
IN DEGREE PROJECT INFORMATION AND COMMUNICATION 
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

,  STOCKHOLM SWEDEN 2017

Trust and verifiable computation 
for smart contracts in 
permissionless blockchains

DOMINIK HARZ

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY



Abstract

Blockchains address trust through cryptography and consensus. Bitcoin is the
first digital currency without trusted agents. Ethereum extends this technology
by enabling agents on a blockchain, via smart contracts. However, a systemic
trust model for smart contracts in blockchains is missing. This thesis describes
the ecosystem of smart contracts as an open multi-agent system. A trust model
introduces social control through deposits and review agents. Trust-related attributes
are quantified in 2,561 smart contracts from GitHub. Smart contracts employ a mean
of three variables and functions and one in ten has a security-related issue. Moreover,
blockchains restrict computation tasks. Resolving these restrictions while maintaining
trust requires verifiable computation. An algorithm for verifiable computation is
developed and implemented in Solidity. It uses an arbiter enforcing the algorithm,
computation services providing and verifying solutions, and a judge assessing solutions.
Experiments are performed with 1000 iterations for one to six verifiers with a cheater
prior probability of 30%, 50%, and 70%. The algorithm shows linear complexity
for integer multiplication. The verification depends on cheater prior probability
and amount of verifiers. In the experiments, six verifiers are sufficient to detect all
cheaters for the three prior probabilities.

Keywords: blockchain; smart contract; trust; multi-agent system; verifiable compu-
tation



Referat

Blockchains adresserar tillit genom kryptografi och konsensus. Bitcoin är den första
digitala valutan utan betrodda agenter. Ethereum utökar denna teknik genom att
möjliggöra agenter i blockchain, via smart contracts. En systemisk förtroende modell
för smart contracts i blockchains saknas emellertid. Denna avhandling beskriver
ekosystemet för smarta kontrakt som ett öppet multi-agent system. En förtroende
modell introducerar social kontroll genom inlåning och granskningsagenter. Tillitre-
laterade attribut kvantifieras i 2,561 smart contracts från GitHub. De använder ett
medelvärde av tre variabler och funktioner med en av tio som har en säkerhetsre-
laterad fråga. Dessutom blockchains begränsa beräkningsuppgifter. Att lösa dessa
begränsningar samtidigt som du behåller förtroendet kräver kontrollerbar beräkning.
En algoritm för verifierbar beräkning utvecklas och implementeras i Solidity. Den
använder en arbiter som tillämpar algoritmen, computation services som tillhan-
dahåller och verifierar lösningar och en judge som bedömer lösningar. Experiment
utförs med 1000 iterationer för en till sex verifierare med en snyggare sannolikhet för
30 %, 50 % och 70 %. Algoritmen visar linjär komplexitet för heltalsmultiplicering.
Verifieringen beror påfuskans tidigare sannolikhet och antal verifierare. I experi-
menten är sex verifierare tillräckliga för att detektera alla cheaters för de tre tidigare
sannolikheterna.

Keywords: blockchain; smart contract; trust; multi-agent system; verifiable compu-
tation
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1 Chapter 1

Introduction

Trust is a global challenge. According to the Edelman trust barometer [1], the year
2017 marks a crisis in trust. The survey quantifies trust in institutions including
government, business, media, and NGOs since 17 years and covers around 33,000
respondents in 28 countries. In 2017, the study found the highest gap of trust between
the informed public and the mass population since its beginning. Over the years trust
declined in the four above mentioned institutions, with media having the highest loss
overall and government receiving the lowest trust overall.

How can computer science research contribute to establishing or restoring trust?
Blockchains and their use cases are discussed as “a novel solution to the age-old human
problem of trust” [2, p. 1]. In the 2016 article “Trustless Trust”, Werbach argues that
blockchains can enable a third system of trust apart from formal institutions and
private peers. The term “trustless trust” describes a system based on cryptographic
measures and distributed consensus algorithms, where the system itself enables
trust without any trusted actor within it [2, p. 5]. Moreover, in October 2015,
The Economist’s lead article describes blockchain as a “machine for creating trust”
[3]. The article explains how the cryptocurrency Bitcoin introduced its underlying
database (i.e. the Bitcoin blockchain) to allow a transparent and immutable way to
store transactions. Bitcoin transactions are stored publicly in a distributed ledger.
Different types of blockchains can be used to create a system of trust without
intermediaries and thereby changing long-established procedures. Examples range
from land registries, ownership of luxury goods, notary services, or autonomous
organisations [3].

1.1 Background

The concept of blockchain started in 2008 when Nakamoto introduced a peer-to-
peer (P2P) electronic cash system called Bitcoin [4]. Its objectives are to allow
payments online without financial intermediaries or single entities controlling the
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cash flow. Based on distributed computing and cryptographic principles, the Bit-
coin blockchain allows a decentralised, resilient, and transparent way of spending
money [4][5]. By publishing all transactions on a publicly, trust is based on trans-
parency and enforcement of rules through the protocol. The idea of the underlying
blockchain inspired others to create systems with different approaches [6]. Ethereum
adopted the blockchain approach and advanced the concept with introducing So-
lidity, a Turing-complete programming language to create programs on top of the
Ethereum blockchain called smart contracts [7]. They include a set of rules executed
within the blockchain. These systems are by design trustless [2] as they ensure
every transaction or interaction is fully transparent to everyone and all users are
anonymous.

From a high-level perspective, three different types of blockchains are distinguished.
Private permissioned blockchains belong to one organisation, which manages read
and write access for its users. The organisation trusts itself with the blockchain
and the users in it. Consortium-based permissioned blockchains belong to multiple
organisations, with configurable read and write access based on the organisation’s
needs. Trust lies between the organisations and one organisation needs to trust a
certain set of organisations for the system to work. Public permissionless blockchains
are decentralised, implying they do not belong to particular organisations or indi-
viduals. By default, users can join the blockchain freely and receive access based
on the blockchain protocol. All three maintain an immutable distributed ledger of
transactions [8].

Current blockchain systems are mainly used for financial or cryptocurrency use cases
(e.g. Bitcoin) [9]. Other examples include the startup Provenance, which uses the
blockchain to store and trace the different components and manufacturing steps of
a product to create transparency towards potential customers [10]. Colony tries to
create a new way how people come together to work by flexibly selecting people
based on their skills and projects [11].

Trust is a wide area of research including, but not limited to, psychology, social
sciences, computer science, and economics [12]. To describe computational trust two
main types of models have evolved [13]. Cognitive models are based on underlying
beliefs [14], while game-theoretical models depend on utility functions [15]. These
models classify the basis of information into:

• Direct experiences [16]

• Witness information [17]

• Sociological information [18]

• Prejudice and bias [13]

In blockchains, cryptography and consensus algorithms enable trust [19]. However,
trust with external actors is not part of the model for example described in [8] and
[2].

2
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1.2 Problem

Two problems are covered in this research. First, a trust model for smart contract
in permissionless blockchains is missing. Related studies and reports on trust in
computer science [20][21], agent systems [22], and the semantic web [22][23] exist.
However, the trust models used in previous research need to be adjusted for the
inherent transparency and trust implications of blockchain systems. The overview
of trust needs to account for the smart contract ecosystem, representation of smart
contracts as agent systems, and underlying technologies.

Second, permissionless blockchains limit the complexity of computation tasks. When
utilising smart contracts, external services can be required to circumvent the com-
putational limitations. These do not offer transparency to the user. Also, their
provided solution or correct execution cannot be verified [24]. Hence, the initial
benefit of having full transparency over every transaction and enforced trust through
a consensus mechanism cannot be guaranteed [25]. Implemented algorithms to verify
computations in smart contract systems do as of June 2017 not exist and are a focus
of research (e.g. in Ethereum [26]).

1.3 Purpose and goal

The purpose of this thesis is to provide insight into trust in permissionless blockchains.
This enables others to understand entities within the system and trust relationships
between different agents in- and outside the blockchain. Moreover, limitations set
by smart contracts should be overcome by extending trust to interactions with
external systems. This intends to solve the scalability restrictions set by per-
missionless blockchains. Thereby, it broadens the potential use cases for smart
contracts.

The goal is to devise a trust model and to contribute an algorithm for verifiable
computation. An overview of the smart contract ecosystem is created, a trust model
for smart contracts in permissionless blockchains is investigated, and an algorithm to
verify computations is developed. The overview’s objective is an accurate description
of the current, as of June 2017, smart contract ecosystem. Moreover, the aim of
the trust model is to describe trust-related attributes of smart contracts and to
introduce measures to steer smart contract behaviours. The goal of the algorithm
is to allow verifiable computations for smart contracts to overcome computation
limitations of blockchains. The report intends to answer the following research
questions:

1: Which models of trust can be applied to smart contract ecosystems to reflect
public permissionless blockchains?

3
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2: How can computations be verified in permissionless blockchains utilising models
of trust?

1.4 Delimitations

Blockchains are a “hyped” topic. Bitcoin started in 2009 and as of April 2017 has a
market capitalisation of around $18 billion, while Ethereum started in July 2015 and
as of April 2017 has a market capitalisation of around $4 billion 1. Ethereum has
around 272,000 contracts deployed in its main network 2. This has resulted in the
emergence of new concepts, technologies, and approaches in a short time [27][28][29].
Hence, this project is not able to cover a full view of all existing blockchain solutions,
smart contract approaches, or technological aspects. Rather, the report focusses
strongly on the market capitalization wise largest3 permissionless blockchain allowing
smart contracts (i.e. Ethereum).

There are different theories regarding the legal application and implications of smart
contracts ranging from “code is law” [30] to questioning the legality of Bitcoin as a
means of payment [31]. Legal, regulatory, and governance-related issues are covered
to a limited extended in the conclusion.

Distributed systems research revolves around solving consensus including Byzantine
Generals problem and Fischer-Lynch-Paterson impossibility result [32]. This section
covers consensus algorithms related to public permissionless blockchain (i.e. Bitcoin
and Ethereum) and shortly introduces other approaches in permissioned blockchains.
General protocols like Paxos are not elaborated.

Blockchains are P2P systems employing decentralisation as a core part of their
functionality. However, from the perspective of an application executing on top of
the blockchain the P2P systems behaves like one homogeneous system. Therefore,
trust models relating to P2P systems are not further discussed.

1.5 Methods

A range of methods is applied to answer the research questions stated in section
1.3. This section gives an overview of the employed methods while methodologi-
cal details are presented in the according chapter investigating the research ques-
tions.

The first research question is analysed in three steps. First, a definition of ecosystem
in relation to smart contracts in public blockchains is required. This definition and

1https://coinmarketcap.com (visited on 04/04/2017)
2https://etherscan.io/accounts/c (visited on 04/04/2017)
3According to https://coinmarketcap.com (visited on 02/20/2017)

4
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the following description of the ecosystem follows a deductive method of basic system
theory based on [33]. The protocol definitions of the two largest permissionesless
blockchains i.e. Bitcoin [4] and Ethereum [19] are studied to define objects in the
ecosystem. Second, the applicability of agent-based trust models for smart contracts
is evaluated by deducting their strong and weak notions based on agent theory in [34].
Third, a trust model suitable for smart contracts in permissionless blockchains is
qualitatively developed based on a review of existing multi-agent system trust models
in [13]. This includes an empirical study of trust-related attributes in a dataset of
2651 smart contracts from a public code repository. The method of the quantitative
assessment is described in detail in section 3.3.1.

The second research question is investigated by developing an algorithm for verifiable
computations. The development follows a deductive analysis of existing research
of verifiable computations in blockchains [35] [36]. A detailed method description
including objective of the algorithm is given in section 4.1.1. Moreover, the algorithm
is quantitatively assessed to determine the objects set forth in section 4.1.1. The
method of assessment is elaborated on section 4.2.1.

1.6 Benefits, ethics, and sustainability

The project intends to help others understand trust implications in blockchain
and specifically smart contracts. As described in section 1, blockchains could help
establish a new form of trusted organisation and benefit society in the long run.
However, incidents with organisations like “The DAO” 4 showed the early stage of
blockchain and smart contracts [38]. Hence, a better understanding of the technology
is required. Cryptocurrencies and blockchain technologies are perceived as enablers
for illegal activity (e.g. currency for buying illegal goods on the “dark net”), but not
as facilitators of a decentralised economy [3]. Developing an algorithm for verifying
computations allows creating solutions to increase the acceptance of blockchain.
However, this allows further use of blockchain technologies for unethical transactions
[39].

Based on the United Nations’ 17 Sustainable Development Goals (SDGs) [40] the
project’s goals are contrasted and the applicable SDGs are listed. Blockchain-based
services can give access to persons to a currency account without the necessity of
a permanent postal address or official ID [4]. Hence, new insurance services for
times of financial distress can be established with minimal administrative effort
[41]. Understanding trust in these relationships is a crucial factor to enable such
services. Moreover, provenance of products can be stored on a distributed ledger to
create transparency for customers, intermediaries, sellers, and suppliers. This applies
to various assets including, but not limited to, agricultural products, land, energy,

4The DAO suffered security flaws, which led to a severe attack on its system and a loss of around
130 million USD [37].

5



1 Introduction

software, and, cryptocurrencies [42]. Also, blockchains and smart contracts enable
new types of business innovations (i.e. autonomous organisations) [28]. Blockchain
users are identifiable by their hexadecimal public address. Thus, in blockchains,
the gender, age, or ethnicity of a person is irrelevant. Through its immutability,
blockchains can promote transparent operation of government processes and lower
corruption [43]. Trusted smart contracts support the following SDGs: 1 - No poverty;
2 - Zero Hunger; 4 - Quality Education; 5 - Gender Equality; 7 - Affordable and
Clean Energy; 8 - Decent Work and Economic Growth; 9 - Industry, Innovation and
Infrastructure; 10 - Reduced Inequalities; 11 - Sustainable Cities and Communities;
12 - Responsible Consumption and Production; and 16 - Peace, Justice and Strong
Institutions.

Blockchain-based technologies such as Bitcoin and Ethereum are not environment-
friendly because of the current consensus algorithm. Ethereum depends on a proof
of work approach, where nodes solve mathematical problems to reach the required
consensus [4][7]. This takes considerable amount of processing power which is not
energy efficient, due to the high electricity consumption. For example, Bitcoin’s
proof of work consumes energy compared to Ireland’s electricity consumption [44].
To lower this, Ethereum is planning to migrate to a proof of stake approach where
the money owned by users will decide the stake and the capability to produce new
blocks needed to reach consensus. Hence, it will not depend on the energy-inefficient
calculations needed in proof of work [45].

1.7 Outline

This report covers the details of the underlying technologies of smart contracts in
chapter 2, including an overview of trust models. Chapter 3 selects a model to
understand and evaluate trust in smart contract settings. Moreover, a quantitative
analysis of existing smart contracts is presented. In chapter 4, ways of providing
transparency and trust by means of algorithms are elaborated. Thereafter, an
algorithm to prove the correctness of results from computations between agents
is introduced. Chapter 5 discusses the model of trust and its application. Also,
the algorithm is examined and contrasted with other approaches. The last chapter
concludes the report and presents potential future work.

6



2 Chapter 2

Extended background

Blockchains introduce a new type of architecture to implement applications. A
blockchain-based technical architecture provides a trustless and tamper-proof dis-
tributed ledger in a shared environment. It uses multiple computer nodes to replicate
this “database of transactions” that enables a single global truth about a transac-
tion. Blockchain applications comparable to Bitcoin [4] can be seen as the first
generation of blockchains. They are implementing a single or limited number of
use cases. Applications like Namecoin1 and Coloredcoin2 are building upon exist-
ing blockchains (i.e. Bitcoin). They add extra functionality to store data inside
the blocks. However, they are limited to the single purpose of the design without
providing flexibility.

The second generation addresses those functionalities by providing users with Turing-
complete programming languages. Instead of being limited to storing data, applica-
tions can execute code to form a generic programmable blockchain. These applications
are typically described as smart contracts or chaincodes [46]. A smart contract can
function as a decentralised application (Dapp) executed on top of the blockchain
platform. This platform is a distributed P2P network and thus, independent from
specific servers as long as there are enough servers. The term smart contract, coined
by Nick Szabo, expresses the formalisation of electronic commerce in code to execute
the terms of a contract [47]. With the introduction of blockchain, the definition of
smart contracts was adjusted. Brown describes smart contracts as applications, that
react on events, have a specific state, are executed on a distributed ledger, and are
able to interact with assets stored on the ledger [48]. Smart contracts are comparable
to “autonomous agents” [49].

This chapter covers the basic building blocks of blockchains and smart contracts.
Moreover, it introduces trust-related research in computer science with a strong
focus on agent systems. Last, methods to establish trust in code including formal
verification and game-theoretic approaches are outlined.

1https://namecoin.org (visited on 24/05/2017)
2http://coloredcoins.org (visited on 24/05/2017)
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2.1 Blockchain and smart contracts

Blockchain implementations consists of (1) cryptographic measures to ensure integrity,
authenticity, privacy, and identity, (2) a decentralised consensus protocol for agreeing
on transactions, (3) the distributed history of all transactions i.e. the distributed
ledger, and (4) the application logic i.e. for smart contracts [50]. Among the second
generation of blockchains, Ethereum [7], Hyperledger Fabric [51], Tendermint [52],
and Ripple [53] are introduced in this section.

Ethereum is a decentralised platform which offers smart contracts through its own
blockchain and cryptocurrency called Ether. The Ethereum Virtual Machine (EVM)
handles the states and computations of the protocol. Theoretically, the EVM can
execute code of arbitrary algorithmic complexity [7]. Using Ethereum, developers
can implement smart contracts, which are lines of code in an account that execute
automatically when transactions are sent to that account. Because of its trustless
nature, the outcome is final and agreed on by all participants [7].

Hyperledger Fabric is a permissioned blockchain architecture intended for customer
enterprise networks. It offers a modular architecture, which allows for implementing
different smart contracts, cryptographic algorithms, consensus protocols and data
storage solutions [46].

Tendermint is a software including a blockchain consensus engine (Tendermint Core)
and a generic application interface (Application BlockChain Interface (ABCI)) with
the focus on a permissioned architecture. Tendermint Core implements blockchain
functionalities including immutable and ordered storage of transactions, while
ABCI allows for development of programs in a variety of programming languages
[52].

Ripple is a cryptocurrency and a payment system [54]. Ripple has a consensus
protocol based on collectively trusted subnetworks within one large network (i.e.
permissioned). Thereby, Ripple seeks to achieve a low latency within the network
and tolerate Byzantine failures [53].

2.1.1 Cryptography

Blockchains are built on two core cryptographic measures: hash functions and digital
signatures [4]. Hash functions are mathematical functions with three properties [32,
pp. 23-24]:

• A hash function’s input is a string of any size.

• A hash function’s output has a fixed size.

• A hash function is efficient to compute (worst-case computational complexity
O(n)).
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Blockchains require cryptographic hash functions, which have the following three
additional properties:

• A hash function H is resistant against collisions implying that it is not feasible
to find x and y such that H(x) = H(y) [32, p. 24].

• A hash function H is hiding if it is infeasible to find x given H(r||x) whereby the
secret value r is chosen from a probability distribution with high min-entropy
[32, p. 27].

• A hash function H is puzzle-friendly if for every possible n-bit output value
y it is infeasible to find x in less than 2n time given H(k||x) = y where k is
chosen from a probability distribution with high min-entropy [32, p. 29].

To create a chain of blocks (i.e. the blockchain itself) hash pointers are used as a
data structure. Thereby, a linked list is connected by hash pointers identifying the
previous block and the hash of the previous data. This allows checking if the previous
block has been manipulated since the hash of the block would have changed. Such
a structure creates a tamper-evident log since an adversary would need to change
every block in the chain to hide tampering with data in one block [32, pp. 33-34].
Proofing membership and non-membership of blocks in a chain are achieved through
Merkle trees [4]. Figure 2.1 shows a simplified blockchain with the genesis block (i.e.
the first block in the chain).

Figure 2.1: Simplified diagram of a block chain with a genesis block (adjusted from [32, p. 33]).

The data stored in each of the blocks are transactions. In Bitcoin, transactions
represent the transfer of virtual coins from one participant of the network to another
participant [4]. In Ethereum and other blockchains introduced earlier, generic data
can be transferred [19][46][52][53]. To verify transactions, digital signatures and
a consensus algorithm are used. Digital signatures fulfil two properties. First,
signatures are unique to one person implying they cannot be forged but evaluated
according to their validity by everyone. Second, signatures are bound to a specific
document such that the signature cannot be taken away from one document and
sign arbitrary documents without the knowledge of the signer. To build a digital
signature scheme, three algorithms are required [32, p. 37].
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• An algorithm to create a public pk and a secret (i.e. private) key sk pair based
on a key size. With sk, messages are signed and with pk the signature on the
message can be verified by anyone having pk.

• A sign algorithm creates a signature sig based on the secret key sk and a
message m.

• A verify algorithm evaluates based on the public key pk, the message m, and
the signature sig, whether sig is valid for that particular message.

In permissionless blockchains, the public key of the digital signature is often used
as the identity of the user. A user of these blockchains creates the identities or
so-called addresses and is allowed to create multiple addresses [4][19]. In permissioned
blockchains the process of creating identities is controlled by a membership service
to authorise new identities [51].

2.1.2 Consensus

Digital signatures are used to verify that a transaction is signed by whoever claims to
be the signer. However, this introduces the problem that any one person might send
the same coin twice, as it is possible to create valid signatures for both transactions
[4]. In centralised systems, a trusted central authority is employed to prevent such
double-spending. In a decentralised system participants of the network need to agree
on the validity of transactions to prevent double-spending utilising a distributed
consensus protocol [4]. A distributed consensus protocol takes into account that in a
network with n nodes, an arbitrary number of nodes k might be faulty or malicious.
The consensus protocol must ensure that (1) all honest nodes agree on one value (i.e.
the chain of transactions) and (2) that this value has to be created by an honest
node [32, p. 53].

The Bitcoin consensus algorithm Proof of Work (PoW) is based on the idea that
the chain with most computational effort is the valid chain. It employs six steps
[4].

• First, new transactions are broadcasted to all nodes in the Bitcoin network.

• Second, new transactions are stored into a new block, which is at that point
not yet in the agreed blockchain.

• Third, each node (i.e. miner) solves a computational intensive hash puzzle to
find a valid hash for the block based on the previous blocks and the current
transactions.

• Fourth, once a node has found a valid block hash, it broadcasts this block to
all other nodes.
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• Fifth, other nodes accept the new block, if all transactions are valid according
to their signatures and the coins included are not already spent.

• Sixth, the new block is accepted as part of the blockchain by all nodes, including
the new block’s hash for creating the next block.

To motivate the miners finding new blocks, they are provided with an incentive of 25
Bitcoins once they find a new block [4].

Ethereum uses a PoW consensus algorithm called Ethash [19]. The algorithm is
similar to Bitcoin’s, but uses a different PoW function. In Bitcoin’s PoW application
specific integrated circuits (ASICs) can be used to optimise the computation, which
leads to a potential mining centralisation3. Therefore, Ethash is optimised for
commodity hardware by utilising memory hardness [19]. Performance of Ethash is
determined by read and write operations of data in memory, an area where graphic
cards are highly optimised. Ethash assumes that specialised ASICs are not able to
outperform consumer graphic cards since they are already optimised and graphic
card manufacturers are continuously working to improve memory bandwidth (i.e. not
only for mining, but also deep learning, computer graphics etc.).

Bitcoin and Ethereum are public permissionless blockchains resulting in the assump-
tion that nodes in the network cannot be trusted and thus, a strong consensus
algorithm is required. This affects the network performance in terms of transactions
per second (tx/s) and the time a new block is created. In partly decentralised
blockchains like Ripple there are restrictions on the nodes, that are able to join
the network [53] [55]. In permissioned blockchains such as Hyperledger Fabric and
Tendermint even stronger restrictions can be set. Under the assumption that re-
stricted access and authorisation requires a certain level of trust, different consensus
algorithms can be deployed. Depending on the use case of the blockchain and the
trust between nodes and actors in the system, weaker consensus algorithms can be
deployed leading to a decreased latency of the network and a higher throughput in
terms of tx/s [46] [56].

2.1.3 Ledger principle

The consensus protocols introduced in the previous section are used to decide upon
the state of the distributed ledger. This ledger keeps an immutable record of all
accepted transactions [32]. This ledger is in permissionless blockchains accessible
to anyone participating in the network and through blockchain explorers even to
entities outside of the network. This means everyone is able to see for example
which public key owns the most Bitcoins or Ether. Also, each transaction can be

3This is happening as of April 2017 in the Bitcoin network, with miners and developers arguing
about the use of SegWit or Bitcoin unlimited.
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inspected making it possible for participating parties to monitor the progress of their
transaction.

To provide an incentive to the miner and prevent unnecessary changes to the ledger,
Bitcoin and Ethereum introduce fees on executing transactions [32]. These fees are
determined in Bitcoin based on the bytes of the transaction [4] and on the operation
cost in Ethereum [19]. In Ethereum the blockchain not only stores transactions but
also the code of smart contracts and their state. This means that the state of a
smart contract needs to be updated in the same fashion as executing a transaction
including fees, consensus, and mining time.

2.1.4 Application logic

In Bitcoin the “application” running on its blockchain is the cryptocurrency itself.
The application defines the rules for executing transactions, storing of Bitcoins in
accounts, and interactions with others. As described earlier, the second generation
of blockchains introduces smart contracts to allow creating arbitrary programs on
top of a blockchain. However, this introduces new challenges.

Smart contracts on the Ethereum blockchain are executed by each node participating
in the P2P network. As every node has to execute the smart contract, operations
are restricted to protect the Ethereum network [19]. The Halting Problem describes
a decidability issue in computer science. It is undecidable under certain conditions
whether a program terminates or executes infinitely [57]. To circumvent such issues4,
Ethereum introduces a concept to make users “pay” for execution of a smart contract
functions. The EVM supports operations as defined in [19]. Each of these operations
(i.e. op-codes) have a certain cost referred to as gas.

The price a user has to pay to execute a smart contract or conduct a transaction is
determined by (1) the gas consumed by the operation i.e. the sum of gas of all op-codes
involved in the transaction and (2) the gas price, which is expressed as an equivalent
to the cryptocurrency within Ethereum ether. Before executing a state-changing
function or a transaction, the user has to send a certain amount of gas to the function
or the transaction. Only if the provided amount of gas is sufficient for the function or
transaction to execute, it will successfully terminate. Otherwise, the transaction or
function will terminate prematurely. The result of a premature termination depends
on the handling of the smart contract function.

2.2 Trust

Section 1.1 describes trust as a wide research area separating cognitive and numerical
models [13]. Trust definitions vary [20] and thus, a common understanding of trust

4For example, one could use this property to execute a denial of service attack on the network.
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and its definition is required. This section provides an overview of smart contracts
as autonomous agents and researches trust models applicable to multi-agent systems
with respect to smart contracts.

2.2.1 Smart contracts as agent systems

Agents have certain properties separable in weak and strong notions [34, pp. 26-
29]. Weak notions include autonomy, pro-activeness, reactivity, and social abil-
ity.

Autonomy refers to the smart contract ability to operate without a direct intervention
of others and include control over their actions and state. In Ethereum the state of
smart contracts is maintained on the blockchains, while the actions are coded into
the contract itself. These actions can depend on the state of the contract giving it
autonomy.

Pro-activeness describes agents’ goal-directed behaviour by taking initiative. This is
somewhat limited in Ethereum, as smart contracts, as of June 2017, are not capable
of initiative behaviour and act on incoming transactions or calls to their functions.
However, if one perceives an agent as a collection of multiple different parts, smart
contracts might well be extended by external programs triggering such initiatives.
Thereby, the limitations set by Ethereum can be circumvented and an agent with
pro-active notions can be created.

Reactivity is based on perception of an agent’s environment and a timely response
to those changes. By design, smart contracts only have access to the state of the
blockchain they are operating in, albeit the state of the whole blockchain including
every actor, contract, and transaction. Reactivity for state changes in Ethereum is
reached via event, transaction, or function implementation. To react to environment
changes outside of the blockchain (e.g. executing a function based on changes in
stock market prices) requires importing this information to the blockchain via e.g.
Oracles [58].

Social ability enables the potential interaction with other agents or humans through
a communication language. In Ethereum, users and contracts are identifiable by
their public key [19] and interaction is possible through transactions or function calls
on smart contracts. Thereby, smart contracts in Ethereum expose an Application
Binary Interface (ABI) that defines the rules for executing functions. An ABI
is similar to an Application Programming Interface (API). However, it defines
interactions on a lower-level, as it includes the data-type for each input and output
parameter.

Strong notions include properties such as beliefs and intentions, veracity, benevolence,
rationality, and mobility[34, pp. 31-45]. Since pro-activeness is somewhat limited
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in Ethereum smart contracts, these strong properties are presented in a limited
aspect.

The two properties veracity, which refers to not knowingly communicating false
information, and rationality, describing the alignment of the agent’s actions to its
goals, are specific in a blockchain context, especially when employing cryptocurrency.
Depending on the incentives an author of a smart contract might develop an agent,
which is rational but not truthful, to maximise profits.

2.2.2 Models of trust in multi-agent systems

Multi-agent systems (MAS) describe systems containing multiple agents. In MAS
autonomous agents are required to collaborate to achieve their goals [34]. In open MAS
the intentions of individual agents are unknown [13]. To deal with the uncertainty of
agent intentions, three approaches have emerged.

First, security approaches utilise cryptographic measures to guarantee basic proper-
ties such as authenticity, integrity, identities, and privacy [13]. Within blockchains,
this is mainly achieved through the cryptographic measures introduced in sec-
tion 2.1.1. These measurements do not provide trust in the content of the mes-
sages.

Second, institutional approaches enforce behaviour through a centralised authority.
This entity controls agents’ actions and can penalise undesired behaviour. It is
subjective to the intentions of the central authority [13]. In blockchains, authority is
decentralised, which leaves limited institutional control. As described in section 2.1.2
transactions and state of smart contract are accepted based on a consensus protocol.
However, governance functions enforcing behaviour not defined in the core protocol
do not exist.

Third, social approaches utilise reputation and trust mechanisms to e.g. select
partners, punish undesired behaviour, or evaluate different strategies. Agents require
a computational model of reputation of trust [13]. In blockchains, transactions
are publicly visible in a distributed ledger. However, there is no system of trust
implemented in the core protocol of the blockchains, which would rate behaviour
according to certain standards.

These three approaches are complementary and can be used to create a system
of trust [13]. Trust research and current implementations of Ethereum, Bitcoin,
Hyperledger, and other blockchains are primarily focussed on the first two approaches.
This allows creating autonomous agents (i.e. smart contracts) on a platform, which
enforces these defined trust measurements.
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2.2.2.1 Prior research

Trust research in MAS varies in terms of focus on approaches, consideration of
information, and other assumptions. In [22] the authors introduce a comparative
analysis of existing trust models. They compare models according to their architecture,
initial trust, dimension, risk, and reputation. Sabater and Sierra classify models into
their paradigm, information sources, visibility, granularity, cheating assumptions,
and model type [59]. Pinyol and Sabater-Mir introduce a review of computational
trust and reputation models for open MAS [13]. Their classification of models is
based on trust, cognitive, procedural, and generality.

Ramchurn et al. focus on the different directions in trust research of MAS [60]. The
authors differentiate two levels of trust. First, individual trust levels are researched
consisting of socio-cognitive, reputation, and evolutionary and learning models.
Second, system level trust is based on trustworthy interaction, reputation, and
distributed security mechanisms. Mui et al. introduce a computational model of
trust and reputation with a focus on e-commerce systems based on a review of
existing literature [18].

Aberer and Despotovic elaborate a trust and reputation model for P2P systems.
They argue that previous methods of trust and reputation models require either
a central point of truth or global knowledge. This approach and model would not
scale to P2P systems, which have unknown agents and numerous participants [17].
Norms as a basis for decision making of agents are introduced by Boman in [61].
The agent’s ability to decide on a course of action is based on probability, utility,
credibility, and reliability. Thereby, norms are used as global constraints to exclude
certain courses of action.

2.2.2.2 Trust model comparison

Blockchains offer a basic set of enforced trust in the system itself by cryptographic
measures, consensus, and ledger principle. This requires a detailed comparison of
trust models covering the interaction of agents. The method in [59] offers a detailed
way of comparison, while [13] compares 25 trust models using this method. The
dimensions of the comparison are defined in [59].

Paradigm type classifies the trust model into a numerical or cognitive model. On
blockchains agents interact with each other. In Ethereum and other permissionless
blockchains measurable values can be transferred (i.e. cryptocurrency). This favours
numerical models employing game theory.

Information sources are direct experiences including direct interactions and direct
observations. Witness information utilises information provided by other agents.
Sociological information refers to relationships between other agents. Last, prejudice
or stereotypes is an information resource usable in the absence of other information.
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In a permissionless blockchain, the ledger allows to transparently view information
from direct interactions, witness information (i.e. interactions from others with
one particular agent), and sociological information at the level of transactions.
From within the blockchain, the prejudice is that no actor in the system can be
trusted.

Visibility is either global or specific to certain agents. In a permissionless blockchain,
such as Bitcoin and Ethereum, visibility is global5.

Granularity of a model evaluates its context dependency for single or multiple cases.
For example, a model can consider single interactions or multiple interactions of
specific agents to reach reputation scores.

Cheating behaviour is categorised into three different levels, from not considering
cheaters, to hiding or biasing information, and to outright lying. As the incentives to
cheat in permissionless blockchains can be high6, the trust model for a permissionless
blockchain needs to consider cheating. Last, [13] sorts the compared models into
trust and reputation categories.

2.2.3 Trust model selection

A differentiation in existing trust models is the assumption of trust within the network
of agents acting on the blockchain. In permissionless blockchains, no trust exists
between smart contracts or users since anyone can openly participate and create
contracts. There exists further no direct link between a public key and a person in
the blockchain. In permissioned blockchains, a certain level of trust between the
interacting parties occurs, as they need to be authorised by some entity to interact
on the blockchain. Thus, their public key is linked to an identity in a broad sense
(e.g. company profile, social media profile, national ID card). This subsection details
how trust in a permissionless blockchain can be quantified.

From the 25 models covered in [13], five consider global visibility and nine consider
cheaters. The overlap of those models leaves one considering global visibility and
cheaters. The model proposed by Rasmusson and Jansson focusses on reputation
of actors in electronic markets [63]. The core idea is to use incentives to encourage
truthful behaviour of agents in the system by social control. Social control implies
that actors in the network are responsible for enforcing secure interactions instead of
using an external or global authority. The authors describe two different fraudulent
behaviours in detail. “Con-mania” refers to a behaviour where an adversary utilises
the high rate of transactions in electronic markets and thus can benefit from multiple
small gains. Monopolies are fast established if the majority of actors use the same
source of information.

5However, Zcash is a permissionless blockchain employing zero knowledge proofs to reduce the
visibility only to the actors involved in a transaction [62].

6As seen in The DAO [38].
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Both cases are simulated in their research and three different methods of social
control are evaluated to tackle these issues. First, promotions describe new agents
in the system that offer to provide a deposit for the usage of their service. As they
are lacking reputation in the system, they provide the service in combination with
the deposit to build up reputation and offer the user of the service a guarantee to
receive their money back.

Second, gossip and rumours are discussed to communicate experience with agents.
However, this introduces issues on what should be communicated and who would
actually gain from this gossiping. Third, reputation and reviewing can be a basis to
trust other agents based on independent review agents, which would collect experience
with agents offering certain services and provide this reputation information to others.
This can also be applied to the agents’ own experiences without involving third
reviewing agents.

2.3 Verifying computations

A key issue in blockchain development is scalability of computation. The limited
computation capability of smart contracts running on top of a blockchain like
Ethereum results from the design and the trade-off of having a decentralised P2P
network with a consensus protocol. As described in section 2.1.4 Ethereum uses
gas to tackle the Halting Problem. While the gas cost and the associated gas
price prevent functions from executing indefinitely, it also puts a high price on
functions with a time-complexity higher than O(n). Thus, functions written in smart
contract on top of the EVM are limited or are associated with a steep price to
execute.

There are two approaches in the blockchain space trying to tackle this issue: state
channels and verifiable computation off-chain. State channels primarily aim at
limiting the amounts of transactions that are stored on the blockchain to lower the
latency and fees involved [64]. However, this is not helpful to execute arbitrary
computations. Verifiable computation aims to execute the computation outside
the blockchain and get verifiable results back without the need to re-execute the
computation.

Executing and verifying arbitrary computations without re-executing them is a
research field with two different focus points: formal methods based on mathematical
proofs [65] and game-theoretical methods [66] [35]. In [67] Walfish and Blumberg
give a comprehensive overview of the current state of verifiable computations. The
mathematical proof systems as Zaatar, Pinocchio, Ginger, and TinyRAM, are, as of
June 2017, near practical to use. They require a comparable high number of running
computational instances and the proof systems are highly complex [35]. As these
systems are “near practicality” [65], they are not further considered as part of this
thesis.
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The second approach of verifiable computations uses game-theoretical models on
top of the blockchain. Zyskind et al. introduce privacy-preserving computations
supported by blockchains in [66]. Teutsch and Reitwießner propose a scalable
verification approach for blockchains [35]. The idea in both concepts is to enforce the
rules of the protocol by automated contracts on the blockchain, provide incentives to
honest parties, and penalise dishonest parties. The parties in both protocols can be
categorised into computational services, verifiers, and judges.
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3 Chapter 3

Trust models for smart contracts

With the introduction of smart contracts, a new ecosystem evolved [2]. This ecosystem
consists of entities including, but not limited to, developers, entrepreneurs, investors,
and large organisations distributed around the globe [28]. In this chapter, the
smart contract ecosystem is defined. Based on the trust models in section 2.2
a model suitable for smart contracts is introduced. The entities in the smart
contract ecosystem are described within the trust model including their trust related
attributes. Last, a quantitative analysis of smart contracts hosted on GitHub is
conducted.

3.1 Smart contract ecosystem

Although the term “ecosystem” is used in cryptocurrency, blockchain, and smart
contract related literature (e.g. [2], [8], and [32]), no common definition of this
ecosystem exists. The Oxford dictionary defines an ecosystem as a “complex network
or interconnected system” 1. This definition requires further specification of “networks”
and “systems”. Describing these terms is subject to multi-disciplinary research in
e.g. network and system theory, which includes mathematical models and a variety
of approaches [33]. However, the intention here is to give the reader an elementary
overview of the smart contract ecosystem with a relation to trust, independent of
specific research areas and use cases. Thus, the smart contract ecosystem is depicted
by four basic components of a system: objects, attributes, internal, and external
relationships [33]. The following describes the objects in the ecosystem and their
relations as displayed in figure 3.1. Attributes related to trust for smart contracts
are covered in section 3.2.

The core of the system is defined as the blockchain platforms enabling smart contracts
(i.e. EVM, Hyperledger Fabric) and all direct relations to other objects. The
blockchain platform is subject to its blockchain protocol (i.e. Ethereum, Hyperledger),
which specifies implementations on a technical level. This includes for example the

1https://en.oxforddictionaries.com/definition/ecosystem (visited on 08/03/2017)
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Figure 3.1: Overview of objects in the smart contract ecosystem and their relations.

employed consensus algorithm, the cryptographic hash functions, or the incentives
given to miners (if any). Also, the blockchain platform stores and maintains the
distributed ledger. Within the distributed ledger, transactions are stored as described
in section 2.1.3. These transactions are sent and received by users and smart contracts.
Users and smart contracts are characterised by having a public key (i.e. address)
in the blockchain. Their interaction is achieved indirectly through transactions
stored in the distributed ledger or directly through function calls of smart contracts.
Direct interactions between those two have no impact on the state of the distributed
ledger. Thus, any state changing interactions like sending currency, changing state
variables in a smart contract, or creating new contracts, have to be conducted via
transactions [4][7]. Smart contracts can interact through function calls via their ABI.
Single smart contracts or multiple smart contracts together can act as decentralised
autonomous organisations by encoding the rules of interaction for the organisation’s
inner and outer relationships (for example The DAO, MakerDAO, Golem, Augur).
Next, a developer community implements the blockchain platform, develops and
maintains smart contracts, as well as researches, defines, and improves the blockchain
protocol. This community consists of volunteers, companies, consortium, not-for-
profit organisations and other organisations. Full nodes store the distributed ledger
and validate new blocks in the chain pro bono. Miners provide computational power
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and new blocks by solving computational puzzles to extend the distributed ledger
and maintain the blockchain platform. The aforementioned objects depict the core
system of smart contracts.

External relationships outside this core system exist to multiple other objects. Reg-
ulators like the U.S. Securities and Exchange Commission (SEC) enforce laws and
regulations mostly concerning cryptocurrency aspects of blockchains. Investors
promote the development and expansion of blockchain-based business models and
technologies by providing funding and support. Central banks such as the European
Central Bank and legislators such as the EU parliament or US congress create reg-
ulations or laws governing blockchain platforms. Wallet services help users secure
their cryptocurrencies and aim to provide an entrance into the cryptocurrency world.
Exchanges like Kraken or Coinbase allow exchanging fiat and cryptocurrencies for
private and professional customers. Explorers like Etherscan provide insight into
transactions, accounts, and contracts (i.e. the state of the distributed ledger) through
web portals.

3.2 Trust model for smart contracts

From the 25 trust models found, the model by Rasmusson and Jansson covers
information sources, visibility, granularity, and cheating behaviour comparable to
their manifestation in permissionless blockchains and smart contracts. The model
is focussed on electronic markets and offers an abstract implementation of these
social controls. It needs to be extended and detailed by utilising further models to
fit permissionless blockchains.

3.2.1 Deposits

First, deposits can be used to establish a level of trust between new and existing
agents. This approach is taken by Kumersan and Bentov for agents to participate in
an incentive-based protocol to provide correct (i.e. verifiable) computations [68]. This
approach is adapted by [66] for a privacy-preserving computation protocol and by
[35] for verifiable computations on Ethereum. Each agent that wants to participate
in these protocols is not trusted by default. This distrust results from the openness
of the blockchain platform (i.e. no central authority gives access) and the direct
accessibility of cryptocurrency.

Assuming a rational agent, there is a motivation to e.g. breaking privacy or allowing
incorrect solutions if this optimises its own utility function. To provide a certain level
of trust new agents have to deposit a certain cryptocurrency value for participation.
In the aforementioned protocols, this deposit is returned when an agent decides to
stop participating. However, dishonest or corrupt agents can be penalised by either
destroying their deposit or distributing it to honest agents.
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3.2.2 Gossiping

Second, gossiping can be used to communicate experiences with other agents in a
P2P fashion and thereby establish trust or reputation scores. In the core protocol
of Bitcoin or Ethereum gossiping is the basis for propagating new transactions and
subsequently validating blocks [69]. A similar approach can be taken for smart
contracts, whereby agents could exchange knowledge or experiences of other agents.
In [70] a decentralised reputation management system is introduced. Reputation
of an agent is based on its interaction with other agents, whereby agents mutually
need to sign a transaction if they are satisfied with the interaction. Over time, an
agent collects these signed transactions to build up its reputation. However, this
model is prone to colluding agents boosting their reputations. Can and Bhargava
introduce SORT, a distributed trust model to evaluate trust of agents based on past
interactions and recommendations [71]. Similar, Zhao and Li propose VectorTrust in
[72] to calculate trust scores based on distributed algorithms.

Smart contracts could utilise these approaches to quantify trust between agents and
propagate information about cheaters through gossiping. However, they assume
certain maximum amounts of malicious agents in the system and their detection
rate of malicious behaviour is correlated with the assumptions. Moreover, Vec-
torTrust’s malicious behaviour detection rate depends on the complexity of the
network.

3.2.3 Review agents

Third, trust can be implemented by relying on independent review agents. In [73],
FIRE is introduced calculating a reputation score based on interactions, role-based
relationships, witness information and references, which the agent itself provides.
Jakubowski, Venkatesan, and Yacobi develop a quantitative trust model that results
in groups of agents with maximised trust and minimised trust towards agents outside
the group based on local and transitive trust [74]. Cerutti, Toniolo, Oren, et al.
present a model for computation of trust based on the opinion of trustworthiness,
confidence, and a combination thereof [75].

Both, gossiping and review agents, are subject to detection rate issues. As a purely
rational agent might be considered malicious in these protocols, their implementation
needs to consider the context of the trust or reputation rating. As of 22 April 2017,
a total of 295,394 smart contracts are deployed in the Ethereum main network 2.
Hence, quantifying trust between agents (i.e. smart contracts) is complex and subject
to attacks on the model due to imprecision of models and the complexity of the
network. However, as the blockchain offers transparency it is possible to inspect
transaction data to draw conclusions on the behaviour of users of a blockchain as

2https://etherscan.io/accounts/c (visited on 22/04/2017)
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presented in [5]. Additionally, information sources from outside the blockchain can
be used to provide insight into agents behaviour. This external information can be
used to link users in the blockchain to other data available on the Web or other
sources.

The trust attributes presented are partly applicable to permissionless blockchains.
Deposits or financial incentives offer a method of promoting and penalising agent
behaviour while no prior trust is required assuming the guarantees provided by
the blockchain platform (i.e. validity of transactions, immutable state). Therefore,
protocols on the blockchain should consider a game-theoretic setting where the
dominant strategy of each agent equals the desired agent behaviour in the protocol’s
context.

3.3 Smart contract trust analysis

Applying gossiping in P2P networks and implementing review agents is complex.
However, a quantitative approach to measure complexity and security related issues of
smart contracts can be established by reviewing their source code.

To analyse smart contracts, a suitable dataset of such contracts needs to be established.
There are two options to achieve this: On the one hand, the compiled code of a smart
contract can be inspected from the Ethereum blockchain. On the other hand, the
source code of smart contracts hosted at a public code repository such as GitHub
can be reviewed. In Ethereum, addresses (i.e. the public key) are used to identify
users and contracts. However, these addresses are not different in any kind of way,
thus the only way to separate “regular addresses” from “contract addresses” is to
check if the code field of the account has any content greater than zero [76]. The
second approach delivers directly the source code enabling analysis of the functions
inside the contract. However, those contracts might actually not be in use on the
Ethereum blockchain.

The dataset used hereafter is compiled from public GitHub repositories3. GitHub
offers an API to search for specific code files4. As described in section 1.4 the focus
of this research centres on Ethereum.

The analysis’ objective is to determine attributes of smart contracts in the dataset.
The dataset contains the source code of smart contracts, hence behaviour of the
contracts cannot be analysed as that would require the inspection of the distributed
ledger and transactions issued by smart contracts. Rather, characteristics and
complexity of smart contracts are assessed to give an indication of the development

3GitHub is in terms of users and number of projects the largest source code hosting service.
See https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities (visited on
05/06/2017) and https://github.com (visited on 08/03/2017)

4https://help.github.com/articles/searching-code/ (visited on 08/03/2017)
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status. Complexity of code is measured based on the number of declarations in
each smart contract. Moreover, coding best practices in relation to security of
contracts is assessed through automated code analysis through the Oyente tool
[77].

3.3.1 Method

Ethereum smart contracts can be written in three different programming languages
namely Solidity, Serpent, and LLL [78]. However, it is recommended to use Solidity
as it is actively developed and robust in comparison to the other two [78]. In Solidity
a smart contract has a certain structure. It has to contain the word “contract” to
define a contract and has the file extension “sol” [76].

To compile a dataset of Solidity contracts the following steps are taken: First, Solidity
contracts are queried by searching for keyword “contract” and extension “sol” every
day for a period of one month from February 17, to March 17, 2017. The results are
sorted by indexed date (recent first). The Solidity contracts are stored on a local file
system. Their metadata including, but not limited to, repository name, owner, and
timestamp of Solidity file are saved in a PostgreSQL database. GitHub restricts the
number of results to 25 files, but gives the total number of matching files. Moreover,
only repositories with fewer than 500,000 files are searchable and only the default
branch is considered5. The only way to filter files in GitHub code search is by file
size. If the total number of results is greater than 25, the search range is changed
by applying an upper and lower limit of the file size return. The maximum file size
returned by the search API is 384 KB. In the first step, the search ranges from 0 to
384 KB. In the next step, two search queries are issued with 0 to 192 KB and 192
KB to 384 KB. The query algorithm recursively splits the subsequent size ranges in
two, until either the total number of results is returned or it has been running for
eight hours. The time limit prevents the GitHub account from getting blocked by too
many requests. GitHub restricts the rate of queries to its search API to 30 searches
per minute 6. In case a Solidity contract is updated during the period of the query,
the timestamp in the SQL database is updated and the Solidity file is replaced. The
code for querying Solidity contracts is available on GitHub 7.

Second, ConsenSys has developed a Solidity parser which creates a JSON of Solidity
source files [79]. This JSON can be used to analyse the source file as it gives structure
to the declarations, modifiers, and functions as well as further metadata (i.e. the
Solidity version). The resulting JSON depends solely on the source file and has a
dynamic length and depth. To allow for a structured analysis, this JSON is stored
in the document-based database MongoDB. Metadata collected in the SQL database
are also transferred to MongoDB. The source code to load the Solidity files and

5https://developer.github.com/v3/ (visited on 18/04/2017)
6https://developer.github.com/v3/search/ (visited on 18/04/2017)
7https://github.com/nud3l/github-search-crawler
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metadata into MongoDB is available on GitHub 8. Based on this dataset, describing
attributes of smart contracts like Solidity version and amount of Solidity files in
a repository are extracted. Moreover, the complexity of Solidity code hosted on
GitHub is analysed.

Third, Luu et al. introduced Oyente, a tool to identify for different security issues
in EVM op-codes [77]. The tool compiles Solidity source files using solc into EVM
op-codes to check for security related issues in the code. (1) Callstack: When calling
other contracts, exceptions need to be handled properly. Ethereum has a callstack
depth limit of 1024, which can be used to attack contracts. (2) Time dependency:
Outcome of the contract is dependent on a time constraint. For example, random
numbers can be generated based on the mining time of a block, which can be
influenced by the miners. (3) Re-entrance: A call can be repeated multiple times,
although not desirable. For example, a function of a contract can be called and
while this function waits to be finished might be called again. (4) Concurrency:
Order of transactions can influence smart contract outcomes. For example, in a
Puzzle game, the owner might set the reward lower shortly after a solution has been
submitted.

3.3.2 Results

Applying the method results in a total of 2,561 Solidity contracts crawled from
February 17 to March 17, 2017. This covers a total of 693 repositories. Figure
3.2a shows the frequency of files of each repository whereby the number of Solidity
contracts per repository shows a long tail distribution. The µ number of Solidity
contracts per repository is around 3.696 with a σ of approximately 5.266. In figure
3.2b the version of Solidity used in the contract is displayed. In the dataset, the
Solidity versions range from 0.4.0 and to 0.4.9. The latest Solidity release in the
observed timespan is 0.4.10 released on March 15, 2017. The number of files with
specific versions varies.

Next, the declarations in each contract are quantified to measure the complexity of
smart contracts. Solidity offers following declarations in contracts: Imports are used
to import other contracts and their functions. The address of the imported contract
needs to be defined (if known in advance) or provided later on. Libraries are similar
to contracts, but whenever library functions are called the code is executed in the
calling contract and not the library contract. Variables can either be state variables,
permanently stored in the blockchain (i.e. storage type), or function variables, only
stored in memory in a function. Events are used as a logging functionality for
either debugging or outside of smart contracts (e.g. in the Node.js part of Ethereum
Dapps). Mappings provide a key value store only declarable as a storage type, while
structs and enums can either be declared in storage or memory. Functions are either

8https://github.com/nud3l/smart-contract-analysis/tree/master/data-loader
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(a) Density of Solidity contracts per GitHub
repository.

(b) Total number of Solidity contracts with spe-
cific versions from GitHub.

Figure 3.2: Number of repositories and Solidity versions in GitHub dataset.

external, and thereby callable by others, or internal, i.e. only accessible from within
the contract. Moreover, they can contain the “payable” modifier, which accepts the
transfer of Ether to the function. Figure 3.3 displays the number of declarations in
each smart contract with and without outliers. The µ of imports is 0.646 and has a
σ of 1.080. Libraries are seldom used with µ 0.017 and σ 0.172. There are µ 3.333
variables per contract with σ 6.392. Events have a µ of 0.633 and σ 1.496. Structs
and enums are comparably rare with µ of 0.240 and 0.046 as well as σ 0.679 and
0.265, respectively. Mappings have a µ of 0.689 and σ 1.500. Last, functions are
common with µ 5.677 and σ 8.503.

(a) Total number of declarations in each Solidity
contract.

(b) Total number of declarations in each Solidity
contract excluding outliers.

Figure 3.3: Total number of declarations in each Solidity contract in GitHub dataset. Median
displayed as an orange line.

The analysis of security issues depends on compiling the Solidity source code and
then performing a symbolic execution with the Z3 theorem prover [80]. There can be
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two issues when running this analysis: First, as contracts on GitHub might not be
used in practice and reflect a current status of development, they might not be able
to compile with the Solidity compiler solc. These contracts would not be analysed
for security issues, as the resulting EVM bytecode would not be available to Z3.
Second, the Z3 theorem prover executes different states of the contract which is
comparably time-consuming. To circumvent execution of potential infinity loops and
limit the time of execution, Z3 is provided with a timeout that aborts its analysis
even if the result is incomplete. The analysis is conducted on a computer with four
Intel i7 cores at 2.20 GHz and 16 GB of RAM for 97 hours. All contracts in the
dataset are complied and checked for the callstack issue with 250 of 2561 being
affected. The other three methods required a longer time or ran into infinity loops,
resulting in 2057 of 2561 contracts being analysed. Out of these 2057 contracts, 38
are potentially affected by the time dependency issue, 246 by re-entrance, and 64
by concurrency issues as displayed in figure 3.4. The aforementioned results, with
regards to data exploration, complexity, security issues, and shortcomings of the
analysis, are discussed in chapter 5.

Figure 3.4: Number of security-related issues in Solidity contracts in GitHub dataset.
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4 Chapter 4

Verifiable computation for smart
contracts

Permissionless blockchains assume no trustworthy agents or entities exist in the
system. By applying social control, behaviour of agents can be enforced. Due to the
restrictions set by the EVM (i.e. gas cost of operations), implementing functions in
Ethereum with a time and space complexity greater than O(n) is not feasible. Hence,
complex computations like matrix multiplications can only be achieved for small-sized
matrices. Otherwise, the function implementing the multiplication will use more gas
than the upper gas limit set by the EVM and thus, throw an error before finishing.
To circumvent these limitations, computations can be executed outside of Ethereum
and results stored on the blockchain. This chapter covers the development of an
algorithm for verifying computations requested within the blockchain and executed
by external services under the assumption of a trustless system.

4.1 Verifying computation

Formal methods based on mathematical proofs and game-theoretic approaches can be
used to achieve verifiable computations. Since formal methods are not yet practical, a
game-theoretic approach is taken to develop an algorithm for verifiable computations.
This section describes the method used to develop the algorithm, agents in the
algorithm, and their interactions.

4.1.1 Method

The development of the algorithm follows a deductive method of considering existing
research in two fields. First, verifiable computation concepts using blockchains
presented in [36] and [35] are analysed. Second, cloud and distributed systems research
as presented in [81] and [82] are studied. Specifically, the assumptions made by the
aforementioned research are critically assessed to develop a new algorithm. The main
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aspect of [36] revolves around preserving privacy of user data, whereby aspects of the
blockchain are used to enforce the algorithm. [35] focusses on verifiable computation
for Ethereum using computation services inside the blockchain. Their suggestion is a
verification algorithm with a dispute resolution and an incentive layer. Their proposal
has two practical issues: First, the verification game includes a “jackpot” to reward
solvers and verifiers for their work. This introduces an incentive to steal the jackpot
by solvers and verifiers colluding to receive the jackpot without providing a correct
solution. Second, they propose to implement the computation tasks in C, C++, or
Rust code using the Lanai interpreter implemented as a smart contract on Ethereum.
Using this approach, execution of the judge requires a comparable large amount of
gas. Therefore, with many services providing a wrong solution to a task, a costly
computation is triggered. Moreover, it limits the flexibility of computation services
by forcing them to use one of the three programming languages. The objective of
the here presented algorithm is to achieve:

1. Execution of arbitrary computations requested from a smart contract in
Ethereum and executed outside the blockchain.

2. The verification of the computation result should be achievable in a reasonable
time, that is O(n).

3. Ensure that the result of the computation is correct without having to trust
the providing service.

This development is further based on a creative aspect to experiment with different
agents, incentive models, and interactions. Hereby, different parameters and involved
agents are considered in a “pen and paper” exercise. Afterwards, the parameters
are verified by a qualitative assessment and a quantitative analysis. The qualitative
assessment discusses the first design objective of executing arbitrary computations
on the basis of previous research in section 5.2. The implementation is described
in section 4.2 and the experiment method for the quantitative analysis in section
4.2.1. The quantitative experiments constitute an evaluation basis for the last two
algorithm objectives.

4.1.2 Actors

The actors involved in the verifying computation algorithm are presented in figure 4.1.
First, users request solving a specific computation problem based on input data, and
an operation to be performed on the data. This could be e.g. multiplying two matrices
or inverting a matrix. Users can be smart contracts or any other entity holding a
public Ethereum address. They provide an incentive for solving and verifying the
problem. Second, computation services provide computation power outside of the
Ethereum blockchain in exchange for receiving a compensation. They eventually
receive the operation and data from users and return a result from the computation

29



4 Verifiable computation for smart contracts

that is either correct or incorrect. Thereby, one of the computation services acts as
a solver and at least one other computation service acts as a verifier. They have
a smart contract counterpart handling the data exchange in and out of Ethereum
through oracles [83]. Oracles in Ethereum are programs having a smart contract,
and a “regular” application part. The smart contract receives requests from users,
stores them on the blockchain, and issues an event about a new request. Typically,
the application counterpart is an implementation using the web3 JavaScript API for
Ethereum listening for these events. It then collects the query data and executes
it. Upon completion, the result of the query is stored in Ethereum. An example
of such a service is [84]. Third, judges are smart contracts that decide whether
basic mathematical operations including multiplication, subtraction and addition of
two integers are correct or not. They are neutral parties and are not receiving any
incentives. Fourth, an arbiter enforces the verifiable computation algorithm when
users request a new computation. The arbiter is a smart contract that moderates
the algorithm.

Figure 4.1: Overview of actors in the verification algorithm. Black actors are required in the verifi-
cation algorithm, while grey actors are only part of the dispute resolution.

4.1.3 Assumptions

Certain assumptions are made during the development of the algorithm. Users are
assumed as rational agents with the objective to receive a correct computation. They
are required to send a fee in Ether to execute the computation to cover the costs
of using the oracle service and to reward solvers and verifiers. This fee depends on
the complexity of the computation to be performed, the complexity of the input
data, and the number of verifiers. However, it cannot exceed 5 Ether as the creation
of random numbers in Ethereum depends on properties set by the miners. This is
discussed in detail in section 5.2.1.
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Computation services are assumed as rational agents trying to optimise their incentive.
However, they might purposely communicate false information to maximise their
incentive. Possible agent behaviours are introduced in 4.1.5. Further, enough
computation services are available (i.e. a minimum of 2) to execute the computation
with at least one verifier. The probability of detecting a false computation depends
on the number of verifiers in the algorithm.

The arbiter and judge are trusted agents, respectively enforcing the algorithm and
reaching a verdict. This is a strong assumption in a trustless system and needs to
be justified. To limit their incentive for undesired behaviour (i.e. cheating) in the
algorithm, these two agents are not rewarded for taking part in the computations.
Thus, their work is pro bono and only the operational cost in gas are covered. Another
approach is to formally verify the implementation of the algorithm and publish the
proof alongside the smart contract, so users can verify the behaviour of the agent
[85][86].

Computation services offer a range of computation types, that are implemented in the
same way. For example, a matrix multiplication can be implemented in a naive and
a parallel execution way. Both would represent different computation types. Also, in
floating point operations, computation services need to have the same precision, or
otherwise results or intermediary results differ.

4.1.4 Algorithm

Before the algorithm starts, an arbiter is present to moderate the algorithm. Compu-
tation services can subscribe to one or multiple arbiters for solving tasks. They need
to provide a deposit defined by the arbiter to be able to participate in the algorithm.
Furthermore, they can unsubscribe from an arbiter and receive their deposit back
in case they did not break the algorithm (elaborated on detail later). Judges also
register themselves with one or multiple arbiters, but do not need to provide a deposit.
To track the status of the algorithm each computation request has an assigned status.
The user of the algorithm can track the status of computations and trigger actions
accordingly. The states of the algorithm are introduced in table 4.1. Actions taken
by the actors involved are displayed in an Agent UML package diagram in figure 4.2
[87]. Details are explained in the following paragraphs.

4.1.4.1 Verification algorithm

The algorithm is initiated when a user requests a computation by sending the input
data, the operation to be performed, and the desired number of verifiers to the
arbiter. The input data can be in a binary format or a link to the data. The arbiter
can be agnostic towards the input data, while the computation service implementing
the operation needs to be able to read the data. For example, the input data could
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Figure 4.2: Agent UML package diagram of verification algorithm and dispute resolution with user,
arbiter, solver, one verifier, and judge.
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Table 4.1: Overview of verifying computation algorithm states.
Status Description
100 The computation request is created, but no solutions are yet provided.
200 Arbiter sent the computation requests to solver and verifier(s).
300 A part of the results are in and the arbiter is waiting for the remaining

results.
400 All results from solver and verifier(s) have arrived.
500 Results are compared and solver and involved verifier(s) agree on one

solution.
600 Results are compared and solver and at least one verifier disagree on the

solution.
700 Dispute resolution started to determine, if the solver provided an incor-

rect solution.
800 Dispute is resolved with either the solver being correct (status 801) or

incorrect (status 802).

be two matrices, the operation “multiplication”, and the user requires five verifiers.
The arbiter then checks if there are enough computation services available that can
perform the operation. In the example, at least six need to be available as it requires
one solver and five verifiers. In case enough computation services are available, the
request is registered in the blockchain.

Computation request and execution functions are listed in algorithm 1. One com-
putation service is randomly determined as a solver, and the other(s) are randomly
assigned as verifiers (status is set to 100). The user instructs the arbiter to forward
the input data and operation to the computation services smart contracts (status is
set to 200), triggering the off-chain computation by sending a request through an
oracle. This requires sending a fee for the computation as well as providing the fee
for using the oracle (see details in section 4.2).

Receiving and comparing results is described in algorithm 2. Verifiers and the solver
report their result back to the arbiter. The arbiter in turn receives the results
provided by solver and verifier(s) to store them for comparison (status is set to 300).
If all results are reported back, then the status is set to 400. In case a time-out
condition is reached, the arbiter stops the computation1.

If the status is set to 400, the user can trigger the arbiter to compare the available
results. If the solver and all participating verifiers agree on one solution, the status is
set to 500 and the user is able to receive the result. However, if at least one verifier
disagrees with the solver the status is set to 600.

1Handling computation services unsubscribing during computation is discussed in section 5.2.2.
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Algorithm 1: Arbiter requesting and executing computation functions.
1 function requestComputation (input1, input2, operation, numV erifiers);
Input : Two strings input1 and input, the operation to be performed, and the

number of verifiers numV erifiers.
2 if numV erifiers = 0 then
3 throw;
4 else
5 computationId = rand(0, 264);
6 requests[computationId].input1 = input1;
7 requests[computationId].input2 = input2;
8 requests[computationId].operation = operation;
9 remainingServices = computationServices;

10 requests[computationId].solver = random(remainingServices);
11 remainingServices = removeService(solver, remainingServices);
12 for i = 0 to numV erifiers do
13 requests[computationId].verifiers[i] = random(remainingServices);
14 remainingServices = removeService(verifiers[i], remainingServices);
15 end
16 updateStatus(100, computationId);
17 end
18 function executeComputation ();
19 AbstractComputationService mySolver =

AbstractComputationService(requests[computationId].solver);
20 mySolver.compute( requests[computationId].input1, requests[computationId].input2,

requests[computationId].operation, computationId );
21 for i = 0 to requests[computationId].verifier.length do
22 AbstractComputationService myVerifier =

AbstractComputationService(requests[computationId].verifier[i]);
myVerifier.compute( requests[computationId].input1,
requests[computationId].input2, requests[computationId].operation,
computationId );

23 end
24 updateStatus(200, computationId);
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Algorithm 2: Arbiter receiving and comparing results functions.
1 function receiveResults (result, computationId);
Input : The result delivered by the computation service to a specific

computationId.
2 if msg.sender = requests[computationId].solver then
3 requests[computationId].resultSolver = result;
4 else
5 i = requests[computationId].verifier.index;
6 requests[computationId].resultVerifier[i] = result;
7 end
8 if allresultsarein then
9 updateStatus(400, computationId);

10 end
11 function compareResults ();
12 for i = 0 to requests[computationId].verifier.length do
13 if requests[computationId].resultSolver !=

requests[computationId].resultVerifier[i] then
14 recordChallenger[i];
15 end
16 end
17 if recordChallanger.length = 0 then
18 updateStatus(500, computationId);
19 else
20 updateStatus(600, computationId);
21 end
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4.1.4.2 Dispute resolution

If the status is set to 600, the user can initiate a dispute resolution algorithm. The
dispute resolution is inspired by a technique introduced in [82], [81] and [35]. The
idea is to split up the operation into simple parts with intermediary results until the
computation is simple enough for the judge to solve it. Overall and intermediary
results are stored in a Merkle tree for the solver, and each verifier challenging the
solver. The comparison is achieved through a binary search on the trees. The root
of the tree encodes the overall result, while the leaves in the lowest layer encode the
input data. Leaves in between represent intermediary results. For simplification,
the following example considers the comparison of a matrix multiplication without
hashing overall and intermediary results as well as input data. Also, the example
does not cover the construction of a Merkle tree, but rather gives an indication
how comparison on computations can be achieved by splitting up the comparison
to intermediary results. In practice, Merkle trees and binary search are used to
efficiently limit the search time to O(logn) [88].

When a user requests the dispute resolution, the arbiter sends a request to the
computation service(s) acting as verifier(s). They are required to point out an index
of the output data, and a type of operation for which they receive a different result (the
status is updated to 700). The verifier(s) receive the result of the solver to determine
the index for which their solution defers. Consider the simple example of a matrix
multiplication with two input matrices A and B. The result provided by the solver is
matrix S. At least one verifier provided the differing matrix V .

A =
[
2 7
6 3

]
B =

[
1 5 9
6 3 4

]

S =
[
43 31 46
24 39 66

]
V =

[
44 31 46
24 39 66

]

The verifier provides the index of his result matrix deferring from the solvers result
(i.e. V1,1) to the arbiter. The arbiter checks whether the result at index 1, 1 of
the solver and verifier are different. In case the verifier would not have provided a
different result at the index (i.e. the value at index 1, 1 is 44 for both results) the
algorithm ends. The solution provided by the solver would be marked as correct. If
the results deviate, the solver needs to provide the intermediary steps leading to his
result. The solver repeats until the input of this intermediary result is an index of
the input matrices. Hence, the solver would provide two intermediary results I(S)
and their according index. If the solver fails to provide these results, the status is set
to 802.

S1,1 = I(S)1 + I(S)2 = 1 + 42 = 43
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I(S)1 = A1,1 ∗B1,1 = 1 * 2 = 1

I(S)2 = A2,1 ∗B1,2 = 7 ∗ 6 = 42

The arbiter forwards the two intermediary results to the verifier including the index
of the input matrices. Following this, the verifier provides an intermediary result I(V )
and the index of the input matrices from the verifier such that I(V )n = Ai,j ∗Bj,i and
I(S)n 6= I(V )n. In our example, the verifier needs to send I(V )1 with A1,1 and B1,1.
Then the arbiter checks if I(S)n 6= I(V )n and triggers a verdict by the judge, if it
holds true. Otherwise, the solver is declared to be correct. A verdict is reached by the
judge receiving the value of the input matrices at the two indices, the intermediary
result of the solver, and the operation to perform from the arbiter. The judge
returns a boolean based on those inputs. In the example, the judge receives A1,1 = 1,
B1,1 = 2, I(S)1 = 1, and the operation “multiplication” which results in false. The
solver provided a false solution, resulting in a status of 802.

If the solver had been correct and the judge returning true, the status would have
been set to 801. Also, if during the intermediary steps, the verifier would have not
been able to provide intermediary results deviating from the solver’s, the status of
the algorithm would have been set to 801. In a last step, the user is able to collect
the result, if the status of the algorithm is set to either 500 or 801. Otherwise, the
solver’s result is incorrect. The verifier proving the solver wrong at one index might
have errors in his computation. These were not checked in the algorithm. Therefore,
the result cannot be retrieved if the status is set to 802.

4.1.5 Interactions

The computation service is not trusted. In fact, the algorithm is intended to resolve
the issue of having services providing incorrect results or trying to modify the
algorithm to optimize their incentive. Computation services can act either as solver
S or verifier V , which is determined by a random selection through the arbiter. This
section focusses on the behaviours of the computation services.

Under the assumption that arbiter, judge, and user behave rational and follow the
algorithm, computation services have a combination of four different behaviours with
respect to their role as S or V . The behaviours are summarised in table 4.2 with
either all verifiers accepting the solution (i.e. VA) or challenging the solution (i.e.
VC). S profits the most if it provides a correct solution, which is challenged by V ,
while V profits the most when S provides a false solution and V is able to challenge
it. The problematic case is that the incentives for accepting a false or correct solution
are the same. To prevent this from happening we will consider the behaviour of V
and S in detail.

Case 1: S provides a correct solution and no V challenges the solution. In this
case agents behave exactly as intended by the algorithm. As no V challenges the
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Table 4.2: Possible behaviours of computation services as solver S and verifier V , whereby all verifiers
behave the same.

S
correct solution false solution

V
challenge

S receives S fee share
S receives VC fee share
VC receives nothing

S receives nothing
VC receives VC fee share
VC receives S fee share

accept S receives S fee share
VA receives VA fee share

S receives S fee share
VA receivesVA fee share

solution, the judge is not triggered and the fee is equally split among S and the
involved V .

Case 2: S provides a correct solution and at least one V challenges the solution.
This is an undesired behaviour, since the solution provided is actually correct. This
triggers the dispute resolution with a verdict by the judge determining S as correct.
In this case S profits from the extra work due to the additional dispute steps by
receiving the fee share of VC . VA receive their part of the fee, since they acted
correctly and their amount of work remained the same.

Case 3: S provides a false solution and no V challenges the solution. In this case S
and all V would receive their share of the fee. This is a highly undesired behaviour
in the algorithm as it would flag a false result as correct. To prevent this from
happening two measures are used. First, computation services do not know their
role in advance as they are randomly assigned by the arbiter. If several services
collude to provide false solutions to, e.g. damage the user or save computation cost
(i.e. they could prepare an arbitrary solution in advance), all of them would need to
work together to provide the “same wrong” result. However, if just one VC exists, it
profits by gaining the fee shares of itself, S, and all VA. Thus, second, the user is
able to determine the number of V for each computation. Thereby, the probability of
having at least one VC depends on the prior probability p of V providing correct or
false solutions and the number n of V in the computation. As computation services
are drawn at random, the probability of having at least one VC can be calculated by
P (VC) = 1− pn. With an increase of n or a decrease of p, the probability of having
at least one VC can be increased. Thus, the user is able to balance the probability of
achieving a correct result and the cost of the algorithm.

Case 4: S provides a false solution and at least one VC challenges the solution.
Hereby, S and VA are not receiving their share of the fee, which goes to all VC . This
is based on the verdict by the judge. However, this is also an undesired case since
the user does not receive a solution to his computation (i.e. algorithm results in
status 802).

Considering the four scenarios, rational S is trying to receive its share of the incentive
and get a chance to receive fees of any V challenging a correct solution. Hence,
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the strategy for S considering V is to provide a correct solution to the problem.
Moreover, V profits the most form challenging a false solution. A rational V provides
the correct solution to a computation to receive its fee share or to have the chance of
becoming a challenger to a false solution. Arguably, S and V could try to deliver
a false solution to save up on computation cost or trick the user. In this case, the
probability of discovering the false solution relies on the number of V s and the prior
probability of cheating V s. If a V delivers a false solution, it must be the same
solution as S’ to not trigger the dispute resolution. As the assignment is random,
this is a valid strategy for a low number of V s. Moreover, by destroying the services’
deposits and excluding them from the algorithm after detected cheating, the prior
probability of having such a service can be reduced.

4.2 Implementation and experiments

The algorithm is implemented using smart contracts, oracles, and external computa-
tion services. Implementation details are presented in figure 4.3, which extends the
previous actor overview figure from section 4.1.2.

Figure 4.3: Implementation overview of actors in the verification algorithm. Black actors are required
in the verification algorithm, while grey actors are only part of the dispute resolution.

Smart contracts are written in Solidity 0.4.8 and are available on GitHub 2. Users are
assumed to have an address in the Ethereum network and can request computations.
The arbiter and judge are implemented as smart contracts. The computation service
is implemented using a smart contract as an interface for receiving computation
requests and providing solutions to the arbiter. To execute the computation, AWS
Lambda3 functions are created and accessed through an API. The communication

2https://github.com/nud3l/verifying-computation-solidity (visited on 16/05/2017)
3https://aws.amazon.com/lambda/ (visited on 16/05/2017)
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between the service’s smart contract and AWS Lambda is achieved by using oraclize
[84].

1 pragma s o l i d i t y ^ 0 . 4 . 8 ;
2

3 cont rac t Abst ractArb i te r {
4 f unc t i on enab l eSe rv i c e ( ) ;
5 f unc t i on d i s a b l e S e r v i c e ( ) ;
6 f unc t i on requestComputation ( s t r i n g _input1 , s t r i n g _input2 , u int

_operation , u int _numVerif iers ) ;
7 f unc t i on executeComputation ( ) payable ;
8 f unc t i on r e c e i v eRe su l t s ( s t r i n g _result , u int256 _computationId ) ;
9 f unc t i on compareResults ( ) ;

10 f unc t i on request Index ( ) ;
11 f unc t i on r e c e i v e Index ( u int _index1 , u int _index2 , u int _operation ,

u int256 _computationId , bool _end) ;
12 f unc t i on setJudge ( address _judge ) ;
13 f unc t i on getStatus ( ) constant r e tu rn s ( u int s t a tu s ) ;
14 f unc t i on getCurrentSo lver ( address _requester ) constant r e tu rn s (

address s o l v e r ) ;
15 }

Code excerpt 4.1: Abstract arbiter smart contract to define its ABI excluding internal functions.

Smart contracts communicate either through sending transactions or function calls.
In both cases, the initiating smart contract needs to know the ABI definition of
the smart contract it wants to interact with. To separate the definition of the
ABI from the implementation of the functions, the arbiter and computation service
are defined through an abstract contract as presented in code excerpt 4.1 and
4.2.

1 pragma s o l i d i t y ^ 0 . 4 . 8 ;
2

3 cont rac t AbstractComputat ionService {
4 f unc t i on __callback ( bytes32 _oracl izeID , s t r i n g _resu l t ) ;
5 f unc t i on compute ( s t r i n g _val1 , s t r i n g _val2 , u int _operation , u int256

_computationId ) payable ;
6 f unc t i on provideIndex ( s t r i n g _resu l tSo lve r , u int _computationId ) ;
7 f unc t i on r e g i s t e rOpe r a t i on ( u int _operation , s t r i n g _query ) ;
8 f unc t i on enab l eArb i t e r ( address _arbiterAddress ) ;
9 f unc t i on d i s ab l eA rb i t e r ( address _arbiterAddress ) ;

10 f unc t i on getResu l t ( bytes32 _orac l i ze ID ) constant r e tu rn s ( s t r i n g ) ;
11 }

Code excerpt 4.2: Abstract computation service smart contract to define its ABI excluding internal
functions.

The abstract contract is comparable to an abstract class in object oriented program-
ming. The abstract contract defines the required functions including their parameters
and return values without implementing the function logic. This is sufficient to define
the ABI of the actual contract implementation. The abstract contracts can be used
to call or send a transaction to an implemented type of that contract at a specific
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Ethereum address. Therefore, the implementation of each computation service can
be different, while the ABI remains constant.

Experiments are executed within TestRPC. TestRPC is a framework to simulate the
EVM on a local computer to allow development of smart contracts and interaction
using cryptocurrency without actual value [89]. For the development of the smart
contracts Truffle is utilised. It offers some degree of automation for compiling,
deploying, and testing smart contracts [78]. The experiments are conducted by
scripts written in JavaScript simulating a full execution of the algorithm from
the perspective of a user. Each iteration of the experiment starts with deploying
a new set of ten computation services, one arbiter, and one judge. Judge and
computation services are registering themselves with the arbiter before the user
sends a computation request. The testing method is elaborated on the next section.
Results are discussed in section 5.2.4.

4.2.1 Method

The quantitative analysis is conducted by executing experiments based on an imple-
mentation of the algorithm in Ethereum with one exemplary type of computation.
The computation is a multiplication of two integers to simplify the verification
steps in the algorithm. To test the algorithm’s objective two and three (refer to
section 4.1.1), the algorithm is simulated multiple times. The execution time of
the algorithm, the gas consumption of the algorithm, and the verification result are
reported. The results depend on external and internal parameters of the algorithm.
Externally, the prior probability of computation services providing false solutions is
considered. Internally, the number of verifiers the user requests for each computation
are examined.

The percentage of verifiers providing false results is the prior probability of receiving
false results in the verification. In essence, the algorithm is a variation of a consensus
algorithm, where a judge decides between arguing parties. However, if the dispute
resolution is not triggered, the judge is not involved. Hence, different prior prob-
abilities need to be tested. [90] introduce a 38.2% attack on Nakamoto consensus
algorithms, where a minority of rational miners can incentive other miners to accept
a blockchain of the minority’s choice. In the introduced algorithm also computation
services could collude to save on computation power. [4] describes a 51% attack
on consensus algorithms, where a majority of the miners’ computation power can
dictate the blockchain. If one entity would be able to control 51%, that entity is
able to control the blockchain. Again, with the introduced algorithm a majority
of computation services can collude to dictate the solution. Hence, the experiment
is conducted with 30%, 50%, and 70% prior probabilities to test the result of the
algorithm. Also, the computation services are assumed to collude i.e. they provide
the same false solution.
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Experiments are executed 1000 times for each different configuration of parameter
to determine execution time, gas consumption, and outcome of the computation.
Assuming a potentially large number of computation services (> 10, 000), this gives
a confidence level of 95% and a maximum confidence interval of 3.1 for the three
different prior probabilities. Before each iteration of the experiment the environment
is initialised with a new set of smart contracts. TestRPC is operated on a computer
with two Intel i5 cores at 2.5 GHz and 8 GB of main memory.

During test runs of the experiments, it was discovered that utilising an oracle is
comparably time-consuming. The mean time for issuing a request through the
oraclize service until receiving the result back is around 150 seconds. Since the
experiment aims to show the probability of accepting false solutions, numerous
executions are required. Hence, the implementation of the computation service is
changed in the experiments. Instead of using an oracle and AWS Lambda, the smart
contract of the computation service directly provided a solution by executing the
integer multiplication itself.

4.2.2 Execution time

The first experiment is used to measure the time to complete the algorithm. Specifi-
cally, it measures the time of executing the functions, calling contracts, and sending
transactions. Thus, the overall execution time depends on the algorithm implementa-
tion and also on TestRPC. During experiments the performance of TestRPC varied.
With an increasing number of calls TestRPC utilises more main memory. Figure
4.4 shows how after around 370 rounds of executing the experiments, the execution
time with the six different numbers of verifiers increases. This is caused by TestRPC
requiring more RAM than available on the test computer. The swap fills up at
around round 680 and leads TestRPC to crash. Restarting TestRPC and continuing
the experiments reduces the overall response time again.

Therefore, the sample size for the execution time is reduced to N = 100. Figure 4.5
presents the results with 30%, 50%, and 70% of computation services providing false
solutions and different numbers of verifiers. Time testing is conducted to determine
time complexity of the algorithm and communication overhead. Adding verifiers
to the algorithm increases the execution time linearly. Overall, σ increases when
including more verifiers. At 50%, the execution time grows stronger than with 30%
or 70%.

4.2.3 Gas cost

Reporting the amount of gas used equals the time and space complexity of the
algorithm, as gas consumption is determined by the type and number of operations
in the EVM. It further excludes the time used for sending transactions or calls.
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Figure 4.4: Total execution time with different number of verifiers and 30% of computation services
providing incorrect solutions with N = 1000.

Independent of the prior probability of false solutions, the µ gas consumption
increases linear as presented in figure 4.6. Further, σ decreases with an increasing
number of verifiers. At a low number of verifiers, the dispute resolution is less likely
triggered, leading to a higher σ in gas consumption. With an increasing number of
verifiers, the probability of triggering the dispute resolution increases. As the dispute
resolution is almost always triggered, σ is reduced.

4.2.4 Verification

Last, the verification of the algorithm is observed. The algorithm is tested for five
different cases: First, the algorithm can accept a correct solution (i.e. status 500
or 801). Second, each verifier agrees with the solver although the solution is not
correct (i.e. status 500). In this case the dispute resolution is not triggered and
the user receives a false solution marked as correct. Third, at least one verifier
disagrees with the solver providing a false solution and the judge rules that the
solver’s solution is false (i.e. status 802). Fourth, the dispute resolving is triggered,
but a false solution is accepted (i.e. status is 801, but should be 802). Fifth, the
dispute resolution is triggered, but a correct solution is denied (i.e. status is 802, but
should be 801).

Figure 4.7 presents the results of the experiment. With 30% prior probability of
false solutions, the number of correct solutions provided is µ 776.5 and σ 20.5. The
number of false accepted solutions is µ 4.5 and σ 11. No solutions provided (i.e.
status 802) has µ 219 and σ 24.8. At 50%, correct solutions has µ 440.8 and σ 17.
False solutions are accepted with µ 77.7 and σ 112. No solutions occur with µ 481.5.7
and σ 121.7. Having 70% results in µ 334.2 and σ 14.4 correct solutions accepted.
False solutions are accepted with µ 142.5 and σ 158.3. Last, no solution is reached
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with µ 523.3 and σ 154.7. The cases four and five of the experiment did not occur.
Thus, in no case the verdict of the judge was false.
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(a) 30% of computation services providing incorrect solu-
tions.

(b) 50% of computation services providing incorrect solu-
tions.

(c) 70% of computation services providing incorrect solu-
tions.

Figure 4.5: Total execution time of algorithm with different number of verifiers and percentage
of computation services providing incorrect solutions. Each combination of specific
number of verifier(s) and percentage of computation services with incorrect solutions with
N = 100. Median displayed as an orange line.
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(a) 30% of computation services providing incorrect solu-
tions.

(b) 50% of computation services providing incorrect solu-
tions.

(c) 70% of computation services providing incorrect solu-
tions.

Figure 4.6: Total amount of gas used by algorithm with different number of verifiers and percentage
of computation services providing incorrect solutions. Each combination of specific
number of verifier(s) and percentage of computation services with incorrect solutions with
N = 1000. Median displayed as an orange line.
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(a) 30% of computation services providing incorrect solutions.

(b) 50% of computation services providing incorrect solutions.

(c) 70% of computation services providing incorrect solutions.

Figure 4.7: Results of computations with different number of verifiers and percentage of computation
services providing incorrect solutions. Each combination of specific number of verifier(s)
and percentage of computation services with incorrect solutions with N = 1000.
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5 Chapter 5

Discussion

This chapter covers the discussion of the two research questions and their investigation
in chapters 3 and 4. In the first section, the results from chapter 3 including the
selected trust model and the findings from the quantitative analysis of Solidity smart
contracts are discussed. The second section elaborates on the verifying computation
algorithm proposed in chapter 4.

5.1 Trust model evaluation

The trust model is developed upon describing the ecosystem of smart contracts
and developing a trust model under the assumption of smart contracts as agent
systems. This section discusses the ecosystem description as well as the trust model
itself.

5.1.1 Smart contract ecosystem

Section 3.1 introduces objects, attributes, and relations. It gives a basic definition
of a system and elaborates which the different objects are and how they interact.
The intention is to give the reader a simple overview. However, existing system
theory and agent modelling techniques offer more detailed models. The model can
be enhanced by including environmental factors influencing the objects in it [33].
The presented model of the system is in fact one specific way to view it. A more
detailed system view might consider the distributed ledger, and all objects directly
on it, as a core part of the system. With such an approach, objects could also
be described with a state. The state of the blockchain depends on transactions
and operations of users and smart contracts. Due to the consensus protocol, each
state in the blockchain is deterministic. A formal description of the system consists
of users and smart contracts as objects in a specific state. Transformations (i.e.
transactions or calls to contract functions) are used to change the state of the system
[19].
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Also, the presented model is biased towards public permissionless blockchains. In per-
missioned blockchains, an authority has to grant access to objects on the blockchain
[8]. Moreover, miners are not present in this type of blockchains as the consensus
algorithm differs. The authority granting permissions is an agent that (1) is trusted
to give the permissions, and (2), in turn, provides a certain level of trust to others
by giving them the permission to interact on the blockchain. In established organisa-
tions or consortia the authorities typically already exist to grant access rights and
permissions.

Permissioned blockchains can be perceived as part of the technology stack of an
existing organisation or consortium, while permissionless blockchains are the enabler
of new types of organisations. Consequently, permissioned blockchains are part
of an existing organisational framework and technology stack, and, thus, are not
necessarily at the centre of the organisational system. Additionally, established
organisations might employ multiple different blockchains. For example, applying
consensus algorithms depending on the use case is a way of balancing trust and
tx/s. A weaker consensus algorithm allows a higher transaction rate as fewer parties
need to agree. However, these few should be trusted to detect and disregard invalid
transactions [52] [51].

The ecosystem can be modelled differently for other permissionless blockchains. In
Bitcoin, the blockchain platform is more or less the distributed ledger and there is little
separation between the two as it only implements one use case (i.e. cryptocurrency).
Bitcoin offers a limited set of instructions to write applications on top of it, but it
does not have a Turing-complete programming language. Moreover, the model in
section 3.1 lacks possible extensions of blockchains. For example, pegged sidechains
introduced in [91] enable fast transactions between entities. Upon closing this
sidechain, the result of the sum of transactions is stored in the actual blockchain (e.g.
Bitcoin).

Last, the presented model is a snapshot of the current ecosystem. In [92] Rao
discusses the evolving of a new era of communication, whereby “machines” are able
to communicate directly with each other on a common platform. [93] applies this
idea to Ethereum and compares the ABI to a universal way of smart contracts
communicating with each other. Hence, one can think of Ethereum as an enabler
for decentralised autonomous organisations being able to communicate with each
other by a standardised, enforced, and universal (at least within the blockchain)
protocol. Combining this with an increase of smart contract pro-activeness and
autonomy, it can lead to an extensive ecosystem, where autonomous organisations
shape the system without human interaction [94]. This idea is further elaborated on
the conclusion.
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5.1.2 Trust model for smart contracts

Section 3.2 introduces a trust model for smart contracts in permissionless blockchains.
Within the trust model, smart contracts are perceived as agents in an open MAS.
The trust model considers agents to be rational, including cheating behaviours to
increase their utility. As described by [13], a trust model covers three different aspects
including security, institutional, and social approaches to steer agents’ behaviour. In
permissionless blockchains the security and institutional aspects are primarily covered
by the blockchain platform implementing its protocol. As a result, the trust model for
smart contracts in permissionless blockchains is based on [63] covering social controls
including deposits, gossiping, and independent review agents.

Using deposits is used in other proposal in e.g. privacy preserving or verifiable
computation protocols as presented in [95], [35], and [36]. Deposits are comparably
simple to implement in permissionless blockchains, that already have a cryptocurrency
in place. However, the deposit value can be volatile based on the cryptocurrency
itself. This poses two risks: Either the escrow or independent entity maintaining the
deposit may be motivated to steal the deposits based on its value, or the deposit
value might be so little that its trust-building attribute vanishes. To prevent this,
the deposit value could be bound to a fiat currency or a stable asset. Otherwise,
the deposit can also be dynamically adjusted and deposits only kept for e.g. a
short or one iteration of interactions (i.e. for the algorithm presented in chapter
4).

Gossiping could be used as a basis to communicate experiences with other agents.
In permissionless blockchains, the agents can use a common protocol to exchange
this information and use an approach as presented in [96] to rate reputations. Zhou,
Hwang, and Cai propose a protocol for scoring and ranking in unstructured P2P
networks. Yet, gossiping can be misused by agents to boost their own reputations.
As creating new agents in permissionless blockchains is fairly simple, an adversary
could boost his own reputation by deploying new agents vouching for his reputation.
To circumvent this, either correlation analysis of transactions or outside information
is required as elaborated on [5]. Thus, based on the origin of transactions i.e. which
user created which smart contracts and the interaction between agents, a reputation
model can be built.

Independent review agents are used in chapter 4 as well as by [35] in the form of
judges. This is a simplified version of reviews, where the agents do not keep track of
the entirety of the network or trust of individual agents. Rather, they reach a verdict
on a specific issue or problem. Thus, their implementation is simple and potential
scenarios to manipulate agents’ reputations are prevented. However, the judge or
review agent needs to be trusted by other agents.

Within blockchains, agents need to assess information and make decisions under
uncertainty. At the same time, the blockchain platform enforces social norms [61] in
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the system. They prevent double-spending or tampering with the distributed ledger.
However, this still leaves room for interactions with a high degree of uncertainty.
To cope with it and to predict agents’ behaviour, game-theoretic methods can be
used. Thereby, agents want to optimise their utility while being constraint by the
rules set by the blockchain protocol. To control interactions within these constraints,
algorithms need to ensure that they consider all different strategies an agent or other
entity (like miners) have. This also includes the underlying assumptions made as well
as the possible interactions of an agent. However, assumptions can change or not hold
in reality. Hence, it is cumbersome to predict an agent’s behaviour, in particular in
complex scenarios. Therefore, a thorough trust model for permissionless blockchains
needs to employ methods of social control such as deposits and review agents, while
focussing on assumptions and agent’s possible strategies.

A trust model for permissioned blockchains needs to account for the assumption
differences. As these enable restrictive access and employ authorities granting
identities and access rights, there exists some prior trust between agents. Entities
giving access could for example be used as independent review agents keeping track
of the reputation. Agents’ access right can then be adjusted based on their behaviour
and reputation. Also, agents manipulating their reputation is more difficult, since
new agents cannot freely join or leave the system. However, deposits are harder to
implement as permissoned blockchains typically do not employ a cryptocurrency1.
Moreover, the prior trust in agents in the system depends on the permissiveness of
the blockchain.

5.1.3 Trust analysis for smart contracts

In section 3.3, trust-related implications of smart contracts are quantified. Specifically,
2561 Ethereum smart contracts written in Solidity and hosted on GitHub are analysed.
The analysis covers the distribution of smart contracts in different repositories, the
Solidity version, code complexity, and security-related issues. Using GitHub as
a source to compile smart contracts offers the benefit of having the source code
available for analysis. However, those contracts might never be deployed in Ethereum.
Alternatively, the EVM bytecode could be used as in [77] and [6]. In both papers,
the authors collected smart contracts directly from the blockchain and conducted
their analysis.

The contracts covered in section 3.3 are not checked for duplicates or similarity.
Anderson et al. discovered that from 19,528 contracts they analysed 309 are exact
copies and 2937 are very similar measured based on the Levenshtein distance of
the EVM bytecode [6]. Potentially, on GitHub this similarity or copying is higher
since there is no cost involved in forking or copying contract code. Hence, the

1Ripple is an exception as it is a permissioned blockchain with its own cryptocurrency.
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unique number of contracts is likely lower than the total number of contracts in the
analysis.

During the work on this thesis, from beginning of November 2016 to May 2017,
Solidity was updated from version 0.4.4 to 0.4.11 2. The fast development is reflected
in the number of different Solidity versions found on GitHub as shown in figure 3.2b.
Two observations can be made: First, the oldest version in the dataset is Solidity
0.4.0, and second, certain versions including 0.4.0, 0.4.2, 0.4.4, 0.4.6, and 0.4.8 are
more common than others. One of the reasons why no version prior to 0.4.0 is
available in the dataset could be caused by the fact the Solidity version did not have
to be included prior to 0.4.0. However, all 2561 contracts include the version number.
Another reason, could be that version 0.4.0 introduced breaking changes making
older Solidity code files incompatible with the EVM. Hence, developers are required
to use 0.4.0 or later. Most likely this caused developers to update their contracts as
the compiler released on 8 September 2016 would not accept any Solidity version
prior to 0.4.0.

The frequency variation of different Solidity version is potentially caused by developers
using frameworks to create smart contracts. The two most used ones, Truffle 3 and
Embark 4, support different Solidity versions. They need to update their code base
in order to support new Solidity versions. The release between Solidity version 0.4.1
and 0.4.2 are eight days, between 0.4.3 and 0.4.4 six days, between 0.4.5 and 0.4.6
one day, between 0.4.7 and 0.4.8 29 days. For versions 0.4.2 through 0.4.6 the time
to apply the new updates might have taken longer than the new release of Solidity,
so the Truffle and Embark developers might have decided to directly switch to the
latest version and not support in between versions. However, between 0.4.7 and 0.4.8
is a considerable amount to time. Apart from Holiday season between the two release
dates, the author does not have an explanation.

The number of declarations show outliers with one contract having around 200
variables and functions. The majority of the contracts have a mean of three variables
and two to four functions as presented in figure 3.3. This represents a low complexity
of the source code. Likely the majority of the contracts are used for trying out
Solidity and Ethereum. This is supported by the low average number of imports
and libraries. While smart contracts can have low code complexity, they can be
combined together using imports of other contracts and libraries. However, this
feature is rarely used. Moreover, seldom use of structs and enums for state variables
indicate simple models of data in the set of smart contracts. A recommended way to
store more complex data-models is to define a struct and access it either through
arrays or mappings. Events used for controlling and debugging smart contracts are
also fairly rare. This supports the hypothesis that the majority of contracts are for
experimenting with Solidity. Additionally, a more detailed analysis of the functions

2https://github.com/ethereum/solidity/blob/develop/Changelog.md (visited on 22/05/2017)
3http://truffleframework.com (visited on 22/05/2017)
4https://github.com/iurimatias/embark-framework (visited on 22/05/2017)
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could be done. This can include the number and type of parameters and returns as
well as modifiers used. Modifiers are a way to apply certain checks before executing
a function. For example, a modifier could be defined to check if the sender of the
call or transaction is the owner of the contract. Instead of defining this piece of code
for every function individually, a modifier could be defined and applied to functions.
Also, the fixed “payable” modifier needs to be set for functions accepting payments
in ether. It can be analysed which contracts accept payment and which functions
are responsible for receiving payments.

The Oyente tool presented in [77] is used to analyse security-related issues in the
2561 smart contracts as presented in 3.4. Callstack and re-entrancy are the two most
common issues found in the set of smart contracts. The majority of smart contracts
are not showing any of the four tested security-related issues. However, there is
a chance that security issues arise from the smart contracts, that are not tested
through the Oyente tool. Hence, an automatic checking of the smart contracts alone
is not sufficient to ensure the smart contract implements the intended functionality.
Moreover, the contracts showing security-related issues are not checked for false
positives. In [77], the authors recognise that Oyente can produce false positives and
the source code needs to be further analysed. Their reported false positive rate is at
6.4%, which needs to be verified as part of future work for the smart contracts from
GitHub as well.

A critical aspect of trusting smart contracts concerns their implementation. If their
implementation defers from their intention, it can have severe consequences. The DAO
is an infamous example of smart contracts not being implemented as intended, leading
to a loss of around USD 150 million [38]. In the design of The DAO, a re-entrancy
was possible where users were able to extract funds recursively before their balance
in the state of the contract was updated. Ethereum supports a cryptocurrency and
thus, the incentive to exploit such implementation flaws is considerable. Moreover,
the immutable nature of smart contracts makes it impossible to quickly update or
fix such issues. The problem leads to two questions: What are the consequences
of having issues in smart contracts, and how can those issues be prevented? The
first question is discussed in chapter 6 of this thesis as it covers the understanding
of code in blockchains. The second question is primarily concerned with ensuring
that implementation follows the intention of the author. First, [97] presents common
issues and design best practices for the creation of smart contracts. Developers need
to be aware of the immutability of smart contracts and plan ahead for safety features,
such as contract suicide functions. Second, formal verification methods as stated
in [86] and [85] are aiming to mathematically proof the implementation of smart
contracts according to a specification. Similar to critical infrastructure or military
applications, the functions of a smart contract can be abstractly defined and their
implementation verified by using mathematical proofs. This can be simplified by
using a theorem proofer such as Lem or Isabelle/HOL. However, a complete proof of
a smart contract requires a considerable amount of work and is as of May 2017 not
yet a common practice [86].
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5.2 Verifying computation evaluation

This section discusses the algorithm introduced in chapter 4. It is structured to
reflect chapter 4 such that actors, assumptions, algorithm, implementation, and last,
experiments are critically analysed. The assessment focusses on how the algorithm
achieves the objectives stated in section 4.1.1.

5.2.1 Actors and assumptions

The algorithm is based on its actors and their interaction. The idea of arbiter, judge,
user, and computation services is strongly influenced by [35] and [36]. The main
differences between the presented algorithm and [35] are in the idea of using a jackpot
to reward verifiers as well as the implementation either entirely on Ethereum or using
external computation services. Moreover, the algorithm defers from [36] as its goal
is to deliver verifiable computations for entities (i.e. users or smart contracts) on
the blockchain, while Zyskind primarily delivers privacy preserving computations,
where blockchain provides useful technical characteristics enabling his algorithm. A
justification for the design differences is given in section 4.1.1.

Moreover, there is an economic threshold to using verifying computation services.
An oracle introduces a fixed fee for using the service. For example, oraclize requires
to send the ether equivalent of USD 0.01 with every query [84]. Users may test the
gas consumption and the assumed gas price using for example the Remix IDE [98].
Thereby, they determine which computations are economically feasible to outsource
to a verifiable computation solution. Computations that are cheaper to execute in a
smart contract itself, should be executed there.

Miners also need to be considered as actors of the algorithm due to the restrictions
in creating random numbers. Ethereum is a deterministic system as every node in
the network needs to be able to verify each transaction and function. Therefore, the
results of transactions or function calls depend distinctly on the inputs. However, this
introduces an issue in the creation of random numbers in Ethereum. As Ethereum
is deterministic “true” randomness cannot be achieved. Functions creating random
numbers, need to create the same pseudo-random number during each verification step
of a node. To achieve pseudo-random numbers, values provided by the blockchain
itself like the block hash, timestamp, or nonce can be used. Miners are able to
influence these values, and hence, can influence the creation of pseudo-random
numbers [99]. A miner receives five ether for every new block it finds. If a miner is
able to influence the algorithm, he might adjust the value to influence the randomness.
Thereby, a miner would be able to influence the selection of solvers and verifiers
according to his preference. A miner might run the risk of another miner finding a
suitable block, while it decides to change a value (like timestamp or withholding a
block). In that case, it looses its mining work as the other miner proposes the new
block and other nodes verify it. Hence, the incentive the miner can gain needs to
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be more than five Ether, otherwise the miner is better off proposing the new block.
Therefore, the overall incentive for solver and verifiers combined should not exceed
five Ether. The implementation of pseudo-random numbers is further discussed in
section 5.2.3.

Miners also need to be considered because of their validation work. [100] introduces
the Verifier’s dilemma. Rational miners have an incentive to accept not validated
blockchains, if the computational effort for validating blocks is not trivial. This
opens up consensus algorithms to attacks where 38.2% of the miners can influence
the majority of the system. Hence, the algorithm outsources the complex compu-
tations outside the blockchain and simplifies the judgement on results. As such,
miners do not gain an incentive for not validating the computations part of the
algorithm.

The algorithm is further based on the assumption of cheaters in the system. [101] lists
and categorises a total of seven cheating techniques that can be employed by agents.
First, the user might get cheated on after submitting the fee for the computation by
not receiving any result (or status update). To ensure the user is properly refunded,
the fee could be stored in an escrow by arbiter and judge. Only upon finishing the
computation the fees are distributed.

Second, computation services might provide correct solutions on simple computations,
but provide false results on complex ones. In such cases, they save up on computation
cost, while relatively maintaining their reputation. However, as no reputation system
is employed, computation services are penalised independent of the fee provided.
Moreover, the deposit that needs to be provided, needs to exceed the maximum
possible fee to prevent this as a profitable strategy.

Third, computation services and users can enter freely into the blockchain. Thus,
cheaters might reappear in new accounts. For computation services, this is prevented
by deposits. Yet, users can also provide bogus challenges, wasting computation
resources. To prevent this from happening, computation services could receive the
choice to refuse certain computations as described in [35].

Fourth, in an initial state no trust between agents exists. Hence, users cannot
know which agent to trust. This can be resolved by the formal verification of
arbiter and judge, as well as the deposits and incentive structure of the algo-
rithm.

Fifth, a computation service planning to exit the system might cheat, because there
is no reputation to lose. This again, is prevented by the deposit. However, combining
this with the volatility of cryptocurrencies might impose the problem, that the gain
through not providing a correct solution outweighs the potential punishment of
burning the deposit.

Sixth, multiple agents might collude to maximise their utility. This is the case,
when all computation services agree to provide the same arbitrary solution to a
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computation request. Thereby, they save the cost for computation and receive their
share of the fee. Moreover, if the judge is colluding with them, even a truthful verifier,
might be deemed wrong. Thus, previously mentioned methods i.e. formal verification,
deposits, and incentive fees are crucial to prevent this behaviour.

Seventh, cheating computation services might multiply themselves to increase their
prior probability of being chosen. In the current implementation, a computation
service might be deployed numerously with forwarding computations to the same
AWS Lambda API. As shown in section 4.2, the result of the outcome depends
on the prior probability of cheaters. Hence, an adversary could provide a large
percentage of cheating services with a probability that its false results are accepted.
The adversary could check if all computation services, in a particular task, belong
to it. In that case, it could just provide the same false answer while receiving the
incentives.

The algorithm further assumes that arbiter and judge are trusted. This might not
hold in practice as to the users the entities are unknown and no deposits are provided.
A way to create this form of trust, can be formal verification as explained in section
5.1.3. Both, arbiter and judge can publish a proof through a smart contract function
so that a user is able to verify their implementation according to the algorithm
specification. We leave this for future work.

5.2.2 Algorithm

In the theoretic design of the algorithm, the likelihood to accept a correct result
depends on the prior probability of computation services providing correct services.
However, the algorithm does not consider multiple rounds of execution. Potentially,
the prior probability can be influenced by excluding computation services that are
detected of cheating. Moreover, if the deposits of these computation services are
“burned”, it might reduce the incentive to cheat for other computation services as
well. That is, they need to account for penalising of undesired behaviour and thus,
might adjust their utility functions. Moreover, the number of false accepted results
can be reduced by the same means.

The algorithm cannot guarantee to detect false solutions. It is based on the assumption
that solvers and verifiers behave as desired (i.e. delivering correct solutions), as their
strategy is aligned with the incentives provided by the algorithm. This assumption
is based on game-theoretic properties. Agent decision making utilises primarily four
different concepts: dominant strategies, Nash equilibria, Pareto efficiency, and social
welfare [34, pp. 229-235].

Dominant strategy and Nash equilibria can serve as solutions to agent decision
problems. A dominant strategy for an agent is one that gives this agent the highest
utility independent of the other agents’ strategies. A Nash equilibrium is defined
by two agents i and j choosing a strategy that is the best response to each others’
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strategy. For example, if agent i plays strategy S1 then agent j is best of playing
strategy S2 and vice versa. However, in practice a Nash equilibrium might not exist,
as agents make decisions under uncertainty and cannot know the probability of actions
by other agents. Also, multiple Nash equilibria might exist.

Applying those two concepts to the algorithm leaves no dominant strategy considering
the interactions in table 4.2 and description in section 4.1.5. S can choose either
to provide a correct or false solution and V can challenge or accept. Only when
considering both agents, a Nash equilibrium exists. If there is a (high) probability
that a VC exists, the only valid strategy for S is to provide a correct solution.
Consequently, V in turn has to provide a correct solution, which accepts correct S
and challenges false S.

Pareto efficiency and social welfare are properties of a decision’s outcome. Pareto
efficiency describes a solution (i.e. choice of strategy by all agents involved) where
an agent’s utility cannot be increased without decreasing another agent’s util-
ity.

In the algorithm, both S and V providing correct solutions gives a Pareto efficient
result. If they change their strategy under the assumption that no VC exists, their
utility remains the same. However, a V has an incentive to challenge a false solution,
which would increase his utility and reduce the others utility. Social welfare in turn
considers the sum of all agent’s utilities depending on their strategy. Social welfare
can be disregarded in permissionless blockchains, since overall the agent wants to
optimise his utility independent of the overall utility. Specifically, the overall utility
is potentially unknown to an individual agent, since he is unable to determine with
certainty the utility of other agents.

Moreover, the algorithm depends on the verdict of the judge. Simplified judges are an
efficient way to reach a decision in case of a dispute between agents [102]. To ensure
that the judge is implemented correctly formal verification as elaborated earlier can
be used. In case a judge’s verdict is incorrect, the algorithm fails to detect correct
and false solutions. This leads to penalising and rewarding the wrong agents and,
potentially, to removing agents providing correct solutions.

Within the algorithm, computation services might drop out. This case is currently
not handled in the algorithm, but can be approached as follows. If computation
services have not yet been assigned as solver or verifiers for a current computation,
they can replace the dropped out ones. This can be repeated until the gas provided
by the user is finished. When the gas limit is reached, the computation is aborted,
since the probability of detecting false results is influenced by the number of verifiers.
Otherwise, the computation can continue as planned. If computation services drop
out during the dispute resolution phase, their deposits are burned to penalise their
behaviour. Drop out caused by network or infrastructure issues are highly unlikely
due to the P2P and serverless architecture of Ethereum.
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Last, the algorithm description leaves the exact fee for a computation open. The fee
for the computation is supposed to cover the cost of using the oracle service as well
as the computation cost for a computation service. The fee is therefore determined
by the work of computation services and their implementation. It should not exceed
five ether due to the potential influence of miners on the process. The exact fee could
further be realised by an arbiter setting a fixed fee or utilising auction protocols.
However, this issue is left for future work.

5.2.3 Implementation

The implementation of the algorithm is based on smart contracts in Solidity, using or-
aclize as an Orcale service, and AWS Lambda to implement the computation services.
The design of the implementation is based on having an abstract arbiter and abstract
computation service contract to allow changes and individual implementations, but
keeping the ABI constant. Different operations e.g. integer multiplication, matrix
multiplication, or matrix inverse can be implemented as different operation types.
The operation types are characterised by their query URL (i.e. to the respective
AWS Lambda or other service) and their dispute resolution protocol. An author of a
computation service needs to implement the handling of pointing out indexes and
providing intermediary results. Therefore, each type of computation requires its own
custom implementation. This provides a common framework for the computation
and resolution. However, it requires creating a custom implementation for each type
of computation.

Moreover, the algorithm is only suitable for a set of deterministic computations. A
dispute resolution for results reported by an application which relies on randomness
and probabilities are cumbersome to implement. For example, a verification of a
result delivered by a convolutional neural network on image classification would
require the comparison of initialisation weights and numerous intermediary results.
However, mostly initial weights are chosen at random and depending on the depths
of the network, the required dispute resolution steps might consume too much gas
for the dispute resolution to finish.

As previously mentioned, randomness in Ethereum is a challenge. Code excerpt 5.1
presents the function used in the arbiter contract. The input values are used to
determine in which range to choose a random number. This reflects the available
computation services minus the ones already assigned as solver or verifiers. The
random number depends on the block number and hash of the longest block in
the chain (i.e. block.number - 1 ). However, this sort of random number creation
introduces the influence of miners as discussed previously. If a miner can overall
profit from withholding a block, it will likely influence the random number. There
are two approaches to circumvent the problem [99] [103]. First, oracles can be used
to generate random numbers outside the blockchain and write them back into it.
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However, this introduces a high delay and a relatively high cost. Second, a RANDAO5

is an autonomous organisation creating random numbers in Ethereum. It is based
on users sending transactions with hash values and determines the random number
based on those hashes. Thereby, it excludes the miners from influencing the random
number process. However, it requires a certain number of blocks to generate the
number and is therefore slower and also involves a higher cost.

1 f unc t i on rand ( u int min , u int max) i n t e r n a l constant r e tu rn s ( u int256
random) {

2 uint256 blockValue = uint256 ( block . blockhash ( block . number−1) ) ;
3 random = uint256 ( uint256 ( blockValue )%(min+max) ) ;
4 re turn random ;
5 }

Code excerpt 5.1: Random number generator in Solidity based on block number and hash.

The objective of the algorithm is to minimise any kind of trust requirements in
the system. Using oracles requires a certain level of trust, since the oracle could
also manipulate the solution provided by the computation service. Oraclize offers a
TLS Notary proof to verify that the result written to the blockchain confirms to the
information delivered by the API or website that was queried. However, this comes
with an extra cost and moreover, one needs to trust the correct implementation of the
proof. In [35], the authors circumvent this issue. The computation is written as C,
C++, or Rust code and complied as well as executed on the blockchain. Overall, this
limits the flexibility of the computation services, but reduces the trust requirements.
The presented algorithm utilises oracles to reduce the implementation requirements
and provide a more flexible framework.

5.2.4 Experiments

The experiments in section 4.2 cover the total execution time, gas consumption, and
result of algorithm. It uses a simple computation, namely multiplication of two
integers. The dispute resolution for an integer multiplication requires only one step
i.e. the judge multiplying the two integers and comparing this to the initial solver’s
result. Thus, the execution time and the gas consumption reported in figures 4.5
and 4.6 are on the low end. With an increasing number of resolution steps, time and
gas consumption are higher. However, both values indicate a linear time and space
complexity of the algorithm. Therefore, with an increased complexity of dispute
resolution the time and gas consumption of the overall protocol in relation to the
number of verifiers grows linear. This would further apply to other computations,
as long as it can use Merkle trees and binary search to limit the additional dispute
resolution steps to O(n).

An issue not shown in the experiments is verification steps that require too much gas.
The user triggers the dispute resolution protocol by calling a function in the arbiter.

5https://github.com/randao/randao (visited on 23/05/2017)
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Ethereum has an upper gas limit of 4.7 million that can be sent to any function.
If the gas sent exceeds the maximum value an error is thrown and the transaction
or call is not executed. Similarly, if the gas required by the function exceeds the
delivered gas, the function will terminate prematurely with an out of gas error. Thus,
the overall dispute resolution gas consumption of any computation cannot exceed
the upper gas limit set by Ethereum. Figure 4.6 shows that the most expensive
dispute resolution with six verifiers consumes a total of 1.5 million gas. The dispute
resolution function consumes around 0.5 million gas, hence it is considerably far from
the upper limit of 4.7 million. Moreover, the prior probability of cheaters seem to
not affect the overall gas consumption.

The result of the algorithm as presented in figure 4.7 shows that it detects false
solutions and that the judge, if invoked, rules correctly. However, invoking the
dispute resolution depends on the prior probability of computation services providing
false solutions. The experiments are conducted with 30%, 50%, and 70% prior p.
The probability of having at least one verifier challenging the solver is determined
by the number of verifiers n in the computation, where the probability is described
by P (VC) = 1− pn. Thus, the probability of accepting a false result is described by
the prior probability of having a false result (i.e. p) times not detecting the false
result (i.e. 1− P (VC)). Table 5.1 compares the theoretical expected number of false
accepted results to the actual false accepted results from the experiments in section
4.2. The experiments show that the expected and actual value are similar for p = 0.5.
However, for p = 0.3 and p = 0.7 the actual values are below the expected ones.
Since the experiment is executed with a confidence level of 95% and interval of 3.1,
those changes are accounted towards sampling size not being a perfect representative
for the actual distribution. Moreover, the random assignment of false and correct
computation services in the JavaScript tests could be a cause for having a higher
detection rate.
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Table 5.1: Comparison of expected and actual probabilities of accepting a false solution in the algo-
rithm.

Prior p Verifiers n Expected false [%] Actual false [%]
0.3 1 9.0 2.7
0.3 2 2.7 0.0
0.3 3 0.81 0.0
0.3 4 0.243 0.0
0.3 5 0.0729 0.0
0.3 6 0.02187 0.0
0.5 1 25.0 28.6
0.5 2 12.5 12.2
0.5 3 6.25 4.6
0.5 4 3.125 1.2
0.5 5 1.5625 0.0
0.5 6 0.78125 0.0
0.7 1 49.0 41.2
0.7 2 34.3 24.4
0.7 3 24.01 12.1
0.7 4 16.807 4.9
0.7 5 11.7649 2.9
0.7 6 8.23543 0.0
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6 Chapter 6

Conclusion

This chapter summarizes the key findings as well as the critical evaluation in chapters
3, 4, and 5. Moreover, the major contributions of this project are outlined and
potential future work is described. Last, an outlook of future development is
presented.

6.1 Summary of findings

This thesis elaborates on trust and verifiable computations for smart contracts with a
focus on permissionless blockchains. The purpose is to answer two research questions
as stated in section 1.3.

RQ1: Which models of trust can be applied to smart contract ecosystems to reflect
public permissionless blockchains?
RQ2: How can computations be verified in permissionless blockchains utilising
models of trust?

Investigation of the first research question is covered in chapter 3. The ecosystem
of smart contracts is described with its objects, trust-related attributes, and rela-
tions. The core of the system consists of a blockchain platform, blockchain protocol,
distributed ledger, smart contracts, users, nodes, miners, and a developer community.
Users and smart contracts can either directly interact through function calls, or trans-
actions that are stored in the distributed ledger. The blockchain platform implements
its protocol and thereby enforces the rules of the system.

In the trust model, smart contracts are perceived as rational agents in an open
MAS. They are capable of reactive and, to a certain extent, autonomous and pro-
active behaviour. However, their intentions are not necessarily known and agents
have to be able to make decisions under uncertainty. Trust and reputation research
for MAS focusses on three aspects: security, institutional, and social approaches
[13]. The security and institutional aspects are enforced by the blockchain through
cryptography and consensus mechanisms. It ensures that valid transactions are



6 Conclusion

immutably stored. However, further interactions by smart contracts or users are not
covered by these measures. As permissionless blockchains like Ethereum employ a
cryptocurrency, rational agents are motivated to maximise their utility by honest
and dishonest behaviour. Hence, further social control aspects including deposits,
gossiping, and independent review agents as introduced by the model in [63] are
required. In permissionless blockchains especially deposits are an effective control
measure, since no prior trust needs to be established and the access to cryptocurrency
allows implementation through already available measures. Next, the quantitative
analysis of trust-related attributes in smart contracts show that Solidity contracts
hosted on GitHub are: (1) mostly still in a try-out phase with a low code complexity
indicated by few declarations in the source code, and (2) security-related issues in
around one in every ten smart contracts exists.

The second research question is explored in chapter 4. Trust can be extended to
entities outside of permissionless blockchains through an algorithm implementing
verifiable computation. The algorithm uses deposits and review agents as social
control from chapter 3. Moreover, it employs a game-theoretic setting for participating
agents. It includes users requesting computational tasks, computational services
providing solutions and acting either as solver or verifier, arbiter enforcing the
algorithm, and a judge resolving disputes. Due to the incentive structure and the
potential penalty cause by cheating, providing correct solutions to the computation
task is a Nash equilibrium (as elaborated on section 5.2.2). Under the assumption that
arbiter and judge are trusted, the algorithm detects false solutions provided based
on a probability distribution. The algorithm is realised as Solidity smart contracts
and AWS Lambda functions, implementing verification of multiplying two integers.
Experiments show that with six verifiers the algorithm detects all cheaters with prior
probabilities of 30%, 50%, and 70% dishonest computation services. Moreover, the
experiments show that the algorithm performs overall with a linear time and space
complexity depending on the number of verifiers.

6.2 Main contributions

The main contributions of this thesis revolve around smart contract ecosystems,
trust models, and verifiable computations. First, the ecosystem of smart contracts
in permissionless blockchains is described including their objects, attributes, and
relations.

Second, from 65 trust models presented in [13] a trust model for smart contracts in per-
missionless blockchains is deducted. The model extends [63] and is detailed by further
research in the field on deposits, reputation, and review agents.

Third, 2,561 Solidity smart contracts are analysed for trust-related attributes. This
provides an insight in the current development status regarding code complexity
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and security related issues. It includes a reusable crawler utilising a greedy algo-
rithm to receive code files from GitHub. Also, the dataset of 2561 smart contracts
including source code, analysed code, and meta-data is available for further analy-
sis.

Fourth, an algorithm to allow verifiable computation in permissionless blockchains
is presented and evaluated. It is implemented as Solidity smart contracts and
AWS Lambda functions to use it for integer multiplications. The implementation
is designed to allow extensibility of the algorithm for other computations. All code
written throughout this thesis is publicly available GitHub1.

6.3 Future work

Among others, four main focusses of future work are identified. Gossiping in per-
missionless blockchains could be a viable option to evaluate the trustworthiness of
agents and use it as part of the trust model in chapter 3. Since the distributed ledger
allows a transparent view of previous transactions, a formal model can be developed
based on this information. This could be used for arbitrary protocols or algorithms
involving both smart contracts and users. It can also serve as a selection criteria for
the arbiter in the algorithm introduced in chapter 4. The random selection can be
adjusted as such that computation services with previously successful computations
are assigned at a higher likelihood.

Moreover, extending the computation algorithm to support more computations
and testing it on the test or live network of Ethereum is necessary to confirm the
assumptions and interaction scenarios depicted in chapter 4. Thereby, the test should
monitor the number of computation services available and their behaviour. The
solution proposed by Teutsch and Reitwießner is supposed to be implemented within
2017 [35]. A quantitative experimental comparison of the here proposed algorithm and
their TrueBit solution would allow identifying differences in the incentive structure,
behaviours of agents, and complexity of the algorithms. Also, this can include
experiments to show the upper computational complexity of computations, that do
not incentivise miners.

Eliminating trust towards arbiter and judge requires either a fully decentralised
algorithm or formal verification. Formal verification of arbiter and judge requires the
specification of the implementation presented in section 4.2 in a theorem prover. [104]
presents an example of an Ethereum smart contract verification process. However,
as [86] points out, the methodology of verifying smart contracts is still a work in
progress. It requires the exact replication of the EVM, otherwise the verification

1A list of all repositories is available at: https://github.com/nud3l/TrustedSmartContracts (visited
on 05/06/2017)
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process would not yield a valid result. Also, the algorithm could be re-designed to
be fully decentralised without trusted entities.

Last, finding a method to determine the computation fee is left for future research.
Depending on who sets the fee (i.e. arbiter, user, computation service), the strategies
of the different agents can be affected. Users will naturally try to minimise the
fee, while computation services try to maximise their profits. Hence, auctions
could be an option to find a price both parties agree on. However, there is a
variation of auction protocols, each with their own advantages and disadvantages
[34].

6.4 Outlook

Chapter 1 opens with the question on how computer science can contribute to
providing trust. The continuing acceptance of cryptocurrencies, shows that trusts
exists in decentralised economies and currencies enforced by a protocol rather than
traditional institutions 2. Price increases of those currencies opens up the door for
speculation on its value, rather than using it as a means of payment. However, having
a system, which does not require trust, minimises potential malicious activities from
the perspective of the protocol. While Bitcoin is used for buying illegal goods and
has a notorious reputation, its basic design introduced an opportunity to show-
case P2P payment systems preventing double-spending and storing transactions
immutably. This decentralised architecture later on adapted by Ethereum and other
blockchains, makes the system tamper-proof and resilient against influences from
single or colluding parties.

This immutability introduces new challenges. In [30], Lessig argues whether code
should be treated as law. Assuming a smart contract is not “just an application”, but
the equivalent of a contract in a legal sense, then how are flaws in the contract treated?
Ideally, an application receives a fix of the flaw after it is discovered. However, legal
contracts cannot be altered in the sense of an application. Rather, a new contract
needs to replace the existing one or adjustments need to be made with participating
parties agreeing mutually on these changes. Courts decide whether a contract was
legally binding in the first place. Yet, Ethereum does not have courts that would be
able or have the authority to reach verdicts. The case of The DAO led to the split
of the Ethereum project into Etheruem and Ethereum Classic, because of a debate
how to treat smart contracts. Ethereum supporters argue that the application was
not implemented according to its specification and thus, users that are damaged,
should be refunded and the blockchain platform modified to prevent further incidents.

2During work on this thesis from 1 November 2016 to 24 May 2017, the Bitcoin and Ethereum
market capitalisation has risen from USD 11 billion to USD 39 billion and USD 924 million
to USD 18.6 billion, respectively. See https://coinmarketcap.com/currencies/bitcoin/ and
https://coinmarketcap.com/currencies/ethereum/ (visited on 24/05/2017)
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Ethereum Classic followers contrary pointed out that since it should be treated as a
legal contract, the contract is binding and the damage done should not be reverted.
Users should be aware of flaws as they would be with other legal contracts. As of
May 2017, no regulations regarding the legal applicability of smart contracts in the
EU exist. However, the state of Arizona has declared that they will treat smart
contracts as legal contracts3.

Blockchain is characterised by decentralisation and trust enforcement through technol-
ogy. The here presented model of trust can be applied to a variety of permissionless
blockchains. Thus, it can help others understand the nature and control measures to
develop protocols or algorithms on top of these platforms. Security of these proto-
cols and algorithms is crucial due to the immutability and high impact of faults4.
Potentially everyone with the ability to program a smart contract can become a de-
veloper working with cryptocurrencies at a large scale [105]. Therefore, secure coding
techniques or formal verification methods are required as well as a consideration of
agent interactions through game theory. Buterin and others proposed the emergence
of a specialised field called “cryptoeconomics” focussing on combining computer
science (i.e. cryptography, consensus, agents), and economics (i.e. game theory) to
research those aspects [58]. Ethereum continues to develop5, while the number of new
decentralised autonomous organisations grows with it 6. With an increasing ability
of smart contracts (i.e. inclusion of pro-activeness), trust models need to be revised
and the decision making capabilities of agents can be greatly increased. In the future
this may lead to truly autonomous organisations, capable of complex behaviours and
interactions on a homogeneous and decentralised platform.

3http://www.trustnodes.com/2017/04/03/arizona-gives-legal-status-blockchain-based-smart-
contracts (visited on 24/05/2017)

4An exchange for cryptocurrencies implemented a faulty split function in an Ethereum contract
resulting in an equivalent of USD 14.7 million worth of Ether being trapped inside the con-
tract. See: http://www.coindesk.com/ethereum-smart-contract-exchange-14-million/ (visited on
04/06/2017)

5https://github.com/ethereum/EIPs (visited on 23/05/2017)
6Overview of start-ups seeking funding based on issuing their own tokens: https://www.icoalert.com
(visited on 24/05/2017)
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