
The semantic layers of Timber

Magnus Carlsson1, Johan Nordlander2, and Dick Kieburtz1

1 Oregon Health & Science University, {magnus,dick}@cse.ogi.edu
2 Lule̊a University of Technology, nordland@sm.luth.se

Abstract. We present a three-layered semantics of Timber, a language
designed for programming real-time systems in a reactive, object-oriented
style. The innermost layer amounts to a traditional deterministic, pure,
functional language, around which we formulate a middle layer of concur-
rent objects, in terms of a monadic transition semantics. The outermost
layer, where the language is married to deadline-driven scheduling the-
ory, is where we define message ordering and CPU allocation to actions.
Our main contributions are a formalized notion of a time-constrained
reaction, and a demonstration of how scheduling theory, process calculii,
and the lambda calculus can be jointly applied to obtain a direct and
succinct semantics of a complex, real-world programming language with
well-defined real-time behavior.

1 Introduction

Timber is a new programming language being developed jointly at the Oregon
Health & Science University, Chalmers University of Technology, and Lule̊a Uni-
versity of Technology. The scope of Timber is wide, ranging from low-level device
interfaces, over time-constrained embedded systems or interactive applications
in general, to very high-level symbolic manipulation and modeling applications.
In the context of this text, the distinguishing attributes of the Timber language
can be summarized as follows:

– It is based on a programming model of reactive objects, that abandons the
traditional active request for input in favor of a purely event-driven program
structure [15].

– It fully integrates concurrency into its semantic foundation, making each
object an encapsulated process whose state integrity is automatically pre-
served.

– It enables real-time constraints to be directly expressed in the source code,
and opens up the possibility of doing off-line deadline-based schedulability
analysis on real code.

– It is a full-fledged pure functional language that achieves referential trans-
parency in the presence of mutable data and non-determinism by means of
a monad.

– It upholds strong static type safety throughout, even for its message-based,
tag-free interprocess communication mechanism.

In this paper we provide a formal semantic definition of Timber. The com-
bination of object-based concurrency, asynchronous reactivity, and purely func-
tional declarativeness is challenging in itself, but we believe it is the existence of
a real-time dimension that makes the question of a formal semantics for Timber
particularly interesting. The core of our approach is the definition of a layered
semantics, that separates the semantic concerns in such a way that each layer is
meaningful and can be fully understood by referring to just the layer before it.
The semantic layers of Timber can be summarized as follows:

– The functional layer. This layer amounts to a traditional pure functional
language, similar to Haskell [17] or the pure subset of ML [10]. By pure, we
mean that computations in this layer do not cause any effects related to state
or input/output. We will not discuss this layer very much in this paper, but
instead make sure that the other layers do not interfere with it.

– The reactive layer is a system of concurrent objects with internal state that
react to messages passed from the environment (input), and in turn send
synchronous or asynchronous messages to each other, and back to the en-
vironment (output). This layer constitutes a form of process calculus that
embeds a purely functional sub-language. Although it abstracts away from
the flow of real time, the calculus does associate with each message precise,
but uninterpreted time constraints.

– The scheduling layer. The reactive layer leaves us with a set of messages
and objects with time constraints. Some of the messages may compete for
the same objects, which in turn are competing for computing resources. The
scheduling layer makes precise what the constraints are for the resulting
scheduling problem.

The semantic definition has been used to implement an interpreter for Tim-
ber, by which we have been able to conduct serious practical evaluations of
the language (spanning such diverse areas as GUI toolkit implementation [13]
and embedded robot control [7]). A compiler aimed at stand-alone embedded
systems is also being developed in tandem with the language specification. We
consider the main contributions of this paper to be: (1) a formal definition of
the time-constrained reactions that give Timber its distinct flavor, and (2) a
demonstration of how scheduling theory, process calculii, and the lambda calcu-
lus can be jointly applied to obtain a direct and succinct semantics of a complex,
real-world programming language with well-defined real-time behavior.

The rest of the paper is organized as follows: Section 2 introduces Timber
with an example of an embedded controller. Section 3 constitutes the core of
the paper, as it defines the semantics of Timber in three separate subsections
corresponding to each semantic layer. Related work is then discussed in Section 4,
before we conclude in Section 5.

2 An embedded Timber system

Although Timber is a general-purpose programming language, it has been de-
signed to target embedded systems in particular. The software of such a system,

when written in Timber, consists of a number of objects which mostly sit and
wait for incoming events from the physical environment of the embedded sys-
tem. On the lowest level, events are picked up by peripheral devices, and are
transformed into interrupts injected into the CPU. Each interrupt is converted
into an asynchronous message that has one particular object in the Timber pro-
gram as its destination. Each message is associated with a time constraint in the
form of a baseline and a deadline, both of which are absolute times. The baseline
constrains the starting point of a reaction and also functions as a reference point
to which time expressions might subsequently relate; it is normally set to the
absolute time of the interrupt. The deadline is the time by which the system
must have reacted to the event for the system to behave correctly. In the tradi-
tion of declarative programming , this parameter thus acts as a specification for
a correct Timber implementation, ultimately derived from the time constants of
the physical environment with which the system interacts.

Once an interrupt has injected a message into a Timber program, the system
is no longer in an idle state. The message has excited the system, and the desti-
nation object starts reacting to the message so that a response can be delivered.
As a result, the object may alter its state, and send secondary messages to other
objects in the system, some of which may be synchronous. Synchronous com-
munication means that the object will rendezvous with the destination object,
facilitating two-way communication. Some of the secondary messages generated
during the excited state can have baselines and deadlines that are larger than
the original, interrupt-triggered message. For example, a car alarm system may
react immediately to an event from a motion sensor by turning on the alarm,
but also schedule a secondary, delayed reaction that turns off the alarm after
a minute.3 However, eventually the chain reaction caused by an external event
will cling out, and the system goes back to an idle state.

Because a Timber system is concurrent, multiple reactions caused by inde-
pendent external events may be in effect at the same time. It is the job of the
presented semantics to specify how the interactions within such a system are
supposed to behave.

2.1 Templates, actions and requests

The syntax of Timber is strongly influenced by Haskell [17]. In fact, it stems
directly from the object-oriented Haskell extension O’Haskell, and can be seen
as a successor of that language [12].

To describe Timber more concretely, we present a complete Timber program
that implements the car alarm refereed to above in Figure 1. This program is
supposed to run on a naked machine, with no other software than the Tim-
ber program itself. On such a machine, the environment provides merely two
operations, as the definition of the record type Environment indicates: one for
writing a byte to an I/O port, and one for reading. These methods are syn-
chronous, as indicated by the monadic type constructor Request. On the other

3 A delay perceived as much longer than a minute, though!

hand, the interface a naked program presents to its environment will merely con-
sist of handlers for (a subset of) the interrupts supported by the hardware. This
is expressed as a list of asynchronous methods (actions) paired with interrupt
numbers, as the type Program prescribes.

A Timber program is a
record Environment where

write :: Port -> Byte -> Request ()

read :: Port -> Request Byte

record Program where
irqvector :: [(Irq,Action)]

alarm :: Environment -> Template Program

alarm env =

template
trigged := True

in let
moved = before (100*milliseconds) action

if trigged then
env.write siren 1

trigged := False

after (1*minutes) turnoff

after (10*minutes) enable

turnoff = action
env.write siren 0

enable = action
trigged := True

in record
irqvector = [(motionsensor,moved)]

Fig. 1. The car alarm program.

function from the program
environment to a template
that returns an interface to
an object. At boot time, the
template alarm will be exe-
cuted, thereby creating one
instance of an alarm handling
object, whose interface is the
desired interrupt vector.

We assume that there is
a particular I/O port siren,
whose least significant bit
controls the car siren, and
that the interrupt number
motionsensor is associated
with the event generated by
a motion sensor on the car.

The definition of alarm
reveals a template for an ob-
ject with one internal state
variable trigged, initialized
to True. The purpose of
trigged, as we will see, is to
ensure that once the alarm
goes off, there will be a grace

period until it is possible to trigger the alarm again.
The returned interrupt vector associates the action moved with the motion

sensor interrupt. When moved is invoked, and if the alarm is trigged, it will turn
on the siren, and set trigger to false. It will also invoke two local asynchronous
methods, each one with a lower time bound on the actual message reception.
The first message, which is scheduled to be handled one minute after the motion
sensor event, simply turns off the siren. The second message, which will arrive
after ten minutes, re-enables the alarm so that it may go off again.

By means of the keyword before, action moved is declared to have a deadline
of one tenth of a second. This means that a correct implementation of the pro-
gram is required to turn on the alarm within 100 milliseconds after the motion
sensor event. This deadline also carries over to the secondary actions, which for
example means that the alarm will shut off no later than one minute and 0.1
seconds after the motion sensor event (and no earlier than one minute after the
event, by the lower time bound).

The handling of delays in our example captures a characterizing aspect of
the reactive semantics of

alarm env = do
self <- new True

let moved = act self 〈0,100*milliseconds〉
(do trigged <- get

if trigged then do
env.write sirenport 1

set False

aft (1*minutes) turnoff

aft (10*minutes) enable

else return ())

turnoff = act self 〈0,0〉
(env.write sirenport 0)

enable = act self 〈0,0〉
(set True)

return (record irqs = [(motionsensor,moved)])

Fig. 2. The car alarm program, desugared.

Timber. Instead of tem-
porarily halting execu-
tion at some traditional
”sleep” statement, our
method moved will ter-
minate as quickly as
the CPU allows, leav-
ing the alarm object free
to react to any pend-
ing or subsequent calls
to moved, even while the
1 and 10 minute de-
lay phases are active.
A degraded motion sen-
sor generating bursts of
interrupts will thus be
handled gracefully by

our program; something that would require considerably more work in a lan-
guage where events are queued and event-handling can be arbitrarily delayed.

2.2 The O monad

The Timber con-return:: a -> O s a

(>>=) :: O s a -> (a -> O s b) -> O s b

handle:: O s a -> (Error -> O s a) -> O s a

raise :: Error -> O s a

bef :: Time -> O s a -> O s a

aft :: Time -> O s a -> O s a

set :: s -> O s ()

get :: O s s

new :: s -> O s’ (Ref s)

act :: Ref s -> (Time,Time) -> O s a -> O s’ Msg

abort :: Msg -> O s ()

req :: Ref s -> O s a -> O s’ a

Fig. 3. The constants in the O monad.

structs template,
action, and request
are nothing but
syntactic sugar for
monadic computa-
tions that take place
in the O monad, as
described in [14, 12].
The type O s a stands
for a computation
that can be executed
inside an object
whose local state has

type s, resulting in a value of type a. In the full Timber language, polymorphic
subtyping is applied to give constants that are independent of the local state a
more flexible type (see for example the types Action and Request mentioned
above) [13]. However, we will ignore this issue in the following presentation, as
it has no operational implications.

A desugared version of the alarm program is given in Figure 2. Strictly speak-
ing, the program is not a literate result of the desugaring rules—for readability,
we introduced the do-notation and performed some cosmetic simplifications.

The desugared program refers to a number of primitive operations in the O
monad, whose type signature are given in Figure 3. An informal meaning of these
constants can be obtained by comparing the desugared program in Figure 2 with
the original. Their precise formal meaning will be the subject of the next section.
The actual desugaring rules are given in Appendix A.

3 The semantic layers

3.1 The functional layer

We will not specify very much of the functional layer in this presentation; instead
we will view it as a strength of our layered approach that so much of the first
layer can be left unspecified. One of the benefits with a monadic marriage of
effects and evaluation is that it is independent of the evaluation semantics—
this property has even been proposed as the definition of what purely functional
means in the presence of effects [19].

That said, it is also the casereturn e1 >>= e2 7→ e2 e1

raise e1 >>= e2 7→ raise e1

return e1 ‘handle‘ e2 7→ return e1

raise e1 ‘handle‘ e2 7→ e2 e1

bef d′ (act n 〈b, d〉 e) 7→ act n 〈b, d′〉 e
aft b′ (act n 〈b, d〉 e) 7→ act n 〈b′, d〉 e

Fig. 4. Functional layer: reduction rules.

that a lazy semantics in the style
of Haskell adds extra difficulties
to the time and space analysis of
programs, something which is of
increased importance in the con-
struction of real-time and embed-
ded software. For this reason, we
are actually shifting to a strict se-

mantics for Timber, which is a clear breach with the tradition of its predecessors.
Still, strictness should not be confused with impurity, and to underline this dis-
tinction, we will assume a very general semantics that is open to both both lazy
and strict interpretation in this paper. We hope to be able to report on the
specifics of strictness in Timber in later work, especially concerning the treat-
ment of recursive values and imprecise exceptions [4, 11, 8].

We assume that there is a language E of expressions that includes the pure
lambda calculus, and whose semantics is given in terms of a small-step evaluation
relation 7→. Let e range over such expressions. Moreover, we assume that the
expressions of E can be assigned types by means of judgments of the form Γ `
e : τ , where τ ranges over the types of E , and Γ stands for typing assumptions.

A concrete example of what E and 7→ might look like can be found in [12].
There a semantics is described that allows concurrent reduction of all redeces in
an expression, even under a lambda. We will neither assume nor preclude such
a general semantics here, but for the purpose of proving type soundness of the
reaction layer, we require at least the following property:

Theorem 1 (Subject reduction). If Γ ` e : τ and e 7→ e′, then Γ ` e′ : τ .

In order to connect this language with the reactive semantics of the next
section, we extend E with the constants of Figure 3, and the extra evaluation
rules of Figure 4.

The first four constants listed in Figure 3 constitute a standard exception-
handling monad, for which meaning is given by the first four rules of Figure 4.
Likewise, the constants bef and aft merely serve to modify the time constraint
argument of the act constant, so their full meaning is also defined in the func-
tional layer.

The remaining constants, however, are treated as uninterpreted constructors
by the functional semantics—it is giving meaning to those constants that is the
purpose of the reactive semantic layer. Similarly, concrete realization of the type
constructors O, Ref and Msg is postponed until the reactive layer is defined; as
far as the functional layer is concerned, O, Ref and Msg are just opaque, abstract
types.

3.2 The reactive layer

To give semantics to the reactive layer, we regard a running Timber program
as a system of concurrent processes, defined by the grammar in Figure 5. A
primitive process is either

– an empty message, tagged with the name m. This is the remnant of a message
that is either delivered or aborted;

– a message tagged with m, carrying the code e, to be executed by an object
with name n, obeying the time constraint c. In the case of a synchronous
message, it also carries a continuation K, which amounts to a suspended
requesting object (see below);

– an idle object with identity n, which maintains its state s awaiting activation
by messages;

– an active object with identity n, state s, executing the code e with the time
constraint c. In case the object is servicing a synchronous request, the con-
tinuation K amounts to the suspended requesting object.

Finally, processes can be com-P ::= 〈〉m Empty message
| 〈n, e, K〉cm Pending message
| (|s|)n Idle object
| (|s, e,K|)c

n Active object
| P ‖ P Parallel composition
| νn.P Restriction

Fig. 5. The process grammar.

posed in parallel, and the scope
of names used for object identities
and message tags can be restricted.
We will assume that parallel com-
position has precedence over the
restriction operator, which there-
fore always extend as far to the
right as possible.

Continuations are requesting objects that are waiting for a request (syn-
chronous message) to finish. Since a requesting object can in turn be servicing
requests from other objects, continuations are defined recursively, according to
the following grammar that denotes a requesting object or an empty continuation:

K ::= (|s,M,K|)n | 0

A requesting object with identity n contains the state s, and a reaction context
M, which is an expression with a hole, waiting to be filled by the result of the

request. Just as for normal objects, there is a continuation K as well, in case the
requesting object is servicing a request from another object. For asynchronous
messages, and objects that are not servicing requests, the continuation is empty.

Reaction contexts are used in two ways in the reactive layer. As we have
already seen, they are used in an unsaturated way to denote expressions with
holes in requesting objects. They are also used in the following section to pinpoint
where in an expression the reaction rules operate. Reaction contexts are given
by the grammar

M ::=M >>= e | M ‘handle‘ e | [] .

The structural congruence relation In order for the relation to bring rele-
vant process terms together for the reaction rules given in the next section, we
assume that processes can be rearranged by the structural congruence ≡,

induced by the ele-Associativity P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3

Symmetry P1 ‖ P2 ≡ P2 ‖ P1

Scope extension P1 ‖ νn.P2 ≡ νn.P1 ‖ P2

if n /∈ fv(P1)
Scope commutativity νn.νm.P ≡ νm.νn.P
Renaming νn.P ≡ νm. [m/n]P

if m /∈ fv(P1)
Inert message P ‖ νm.〈〉m ≡ P
Inert object P ‖ νn.(|s|)n ≡ P

Fig. 6. The structural congruence.

ments in Figure 6.
These allow for the
process terms to be
rearranged and re-
named, so that e.g. a
message and its desti-
nation object can be
juxtaposed for the rel-
evant rule to apply.
The last two elements
of the equivalence al-

low us to garbage collect inert objects or messages that cannot possibly interact
with any other process in the system. More specifically, an idle object whose
identity is unknown to the rest of the system cannot possibly receive any mes-
sage. Similarly, an empty message whose tag is “forgotten” can be eliminated.

The reactive relation The reactive layer of our semantics consists of a reaction
relation −→, that defines how objects interact with messages and alter internal
state. The reaction relation is characterized by the axioms shown in Figure 7,
which together with the structural rules in Figure 8 define −→ for general process
terms. Most of the axioms use a reduction context to pinpoint the next relevant
O monad constant inside an active object.

Rules Set and Get allows for the local state of an object to be written or
read. The next three rules introduce a fresh name on the right-hand side by
using restriction, and we tacitly assume here that the names m,n′ do not occur
free in the process term on the left-hand side.

Rule New defines creation a new, idle object whose identity is returned to the
creator, and with an initial state as specified by the argument to the constant
new.

Set (|s,M[set e], K|)c
n −→ (|e,M[return ()], K|)c

n

Get (|s,M[get], K|)c
n −→ (|s,M[return s], K|)c

n

New (|s,M[new e], K|)c
n −→ νn′.(|s,M[return n′], K|)c

n ‖ (|e|)n′

Act (|s,M[act n′ d e], K|)c
n −→ νm.(|s,M[return m], K|)c

n ‖ 〈n′, e, 0〉c+d
m

Req (|s,M[req n′ e], K|)c
n −→ νm.〈n′, e, (|s,M, K|)n〉cm

Run (|s|)n ‖ 〈n, e, K〉cm −→ (|s, e, K|)c
n ‖ 〈〉m

Done (|s, r e, 0|)c
n −→ (|s|)n where r ∈ {raise, return}

Rep (|s, r e, (|s′,M, K|)m|)c
n −→ (|s|)n ‖ (|s′,M[r e], K|)c

m

where r ∈ {raise, return}

Abort (|s,M[abort m], K|)c
n ‖ P −→ (|s,M[return ()], K|)c

n ‖ 〈〉m
where P ∈ {〈n′, e, 0〉c

′
m, 〈〉m}

Fig. 7. Reactive layer: axioms.

In rule Act, an object is sending an asynchronous message with code e to a
destination object n′. The time constraint, or timeline, of a message is computed
by adding the relative time constraint d to the constraint of the sending object.
The addition of time constraints is described in more detail in the section 3.2.
Note that, as a consequence of the substitution-based evaluation semantics we
have assumed, messages contain the actual code to be run by destination objects,
instead of just method names. This should not be confused with breaking the
abstraction barrier of objects, since object interfaces normally expose only action
and request values, not the object identifiers themselves. Without knowledge of
an object’s identity, it is impossible to send arbitrary code to it.

Rule Req forms a synchronous
P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q
Equiv

P −→ P ′

P ‖ Q −→ P ′ ‖ Q
Par

P −→ P ′

νn.P −→ νn.P ′ Res

Fig. 8. Reactive layer: structural rules.

message, by suspending the re-
questing object and embedding it
as a continuation within the mes-
sage. Here the unsaturated context
M of the caller is saved, so that
it can eventually be filled with the
result of the request. The time con-
straint of a synchronous message is
the same as that of the requesting
object—the intuition here is that a
request is analogous to a function
call, and that servicing such a call

can be neither more nor less urgent than the computation of the caller.

In rule Run, an idle object is juxtaposed to a message with matching destina-
tion. The “payload” of the message (the code, continuation and time constraint)
is extracted from the message, which is left empty. This rule forms the essence
of what constitutes a reaction in Timber.

When an active object eventually reaches a terminating state (as represented
by a code expression of the form return e or raise e), the action taken de-
pends on its continuation. Rule Done specifies that an object executing an
asynchronous message just silently enters the idle state, where it will be ready
to accept new messages. An object occupied by a request, on the other hand,
also needs to reply to the requesting object. This is handled in the rule Rep, in
which the waiting caller context M is applied to the reply (which may be an
exception), and the continuation is released as an active object again. At the
same time, the servicing object turns idle, ready for new messages.

The Abort rule shows how a pending message can be turned into an empty
one before delivery, thus effectively removing it from the system. If the des-
tination object has already started executing the message, or if the message
was previously aborted, the rule will match against an empty message instead,
leaving it unaffected.

Finally, there is a rule Eval that connects the functional and reactive layers,
by promoting evaluation to reaction:

s 7→ s′ e 7→ e′

(|s,M[e],K|)c
n −→ (|s′,M[e′],K|)c

n

Eval

Note that we allow for the concurrent evaluation both the state and code com-
ponents of an object here, although with a strict functional layer, the state
component will of course already be a value.

Timeline arithmetic The time constraint, or timeline, of an asynchronous
message is obtained by adding the time constraint 〈b, d〉 of the sending object
to the relative timeline 〈β, δ〉 supplied to the constructor act. This operation is
defined as follows:

〈b, d〉+ 〈β, δ〉 = 〈max(b, b + β),max(d, b + β + δ)〉 if δ > 0
= 〈max(b, b + β),max(d, d + β)〉 if δ ≤ 0

The maximum functions used here serve to ensure that the timeline of a message
cannot be tighter than the timeline of the sending object; i.e., both the baseline
and the deadline of a message must be at least as large as those of the sender. This
prevents the introduction of paradoxical situations where servicing a secondary
reaction would be more urgent than executing the code that caused it.

As can be seen, a special case occurs when the relative deadline of a message
is zero or below; then the deadline of the sender is kept but interpreted relative
to the new baseline. This is how the two delayed messages sent in the moved
method in Figure 2 are assigned their deadlines of 1 minute + 100 milliseconds,
and 10 minutes + 100 milliseconds, respectively.

Note that this exception is added purely for the convenience of the program-
mer, who would otherwise always have to specify an explicit deadline whenever
a new baseline is given. Note also that a relative deadline of zero amounts to
a timeline that cannot be satisfied by any kind of finite computing resource,
so an exception for this value does not really limit the expressiveness for the
programmer.

Deadlock A Timber program that only uses asynchronous communication is
guaranteed to be free from deadlock; however, since the sender of a synchronous
message is unresponsive while it waits for a reply, the potential of deadlock arises.
On the other hand, unlike many other languages and interprocess communica-
tion mechanisms, Timber allows for really cheap detection of deadlock. What is
required is that each object keeps a pointer to the servicing object as long as it
is blocked in a request, and that that the req operation starts by checking that
setting up such a pointer will not result in cycle. If this is indeed the case, req
results in an exception.

Preferably, our reaction semantics should formalize this behavior, as it is of
utmost importance for the correctness of systems in which deadlock can occur.
Unfortunately, our recursive definition of continuations actually denotes a linked
structure that points in the other direction; from a server to its current client, if
any. Duplicating this structure with links going in the forward direction makes
the reaction axioms look extremely clumsy, and we have not found the formal
definition of deadlock detection valuable enough to outweigh its cost. Instead we
supplement the reaction axioms of Figure 7 with an informal rule that reads

(|s,M[req n′ e],K|)c
n −→ (|s,M[raise Deadlock],K|)c

n

if the sending object n is found by following the forward pointers starting at n′.
It is our hope that a neater way of specifying this behavior can eventually be
developed.

Properties of the reactive layer Analogous to the subject reduction prop-
erty that we assume for the functional layer, we establish what we may call a
subject reaction property for our process calculus; i.e., the property that all re-
action rules preserve well typedness of processes. Well-typedness is defined by
the straightforward typing judgments of Appendix B, and the subject reaction
theorem looks as follows:

Theorem 2 (Subject Reaction). If Γ ` P well-typed and P −→ Q, then
Γ ` Q well-typed

An attractive property of our layered semantics is that reduction and reaction
live in independent worlds. There are no side effects in the functional layer, its
only role is to enable rules in the deterministic layer, and further reduction
cannot retract any choices already enabled. This can be captured in a diamond
property that we call functional soundness, which says that the 7→ and −→
relations commute.

Let −→
Eval

be the relation formed by the structural rules in Figure 8 and rule
Eval, but none of the axioms in Figure 7. Let −→¬Eval

be the reaction relation
formed by including the structural rules and the axioms, but not rule Eval.

Theorem 3 (Functional soundness). If P −→¬Eval
Q and P −→

Eval
P ′, then there

is a Q′ such that P ′ −→¬Eval
Q′ and Q −→

Eval
Q′.

The reader is referred to [12] for more elaboration and proofs of the above
properties.

3.3 The scheduling layer

The reactive layer leaves us with a system that is highly non-deterministic—it
says nothing about in which order objects should run messages, or in which
order concurrently active objects may progress. The scheduling layer puts some
extra constraints on the system, by consulting the hitherto uninterpreted time
constraints attached to messages and objects. The requirements on the scheduler
are formulated in terms of a real-time trace.

Definition 1 (Real-time trace). A real-time transition is a transition P −→
Q associated with a value t of some totally ordered time domain, written P

t−→
Q. A real-time trace T is a possibly infinite sequence of real-time transitions
Pi

ti−→ Pi+1 such that ti < ti+1. We call each Pi in a real-time trace a trace
state.

A real-time trace thus represents the execution of a Timber program on some
specific machine, with machine-specific real-time behavior embedded in the ti.
Our first goal is to define which real-time behaviors are acceptable with respect
to the time-constraints of a program.

Definition 2 (Transition timeline). Let the timeline of a reaction axiom be
the pair c as it occurs in the reaction rules of Figure 7, and let the timeline of
a structural reaction rule be the timeline of its single reaction premise. We now
define the timeline of a transition P

t−→ Q as the timeline of the rule used to
derive P −→ Q.

This definition leads to the notion of timeliness:

Definition 3 (Timeliness). A real-time transition P
t−→ Q with timeline

〈b, d〉 is timely iff b ≤ t ≤ d. A real-time trace T is timely iff every transition in
T is timely.

Our second goal is to constrain the dispatching of messages to occur in pri-
ority order. First we need to formalize the notion of a dispatch:

Definition 4 (Dispatch). A dispatch from T is a real-time transition P
t−→

P ′ derived from rule Run, such that P is the final trace state of T . An (n, Q)-
dispatch from T is a dispatch from T where n is the name of the activated object,
and Q is the dispatched message.

The intention is that whenever there are several possible dispatches from some
T , the semantics should prescribe which one is chosen. To this end we will need
to define an ordering relation between messages.

First, we let timelines be sorted primarily according to their deadlines.

Definition 5 (Timeline ordering). 〈b, d〉 < 〈b, d〉 iff d < d′, or d = d′ and
b < b′.

Second, we want to induce an ordering on messages whose timelines are identical.
We will assume, without loss of generality, that ν-bound names are chosen to be
unique in a trace state, and that the renaming congruence rule is never applied
in an Equiv transition. This makes it possible to uniquely determine the time
when a bound name appears in a trace.

Definition 6 (Binding times). The binding time bt(n, T) of a name n in
a real-time trace T is the largest time ti associated with a real-time transition
Pi

ti−→ Pi+1 in T , such that Pi+1 contains a ν-binder for n but Pi does not.

From the previous two definitions we can construct a partial order on pending
messages.

Definition 7 (Message ordering). 〈n, e, K〉cm <T 〈n, e′,K ′〉c′

m′ iff c < c′, or
c = c′ and bt(m, T) < bt(m′, T)

Note that this definition only relates messages aimed for some particular object,
and that these messages are actually totally ordered.

From the ordering of messages follows the notion of a minimal dispatch.

Definition 8 (Minimal dispatch). An (n, Q)-dispatch from T is minimal iff,
for all possible (n, Q′)-dispatches from T , Q <T Q′. A dispatch from T is mini-
mal if it is a minimal (n, Q)-dispatch from T for some n and Q.

Finally, the timeliness and minimality constraints can be applied to real-time
traces in order to identify the valid ones.

Definition 9 (Valid trace). A real-time trace T is valid iff T is timely and
every dispatch from a prefix T ′ of T is minimal.

The real-time semantics of a Timber program is thus the set of valid traces it
generates.

Some notes regarding these definitions:

1. The notion of minimality makes message dispatching fully deterministic.
What the semantics prescribes is actually a priority queue of messages for
each object, that resorts to FIFO order when priorities (timelines) are iden-
tical. This is also how our Timber compiler implements the semantics. Our
reasons for defining message queuing here and not in the reactive layer are
twofold: First, the complexity that arises from maintaining explicit queues
in the process calculus is daunting. Second, leaving out ordering concerns is
more in line with the process calculus tradition, and allows for easier com-
parison between Timber and other languages based on similar formalisms,
like Concurrent Haskell.

2. All scheduling flexibility is captured in the selection of which object to run—
because message order is fixed, the reaction axioms of Figure 7 do not offer
any flexibility in choosing the next transition for a particular object. On the
other hand, whenever there are several objects capable of making a timely
transition, the semantics allows any one of them to be chosen. This opens
up for pre-emptive scheduling, and coincides with our intuition that objects
execute in parallel, but are internally sequential.

3. It follows from the monotonicity of real time that if a dispatch meets the
baseline constraint of its timeliness requirement, all transitions involving the
same object up to its next idle state will also meet the baseline constraint.
Likewise, if an object becomes idle by means of a Done or Rep transition
that meets its deadline, all transitions involving this object since it was last
idle must also have met this deadline.

4. Meeting the baseline constraint of a dispatch is always feasible; it just
amounts to refraining from making a certain transition. This can easily be
implemented by putting messages on hold in a system-wide timer queue
until their baselines have passed. On the other hand, meeting a deadline
constraint is always going to be a fight against time and finite resources.
Statically determining whether the execution of a Timber program will give
rise to a valid trace in this respect is in general infeasible; however, we note
that scheduling theory and feasibility analysis is available for attacking this
problem, at least for a restricted set of Timber programs.

5. It can be argued that a Timber implementation should be able to continue
execution, even if the deadline constraint of the timeliness requirement can-
not be met for some part of its trace. Indeed, this is also what our Timber
compiler currently does. However, it is not clear what the best way of achiev-
ing deadline fault tolerance would be, so we take the conservative route and
let the Timber semantics specify only the desired program behavior at this
stage.

On a uni-processor system, the scheduling problems generated by our se-
mantics bear an attractively close resemblance to the problems addressed by
deadline-based scheduling theory [21]. In fact, the well-known optimality result
for fully preemptive Earliest-Deadline-First scheduling [3] can be directly recast
to the Timber setting as follows:

Theorem 4 (Optimality of EDF). For a given real-time trace, let the exe-
cution time attributed to a transition only depend on the reaction axiom from
which the transition is derived. Moreover, let a re-ordering of the trace be the
result of repeatedly applying the equivalence P ‖ Q −→ P ′ ‖ Q −→ P ′ ‖ Q′ ≡
P ‖ Q −→ P ‖ Q′ −→ P ′ ‖ Q′ (structurally lifted to transitions).

Then, if there exists a re-ordering of transitions that results in a timely trace,
re-ordering the transitions according to the principle of EDF will also result in
a timely trace.

It is our intention to study this correspondence in considerable more detail,
especially how the presence of baseline constraints affects existing feasibility

theory. However, it should also be noted that the scheduling layer semantics
does not prescribe EDF scheduling. In particular, static schedules produced by
off-line simulations of a program is an interesting alternative we are also looking
into [9].

4 Related work

The actions in Timber resemble the tasks in the E machine [5], where the pro-
grammer can specify that a reaction to an event should be delivered precisely
at a certain point in time. Consequently, the output of a task will be queued
until it is time to react, and the E machine becomes a deterministic system, in
sharp contrast to Timber. Similarly, the language H [22] is a Haskell-like lan-
guage where functions over timestamped messages are interconnected through
ports. For an input message, a timestamp indicates the time of an event, and for
output, it specifies exactly when the message should be output from the system.

In the synchronous programming school (Esterel, Signal, Lustre), programs
are usually conducted by one or more periodic clocks, and computations are as-
sumed to terminate within a clock period [2]. In contrast, Timber does not make
any assumptions about periodic behavior, even though it shares the concept of
reactivity with the synchronous languages.

The UDP Calculus [20, 25] provides a formalism for expressing detailed be-
havior of distributed systems that communicate via the UDP protocol. Part of
the structure of our process calculus can be found in the UDP Calculus as well;
for example the representation of hosts (objects) as process terms tagged with
unique names, and the modelling of messages as free-floating terms in their own
right. The UDP Calculus has a basic notion of time constraints in the shape of
terms annotated with timers, although at present this facility is only meant to
model message propagation delays and timeout options. Moreover, the focus on
actual UDP implementations in existing operating systems makes the UDP Cal-
culus more narrow in scope than Timber, but also significantly more complex:
the number of transition axioms in the UDP Calculus is 78, for example, where
we get away with about 10.

The language Hume [18] has similar design motives as Timber: it has asyn-
chronous, concurrent processes, is based on a pure functional core, and targets
embedded, time-critical systems. However, Hume is an example of languages
that identify the concept of real time with bounds on resources, not with means
for specifying time constraints for the delivery of reactions to events. Apart from
Hume, this group of languages also include Real-Time FRP and Embedded ML
[24, 6].

On a historical note, Embedded Gofer [23] is an extension to a Haskell pre-
cursor Haskell aimed at supporting embedded systems. It has an incremental
garbage collector, and direct access to interrupts and I/O ports, but lacks any
internal notion of time. The same can also be said for Erlang [1]. Although it
has been successfully applied in large real-time telecom switching systems, it

only provides best-effort, fixed-priority scheduling, and lacks a static type-safety
property.

The technique of separating a semantics into a purely functional layer and
an effectful process calculus layer has been used in the definition of Concurrent
Haskell [16] and O’Haskell [14]. Although it is well known that a functional
language can be encoded in process calculii, such an encoding would obscure the
semantic stratification we wish to emphasize.

5 Conclusions and future work

We have given a semantics for Timber, stratified into independent layers for
functional evaluation, object and message reactions, and time-sensitive schedul-
ing. The language is implemented in terms of an full-featured interpreter, and we
are currently developing a compiler that generates C code for targeting embed-
ded systems. In the near future, we plan to apply and implement deadline-based
scheduling analysis techniques for Timber, and nail down the specifics of shifting
to a strict semantics in the functional layer.

6 Acknowledgments

The design of the Timber language has been influenced by contributions by
many people within the Timber group at OHSU; Iavor Diatchki and Mark Jones
in particular have been active in the development of Timber’s time-constrained
reactions. We would also like to thank members of the PacSoft research group
at OHSU for valuable feedback, notably Thomas Hallgren.

References

1. J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Program-
ming in Erlang. Prentice Hall, 1996.

2. A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. de
Simone. The synchronous languages 12 years later. Proceedings of the IEEE, 91(1),
January 2003.

3. M. Dertouzos. Control Robotics: the Procedural Control of Physical Processes.
Information Processing, 74, 1974.

4. L. Erkök and J. Launchbury. Recursive monadic bindings. In Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming,
ICFP’00, pages 174–185. ACM Press, September 2000.

5. T. A. Henzinger and C. M. Kirsch. The embedded machine: Predictable, portable
real-time code. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2002.

6. J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space:
Towards embedded ML programming. In International Conference on Functional
Programming, pages 70–81, 1999.

7. M. P. Jones, M. Carlsson, and J. Nordlander. Composed, and in con-
trol: Programming the Timber robot. http://www.cse.ogi.edu/~mpj/timbot/

ComposedAndInControl.pdf, 2002.

8. S. L. P. Jones, A. Reid, F. Henderson, C. A. R. Hoare, and S. Marlow. A semantics
for imprecise exceptions. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 25–36, 1999.

9. R. Kieburtz. Real-time reactive programming for embedded controllers.
ftp://cse.ogi.edu/pub/pacsoft/papers/timed.ps, 2001.

10. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

11. E. Moggi and A. Sabry. An abstract monadic semantics for value recursion. In
Workshop on Fixed Points in Computer Science, 2003.

12. J. Nordlander. Reactive Objects and Functional Programming. Phd thesis, De-
partment of Computer Science, Chalmers University of Technology, Gothenburg,
1999.

13. J. Nordlander. Polymorphic subtyping in O’Haskell. Science of Computer Pro-
gramming, 43(2-3), 2002.

14. J. Nordlander and M. Carlsson. Reactive Objects in a Functional Language – An
escape from the evil “I”. In Proceedings of the Haskell Workshop, Amsterdam,
Holland, 1997.

15. J. Nordlander, M. Jones, M. Carlsson, D. Kieburtz, and A. Black. Reactive ob-
jects. In The Fifth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2002), 2002.

16. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In ACM Principles
of Programming Languages, pages 295–308, St Petersburg, FL, Jan. 1996. ACM
Press.

17. S. Peyton Jones et al. Report on the programming language Haskell 98, a non-
strict, purely functional language. http://haskell.org, February 1999.

18. A. Rebón Portillo, K. Hammond, H.-W. Loidl, and P. Vasconcelos. Granularity
analysis using automatic size and time cost inference. In Proceedings of IFL ’02—
Implementation of Functional Languages. Springer Verlag, September 2002.

19. A. Sabry. What is a Purely Functional Language? Journal of Functional Program-
ming, 8(1):1–22, 1998.

20. A. Serjantov, P. Sewell, and K. Wansbrough. The UDP Calculus: Rigorous Se-
mantics for Real Networking. In Theoretical Aspects of Computer Software, 4th
International Symposium, TACS 2001, Sendai, Japan, Oct 2001.

21. J. Stankovich, editor. Deadline Scheduling for Real-time Systems, EDF and Related
Algorithms. Kluwer, 1998.

22. S. Truvé. A new H for real-time programming. http://www.cs.chalmers.se/

~truve/NewH.ps.

23. M. Wallace and C. Runciman. Lambdas in the liftshaft - functional program-
ming and an embedded architecture. In Functional Programming Languages and
Computer Architecture, pages 249–258, 1995.

24. Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In International Conference on
Functional Programming (ICFP ’01), Florence, Italy, September 2001.

25. K. Wansbrough, M. Norrish, P. Sewell, and A. Serjantov. Timing UDP: mecha-
nized semantics for sockets, threads and failures. In 11th European Symposium on
Programming, ESOP 2002, Grenoble, France, April 2002.

A Desugaring

Jdo cKv = J[c]Kv

Jdo p <- e; csKv = J[e]Kv >>= \ p -> Jdo csKv

Jdo c; csKv = J[c]Kv >> Jdo csKv

Jdo let ds; csKv = Jlet ds in do csKv

Jtemplate as in eKv =
s

do self <- new es
return e

{

v′

where
{

v′ = [x | x := e← as]
es = [e | x := e← as]

Jaction csKv = act self 〈0, 0〉 Jdo csKv

Jrequest csKv = req self Jdo csKv

JbeforeKv = bef
JafterKv = aft

J[p := e]Kv = J[set ((\ p -> v) e)]Kv

if fv(p) ⊆ v
J[e]Kv = get >>= \ v -> JeKv

if fv(e) ∩ v 6= ∅
J[e]Kv = JeKv

otherwise

B Well-typed processes

Typing judgments for processes and continuations are given below. τ is the
type of a continuation waiting for a reply of type τ . Reduction contexts are given
function types, treating their hole as a normal, abstracted variable.

Γ ` n : Ref ρ Γ ` e : O ρ τ
Γ ` K : τ Γ ` c : (Time,Time) Γ ` m : Msg

Γ ` 〈n, e, K〉cm well-typed
Pending

Γ ` s : ρ Γ ` e : O ρ τ
Γ ` K : τ Γ ` c : (Time,Time) Γ ` n : Ref ρ

Γ ` (|s, e,K|)c
n well-typed

Active

Γ ` m : Msg
Γ ` 〈〉m well-typed

Empty
Γ ` s : ρ Γ ` n : Ref ρ

Γ ` (|s|)n well-typed
Idle

Γ ` P well-typed Γ ` P ′ well-typed
Γ ` P ‖ P ′ well-typed

Parallel

Γ, n : τ ` P well-typed
Γ ` νn.P well-typed

Restriction

Γ ` s : ρ Γ ` M : τ → O ρ σ Γ ` K : σ Γ ` n : Ref ρ

Γ ` (|s,M,K|)n : τ
Cont

Γ ` 0 : τ
EmptyCont

Γ, [] : τ ` M[] : O σ ρ

Γ ` M : τ → O σ ρ
Context

