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Abstract

The present paper proposes an advanced approach for Polymer Electrolyte Mem-

brane Fuel Cell (PEMFC) systems fault detection and isolation through a model-

based diagnostic algorithm. The considered algorithm is developed upon a lumped

parameter model simulating a whole PEMFC system oriented towards automotive

applications. This model is inspired by other models available in the literature, with

further attention to stack thermal dynamics and water management. The developed

model is analysed by means of Structural Analysis, to identify the correlations

among involved physical variables, defined equations and a set of faults which may

occur in the system (related to both auxiliary components malfunctions and stack

degradation phenomena). Residual generators are designed by means of Causal

Computation analysis and the maximum theoretical fault isolability, achievable

with a minimal number of installed sensors, is investigated. The achieved results
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proved the capability of the algorithm to theoretically detect and isolate almost all

faults with the only use of stack voltage and temperature sensors, with significant

advantages from an industrial point of view. The effective fault isolability is proved

through fault simulations at a specific fault magnitude with an advanced residual

evaluation technique, to consider quantitative residual deviations from normal

conditions and achieve univocal fault isolation.

Keywords: Polymer Electrolyte Membrane Fuel Cell, Model-based Diagnosis,

Fault Detection, Fault Isolation, Residual Generation, Algorithm Design.

1. Introduction

The current advancements in materials design and components manufacturing

brought Polymer Electrolyte Membrane Fuel Cells (PEMFCs) among the most

suitable power production systems for small and medium size applications, e.g.,

automotive, backup, portable, etc. [1, 2]. Nevertheless, the limitations for PEMFC

mass market deployment are mainly related to their high production and operating

costs, as well as limited durability with respect to the reference targets set for the

considered applications [3, 4].

To achieve these targets, the current research and industrial efforts are focused

on both material and manufacturing processes improvement, and on-field oper-

ation reliability and durability increase. On this latter issue, suitable diagnostic

algorithms coupled with efficient control strategies can be adopted [5, 6, 7, 8]. The

proper combination of diagnostics and control can promptly act to prevent fault

worsening, so as to reduce system degradation or avoid any abrupt failure, and thus

improve system durability and lifetime [9, 10].

In the available literature, many approaches are proposed to cope with fault
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diagnosis, and they can be roughly classified in model- and signal-based techniques

[6, 11]. On the one hand, model-based diagnosis uses a mathematical model to

simulate system variables during normal operation and to generate residuals by

comparing the simulated variables with those measured on the system [5, 7, 8, 9,

12, 13, 14]. On the other hand, signal-based approaches directly treat measured

signals to extract information and define different patterns representative of variable

behaviour during both normal and faulty conditions [15, 16, 17, 18, 19].

Signal-based techniques require limited knowledge about the system under

study but large amount of experiments, implying several issues such as infeasibility

of the tests, high cost and complexity of the experiments, etc. [6]. On the contrary,

model-based approaches are recognized as more robust against changes in system

features, thus allowing the application of the same developed algorithm on different

technologies/cases with slight modifications [14].

The availability of accurate models does not imply itself optimal fault diagnosis.

Indeed, suitable residuals are required to correctly detect fault occurrence and

ensure reliable system diagnosis. In many works, residuals are generated by

comparing measured variables with those simulated by the model [5, 8, 20, 21].

However, this approach leads the number of residuals to equal the number of

measurements. It is widely recognized that robust diagnosis can be achieved by

increasing as much as possible the number of residuals, in accordance with the

concept of analytical redundancy; this improves information extraction and reduces

false alarm and miss detection occurrence. To meet these requirements, the use

of Structural Analysis can be advised [20]. Many works available in the literature

apply this technique for system diagnosis on, e.g., engines [22, 23], hybrid vehicles

[24] and other complex systems [25, 26, 27], but only limited number of papers
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focus on fuel cells [14, 28].

The most notable work applying Structural Analysis for fault detection on

a PEMFC system is that of Rosich et al. [14]. The authors developed residual

generators following a model-based approach combined with structural analysis.

They use the model developed by [29] to design fault diagnosis structure. Analysing

the structural information derived from the model, they manually selected sets of

equations sensitive to chosen faults, taking into account the causal computability

of the involved variables.

Although interesting and significantly valuable for the research community, the

work of Rosich et al. [14] presents some limitations. For instance, the considered

model does not take into account membrane water management and stack thermal-

dynamics, being this latter assumed much slower than all the other phenomena.

This is true during normal operation, when the fuel cell and the other components

are working properly; but when dealing with faulty states, e.g., the occurrence of

an abnormal behaviour in the fuel cell cooling system, or the worsening of some

fuel cell degradation mechanisms, faster dynamics could be induced, driving the

system towards abrupt failure. Another aspect relates to the faults and sensors

considered in the work: seven faults at component level are investigated and nine

sensors are considered (a cost analysis drove towards sensors choice). However, no

abnormal events (either faults or degradation mechanisms) which may occur inside

the stack nor sensor faults are considered, and no detail is given on the reasons

leading to the fully isolability of the defined faults (i.e., if it is always the case or it

is only related to the chosen model and faults).

To cope with the remarked limitations, the present work proposes an advanced

model-based diagnostic algorithm for PEMFC fault detection and isolation. The
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considered algorithm is based on a lumped PEMFC system model inspired by

[29, 30, 31], with further attention on detailed membrane water transport and

stack thermal dynamics. The developed model is analysed by means of Structural

Analysis theory, as done in [14, 22, 25], to identify the correlations among physical

variables, mathematical equations and a set of faults which may occur in the

system. The novelty of this work lies on the extended number and type of faults,

which are related not only to PEMFC system auxiliaries malfunctions but also to

internal stack degradation. A set of residual generators is designed by means of

Causal Computation analysis [23, 32], and the maximum theoretical fault isolability

achievable with a minimal number of sensors is investigated. The related results

are discussed paying also attention to both mathematical and physical motivations.

Furthermore, the effective fault isolability is proved through fault simulations at a

specific fault magnitude with an advanced residual evaluation technique, in order

to account for the quantitative deviation of the monitored variables due to fault

occurrence.

2. PEMFC system model overview

In this section the PEMFC system model used for the development of the dia-

gnostic algorithm is introduced. An overview on the system layout and component

interaction is given, in addition to the description of the faults considered for the

algorithm evaluation (performed in Sections 4 and 6). It is worth observing that the

proposed model is only part of the framework the diagnostic algorithm is related

to. Therefore, the focus of the work is not on model development, but rather on the

understanding of its structure and the links among the involved physical variables.

For this reason, a brief description of the main model equations can be found in
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the Appendix, to keep the focus here on the diagnostic algorithm design.

2.1. System layout and modelling assumptions

The proposed model is based on the work of Arsie et al. [30, 31], including a

further analysis on the overall stack thermal dynamics. The considered system is

an air-fed pressurized cathode PEMFC system oriented towards automotive applic-

ations, and it is made of ten components: a hydrogen tank, a volumetric air blower,

two humidifiers, a PEMFC stack, and five nozzles. The schematic representation

of the proposed system is given in Figure 1, where the aforementioned component

are sketched. In the same picture, the location of the sensors (sketched with circles)

and the analysed faults (represented with triangles) is also shown.

At the anode side, the hydrogen tank is assumed being an infinite capacity

reservoir, capable of instantaneously providing the required amount of hydrogen.

At the cathode side, the air blower feeds the PEMFC with oxygen taken from

the surroundings at ambient conditions, with given pressure, temperature and

relative humidity. The supply manifolds connect the hydrogen tank and the air

blower to the PEMFC anode and cathode inlets, respectively. Both gas streams

are here humidified to reach the required amount of water and ensure the correct

operation of the stack. The humidity regulation follows a feed-forward control,

setting in advance a relative humidity set-point and then injecting the required

amount of water to reach the desired value. The nozzle are used to control the inlet

and outlet mass flows of the electrodes and between the hydrogen tank and the

anode supply manifold. The PEMFC stack is modelled through an equivalent cell,

whose electrodes are modelled as distinct control volumes, whereas the electrolyte

properties are evaluated by means of maps.

The model design process follows a Mean Value Modelling (MVM) approach
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[5, 29, 30, 31]. Each control volume, enclosed in a dashed rectangle in Figure

1, is characterized by a dynamic mass balance, which takes into account species

inlet and outlet flows and generation and consumption terms. Other relevant

assumptions are: (i) the stack is represented by an equivalent single cell, thus

neglecting performance variation within the stack length; (ii) the water inside

the system is assumed being only vapour (no liquid water is considered); (iii)

only stack thermal dynamics is taken into account. The reader is addressed to the

Appendix for more details.

A PEMFC system oriented towards automotive applications is generally equipped

with several sensors, to monitor the stack and auxiliary components behaviour.

Nevertheless, in the present paper, only two sensors are considered, related to stack

voltage and temperature measurements. These sensors allow increasing model

redundancy, so as to generate suitable residuals for fault detection and isolation.

This choice is mainly driven by the interest in understanding which is the maximum

fault isolability achievable with minimum number of sensors, and how accurate is

the diagnostic performance with only use of the stack as "sensor" for the overall

system state.

The system configuration shown in Figure 1 and the assumptions illustrated

above correspond to a test case study. This choice has been mainly driven by the

need to investigate the diagnostic algorithm performance firstly in a basic layout,

so as to single out the main issues to be tackled during algorithm development

and application, before addressing other complex scenarios. Indeed, this work

represents a first step towards the definition of a systematic approach for diagnostic

algorithm design, which can be applied to any system layout and model structure.

Therefore, other configurations, such as anode gas recirculation or dead-end mode,
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Figure 1: PEMFC system scheme with main components, sensors and analysed faults: faults 5

and 6 occur at stack level, faults 8 and 9 refer to sensors, whereas all the others affect system

components.

as well as modelling assumptions, e.g., two-phase water transport (as addressed by

the authors in [33, 34, 35]), can be straightforwardly introduced.

2.2. Fault models

The model equations illustrated in the Appendix represent the nominal (i.e.,

unfaulty) behaviour of the PEMFC system illustrated in Figure 1. To account for

faulty states affecting different system components, the following assumptions

are considered: (i) no detailed physical model of the fault causes is introduced,

though only their effects on the simulated variables is analysed; (ii) only one fault
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Table 1: PEMFC system faults, affected components and influenced system variables.

Fault Affected component Influenced Variable

fcmp Air blower ηcmp

fin j Anode humidifier ṁH2O,an,sm,in j

fleak Cathode inlet ṁca,sm,out

fvin Cathode inlet valve Cdca,sm,out

fohm Stack σmem

fecsa Stack ECSA

fvout Cathode outlet valve Cdca,out

fvsens Voltage sensor yV

ftsens Temperature sensor yT

is occurring at a time (i.e., no combination of multiple faults is considered); (iii)

each fault affects only one model equation. The faults considered in this paper

are listed in Table 1, with the affected component and influenced variable. On the

same line of the models assumptions introduced in the previous section, a test case

study involving only one fault occurring at a time is here tackled. Nevertheless,

coupling the proposed algorithm with the approaches presented by the authors in

[32, 36] will allow also addressing multiple faults diagnosis issues.

The first fault concerns the increase in the air blower mechanical losses, due to,

e.g., the growth of the electric motor friction due to lack of lubricant [9]. This fault

is modelled as done in [5], considering the blower efficiency affected as:

η
F
cmp = ηcmp (1− fcmp) (1)

The coefficient fcmp represents the fault magnitude and is limited to the range
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[0,1]: in normal conditions, the coefficient is 0, and assumes higher values during

fault occurrence, reaching a maximum of 1 (i.e., system failure).

The second fault deals with the reduction in the water injected at the anode

supply manifold to regulate anode humidification. This fault can be either caused

by a malfunction in the humidifier components (e.g., injector clogging) or by a

controller/actuator failure. The fault is modelled as follows:

ṁF
H2O,an,sm,in j =

ṁF
H2O,an,sm,in j

τin j

(
1− fin j

)
(2)

where the coefficient fin j expresses the fault magnitude, in the same way of fcmp.

The third fault concerns a leakage at cathode inlet, which may be related to the

sealing degradation of the cathode inlet nozzle valve or to a pipe crack. Therefore,

to model the effects of this fault, the overall cathode inlet flow is reduced by a

certain amount proportional to the parameter fleak as:

ṁF
ca,in = ṁca,in (1− fleak) (3)

The parameter fleak is 0 in normal conditions (i.e., no leakage), whereas 1

when failure occurs (i.e., the leakage amount corresponds to the overall mass flow

leaving the cathode supply manifold).

The fourth fault represents a clogging or malfunction of the nozzle valve located

at cathode inlet, inducing a reduction in the nozzle section. The effect of this fault

can be directly related to the discharge coefficient expressed in equation (A.11):

CF
dsm,ca,out

=Cdsm,ca,out (1− fvin) (4)

where the coefficient fvin expresses the fault magnitude.

10



The fifth and sixth faults both involve the PEMFC stack: the former one deals

with an increase in the fuel cell ohmic resistance, due to membrane degradation:

σ
F
m = σm (1− fohm) (5)

whereas the latter consists in the ECSA reduction, caused by, e.g., catalyst dissolu-

tion or delamination:

ECSAF = ECSA(1− fecsa) (6)

The seventh fault represents a clogging or malfunction of the nozzle valve

located at cathode outlet, inducing a reduction in the nozzle section. As done for

the fault expressed in equation (4), the effect of this fault can be directly related to

the discharge coefficient:

CF
dca,out

=Cdsm,ca,out (1− fvout) (7)

In addition to system component faults, also the stack voltage and temperature

sensors are assumed being affected by a fault. Usually, sensors faults can be related

to several causes, such as short or open circuit, wrong calibration, etc. [37], and

they are here modelled as done for the previous faults:

yF
V = yV (1− fvsens) (8)

yF
T = yT (1− ftsens) (9)

The presented faults are only a limited set selected among a much larger group

of events which can occur in an automotive PEMFC system. The choice was

made driven by the need for investigating the capability of the proposed diagnostic
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algorithm to detect and isolate faults involving both stack and auxiliary components,

rather than only the stack. Indeed, as shown in Table 1, only two faults affect

the stack, whereas five faults involve the auxiliaries and two the installed sensors.

Moreover, the faults have been chosen also according to their modelling complexity,

so as to respect the assumption of a fault affecting only one model equation.

In the next section, a brief description of the diagnostic methodology accounted

in this work is given, with some explanatory examples.

3. Diagnostic algorithm framework

The methodology used in this work entails Structural Analysis theory and

Causal Computation to generate suitable residuals based on model equations sensit-

ive to the considered faults. Before illustrating and discussing the achieved results,

a brief overview on the main theoretical features of the accounted methodology

is given. For further details, the reader is addressed to the works listed in the

Bibliography [20, 23, 27, 32].

3.1. Model-based diagnosis

A common approach in model-based diagnosis is to design residuals that are

zero in non-faulty case and non-zero in faulty cases. Therefore, fault isolation

can be achieved by using a collection of residuals sensitive to different sets of

faults. In structural approaches, the decoupling of faults is achieved by computing

residuals based on different equation subsets (i.e., different testable sub-models).

Thus, faults not affecting a selected sub-model will not affect the corresponding

residual [23].

Residual generators can be derived from a sub-model in many ways, but in this

work sequential residual generators are chosen, see for example [20] or [38] for a
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more formal description. This approach is here considered due to the capability of

handling large models with differential and algebraic equations as well as maps in

a straightforward manner.

To give a brief idea on how sequential residual generators are built, an illustrat-

ive example is given in the following set of 3 equations:

c1 : ẋ1 =−x1 +u

c2 : ẋ2 =−x2 + x1

c3 : y = x2

(10)

with 2 unknown variables x1 and x2 and two known parameters: an input u and

a sensor signal y. This model has one more equation than unknowns and thus

implies analytical redundancy, which can be used for diagnosis. Any two of these

three equations can be used for computing the two unknown variables values, and

then the remaining equation, usually called redundant equation, can be used to

build a residual. It is worth observing that the redundant equation can be any of

the aforementioned equations, hence c1, c2, or c3 can be selected as the redundant

equation and the corresponding sequentially computed residuals are illustrated in

Table 2. One characteristics of the three alternatives resides in which mathematical

operations are required to compute the residual: in Case 1, the first two equations

should be integrated; in Case 2, the variable x1 is obtained through integration and

the residual by differentiating x2; in Case 3, both x1 and x2 need to be differentiated.

In a computational sequence, the order in which the unknowns are computed

is usually expressed as causality, which is given once a redundant equation has

been selected: if only integration or differentiation is needed, it is referred to the

causality type as integral or derivative, respectively, whereas if both differentiation

and integration are required, it is generally recalled as mixed causality [27, 38].
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Table 2: Example of residual generation based on equation (10).

Case 1 Case 2 Case 3

ẋ1 =−x1 +u x2 = y x2 = y

ẋ2 =−x2 + x1 ẋ1 =−x1 +u x1 = ẋ2 + x2

r = y− x2 r = ẋ2 + x2− x1 r = ẋ1 + x1−u

Causality of equations is closely related to the differential index of differential-

algebraic equations (see for example [39] for formal definitions). With respect to

the scope of the paper, only a brief example is given. The following Differential-

Algebraic Equation system:

ẋ1 = g1(x1,x2)

0 = g2(x1,x2),
∂g2

∂x2
invertible

(11)

has low differential index and can be integrated using standard Ordinary Differential

Equation techniques, since the algebraic variable x2 can be locally solved using the

algebraic constraint g2. It is also straightforward to design observers or Kalman

filters using standard state-space techniques. However, if the model is in the form:

ẋ1 = h1(x1,x2)

0 = h2(x1)
(12)

it is said to have high differential index. Here, the algebraic variable x2 cannot be

solved for in the algebraic constraint h2. Therefore, the solution implies differenti-

ation, which is a numerically sensitive operation. It is also not straightforward to

design observers and residual generators for such a model.

The type of causality is tightly linked to the issues concerning residual gen-

erator design. Indeed, derivative causality implies, for instance, the need for
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differentiating noisy signals, whereas integral causality to treat unknown initial

conditions (and the related stability issues). Intuitively, mixed causality combines

both potential problems.

In the illustrative example proposed in Table 2, it is possible to choose integral,

derivative or mixed causality by selecting the specific redundant relation. However,

there are some cases (as for the PEMFC system model presented in the Appendix)

where mixed causality cannot be avoided given any choice of redundant equation.

In conclusion, crucial steps for proper residual generator design are: i) find a

suitable equation subset to test (i.e., sub-model) which allows good fault isolability;

ii) given a sub-model, select a redundant equation and thus a computational se-

quence leading to the desired causality; iii) define which variable shall be computed

through each equation involved in the computational sequence. All the remarked

steps can be approached with the use of Structural Analysis.

3.2. Structural Analysis theory

The Structural Analysis of a mathematical model consists in an analytical

method that takes into account only which variables appear in each model equation.

Formally, the structure of a model can be represented through a bipartite graph

G = (C∪X ;E), with a node set C corresponding to the mathematical relations (i.e.,

equations, look-up tables, maps, rules, etc.) referred to as constraints, a node set

X corresponding to the model variables, and an edge set E with (c,x) ∈ E if the

variable x ∈ X is included in the constraint c ∈C [20]. The variable set X can be

partitioned with respect to unknown, known, and fault variables.

A model bipartite graph can be represented by a biadjacency matrix, in which

the constraints are listed on the rows and the unknown variables on the columns.

If the j-th variable is linked to the i-th constraint, the related (i, j)-th cell shows a
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mark (i.e., one), otherwise is empty (i.e., zero).

3.3. Dulmage-Mendelsohn decomposition

The Dulmage-Mendelsohn decomposition [40] offers an advanced methodo-

logy to rearrange a model biadjacency matrix in an upper block triangular form,

as shown in Figure 2. In this picture, the gray areas present both ones and zeros,

whereas the white areas only zeros. The overall constraint set C and unknown

variable set X are divided into three subsets each: C−, C0 and C+ the former, and

X−, X0 and X+ the latter.

The subset G− with sets C− and X− represents the underdetermined part of

the model, in which more unknown variables than constraints are present. The

subset G0 with sets C0 and X0 comprises instead the exactly determined part, where

the unknown variables are perfectly balanced by the constraints. This subset is

further split in other subsets, represented as Gi (i = {1, · · · ,n}) and called Hall

components. These components are exactly determined parts which need to be

simultaneously solved as a whole system of equations. The last subset G+ with

sets C+ and X+ represents the overdetermined part of the model, where more

constraints than unknown variables are available. Clearly, the overdetermined

part of the model comprises redundant constraints which can be used to generate

residuals for diagnostic purposes.

3.4. Fault detectability and isolability

Observing which constraints are influenced by the considered faults and in

which Dulmage-Mendelsohn decomposition subset they are located, it is possible

to check the structural detectability and isolability of the faults. Given a constraint

c fi included in the overall model constraint set C (i.e., c fi ∈C) and influenced by a
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Figure 2: Generalized Dulmage-Mendelsohn decomposition structure, adapted from [23, 27].

fault fi, it can be stated that the fault fi is structurally detectable if the constraint

c fi falls in the overdetermined part of the model C+ (i.e., c fi ∈ C+). Moreover,

fault fi is structurally isolable from another fault f j if, removing from the whole

model the constraint c f j influenced by fault f j, the constraint c fi still falls in the

overdetermined part of the new model (i.e., c fi ∈ (C\{c f j})+) [27].

The structural isolability result obtained in this way relies on the assumption
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that residual generators can be constructed for any of the three causalities: deriv-

ative, integral or mixed causality. Nevertheless, fault detectability and isolability

computed through Dulmage-Mendelsohn decomposition are obtained by analysis

of a model abstraction. They may not be realizable considering the real system be-

cause only a qualitative analysis of the violation is performed, without considering

the quantitative deviation of the related physical variables. However, it should be

kept in mind that if fault isolability is not fulfilled through structural analysis, it

cannot be achieved as well through quantitative residual computation.

3.5. Testable sub-models

Structural Analysis can be used to find testable sub-models useful for fault

detection and isolation. Sub-models suitable for test design shall present the

following properties: firstly, they should provide model redundancy to compute

residuals (i.e., the model must have more equations than unknowns); secondly,

models including few faults are preferred, since they allow more specific fault

isolation.

A concept that entails these two structural properties is the so called Minimal

Test Equation Support (MTES) (see [32] for a formal and detailed definition). An

MTES consists in an overdetermined set of equations (inherently fulfilling the

first property) being sensitive to a minimal set of faults (in line with the second

property). This implies that it is not possible to define two different MTESs with

the same redundancy degree sensitive to the same set of faults. Under certain

conditions, MTESs can show model redundancy equal to 1, meaning that there

is exactly one more equation than unknown variable. The model proposed in

the equation set (10) is an example of such a case, and also the PEMFC model

presented in this work applies to this specific situation (as shown in Section 4). An
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efficient algorithm described in [32] is here used to find all possible MTESs.

3.6. Residual generation

The characterization of MTESs gives only the sets of constraints which can

be used to generate residuals. To design a sequential residual generator from

an MTES model C′ of redundancy 1, a redundant equation c ∈ C′ needs to be

singled out and a computational sequence to be determined. For each c ∈ C′,

a computational sequence is computed by applying the Dulmage-Mendelsohn

decomposition to the exactly determined system of equations C′ \ {c}. Since

C′ \{c} is exactly determined, no underdetermined nor overdetermined part will

appear in the structure shown in Figure 2; consequently, all the equations are

partitioned in Hall components.

The causal order is given by initially solving the unknowns in the first Hall

component G1 (using the related constraints) and then continuing solving all the

other components following an increasing order (i.e., from G2 to Gn). Moreover,

by analysing the Hall components it is possible to determine if the computational

sequence is integral, derivative or mixed causality [27].

In the following sections, the results concerning the application of the described

approach on the PEMFC system model proposed in the Appendix are presented

and discussed. Structural fault detectability and isolability analysis is performed

to check the diagnostic capabilities of the proposed model with respect to the

considered faults. Then, suitably MTESs are defined through the algorithm presen-

ted in [32]. Causal computation analysis is performed and sequential residual

generators are designed aiming at maximum structural fault isolability.
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4. Diagnosability Analysis of the PEMFC Model

The PEMFC system model presented in the Appendix is a first order differential-

algebraic model, with 108 algebraic equations, 11 differential equations, 2 sensor

equations, 119 unknown variables, 13 known variables and 9 faults. Therefore,

the overall number of equations is 121 with degree of redundancy 2 due to the

considered installed sensors.

The structural isolability of the considered faults through the proposed model

can be investigated by applying the Dulmage-Mendelsohn decomposition to the

model biadjacency matrix, with a canonical decomposition [23] of the overde-

termined part, as shown in Figure 3. The exactly determined part consists of only

two equations and two unknown variables, whereas the remaining part of the model

corresponds to the overdetermined part (enclosed in a blue rectangle).

The figure also reveals fault equivalence classes indicated by the grey boxes,

first introduced in [23] and used in [27]. The equivalence classes corresponds to

parts of the model that cannot be separately monitored, i.e., two faults appearing

in the same equivalence class cannot be isolated from each other. The horizontal

red lines represent the equations influenced by the faults. Thus, it can be observed

that each affected equation falls inside the overdetermined part of the model, i.e.,

c fi ∈ C+, implying that all the faults are structurally detectable (as assessed in

Section 3.4). The isolability result can be seen by observing that no two faults

affect the same equivalence class except the faults fohm and fecsa, which thereby

are not isolable from each other.

As a result, the structural isolability of the model can be computed and after-

wards represented through the isolability matrix in Figure 4-a. A dot in position

(i, j) indicates that fault fi cannot be isolated from fault f j. The ideal performance
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Figure 3: Dulmage-Mendelsohn decomposition structure of the PEMFC system model described in

the Appendix.

would be a pure diagonal matrix, meaning that each fault can be univocally isolated

from all the others. From the result presented in Figure 4-a, it is clear that all faults

in the auxiliary units can be univocally isolated; the same conclusion can be drawn

for any fault in the stack with respect to those of the auxiliaries. Nevertheless,
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based on the model structure, it is not possible to isolate the two stack faults fohm

and fecsa from each other.

The former result can be interpreted through a physical analysis of the con-

sidered faults and their effects. Membrane degradation can be due to either thermal,

mechanic or chemical causes [41], with a consequent reduction in membrane ionic

conductivity. This event induces an increase in membrane resistance and thus

cell ohmic losses see equation (A.42)). Catalyst degradation directly affects the

ECSA and, consequently, the activation losses (see equation (A.40)). In both cases,

the fuel cell voltage is affected by both ohmic and activation losses (see equation

(A.38)). Also cell temperature is influenced, since cell voltage appears in the

thermal balance of equation (A.34). For this reason, both faulty events directly

influence cell voltage and temperature in the same way, and with the accounted

sensors it is not possible to correctly distinguish between their effects.

Figure 4-b shows the isolability matrix under integral causality where it is

also indicated which faults correspond to stack, sensor, and auxiliaries. The result

is computed using a similar argument as in Figure 4-a, and the details of the

procedure can be found in [27]. The reason this result is interesting is that the

integral causality case shows what isolability performance can be achieved only

using low-index filters, i.e., where standard techniques such as state-observers

can be used as residual generators. Thus, Figure 4-b shows what is possible if

solutions are restricted to those similar to Case 1 in Table 2. If better performance

is desired, solutions including derivatives as in Case 2 and Case 3 have to be used

(i.e., high-index models have to be treated).

To investigate what is needed to isolate the stack faults, an extended sensor

analysis, using the same technique as outlined above, reveals that the addition of
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Figure 4: Isolability matrices for the PEMFC system model with mixed (a) and integral (b)

causalities.

further measurements at balance of plant level (e.g., stack inlet and outlet pressure

sensors, air blower mass flow meter and temperature sensors, etc.) does not enable

stack fault isolation in any event. This conclusion may imply the need for more

advanced measurements, which can give a deeper insight into stack phenomena,

such as Electrochemical Impedance Spectroscopy, Current Voltammetry, etc. The

use of such techniques, coupled with proper models and diagnostic algorithms, may

improve fault detection and isolation at stack level and also reduce the incidence of

degradation phenomena on overall system performance.

5. Diagnosis System Design

The analysis in the previous section showed that full structural fault isolation,

except between the two stack faults, is possible but also that any diagnosis system
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Table 3: Theoretical Fault Signature Matrix based on the identified residuals showing the structural

fault sensitivity of the 8 MTES sets.

r1 r2 r3 r4 r5 r6 r7 r8

fcmp 1 1 1 0 1 1 1 1

fin j 1 1 0 1 1 1 1 1

fleak 1 0 1 1 1 1 1 1

fvin 1 1 1 1 0 1 1 1

fohm 0 1 1 1 1 1 1 1

fecsa 0 1 1 1 1 1 1 1

fvout 1 1 1 1 1 0 1 1

fvsens 1 1 1 1 1 1 0 1

ftsens 1 1 1 1 1 1 1 0

will require solving high-index problems (i.e., low-index techniques are not suf-

ficient). Applying the algorithm proposed in [32], 8 MTES sets are singled out.

This means that, with two sensor equations there exists 8 testable sub-models that

have all different fault signatures (i.e., are each sensitive to a different set of faults).

A noteworthy result consists in the design of 8 residuals by using only 2 sensor

measurements, being an advancement with respect to other approaches proposing

a number of residuals equal to the number of installed sensors (e.g., [5, 8, 9]). The

8 MTES sets consists of 110 to 118 different equations, meaning that almost all

model equations are included in each testable sub-model. Table 3 shows the Fault

Signature Matrix (FSM) for the residuals linked to the defined MTES sets: each set

is sensitive to all but one fault, except residual r1 which is sensitive to both stack

faults.
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Using the approach proposed in [42], it is verified that all 8 sub-models are

observable but only sub-model 1, 7, and 8 correspond to low-index sub-models.

Thus, these three MTES sets can be directly transformed into residual generators

using the technique described in Section 3.6, resulting in a solution corresponding

to Case 1 in Table 2.

The 5 high index cases cannot be transformed into state-space form and thus be

solved using only integration. Simulation of high-index systems is numerically dif-

ficult, since it generally corresponds to numerical differentiation. There are several

approaches for high-index problems simulation, ranging from direct Baumgartner

stabilization and projection methods to specially designed integration routines

[43]. In this work, a simple PID-based approach is proposed. This technique is

applicable at most to index 2 problems. The main principle is illustrated with a

simple example. Consider a high-index MTES set residual generator, based on

measurement signals y1 and y2 and unknown variables x1 and x2, with this latter

being a scalar algebraic variable:

ẋ1 = g1(x1,x2)

0 = g2(x1,y1)

r = y2−h(x1,x2)

(13)

The sub-model proposed in equation (13) is high-index since the algebraic variables

x2 cannot be solved in the algebraic constraint g2. To avoid differentiation, consider

x2 as a control signal that should stabilize the algebraic constraint, achieving the

following simulation sub-model:
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ẋ1 = g1(x1,x2)

x2 = Kp g2(x1,y1)+KI

∫
g2(x1,y1)dt

r = y2−h(x1,x2)

(14)

where controller gains Kp and KI are chosen to stabilize the residual generator.

This form of the residual generator is by construction low-index and can be sim-

ulated using standard integrator routines, thus avoiding dealing with numerical

differentiation.

6. Simulation Results

The computational sequence considered for residuals generation through the

defined MTES sets refers to a mixed causality assumption, so as to achieve max-

imum fault isolability (see Figure 4-a). Nevertheless, the equation selected as

redundant constraint for each residual generator consists in a sensor equation,

being either equation (A.46) or equation (A.47) in accordance with the constraints

included in the corresponding MTES sets. Moreover, to evaluate percentage

residual deviation from normal conditions, the proposed residual formulations are:

rV =
yV −Vf c

Vf c
∗100 (15)

rT =
yT −Tf c

Tf c
∗100 (16)

The two residual forms in equations (15) and (16) are associated to each residual

as described in Table 4. Clearly, the feature changing from one residual to the other

is the way Vf c and Tf c are evaluated by means of the computational sequences
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Table 4: Residuals properties.

Residual Form Problem type

r1 rT Low index

r2 rT High index

r3 rT High index

r4 rV High index

r5 rT High index

r6 rT High index

r7 rT Low index

r8 rV Low index

based on each MTES set. In Table 4, also information about the problem index is

presented, remarking which MTES set requires the use of the PID-based approach

defined in equation (14).

To prove fault detectability and isolability, a real case scenario is emulated: the

defined PEMFC system model is used to simulate the considered faulty events at

a specific magnitude and the quantitative residual deviation is analysed. White

noise with Gaussian distribution is superimposed to stack voltage and temperature

measurements to reproduce more realistic device outputs, as also proposed in [14]:

in nominal operation, the mean stack voltage value is 0.72 V with noise standard

deviation of 10−3 V, whereas the mean stack temperature value is 325 K with noise

standard deviation of 0.07 K.

Only one fault is induced at a time and the residuals deviation is evaluated

through a dedicated simulation run. All the considered faults are simulated assum-

ing a fault magnitude of 10%, which means that all fault parameters in equations
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(1) through (9) are set equal to 0.1. Residuals are computed by means of equations

(15) and (16) (see Table 4), and an example of their raw behaviour in normal and

faulty conditions (i.e., fecsa in the proposed example) is presented in Figure 5 and

Figure 6, respectively.

As expected, residuals behaviour in normal condition oscillates around an

average zero value with deviations only due to noise. Instead, in faulty conditions,

e.g., when the stack fault fecsa occurs after about 3 h from the simulation start,

the residuals deviate from zero with a magnitude depending on the influence the

specific fault has on system components (as also observed in [5, 9]). Indeed, some

residuals can diverge more than others from their nominal value, as can be seen

comparing residuals r3 and r4 in Figure 6, which, according to the FSM of Table 3,

should both deviate, but the r4 bias is much more evident than that of r3.

To enhance residuals deviation and, thus, fulfil detection and isolation of

incipient faults (i.e., faults with small magnitude), raw residuals are first normalized

with respect to their standard deviation in normal condition and then treated with

the Cumulative Sum (CUSUM) sequence [44]:

τi(k) = max(0,τi(k−1)+ |ri(k)|−ν) (17)

where the drift factor ν is chosen as the 33th percentile of the i-th residual |ri|

distribution during normal condition.

The results concerning treated residuals behaviour with respect to all the pro-

posed faults is summarized in Figure 7. Each frame gathers the CUSUM sequence

behaviour of all residuals with respect to each fault occurrence. To allow a better

visualization of the results, the y-axes of the frames presents the logarithm of τ .

All simulations start with the system behaving normally and then the faults (one
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Figure 5: Raw residuals behaviour in normal conditions.

for each simulation) are induced after 3 h; at this time, the related fault parameter

is gradually brought from 0 to 0.1 in 100 s. Due to the assumption made in Section

2.2 of neglecting detailed models of fault causes, the dynamic effects (i.e., transient

behaviours) of fault occurrence are not accounted. Therefore, only the values

assumed by the residuals at steady-state after fault induction should be considered

for proper fault detection and isolation.

The horizontal dot-dashed black line visible in all frames of Figure 7 represents

the threshold level through which fault detection is achieved. This level is set

equal to the maximum value of the residual distributions during normal condition

increased by a factor of 5.

It is worth observing that both drift factor ν in equation (17) and threshold
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Figure 6: Raw residuals behaviour in faulty conditions: example of stack fault fecsa.

level shall be chosen as a trade-off between incipient fault detection and algorithm

robustness [5, 6, 9]: indeed, to achieve the former objective, both drift factor and

threshold level should be kept small, but this may lead to an increase in false alarm

incidence (i.e., noise may exert a greater influence on CUSUM sequence drift);

therefore, to increase algorithm robustness (i.e. reduce false alarm probability)

both parameters should be increased, but the probability of missed fault could rise

as well.

Once the residuals overcome the threshold level, fault detection is achieved,

but correct isolation can be fulfilled only after a settlement period: indeed, as

observed in [5, 8, 9], a certain amount of time should pass before performing a

correct inference on fault type. For instance, observing the CUSUM sequences
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during compressor and leakage faults, respectively fcmp and fleak, all residuals

drifts from normal behaviour suddenly after 3 h, thus inducing the same residual

pattern; however, for fault fleak, residual r2 goes back below the threshold after

about 20 h, changing the pattern and allowing correct isolation with respect to

fcmp.

Therefore, fault detection is achieved in all proposed cases nearby the faulty

event (with almost no time delay), whereas fault isolation needs a certain time.

Notably, the fault requiring the longest settlement time is the leakage, which was

proved exerting a small influence especially at small magnitude on Solid Oxide

Fuel Cell (SOFC) systems [9]. Through this analysis it is possible to assert that

the achieved settlement time is adequate since the analysis has been performed

considering incipient faults. Evidently, events with higher magnitude will take

shorter time to be both detected and isolated, allowing quicker recovery response.
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Table 5: Improved Fault Signature Matrix based on the fault simulation results presented in Figure 7.

r1 r2 r3 r4 r5 r6 r7 r8

fcmp 1 1 1 1 1 1 1 1

fin j 0 1 0 0 0 0 0 1

fleak 1 0 1 1 1 1 1 1

fvin 0 1 1 1 0 0 0 1

fohm 0 1 1 1 1 1 1 1

fecsa 0 1 1 1 0 0 1 1

fvout 0 1 1 1 1 0 1 1

fvsens 1 1 1 1 1 1 0 1

ftsens 1 1 1 1 1 1 1 0

From the results shown in Figure 7, the final diagnostic outcome is summarized

in Table 5, where an improved FSM is proposed. This new FSM shows different

fault patterns with respect to that of Table 3, since residual sensitivity, fault mag-

nitude and isolation time are now considered (on the same line of what presented

in [5, 9]). A significant result consists in the achievement of a FSM with all rows

(i.e., fault patterns) different from one another, solving the issue of univocal fault

isolability for faults fohm and fecsa. However, it should be considered that this

result is strictly related to the defined faults magnitude and chosen drift factor and

threshold level.

7. Conclusions

This work presented the development of an advanced model-based diagnostic

algorithm oriented towards PEMFC systems fault detection and isolation. The
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considered diagnostic approach is based on Structural Analysis and Causal Com-

putation theories. One of the most innovative aspects related to this work is the

link of such theories to fuel cells applications, which have not yet been thoroughly

analysed with the considered approaches.

A lumped parameter model has been conceived so as to simulate an automotive

PEMFC system, with attention to reactants transport, electrochemical phenom-

ena, stack thermal dynamics and membrane water transport. Nine different faults

have been investigated, involving both auxiliary components, stack and sensors.

Moreover, only two sensors have been considered, i.e., stack voltage and temperat-

ure. This choice was made to investigate maximum fault isolability with minimal

number of sensors, and to test the capability of detecting and isolating faults at

system level by only using the stack as sensor. This aspect is of crucial relevance

especially for the industrial perspective, since the reduction in on-board sensors

availability will lower system manufacturing and deployment costs.

The attained model is a first order differential-algebraic one, with 121 equations

and 119 unknown variables, implying a degree of redundancy of 2. This model

was first analysed by means of Structural Analysis theory, applying Dulmage-

Mendelsohn decomposition, showing only exactly determined and overdetermined

parts. Moreover, all the considered faults fell in the overdetermined part, thus

fulfilling detectability requirements. Stack faults are belonging to the same equi-

valence class, so they are not structurally isolable from each other. With respect

to all the other faults, Causal Computation analysis has been performed to as-

sess fault isolability upon given causal assumption: the achieved results shown

that assuming mixed causality leads to the maximum theoretical isolability, but

high-index problems need to be addressed. Therefore, all the considered faults
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are structurally detectable with only the stack as system sensor, and only the two

stack faults cannot be structurally isolated from each other. This conclusion may

imply the need for more advanced measurements (e.g., Electrochemical Impedance

Spectroscopy, Current Voltammetry, etc.) to improve fault detection and isolation.

To achieve residuals computation, 8 Minimal Test Equation Support (MTES)

sets with redundancy 1 have been computed with the algorithm in [32], 5 out of

8 requiring to face high-index problems, here solved with a PID-based approach.

The algorithm has been tested through fault simulation analysis, assuming a fault

magnitude of 10%. The acquired residuals have also been treated by means

of Cumulative Sum (CUSUM) sequence, to enhance residuals deviation. The

achieved results proved univocal fault isolability. Moreover, the need for waiting

a certain settlement time was also observed. These results proved the strength of

the proposed approach, which can cope with several fault at any fuel cell system

components level, by suitably coupling both mathematical and physical information

to maximize fault diagnosis.

Finally, the present paper offers a preliminary assessment of the proposed

diagnostic algorithm in a test case study, to remark the main issues concerning

its development and application. The design procedure adopted for the proposed

algorithm showed systematic features, which make it suitable to any system layout,

model structure as well as component fault. Therefore, its application to other

complex scenarios (e.g., gas recycling or dead-end operation, two-phase flow

modelling, membrane crossover fault, etc.) is straightforward.

34



Acknowledgments

The present work has been performed under joint collaboration between the

Dept. of Industrial Engineering of the University of Salerno and the Dept. of

Electrical Engineering of the Linköping University. The authors acknowledge the

group of Vehicular System of Linköping University who hosted Dr. Pierpaolo

Polverino during his research visits in Linköping.

Appendix A: PEMFC model equations

In this section a brief description of the equations characterizing the considered

PEMFC system model (whose layout is represented in Figure 1) is given. Model

variables definition can be found in the Nomenclature.

A.1. Basic thermodynamics

A dynamic mass balance concerning the i-th species is defined for a j-th control

volume as:
dmi, j

dt
= ṁi, j,in− ṁi, j,out + ṁi, j,gen− ṁi, j,cons (A.1)

Then, the species and gas mixture properties are evaluated as follows [29, 30, 31]:

pi, j =
mi, jR̄Tj

MiVj
(A.2)

p j = ∑
i

pi, j (A.3)

xi, j =
pi, j

p j
(A.4)

M j = ∑
i

xi, jMi (A.5)

cp j = ∑
i

xi, jcpi (A.6)
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φ j =
pH2O, j

psat
j

(A.7)

log10
(

psat
j
)
=−1.69 ·10−10T 4

j +3.85 ·10−7T 3
j −3.39 ·10−4T 2

j +0.143Tj−20.92

(A.8)

ω j =
pH2O, j

p j− pH2O, j
(A.9)

A.2. Nozzles

According to the ratio between the nozzle downstream and upstream pressures,

the flow can be considered un-chocked or chocked if this ratio is respectively higher

or lower then the critical pressure ratio δ pc:

δ pc =

(
2

k+1

)( k
k−1 )

(A.10)

Considering the nozzle being located at the j-th component outlet, the flow leaving

the component is:

ṁ j,out =


Cd j A j
√

M j√
R̄Tj

p j

(
p j,down

p j

) 1
k

√
2k

k−1

(
1−
(

p j,down
p j

) k−1
k
)

if p j,down
p j

> δ pc

Cd j A j
√

M j√
R̄Tj

p j
√

k
( 2

k+1

) k+1
2(k−1) if p j,down

p j
≤ δ pc

(A.11)

Once the total mass flow ṁ j,out is defined, each species flow can be computed as:

ṁi, j,out = ṁ j,outxi, j
Mi

M j
(A.12)
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A.3. Hydrogen tank and air blower

The storage pressure and temperature represent the upstream conditions for the

anode supply manifold. The tank outlet flow is expressed through equation (A.11),

and the anode supply manifold species inlet flows are evaluated through equation

(A.12), being:

ṁtank,out = ṁan,sm,in (A.13)

To evaluate the air blower outlet flow and efficiency, two maps are used, shown in

Figures A.1-a and A.1-b, respectively, both function of the blower angular speed

ncmp and pressure ratio βcmp [30, 31]:

ṁcmp = map(ncmp,βcmp) (A.14)

ηcmp = map(ncmp,βcmp) (A.15)

The blower power and outlet temperature are computed as:

Pcmp = ṁcmp
cpairTamb

ηcmpηem

(
β

k−1
k

cmp−1
)

(A.16)

Tcmp = Tamb

(
1+

1
ηcmp

(
β

k−1
k

cmp−1
))

(A.17)

To ensure the correct evaluation of the species outlet flows upon the knowledge of

ṁcmp, the following assumption is made: the ratio between the water and dry air

masses does not change from blower inlet to outlet, implying the specific humidity

conservation [30, 31]:

ωcmp = ωamb (A.18)

From the previous statement, it is possible to write the blower outlet species mass

flows as:

ṁO2,cmp =
MO2

Mair

(
ṁcmp

1+ωcmp

)
xO2,amb (A.19)
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Figure A.1: Air flow rate (a) and efficiency (b) maps of the volumetric blower, and electrolyte net

water flow (c) and water content (d) maps, adapted from [30, 31].
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ṁN2,cmp =
MN2

Mair

(
ṁcmp

1+ωcmp

)
xN2,amb (A.20)

ṁH2O,cmp = ṁcmp− ṁO2,cmp− ṁN2,cmp (A.21)

A.4. Supply manifolds

The mass balance proposed in equation (A.1) is here applied neglecting the

consumption term. The generation term holds only for water balance, due to the

injection required for flow humidification. The anode supply manifold inlet flow is

evaluated with equations (A.12) and (A.13), whereas the cathode supply manifold

species inlet flow with equations (A.19) through (A.21), being:

ṁi,ca,sm,in = ṁi,cmp (A.22)

Water humidification is achieved through direct water injection. This term repres-

ents the generation term for the water mass balance at supply manifolds:

ṁH2O, j,in j =
mH2O, j,des

τin j
(A.23)

where:

mH2O, j,des =
p j,satVjMH2O

R̄Tj

(
φ j,des−φ j

)
≥ 0 (A.24)

The outlet flows from both supply manifolds are evaluated through equation (A.11).

Consequently, the electrode inlet flow components are computed by means of

equation (A.12), being:

ṁi,an,in = ṁi,an,sm,out (A.25)

ṁi,ca,in = ṁi,ca,sm,out (A.26)
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A.5. PEMFC Electrodes and Electrolyte

The mass balance in equation (A.1) applies to both cathode and anode, as-

suming that the consumption terms appear only with respect to the hydrogen and

oxygen mass balances [2]:

ṁH2,an,cons =
I

2F
MH2 (A.27)

ṁO2,ca,cons =
I

4F
MO2 (A.28)

whereas the generation term appears only in the water balance at cathode side:

ṁH2O,ca,gen =
I

2F
MH2O (A.29)

The inlet flows coming from the supply manifolds are evaluated by means of

equations (A.25) and (A.26) and the outlet flows through equations (A.11) and

(A.12). In the electrodes mass balance, the net water flow through the electrolyte

from one electrode to the other should be also considered. This term represents

the overall water flow achieved by combining the three main water transport

mechanisms involving the electrolyte, that are electro-osmotic drag, convection

and back-diffusion [2, 45]. This term is computed by means of the numerical map

proposed in Figure A.1-c, assuming as positive flux the one going from cathode to

anode. The other map shown in Figure A.1-d allows the evaluation of the water

content λm of the polymeric membrane, here assumed being a Nafion® 117 type,

essential for the evaluation of the fuel cell voltage behaviour. Both maps, derived

from [45] and already used in [30, 31], are function of the average water content at

cathode and anode sides (λca and λan, respectively), pressure difference across the

electrolyte ∆p = pca− pan and current density i, expressed as the ratio between the
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current request I and the fuel cell geometrical area A f c:

i =
I

A f c
(A.30)

Net water flow = map(λca,λan,∆p, i) (A.31)

λm = map(λca,λan,∆p, i) (A.32)

The j-th electrode water content is function of the relative humidity level at the

corresponding electrode [31]:

λ j =

0.3+10.8φ j−16φ 2
j +14.1φ 3

j if φ j ≥ 0 & φ j < 1

−30.41+61.98φ j−25.96φ 2
j +3.7φ 3

j if φ j ≥ 1
(A.33)

A.6. Thermal balance

An overall dynamic thermal balance model is implemented for the fuel cell

stack to simulate the dynamic behaviour of the bulk temperature. The balance is

based on the total energy amount of the inlet and outlet gases, the produced electric

power and the heat exchanged with the surrounding, as done in [5, 46]:

K f c
dTf c

dt
= ∑

i, j

[
Ėi, j,in

(
Tj,in

)
− Ėi, j,out

(
Tf c
)]
−Vf cI− Q̇ (A.34)

The energy flows are function of the species mass flow and enthalpy as follows:

Ėi, j,in = ṁi, j,inhi
(
Tj,in

)
(A.35)

Ėi, j,out = ṁi, j,outhi
(
Tf c
)

(A.36)

hi(T ) = h f
i (T0)+

∫ T

T0

cpidT (A.37)
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A.7. Electrochemical model

The performance of the single PEMFC is represented by its voltage behaviour

Vf c, computed defining the ideal Nernst potential and the different losses as [2, 10,

31, 47, 48] :

Vf c = EN−VAct−VOhm−VDi f (A.38)

EN = 1.23−0.9 ·10−3 (Tf c−298
)
+

Tf cR̄
2F

ln
(

pH2,an p0.5
O2,ca

)
(A.39)

VAct =
Tf cR̄
2αF

ln
(

i
i0

)
(A.40)

i0 = iPt
0 ECSA (A.41)

VOhm =
tm
σm

i (A.42)

σm = (0.005139λm−0.00326)exp
[

1268
(

1
303
− 1

Tf c

)]
(A.43)

VDi f = iω̃Tf c ln
(

ilim
ilim− i

)
(A.44)

ilim =−2FDO2N2

Vmtca
ε

1.5
ca

(
Tf c

273

)0.823

ln(1− xO2,ca) (A.45)

A.8. Sensors

The equations representing the stack voltage and temperature measurements

are:

yV =Vf c (A.46)

yT = Tf c (A.47)

Nomenclature
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Acronyms

CUSUM Cumulative Sum

FSM Fault Signature Matrix

MTES Minimal Test Equation Support

MVM Mean Value Modelling

PEMFC Polymer Electrolyte Membrane Fuel Cell

SOFC Solid Oxide Fuel Cell

Roman symbols

A Area [m2]

Cd Nozzle discharge coefficient [-]

cp Specific heat at constant pressure [J kg−1 K−1]

DO2N2 Binary diffusion coefficient of O2 and N2 [m2 s−1]

EN Nernst potential [V]

Ė Energy flow [W]

ECSA Electrochemical Surface Area [m−2]

F Faraday constant (96485 [C mol−1])

f Fault coefficient [-]

h Specific enthalpy [J kg−1]

h f Specific enthalpy of formation at T0=298.15 K [J kg−1]

I Current [A]

i Current density [A m−2]

i0 Exchange current density [A m−2]

ilim Limiting current density [A m−2]

K Heat capacity [J K−1]

k Polytropic constant [-]
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M Molar mass [J mol−1 K−1]

m Mass [kg]

ṁ Mass flow [kg s−1]

n Angular speed [rpm]

P Power [W]

p Pressure [bar]

Q̇ Heat exchanged [W]

R̄ Universal gas constant (8.314 [J mol−1 K−1])

r Residual [-]

T Temperature [K]

t Time [s]

tca Cathode thickness [m]

tm Membrane thickness [m]

V Volume [m−3]

VAct Activation losses [V]

Vf c Fuel cell voltage [V]

VDi f Diffusion losses [V]

Vm Standard molar volume (0.022414 [m3 mol−1])

VOhm Ohmic losses [V]

x Molar fraction [-]

yV Voltage measurement [V]

yT Temperature measurement [T]

Greek symbols

α Charge transfer coefficient [-]

β Pressure ratio [-]
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δ pc Critical pressure ratio [-]

ε Porosity [-]

η Efficiency [-]

λ Water content [-]

ν Drift factor [-]

φ Relative humidity [-]

σ Conductivity [Ω−1 m−1]

τ CUSUM residual [-]

τin j Injection time [s]

ω Absolute humidity [-]

ω̃ Empirical constant [Ω m2 K−1] (from [47])

Subscripts

amb ambient

air air

an anode

an,sm anode supply manifold

ca cathode

ca,sm cathode supply manifold

cmp air blower

cons consumed

des desired

down downstream

em electric motor

f c fuel cell

gen generated
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i i-th species (O2, N2 and H2O at cathode side, H2 and H2O at anode side)

in inlet

in j injected

j j-th control volume (amb, an, an,sm, ca, ca,sm, cmp and tank)

leak leakage

m membrane

out outlet

tank hydrogen tank

tsens temperature sensor

vin inlet valve

vout outlet valve

vsens voltage sensor

Superscripts

F faulty

Pt catalyst surface

sat saturation
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