DAGGTAX: A Taxonomy of Data Aggregation
Processes

Simin Cai, Barbara Gallina, Dag Nystrém, and Cristina Seceleanu

Abstract—Data aggregation processes are essential constituents for data management in modern computer systems, such as
decision support systems and Internet of Things (loT) systems. Due to the heterogeneity and real-time constraints in such systems,
designing appropriate data aggregation processes often demands considerable efforts. A study on the characteristics of data
aggregation processes will provide a comprehensive view for the designers, and facilitate potential tool support to ease the design
process. In this paper, we propose a taxonomy called DAGGTAX, which is a feature diagram that models the common and variable
characteristics of data aggregation processes, especially focusing on the real-time aspect. The taxonomy can serve as the foundation
of a design tool that enables designers to build an aggregation process by selecting and composing desired features, and to reason
about the feasibility of the design. We also provide a set of design heuristics that could help designers to decide the appropriate
mechanisms for achieving the selected features. Our industrial case study demonstrates that DAGGTAX not only strengthens the
understanding, but also facilitates the model-driven design of data aggregation processes.

Index Terms—data aggregation taxonomy, real-time data management, timeliness

1 INTRODUCTION

N modern information systems, data aggregation, defined as
Ithe process of producing a synthesized form from multiple
data items [1], is commonly applied for data processing and
management. For example, in order to discover unusual patterns
and infer information, a data analysis application often computes
a synthesized value from a subset of the database for statistical
analysis [2]; in systems dealing with large amounts of data with
limited storage, the data are often aggregated to save space [3];
in a sensor network, sensor data are aggregated, and only the
aggregated data are transmitted so as to save bandwidth and
energy [4]. Since data aggregation plays a key role in many
applications, considerable research efforts have been dedicated
to this topic. A number of taxonomies have been proposed to
provide a comprehensive understanding on various aspects of data
aggregation, such as aggregate functions ([1], [2], [5]), aggregation
protocols ([4], [6], [7]) and security models ([8]).

The focus of this paper is instead on another important
aspect: the data aggregation process (or DAP for short) itself.
We consider a DAP as three ordered activities that allow raw
data to be transformed into aggregated data via an aggregate
function. First, a DAP starts with preparing the raw data needed
for the aggregation from the data source into the aggregation
unit called the aggregator. Next, an aggregate function is applied
by the aggregator on the raw data, and produces the aggregated
data. Finally, the aggregated data may be further handled by the
aggregator, for example, to be saved into storage or provided to
other processes. The main constituents of these activities are the
raw data, the aggregate function and the aggregated data.

The main contribution of this paper is a global, high-level
characterization of data aggregation processes. We justify our
study of the DAP by the fact that it represents a pillar of an

e S. Cai, B. Gallina, D. Nystrom and C. Seceleanu are with
the Madlardalen Real-Time Research Centre, Mdlardalen University,
Viisterds, Sweden. Email: {simin.cai, barbara.gallina, dag.nystrom,
cristina.seceleanu} @mdh.se

aggregation application’s workflow, no matter if it is a central-
ized database management system or a highly distributed sensor
network. Understanding DAP is essential to a correct design of the
overall application. For instance, a sensor data gathering process,
a data aggregation process and an analytic process form the basic
workflow of a surveillance application. Multiple DAPs can also
work together, one’s aggregated data being another’s raw data,
to form a more complex, hierarchical aggregation process. To
design a DAP, we must understand the desired features of its main
constituents, that is, the raw data, the aggregate function and the
aggregated data, as well as those of the DAP itself. Such features,
ranging from functional features (such as data sharing) to extra-
functional features (such as timeliness), are varying depending
on different applications. One aspect of the understanding is to
distinguish the mandatory features from the optional ones, so that
the application designer is able to sort out the design priorities.
Another aspect is to comprehend the implications of the features,
and to reason about the (possible) impact on one another. Conflicts
may arise among features, in that the existence of one feature may
prohibit another one. Trade-offs should be taken into consideration
at design time, so that infeasible designs can be ruled out at an
early stage.

Among all features, we are particularly interested in the time-
related properties of the DAP, since data aggregation is extensively
applied in many real-time systems, such as automotive systems
[9], avionic systems [10] and industrial automation [11]. In real-
time systems, the correctness of a process depends on whether
it completes on time, and validity of data depends on the time
they are collected and accessed. These real-time properties are
expected on raw data, aggregate function and the aggregated
data, and impose constraints that cross-cut all three activities of a
DAP. Therefore, we will especially emphasize the real-time related
features and their implications.

In this paper we therefore propose a taxonomy of data aggre-
gation processes, called DAGGTAX (Data AGGregation TAXon-
omy), with a focus on their features and consequent implications,



from the perspective of the aggregation process itself. The pro-
posed taxonomy is presented as a feature diagram [12]. The aim
of our taxonomy is to ease the design of aggregation processes, by
providing a comprehensive view on the features and cross-cutting
constraints, with a systematic representation. The latter can serve
as the basis of a design tool, which enables selecting the desired
features, reasoning about possible trade-offs, reducing the design
space of the application, and composing the features to build the
desired aggregation processes.

The remaining part of the paper is organized as follows. In
Section 2 we discuss the existing taxonomies of data aggregation.
In Section 3 we present the preliminaries, followed by a survey
of data aggregation processes in scientific literatures in Section 4.
Section 5 presents the proposed taxonomy, and in Section 6 we
introduce the design rules and heuristics based on the implications
of the features presented in the taxonomy. In Section 7 we validate
the taxonomy by a case study from industry. Section 8 gives a
further discussion of the implications of the real-time features,
before concluding the paper in Section 9.

2 RELATED WORK

Many researchers have promoted the understanding of data ag-
gregation on various aspects. Among these works, considerable
efforts have been made on the study of aggregate functions. Mesiar
et al. [13], Marichal [14], and Rudas et al. [1] have studied the
mathematical properties of aggregate functions, such as continuity
and stability, and discussed these properties of common aggregate
functions in detail. A procedure for the construction of an ap-
propriate aggregate function is also proposed by Rudas et al. [1].
In order to design a software system that computes aggregation
efficiently, Gray et al. [2] have classified aggregate functions into
distributive, algebraic and holistic, depending on the amount of
intermediate states required for partial aggregates. Later, in order
to study the influence of aggregate functions on the performance of
sensor data aggregation, Madden et al. [5] have extended Gray’s
taxonomy, and classified aggregate functions according to their
state requirements, tolerance of loss, duplicate sensitivity, and
monotonicity. Fasolo et al. [4] classify aggregate functions with
respect to four dimensions, which are lossy aggregation, duplicate
sensitivity, resilience to losses/failures and correlation awareness.
Our taxonomy builds on these works that focus on the aggregate
functions mainly, and provide a comprehensive view of the entire
aggregate processes instead.

A large proportion of existing works have their focus on in-
network data aggregation, which is commonly used in sensor
networks. In-network aggregation is the process of processing and
aggregating data at intermediate nodes when data are transmitted
from sensor nodes to sinks through the network [4]. Besides a
classification of aggregate functions that we have discussed in
the previous paragraph, Fasolo et al. [4] classify the existing
routing protocols according to the aggregation method, resilience
to link failures, overhead to setup/maintain aggregation structure,
scalability, resilience to node mobility, energy saving method and
timing strategy. The aggregation protocols are also classified by
Solis et al. [7], Makhloufi et al. [6], and Rajagopalan [15], with
respect to different classification criteria. In contrast to the above
works focusing mainly on aggregation protocols, Alzaid et al. [8]
have proposed a taxonomy of secure aggregation schemes that
classifies them into different models. All these works differ from
our taxonomy in that they provide taxonomies from a different

2

perspective, such as network topology for instance. Instead, our
work strives to understand the features and their implications of
DAP and its constituents in design.

3 PRELIMINARIES

In this section, we first recall the concepts of timeliness and
temporal data consistency in real-time systems, after which we
introduce feature models and feature diagrams that are used to
present our taxonomy.

3.1 Timeliness and Temporal Data Consistency

In a real-time system, the correctness of a computation depends on
both the logical correctness of the results, and the time at which
the computation completes [16]. The property of completing the
computation by a given deadline is referred to as timeliness. A
real-time task can be classified as hard, firm or soft real-time,
depending on the consequence of a deadline miss [16]. If a
hard real-time task misses its deadline, the consequence will be
catastrophic, e.g., loss of life or significant amounts of money.
Therefore the timeliness of hard real-time tasks must always be
guaranteed. For a firm real-time task, such as a task detecting
vacant parking places, missing deadlines will render the results
useless. For a soft real-time task, missing deadlines will reduce the
value of the results. An example of soft real-time task is the signal
processing task of a video meeting application, whose quality of
service will degrade if the task misses its deadline.

Depending on the regularity of activation, real-time tasks can
be classified as periodic, sporadic or aperiodic [16]. A periodic
task is activated at a constant rate. The interval between two ac-
tivations of a periodic task, called its period, remains unchanged.
A sporadic task is activated with a Minimum INter-arrival Time
(MINT), that is, the minimum interval between two consecutive
activations. During the design of a real-time system, a sporadic
task is often modeled as a periodic task with a period equal to the
MINT. A sporadic task may also have a MAXimum inter-arrival
Time (MAXT) which specifies the maximum interval between two
consecutive activations. An aperiodic task is activated with an
unpredictable interval between two consecutive activations. A task
triggered by an external event with unknown occurrence pattern
can be seen as aperiodic.

Real-time applications often monitor the state of the environ-
ment and react to changes accordingly and timely. The environ-
ment state is represented as data in the system, which must be
updated according to the actual environment state. The coherency
between the value of the data in the system and its corresponding
environment state is referred to as temporal data consistency,
which includes two aspects, the absolute temporal validity and
relative temporal validity [17]. A data instance is absolute valid,
if the timespan between the time of sampling its corresponding
real-world value, and the current time, is less than a specified
absolute validity interval. A data instance derived from a set of
data instances (base data) is absolute valid if all participating base
data are absolute valid. A derived data instance is relative valid,
if the base data are sampled within a specified interval, called
relative validity interval.

Data instances that are not temporally consistent may lead to
different consequences. Different levels of strictness with respect
to temporal consistency thus exist, which are hard, firm and soft
real-time, in a decreasing order of strictness. Using outdated hard
real-time data could cause disastrous consequences, and therefore



a) A mandatory feature

b) An opt|onal feature

Feature3

|

Feature

[m..n]

Feature2

(c) A group of alternative features  (d) A feature with cardinality

Fig. 1. Notations of a feature diagram

this should not appear. Firm real-time data are useless if they are
outdated, whereas outdated soft real-time data can still be used,
but will yield degraded usefulness.

3.2 Feature Model and Feature Diagram

The notion of feature was first introduced by Kang et al. in the
Feature-Oriented Domain Analysis (FODA) method [12], in order
to capture both the common characteristics of a family of systems
as well as the differences between individual systems. Kang et
al. define a feature as a prominent or distinctive system charac-
teristic visible to end-users. Czarnecki and Eisenecker extend the
definition of a feature to be any functional or extra-functional
characteristic at the requirement, architecture, component, or any
other level [18]. This definition allows us to model the char-
acteristics of data aggregation processes as features. A feature
model is a hierarchically organized set of features, representing
all possible characteristics of a family of software products. A
particular product can be formed by a combination of features,
often called a configuration, selected from the feature model of its
family.

A feature model is usually represented as a feature diagram
[12], which is often depicted as a multilevel tree, whose nodes
represent features and edges represent decomposition of features.
In a feature diagram, a node with a solid dot represents a common
feature (as shown in Fig. la), which is mandatory in every
configuration. A node with a circle represents an optional feature
(Fig. 1b), which may be selected by a particular configuration.
Several nodes associated with a spanning curve represent a group
of alternative features (Fig. 1c), from which one feature must
be selected by a particular configuration. The cardinality [m..n]
(n > m > 0) annotated with a node in Fig. 1d denotes how
many instances of the feature, including the entire sub-tree, can
be considered as children of the feature’s parent in a concrete
configuration. If m>1, a configuration must include at least one
instance of the feature, e.g., a feature with [1..1] is then a manda-
tory feature. If m=0, the feature is optional for a configuration.

A valid configuration is a combination of features that meets
all specified constraints, which can be dependencies among fea-
tures within the same model, or dependencies among different
models. An example of such a constraint is that the selection of
one feature requires the selection of another feature. Researchers
in the software product line community have developed a number
of tools, providing extensive support for feature modeling and
the verification of constraints. For instance, in FeatureIDE [19],
software designers can create feature diagrams using a rich graphic

3

interface. Designers can specify constraints across features as well
as models, to ensure that only valid configurations are generated
from the feature diagram.

4 A SURVEY OF DATA AGGREGATION PROCESSES

Serving as an important information processing and analysis
technique, data aggregation has been widely applied in a variety of
information management systems. Based on scientific literature, in
this section, we present a limited survey of application examples
that implement data aggregation processes. In order to extract
heuristics that help us generate our taxonomy, we select the exam-
ples from a wide variety of application domains, and investigate
the common and different characteristics of aggregation processes.
Some of these examples are general-purpose infrastructures that
implement aggregation as a basic service. The other examples
develop data aggregation as ad hoc solutions suitable for the
particular application scenarios.

In the following subsections, we first present how aggrega-
tion is supported in different general-purpose infrastructures that
provide data processing and management. Next, a number of
ad hoc applications are presented, focusing on the requirements
that the aggregation processes implemented in such applications
must meet. Finally, we discuss the characteristics of aggregation
processes exposed in the surveyed systems and applications.

4.1 General-purpose Infrastructures

In this subsection, we investigate the design of aggregation pro-
cesses in general-purpose systems from the following domains:
database management systems, data warehouses, data stream man-
agement systems and wireless sensor networks.

Database Management Systems and Data Warehouses:
Many information management systems adopt a general-purpose
relational Database Management System (DBMS) or a Data
Warehouse (DW) [20] as a back-end for centralized data man-
agement, which have common aggregate functions implemented,
and exposed as interfaces for users or programmers. Internally,
aggregation is supported by a number of infrastructural services,
including query evaluation, data storage and accessing, trigger
mechanism, and transaction management. In a typical disk-based
relational DBMS, as illustrated in Fig. 2, data are stored as tuples
in the disk. An aggregation process is started by a query issued
by a client. The DBMS then evaluates the query and loads the
relevant tuples from disk into the main memory. An aggregate
function is performed on the tuples and computes the aggregated
value, which is then returned to the query issuer, cached in main
memory or stored in the disk. An aggregation process can also
be triggered by a state change in the database. Both raw data
and aggregated data can be accessed by other processes. In order
to maintain logical data consistency, such processes, including
the aggregation process, are treated as transactions and governed
by the transaction management system, which ensures the so-
called ACID (Atomicity, Consistency, Isolation, and Durability)
properties [21] during their executions.

Data can be aggregated by categories, usually specified in
the "group-by" clause of a query. These categories may have
a hierarchical relationship and thus represent the granularities
of aggregation. For example, in a temporal database, users may
choose to aggregate data by day, week or month, with a coarser
granularity; in a spatial database, the aggregation can be based on
streets, cities and provinces [22]. In a data warehouse, the stored



DBMS

request|  Aggregate() query )
Disk Client
Is reply result

Fig. 2. lllustration of aggregation in a disk-based DBMS

data usually have many dimensions, and the aggregation may need
to be performed on multiple dimensions [20].

The aggregated value may be returned to the query issuer
directly, or may be stored persistently in the database as a
normal tuple. Alternatively, the aggregated values are cached in
materialized views, so that other processes can make use of them
[23]. It is common to store the aggregated values as materialized
views in data warehouse since these results will be frequently used
by analysis processes [20].

A number of aggregate functions are included in the SQL stan-
dard and are commonly supported by general-purpose DBMSs.
Other aggregate functions can be defined as user-defined func-
tions. The aggregation can be triggered by an explicit query
issued by the client, or by a trigger that reacts to the change of
the database. In a data warehouse, aggregation is often planned
periodically to refresh the materialized views using the updated
base data. In case a query needs to access current data between the
planned aggregation processes, extra aggregation processes may
also be started to refresh the views [20].

Online Aggregation in Data Stream Management Sys-
tems: Data aggregation in traditional DBMSs and DWs is per-
formed like batch-processing: on a large number of tuples and in
considerable time before returning the aggregated value. To im-
prove performance and user experience, Hellerstein et al. propose
“online aggregation” [24], which allows tuples to be aggregated
incrementally. Tuples are selected from a base table by a sampling
process, and aggregated with the cached partial aggregated result
from previously sampled tuples. The partially aggregated value is
available, which refers to the user as an approximate aggregated
result. The aggregation process is defined with a stopping inter-
face, through which the aggregation can be stopped, giving the
approximate result as the final result.

Online aggregation is often supported by Data Stream Man-
agement Systems (DSMSs), which provide centralized aggrega-
tion for continuous data streams. In Fig. 3, we illustrate the
aggregation in a typical DSMS scenario. Usually, stream data are
pushed into the DSMS continuously, often at a high frequency.
Individual data instances are not significant, become stale as time
passes, and do not need to be stored persistently. Finite subsets
of the most recent incoming stream (‘“windows”) are cached in
the system. Aggregate functions can be defined by users and are
applied on the windows. In the Aurora data stream management
system [25], the aggregate function can be associated with a
“timeout” parameter, indicating the deadline of the computation
of the function. A function should return before it times out,
even if some raw data instances are missing or delayed, so as to
provide timely response required by many real-time applications.
Aurora has implemented a load shedding mechanism, which drops
data instances when the system is overloaded. The aggregation is
triggered either by continuous queries with specified periods, or by
ad hoc queries which are issued by clients. The aggregated results
are passed to the receiving application as an outgoing stream.
To provide historical data, the aggregated data may also be kept

Input

Aggregated
Stream £ereg

> Results Stream

|15 [23 [23 [24 |

Aggregate() DSMS

X

Continuous Query

Fig. 3. lllustration of aggregation in a data stream management system

Aggregate(nl, n2)
Aggregate(n2, n3)

Aggregate(n3,
n4, n5, n6)

Fig. 4. lllustration of aggregation in a wireless sensor network

persistently for a specified period of time.

Multiple aggregation processes can be run concurrently, per-
forming aggregation on the same data stream [26]. Oyamada et
al. [27] point out that the aggregation in a DSMS may also
involve non-streaming data, which can be shared and updated
by other processes, causing potential data inconsistency. The
authors propose a concurrency control mechanism to prevent the
inconsistency.

In-network Aggregation in Wireless Sensor Networks:
Data aggregation plays an essential role in Wireless Sensor
Network (WSN) applications. In these applications, numerous
data are gathered from resource-constrained sensor nodes that
are deployed to monitor the environment. The gathered data are
transmitted through a network to sink nodes, which are equipped
with more resource for advanced computation and analysis. Along
the transmission, data are aggregated in the intermediate sensor
nodes or special aggregate nodes, in a decentralized topology.
This aggregation technique is also called “in-network aggregation”
[4]. In contrast, a sensor network can also apply centralized
aggregation if the data of all sensors are transmitted to and
aggregated in one single node. Fig. 4 gives an example of data
aggregation in a sensor network. In this example, data from nodes
n4, n5 and n6 are aggregated in node n3. This aggregated result is
then transmitted to n2, and aggregated with the data of n2. Finally,
the data from n2 and nl are aggregated in the sink node.

Madden et.al [5] propose Tiny AGgregation (TAG), a generic
aggregation service for ad hoc networks. In TAG, the user poses
aggregation queries from a base station, which are distributed to
the nodes in the network. Sensors collect data and route data back
to the base station through a routing tree. As the data flow up
the tree, it is aggregated by an aggregation function and value-
based partitioning according to the query, level by level. At each
level, a node awakens when it receives the aggregate request,
together with a deadline when it should reply to its parent, and
propagates the request to its children with an earlier deadline. Each
node then listens to its children, aggregates the data transmitted
from the children and the reading of itself, and then replies the
aggregated result to its parent. If any node replies after its specified
deadline, its value will not be aggregated by its parent, which
means that the final aggregated result is actually an approximation.



‘ Node-layer Aggregation Base-layer Aggregation ‘
i T t T 1
Detection Detection Detection
Confidence Confidence Confidence
1 2 N
L} T L L] L)
‘ Sensor-layer Aggregation ‘ ‘ Group-layer Aggregation ‘
T T

Group 1 Group N

LY L) : LY
‘Sensorl‘ ‘Sensorz ‘ ‘SensorN‘ ‘ Node 1 ‘ ‘ Node 2 ‘ ‘ Node N ‘

Fig. 5. Data Aggregation Architecture of VigilNet [29]

The aggregated results are cached by the nodes, and can be
used for fault tolerance reason, e.g., loss of messages from a
child. TAG has also classified aggregate functions into distributive,
algebraic, holistic, unique and content-sensitive. Decentralized
in-network aggregation is only appropriate for distributive and
algebraic aggregate functions, since they can be decomposed into
sub-aggregates. For other functions, all sensor data have to be
collected to one node and aggregated together.

TAG is later implemented in the TinyDB [28], which supports
SQL-style queries. Aggregation can be triggered periodically by
continuous queries, or at once by a state change or an ad hoc
query. Aggregated results can be stored persistently as storage
points, which may be accessed by other processes.

4.2 Ad Hoc Applications

Many applications have unique requirements, and consequently
use their ad hoc aggregation processes to fulfill their requirements.
Examples of such applications are presented in the following
paragraphs.

He et al. present the VigilNet for real-time surveillance with a
tiered architecture [29]. Four layers are implemented in this system
and each layer has its data aggregation requirements. The data
aggregation architecture of VigilNet is illustrated in Fig. 5. The
first layer is the sensor layer in which data inputs are pushed from
individual sensors at specific rates, and aggregated as detection
confidence vectors. In this layer the aggregation needs to meet
stringent real-time constraints since the sensors send signals about
fast-moving targets. The results of sensor-layer aggregation are
sent to the node for node-layer aggregation. Each sensor node
includes several sensors, and computes the average of sensor confi-
dence vectors incrementally when a new sensor confidence vector
arrives. If the aggregated results show the existence of a tracking
target, the node estimates the position of the target, and sends a
report to the leading node of the local group. The leader buffers
the reports from members, until the number reaches a predefined
aggregation degree. Then, it aggregates all the reports, estimates
the current position of the target, and sends the aggregated report
to the base station. The base station aggregates the new report with
historical positions of the target, and calculates the velocity using
a linear regression procedure.

Defude et al. propose the VESPA (Vehicular Event Sharing
with a mobile P2P Architecture) approach [30] for the Vehicular
Ad hoc NETwork (VANET), to aggregate traffic information
events, such as parking places, accidents and road obstacles,
pushed from neighbor vehicles. The events are aggregated by
times, areas and event types. The aggregated values are stored
and accessed for further analysis.

Goud et al. [9] propose a real-time data repository for automo-
tive adaptive cruise control systems. It includes an Environment
Data Repository (EDR) and a Derived Data Repository (DDR).
The EDR periodically reads sensor readings, aggregates them,

5

and keeps the aggregated value in the repository. The DDR then
reads and aggregates the values from EDR, only when the changes
of readings from some sensors exceed a threshold. The sensor
data are real-time and have their validity intervals. The aggregate
processes must complete before the data become invalid, and
produce the results for other processes with stringent deadlines.

Arai et al. propose an adaptive two phase approach for ap-
proximate ad hoc aggregation in unstructured peer-to-peer (P2P)
systems [31]. When an ad hoc aggregate query is issued, in the
first phase, sample peers are visited by a random walk from the
sink, with a predefined depth. Information of the visited peers
are collected to the sink, and analyzed to decide the peers to be
aggregated. These peers are then visited in the second phase. For
some aggregate functions such as COUNT and AVERAGE, partial
aggregate results are computed in the local peer, and returned to
the sink. For other aggregate functions, raw data are returned to
the sink and aggregated in the sink.

Baulier et al. [32] propose a database system for real-time
event aggregation in telecommunication systems. Events gener-
ated by phone calls are pushed into the system, which should
be aggregated within specific response times. The aggregated
results are kept in a main-memory database as views for other
time-critical processes. When a new event arrives, it triggers the
aggregate process to update the aggregate view. The event record
itself is stored into a data warehouse persistently, which is not
time-critical.

Bar et al. [33] propose an online aggregation system for
network traffic monitoring where large volumes of heterogeneous
data streams are processed with different time constraints. Arriv-
ing stream data instances, as well as non-stream data, are stored
persistently in the system. Aggregation can be triggered by ad
hoc queries, or triggered periodically by continuous queries. The
aggregate results are stored persistently in materialized views.
Aggregate functions are computed incrementally, by combining
the newly arrived instance with cached aggregated results.

Biir et al. describe an online active control system for aircrafts
which employs data aggregation [10]. In this application, real-
time data are gathered periodically from sensors deployed in the
aircraft, and aggregated periodically. Since the aircraft system
is time-critical, the freshness of data and timely processing of
aggregation are crucial.

Lee et al. propose an approach for aggregating data in an
industrial manufacturing system [11]. Three types of aggregation
are described, which are aggregation at device level, aggregation
in control system, and aggregation in remote monitoring system.
At device level, real-time raw data are produced by sensors and
controllers, and are aggregated in the devices. The aggregation is
triggered hourly, or by state changes in the device. The aggregation
functions are simple calculations for hourly throughput, error
count, etc. The aggregated values are sent to subscribing clients,
namely the control system and the remote monitoring system.
The control system receives the data from devices and store
them into a database. Every hour, these data, together with other
events, are aggregated to produce error times, throughput, etc. The
remote monitoring system also stores the data from devices and
performs aggregation. Delay could occur in aggregation in the
remote system.

Iftikhar applies data aggregation on integration of data in
farming systems [3]. Data are collected from different devices, and
stored permanently in a relational database. A gradual granular
data aggregation strategy is then applied on the stored data.



Basically, older data should be aggregated in a coarse-grained
granularity while newer data are aggregated in a finer granularity.
For different granularities, aggregation is triggered in different
periods. The aggregated results are kept in the database while the
raw data are deleted to save space.

Golab et al. propose a tool called DataDepot for generating
data warehouses from streaming data feeds [34], focusing on the
real-time quality of the data. Raw data are modeled as tables,
which are not persistent and have a freshness property. Raw data
are generated from different sources, with various properties such
as rate and freshness. Raw tables are aggregated and stored in
persistent derived tables which must also be fresh. Updates in the
raw tables are propagated to the derived tables.

4.3 Survey Results

More than 13,000 research works are indexed in the SCOPUS
search engine using “data aggregation” as a search key for title,
abstract and keywords in computer science and engineering. Al-
though only a small proportion of related works are examined
here, our survey covers a relevant set of systems and application
domains, which exposes the common and variable characteristics
of the raw data, aggregated data, the aggregate functions, as well
as the entire data aggregation processes.

In Table 1, we summarize the previous review by listing
characteristics of the DAPs in the surveyed systems and appli-
cations. Clearly, each aggregation process must have raw data, an
aggregation function and the aggregated results. However, other
characteristics have shown great variety. For instance, aggregation
processes prepare the raw data ready for aggregation, by different
data acquisition schemes. In some applications the aggregation
process needs to pull the raw data from the persistent storage of
the data source. Therefore the designer of an aggregation process
must take this interaction into consideration. In other applications,
however, raw data are pushed by the data source, so fetching raw
data is not the concern of the aggregation process. The aggregated
data may be stored persistently in some scenarios and are expected
to survive system failures, while in other scenarios they can only
reside in the volatile memory. As one can see in Table 1, the
consistency of the data may depend on the time in some DAPs,
while in others the data are static. A large variety of aggregate
functions have been applied in aggregation processes, depending
on the requirements of the particular application. The aggregation
process itself may be scheduled periodically, or triggered by ad
hoc events. In time-critical systems, the aggregation processes
have strict timeliness requirements, while in some analytical
systems with large amount of data the delays of the aggregation
processes are tolerable. To design an appropriate aggregation
process, it follows that one must take these characteristics, as
well as their nature (necessity, optionality, etc) and their cross-
cutting constraints, into consideration. A designer could benefit
from having a systematic representation of these characteristics to
ease the design, as well as support for facilitating feasible choices
of the involved characteristics.

5 OUR PROPOSED TAXONOMY

The survey presented in Section 4 has revealed a number of
characteristics of aggregation processes, including the raw data,
the aggregated data, the aggregate functions, as well as the
triggering patterns and the timeliness of the processes. Some of
these characteristics are common for all aggregation processes,

6

while others are distinct from case to case. In this section we
propose a taxonomy of data aggregation processes, as an ordered
arrangement of features revealed by the survey. The taxonomy
for these common and variable characteristics not only leads to
a clear understanding of the aggregation process, but also lays a
solid foundation for an eventual tool support for reasoning about
the impact of different features on the design.

We choose feature diagram as the presentation of our tax-
onomy, mainly due to two reasons. First, features may be used
to model both functional and extra-functional characteristics of
systems. This allows us to capture cross-cutting aspects that
have on multiple software modules related to different concerns.
Second, the notation of feature diagrams is simple to construct,
powerful to capture the common and variable characteristics of
different data aggregation processes, and intuitive to provide an
organizational view of the processes. The taxonomy is shown in
Fig. 6.

In the following subsections, these features are discussed in
details with concrete examples. More precisely, the discussion is
organized in order to reflect the logical separation of features.
We explain Fig. 6 from the top level features under “Aggregation
Process”, and iterate through all sub-features in a depth-first way.
The top level features include “Raw Data”, “Aggregate Function”
and “Aggregated Data”, which are the main constituents of an
aggregation process. Features that characterize the entire DAP are
also top level features, including the “Triggering Pattern” of the
process, and “Real-Time (P)”, which refers to the timeliness of the
entire process.

5.1 Raw Data

One of the mandatory features of real-time data aggregation is the
raw data involved in the process. Raw data are the data provided
by the DAP data sources. One DAP may involve one or more types
of raw data. The multiplicity is reflected by the cardinality [1..*]
next to the feature “Raw Data Type” in Fig. 6. Each raw data type
may have a set of raw data. For instance, a surveillance system has
two types of raw data (“sensor data” and “camera data”), while for
the sensor data type there are several individual sensors with the
same characteristics. Each raw data may have a set of properties,
which are interpreted as its sub-features and constitute a sub-tree.
These sub-features are: Pull, Shared, Sheddable, and Real-Time.

Pull: “Pull” is a data acquisition scheme for collecting
raw data. Using this scheme, the aggregator actively acquires data
from the data source, as illustrated in Fig. 7a. For instance, a
traditional DBMS adopts the pull scheme, in which raw data are
acquired from disks using SQL queries and aggregated in the main
memory.

“Pull” is considered to be an optional feature of raw data, since
not every DAP pulls data actively from data source. If raw data
have the “pull” feature, pulling raw data actively from the data
source is a necessary part of the aggregation process, including
the selection of data as well as the shipment of data from the
data source. If the raw data do not have the “pull” feature, they
are pushed into the aggregator (Fig. 7b). In this case, in our view
the action of pushing data is the responsibility of another process
outside of the DAP. From DAP’s perspective, the raw data are
already prepared for aggregation.

“Persistently Stored” is considered as an optional sub-feature
of “Pull”, since raw data to be pulled from data source may be
stored persistently in a non-volatile storage, such as a disk-based



TABLE 1
Characteristics of Data Aggregation Processes in the Surveyed Applications

Sample Raw Data Aggregate Aggregated Data Triggering Pattern Real-time Characteris-
Function tics
relational ~ disk-based | pulled from data sources; persis- | various possibly durable; pos- | activated by events | usually no deadlines
DBMS/DW [20], [22], | tently stored; possibly shared by | functions sibly shared by other | (queries or database
[23] other processes processes triggers), or activated
periodically
DSMS (AURORA | pushed by data sources; possibly | various pushed to receiver; | activated by events | deadlines depending
[25], Oyamada et al. | pushed periodically; not persis- | functions possibly durable; may | (ad hoc queries), or | on the application
[27], Krishnamurthy | tently stored; cached for a par- be stored for a period | activated periodically
et al. [26]) ticular period; real-time; possibly of time (periodic  continuous
shared by other processes; can be queries)
shedded
WSN (TAG [5], | pulled from data sources; not | various cached for a par- | activated by events, or | deadlines depending
TinyDB [28]) persistently stored; possibly be | functions ticular period; pos- | activated periodically on the application
skipped sibly durable; real-
time; possibly shared
by other processes
VigilNet [29], sensor | pushed by data sources; not per- | detection pushed to receiver; not | activated periodically hard deadlines
layer sistently stored; real-time; pushed | confidence durable
periodically function
VigilNet [29], node | pushed by data sources; not per- | average pushed to receiver; not | activated by event soft deadlines
layer sistently stored durable
VigilNet [29], group | pushed by data sources; cached for | ad hoc cal- | pushed to receiver; not | activated by event soft deadlines
layer a particular period culation durable
VigilNet [29], base | pushed by data sources; persis- | regression shared by other pro- | activated by event soft deadlines
layer tently stored cesses
VESPA [30] pushed by data sources various durable; shared by | activated by events soft deadlines
functions other processes
Goud et al. [9], EDR pulled from data sources; pulled | various not durable; real-time; | activated periodically hard deadlines
periodically; real-time; not persis- | functions shared by other pro-
tently stored cesses
Goud et al. [9], DDR pulled from data sources; real- | various durable; real-time activated by events hard deadlines
time; not persistently stored functions
Arai et al. [31] pulled from data sources; not per- | various possibly durable activated by events no deadlines
sistently stored functions
Baulier et al. [32] pushed by data sources; persis- | various real-time; not durable; | activated by events hard deadlines
tently stored functions shared by other pro-
cesses
Bar et al. [33] pushed by data sources; persis- | various durable activated by events, or | soft deadlines
tently stored; possibly real-time functions activated periodically
Biir et al. [10] pushed by data sources; not per- | various not durable; real-time activated periodically hard deadlines
sistently stored; real-time; functions
Lee et al. [11], device | pushed by data sources; real-time various pushed to receiver; not | activated by events, or | soft deadlines
level functions durable activated periodically
Lee et al. [11], control | pulled from data sources; persis- | various possibly durable activated periodically soft deadlines
system tently stored functions
Lee et al. [11], remote | pulled from data sources; persis- | various possibly durable activated periodically soft deadlines
monitoring system tently stored functions
Iftikhar [3] pulled from data sources; persis- | various durable; stored for a | activated periodically soft deadlines
tently stored; stored for a partic- | functions particular period; pos-
ular period; possibly shared by sibly shared by other
other processes processes
DataDepot [34] pulled from data sources; not per- | various durable; real-time activated by events deadlines  depending
sistently stored; possibly shared | functions on the application

by other processes; real-time




l Mandatory (L Optional

Aggregation
Process

AN Alternative

[m..n] cardinality

Raw Data Aggregate

Type

[1.%]

Function

Duplicate
Sensitive

@)
Sheddable

Real-Time
(RD)

1.4

Exemplary

Progressive

Persistently N
Strored / Maximum
Interval
a
Minimum Absolute ’ Hard ‘ l Soft ‘
Interval Validity N
Interval Firm

Fig. 6. The taxonomy of data aggregation processes

1. request
Data Aggregator
N
Source 2. raw data
(a) Pull scheme
Data raw data
»| Aggregator
Source

(b) Push scheme

Fig. 7. Raw data acqusition schemes

relational DBMS. The retrieval of persistent raw data involves
locating the data in the storage and the necessary 1/O.

Shared: Raw data of some DAP examples in Section 4
are read or updated by other processes at the same time when they
are read for aggregation [3], [26], [27]. The same raw data may
be aggregated by several DAPs, or accessed by processes that do
not perform aggregations. We use the optional “shared” feature
to represent the characteristic that the raw data involved in the
aggregation may be shared by other processes in the system.

Sheddable: We classify the raw data as “sheddable”,
which is an optional feature, used in cases when data can be
skipped for the aggregation. For instance, in TAG [5], the inputs
from sensors will be ignored by the aggregation process if the data
arrive too late. In a stream processing system, new arrivals may
be discarded when the system is overloaded [25]. For raw data
without the sheddable feature, every instance of the raw data is
crucial and has to be computed for aggregation.

Real-Time (RD): The raw data involved in some of the
surveyed DAPs have real-time constraints. Each data instance is
associated with an arrival time, and is only valid if the elapsed time
from its arrival time is less than its absolute validity interval.
“Real-time” is therefore considered an optional feature of raw
data, and “absolute validity interval” is a mandatory sub-feature of
the “real-time” feature. We name the real-time feature of raw data
as “Real-Time (RD)” in our taxonomy, for differentiating from
the real-time features of the aggregated data (“Real-Time (AD)”
in Section 5.3) and the process (“Real-Time (P)” in Section 5.5).

Raw data with real-time constraints are classified as “hard”,

Durable

N,

Aggre-gated Triggering Real-Time
Data Pattern (P)
Q
: .
Deadline Soft

Real-Time
(AD)

Hard

Sporadic

Firm

Maximum
Interval

Minimum
Interval

Relative
Validity
Interval

Absolute
Validity
Interval

“firm” or “soft” real-time, depending on the strictness with respect
to temporal consistency. They are represented as alternative sub-
features of the real-time feature. As we have explained in Section
3, hard real-time data (such as sensor data from a field device
[11]) and firm real-time data (such as surveillance data [29]) must
be guaranteed up-to-date, while outdated soft real-time data are
still of some value and thus can be used (e.g., the derived data
from a neighboring node in VigilNet [29]).

MINT: Raw data may arrive continuously with a Mini-
mum INter-arrival Time (MINT), of which a fixed arrival time
is a special case. For instance, in the surveillance system VigilNet
[29], a magnetometer sensor monitors the environment and pushes
the latest data to the aggregator at a frequency of 32HZ, implying
a MINT of 32.15 milliseconds. We consider “MINT” an optional
feature of the raw data.

5.2 Aggregate Function

An aggregation process must have an aggregate function to com-
pute the aggregated result from raw data. An aggregate function
exhibits a set of characteristics that we interpret as features.

Duplicate Sensitive: “Duplicate sensitivity” has been
introduced as a dimension by Madden et al. [5] and Fasolo
et al. [4]. An aggregate function is duplicate sensitive, if an
incorrect aggregated result is produced due to a duplicated raw
data. For example, COUNT, which counts the number of raw
data instances, is duplicate sensitive, since a duplicated instance
will lead to a result one bigger than it should be. MIN, which
returns the minimum value of a set of instances, is not duplicate
sensitive because its result is not affected by a duplicated instance.
“Duplicate sensitive” is considered as an optional feature of the
aggregate function.

Exemplary or Summary: According to Madden et.al
[5], an aggregate function is either “exemplary” or “summary”,
which are represented as alternative features in our taxonomy. An
exemplary aggregate function returns one or several representative
values of the selected raw data, for instance, MIN, which returns
the minimum as a representative value of a set of values. A sum-
mary aggregate function computes a result based on all selected



raw data, for instance, COUNT, which computes the cardinality of
a set of values .

Lossy: An aggregate function is “lossy”, if the raw data
cannot be reconstructed from the aggregated data alone [4]. For
example, SUM, which computes the summation of a set of raw
data instances, is a lossy function, as one cannot reproduce
the raw data instances from the aggregated summation value
without any additional information. On the contrary, a function
that concatenates raw data instances with a known delimiter is
not lossy, since the raw data can be reconstructed by splitting
the concatenation. Therefore, we introduce “lossy” as an optional
feature of aggregate functions.

Holistic or Progressive: Depending on whether the com-
putation of aggregation can be decomposed into sub-aggregations,
an aggregate function can be classified as either “progressive”
or “holistic”. The computation of a progressive aggregate func-
tion can be decomposed into the computation of sub-aggregates.
In order to compute the AVERAGE of ten data instances, for
example, one can compute the AVERAGE values of the first
five instances and the second five instances respectively, and
then compute the AVERAGE of the whole set using these two
values. The computation of a holistic aggregate function cannot
be decomposed into sub-aggregations. An example of holistic
aggregate function is MEDIAN, which finds the middle value from
a sequence of sorted values. The correct MEDIAN value cannot
be composed by, for example, the MEDIAN of the first half of the
sequence together with the MEDIAN of the second half.

5.3 Aggregated Data

An aggregation process must produce one aggregated result,
denoted as mandatory feature “Aggregate Data” in the feature
diagram. Aggregated data may have a set of features, which are
explained as follows.

Push: In some survey DAP examples, sending aggregated
data to another unit of the system is an activity of the aggre-
gator immediately after the computation of aggregation. This is
considered as an active step of the aggregation process, and is
represented by the feature “push”. For example, in the group layer
aggregation of VigilNet [29], each node sends the aggregated data
to its leading node actively. An aggregation process without the
“push” feature leaves the aggregate results in the main memory,
and it is other processes’ responsibility to fetch the results.

The aggregated data may be “pushed” into permanent storage,
such as in [32] and [11]. The stored aggregated data may be
required to be durable, which means that the aggregated data
must survive potential system failures. Therefore, “durable” is
considered as an optional sub-feature of the “push” feature.

Shared: Similar to raw data, the aggregated data has an
optional “shared” feature too, to represent the characteristic of
some of the surveyed DAPs that the aggregated data may be shared
by other concurrent processes in the system. For instance, the
aggregated results of one process may serve as the raw data inputs
of another aggregation process, creating a hierarchy of aggregation
[25], [29]. The results of aggregation may also be accessed by a
non-aggregation process, such as a control process [9].

Time-to-live: The “time-to-live” feature regulates how
long the aggregated data should be preserved in the aggregator.
For instance, Aurora system [25] can be configured to guarantee
that the aggregated data are available for other processes, such as
an archiving process or another aggregate process, for a certain

9

period of time. After this period, these data can be discarded or
overwritten. We use the optional feature “time-to-live” to represent
this characteristic.

Real-Time (AD): The aggregated data may be real-time,
as required in some of the surveyed DAPs, if the validity of
the data instance depends on whether its temporal consistency
constraints are met. Therefore the “real-time” feature, which is
named “Real-Time (AD)”, is an optional feature of aggregated
data in our taxonomy. The temporal consistency constraints on
real-time aggregated data include two aspects, the absolute validity
and relative validity, as explained in Section 3. “Absolute validity
interval” and “relative validity interval” are two mandatory sub-
features of the “Real-Time (AD)” feature.

Similar to raw data, the real-time feature of aggregated data
has “hard”, “firm” and “soft” as alternative sub-features. If the
aggregated data are required to be hard real-time, they have to
be ensured temporal consistent in order to avoid catastrophic
consequences [32]. Compared with hard real-time data, firm real-
time aggregated data are useless if they are not temporal consistent
[29], while soft real-time aggregated data can still be used with
less value (e.g., the aggregation in the remote server [11]).

5.4 Triggering Pattern

“Triggering pattern” refers to how the DAP is activated, which is a
mandatory feature. We consider three types of triggering patterns
for the activation of DAPs, represented by the alternative sub-
features “periodic”, “sporadic” and “aperiodic”.

A periodic DAP is invoked according to a time schedule with
a specified “Period”. A sporadic DAP could be triggered by an
external “event”, or according to a time schedule, possibly with a
“MinT” (Minimum inter-arrival Time) and/or “MaxT” (Maximum
inter-arrival Time). An aperiodic DAP is activated by an external
“event” without a constant period, MinT or MaxT. The event can
be an aggregate command (e.g. an explicit aggregation query [28])
or a state change in the system [32].

5.5 Real-time (P)

Real-time applications, such as automotive systems [9] and in-
dustrial monitoring systems [11], require the data aggregation
process to complete its work by a specified deadline. The process
timeliness, named “Real-Time (P)”, is considered as an optional
feature of the DAP, and “deadline” is its mandatory sub-feature.

Aggregation processes may have different types of timeliness
constraints, depending on the consequences of missing their dead-
lines. For a soft real-time DAP, a deadline miss will lead to a less
valuable aggregated result [30]. For a firm real-time DAP [11],
the aggregated result becomes useless if the deadline is missed. If
a hard real-time DAP misses its deadline, the aggregated result
is not only useless, but hazardous [9], [10]. “Hard”, “firm” and
“soft” are alternative sub-features of the timeliness feature.

We must emphasize the difference between timeliness (“Real-
Time (P)”) and real-time features of data (“Real-Time (RD)” and
“Real-Time (AD)”), although both of them appear to be classified
into hard, firm and soft real-time. Timeliness is a feature of
the aggregation process, with respect to meeting its deadline.
It specifies when the process must produce the aggregated data
and release the system resources for other processes. As for real-
time features of data, the validity intervals specify when the data
become outdated, while the level of strictness with respect to
temporal consistency decides whether outdated data could be used.



To meet the desired real-time strictness level of the data, the DAP
may need to meet certain timeliness requirements, which will be
discussed further in Section 6.

6 DESIGN RULES AND HEURISTICS

In the previous section we have introduced our taxonomy that
encompasses the important features of a DAP. In this section,
we formulate a set of design rules and heuristics, following the
design implications imposed by the features. The design rules are
the axioms that should be applied during the design. Violating
the rules will result in infeasible feature combinations. Design
heuristics, on the other hand, suggest that certain mechanisms may
be needed, either to implement the selected features, or to mitigate
the impact of the selected features.

6.1 Design Rules

The real-time features of data and process are commonly desired
features of DAPs among real-time applications. Among these
features there exist dependencies, which should be respected when
one is selecting and combining these features. In this subsection
we analyze the dependencies among the real-time data features
(the “Real-Time (RD)” and “Real-Time (AD)” features in the tax-
onomy) and the timeliness feature (the “Real-Time (P)” feature) of
the aggregation process itself. Based on the analysis we formulate
three design rules to eliminate the infeasible combinations.

As already introduced, real-time data can be classified as
hard, firm or soft real-time according to the strictness w.r.t. the
temporal consistency. The hard real-time feature imposes strongest
constraints and represents highest level of strictness, while the soft
real-time feature represents the lowest level of strictness. From
the raw data to the aggregated data, the level of strictness can
only decrease or remain the same. This is because the validity of
aggregated data depends on the validity of raw data. Since the
hard real-time aggregated data have to be both absolute valid and
relative valid, which requires all involved raw data to be absolute
valid, the raw data have to be hard real-time too. If the raw
data is soft real-time, which indicates that outdated raw data may
occur, the temporal consistency of the aggregated data cannot be
guaranteed. Therefore, we get the following rule:

Rule 1: The real-time strictness level of the raw data
must be higher than or equal to the real-time strictness level
of the aggregated data.

The timeliness of the entire data aggregation process has an
impact on meeting the strictness level of the aggregated data, since
the validity of the aggregated data depends on the interval between
the time when raw data are collected, and the time when the
aggregated data are produced. If the aggregated data are required
to be hard real-time, the DAP also has to be hard real-time. If
the timeliness of the DAP is soft, the calculation may miss its
deadline and produce an outdated aggregated result. If we consider
the “hard”, “firm” and “soft” features of the DAP as levels of
strictness w.r.t. timeliness, this rule is formulated as follows:

Rule 2: The strictness level w.r.t. timeliness of the entire
DAP must be higher than or equal to the real-time strictness
level of the aggregated data.

The fact that both the raw and aggregated data may be shared
by multiple processes imposes further consideration on the real-
time strictness of the shared data. If the raw data or the aggregated
data are shared by several processes, and the requirements of these
processes impose different real-time strictness, then the real-time

10

constraint of this data is in accordance with the highest strictness
required by these processes. For example, the raw data of an
aggregate process happens to be the input of a control process
that demands the input to be hard real-time. Even though the
aggregation process can tolerate outdated raw data, the real-time
strictness level of the data must be hard. Otherwise the data for
the control process may be outdated and lead to catastrophic
consequences. Hence we formulate the following rule:

Rule 3: The real-time strictness of the raw/aggregated
data must meet the highest real-time strictness level imposed
by all processes that share the data.

These rules should be applied when the application designer
analyzes the features derived from the requirement specification.
Consider a process aggregating data from three sensors and pro-
viding its aggregated data to a hard real-time control process. The
specification of the aggregation process may allow outdated raw
data, i.e., soft real-time raw data, and tolerate occasional deadline
miss. However, since the control process requires its inputs (the
aggregated data) to be hard real-time, both the raw data from the
sensors and the DAP have to be hard real-time as well.

6.2 Design Heuristics

Accomplishing the design of a DAP involves the design of appro-
priate supporting run-time mechanisms. These mechanisms either
achieve the selected features of the DAP, or mitigate the impact
of the selected features in order to ensure other properties of the
system. Such properties could be, for instance, the logical data
consistency characterized by the ACID properties of the processes.
In this subsection we introduce a set of design heuristics, which are
suggestions of mechanisms that could be implemented in order to
enforce certain features and system properties. The heuristics are
organized as suggested mechanisms as follows.

Synchronization for “pull” and ‘“push” features:
Pulling raw data from a data source may involve locating the data
source, selecting the data and shipping data into the aggregator.
Pushing aggregated data may involve locating the receiver and
transmitting the data. These activities introduce higher risks of
delayed and missing data that may breach the temporal and logical
data consistency. Overheads in time and computation resource
are also introduced, which are impacting factors of the overall
timeliness of the process. When designing for such systems, one
may consider developing a synchronization protocol to mitigate
such impacts and ensure the consistency of the data.

Load shedding for ‘‘sheddable” feature combined with
real-time features: Situations could occur when the DAP is
not able to meet the real-time constraints, due to, for example,
system overload. If the raw data are sheddable, one may consider
implementing the load shedding mechanism [25], which allows
raw data instances to be discarded systematically.

Approximation for “sheddable’ feature combined with
real-time features: An alternative mechanism for sheddable raw
data is to implement approximation techniques. For example,
Deshpande et al. introduce an approximation technique into sensor
network to improve the efficiency of aggregation [35]. Instead of
reading data from all sensors, the DAP only collects raw data from
some of the sensors that fulfill a probabilistic model.

Concurrency control for “shared” feature: An impli-
cation of shared data is the concern of logical data consistency,
which is a common consideration from concurrent data access. A
certain form of concurrency control needs to be implemented to



achieve a desired level of consistency. For example, the aggregate
process may achieve full isolation from other processes, i.e., they
can only see the aggregated result when the DAP completes, using
serializable concurrency control [36]. To improve performance or
timeliness, one may choose a less stringent concurrency control
that allows other processes to access the sub-aggregate results of
the DAP, which may lead to a less accurate final result. Without
any concurrency control, the aggregation process may produce
incorrect results using inconsistent data [37].

Logging and recovery for ‘“durable” feature: In order
to ensure the “durable” aggregated data, logging and backward
failure recovery techniques, which are commonly used to achieve
durability in data management systems, may be applied to the
DAP. For example, the operations on the aggregated data are
logged immediately, and the actual changes are written into the
storage periodically.

Filtering for ‘“duplicate sensitive” aggregate functions:
Using a duplicate sensitive aggregate function indicates a higher
risk of inconsistency caused by duplicated values sent to aggre-
gator. A filtering mechanism may be implemented to identify the
duplicates and filter them away.

Caching for “lossy” aggregate functions: Lossy aggre-
gate functions disallow the reconstruction of raw data from the
aggregated data. However, raw data may be needed to redo all
changes when errors occur, in order to ensure the atomicity of a
process. A caching mechanism may be implemented for the DAP
as a solution, that raw data instances are cached in the aggregator
until the process completes.

Decomposition of aggregation for “progressive’” aggre-
gate functions: The implication of using a progressive aggregate
function is that one may decompose the entire aggregation into
sub-aggregates. Computing the sub-aggregates in parallel may
benefit the performance of the entire DAP. Another useful applica-
tion of the decomposition is error handling, especially when it is
combined with a caching mechanism. Consider an aggregate pro-
cess fetching data from several sensors. The process can perform
aggregation upon the arrival of each sensor data and cache the
sub-aggregate result so far. If an error occurs during the fetching
of next sensor, the process can return the cached sub-aggregate
result as an approximation [5], or only restart the fetching of the
failed sensor, instead of restarting the whole process.

Buffers for raw data and aggregated data: Raw data ar-
rive in the aggregator with their “MINT”, which could be different
from the aggregation interval imposed by the“triggering pattern”
of the process. Buffers may be necessary to keep the raw data
available for aggregation. Buffers may also be necessary for the
aggregated data, since the aggregated data are generated according
to the “triggering pattern”, and must be available for a specified
period defined by the “time-to-live” feature. Buffer management
is crucial for the accuracy of aggregation as well as the resource
utilization. For instance, circular buffer is a common mechanism
in embedded systems for keeping data in limited memory. When
the buffer is full, the program will just overwrite the old content
with new data from the beginning. With the features presented
in our taxonomy, one may calculate buffer size based on worst-
case scenarios for non sheddable data, or suffice buffer size for
sheddable data, given the size of each data instance.

{ Debugger Function } <:> ’ Dedicated System Memory ‘

PTM Cluster Buffer STM Cluster Buffer

[Hardwarell l Hardware n l | Software
r

Program Trace Macrocell (PTM)

System Trace Macrocell (STM)

Fig. 8. General architecture of the Hardware Assisted Trace system

7 EVALUATION: AN INDUSTRIAL CASE STUDY

In this section we evaluate the usefulness of our taxonomy in the
design of a data aggregation application. Prior to the case study we
have implemented a tool called DAPComposer (Data Aggregation
Process Composer), shown in Fig. 9. The tool provides a graphical
user interface for designers to create DAPs, by selecting and
arranging the features in the diagram. Rules of mandatory, optional
and alternative features are implemented. The mandatory features
are always enabled, while optional and alternative features can be
enabled/disabled by double-clicking the features. Annotations can
be added to the selected features, such as the name of the data, or
the actual value of the timing properties. It can also hide disabled
features to provide a cleaner representation. Constraints can be
typed as rules by users and saved in a rule base. The tool then
validates the design against the specified rules. Although to the
date only primitive constraints intrinsic to the feature model are
checked by DAPComposer, we plan to mature the tool with more
sophistic analysis capabilities, such as timing analysis, in the next
version.

This evaluation is conducted on an industrial project, the
Hardware Assisted Trace (HAT) [38] framework, together with its
proposers from Ericsson. HAT, as shown in Fig. 8, is a framework
for debugging functional errors in an embedded system. In this
framework, a debugger function runs in the same system as the
debugged program, and collects both hardware and software run-
time traces continuously. Together with the engineers we have
analyzed the aggregation processes in their current design. At
a lower level, a Program Trace Macrocell (PTM) aggregation
process aggregates traces from hardware. These aggregated PTM
traces, together with software instrumentation traces from the Sys-
tem Trace Macrocell (STM), are then aggregated by a higher level
ApplicationTrace aggregation process, to create an informative
trace for the debugged application.

We have analyzed the features of the PTM aggregation process
and the ApplicationTrace aggregation process in HAT based on
our taxonomy. The features of the PTM aggregation process
are presented in Fig. 10. Triggered by computing events, this
process pulls raw data from the local buffer of the hardware,
and aggregates them using an encoding function to form an
aggregated trace into the PTM cluster buffer. The raw data are
considered sheddable, since they are generated frequently, and
each aggregation pulls only the data in the local buffer at the time
of the triggering event. The aggregated PTM and STM traces then
serve as part of the raw data of the ApplicationTrace aggregation
process, which is shown in Fig. 11. The ApplicationTrace process
is triggered sporadically with a minimum inter-arrival time, and
aggregates its raw data using an analytical function. The raw
data of the ApplicationTrace should not be sheddable so that all
aggregated traces are captured.



[Create AP| [Enable Draggable] [Refresh| Hide/Show disabled features|
Legend

Mandatory feature

Aggregated
/’7 sarega

Aggregation Process
(0]

-

Triggering T==]""
Raw Data Type sl %F:\é ]
) Aggregate Function )
@]
Enabled Disabled
alternative | alternative Raw Data
feature e @] | Duplicate Sensitive |
..... { ] Aperiodic Hard
s A\ . : : Deadline
o ] | ] ielistic Shode | 0
§ Pullt | Shared i minT ¢ S \ Periodic
Event
@) \ Firm
i Summary .
seri B i Progressive s M(a))(T
(@) Period
rrrrrrrrrrr 0]
MinT
Firm e
Fig. 9. Interface of DAPComposer
Aggregation Process
(PTM)
Raw Data Raw Data Raw Data Aggregate Function Aggregated Data Triggering Real-Time
(Branches) (Timestamp) (Exception) (Encoding) (EncodedTrace) Pattern (P)
[Pull ] [[Sheddable | [ Pull || Sheddable ]| Pull ][ Sheddable | [summary | [ Holistic |[ Push | [ Shared | [ Aperiodic | [ Deadiine | [ Soft ]
Durable
Fig. 10. The aggregation process in the PTM
Aggregation Process
(ApplicationTrace)
Raw Data Raw Data Aggregate Function Aggregated Data Triggering [ Real-Time (P) |
(AggregatedPTMTrace) (AggregatedSTMTrace) (AnalysisFunc) (AggregatedTrace) Pattern
*« ==
[pull ] [shared | > [[pull | [[shared [
’ l Sporadic ‘ l Deadline H Soft ‘

.
Pesistently Stored e Pesistently Stored ,//

l Lossy ‘

l Holistic ‘

Aggregation Process
(ST™M)

Aggregation Process
(PTM)

Fig. 11. The aggregation processes in the investigated HAT system

7.1 Problem identified in the HAT design

With the diagrams showing the features of the aggregation pro-
cesses, the engineers could immediately identify a problem in
the PTM buffer management. In the current design, the buffer
size is decided by both the hardware platform and the designer’s
experiences. The problem is that, the data in the buffer may
be overwritten before they are aggregated. This problem has
been observed on Ericsson’s implemented system, and awaits a
solution. However, if the taxonomy would have been applied on
the system design, this problem could have been identified before
it was propagated to implementation.

This problem arises due to the lack of a holistic consideration
on the PTM aggregation process and the ApplicationTrace ag-
gregation process at design time. Triggered by aperiodic external
events, the PTM process could produce a large number of traces
within a short period and fill up the PTM buffer. The Applica-
tionTrace process, on the other hand, is triggered with a minimum
inter-arrival time, and consumes the PTM traces as unsheddable
raw data. When the inter-arrival time of the PTM triggering events
is shorter than the MINT of the ApplicationTrace process, the
PTM traces in the buffer may be overwritten before they could be
aggregated by the ApplicationTrace process.

Summary

7.2 Solutions

Providing a larger buffer could be a choice to mitigate this
problem. However, a larger provision might either still fail to meet
the buffer consumption in some rare cases, or become a loss of
resource due to pessimism. Considering the resource-constrained
nature of the system, a better way is to derive the necessary buffer
size at design time, given the size of each data entry. Based on
our taxonomy, we and Ericsson engineers have come up with two
alternative design solutions to fix this problem. Both solutions
reuse most of the features in the current design.

Solution 1: To be able to derive the worst-case buffer
size, one solution is to ensure more predictable behaviors of the
aggregation processes, by adjusting the following features in the
diagram (see Fig. 12a): (i) Instead of selecting the “aperiodic”
feature, the PTM process should select “sporadic”, with a defined
MINT; and, (ii) the “sporadic” feature of the ApplicationTrace
process should be replaced by “periodic”, so that the frequency
of consuming the aggregated PTM traces can be determined.
These changes of the features entail introducing extra real-time
mechanisms into the current design, such as an admission control
to ensure the MINT and a scheduler to schedule the processes. In
addition, a “time-to-live” feature, whose value equals to the period



Aggregation Process
(PTM)
Aggregated Data
(EncodedTrace)

Triggering
Pattern

Aggregation Process
(ApplicationTrace)
Triggering Pattern

(a) Solution 1

Aggregation Process
(PTM)
Aggregated Data
(EncodedTrace)
Time-
to-live

Aggregation Process
(ApplicationTrace)

Raw Data (AggregatedPTMTrace)
Sheddable

Triggering
Pattern

(b) Solution 2

Fig. 12. lllustration of Solution 1 and Solution 2. Unchanged features from the current design are marked in gray.

of the ApplicationTrace process, should be added to the PTM pro-
cess. To achieve this, a mechanism that prevents traces from being
overwritten before the “time-to-live” value needs to be introduced.
These new features allow the designer to analyze the worst-case
production and consumption of the aggregated PTM traces, and
therefore derive the worst-case buffer size for the system using
the actual values of the features. This solution also ensures that
all PTM traces are aggregated by the ApplicationTrace process.
Features reused from the current design are either marked in gray
color, or omitted for readability.

Solution 2: An alternative to derive the exact buffer size
is to allow overwriting in a controlled manner, as illustrated in
Fig. 12b. On one hand, as in Solution 1, we suggest to replace
the “aperiodic” feature of the PTM process with “sporadic”, so
that the worst-case buffer size for PTM trace production can be
determined. On the other hand, the triggering pattern of the Ap-
plicationTrace process remains unchanged (“sporadic”). However,
a “sheddable” feature from the taxonomy is added to the raw data
of the ApplicationTrace process, while a “time-to-live” is added to
the PTM process. A shedding mechanism needs to be introduced,
which in this case could be a logic in the buffer management that
allows overwriting traces older than the “time-to-live” value. For
instance, the designer may decide that the PTM traces produced 10
milliseconds ago are not valuable for the ApplicationTrace. When
a PTM trace is older than 10 milliseconds, it might be overwritten
even though it has not been aggregated. With the knowledge of the
worst-case production of the PTM traces, and the “time-to-live”
value of each trace, the designer is able to derive the needed buffer
size.

Both solutions guarantee bounded buffers, while they require
just a few features to be changed, and mechanisms introduced
accordingly in the current design. Compared with Solution 2,
which could lose traces, Solution 1 ensures all generated traces to
be aggregated. However, to enforce a periodic triggering pattern
as suggested in Solution 1, more efforts are required to provide
real-time support, such as a real-time operating system.

7.3 Comparison with other taxonomies

Analysis based on other taxonomies could not easily identify the
aforementioned bottleneck, since they characterize other aspects
of data aggregation. The taxonomies proposed by Madden et al.
[5] and Gray et al. [2] can only be applied to describe the aggregate
functions of HAT, which are also captured by our taxonomy.
The taxonomies of Solis et al. [7], Makhloufi et al. [6], and
Rajagopalan [15], do not support modeling of data properties.
Although Fasolo et al. [4] have considered data representations,
aggregate functions and aggregation protocols, their taxonomy is

defined at a much coarser level and does not allow for the analysis
on such detailed data and process behaviors as the aforementioned
bottleneck.

7.4 Summary

The engineers in the evaluation acknowledge that our taxonomy
bridges the gap between the properties of data and the properties
of the process, which has not been elaborated by other taxonomies.
Our taxonomy enhances the understanding of the system by
structuring the common and variable features of data aggregation
processes. By applying analysis based on our taxonomy, design
flaws can be identified and fixed prior to implementation, which
improves the quality of the system and saves money. Design
solutions can be constructed by composing reusable features,
and reasoned about based on the taxonomy, which contributes
to a reduced design space. Due to these benefits, the engineers
see great value in a potential design tool for data aggregation
applications based on our taxonomy.

8 DISCUSSION

The proposed taxonomy brings new lights on the understanding of
the complexity of data aggregation in general. With a structured,
feature-based organization, our taxonomy can be viewed as a
common framework in which one can study the implications
of the features, as well as dependencies between the features
and the processes. Henceforth, one can reason about how the
selection of one feature will influence other features, or even other
processes. From an engineering perspective, as demonstrated by
the HAT case study, applying our taxonomy to analysis can help
designers identify flaws prior to implementation, and find new
design solutions.

One direct usage of the dependencies between features is
to eliminate infeasible feature combinations in the design. The
rules regarding real-time strictness levels of data and process
timeliness in Section 6 are one example. Although they appear
straightforward and general, these rules regulate the qualitative
relationships between real-time and timeliness features, and thus
reduce the design space. For more accurate analysis, such as
the derivation of buffer size in Section 7, values of quantitative
features such as deadline and period should be involved into the
calculation.

Conflicts may occur between real-time features and the other
features. For instance, a DAP with durable aggregated data will
ideally store each result into permanent storage, introducing
frequent disk I/O which is time consuming and unpredictable.
This may contradict the requirement of bounded computation



time imposed by the timeliness feature. Such conflicts can be
generalized as conflicts between logical data consistency, temporal
data consistency and timeliness. Features such as “durable” and
“shared” data are closely related to logical data consistency. The
suggested mechanisms “logging and recovery” and “concurrency
control” are common means to achieve durability and isolation re-
spectively. They all have impacts on the temporal data consistency
and timeliness. In such cases, a simple rule to detect potential
conflicts is not possible. Neither is it possible to formulate a
rule that resolves the conflicts that occur. We believe the conflict
detection, as well as the trade-offs among conflicting features,
must come from careful analysis that relies on the selected features
of a particular configuration with their values in the real case.
Advanced analysis techniques, such as model-checking [39], can
be applied on the configuration to verify whether the desired
properties hold, and guide the trade-offs.

9 CONCLUSION

In this paper, we have investigated the characteristics of data
aggregation processes in a variety of applications, and provided
a taxonomy of the DAPs, with a particular focus on the real-time
properties. Our taxonomy is presented as a feature diagram, in
which the common and variable characteristics are modeled as
features. The taxonomy provides a comprehensive view of data
aggregation processes for the designers, and allows the design of
a DAP to be achieved via the selection of desired features and the
combination of the selected features.

Based on the implications of the features in the taxonomy,
we have introduced three rules that should be followed during
the design of DAPs. These rules eliminate some of the infeasible
combinations of features during the design. We have also proposed
a set of design heuristics, which help the designer to decide the
necessary mechanisms for achieving the selected features and
other system properties. The usefulness of the taxonomy has been
demonstrated by an industrial case study. Flaws can be identified
at design time, and solutions can be proposed at design level, by
applying the taxonomy to the analysis.

Our taxonomy can be viewed as a framework for analyzing
the dependencies between features and aggregation processes. For
some potential conflicts among the desired features, we have high-
lighted that trade-offs must be decided based on careful analysis.
More advanced analysis techniques are needed for reasoning about
the conflicts among selected features, as well as the possible
resolutions. In our future work, we plan to apply advanced analysis
techniques, such as model-checking, to facilitate the trade-offs
among features during the design of data aggregation processes.

ACKNOWLEDGMENT

This work is funded by the Knowledge Foundation of Sweden
(KK-stiftelsen) within the DAGGERS project. We acknowledge
Alf Larsson and Carlo Vitucci for their help in the case study.

REFERENCES

[1] 1. J. Rudas, E. Pap, and J. Fodor, “Information aggregation in intelligent
systems: An application oriented approach,” Knowledge-Based Systems,
vol. 38, pp. 3-13, 2013.

[2] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh, “Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals,” Data Mining
and Knowledge Discovery, vol. 1, no. 1, pp. 29-53, 1997.

(3]

[4]

(3]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

14

N. Iftikhar, “Integration, aggregation and exchange of farming device
data: A high level perspective,” in Proceedings of the 2nd International
Conference on the Applications of Digital Information and Web Tech-
nologies, 2009, pp. 14-19.

E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation
techniques for wireless sensor networks: a survey,” Wireless Communi-
cations, IEEE, vol. 14, no. 2, pp. 70-87, 2007.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: A
tiny aggregation service for ad-hoc sensor networks,” ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, pp. 131-146, 2002.

R. Makhloufi, G. Doyen, G. Bonnet, and D. Gaiti, “A survey and perfor-
mance evaluation of decentralized aggregation schemes for autonomic
management,” International Journal of Network Management, vol. 24,
no. 6, pp. 469498, 2014.

I. Solis and K. Obraczka, “In-network aggregation trade-offs for data
collection in wireless sensor networks,” International Journal of Sensor
Networks, vol. 1, no. 3-4, pp. 200-212, 2006.

H. Alzaid, E. Foo, J. M. G. Nieto, and D. Park, “A taxonomy of secure
data aggregation in wireless sensor networks,” International Journal of
Communication Networks and Distributed Systems, vol. 8, no. 1-2, pp.
101-148, 2012.

G. Goud, N. Sharma, K. Ramamritham, and S. Malewar, “Efficient real-
time support for automotive applications: A case study,” in Proceedings
of the 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, 2006, pp. 335-341.

K. Biir, P. Omiyi, and Y. Yang, “Wireless sensor and actuator networks:
Enabling the nervous system of the active aircraft,” Communications
Magazine, IEEE, vol. 48, no. 7, pp. 118-125, 2010.

A. N. Lee and J. L. M. Lastra, “Data aggregation at field device level
for industrial ambient monitoring using web services,” in Proceedings of
the 9th IEEE International Conference on Industrial Informatics. 1EEE,
2011, pp. 491-496.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,
“Feature-oriented domain analysis (foda) feasibility study,” Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU/SEI-90-TR-021, 1990. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

R. Mesiar, A. Kolesdarovad, T. Calvo, and M. Komornikovd, “A review of
aggregation functions,” in Fuzzy Sets and Their Extensions: Representa-
tion, Aggregation and Models. Springer Berlin Heidelberg, 2008, vol.
220, pp. 121-144.

J.-L. Marichal, Aggregation Functions for Decision Making.
2010, pp. 673-721.

R. Rajagopalan and P. Varshney, “Data-aggregation techniques in sensor
networks: A survey,” Communications Surveys Tutorials, IEEE, vol. 8,
no. 4, pp. 48-63, 2006.

G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. ~Springer Science & Business Media,
2011, vol. 24.

X. Song and J. Liu, “How well can data temporal consistency be
maintained?” in Proceedings of the 1992 IEEE Symposium on Computer-
Aided Control System Design (CACSD), 1992, pp. 275-284.

K. Czarnecki and E. Ulrich, Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

T. Thiim, C. Kistner, F. Benduhn, J. Meinicke, G. Saake, and T. Le-
ich, “Featureide: An extensible framework for feature-oriented software
development,” Sci. Comput. Program., vol. 79, pp. 70-85, 2014.

S. Chaudhuri and U. Dayal, “An overview of data warehousing and olap
technology,” SIGMOD Rec., vol. 26, no. 1, pp. 65-74, 1997.

J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques,
Isted. Morgan Kaufmann Publishers Inc., 1992.

I. F. V. Lopez, R. T. Snodgrass, and B. Moon, “Spatiotemporal aggre-
gate computation: A survey,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 17, no. 2, pp. 271-286, 2005.

D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy, “Answering queries
with aggregation using views,” in Proceedings of the 22th International
Conference on Very Large Data Bases, 1996, pp. 318-329.

J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,”
SIGMOD Rec., vol. 26, no. 2, pp. 171-182, 1997.

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A new model and
architecture for data stream management,” The VLDB Journal, vol. 12,
no. 2, pp. 120-139, 2003.

S. Krishnamurthy, C. Wu, and M. Franklin, “On-the-fly sharing for
streamed aggregation,” in Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, 2006, pp. 623—-634.

ISTE,



[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. Oyamada, H. Kawashima, and H. Kitagawa, “Data stream processing
with concurrency control,” SIGAPP Appl. Comput. Rev., vol. 13, no. 2,
pp. 54-65, 2013.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
An acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122-173, 2005.

T. He, L. Gu, L. Luo, T. Yan, J. Stankovic, and S. Son, “An overview
of data aggregation architecture for real-time tracking with sensor net-
works,” in Proceedings of the 20th International Parallel and Distributed
Processing Symposium, 2006, pp. 8 pp.—.

B. Defude, T. Delot, S. Ilarri, J.-L. Zechinelli, and N. Cenerario, “Data
aggregation in vanets: The vespa approach,” in Proceedings of the 5th
Annual International Conference on Mobile and Ubiquitous Systems:
Computing, Networking, and Services, 2008, pp. 13:1-13:6.

B. Arai, G. Das, D. Gunopulos, and V. Kalogeraki, “Approximating
aggregation queries in peer-to-peer networks,” in Proceedings of the 22nd
International Conference on, 2006, pp. 42-42.

J. Baulier, S. Blott, H. F. Korth, and A. Silberschatz, “A database system
for real-time event aggregation in telecommunication,” in Proceedings of
the 24rd International Conference on Very Large Data Bases, 1998, pp.
680-684.

A. Bar, P. Casas, L. Golab, and A. Finamore, “Dbstream: An online
aggregation, filtering and processing system for network traffic monitor-
ing,” in Proceedings of the 2014 International Wireless Communications
and Mobile Computing Conference, 2014, pp. 611-616.

L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk, “Stream ware-
housing with datadepot,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, 2009, pp. 847-854.
A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor networks,” in Pro-
ceedings of the 13th International Conference on Very Large Data Bases,
2004, pp. 588-599.

1. Botan, P. M. Fischer, D. Kossmann, and N. Tatbul, “Transactional
stream processing,” in Proceedings of the 15th International Conference
on Extending Database Technology, 2012, pp. 204-215.

L. Giirgen, C. Roncancio, C. Labbé, and V. Olive, “Transactional issues
in sensor data management,” in Proceedings of the 3rd Workshop on Data
Management for Sensor Networks.

C. Vitucci and A. Larsson, “Hat, hardware assisted trace: Performance
oriented trace & debug system,” in Proceedings of 26th International
Conference on Software & Systems Engineering and their Applications,
2015.

S. Cai, B. Gallina, D. Nystrom, and C. Seceleanu, “Trading-off data
consistency for timeliness in real-time database systems,” in Proceedings
of 27th Euromicro Conference on Real-Time Systems, 2015, pp. 13-16.
B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation
queries over data streams,” in Proceedings of the 20th International
Conference on Data Engineering, 2004, pp. 350-361.

K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “Form: A feature-
oriented reuse method with domain-specific reference architectures,”
Annals of Software Engineering, vol. 5, no. 1, pp. 143-168, 1998.

K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-
based feature models and their specialization,” Software process: Im-
provement and practice, vol. 10, no. 1, pp. 7-29, 2005.

S. Eichler, C. Merkle, and M. Strassberger, “Data aggregation system
for distributing inter-vehicle warning messages,” in Proceedings of the
39th Annual IEEE Conference on Local Computer Networks, 2006, pp.
543-544.

H. Schweppe, A. Zimmermann, and D. Grill, “Flexible on-board stream
processing for automotive sensor data,” Industrial Informatics, IEEE
Transactions on, vol. 6, no. 1, pp. 81-92, 2010.

J. Kulik, W. Heinzelman, and H. Balakrishnan, “Negotiation-based pro-
tocols for disseminating information in wireless sensor networks,” Wirel.
Netw., vol. 8, no. 2/3, pp. 169-185, 2002.

G. Graefe, “Query evaluation techniques for large databases,” ACM
Comput. Surv., vol. 25, no. 2, pp. 73-169, 1993.



