a flow burst are 39 369 - 168 412 bytes big
and that nearly all of the large flows arrive in bursts.

43

Figure 15: Windows 10 Update flow sizes versus start time difference.

5.5 Chapter Summary

The distribution for the Windows Update flows differ a lot between the different
OSes, but some common characteristics can be observed. For Windows 7 and 10
nearly all of the Windows update flows were downloaded in bursts, where the time
difference between each flow burst ranged from a couple of hours to nearly a day.
The Windows 8.1 OS differed quite a lot in comparison to the other OSes, where
nearly all of the flows arrived individually with 5:22:30 - 5:24:45 hours between each
flow. All of the larger flows did arrive in flow bursts, where a smaller flow was
received first and then followed by a large flow.

On average Windows 7 and 8.1 received 5 - 6 flows per day and Windows 10
received 17.8 flows per day.

In the Figures 8, 12 and 15 which show the sizes of each flow versus the start
time difference between each flow reveals some similarities between the figures. The
flows which have a large time difference are most often 1 - 100 KB big and the flows
in the 1 - 100 MB size start directly or just a few seconds after another flow.

The detection model will be based on the attributes of each different OS and
the similarities between them, but in order to come to more accurate conclusions
regarding the behavior of the Windows Update flow traffic, further research have
to be performed for the different OSes. Data collection for longer periods would
be an improvement in order to see if the patterns observed are the same for longer
durations. It can also be interesting to collect traffic from several computers with
the same Windows OS to see if they all share the same pattern.

44

6 Design of Detection Methods
This section explains the different methods that are created and used for this study
to determine if an IP-address consists of a NAT and to count the number of hosts.
Chapter 3 focused on related studies and explained different methods used for NAT
detection and host counting. These methods are going to analyze the application
flows that a host receives in order to detect NAT and to determine the number
of hosts in the NAT network. A Deep packet inspection (DPI) engine gathers the
packets, identifies flows from an ISP and places them into a large dataset that will
be used for the analyses. Features from the dataset are collected in order to perform
NAT host detection.

The distinct amount of hosts in the NAT network is not going to be explored
in detail, the most important part is to be able to detect huge networks from the
datasets. The information can be used by ISPs to detect if their customers are
sharing their Internet access in an unlawful manner.

6.1 NAT Detection Method

This will be the first method and it will be used to select the IP-addresses which
could be identified as NAT routers in the dataset.

As mentioned in Section 2 and 3 a NAT may consist of several different devices
where each device generates its own network traffic. In Section 3 some detection
models were based on the amount of traffic the host could generate. Some of the
most important features in this detection model were the number of packets sent
and retrieved, the number of bytes exchanged, the time of a flow etc. Therefore the
first step will be to identify the IP-addresses which contain the highest number of
flows, the largest amount of bytes exchanged and the flows which are active for the
longest durations.

When the IP-addresses which have generated the most traffic have been identified
they have to be analyzed in order to determine if the traffic was generated by one
or several hosts. The analysis will be performed by identifying which types of flows
that the traffic consisted of. If an IP-address generates a lot of traffic as well as
consisting of a large amount of NAT detection flows it is highly likely that there are
several hosts using a single IP-address.

6.2 NAT Host Counting Methods

In Section 4.4 the NAT detection aspects mentioned in Table 5 and 6 are introduced
and they will be used to identify different hosts for each unique IP-address. The
first factor taken into account is the amount of NAT detection flows an IP-address

45

receives. This factor is determined based on the behavior of a NAT network because
several hosts receive more updates than a single host would. Therefore if the number
of updates are unusually high for a single IP-address it could be an indication
that several hosts are hidden behind a NAT. With this statement in mind, several
different methods have been created that will be used to analyze the data and to
find patterns which could indicate NAT host behavior.

Windows Update Analysis Methods

One of the analysis methods used in this study is to identify the different hosts by
examining the Windows Update flows. This method is based on the results from
the empirical study of the Windows Update flow distribution in Section 5.

By analyzing the Windows Update flows from the different Windows OSes the
characteristics of the flows are be used as ground truth in order to identify individual
hosts. The Windows Update distribution for the datasets will first have to be
analyzed in order to see if there exist common characteristics between the datasets
under examination and the results retrieved from the empirical Windows Update
study.

The first analysis will be performed on the size and arrival time of each Windows
Update flow in the dataset. This is done in order see how the flows are distributed
and to identify similarities between the flows. With this analysis, it is possible to
detect common updates that several hosts are downloading but in different time
periods. If common updates are detected they can be used in the NAT host
detection. This method will detect if an IP-address downloads the same update
several times which can then be identified as several hosts on the IP-address which
downloads the same update.

The next analysis of the Windows Update flows will be similar to the analysis
done in the Windows Update empirical study in Section 5, where the frequency of
time difference between the flows, the size and time difference between each flow were
studied. This analysis is done to compare if the results from the empirical Windows
Update study are the same as on the datasets provided by Procera Networks. If
similarities exist between the datasets it is possible to use the knowledge of how
flows are distributed from the Windows empirical study to determine the number
of hosts.

The last Windows Update analysis will evaluate individual IP-addresses flow
distribution. The size and amount of flows will be analyzed against their arrival time.
With this analysis it might be possible to detect common characteristic between the
Windows Update flows for each IP-address, which can be used in order to update
the detection model.

46

It was observed that around 6 - 18 flows arrived per day for a single IP-address.
By using this knowledge it is possible to make a rough estimate of how many hosts
that may exist behind a single IP-address. This is done according to equation 1.
Where A is the number of hosts. B is the average number of Windows Update flows
per day for an IP-address. C is the average amount of flows per day for the three
OS’s discovered in the Windows empirical study in Section 5.

A = B/C (1)

As have been observed in Section 5 on the Windows Update characteristics where
most of the flows arrived in flow bursts with a couple of hours to more than a day
between the bursts. By using the characteristics of these bursts they can be used to
detect individual hosts in a NAT.

If flow bursts are found on the IP-addresses in the datasets the average sizes of
the flow bursts from the Windows Update Empirical study can be used to determine
how many hosts the IP-address may consists of. The average amount of flows in
the flow bursts is presented in Table 11. The flow burst sizes can be used to draw
conclusions on how many hosts that might receive Window Update flows during
the same time. The equation used to determine the number of hosts by using flow
burst sizes are presented in equation 2. Where D is the amount of hosts. E is the
amount of Windows Update flows an IP-address receives during a short interval.
The interval can vary from a couple of minutes to hours. During this interval the
IP-address receives a large increase in the number of flows which usually results in
a peak as can be observed on IP-address number 1 in Figure 20. F is the average
amount of flows in a flow burst displayed in table 11.

Table 11: Average number of flows in a flow burst.

Windows OS Average flow burst sizes
7 3.56
8.1 2
10 17.8

D = E/F (2)

Antivirus Analysis Method

Another analysis method used to determine the number of hosts for a IP-address is to
count the number of different antivirus flows each IP-address receives. This method
is supported by the fact that a regular host would only use a single antivirus for

47

their computer because the usage of several different antiviruses on one computer
can cause problems for the user. For example, the antiviruses might cancel each
other out, use up a lot of the computer systems memory or cause other problems
[27]. Therefore if an IP-address receives updates from more than 1 antivirus it is
highly likely that it exists at least that many hosts on the connection.

The analysis method works by trying to identify how many different antivirus
flows each IP-address receives. The model will identify all antiviruses detected for a
single IP-address as well as their flow amount. The IP-addresses which are revealed
to contain flows from two or more different antiviruses will be grouped together and
presented to the user.

Windows and Antivirus Analysis Method

The Windows and antivirus analysis method examines Windows Update and
antivirus flows for individual IP-addresses. The point with this analysis is to detect
hosts by observing similarities between the time an IP-address receives Windows
and Antivirus flows.

If an IP-address receives a lot of Windows Update flows during a short interval
it is difficult to determine if those flows arrive from just one host or several different
hosts. By observing when the IP-address receives antivirus flows as well as the
Windows Update flows, the host classification can be done with increased accuracy.

An example is if an IP-address receives a lot of Windows Update flows as well as
flows from two different antiviruses in the same interval. This could be an indication
that this particular IP-address contains at least two hosts that receive their Windows
Updates during the same period.

The method will go through the IP-addresses in the dataset which contains
Windows Update and at least two different antivirus flows. These IP-addresses will
then be analyzed in order to see how the flows are distributed.

6.3 Chapter Summary

This chapter have explained different methods that will be used to detect NAT and
to count the amount of hosts on the datasets. Three different approaches are used
when trying to determine the number of hosts: Windows Update analysis, Antivirus
analysis and a combination of them. The Windows Update analysis method are
derived from the results achieved in Section 5. The antivirus analysis method are
based on the statement that there exists only one antivirus per host. By combining
these methods there will be a high chance that the IP-addresses matching these
conditions may contain a hidden NAT network.

48

7 Procera Networks Dataset Evaluation
This part of the study will analyze the datasets provided by Procera Networks.
Three different datasets that have been gathered for different durations and in
different countries will be evaluated to see if they show any behavior of a NAT.
The methods used to analyze these datasets have been presented in Section 6.

7.1 Small Cellular Dataset Evaluation

Dataset Overview

The first analysis was done on a Cellular dataset from Sweden provided by Procera.
This test was performed to gain a basic knowledge of how the data looked like. The
data was collected during approximately three hours from a mobile device network.
In Figure 16 information regarding the dataset can be found and the number of
unique NAT detection flows which it consisted of. As can be seen in the figure it
contained 781 793 flows and from them, 3 205 were identified as the NAT detection
flows, which is around 0.41% of the flows. Not all of the NAT detection aspects
listed in table 5 and 6 were present in the dataset, those found are presented in
Figure 16, where Windows update received the highest amount of flows and the
majority of NAT detection aspects found were antivirus updates.

49

Figure 16: Small Cellular dataset information.

All IP-addresses with their total amount of flows were examined to see if there
were any IP-address that received higher amounts of flows than the others. For
the detection it is important to look on how much traffic each IP generates since
more hosts create more traffic. If an IP-address has more flows than the majority of
IP-addresses it could be an indication that it consists of several devices. In Figure
16 it can be seen that the dataset consisted of 11 024 unique IP-addresses, the
total amount of flows each of these IP-addresses have is represented on the x-axis
of a Cumulative Distribution Function (CDF) in Figure 17. The IP-addresses are
represented in percentage on the Y-axis. The distribution of the CDF plot shows
that a little more than 60% of the IP-addresses only have one flow. Out of all the
11 024 IP-addresses 2 586 IP-addresses were revealed to contain 771 642 of flows
which is 98.7% of all the flows in the dataset. All the NAT detection flows are also
present in this set. This shows that only a few IP-addresses contained the majority
of the traffic which is an indication of NAT behavior.

50

Figure 17: CDF for the logarithmic amount of flows per individual IP-address in
the Small Cellular dataset.

Figure 17 revealed that some IP-addresses received a very high amount of flows
compared to the rest in the set. These IP-addresses were further examined and it
showed that 145 of the IP-addresses contained 674 186 flows together and 2 838 of
the NAT detection flows. The left part of Figure 18 displays the 15 IP-addresses
which received the highest amount of flows in the dataset. The figure shows that
one IP-addresses contained 168 100 flows which are 21,5% of all the flows in the
dataset. Since these IP-addresses contained so many more flows than the other ones
it is a possibility that they consist of more than one host and are further examined.

In order to detect the number of different hosts in the IP-addresses, the NAT
detection flows were analyzed to see if they could reveal a pattern that shows
evidence for several devices. Therefore it was interesting to see how many NAT
detection flows the IP-addresses with the highest amount of flows received. In the
right part of Figure 18 the same IP-addresses as on the left part are displayed but
only with their NAT detection flows amount. As can be observed in the figure
most of the IP-addresses received a low amount of NAT detection flows where one
IP-address received a lot more flows than the rest. This revealed that even if some
IP-addresses contain a lot of traffic it does not have to be in proportion to the flows
examined in this study. Most of the IP-addresses in Figure 18 contained a large
amount of DNS, SSL and uTP flows. IP-address 167772224 contained 167 212 DNS
flows.

51

Figure 18: The 15 IP-addresses which received the highest amount of flows in the
Small Cellular dataset. The left plot show the total amount of flows per IP-address
and the right plot shows the same IP-addresses but with their amount of NAT
detection flows.

NAT Detection Flow Evaluation

The distribution of NAT detection flows per IP-addresses in the dataset was
examined and is presented in Figure 19. The left side of the figure shows that
only a small fraction of the IP-addresses contained NAT detection flows. 149 of the
11 024 IP-addresses received all of the 3 205 NAT detection flows. The distribution
of the NAT detection flow of the 149 IP-addresses are presented on the right part of
the figure. As can be seen in the figure the majority of the IP-addresses consists of
1 - 50 flows, where some outliers received a much higher amount of NAT detection
flows than the rest. Some of those IP-addresses are presented in Table 12.

52

Figure 19: CDF for the logarithmic amount of NAT detection flows per individual
IP-address in the Small Cellular dataset. The left plot is zoomed in on the fraction of
IP-addresses which received NAT detection flows. The right plot shows the fraction
of IP-addresses which only received NAT detection flows.

Since this study focuses on the evaluation of NAT host detection which uses
the NAT detection flows, it is unfortunate that such a small amount of flows were
discovered. The low amount of NAT detection flows may be the cause of using traffic
flows from a cellular network.

Table 12: The 10 IP-addresses with the highest number of NAT detection flows in
the Small Cellular dataset.

IP-address NAT detection flows
167772542 629
167772178 386
167772422 206
167772179 159
167772171 133
167772209 113
167772315 81
167772478 71
167772411 51
167772181 47

Windows Update Flow Evaluation

In this section, the Windows Update flows will be analyzed in order to reveal NAT
and to count the number of hosts. Of the 11 024 IP-addresses in the dataset only

53

84 of them contained all the Windows Update flows.
The five IP-addresses with the highest amount of Windows Update flows were

then visualized against the time when the flows began to download in Figure 20.
As can be seen on the pattern of IP-address number 2, it consisted of 152 flows

during a 93 minutes interval. This is a lot of flows during a short period of time
if comparing to the Windows Update flows in Section 5 where the OSes received
around 6 - 18 flows per day. This shows that IP-address number 2 may contain as
many as 8 - 25 hosts according to equation 1.

By examining when the different flows start, it can be observed that it creates a
stairway shape. This is similar to the flow burst shapes in Section 5 for the Windows
10 computer, but the time between the flows are very short. Because the flow bursts
are so large and they start with just a couple of minutes in between them it could
be an indication of several hosts. This can be modeled as a number of different
hosts that starts their Windows Update download at different times of the day. Of
the five IP-addresses examined this way all but IP-address number 3 shows this
behavior. However, it is not possible to tell if several hosts receives the flows in the
same interval or if it is just a single host.

35 of the IP-addresses in the dataset contained five or more Windows Update
flows. The shape for nearly all of them was almost vertical where during a short
period of time all the flows were received.

Some IP-addresses received flows for a short period followed by a pause and then
they started to receive a lot of flows again so that it created a stairway shape as can
be seen on IP-address 2, 4 and 5 in Figure 20. This shape was only observed for
the IP-addresses which received a lot of flows, where none of the other IP-addresses
showed this shape.

54

Figure 20: Windows Update flow start time versus the number of flows for different
IP-addresses in the Small Cellular dataset.

Antivirus Flow Evaluation

If an IP-address contains flows from several different antiviruses, it could be an
indication that it may consists of more than one host. Therefore comparison
between different antivirus flows were conducted in order to gain knowledge if
some of the IP-addresses received updates from several different antiviruses. The
experiment revealed that five IP-addresses gained updates from two different
antivirus software’s, with only a small amount of updates for each software which
can be seen in Table 13.

Table 13: IP-addresses which received flows from two antiviruses.

IP-address 360 AntiVirus Symantec AVG AntiVirus Avast antivirus Kaspersky McAfee NOD32
167772462 0 19 0 0 0 1 0
167772511 0 8 2 0 0 0 0
167772263 0 2 0 0 12 0 0
167772718 11 0 0 1 0 0 0
167773353 1 0 0 0 0 0 3

An analysis was performed on the IP-address which consisted of Windows Update
and at least two antivirus flows. By observing when an IP-address receives the flows
it might be possible to see if some of the flows are received during the same interval.
This method can be used in order to determine if there are several hosts that receive
Windows Update flows during the same interval because a host usually only have
one antivirus on their computer. If there are two antivirus flows as well as a lot of
Windows Update flows noticed in the same interval, it can be modeled as two hosts
both received their updates during the same time.

55

Table 14 shows the IP-addresses which consists of both Windows Update flows
and at least two different antiviruses. It was observed that the IP-addresses
received their antivirus flows in the same intervals as the Windows Update flows.
Furthermore, the shape of the flows were very similar which showed the same
stairway shape as in Figure 20.

Table 14: The IP-addresses which contains Windows Update and two different an-
tivirus flows.

IP-address Windows Update 360 AntiVirus Kaspersky NOD32 Symantec
167772263 6 0 12 0 2
167773353 1 1 0 3 0

7.2 Large Cellular Dataset Evaluation

Dataset Overview

The second dataset provided by Procera was gathered from the same type of network
as before but for 18.7 hours and with more activity per hour. This resulted in a much
larger dataset than the first one, as can be seen in Figure 21. This dataset contained
42 488 795 flows, in comparison to the previous dataset which only contained 781 793
flows. This is an increase of 54 times in the number of flows. The amount of NAT
detection flows to investigate numbered to 31 731 flows which are around 0.074% of
the total amount of flows in the new dataset. This is a lower ratio of NAT detection
flows when comparing to the first dataset where 0.41% of the dataset consisted
of NAT detection flows. This is surprising because the flows in this dataset were
created by putting together shorter packets flows than in the previous dataset. This
was done in order to better detect if a device was checking for an update and to
receive more flows.

While comparing the amount of NAT detection flows both datasets received it
can be observed that the majority of the flows were classified as Windows Update. In
this dataset, the antivirus applications were more present than in the Small cellular
dataset, and a lot more flows were classified as 360 Antivirus and AVG. The larger
amount of antivirus flows is possibly due to the fact that the number of packets that
the flows are built of is shorter in this dataset as stated previously.

56

Figure 21: Large Cellular dataset information.

In order to detect potential NAT candidates the number of flows for each
IP-address is examined. In Figure 22 all unique IP-addresses are plotted against
the number of flows each of them received. The total amount of IP-addresses in the
dataset are 53 091, as seen in Figure 21. Some statistics on the flows is presented
in Table 15.

Table 15: Large Cellular flow statistics.

Flow Statistics Amount of Flows
Count 53 091
Mean 800.3
Standard Deviation 2 115.8
Minimum 1
25-Percentile 96
50-Percentile 340
75-Percentile 923
Maximum 269 963

57

Figure 22 show that the highest concentration of flows per IP-addresses are in
the range of 100 - 2 000 flows. The figure displays a few outliers that contains a
much higher amount of flows than the rest of the IP-addresses. The outliers are
those that are of most importance in this study, as mentioned previously more hosts
will create more traffic, therefore it is of interest to examine why these IP-addresses
contained many flows.

Figure 22: CDF for the logarithmic amount of flows per individual IP-address in
the Large Cellular dataset.

In the dataset 5 072 IP-addresses contained 20 437 172 flows which are 48.1%
of the total amount of flows. The IP-addresses which received the highest amount
of flows are presented in Table 16 and are plotted in Figure 23. This shows that
the number of flows some IP-addresses receive is not evenly distributed which could
indicate that they may contain more than one host. As can be seen in Table 15 one
IP-address contained a particularly high amount of the flows. It received 269 963
flows which are around 0,64% of all the flows in the dataset.

58

Figure 23: The 15 IP-addresses which received the highest amount of flows in the
Large Cellular dataset. The left plot show the total amount of flows per IP-address
and the right plot shows the same IP-addresses but with their amount of NAT
detection flows.

The IP-addresses which contained the highest amount flows were further
investigated in order to discover if they contained several devices. A measurement
was done to discover how many NAT detection flows they contained, to see if it
was in proportion to the total number of flows they received. In Table 16 and on
the right side of Figure 23 the top 15 IP-addresses are displayed but only with the
number of NAT detection flows they received. It was revealed that several of them
did only contain a few NAT detection flows and that it was not in proportion to
the total amount of flows they received. While examining what types of flows they
received it was revealed that most of them contained a lot of BitTorrent flows which
explains why they received such a large amount of flows.

59

Table 16: The 15 IP-addresses which contained the highest number of flows and with
their number of NAT detection flows in the Large Cellular dataset.

IP-address NAT detection flows Total number of flows
167779053 6 269 963
167773707 2 116 800
167773045 0 113 501
167898800 2 112 468
167891806 0 86 670
168040719 0 64 489
167774240 4 55 541
167774872 0 45 784
167780132 13 43 272
167866527 0 43 257
167899302 1 43 126
168012105 4 42 000
167773551 0 37 874
167895371 0 37 655
167772906 212 37 362

NAT Detection Flow Evaluation

The next point of interest was to determine which IP-addresses that contained NAT
detection flows and use them to detect NAT hosts. As mentioned previously, Figure
21 revealed that the dataset contained a total of 31 731 NAT detection flows, which
is distributed on different IP-addresses. In Figure 24 all the 53 091 IP-addresses
are represented as percentage and plotted against the number of NAT detection
flows each of them contains. As can be seen on the CDF graph only a few of the
IP-addresses contains NAT detection flows. Most of the IP-addresses do not contain
any NAT detection flows or only a few. Out of the 53 091 IP-addresses present in
the dataset, only 3 507 contained NAT detection flows, which is around 6.6% of all
the IP-addresses.

60

Figure 24: CDF for the logarithmic amount of NAT detection flows per individual
IP-address in the Large Cellular dataset. The left plot is zoomed in on the fraction of
IP-addresses which received NAT detection flows. The right plot shows the fraction
of IP-addresses which only received NAT detection flows.

Analyses were performed on the 3 507 IP-addresses which contained the NAT
detection flows in order to better understand how they were distributed. On the right
side of Figure 24 the IP-addresses were plotted against the number of NAT detection
flows each IP contained. This shows that 80% of those IP-addresses contained 1 - 10
NAT detection flows each and that some IP-addresses received over 100 flows each.
By comparing this plot with Figure 19 from the small dataset, one can see that the
graphs have a similar distribution. When trying to determine the amount of host for
a NAT device this method examines the pattern of a certain NAT detection flow and
the amount of different antivirus flows a single IP-address receives. Therefore the
IP-addresses which only contained a single NAT detection flow are not examined.

In Table 17 the IP-addresses which contained the highest amount of NAT
detection flows is displayed and since they received much more flows than the
majority of the IP-addresses they were further examined. Most of the IP-addresses
in Table 17 contained a large amount of flows from a single application, eight of
them consisted mostly of Windows Update flows and two IP-addresses contained
only flows from two different antivirus applications. Nearly all of the IP-addresses
that received Windows Update flows also received a few Microsoft BITS flows.

61

Table 17: The top 10 IP-addresses which contained the greatest number of NAT
detection flows in the Large Cellular dataset.

IP-address Flows
167798233 821
167777945 662
167921664 347
167979988 319
167987877 315
167775183 306
167778466 276
167990933 261
168188912 254
167778788 241

Windows Update Flow Evaluation

In this part of the paper, the evaluation of the Windows Update flows will be
examined. The results from the evaluation of the different OSes in Section 5 will be
used as ground truth in the detection.

It was discovered that out of the total 53 091 IP-address in the dataset, 669
IP-address received all of the Windows Update flows. If each of the IP-addresses
received an equal amount of Windows Update flows they would consist of one to
three hosts, by comparing with the results achieved in Section 5 and equation 1.

Figure 25 displays the distribution of the downloaded and uploaded Windows
Update flows with their size and start time. To gain a good representation of the flow
distribution only a third of all Windows Update flows are presented in the figure.
Three horizontal lines can be observed in the Downloaded Bytes graph, around the 1
KB, 10 KB and 1 MB levels. In the Uploaded Bytes section, two horizontal lines are
also observed in the 1 KB and the 50 KB section. These horizontal graphs show that
several flows with roughly the same sizes are found during the whole time that the
flows were collected. The behavior of the flows observed in Figure 25 could indicate
that Windows released a new update which several different hosts are retrieving.

Another observation in the figure is that there is a high concentration of flows in
the 250 - 600 minutes interval. During these 350 minutes, 5 528 flows are received
to 348 IP-addresses. That is around half of all the Windows Update flows and
IP-addresses. This indicates an increase in the traffic during this period where a
large proportion of the IP-addresses received Windows flows during this interval.

62

Figure 25: A third of all Windows Update flows present in the Large Cellular dataset
with each flows size versus the flow start time.

Figure 26 zooms in on the horizontal line observed in the 1 MB interval in Figure
25 with all the flows present. Only a few flows with the size less than 1 090 000
bytes is observed in the figure and the difference in size between the flows are rather
small. This observation further adds to the conclusion that the flows with this size
are the same Windows update gathered by several hosts in different times.

Figure 26: Zoomed in on all Windows Update flows with their flow size and start
time.

Table 18 presents the statistics for the downloaded sizes of the Windows update
flows. Some of the flows labeled as Windows Update flows did not contain any
downloaded bytes and was therefore removed, which results in 9 650 Windows flows
instead.

63

Table 18: Downloaded Windows Update flow sizes for the Large Cellular dataset.

Statistics Amount of Flows
Count 9 650
Mean 655 346
Standard Deviation 1 730 983
Minimum 60
25-Percentile 5 501
50-Percentile 159 102
75-Percentile 1 093 103
Maximum 88 009 970

In order to see how the Windows Update flows are distributed for different
IP-addresses Figure 27 was made. The figure displays the five IP-addresses which
had the highest amount of Windows Update flows, where each color represent a
different IP-address. The size of each downloaded Windows Update flow is presented
on the left side, the number of flows on the right side and the start time of the flows
are shown on the x-axis on both sides.

As can be observed in the figure all of the IP-addresses received a lot of flows
during short intervals and of different sizes. There are also breaks observed for the
IP-addresses where several flows are retrieved during a short interval followed by a
pause and then a new burst of flows with different sizes. This behavior was mostly
found on the IP-addresses which retrieved a lot of flows. The IP-addresses which
received smaller amounts of flows retrieved nearly all of their flows in the same
interval, with flows of different sizes.

The IP-address in Figure 27 was compared to the results in section 5 and it
showed strong indications that these IP-address may contain NAT and several
different hosts. The distribution of the flows were quite similar to the ones from
Windows 7 and 10, where flows arrived in bursts of different sizes. However, the
amount of flows the IP-addresses received was much higher than previously observed.
The length of the flow bursts were also much longer. In section 5 the highest number
of flows in a flow burst was observed to be 87 and the bursts only lasted for a couple
of seconds. For this dataset, the bursts contained several hundred flows and could
last for hours. By comparing the average flow burst sizes from Table 11 it shows
that IP-address 1 might consist of 36 - 183.7 hosts depending on what OS that is
being used according to equation 2. The other IP-addresses in the figure consisted
of flow burst that was around 200-300 flows big and therefore may consist of around
14 - 70 hosts.

64

Figure 27: Windows Update flow arrival time versus the number of flows for different
IP-addresses in the Large Cellular dataset.

Antivirus Flow Evaluation

Since this dataset contains several more flows than the Small dataset it might be
possible to draw new conclusions of how the shape may look like when an IP-address
receives flows from several different NAT detection flows. It is particularly
interesting to look if there are any similarities between the Windows update and
the antivirus flows start time. Therefore in order to see if some of the IP-addresses
might contain several different hosts with an Windows OS the IP-addresses which
had at least one Windows Update flow and two antivirus flows was compared. 21
IP-addresses contained three different NAT detection flows and one contained four
different. For each different antivirus flow the IP-addresses received, it could be an
indication that it have more than one host, even if the number of Windows flows
are low. The IP-address which contained the highest amount of Windows Update
flows are plotted in Figure 28 with all the NAT detection flows it contains.

Since there existed two services named AVG in the dataset, ’AVG’ and ’AVG
Anti-Virus update’ they were both grouped together under the service name AVG.

In Figure 28 all the NAT detection flows IP-address 167784134 contains and
their size are plotted against the time when the host initialize a connection. As can
be seen in the figure the IP-address consists of Windows Update flows and three
different antivirus flows. The Windows Update flows have the same shape as the
ones in Figure 27 where a lot flows is retrieved during two bursts and the flows are
of different sizes.

What can be observed from the figure is that the two antivirus flows start during
nearly the same time as the Windows Update flows. Flows from Window Update,
Microsoft BITS and McAfee are observed during nearly the same time, which could

65

be an indication that a computer has just been started. The host then continues to
receive McAfee flows during the whole time. Furthermore, the IP-address start to
receive Avast flows during the same time as the second Windows Update flow burst
starts. These observations show indications that another host on the connection
might start to receive their updates.

Figure 28: NAT detection flow distribution for IP-address 167784134, with the size
and amount of flows versus time.

In total 66 IP-addresses were found that contained flows from at least two
different antiviruses, and one IP-address were found that contained flows from three
different. 42 of the 66 IP-addresses contained flows from both 360 Antivirus and
AVG. On average each of the 42 IP-addresses contained 6.5 flows from 360 Antivirus
and six flows from AVG.

7.3 DSL and Cellular Dataset Evaluation

Dataset Overview

The third dataset contained a mix of DSL and Cellular data which is believed to
increase the amount of NAT detection flows to examine. It was provided by Procera
and the traffic was collected during approximately 7 days. Figure 29 shows basic
characteristics about the dataset. The dataset consisted of 68 596 470 flows in total
which is 1.6 times the size of the Large Cellular dataset. What is surprising is that
the number of unique IP-addresses which contained NAT detection flows is only 372,
which is very small when compared to the other sets. The amount of NAT detection
flows in this dataset is around 0.2% which is more flows in total when comparing
to the Large Cellular dataset where 0.066% of the flows were NAT detection flows.
This is interesting because that means that 372 of the IP-addresses in the dataset

66

shares all the 137 375 NAT detection flows, which is a lot more flows per IP-address
then previously observed.

Figure 29: DSL and Cellular dataset information.

In this dataset 97 333 Windows Update flows were detected which is around the
same amount of Windows Update flows as in the previous two datasets if they had
been gathered for seven days. The Number of AVG flows detected was greater in
this dataset than in the other ones. The NAT detection applications found in the
dataset was roughly the same as in the previous ones, where most of the applications
were identified as antiviruses.

Table 19 shows the statistics for the number of flows each IP-address contains.
Most of the IP-addresses in this dataset did only receive a few flows, which can also
be seen in Figure 30.

67

Table 19: DSL and Cellular flow statistics.

Flow Statistics Amount of Flows
Count 194 989
Mean 352
Standard Deviation 8 042
Minimum 1
25-Percentile 1
50-Percentile 1
75-Percentile 84
Maximum 2 004 558

Figure 30 shows a CDF plot of how many flows each unique IP-address received.
Nearly 60% of all the IP-addresses received only one flow which is very few since this
traffic was collected for seven days. In contrast, the other 40% of the IP-addresses
contained a lot of flows, where all of them contained 50 flows or more. As can be
seen in the figure a small amount of the flows received significantly more flows than
the other IP-addresses, where one IP-address received as many as 2 004 588 flows.

Figure 30: CDF for the logarithmic amount of flows per individual IP-address in
the DSL and Cellular dataset.

It was discovered that 1 670 of the IP-address contained 60 765 572 flows together
which is 88.6% of all the flows in the dataset. 136 915 of the NAT detections flows
were discovered to be contained in these 1 670 IP-addresses. This is further evidence
that only a few of the IP-addresses created the majority of the traffic.

In Table 20 the total amount of flows, as well as the number of NAT detection
flows, is presented for the IP-addresses which received the highest amount of flows.

68

The IP-addresses are also represented in Figure 31. As can be observed from the
figure some similarities exist between the three datasets where one IP-address often
contains several more flows than the others, but for this dataset, the total amount
of flows the IP-addresses received were significantly greater.

Figure 31: The 15 IP-addresses which received the highest amount of flows in the
mixed DSL and Cellular dataset. The left plot shows the total amount of flows per
IP-address and the right plot shows the same IP-address but with their amount of
NAT detection flows.

The IP-addresses did however not contain that many NAT detection flows, where
IP 10.0.0.212 did not contain a single NAT detection flow. When further examining
the flows it was revealed that IP-address 10.0.0.212 did only contain Internet Control
Message Protocol (ICMP) flows and most of the other IP-addresses contained a high
amount of Bittorrent, ICMP and DNS flows.

69

Table 20: The top 15 IP-addresses with their number of NAT detection flows and
total number of flows in the DSL and Cellular dataset.

IP-address NAT detection flows Total number of flows
10.0.0.212 0 2 004 558
10.0.6.246 710 961 375
10.0.1.51 4947 871 070
10.0.2.205 0 786 837
10.0.1.134 0 725 961
10.0.3.131 1208 690 163
10.0.2.66 0 538 657
10.0.0.25 3 494 161
10.0.0.129 1288 470 330
10.0.1.26 0 409 063
10.0.13.183 244 390 067
10.0.0.57 6370 355 045
10.0.0.92 0 299 998
10.1.43.202 0 285 949
10.0.1.90 5 285 858

NAT Detection Flow Evaluation

The distribution of the NAT detection flows for this dataset is evaluated in this
section. In Figure 32 the IP-addresses which contain NAT detection flows are visible.
The left plot shows how many of the IP-addresses in the dataset which contains NAT
detection flows, as can be seen, it is around 0.2% of the 194 989 IP-addresses. The
right side displays the 372 IP-addresses which contain all the NAT detection flows,
as can be observed these IP-addresses contained a much higher amount of NAT
detection flows when comparing to the two other datasets, where 60 - 80% of the
IP-address only contained 1 - 10 flows each. In this dataset, the majority of the
flows contained 10 - 1000 flows each which is a large increase in the number of flows
each IP received, which could be an indication that there are several hosts behind
one IP-address.

70

Figure 32: CDF for the logarithmic amount of NAT detection flows per individual
IP-address in the DSL and Cellular dataset. The left plot is zoomed in on the
fraction of IP-addresses which received NAT detection flows. The right plot shows
the fraction of IP-addresses which only received NAT detection flows.

The NAT detection flows in the dataset were further examined to determine
if some of the IP-addresses might contain several hosts. The IP-addresses which
contained the highest amount of NAT detection flows is presented in Table 21. In
comparison to the other datasets the IP-addresses of this dataset received a much
higher amount of NAT detection flows where the previously highest amount of flows
per IP-addresses was 821. Most of the IP-addresses in Table 21 received the majority
of their flows from one application, where Windows Update, AVG, and 360 Antivirus
were most present.

Table 21: The top 10 IP-addresses which contained the greatest amount of NAT
detection flows in the DSL and Cellular dataset.

IP-address Number of Flows
10.2.47.31 7 494
10.0.0.57 6 370
10.1.71.53 5 422
10.0.1.51 4 947
10.0.0.253 4 536
10.0.4.179 4 157
10.0.10.218 3 988
10.0.23.29 3 288
10.0.2.135 3 005
10.0.2.134 2 912

71

Windows Update Flow Evaluation

The first NAT detection method was performed by analyzing the Windows Update
flows and the IP-addresses which received them in order to detect the number of
hosts behind each IP-address. Table 22 shows the size statistics for the Windows
Update flows. As can be observed the size of the flows varies quite a lot. Some of
the downloaded flows did not have any size and were therefore removed.

Table 22: Downloaded Windows Update flow size statistics for the DSL and Cellular
dataset.

Flow statistics Download size (Bytes)
Count 96 709
Mean 1 418 866
Standard Deviation 23 772 350
Minimum 66
25-Percentile 10 812
50-Percentile 138 106
75-Percentile 1 093 127
Maximum 2 246 904 370

Figure 33 displays the distribution of downloaded and uploaded bytes for the
Windows Update flows. To gain a good representation of the flow distribution the
tenth of all Windows Update flows is presented in the figure. As can be seen in
the Figure it is similar to Figure 25 in the Large Cellular dataset, where the same
three horizontal lines can be observed in the Downloaded bytes graph. It exists
some differences between the Uploaded Bytes graphs but a horizontal line can be
observed in the 1 KB intervals which are similar to the previous results. This reveals
that the distribution of the Windows Update flows are quite similar between the
different datasets, even if the flows are gathered during several days. These results
are however different from the ones determined from the Windows 8.1 experiment,
which displayed only a few flows in the 1 MB sizes in contrast to this dataset.
In the dataset 256 of the IP-addresses contained the 96 709 downloaded Windows
Update flows, which on average leads to around 54 Windows Update flows for each
IP-address per day. That is roughly around three to nine hosts per IP-address
according to equation 1 which make it highly likely that several of the IP-addresses
are behind a NAT.

72

Figure 33: A tenth of all Windows Update flows present in the DSL and Cellular
dataset with each flows size versus the flow start time.

Since the traffic was collected approximately for a week experiments were,
performed in order to see if it existed some similarities between the Windows Update
flows from this dataset and the Windows flows from the previous evaluation in
Chapter 5.

An evaluation was performed to see if the time difference between the flows for
each IP-address showed a similar result as with the Windows VM’s. What can be
observed is that the start time differences between nearly all of the flows were very
short, 77 583 of the Windows Update flows started one second or less after a previous
flow. Figure 34 shows only the frequencies of flows that have a time difference of
one hour or more where 4 460 of the 96 709 flows are found. 2 518 of the flows have
a time difference of one to two hours and 1 209 flows had a time difference of five to
160 hours. This test was not possible on the previous datasets because the traffic
was collected for a much shorter duration.

As can be observed in the right side of Figure 34 the most frequent time
differences are between 5 - 30 hours, 1 101 flows are found here. In this range
all the flows which were the first in a flow burst from the Windows study exists,
therefore some similarities between this dataset and the one from the Windows study
exists.

73

Figure 34: Zoomed in on the time difference frequency for the DSL and Cellular
dataset.

The next experiment examined the distribution of the flows with their size and
the time difference between them. From the analysis of the Windows OSes, it was
revealed that the flows which were in the 1 - 100 MB sizes started nearly instantly
after another flow and the time difference between the flows that were 1 - 100 KB
could range from a couple of seconds to several hours. The longest duration between
the flows was observed to be 33 hours.

As can be observed in Figure 35 the distribution of the flows is similar to the
ones in the Windows OS experiments. 33 078 of the flows in the dataset were in
the 1 - 100 MB size and out of those 31 915 flows were discovered to have a time
difference of 0 - 20 seconds, which is similar to the results achieved previously. It
can also be observed that nearly all of the flows in the 1 - 100 KB size range have
a similar distribution to the ones observed in the Windows OS tests.

74

Figure 35: Windows Update flow sizes versus start time difference for the DSL and
Cellular dataset. Shows every 10th flow in the dataset.

Figure 36, 37 and 38 shows all the Windows Update flows for the 15 IP-addresses
which received the highest amount of Windows Update flows. The size and start
time for each downloaded flow is presented on the left side. The right plot displays
the number of flows each IP-address receives as well as the start time for each flow.
Each color represents an different IP-address and the color is the same on the left
and right side. What can be observed is that the flow distribution is rather different
between the IP-addresses. Some of the IP-addresses receives several thousands of
flows during just a few hours, whilst on the other hand IP-address number 1 in
Figure 38 received a near constant increase of flows in the seven day period. The
flows are distributed in a lot of different shapes but the shapes that were the most
common are either that the majority of the flows arrive in single large burst or that
they arrive over a longer period of time in smaller bursts.

75

Figure 36: The size and amount of flows versus the flow arrival time for the 1 - 5
IP-addresses which contained the highest amount of Windows Update flows.

Figure 37: The size and amount of flows versus the flow arrival time for the 6 - 10
IP-addresses which contained the highest amount of Windows Update flows.

76

Figure 38: The size and amount of flows versus the flow arrival time for the 11 -
15 IP-addresses which contained the highest amount of Windows Update flows.

The number of flows these IP-addresses receive is several times greater than
observed in Section 5. IP-address number 1 in Figure 36 for example received
around 6 000 flows during a couple of hours. This is far more than previously
detected. If the number of flows found during this burst was compared to the burst
sizes in section 5 it would indicate that IP-address number 1 may consists of 337 -
1 685 individual hosts according to equation 2. This is an enormous increase in the
potential amount of hosts for a single IP-address. However, in order to be accurate
if the IP-address can consist of that many host’s further research have to be made.

Antivirus Flow Evaluation

This dataset consisted of flows from both ’AVG’ and ’AVG Anti-Virus’, these flows
were grouped together since they are from the same antivirus.

The antivirus detection tests revealed that 35 IP-addresses received flows from
two or more different antivirus flows, which could indicate that these IP-addresses
consists of a network with more than one host. At most six IP-addresses received
flows from three different antivirus flows. The antivirus which had the highest
number of flows in the dataset was AVG, and some IP-addresses received a very
high amount of these flows, where one IP-address received as many as 5 347 flows.

30 IP-addresses were revealed to contain flows from Windows Update as well as
two or more different antivirus flows. Where the six IP-addresses which received
flows from three different antiviruses also contained Windows Update flows. It was
observed that most of the flows from the antiviruses were received during the same
intervals as the Windows Update flow.

77

7.4 Chapter Summary

The analysis of the three datasets reveals that each of them has some IP-addresses
which might hold a private network with several hosts in it. However, the datasets
did only contain a low amount of flows that could be used in the NAT detection.
This can result in that several of the IP-addresses may contain a NAT but the
methods used in this study is unable to detect them. This may be the cause of using
traffic flows which are collected from cellular networks. According to the statistics
from Statcounter [31] cellular networks have a low amount of Windows phones. The
analysis of the antivirus flows shows there are some IP-addresses which contains flows
from two or more different antiviruses. This is an indication that there might exist
several hosts behind those IP-addresses. Furthermore several of the IP-addresses
contained large amounts of Windows Update flows. The results obtained from the
Windows Update empirical study was compared with how the Windows Updates
was distributed on the three datasets. Comparison between the number of flows each
IP-address received showed that several of the IP-addresses may contain a private
network with different hosts in it. But in order to provide a good estimate of the
number of hosts each IP-address may contain further studies of the flows have to be
performed.

78

8 Conclusion

8.1 Summary

This study has evaluated datasets in order to discover the presence of NAT and
to determine the amount of hosts behind a NAT. Methods that used flows from
different applications and softwares were used for the detection.

The datasets were provided from two different sources: Karlstad university’s lab
and Procera Networks. The datasets were gathered with the use of a DPI engine
and the packets were then grouped together into flows that were examined.

The datasets gathered in the laboratory at Karlstads University was done in
order to gain ground-truth information on one of the detection aspects namely
Windows Update. Three VMs were setup where each had a different Window OS.
By performing tests and evaluating the properties of the Windows Update flows,
attributes were found that was used in the NAT host counting analysis. It was
found that the distribution of the traffic was rather different between the OSes. For
some OSes, the flows arrived in large bursts with several flows arriving during the
same intervals. Other OSes received a single flow that arrived after a near constant
time had passed. The attributes that were discovered for each OS were then used
to create new NAT detection methods that was used on the datasets provided by
Procera Networks.

The datasets provided by Procera Networks were evaluated to discover if there
were any IP-addresses which consisted of a NAT and the number of hosts behind
the NAT. The datasets were gathered with Proceras DPI engine and three different
datasets were provided for this study. The datasets were gathered for different
durations and from the traffic of real cellular networks, where one of the datasets
partly consisted of DSL traffic. The presence of the NAT detection flows which
were used to determine the number of hosts behind each IP-address was low for
all of the datasets. Around 0.41%, 0.07% and 0.2% of the flows in the datasets
consisted of NAT detection flows. The reason for this low amount of NAT detection
flows might be because the datasets were mostly made out of traffic from cellular
networks. Since the amount of Windows phones and the usage of antiviruses on
mobiles are rather low it might serve as one explanation for the low rate of NAT
detection flows [31]. The low amount of NAT detection flows limits the capability
of this detection model, where the majority of the flows could not be used to detect
NAT or to count the number of hosts. Some indication of NAT traffic behavior were
found on all the three datasets as well as some indication on how many hosts the
IP-address might consist of. To provide a higher accuracy on the number of hosts
behind the IP-addresses further research have to be made.

79

8.2 Future Work

Examine Traffic Gathered from DSL Networks

By collecting data from a real DSL network it might be possible to increase the
number of flows which are classified as the NAT detection flows used in this study.
This might increase the amount of Windows flows and antivirus flows. Because it
is more common to find desktop computers with a Windows OS on a DSL network
than a cellular network, as can be seen on the statistics from StatCounter [30], where
Windows stands for around 84% of the market share for all desktop OSes. It is also
highly likely that these Windows OSes have an antivirus software installed. If the
amount of NAT detection flows would increase for the datasets it would provide
more data to analyze and allow more accurate methods to be derived.

Labeled NAT and non-NAT Traffic

By collecting data which comes from a NAT it might increase the accuracy of the
detection methods if the traffic flows were labeled as NAT or non-NAT. By knowing
which flows that are NATed or not, it is possible to determine the characteristics of
the flows that arrive from a NAT using that as ground truth and thereby creating
more accurate detection methods. Since the flows in this study were not labeled as
NAT or non-NAT it proved difficult to know if the host counting methods performed
well and more experiments have to be performed to be certain of the results.

SYN Flow Detection

Another method that can be used to determine the amount of host behind a NAT
is by using the SYN packet sizes. As stated by Dietz [8], the size of the SYN packet
are different for each OS. By collecting the size of each SYN packet observed in the
dataset, it might be possible to derive how many different OSes which sends traffic
from a single IP-address. By combining this detection method with the previous
ones explained in this study, it may be possible to count the number of hosts for a
single connection with a higher accuracy.

Extended Windows Update Empirical Study

In order to be certain on the behavior of the Windows Update flows more analysis
of the flows have to be performed. By collecting traffic from several computers with
the same windows OS it is possible to make certain that the distribution of the
flows is the same. It may also be possible to identify if they are receiving the same
updates, which could then be used for host detection.

80

By gathering traffic flows for a longer duration it would also increase the accuracy
of using the Windows Update flows in the detection. Because it would make the
ground truth data more reliable and it would be easier to determine the maximum
amount of flows a host can receive and how often they are received. By having
reliable answers for how the Windows Update flow distribution look like it is possible
to determine the highest number of hosts that each IP-address can consist of.

8.3 Concluding Remarks

This study has focused on analyzing datasets and deriving methods to determine the
number of hosts behind a NAT. The analysis was done with Python and the Pandas
package, to handle large amounts of data in the datasets and to create methods
for analyzing the flows. An analysis on Windows Update flows was performed and
several NAT host detection methods were derived from the results of this study.
In total six datasets were examined in two different experiments. The results show
that NATed hosts might exist on the provided datasets from Procera and it may
be possible to determine how many hosts that exists behind each NAT with the
methods derived in the study, if further research is performed. On a personal level,
several new methods and knowledge have been gained during the course of the
project. How a NAT works and various methods on how to determine the amount
of host behind a NAT have been learned. Python programming was introduced and
how to handle large datasets was also learned.

81

82

References
[1] Sebastian Abt, Christian Dietz, Harald Baier, and Slobodan Petrović. Passive

remote source NAT detection using behavior statistics derived from Netflow. In
Proceedings of the 7th IFIP WG 6.6 International Conference on Autonomous
Infrastructure, Management, and Security: Emerging Management Mecha-
nisms for the Future Internet - Volume 7943, AIMS’13, pages 148–159, Berlin,
Heidelberg, 2013. Springer-Verlag.

[2] AV-Comparatives. /textIT Security Survey 2017, 2017. [Online][Cited:
2017-03-13] https://www.av-comparatives.org/wp-content/uploads/
2017/01/security_survey2017_en.pdf.

[3] Steven M Bellovin. A technique for counting NATted hosts. In Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet measurment, pages 267–272.
ACM, 2002.

[4] Jun Bi, Lei Zhao, and Miao Zhang. Application presence fingerprinting for
NAT-aware router. In International Conference on Knowledge-Based and In-
telligent Information and Engineering Systems, pages 678–685. Springer, 2006.

[5] N Brownlee, C Mills, and G Ruth. RFC 2722-Traffic Flow Measurement. Ar-
chitecture, 10, 1999. [Online][Cited: 2017-03-16] https://tools.ietf.org/
html/rfc2722.

[6] Microsoft Corporation. Microsoft Security Intelligence Report, Volume 21.
2016. [Online][Cited: 2017-05-12]https://www.microsoft.com/security/
sir/default.aspx.

[7] NumPy developers. Numpy, 2017. [Online][Cited: 2017-02-05] http://www.
numpy.org/.

[8] Christian Dietz. Passive remote detection of network address translation (NAT)
by using NetFlow. Citeseer, 2013. [Online][Cited: 2017-02-23]https://www.
dasec.h-da.de/wp-content/uploads/2013/08/thesis-dietz_Final.pdf.

[9] Python Software Foundation. Python, 2017. [Online][Cited: 2017-02-05]
https://www.python.org/.

[10] Yasemin Gokcen, Vahid Aghaei Foroushani, and A Nur Zincir Heywood. Can
we identify NAT behavior by analyzing traffic flows? In Security and Privacy
Workshops (SPW), 2014 IEEE, pages 132–139. IEEE, 2014.

83

https://www.av-comparatives.org/wp-content/uploads/2017/01/security_survey2017_en.pdf
https://www.av-comparatives.org/wp-content/uploads/2017/01/security_survey2017_en.pdf
https://tools.ietf.org/html/rfc2722
https://tools.ietf.org/html/rfc2722
https://www.microsoft.com/security/sir/default.aspx
https://www.microsoft.com/security/sir/default.aspx
http://www.numpy.org/
http://www.numpy.org/
https://www.dasec.h-da.de/wp-content/uploads/2013/08/thesis-dietz_Final.pdf
https://www.dasec.h-da.de/wp-content/uploads/2013/08/thesis-dietz_Final.pdf
https://www.python.org/

[11] 2017 Project Jupyter. JupyterNotebook, 2017. [Online][Cited: 2017-02-05]
http://jupyter.org/.

[12] Tomáš Komárek, Martin Grill, and Tomáš Pevnỳ. Passive NAT detection using
HTTP access logs. In Information Forensics and Security (WIFS), 2016 IEEE
International Workshop on, pages 1–6. IEEE, 2016.

[13] Rui Li, Hongliang Zhu, Yang Xin, Yixian Yang, and Cong Wang. Remote NAT
detect algorithm based on support vector machine. In Information Engineering
and Computer Science, 2009. ICIECS 2009. International Conference on, pages
1–4. IEEE, 2009.

[14] Gregor Maier, Fabian Schneider, and Anja Feldmann. NAT usage in residential
broadband networks. In International Conference on Passive and Active Net-
work Measurement, pages 32–41. Springer, 2011.

[15] Microsoft. Windows update frequency, 2008. [Online][Cited: 2017-05-12]
https://technet.microsoft.com/en-us/library/cc627316.aspx.

[16] Microsoft. Microsoft Update Catalog, 2017. [Online][Cited: 2017-05-12] http:
//www.catalog.update.microsoft.com/Home.aspx.

[17] Microsoft. Windows Update FAQ, 2017. [Online][Cited: 2017-05-12] https:
//support.microsoft.com/en-us/help/12373/windows-update-faq.

[18] Sophon Mongkolluksamee, Kensuke Fukuda, and Panita Pongpaibool.
Counting NATted hosts by observing TCP/IP field behaviors. In Commu-
nications (ICC), 2012 IEEE International Conference on, pages 1265–1270.
IEEE, 2012.

[19] Procera Networks. Procera Networks, 2015. [Online][Cited: 2017-05-14] https:
//www.proceranetworks.com/.

[20] OPSWAT. Antivirus and Compromised Device Report: January 2015, 2015.
[Online][Cited: 2017-05-12] https://www.opswat.com/resources/reports/
antivirus-and-compromised-device-january-2015.

[21] The pandas community. Pandas, 2016. [Online][Cited: 2017-02-05] http://
pandas.pydata.org/.

[22] Hanbyeol Park, Seung-hun Shin, Byeong-hee Roh, and Cheolho Lee.
Identification of hosts behind a NAT device utilizing multiple fields of IP and
TCP. In Information and Communication Technology Convergence (ICTC),
2016 International Conference on, pages 484–486. IEEE, 2016.

84

http://jupyter.org/
https://technet.microsoft.com/en-us/library/cc627316.aspx
http://www.catalog.update.microsoft.com/Home.aspx
http://www.catalog.update.microsoft.com/Home.aspx
https://support.microsoft.com/en-us/help/12373/windows-update-faq
https://support.microsoft.com/en-us/help/12373/windows-update-faq
https://www.proceranetworks.com/
https://www.proceranetworks.com/
https://www.opswat.com/resources/reports/antivirus-and-compromised-device-january-2015
https://www.opswat.com/resources/reports/antivirus-and-compromised-device-january-2015
http://pandas.pydata.org/
http://pandas.pydata.org/

[23] Christopher Parsons. Deep Packet Inspection and Its Predecessors, 2012.
[Online][Cited: 2017-05-14] https://www.christopher-parsons.com/Main/
wp-content/uploads/2013/02/DPI-and-Its-Predecessors-3.5.pdf.

[24] Lisa Phifer. The trouble with NAT. The Internet Protocol Journal, 3(4):2–13,
2000. [Online][Cited: 2017-03-16].

[25] Jon Postel et al. RFC 791: Internet protocol. 1981. [Online][Cited: 2017-03-16].

[26] Jon Postel et al. Transmission control protocol RFC 793, 1981. [Online][Cited:
2017-03-16].

[27] Kaspersky lab Serge Malenkovich. Why using multiple antivirus programs is
a bad idea, 2013. [Online][Cited: 2017-05-12] https://blog.kaspersky.com/
multiple-antivirus-programs-bad-idea/2670/.

[28] Matt Smith and Ray Hunt. Network security using NAT and NAPT. In Net-
works, 2002. ICON 2002. 10th IEEE International Conference on, pages 355–
360. IEEE, 2002.

[29] P Srisuresh and M Holdrege. Rfc 2663. IP Network Address Translator (NAT)
Terminology and Considerations, 1999. [Online][Cited: 2017-03-16]https://
tools.ietf.org/html/rfc2663.

[30] StatCounter. Desktop Operating System Market Share Worldwide, 2017.
[Online][Cited: 2017-05-16] http://gs.statcounter.com/os-market-share/
desktop/worldwide/#monthly-201704-201704-bar.

[31] StatCounter. Mobile Operating System Market Share Worldwide, 2017.
[Online][Cited: 2017-05-16] http://gs.statcounter.com/os-market-share/
mobile/worldwide/#monthly-201704-201704-bar.

[32] Statista. ”Internet of Things (IoT) connected devices installed base
worldwide from 2015 to 2025 (in billions)”, 2017. [Online][Cited:
2017-05-14] https://www.statista.com/statistics/471264/iot-number-
of-connected-devices-worldwide/.

[33] Internet Live Stats. Internet Users, 2017. [Online][Cited: 2017-0514] http:
//www.internetlivestats.com/internet-users/#trend.

[34] Kenneth Straka and Gavin Manes. Passive detection of nat routers and client
counting. In IFIP International Conference on Digital Forensics, pages 239–
246. Springer, 2006.

85

https://www.christopher-parsons.com/Main/wp-content/uploads/2013/02/DPI-and-Its-Predecessors-3.5.pdf
https://www.christopher-parsons.com/Main/wp-content/uploads/2013/02/DPI-and-Its-Predecessors-3.5.pdf
https://blog.kaspersky.com/multiple-antivirus-programs-bad-idea/2670/
https://blog.kaspersky.com/multiple-antivirus-programs-bad-idea/2670/
https://tools.ietf.org/html/rfc2663
https://tools.ietf.org/html/rfc2663
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201704-201704-bar
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201704-201704-bar
http://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-201704-201704-bar
http://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-201704-201704-bar
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
http://www.internetlivestats.com/internet-users/#trend
http://www.internetlivestats.com/internet-users/#trend

[35] Wikipedia. Patch tuesday, 2017. [Online][Cited: 2017-05-12] https://en.
wikipedia.org/wiki/Patch_Tuesday.

[36] Bo Zhang, Yangyang Guan, Wenjia Niu, Jianlong Tan, and Zhi Mao. A hybrid
packet clustering approach for NAT host analysis. In Communication Software
and Networks (ICCSN), 2015 IEEE International Conference on, pages 432–
438. IEEE, 2015.

86

https://en.wikipedia.org/wiki/Patch_Tuesday
https://en.wikipedia.org/wiki/Patch_Tuesday

	Introduction
	Motivation
	Goal
	Disposition

	Background
	TCP and IP header Information
	Network Address Translation
	Tools
	Chapter Summary

	Related Studies
	Signature Based Detection Methods
	Behavior Based Detection Methods
	Chapter Summary

	Datasets and Detection Aspects
	Data Sources
	Procera Network Datasets
	KAU Lab Datasets
	NAT Host Detection Aspects
	Chapter Summary

	Windows Update Empirical Study
	Windows Update Evaluation Methods
	Windows 7 Analysis
	Windows 8.1 Analysis
	Windows 10 Analysis
	Chapter Summary

	Design of Detection Methods
	NAT Detection Method
	NAT Host Counting Methods
	Chapter Summary

	Procera Networks Dataset Evaluation
	Small Cellular Dataset Evaluation
	Large Cellular Dataset Evaluation
	DSL and Cellular Dataset Evaluation
	Chapter Summary

	Conclusion
	Summary
	Future Work
	Concluding Remarks

	References

