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Abstract

Mathematical models of physical systems are pervasive in engineering. These

models can be used to analyze properties of the system, to simulate the system,

or synthesize controllers. However, many of these models are too complex or

too large for standard analysis and synthesis methods to be applicable. Hence,

there is a need to reduce the complexity of models. In this thesis, techniques for

reducing complexity of large linear time-invariant (lti) state-space models and

linear parameter-varying (lpv) models are presented. Additionally, a method for

synthesizing controllers is also presented.

The methods in this thesis all revolve around a system theoretical measure called

the H2-norm, and the minimization of this norm using nonlinear optimization.

Since the optimization problems rapidly grow large, significant effort is spent on
understanding and exploiting the inherent structures available in the problems

to reduce the computational complexity when performing the optimization.

The first part of the thesis addresses the classical model-reduction problem of lti
state-space models. Various H2 problems are formulated and solved using the

proposed structure-exploiting nonlinear optimization technique. The standard

problem formulation is extended to incorporate also frequency-weighted prob-

lems and norms defined on finite frequency intervals, both for continuous and

discrete-time models. Additionally, a regularization-based method to account

for uncertainty in data is explored. Several examples reveal that the method is

highly competitive with alternative approaches.

Techniques for finding lpv models from data, and reducing the complexity of

lpv models are presented. The basic ideas introduced in the first part of the the-

sis are extended to the lpv case, once again covering a range of different setups.
lpvmodels are commonly used for analysis and synthesis of controllers, but the

efficiency of these methods depends highly on a particular algebraic structure in

the lpv models. A method to account for and derive models suitable for con-

troller synthesis is proposed. Many of the methods are thoroughly tested on a

realistic modeling problem arising in the design and flight clearance of an Air-

bus aircraft model.

Finally, output-feedback H2 controller synthesis for lpv models is addressed by

generalizing the ideas and methods used for modeling. One of the ideas here is to

skip the lpv modeling phase before creating the controller, and instead synthe-

size the controller directly from the data, which classically would have been used

to generate a model to be used in the controller synthesis problem. The method

specializes to standard output-feedback H2 controller synthesis in the lti case,
and favorable comparisons with alternative state-of-the-art implementations are

presented.
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Populärvetenskaplig sammanfattning

Inom många naturvetenskapliga och tekniska områden används matematiska

modeller för att beskriva olika system, till exempel för att beskriva hur ett flyg-

plan kommer att röra sig givet att piloten ställer ut ett visst roderutslag. Dessa

matematiska modeller kan exempelvis användas för att spara resurser genom att

testa olika prototyper med simuleringar utan att behöva ha den fysiska prototy-

pen. Dessa modeller kan skapas genom fysikaliska principer eller genom att en

modell har byggts upp med hjälp av insamlad data.

Dagens moderna och komplexa system kan leda till väldigt stora och komplicera-

de matematiska modeller och dessa kan ibland vara för stora för att simulera eller

analysera. Då behöver man kunna reducera komplexiteten på dessa modeller för

att det skall vara möjligt att använda dem. Kravet på den reducerade modellen

är att den skall kunna beskriva den stora komplexa modellen tillräckligt väl för

det ändamål som krävs.

Det finns många olika slags matematiska modeller av olika grader av komplex-

itet. Den enklaste typen av modeller är linjära modeller och för dessa modeller

är det möjligt att analysera egenskaper och dra viktiga slutsatser om systemet.

Linjära modeller har dock nackdelen att de är begränsade i hur mycket de kan

beskriva. Om vi igen tar ett flygplan som exempel, kan man säga att en linjär mo-

dell kan beskriva vad som händer med flygplanet om det håller sig på en specifik

höjd med en specifik fart. Dock klarar inte den linjära modellen av att beskriva

vad som händer om flygplanet avviker från dessa specifika värden på fart och

höjd för mycket. En annan typ av modeller är linjärt parametervarierande mo-

deller. Dessa modeller beror på en eller flera parametrar som kan beskriva vissa

tillstånd. Flygplanet som vi förut beskrevmed en linjär modell för en specifik fart

och höjd, skulle nu istället kunna beskrivas med en parametervarierande modell.

Denna parametervarierande modell kan, till exempel, vara beroende av dessa pa-

rametrar, höjd och fart, och kan då även beskriva vad som händer när flygplanet

stiger till en ny höjd och ändrar farten.

I denna avhandling utvecklar vi metoder för att kunna reducera stora komplexa,

linjära och linjära parametervarierande modeller till mindre, mer överkomliga

modeller. Kravet är att dessa modeller fortfarande ska kunna beskriva det ur-

sprungliga systemet väl så att de kan användas, till exempel, för att analysera

systemet.

Med de metoder som har utvecklats för att reducera stora komplexa modeller till

mindre modeller som utgångspunkt har även metoder för att kunna konstruera

regulatorer för att styra dessa stora komplexa modeller utvecklats.
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Notation

Symbols, Operators and Functions

Notation Meaning

N the set of natural numbers

R the set of real numbers

C the set of complex numbers

O Ordo

∈ belongs to

[a, b] the closed interval from a to b
� equal by definition

i
√−1

a the complex conjugate of a
Re a the real part of a
Im a the complex part of a
ẋ(t) the time derivative of the function x(t)
ei the unit vector with a one in the i:th element

a the element-wise complex conjugate of the vector a
A matrices are denoted by bold, upright capitalized let-

ters

I the identity matrix

0 a matrix with only zeros

[A]ij element (i, j) of the matrix A
AT the transpose of A
A∗ the complex conjugate transpose of A
A−1 the inverse of A

A � (�)0 A is a positive (semi-)definite matrix

A ≺ (�)0 A is a negative (semi-)definite matrix

trA the trace of the matrix A
rankA the rank of the matrix A

xv



xvi Notation

Symbols, Operators and Functions

Notation Meaning
∂A
∂a

denotes the element wise differentiation of the matrix

A with respect to the scalar variable a
|| · ||2 for vectors the two norm and for matrices the induced

two norm

|| · ||F the Frobenius norm

|| · ||H2
the H2-norm for dynamical systems

|| · ||H2,ω the frequency-limited H2-norm for dynamical sys-

tems, defined in Chapter 3

|| · ||H∞ the H∞-norm for dynamical systems

N
(
μ, σ2

)
the Gaussian distribution with mean μ and variance

σ2

E (X) the expected value of the random variable X
Cov (X) the covariance matrix of the random variable X

Abbreviations

Abbreviation Meaning

lti Linear time invariant

lpv Linear parameter varying

ltv Linear time varying

lft Linear fractional transformation

lfr Linear fractional representation

siso Single input single output

miso Multiple input single output

simo Single input multiple output

mimo Multiple input multiple output

oe Output error

qp Quadratic programming

sdp Semidefinite programming

nlp Nonlinear programming

lmi Linear matrix inequality

bmi Bilinear matrix inequality

bfgs Broyden-Fletcher-Goldfarb-Shanno

cofcluo Clearance of flight control laws using optimization

ls Least squares

lasso Least absolute shrinkage and selection operator

svd Singular value decomposition



1
Introduction

Mathematical models of physical systems are pervasive in engineering. These

models can be used to analyze properties of the systems, to simulate the systems,

or synthesize controllers. However, many of these models are too complex or

too large for standard analysis and synthesis methods to be applicable. Hence,

there is a need to be able to reduce the complexity of models. The main goal of

this thesis is to develop methods for reducing the complexity of different systems

by minimizing the H2-norm between the large complex system and the reduced

system.

Many of the early methods for controller synthesis and model reduction relies

on linear algebra and solutions to Lyapunov and Riccati equations. Later, when

solvers for more general and advanced optimization methods were developed, it

was possible to formulate many of the problems in control theory as, for example,

semidefinite programs to be solved using interior-point solvers. However, many

of these programs included, not only linear matrix inequalities, lmis, but also
bilinear matrix inequalities, bmis, which make the problems non-convex. This

and the fact that semidefinite programs generally do not scale well with the num-

ber of variables sometimes make these problems time consuming and difficult

to solve. In this thesis, we take a step back, and instead try to keep the orig-

inal structure of the problem and formulate a general nonlinear optimization

problem using linear algebra and Lyapunov equations, and use a general quasi-

Newton solver to solve the problem. The problems formulated in this thesis are

still non-convex, but since the original structure of the problem is kept and a

more direct approach is used, it is possible to, for example, impose certain struc-

tural constraints on the system matrices and still be able to use the methods for

medium-scale systems.

1



2 1 Introduction

1.1 Outline of the Thesis

Most of the results in this thesis concern the minimization of the H2-norm of

various linear time-invariant (lti) systems with different structures and how to

utilize the different characteristics of the different problems. Most of the results

are based on standard concepts in matrix theory, linear systems theory and op-

timization. A brief overview of the necessary concepts in matrix theory, linear

systems theory and optimization are presented in Chapter 2.

In Chapter 3, the concepts of frequency-limited Gramians are presented, Addi-

tionally, complete derivations for both the discrete-time case and continuous-

time case are presented. These are then used to form a frequency-limited H2-

norm, which is later used in some of the proposed algorithms.

In Chapter 4, a short overview of the model-reduction problem is presented be-

fore a number of model-reduction algorithms are presented. These algorithms

all try to utilize the different structures of the equations to be able to solve the

problems efficiently using quasi-Newton methods.

In Chapter 5, a number of methods for generating linear parameter-varying mod-

els, using the model-reduction methods in Chapter 4 as a foundation, are pre-

sented.

In Chapter 6, methods for designing H2 controllers, both for linear time-invar-

iant systems and linear parameter-varying systems, are presented. These meth-

ods are based on the same procedure as the methods in Chapter 4 and Chapter 5.

Chapter 7 presents two larger examples that highlight some properties and ap-

plications for the model reduction and linear parameter-varying algorithms. One

example shows a flight clearance application of an Airbus aircraft model and the

other example highlights the connections between H2 model reduction and sys-

tem identification.

Finally in Chapter 8 some concluding remarks about the results and suggestions

about future research directions are presented.

1.2 Contributions

The first main contributions in the thesis are the model-reduction methods pre-

sented in Chapter 4 and especially the frequency-limited model reduction in

Section 4.4.3 and the unified and complete derivation of the frequency-limited

Gramians and frequency-limited H2-norm in Chapter 3, which are based on the

publication

Daniel Petersson and Johan Löfberg. Model reduction using a

frequency-limited H2-cost. arXiv preprint arXiv:1212.1603, Decem-

ber 2012a. URL http://arxiv.org/abs/1212.1603,

which has been submitted to Systems and Control Letters.



1.2 Contributions 3

The second main contributions in the thesis are the linear parameter-varying gen-

erating methods in Chapter 5. To be able to reduce the complexity of a linear

parameter-varying model, the idea of model reduction is used to have methods

that are invariant to state transformations. These results are based on the publi-

cation

Daniel Petersson and Johan Löfberg. Optimization based lpv-app-
roximation of multi-model systems. In Proceedings of the European

Control Conference, pages 3172–3177, Budapest, Hungary, 2009,

which was extended with

Daniel Petersson and Johan Löfberg. Robust generation of lpv state-

space models using a regularized H2-cost. In Proceedings of the

IEEE International Symposium on Computer-Aided Control System

Design, pages 1170–1175, Yokohama, Japan, 2010,

to be able to handle uncertainties in the data. These publications with some

extensions have also been published in

Daniel Petersson. Nonlinear optimization approaches to H2-norm

based lpv modelling and control. Licentiate thesis no. 1453, Depart-

ment of Electrical Engineering, Linköping University, 2010,

and

Daniel Petersson and Johan Löfberg. Optimization Based Clearance

of Flight Control Laws - A Civil Aircraft Application, chapter Iden-

tification of lpv State-Space Models Using H2 -Minimisation, pages

111–128. Springer, 2012b,

and have been submitted as

Daniel Petersson and Johan Löfberg. Optimization-based modeling of

lpv systems using an H2 objective. Submitted to International Jour-

nal of Control, December 2012c.

Additionally, an extension of the linear parameter-varying generating methods is

presented, where it is possible to control the rank of the coefficient matrices in

the resulting linear parameter-varying model.

The third main contributions are the H2 controller-synthesis methods in Chap-

ter 6, which use similar ideas as the other contributions to synthesize H2 con-

trollers instead. This chapter is partly based on the publication

Daniel Petersson and Johan Löfberg. lpv H2-controller synthesis us-

ing nonlinear programming. In Proceedings of the 18th IFAC World

Congress, pages 6692–6696, Milan, Italy, 2011.





2
Preliminaries

This chapter begins by presenting some theory and concepts for system theory.

Some basic optimization background with focus on the concept of quasi-Newton

methods will then be presented. The chapter will finish with some matrix the-

ory that will be used in the thesis, where, for example, the concepts of matrix

functions are presented.

2.1 System Theory

This section reviews some of the standard system theoretical concepts and ex-

plains some system norms that will be used in the thesis.

2.1.1 Basic Theory and Notation

In engineering, mathematical models are often described, in continuous time, by

ordinary differential equations. An important subclass of these models is the

class of systems of linear ordinary differential equations with constant coeffi-

cients. The models in this class, which are called linear time-invariant models,

ltimodels, can mathematically be described, for a continuous-time model, as

ẋ(t) = Ax(t) + Bu(t), (2.1a)

y(t) = Cx(t) +Du(t), (2.1b)

and for a discrete-time model with sample time TS as

x(t + TS ) = Ax(t) + Bu(t), (2.2a)

y(t) = Cx(t) +Du(t), (2.2b)

5



6 2 Preliminaries

where x(t) ∈ R
nx is a vector containing the states of the system, u(t) ∈ R

nu is a

vector containing the input to the system and y(t) ∈ Rny is a vector containing the

output of the system. ThematricesA,B,C andD are constant matrices of suitable

dimensions, where A describes the dynamics of the system, B describes how the

input enters the system and C and D describes what is being measured from the

system. The system in (2.1) is expressed in state-space form, the corresponding

transfer-function form, for the system from u(t) to y(t), is

Y (s) = G(s)U(s),

where U(s) and Y (s) are the Laplace transforms of u(t) and y(t) and

G(s) = C(sI −A)−1B +D �
[
A B
C D

]
.

Here, the notation

[
A B
C D

]
is introduced as the transfer function of the system

given a particular realization, A,B,C and D.

In discrete time, difference equations are used to describe the dynamics of the

system, (2.2), and consequently use the z-transform instead of the Laplace trans-

form to express the transfer function, i.e., given the discrete-time system in (2.2)

the transfer function becomes G(z) = C(zI −A)−1B +D.

The vector x, describing the states, can be transformed into a new basis, x̂, using
an invertible matrix, T, i.e., x̂ � Tx. This yields the realization

˙̂x(t) = TAT−1x̂(t) + TBu(t), (2.3a)

y(t) = CT−1x̂(t) +Du(t). (2.3b)

The transfer function for this system is

Ĝ(s) � CT−1(sI − TAT−1)−1TB +D = C(sI −A)−1B +D = G(s), (2.4)

thus, there exists infinitely many realizations of a system.

2.1.2 Gramians

Two important entities when it comes to system theory and determining system

properties are the controllability Gramian, P and the observability Gramian, Q.

The equations for these differ in continuous and discrete time and the rest of

the section is split up into two subsections, one for continuous time and one for

discrete time.
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Continuous-Time Systems

Definition 2.1. The controllability and observability Gramians, in the contin-

uous-time domain, of the system (2.1) are defined as

P �
∞∫
0

eAτBBTeA
Tτdτ, (2.5a)

Q �
∞∫
0

eA
TτCTCeAτdτ. (2.5b)

The Gramians in (2.5) can also be written as the stationary solutions to the differ-
ential equations

Ṗ = AP + PAT + BBT, (2.6a)

Q̇ = ATQ +QA + CTC, (2.6b)

i.e., having Ṗ = Q̇ = 0, thus becoming solutions to the algebraic equations, called

Lyapunov equations,

0 = AP + PA + BBT, (2.7a)

0 = ATQ +QA + CTC. (2.7b)

By using Parseval’s identity on (2.5), the Gramians can be expressed in the fre-

quency domain.

Definition 2.2. The controllability and observability Gramians, in frequency do-

main, for the system (2.1) are defined as

P � 1

2π

∞∫
−∞

H (iν)BBTH∗ (iν) dν, (2.8a)

Q � 1

2π

∞∫
−∞

H∗ (iν)CTCH (iν) dν, (2.8b)

where H (iω) � (Iiω −A)−1 and H∗ denote the conjugate transpose of H.

One important observation to make, both for the Gramians in continuous time

and discrete time (see Section 2.1.2), is that the Gramians are dependent on which

state basis that is used. If a state transformation is performed, x̂ = Tx, T is invert-

ible, the Gramians change

PT = T−1PT−T, (2.9a)

QT = TTQT. (2.9b)
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Hence, the eigenvalues of the Gramians change if a state transformation is per-

formed. However, the eigenvalues of the product of the Gramians, λ (PQ), are

invariant to state transformations, since

λi (PTQT) = λi

(
T−1PT−TTTQT

)
= λi

(
T−1PQT

)
= λi (PQ) � σ2

i , (2.10)

where σi is called a Hankel singular value of the system.

The Gramians, both in continuous time and discrete time, can be interpreted

physically (see, e.g., Skogestad and Postlethwaite [2007] or Antoulas [2005]). Giv-

en a state x, the smallest amount of energy needed to steer a system from 0 to x
is given by

xTP−1x, (2.11)

and the observability Gramian describes the energy obtained by observing the

output of a system with initial condition x and given no other input and is de-

scribed by

xTQx. (2.12)

This goes for both continuous- and discrete-time systems.

Discrete-Time Systems

Definition 2.3. The controllability and observability Gramians, in discrete time,

of the system (2.2) are defined as

P �
∞∑
k=0

AkBBT
(
Ak

)T
, (2.13a)

Q �
∞∑
k=0

(
Ak

)T
CTCAk . (2.13b)

These Gramians also satisfy the discrete Lyapunov equations

0 = APAT − P + BBT, (2.14a)

0 = ATQA −Q + CTC. (2.14b)

The definition of the discrete-time Gramians in frequency domain becomes

Definition 2.4. The controllability and observability Gramians, in frequency do-

main, for the system (2.2) are defined as

P � 1

2π

π∫
−π

H (ν)BBTH∗ (ν) dν, (2.15a)

Q � 1

2π

π∫
−π

H∗ (iν)CTCH (iν) dν, (2.15b)
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where H
(
eiω

)
=

(
Ieiω −A

)−1
and H∗ denote the conjugate transpose of H.

2.1.3 System Norms

System norms are important tools when it comes to comparing and analyzing

systems. In this thesis, mainly the H2-norm will be used. In this section, the

two most commonly used norms in system theory, namely the H2-norm and the

H∞-norm are presented and defined.

Given a system G =

[
A B
C D

]
such that

ẋ(t) = Ax(t) + Bw(t), (2.16a)

z(t) = Cx(t) +Dw(t), (2.16b)

where x is the state, w is a disturbance and z is the output of interest. Suppose

a system that guarantees a certain performance is wanted, e.g., w does not influ-

ence z too much. The system norms are functions that quantify this into some-

thing computationally tractable, with different interpretations. System norms

can be interpreted as norms that answer the question: “given information about

the allowed input, how large can the output be?”.

To be able to do this, two signal norms that will be used to interpret the system

norms are defined.

Definition 2.5 (L2, 2-norm in time). The L2-norm for square integrable signals

is defined by

||e(t)||L2 �

√√√√√ ∞∫
0

||e(τ)||22 dτ. (2.17)

||e(t)||L2 is also referred to as the energy of the signal e(t).

Definition 2.6 (L∞, ∞-norm in time). The L∞-norm for magnitude-bounded

signals is defined as

||e(t)||L∞ � sup
τ≥0
||e(τ)||2 . (2.18)

For a scalar signal e(t), ||e(t)||L∞ is simply the peak of the signal.

These signal norms are used to define some system norms in the next section.
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Continuous-Time H2-Norm

For a siso system G, which has the realization (2.16) with A Hurwitz and D = 0,
the H2-norm can be defined as

||G||H2
� sup
||w(t)||L2≤1

||z(t)||L∞ . (2.19)

For some physical interpretations of the H2-norm, see for example Skogestad

and Postlethwaite [2007], Skelton et al. [1998] or Zhou et al. [1996]. However,

the definition that will be used mostly in this thesis is

Definition 2.7 (H2-norm). For an asymptotically stable (AHurwitz) and strictly

proper (D = 0) continuous-time system, G, the H2-norm is defined as

||G||H2
�

√√√√√
1

2π

∞∫
−∞

trG∗(iν)G(iν)dν. (2.20)

One important thing to note about theH2-norm is that it is, in contrast to theH∞-
norm (see Section 2.1.3), not an induced norm and does not, in general, satisfy

the multiplicative property, ||GF ||H2
≤ ||G||H2

||F ||H2
, with G and F being two lti

systems. This property, if true, makes it possible to analyze individual systems

in series to conclude facts about the interconnected system.

The forms in (2.19) and (2.20) are not suitable for actual evaluation of the H2-

norm. However, the H2-norm can be expressed in a more computationally frien-

dly form. The H2-norm in (2.20) can be rewritten, given a system G with a real-

ization as in (2.16), using the Gramians in (2.5), to

||G||2H2
=

1

2π

∞∫
−∞

trG∗(iν)G(iν)dν =
1

2π

∞∫
−∞

trG(iν)G∗(iν)dν

=
1

2π
tr

∞∫
−∞

BTH∗
(
iν

)
CTCH

(
iν

)
Bdν = trBTQB (2.21a)

=
1

2π
tr

∞∫
−∞

CH
(
iν

)
BBTH∗

(
iν

)
CTdν = trCPCT, (2.21b)

where P and Q satisfy

0 = AP + PAT + BBT, (2.22a)

0 = ATQ +QA + CTC. (2.22b)

Discrete-Time H2-Norm

All the material for the continuous-time case is readily extended to the discrete-

time case.
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Definition 2.8 (H2-norm). For an asymptotically stable (A Schur) discrete-time

system, G, the H2-norm is defined as

||G||H2
�

√√√√√
1

2π

π∫
−π

trG∗(eiν )G(eiν )dν. (2.23)

An important observation here is that the system does not have to be strictly

proper for the H2-norm to be defined. As in the continuous-time case, the above

definition is not in a computationally friendly form, and (2.23) can be reformu-

lated using the definitions of the discrete-time Gramians, (2.13), which yields

||G||2H2
=

1

2π

π∫
−π

trG∗(eiν )G(eiν )dν =
1

2π

π∫
−π

trG(eiν )G∗(eiν )dν

= tr
(
BTQB +DTD

)
(2.24a)

= tr
(
CPCT +DDT

)
, (2.24b)

where P and Q satisfy

0 = APAT − P + BBT, (2.25a)

0 = ATQA −Q + CTC. (2.25b)

Continuous-Time H∞-Norm

Although our proposed methods revolve around the H2-measure, the H∞-meas-

ure will be used in various comparisons. Hence, the definition of it will be pre-

sented in this section. As with the H2-norm, the H∞-norm can be defined using

the signal norms presented in Section 2.1.3. Given an asymptotically stable (A
Hurwitz) continuous-time system, G, the H∞-norm is

||G||H∞ � max
w(t)�0

||z(t)||L2
||w(t)||L2

= max
||w(t)||L2=1

||z(t)||L2 . (2.26)

Looking at (2.26), it can be observed that, the H∞-norm is indeed an induced

norm, and hence satisfies the multiplicative property ||GF ||H∞ ≤ ||G||H∞ ||F ||H∞ .
This is one reason for the popularity of this norm.

The definition for the H∞-norm in the frequency domain is

Definition 2.9 (H∞-norm). For an asymptotically stable (A Hurwitz) contin-

uous-time system, G, the H∞-norm is, in the frequency domain, defined as

||G||H∞ � max
ω∈R σ̄ (G(iω)) . (2.27)
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Observe that for the H∞-norm, the system does not have to be strictly proper.

TheH∞-norm is however not as straightforward to compute as theH2-norm. One

way to compute the H∞-norm is to compute the smallest value γ such that the

Hamiltonian matrix W has no eigenvalues on the imaginary axis, where

W �
⎛⎜⎜⎜⎜⎝ A + BR−1DTC BR−1BT

−CT
(
I +DR−1DT

)
C −

(
A + BR−1DTC

)T
⎞⎟⎟⎟⎟⎠ (2.28)

and R � γ2 −DTD.

Discrete-Time H∞-Norm

The material for the continuous-time case is readily extended to the discrete-time

case. The definition for the H∞-norm in discrete time becomes

Definition 2.10 (H∞-norm). For an asymptotically stable (A Schur) discrete-

time system, G, the H∞-norm is, in the frequency domain, defined as

||G||H∞ � max
ω∈[−π,π]

σ̄
(
G(eiω)

)
. (2.29)

2.1.4 Output-Feedback Controller

An output-feedback controller, K , of order nK can be described as a linear system

ẋK (t) = KAxK (t) +KBy(t) (2.30a)

u(t) = KCxK (t) +KDy(t) (2.30b)

where xK ∈ R
nK is the state vector of the controller, y ∈ R

ny the measurement

signal and u ∈ R
nu the control signal. A commonly used model for analyzing

systems and measure performance, which will be used in this thesis, is⎛⎜⎜⎜⎜⎜⎜⎝
ẋ
z
y

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝
A B1 B2

C1 D11 D12

C2 D21 D22

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
x
w
u

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.31)

where x ∈ R
nx is the state vector, w ∈ R

nw the disturbance signal, u ∈ R
nu the

control signal, z ∈ R
nz the performance measure and y ∈ R

ny the measurement

signal. Here, the matrixD22 is assumed, without loss of generality, to be zero, see

Zhou et al. [1996]. Combine equations (2.31) and (2.30) to arrive at a state-space

representation of the closed-loop system from w to z, see Figure 2.1,

Tw,z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
A + B2KDC2 B2KC

KBC2 KA

) (
B1 + B2KDD21

KBD21

)
(
C1 +D12KDC2 D12KC

) (
D11 +D12KDD21

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.32)

The two types of controllers that will be mentioned in this thesis are H2 and H∞
controllers. These controllers are designed to minimize the H2 or H∞-norm of
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G

K

wz

y u

Figure 2.1: Feedback

the closed-loop system, Tw,z . The problem of finding an H2 or H∞ controller

can be divided into three cases. The simple case, both in the case of H∞ and

H2 controllers, is to find a full order controller, nK = nx, see e.g., Skogestad and

Postlethwaite [2007] or Zhou et al. [1996]. The twomore difficult cases are to find

a reduced-order controller, 0 < nK < nx, or a static output-feedback controller,

nK = 0. However, the problem of computing a reduced-order controller can

be reformulated as a static controller problem, this is shown in El Ghaoui et al.

[1997] and restated here for clarification.

To see that the problem of finding a reduced-order controller can be reformulated

as a static output-feedback controller, first create the augmented system, Gaug .

Gaug =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Aaug

(
B1,aug B2,aug

)(
C1,aug

C2,aug

) (
D11,aug D12,aug

D21,aug D22,aug

) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , where

Aaug =

(
A 0
0 0

)
,B1,aug =

(
B1

0

)
,B2,aug =

(
0 B2

I 0

)
,

C1,aug =
(
C1 0

)
,D11,aug = D11,D12,aug =

(
0 D12

)
,

C2,aug =

(
0 I

C2 0

)
,D21,aug =

(
0

D21

)
,D22,aug = 0,

with the new state space vector augmented with xK ∈ R
nK , xaug =

(
x
xK

)
, the new

control signal augmented with uK ∈ RnK , uaug =

(
uK
u

)
and the new measurement

signal augmented with yK ∈ RnK , yaug =

(
yK
y

)
. The 0’s are matrices of compatible

sizes with all elements zero and I are identity matrices of compatible sizes.

Now use the static controller, uaug = Kaugyaug , on Gaug , where Kaug has the

structure

Kaug =

(
KA KB
KC KD

)
,

where KA,KB,KC and KD are the matrices from the controller in (2.30). Com-

puting the closed-loop equations for this feedback system will lead to obtaining
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the same equations as in (2.32). This shows that any method for computing a

static output-feedback controller can also be used to compute a reduced-order

controller.

2.1.5 LPV Systems

A natural generalization of lti systems is linear time-varying systems, ltv sys-

tems, where the state-space matrices can be dependent on time. The drawback

is that ltv systems are very hard to analyze and work with. This raises the need

of an intermediate step to represent systems, and this is where linear parameter-

varying systems, lpv systems, comes in. lpv systems depend on scheduling pa-

rameters, p, that varies with time, but are measurable. A general lpv system can

be written, in state-space representation, in continuous time, (see Tóth [2008]),

as

G(p) :
{

ẋ(t) = A(p)x(t) + B(p)u(t),
y(t) = C(p)x(t) +D(p)u(t), (2.33)

where p is the vector of scheduling parameters. Note that there is no restriction

on how the lpv system depends on the scheduling parameters, hence it can be

nonlinear and also depend on the time derivative of p. lpv systems have the

property that if the scheduling parameters in the lpv system are kept constant,

the system becomes a regular lti system.

As with ordinary lti systems, the state-space representation for an lpv system is

not unique and it is possible, by applying a state transformation, to change the

basis of the states. As with the system matrices, when generalizing to lpv sys-

tems from lti systems, the state transformations can depend on the scheduling

parameters, i.e.,

x = T(p)x̂, (2.34)

where T(p) is a nonsingular continuously differentiable matrix for all t. Applying
this similarity transformation to the system in (2.33) yields

Ĝ(p) =
[
T−1(p)A(p)T(p) + T−1(p)Ṫ(p) T−1(p)B(p)

C(p)T(p) D(p)

]
. (2.35)

Note that there is a term in the new A-matrix that depends on the time derivative

of the state transformation.

A general discrete-time state-space lpv system can be written as, see Kulcsar and

Tóth [2011],

G(Pk) =

[
A(Pk) B(Pk)

C(Pk) D(Pk)

]
, (2.36)

where Pk =
{
pk+j

}∞
j=−∞. By applying a similarity transformation (which can de-

pend on the parameters), i.e.,

xk = T(pk)x̂k , (2.37)
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where T(pk) is a nonsingular and bounded matrix for all k, an lpv system with

the same behavior but with another state-space representation is constructed,

Ĝ(Pk) =

[
T(pk+1)A(Pk)T(pk) T(pk+1)B(Pk)

C(Pk)T(pk) D(Pk)

]
. (2.38)

Looking at how the state transformations work for the lpv system above, one

realizes that in one state base the state-space matrices can depend on only the

current value of the parameter and in another it can also depend the derivative

(in discrete time, the parameter values at other time steps than the current). Simi-

lar behavior can be seen when going from an lpv system described in state-space

form to an input-output model structure of the lpv system. For example, study

an example from Tóth et al. [2012], where a second order state-space representa-

tion of an lpv system is used,

xk+1 =

(
0 a2(pk)
1 a1(pk)

)
xk +

(
b2(pk)
b1(pk)

)
uk,

yk =
(
0 1

)
xk .

This system only depends on the current parameter value, i.e., pk . However, the

equivalent input-output form becomes

yk = a1(pk−1)yk−1 + a2(pk−2)yk−2 + b1(pk−1)uk−1 + b2(pk−2)uk−2,

which is clearly not only dependent of only the current parameter value. Hence, it

is important to note, when working with lpv systems, if one is working with state-

space or input-output forms, since these can give rise to different dependencies
of the parameters.

2.2 Optimization

This section starts by giving a brief presentation of optimization and some meth-

ods that can be used to solve optimization problems. The presentation will clo-

sely follow relevant sections in Nocedal and Wright [2006].

Most optimization problems can mathematically be written as

minimize
x

f (x)

subject to gI,i (x) ≤ 0, i = 1, . . . , mI

gE,i (x) = 0, i = 1, . . . , mE

where f (x) is the cost function, f : Rn → R and x ∈ R
n, and gI,i (x), gE,i (x) are

the constraint functions. A vector x
 is called optimal if it produces the smallest

value of the cost function of all the x that satisfy the constraints. In this thesis,

the problems will mostly be unconstrained, i.e., problems without any gI,i (x) or
gE,i (x). The value attained at the solution, x
 , to the optimization problem, f (x
),
is called a minimum. This can either be a local or global minimum and the point

where this value is attained, x
 is called a minimizer (local or global). One way
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to be able to classify when a minimum is attained is to use first order necessary

conditions.

Optimization problems can be divided into two classes, convex optimization

problems and non-convex optimization problems. The problems of interest in

this thesis will be non-convex. To explain what a non-convex problem is, a con-

vex problem is presented first.

First, define a convex set. A convex set, N , is a set, such that any point, z, on a

line between any two points, x, y, in the set, this point, z, should also lie in the set,

i.e.,

θx + (1 − θ)y = z ∈ N , ∀θ ∈ [0, 1], x, y ∈ N . (2.39)

A convex function is defined in the same manner. A function is convex if it satis-

fies

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y)
for all x, y ∈ N and θ ∈ [0, 1], where N is a convex set.

A convex optimization problem is an optimization problem where both the cost

function and the feasible set, the set of x’s defined by the constraints, are con-

vex. Convex optimization problems have the feature that a local minimizer is

always a global minimizer. This means that when a minimum is found in a con-

vex optimization problem it is the global minimum. This guarantee does not

exist in general for non-convex optimization problems. The problem of finding

the global minimizer for a general non-convex optimization problem is difficult

and often only local minimizers are sought. For further reading see e.g., Nocedal

and Wright [2006].

2.2.1 Local Methods

One approach to solve non-convex optimization problems is to use local meth-

ods, methods that seek for a local minimizer, i.e., a point that in a neighborhood

of feasible points has the smallest value of the cost function. A class of local meth-

ods which is widely used today in solving nonlinear non-convex problems is the

class of quasi-Newton line-search methods. These methods typically require that

the cost function is twice continuously differentiable, at least for the convergence
theory to hold. However, in practice, these methods have been shown to work

well on certain non-smooth problems as well, see for example Lewis and Overton

[2012].

The line search strategy is to find a direction pk , and a step αk , such that

fk � f (xk) > f (xk + αkpk). (2.40)

There exist many suggestions of how to find the direction pk and the step length

αk . One suggestion, and maybe the most obvious, is to take the steepest descent

direction, which is pk = − ∇fk||∇fk || and choose αk as

αk � argmin
α

f (xk − αpk).
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A benefit with the choice pk = − ∇fk||∇fk || , is that only information about the gradient

is needed and no second-order information, i.e., information about the Hessian.

The problem of choosing the steepest descent direction is that the convergence

can be extremely slow.

By exploiting second-order information about the cost function a better search

direction can be produced. Assume a model function

mk(p) � fk + pT∇fk + pT∇2fkp,
that approximates the function f well in a neighborhood of xk , then define pk to

be the solution to

minimize
p

mk(p),

i.e., pk = −(∇2fk)−1∇fk and αk is chosen according some conditions, for more de-

tail see, for example, Nocedal and Wright [2006]. A method with this choice of

direction is called a Newton method. There are however two major drawbacks

with this method, the Hessian has to be computed which can be very time con-

suming, and the Hessian has to be positive definite.

Quasi-Newton Methods

Quasi-Newton methods are methods that resemble Newton methods but in some

way tries to approximate the Hessian in a computationally efficient manner. As

in the Newton method, start with a quadratic model function

mk(p) � fk + ∇fTkp +
1

2
pTBkp,

where Bk is a symmetric positive definite matrix. Instead of computing a new

Bk for every iteration only an update of Bk is wanted to obtain Bk+1. As for the

Newton method, the minimizer to the model function is pk = −B−1k ∇fk , which is

then used to calculate xk+1 as

xk+1 � xk + αkpk .

As in the Newton method, αk is chosen according to some conditions which will

not be further discussed here, see e.g., Nocedal and Wright [2006] for further

reading.

One way of updating Bk is to let Bk+1 be the solution to the optimization problem

minimize
B

||B − Bk ||G−1k (2.41a)

subject to B = BT, Bsk = yk (2.41b)

where sk � αkpk and yk � ∇fk+1 −∇fk . The norm that is used in the optimization

problem is the weighted Frobenius norm,
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||B||G−1k �
∣∣∣∣∣
∣∣∣∣∣G− 1

2

k BG
− 1
2

k

∣∣∣∣∣
∣∣∣∣∣
F
, Gk �

1∫
0

∇f (xk + ταkpk)dτ.

The structure of the optimization problem (2.41) can be explained like this. The

constraint that B, which is an approximation of the Hessian, should be symmetric

is obvious for a function that is a twice differentiable function. The second con-

straint, the secant equation, ensures that B generates a consistent expression for

a first-order approximation of the Hessian using the gradient. To determine Bk+1
uniquely, the B, in some sense, closest to Bk is chosen. Additionally, the mini-

mization problem is made scale-invariant and dimensionless, which explains the

minimization and the choice of norm and weights.

The optimization problem (2.41) has a closed form solution,

Bk+1 = (I − ρkyksTk )Bk(I − ρkskyTk ) + ρkyky
T
k , ρk � 1

yTksk
.

This update of Bk is called the dfp (which stands for Davidon-Fletcher-Powell)

updating formula. To compute the direction pk = −B−1k ∇fk , the inverse of Bk is

needed. Since Bk+1 is a rank two update of Bk , the inverse of Bk+1 � H−1k+1 can be

expressed in closed form as

Hk+1 = Hk −
HkykyTkHk

yTkHkyk
+

sksTk
yTksk

.

An even better updating formula is the bfgs (which stands for Broyden-Fletcher-

Goldfarb-Shanno) updating formula where a similar optimization problem as be-

fore, but for Hk+1 instead, is solved. Hk+1 is the solution to the optimization

problem

minimize
H

||H −Hk ||Gk

subject to H = HT, Hyk = sk

which has the solution

Hk+1 � (I − ρkskyTk )Hk(I − ρkyksTk ) + ρksks
T
k .

The benefit with quasi-Newton methods is that every iteration in the optimiza-

tion scheme now can be performed with complexity O(n2), not including func-

tion and gradient evaluations.

The bfgs-scheme will be used extensively in the strategies proposed in this thesis.
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2.3 Matrix Theory

This section will briefly present, for the sake of easy reference in the later chap-

ters, some basic matrix-theory concepts and definitions. The presented theory

can also be found in Higham [2008], Skelton et al. [1998] and Lancaster and Tis-

menetsky [1985].

2.3.1 Properties for Dynamical Systems

In this thesis, linear dynamical systems plays an important role, especially asymp-

totically stable linear systems. Two useful matrix definitions for discrete and

continuous-time linear systems are,

Definition 2.11. Let λi be the eigenvalues to the squarematrixA. If Re λi < 0,∀i,
then A is called Hurwitz.

Definition 2.12. Let λi be the eigenvalues to the square matrix A. If |λi | < 1,∀i,
then A is called Schur.

For a continuous-time (discrete-time) linear system it holds that, if the A-matrix

is Hurwitz (Schur), then the system is asymptotically stable.

As was explained in Section 2.1.2, the Gramians for linear systems are an im-

portant part in this thesis. To compute these Gramians a number of Lyapunov

equations (both continuous and discrete), as in (2.7) and (2.14), have to be solved.

An important question to ask is; when do these equations have a unique solution?

Theorem 2.1 (Corollary 3.3.3 in Skelton et al. [1998]). A matrix X solving a

Lyapunov equation

0 = AX + XAT + Y, Y � 0 (2.42)

is unique if and only if there are no two eigenvalues of A that are symmetrically

located about the imaginary axis.

Proof: The left eigenvalues vi of A satisfy v∗iA = λiv∗i . Multiplying (2.42) from

left and right by v∗i and vj , respectively, to obtain

0 = v∗iAXvj + v∗iXA
Tvj + v∗iYvj = v∗iXvj

(
λi + λj

)
+ v∗iYvj . (2.43)

This yields unique values for the elements of the transformed X̂:

X̂ij �
[
V−1XV−∗

]
ij
= v∗iXvj = −

v∗iYvj
λi + λj

,∀i, j, V−∗ = [v1 · · · vn] (2.44)

if and only if λi + λj � 0 for all i and j .
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Theorem 2.2 (Corollary 3.4.1 in Skelton et al. [1998]). A matrix X solving the

discrete Lyapunov equation

0 = ATXA − X + Y, Y � 0 (2.45)

is unique if and only if λi (A) �
(
λj (A)

)−1
for all i and j .

Proof: Multiply (2.45) from the left and right with the matrix of left eigenvectors

of A (where λiv∗i = v∗iA, V−∗ = [v1 v2 · · · vn], V−1AV = Λ = diag (λ1, λ2, . . . , λn)),

as follows,

V−1XV−∗ = V−1
(
AXAT + Y

)
V−∗

= V−1AVV−1XV−∗V∗ATV−∗ +V−1YV−∗

= ΛV−1XV−∗Λ +V−1YV−∗.

This yields unique values for the elements of the transformed X̂,

X̂ij �
[
V−1XV−∗

]
= v∗iXvj =

(
1 − λiλj

)−1
v∗iYvj , (2.46)

if and only if λiλj � 1, for all i and j .

The two theorems above tells us that, given an asymptotically stable system (A
Hurwitz for continuous time and A Schur for discrete time), then the solutions to

the Lyapunov equations for the Gramians are unique.

2.3.2 Matrix Functions

This section will give some definitions of matrix functions and present some the-

ory that will be useful in the later chapters of the thesis.

As stated in Higham [2008], there exist many ways of defining matrix functions,

f (A). Presented here, is the definition via Jordan canonical form, which exists for

all matrices, see for example Lancaster and Tismenetsky [1985].

Definition 2.13 (Definition 1.1 in Higham [2008]). The function f is said to be

defined on the spectrum of A ∈ Cn×n if the values

f (j) (λi ) , j = 0, 1, . . . , ni − 1, i = 1, 2, . . . , s (2.47)

exist. These are called the values of the function f on the spectrum of A. ni are
the sizes of the individual Jordan blocks in A and s is the number of individual

eigenvalues.

Now, if f is defined on the spectrum of the matrix, then it is possible to define

f (A).
Definition 2.14 (Definition 1.2 in Higham [2008]). Let f be defined on the

spectrum of A ∈ C
n×n and let Jk denote a Jordan block in A with A � ZJZ−1 =
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Zdiag (Jk)Z−1 and λk denote an eigenvalue of A. Then

f (A) � Zf (J)Z−1 = Zdiag (f (Jk))Z
−1, (2.48)

where

f (Jk) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (λk) f ′(λk) . . . f (nk−1)(λk )
(nk−1)!

f (λk)
. . .

...
. . . f ′(λk)

f (λk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.49)

For example, given the function f (x) = sin x, and we want to compute f (A). Then
the definition above can be used to compute f (A), given a diagonalizable matrix

A = ZDZ−1 = Zdiag(λi )Z−1, as

sinA = Z (sinD)Z−1 = Zdiag(sin λi )Z
−1. (2.50)

A number of properties for general matrix functions, to be able to use them more

efficiently, can be derived.

Theorem 2.3 (Theorem 1.18 in Higham [2008]). Let f be analytic on an open

subset Ω ⊆ C such that each connected component of Ω is closed under conju-

gation. Consider the corresponding matrix function f on its natural domain in

C
n×n, the set D = {A ∈ Cn×n : Λ(A) ⊆ Ω}. Then the following are equivalent:

(a) f (A∗) = f ∗(A) for all A ∈ D.
(b) f (A) = f (A) for all A ∈ D.
(c) f (Rn×n ∩ D) ⊆ R

n×n.

(d) f (R ∩Ω) ⊆ R.

Theorem 2.4 (Theorem 1.19 in Higham [2008]). Let D be an open subset of R

or C and let f be n − 1 times continuously differentiable on D. Then f (A) is a

continuous matrix function on the set of matrices A ∈ Cn×n with spectrum in D.
Theorem 2.5 (Theorem 1.20 in Higham [2008]). Let f satisfy the conditions in

Theorem 2.4. Then f (A) = 0 for all A ∈ C
n×n with spectrum in D if and only if

f (A) = 0 for all diagonalizable A ∈ Cn×n with spectrum in D.

Theorem 2.5 (together with Theorem 2.4) can be interpreted as, if a function

satisfies some mild continuity conditions (see Theorem 2.4), then to check the

validity of a matrix identity it is sufficient to only check it for diagonalizable

matrices.

One matrix function that will be used extensively in this thesis is the matrix log-

arithm, defined below.
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Definition 2.15. Assume A ∈ Cn×n and that A does not have any eigenvalues on

R
−. Let A satisfy the equation A = eB for a matrix B ∈ C

n×n, then it holds that

B = lnA, where ln denotes the principal logarithm.

This means, for a diagonalizable matrixA = ZDZ−1 = Zdiag(λi )Z−1, the complex

logarithm of the matrix A can be written as

lnA = Zdiag (ln |λi | + i arg λi )Z
−1. (2.51)

Since computing the matrix logarithm can be computationally heavy, it can be

beneficial, when having a sum of logarithm evaluations, to combine them, when

possible, to one matrix logarithm computation, e.g., lnA+ lnB = lnAB. The next
two theorems will guide us to when this is possible.

Theorem 2.6 (Theorem 11.2 in Higham [2008]). For A ∈ C
n×n with no eigen-

values on R
− and α ∈ [−1, 1] it holds that lnAα = α lnA. In particular, lnA−1 =

− lnA and lnA1/2 = 1
2 lnA.

Theorem 2.7 (Theorem 11.3 inHigham [2008]). SupposeB,C ∈ Cn×n both have

no eigenvalues on R
− and that BC = CB. If for every eigenvalue λj of B and the

corresponding eigenvalue μj of C,∣∣∣arg λj + arg μj
∣∣∣ < π, (2.52)

then lnBC = lnB + lnC.

The methods that will be derived in this thesis will be gradient-based optimiza-

tion algorithms. Hence, it will be required to compute the Fréchet derivative of

the matrix logarithm. The Fréchet derivative can be seen as generalization of the

ordinary derivative for matrix functions.

Theorem 2.8 (See Chapter 11 in Higham [2008]). Let L(A,E) denote the Fré-

chet derivative of the matrix logarithm, defined in Definition 2.15, at A ∈ C
n×n

in the direction E ∈ Cn×n. Then it holds that

L(A,E) =

1∫
0

(t(A − I) + I)−1 E (t(A − I) + I)−1 dt. (2.53)

As written in (2.51) and (2.53), these equations are not suitable for computa-

tional evaluation. Thankfully, there exists computationally efficient and stable

algorithms to compute these entities, e.g., the Schur-Parlett algorithm (see, e.g.,

Higham [2008]) can be used to compute ln(A), and all other functions that are

analytic, and an algorithm for computing the Fréchet derivative of the matrix

logarithm is described in Al-Mohy et al. [2012].
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Frequency-Limited H2-Norm

In this chapter, a new H2-measure that, instead of taking the whole frequency

interval into account, only focuses on pre-specified intervals is presented. The

chapter starts by defining some new Gramians that are based on the ordinary

Gramians in Section 2.1.2, but are limited to a limited frequency interval. These

new Gramians are then used to define a new H2-measure that computes the H2-

norm for a limited frequency interval.

3.1 Frequency-Limited Gramians

This section presents the framework that the new measure, that is presented

in Section 3.2, is based on, the frequency-limited Gramians. These Gramians

were introduced in Gawronski and Juang [1990] (continuous time) and Horta

et al. [1993] (discrete time). The section starts by defining the frequency-limited

Gramians and continues by deriving some properties of the Gramians. Ways to

efficiently compute the Gramians are also presented. The results for the con-

tinuous-time case, which are also presented in Gawronski and Juang [1990] and

Gawronski [2004], are presented, both for the sake of completeness, and to give a

more thorough derivation. Theorem 3.1 and Theorem 3.2, describing the frequen-

cy-limited Gramians, are results that already exist in Gawronski [2004]. However,

in this section, the results are presented using the given notation and in more de-

tail. The reformulations of Sω and SΩ presented in Theorem 3.3 and Corollary

3.1 have not been published elsewhere.

The results for the discrete-time case contain a new derivation which differs from
Horta et al. [1993], both in approach and result.

23
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3.1.1 Continuous Time

In this section, it is assumed that the system that is used, G, is asymptotically

stable, with a realization

ẋ(t) = Ax(t) + Bu(t), (3.1a)

y(t) = Cx(t) +Du(t). (3.1b)

G being asymptotically stable is equivalent to having A Hurwitz. For this system

we have that the standard controllability and observability Gramians are

P � 1

2π

∞∫
−∞

H
(
iν

)
BBTH∗

(
iν

)
dν, (3.2a)

Q � 1

2π

∞∫
−∞

H∗
(
iν

)
CTCH

(
iν

)
dν, (3.2b)

where H
(
iν

)
� (Iiν −A)−1. The controllability and observability Gramians also

satisfy the Lyapunov equations

0 = AP + PAT + BBT, (3.3a)

0 = ATQ +QA + CTC. (3.3b)

Narrowing the frequency band in (3.2), from (−∞,∞) to (−ω, ω), where ω < ∞,

leads to the definition of the frequency-limited Gramians, see Gawronski and

Juang [1990].

Definition 3.1. The frequency-limited controllability and observability Grami-

ans for the system (3.1), are defined as

Pω � 1

2π

ω∫
−ω

H
(
iν

)
BBTH∗

(
iν

)
dν, (3.4a)

Qω � 1

2π

ω∫
−ω

H∗
(
iν

)
CTCH

(
iν

)
dν, (3.4b)

with ω < ∞.

As with the ordinary Gramians, the frequency-limited Gramians can also be writ-

ten as solutions to two Lyapunov equations.

Theorem 3.1. Given a system G =

[
A B
C D

]
, where A is Hurwitz, it holds that

Pω � SωP + PSTω, (3.5)

where AP + PAT + BBT = 0 and Sω = 1
2π

∫ ω

−ω H
(
iν

)
dν. Furthermore, Pω can also
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be computed as a solution to

APω + PωA
T + SωBB

T + BBTSTω = 0. (3.6)

Lemma 3.1. For the ordinary controllability and observability Gramians, P and

Q, in (3.3), it holds that

H
(
iν

)
BBTH∗

(
iν

)
=PH∗

(
iν

)
+H

(
iν

)
P, (3.7a)

H∗
(
iν

)
CTCH

(
iν

)
=QH

(
iν

)
+H∗

(
iν

)
Q. (3.7b)

Proof: Using the definition ofH
(
iν

)
and starting with a variant of the right hand

side of (3.7a), it holds that

H−1
(
iν

)
P + PH−∗

(
iν

)
= (iνI −A)P + P

(
−iνI −AT

)
= −

(
AP + PAT

)
= BBT, (3.8)

which can be written as (3.7a) by multiplying with H
(
iν

)
and H∗

(
iν

)
from left

and right, respectively. Similarly, it holds that

H−∗
(
iν

)
Q +QH−1

(
iν

)
=

(
−iνI −AT

)
Q +Q (iνI −A) = −

(
ATQ +QA

)
= CTC

(3.9)

which can be written as (3.7b) by multiplying with H∗
(
iν

)
and H

(
iν

)
from left

and right, respectively.

Proof of Theorem 3.1: Using the definition of Pω in (3.4a) and Lemma 3.1, Pω
can be written as

Pω =
1

2π

ω∫
−ω

H
(
iν

)
BBTH∗

(
iν

)
dν = P

1

2π

ω∫
−ω

H∗
(
iν

)
dν +

1

2π

ω∫
−ω

H
(
iν

)
dνP

= PS∗ω + SωP.

Hence, it holds that Pω = PS∗ω + SωP, with Sω = 1
2π

∫ ω

−ω H
(
iν

)
dν.

Before showing that (3.6) holds, observe that

ASω = A

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 1

2π

ω∫
−ω

H
(
iν

)
dν

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = A

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 1

2π

ω∫
−ω

(iνI −A)−1 dν
⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 1

2π

ω∫
−ω

(iνI −A)−1 dν
⎞⎟⎟⎟⎟⎟⎟⎟⎠A = SωA,

i.e., the matrices A and Sω commute. Using the newly shown result Pω = PS∗ω +

SωP together with the fact that A and Sω commute, APω + PωAT can be written
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as

APω + PωA
T = A (SωP + PS∗ω) + (SωP + PS∗ω)AT

= Sω
(
AP + PAT

)
+

(
AP + PAT

)
S∗ω = −SωBBT − BBTS∗ω.

Hence, (3.6) holds.

The same can be stated for the observability Gramian

Theorem 3.2. Given a system G =

[
A B
C D

]
, where A is Hurwitz, it holds that

Qω � STωQ +QSω, (3.10)

where ATQ +QA +BTB = 0 and Sω = 1
2π

∫ ω

−ω H
(
iν

)
dν. Furthermore, Qω can also

be computed as a solution to

ATQω +QωA + STωC
TC + CTCSω = 0, (3.11)

Proof: The proof is analogous with the proof in the previous theorem, with the

controllability Gramian.

To be able to compute the limited-frequency Gramians Pω and Qω we need to

have a more computationally tractable expression for the matrix Sω.

Theorem 3.3. The matrix Sω = 1
2π

∫ ω

−ω H
(
iν

)
dν can be written as

Sω = Re

[ i
π
ln (−A − iωI)

]
. (3.12)

Proof: We have that

Sω � 1

2π

ω∫
−ω

H
(
iν

)
dν =

1

2π

ω∫
−ω

(iνI −A)−1 dν � f (A). (3.13)

With f (x) = 1
2π

∫ ω

−ω (iνI − x)−1 dν, Theorem 2.5 states that it is sufficient to calcu-

late the function on the spectrum of A. Let λ be an eigenvalue of A and since A
is Hurwitz, it holds that Re λ < 0. Hence

1

2π

ω∫
−ω

1

iν − λdν =
1

2π
[−i ln (iν − λ) ]ω−ω =

1

2π
(i ln (−iω − λ) − i ln (iω − λ) ) ,

(3.14)

where ln λ denotes the principal branch of the complex logarithm, namely ln λ =

ln |λ| + i arg λ, −π < arg λ ≤ π. Going back to the matrix form entails

Sω =
1

2π

ω∫
−ω

H
(
iν

)
dν =

1

2π
[i ln (−iω −A) − i ln (iω −A) ] . (3.15)
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Since the principal branch of the logarithm is used, Theorem 2.3 is applicable,

which for this case means that given a matrix C ∈ C
n×n it holds that lnC = lnC.

Sω becomes

Sω =
i
2π

ln(−A − iωI) +
i
2π

ln(−A − iωI) = Re

[ i
π
ln(−A − iωI)

]
.

Remark 3.1. An interesting property to investigate is what happens when ω tends to in-

finity. First note that if x ∈ C \R−, then Re [i ln x] = − arg x. Now, let λ be an eigenvalue to

A with Re λ < 0 since A is Hurwitz, then Re
[
i
π ln(−A − iωI)

]
will approach 1

2 when ω ap-

proaches infinity. Hence, Sω will approach I

2 and the Lyapunov equations (3.6) and (3.11)

will approach the Lyapunov equations for the regular Gramians (3.3) when ω approaches

infinity.

Until now, only a single frequency band (−ω, ω) around 0 has been considered.

It is also possible to have arbitrary segments in the frequency domain, e.g., QΩ,

Ω = [−ω4,−ω3] ∪ [−ω2,−ω1] ∪ [ω1, ω2] ∪ [ω3, ω4], 0 < ω1 < ω2 < ω3 < ω4.

Corollary 3.1. For a union of disjunct frequency intervals

Ω =

N⋃
k=1

[−ω2k ,−ω2k−1] ∪ [ω2k−1, ω2k], with 0 ≤ ω1 < ω2 < · · · < ω2N < ∞,

it holds that

PΩ =
1

2π

∫
Ω

H
(
iν

)
BBTH∗

(
iν

)
dν, (3.16a)

QΩ =
1

2π

∫
Ω

H∗
(
iν

)
CTCH

(
iν

)
dν, (3.16b)

satisfy the Lyapunov equations

0 = APΩ + PΩA
T + SΩBB

T + BBTSTΩ, (3.17a)

0 = ATQω +QωA + STΩC
TC + CTCSΩ, (3.17b)

where

SΩ = Re

⎧⎪⎪⎨⎪⎪⎩ i
π
ln

⎡⎢⎢⎢⎢⎢⎣
N∏
k=1

(−A − iω2kI) (−A − iω2k−1I)−1
⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ . (3.18)

Proof: The corollary is proven for the observability Gramian, the proof for the

controllability Gramian follows the same procedure. Splitting the integral in

(3.16b) into two different sums with limits of the integral centered around 0,
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yields

QΩ � 1

2π

∫
Ω

H
(
iν

)
BBTH∗

(
iν

)
dν =

N∑
k=1

1

2π

ω2k∫
−ω2k

H
(
iν

)
BBTH∗

(
iν

)
dν

− 1

2π

ω2k−1∫
−ω2k−1

H
(
iν

)
BBTH∗

(
iν

)
dν =

N∑
k=1

Qω2k
−Qω2k−1 . (3.19)

Define Lωi
� ATQωi

+Qωi
A + STωi

CTC + CTCSωi
= 0. Using the fact that Lωi

= 0
entails

0 =

N∑
k=1

Lω2k
− Lω2k−1 = AT

⎛⎜⎜⎜⎜⎜⎝
N∑
k=1

Qω2k
−Qω2k−1

⎞⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎝

N∑
k=1

Qω2k
−Qω2k−1

⎞⎟⎟⎟⎟⎟⎠A
+

⎛⎜⎜⎜⎜⎜⎝
N∑
k=1

Sω2k
− Sω2k−1

⎞⎟⎟⎟⎟⎟⎠
T

CTC + CTC

⎛⎜⎜⎜⎜⎜⎝
N∑
k=1

Sω2k
− Sω2k−1

⎞⎟⎟⎟⎟⎟⎠
= ATQΩ +QΩA + STΩC

TC + CTCSΩ. (3.20)

Hence, it is proven that (3.17b) holds. If SΩ can be computed, then only one

Lyapunov equation has to be solved to obtainQΩ. SΩ is for the moment a sum of

2N matrix logarithms, which, using Theorem 2.6, can be rewritten as

SΩ =

N∑
k=1

Sω2k
− Sω2k−1 = Re

⎧⎪⎪⎨⎪⎪⎩ i
π

N∑
k=1

[ln (−A − iω2kI) − ln (−A − iω2k−1I) ]
⎫⎪⎪⎬⎪⎪⎭

= Re

⎧⎪⎪⎨⎪⎪⎩ i
π

N∑
k=1

[
ln (−A − iω2kI) + ln (−A − iω2k−1I)−1

] ⎫⎪⎪⎬⎪⎪⎭ (3.21)

Now, we want to show that this sum can be combined into one matrix logarithm

evaluation. Theorem 2.5 states that it is sufficient to calculate the function on the

spectrum of A to show this. Let λ be an eigenvalue to A and since A is Hurwitz,

it holds that Re λ < 0. Define xi = −λ − iωi , with ωi > 0 then it holds that

−π/2 < arg xi < arg xj < π/2 for i > j . Note that arg x−1i = − arg xi . Start with∑N
k=1

[
ln x2k + ln x−12k−1

]
and reorder the terms

N∑
k=1

[
ln x2k + ln x−12k−1

]
= ln x2N + ln x−11 +

N−1∑
k=1

ln x2k + ln x−12k+1. (3.22)
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Analyzing the argument of the first two terms, x2N and x1, gives

− π < arg x2N + arg x−11 < 0, (3.23)

hence, using Theorem 2.7,

ln x2N + ln x−11 = ln x2Nx−11 , −π < arg x2Nx−11 < 0. (3.24)

Analyzing the argument for the last sum in (3.22), yields that for all k, it holds
that 0 < arg x2k + arg x−12k+1 < π. Hence, ln x2k + ln x−12k+1 = ln x2kx

−1
2k+1. Now, since

0 < ω1 < ω2 < · · · < ωN and all xi are in the open right half plane, it holds that

0 <
N−1∑
k=1

arg x2kx
−1
2k+1 < π. (3.25)

Hence, using Theorem 2.7,

N−1∑
k=1

ln x2k + ln x−12k+1 = ln

N−1∏
k=1

x2kx
−1
2k+1, 0 < arg

N−1∏
k=1

x2kx
−1
2k+1 < π. (3.26)

Returning to (3.22),

N∑
k=1

[
ln x2k + ln x−12k−1

]
= ln x2N + ln x−11 +

N−1∑
k=1

ln x2k + ln x−12k+1

= ln x2Nx−11 + ln

N−1∏
k=1

x2kx
−1
2k+1 = ln

N∏
k=1

x2kx
−1
2k−1 (3.27)

since −π < arg x2Nx−11 + arg
∏N−1

k=1 x2kx2k+1 < π. This holds for all eigenvalues of
A, and therefore it also holds that

SΩ =

N∑
k=1

Sω2k
− Sω2k−1 = Re

⎧⎪⎪⎨⎪⎪⎩ i
π

N∑
k=1

[ln (−A − iω2kI) − ln (−A − iω2k−1I) ]
⎫⎪⎪⎬⎪⎪⎭

= Re

⎧⎪⎪⎨⎪⎪⎩ i
π
ln

⎡⎢⎢⎢⎢⎢⎣
N∏
k=1

(−A − iω2kI) (−A − iω2k−1I)−1
⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ . (3.28)

Theorem 3.1 tells us that, by using addition of two or more frequency-limited

Gramians corresponding to different frequency intervals, it is possible to con-

struct a frequency-limited Gramian for a combined frequency interval, e.g., you

can construct the frequency-limited controllability Gramian, PΩ, for the interval

ω ∈ Ω = Ω1∪Ω2, withΩ1 = [−ω2,−ω1]∪[ω1, ω2] and Ω2 = [−ω4,−ω3]∪[ω3, ω4]
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as

APΩ + PΩA
T + SΩBB

T + BBTSTΩ = 0, (3.29)

with SΩ computed as in Corollary 3.1.

Remark 3.2. It is also possible to use, with abuse of notation, ω = ∞ as the end frequency,

in that case the ordinary controllability Gramian, P can be used in combination with the

frequency-limited Gramians.

3.1.2 Discrete Time

The equations for the discrete-time frequency-limited Gramians are similar to

the ones in the continuous-time case. However, since the derivation in Horta et al.

[1993] is not as straightforward and yields an erroneous result, we will present

our derivation in this section.

Given an asymptotically stable system G =

[
A B
C D

]
. G being asymptotically

stable means having A Schur. For this system the frequency-limited controllabil-

ity and observability Gramians can be defined.

Definition 3.2. The frequency-limited controllability and observability Grami-

ans for the system G =

[
A B
C D

]
, are defined as

Pω � 1

2π

ω∫
−ω

H
(
eiν

)
BBTH∗

(
eiν

)
dν, (3.30)

Qω � 1

2π

ω∫
−ω

H∗
(
eiν

)
CTCH

(
eiν

)
dν, (3.31)

with ω < π and H
(
eiω

)
=

(
Ieiω −A

)−1
.

Inspired by the continuous-time case, the frequency-limited Gramians in disc-

rete-time can be written as solutions to two discrete-time Lyapunov equations.

Theorem 3.4. Given a discrete-time system G =

[
A B
C D

]
, where A is Schur, it

holds that

Pω � SωP + PSTω, (3.32)

where APAT − P + BBT = 0 and Sω = 1
4π

∫ ω

−ω
(
I − e−iνA

)−1 (
I +Ae−iν

)
dν. Further-

more, Pω can be computed as a solution to

APωA
T − Pω + SωBB

T + BBTSTω = 0. (3.33)

To prove Theorem 3.4, a lemma is first presented.
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Lemma 3.2. For the ordinary Gramians P and Q, in (2.14), it holds that

H
(
eiω

)
BBTH∗

(
eiω

)
=e−iωPH∗

(
eiω

)
+ eiωH

(
eiω

)
P − P, (3.34a)

H∗
(
eiω

)
CTCH

(
eiω

)
=eiωQH

(
eiω

)
+ e−iωH∗

(
eiω

)
Q −Q. (3.34b)

Proof: Using the definition of H
(
eiω

)
=

(
eiωI −A

)−1
. Straightforward calcula-

tions yields

e−iωPH∗
(
eiω

)
+ eiωH

(
eiω

)
P − P

= e−iωH−1
(
eiω

)
P + eiωPH−∗

(
eiω

)
−H−1

(
eiω

)
PH−∗

(
eiω

)
= e−iω

(
eiωI −A

)
P + eiωP

(
eiωI −A

)∗ − (
eiωI −A

)
P

(
eiωI −A

)∗
= −

(
APAT − P

)
= BBT, (3.35)

which can be written as (3.34a) by multiplying withH
(
eiω

)
andH∗

(
eiω

)
from left

and right, respectively. Similarly, it holds that

eiωQH
(
eiω

)
+ e−iωH∗

(
eiω

)
Q −Q

= eiωH−∗
(
eiω

)
Q + e−iωQH−1

(
eiω

)
−H−∗

(
eiω

)
QH−1

(
eiω

)
= eiω

(
eiωI −A

)∗
Q + e−iωQ

(
eiωI −A

)
−

(
eiωI −A

)∗
Q

(
eiωI −A

)
= −

(
ATQA −Q

)
= CTC

(3.36)

which can be written as (3.34b) by multiplying withH∗
(
eiω

)
andH

(
eiω

)
from left

and right, respectively.

Proof of Theorem 3.4: Using the definition of Pω in (3.30) and Lemma 3.2, Pω
can be written as
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Pω =
1

2π

ω∫
−ω

H
(
eiν

)
BBTH∗

(
eiν

)
dν =

1

2π

ω∫
−ω

(
e−iνPH∗

(
eiν

)
+ eiνH

(
eiν

)
P − P

)
dν

=
1

2π

ω∫
−ω

(
eiνH

(
eiν

)
− I

2

)
dνP + P

1

2π

ω∫
−ω

(
eiνH

(
eiν

)
− I

2

)∗
dν

=
1

4π

ω∫
−ω

[(
I − e−iνA

)−1 (
I +Ae−iν

) ]
dνP + P

1

4π

ω∫
−ω

[(
I − e−iνA

)−1 (
I +Ae−iν

) ]∗
dν

= SωP + PS∗ω. (3.37)

Hence, it holds that Pω = SωP + PS∗ω, with

Sω =
1

4π

ω∫
−ω

[(
I − e−iνA

)−1 (
I +Ae−iν

) ]
dν.

Before showing that (3.33) holds, observe that

ASω = A

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 1

4π

ω∫
−ω

[(
I − e−iνA

)−1 (
I +Ae−iν

) ]
dν

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 1

4π

ω∫
−ω

[(
I − e−iνA

)−1 (
I +Ae−iν

) ]
dν

⎞⎟⎟⎟⎟⎟⎟⎟⎠A = SωA, (3.38)

i.e., the matrices A and Sω commute. Using that Pω = SωP + PS∗ω and the fact

that A and Sω commute, APωAT − Pω can be written as

APωA
T − Pω = A (SωP + PS∗ω)AT − (SωP + PS∗ω)

Sω
(
APAT − P

)
+

(
APAT − P

)
S∗ω = −

(
SωBB

T + BBTS∗ω
)
. (3.39)

Hence, (3.33) holds.

The same can be shown for the observability Gramian.

Theorem 3.5. Given a discrete-time system G =

[
A B
C D

]
, where A is Schur, it

holds that

Qω � STωQ +QSω, (3.40)

where ATQA − Q + CTC = 0 and Sω = 1
4π

∫ ω

−ω
(
I − e−iνA

)−1 (
I +Ae−iν

)
dν. Fur-
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thermore, Qω can be computed as a solution to

ATQωA −Qω + STωC
TB + CTCSω = 0. (3.41)

Proof: The proof is analogous to the one for the controllability Gramian.

Theorem 3.6. Thematrix Sω = 1
4π

∫ ω

−ω
(
I − e−iνA

)−1 (
I +Ae−iν

)
dν can be written

as

Sω =
1

2π
Re

[
ωI − 2i ln

(
I −Ae−iω

) ]
. (3.42)

Proof: We have that

Sω =
1

4π

ω∫
−ω

(
I − e−iνA

)−1 (
I +Ae−iν

)
dν � f (A). (3.43)

With

f (x) =
1

4π

ω∫
−ω

(
I − e−iν x

)−1 (
I + xe−iν

)
dν,

Theorem 2.5 states that it is sufficient to calculate the function on the spectrum

of A. Let λ be an eigenvalue to A and since A is Schur, it holds that |λ| < 1. Hence

ω∫
−ω

1 + λe−iν
1 − λe−iν dν = i

[
ln e−iν − 2i ln

(
1 − λe−iν

) ]ω
−ω

=
[
ν − 2i ln

(
1 − λe−iν

) ]ω
−ω = 2ω − 2

[
i ln

(
1 − λe−iω

)
− i ln

(
1 − λeiω

) ]
(3.44)

where ln z denotes the principal branch of the complex logarithm, namely ln z =

ln |z| + i arg z, −π < arg z ≤ π. Going back to the matrix equation entails

S(ω) =
1

4π

ω∫
−ω

(
I − e−iνA

)−1 (
I +Ae−iν

)
dν

=
1

2π

{
ωI − i

[
ln

(
I −Ae−iω

)
− ln

(
I −Aeiω

) ] }
. (3.45)

Since the principal branch of the logarithm is used, Theorem 2.3 is applicable.

For this case it means that given a matrix C ∈ C
n×n it holds that lnC = lnC. Sω

becomes

S(ω) =
1

2π

{
ωI − i

[
ln

(
I −Ae−iω

)
− ln

(
I −Aeiω

) ] }
=

1

2π

{
ωI −

[
i ln

(
I −Ae−iω

)
+ i ln

(
I −Ae−iω

)] }
=

1

2π
Re

[
ωI − 2i ln

(
I −Ae−iω

) ]
.
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Remark 3.3. If ω = π, then Sω = I

2 − 1
π Re [i ln (I +A) ], and since the logarithm of a real

matrix is a real matrix, it follows that Sω = I

2 . Thus, the frequency-limited Gramians

coincides with the regular Gramians when ω = π.

3.2 Frequency-Limited H2-Norm

In this section, we will introduce a new frequency-limited H2-norm that uses

the frequency-limited Gramians defined in the previous section. This new mea-

sure can for example be used to compare different models on limited frequency

intervals, instead of the whole frequency domain.

3.2.1 Continuous Time

As presented in Section 2.1.3, the H2-norm of a continuous-time system G =[
A B
C D

]
, which is asymptotically stable (A is Hurwitz) and strictly proper (D =

0), can be described by

||G||2H2
=

1

2π
tr

∞∫
−∞

G(iν)G∗(iν)dν (3.46a)

=
1

2π
tr

∞∫
−∞

CH
(
iν

)
BBTH∗

(
iν

)
CTdν = trCPCT (3.46b)

=
1

2π
tr

∞∫
−∞

BTH∗
(
iν

)
CTCH

(
iν

)
Bdν = trBTQB. (3.46c)

In this section, a new frequency-limited H2-like norm, that uses the frequency-

limited Gramians presented in the previous section, is defined and is denoted as

||G||H2,ω.

Definition 3.3. For an asymptotically stable system G and 0 < ω < ∞, define

||G||2H2,ω
� 1

2π
tr

ω∫
−ω

G(iν)G∗(iν)dν. (3.47)

To be able to use the limited-frequency H2-norm in practice, it has to be ex-

pressed in a more computationally friendly way.
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Theorem 3.7. For an asymptotically stable system G =

[
A B
C D

]
and 0 < ω <

∞, the limited-frequency H2-norm can be computed as

||G||2H2,ω
= trCPωC

T + 2 tr

[(
CSωB +D

ω
2π

)
DT

]
, (3.48)

or

||G||2H2,ω
= trBTQωB + 2 tr

[(
CSωB +D

ω
2π

)
DT

]
, (3.49)

where

0 = APω + PωA
T + SωBB

T + BBTSTω, (3.50a)

0 = ATQω +QωA + STωC
TC + CTCSω, (3.50b)

Sω = Re

[ i
π
ln (−A − iωI)

]
. (3.50c)

Proof: Using Theorem 3.1 we can rewrite equation (3.47),

||G||2H2,ω
=

1

2π
tr

ω∫
−ω

G(iν)G∗(iν)dν

=
1

2π
tr

ω∫
−ω

[
CH

(
iν

)
B +D

] [
BTH∗

(
iν

)
CT +DT

]
dν

= trC
1

2π

ω∫
−ω

H
(
iν

)
BBTH∗

(
iν

)
dνCT + tr

1

2π

ω∫
−ω

DDTdν

+ tr

⎛⎜⎜⎜⎜⎜⎜⎜⎝C 1

2π

ω∫
−ω

H
(
iν

)
dνBDT +DBT 1

2π

ω∫
−ω

H∗
(
iν

)
dνCT

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= trCPωC

T + 2 tr

[(
CSωB +D

ω
2π

)
DT

]
.

The same procedure can be used, using Theorem 3.2 and the fact that ||G||2H2,ω

also can be written as ||G||2H2,ω
= 1

2π tr
∫ ω

−ω G∗(iν)G(iν)dν, to show equation (3.49).

Theorem 3.3 shows how Sω can be computed.

Using Corollary 3.1 it is possible, also for the limited-frequency H2-norm, to

compute the H2-norm on arbitrary segments in the frequency domain, ||G||2H2,Ω
,

Ω = [−ω4,−ω3] ∪ [−ω2,−ω1] ∪ [ω1, ω2] ∪ [ω3, ω4], 0 < ω1 < ω2 < ω3 < ω4.

One important thing to note that differs between the limited-frequencyH2-norm

and the ordinary H2-norm, is that, if we do not include an infinite interval in Ω,

i.e., include ω = ∞ as the end frequency, then the system does not have to be

strictly proper. This means that it is possible, in this case, to have D � 0.
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3.2.2 Discrete Time

In this section, the new frequency-limited H2-like norm for discrete-time sys-

tems, that uses the frequency-limited Gramians presented in Section 3.1.2, is de-

fined.

Definition 3.4. For an asymptotically stable discrete-time system G and 0 < ω <
π, define

||G||2H2,ω
� 1

2π
tr

ω∫
−ω

G(iν)G∗(iν)dν. (3.51)

Analogous to the continuous-time case, (3.51) can be expressed in a more compu-

tationally friendly way.

Theorem 3.8. For an asymptotically stable discrete-time system G =

[
A B
C D

]
and 0 < ω < π, the limited-frequency H2-norm can be computed as

||G||2H2,ω
= trCPωC

T + 2 tr

[(
CRωB +D

ω
2π

)
DT

]
, (3.52)

or

||G||2H2,ω
= trBTQωB + 2 tr

[(
CRωB +D

ω
2π

)
DT

]
, (3.53)

where

0 =APωA
T − Pω + SωBB

T + BBTSTω, (3.54a)

0 =ATQωA −Qω + STωC
TC + CTCSω, (3.54b)

Sω =
1

2π
Re

[
ωI − 2i ln

(
I −Ae−iω

) ]
, (3.54c)

Rω = − 1

π
A−1 Re

[
i ln

(
I −Ae−iω

) ]
. (3.54d)

Proof: By using Theorem 3.4 and Theorem 3.5, ||G||2H2,ω
can easily be rewritten

to

||G||2H2,ω
= trCPωC

T + 2 tr

[(
CRωB +D

ω
2π

)
DT

]
, (3.55a)

||G||2H2,ω
= trBTQωB + 2 tr

[(
CRωB +D

ω
2π

)
DT

]
, (3.55b)

where

Rω =
1

2π

ω∫
−ω

H
(
eiν

)
dν =

1

2π

ω∫
−ω

(
eiνI −A

)−1
dν. (3.56)

This integral can be computed and simplified similarly to what is shown in the
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proof for Theorem 3.4, which leads to

Rω = − 1
π
A−1 Re

[
i ln

(
I −Ae−iω

) ]
. (3.57)

3.3 Concluding Remarks

In this chapter, the frequency-limited Gramians and their derivations have been

presented. Computationally more efficient expressions than those presented in

the original papers (Gawronski and Juang [1990] and Horta et al. [1993]), were

derived. A detailed derivation of the discrete-time frequency-limited Gramians

was presented, using the same notation and framework as in the continuous-time

case and correcting errors in the available literature. Additionally, the frequency-

limitedH2-norm that uses these Gramians, both for continuous and discrete time,

were presented. This frequency-limited H2-norm will be used for frequency-

limited model reduction in Chapter 4.





4
Model Reduction

This chapter starts by introducing the model-reduction problem in Section 4.1.

In Section 4.2, one of the most commonly used methods, balanced truncation

(including frequency weighted and frequency limited), will be presented. Then

in Section 4.3 some existing methods that use an H2-measure for model reduc-

tion are presented. Then the proposed methods for ordinary, robust, frequency-

weighted and frequency-limited model reduction will be presented in Section 4.4.

The material in this chapter is based on an extended version of the results in Pe-

tersson and Löfberg [2012a].

4.1 Introduction

Direct numerical simulation of dynamical systems has been a successful strat-

egy for studying complex physical phenomena. However, deriving sufficiently

detailed mathematical models, e.g., for designing controllers or analyzing perfor-

mance, can be extremely difficult and can result in large and unnecessarily com-

plicated models. This is the case particularly for systems pertaining to circuit

simulations or dynamical systems coming from discretized partial differential
equations. These large-scale models can make it difficult to analyze the system,

due to memory-limitations, time-limitations, ill-conditioning or computationally

expensive analysis methods. Hence, there is a need for smaller models that can

describe large complex systems well. One way of creating these low-order models

is through model reduction.

Given an ltimodel,

G :

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) +Du(t),

39
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+

G

Ĝ
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ŷ

−
e u

Figure 4.1: Model reduction

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m. For this model, the model-

reduction problem is to find a reduced-order model

Ĝ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),
ŷ(t) = Ĉx̂(t) + D̂u(t),

with Â ∈ Rn̂×n̂, B̂ ∈ Rn̂×m, Ĉ ∈ Rp×n̂ and D̂ ∈ Rp×m and n̂ < n, where this reduced-

order model, Ĝ, describes the original model, G, well in some metric. One way

to quantify the discrepancy between G and Ĝ, is through the difference in their

respective outputs. Particularly, given a certain input, u(t), the difference in the

output, e(t) = y(t) − ŷ(t), should be small in some norm, see Figure 4.1.

This can be written as an optimization problem

minimize
Ĝ

∣∣∣∣∣∣G − Ĝ∣∣∣∣∣∣ , s.t. deg Ĝ = n̂,

where deg Ĝ denotes the size of the system, i.e., the number of states in the sys-

tem, and H∞ or H2 are two examples of norms that could be used. There are a

number of methods that address this problem, for example using balanced trun-

cation (see Section 4.2), e.g., Enns [1984], Moore [1981], Glover [1984], or using

optimization, e.g., Flagg et al. [2010], Beattie and Gugercin [2007], Beattie and

Gugercin [2009], Antoulas [2005], Poussot-Vassal [2011], Helmersson [1994] and

the material in Section 4.4.

In many applications one is mainly interested in a low-order model that describes

the system well only in a certain frequency interval. This leads us to investigate

frequency-weighted model reduction. For the frequency-weighted model reduc-

tion, weighting filters are utilized, and in order to also facilitate mimo-systems

an input-filter (Wi ) and an output-filter (Wo) are needed. Example of such meth-

ods are, for example, Enns [1984], Diab et al. [2000], Halevi [1992], Sreeram and

Sahlan [2009], Zhou [1995]. Writing the frequency-weighted model-reduction

problem as an optimization problem, results in

minimize
Ĝ

∣∣∣∣∣∣Wo(G − Ĝ)Wi

∣∣∣∣∣∣ , s.t. deg Ĝ = n̂.

In the frequency-weighted case, the weights have to be given by the user and are

in practice often difficult to choose. However, in many applications it is the case

that a system should be approximated over a limited frequency interval, while

the other frequencies are not important at all. In this case one would like to use
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an ideal band-pass filter, but approximating an ideal band-pass filter requires a

large number of states in the weighting filters, and can lead to other problems.

To address this issue there are methods, that could be classified as a special class

of frequency-weighted model-reduction methods, that will be called frequency-

limited model reduction. This class of methods uses approaches that behave as

though ideal band-pass filters have been used, e.g., Gawronski and Juang [1990],

Huang et al. [2001], Horta et al. [1993], Sahlan et al. [2012] and Poussot-Vassal

and Vuillemin [2012], and we will introduce a new method using this strategy in

Section 4.4.3.

4.2 Balanced Truncation

One of the most commonly used model-reduction schemes is called balanced

truncation, introduced in Moore [1981]. The physical interpretation of the bal-

anced truncation is very simple, remove the states that induce a small amount

of energy in the output and at the same time require a large amount of energy

to excite. By understanding how the observability and controllability Gramians

connect to these energies, see Section 2.1.2, one realizes that the system has to

be expressed in a basis where the observability and controllability Gramians are

equal and diagonal. Recall that the elements on the diagonal in the Gramians

are the Hankel singular values of the system, see Section 2.1.2. This basis de-

scribes the states that can be classified as both difficult to control and observe,

these states that can be removed. These are the states that correspond to the

small Hankel singular values. When a system is expressed in such a basis the

system is called balanced. Given a system with the observability Gramian Q and

controllability Gramian P, where P have the Cholesky factor U, P = UU∗, and
U∗QU = KΣ2K∗, it can be shown that the transformation needed to balance the

system can be written as

T = Σ1/2K∗U−1 and T−1 = UKΣ−1/2, (4.1)

and the new states are given by x̃ = Tx, see for example Antoulas [2005].

Theorem 4.1 (Balanced reduction, Theorem 7.9 in Antoulas [2005]). Given a

balanced system G =

[
A B
C D

]
, which is asymptotically stable, with the Grami-

ans equal to Σ and given the partitioning

A =

(
A11 A12

A21 A22

)
∈ Rn×n, B =

(
B1

B2

)
∈ Rn×m, C =

(
C1 C2

)
∈ Rp×n, Σ =

(
Σ1 0
0 Σ2

)
.

(4.2)

Then Ĝ =

[
A11 B1

C1 D

]
, A11 ∈ R

n̂×n̂ is a reduced-order system of order n̂ < n,

which is both stable and balanced. Additionally, it holds that

∣∣∣∣∣∣G − Ĝ∣∣∣∣∣∣H∞ ≤ 2

n∑
i=n̂+1

σi , (4.3)



42 4 Model Reduction

where σi are the Hankel singular values of the system in descending order of

magnitude.

Proof: See Theorem 7.9 in Antoulas [2005]

There are several variations of the balanced-truncationmethod, which allow us to

perform model reduction in a more computationally robust and efficient manner,

e.g., Safonov and Chiang [1989], Safonov et al. [1990], Glover [1984]. Two proper-

ties that most of the balanced-truncation methods have in common (which make

them very popular) are the preservation of stability and the a priori computable

error bounds. Important to note is that a system resulting from a balanced trun-

cation scheme is not a minimizer to a specific system norm optimization (for

example H2 and H∞).
As mentioned in Section 4.1, one important class of balanced-truncationmethods

are the frequency-weighted balanced-truncation methods and they are described

in the following way. Let G =

[
A B
C D

]
, be an asymptotically stable system to be

reduced. Also assume that an input weighting, Wi (s), and an output weighting,

Wo(s), are given. Define the weighted controllability and observability Gramians

as

Pi =
1

2π

∞∫
−∞

(iωI −A)−1 BWi (iω)W ∗i (iω)B∗ (iωI −A)−∗ dω, (4.4a)

Qo =
1

2π

∞∫
−∞

(iωI −A)−∗ C∗W ∗o (iω)Wo(iω)C (iωI −A)−1 dω. (4.4b)

and compute the state transformation that simultaneously diagonalizes Pi and

Qo. Frequency-weighted balanced-truncation methods then utilize this transfor-

mation that diagonalizes Pi and Qo, to do a balanced truncation. This approach

to frequency-weighted balanced truncation was first introduced in Enns [1984].

If either Wi = I or Wo = I this method guarantee stability of the reduced model.

However, if both input and output weightings are used at the same time noth-

ing can be guaranteed. Modifications of this method that guarantee stability

when both input and output weights are used are discussed in, e.g., Lin and Chiu

[1992], Varga and Anderson [2001].

Another important class of model-reduction methods, which was mentioned in

Section 4.1, is frequency-limited balanced truncation. This was introduced by

Gawronski and Juang [1990] for continuous-time systems and Horta et al. [1993]

for discrete-time systems. In these articles they use frequency-limited Gramians

(see Section 3.1) and simultaneously diagonalize these, to obtain a basis in which

the truncation is done. The method in Gawronski and Juang [1990] can be seen as

a special case of the method in Enns [1984] by choosing the weighting filters to be

ideal bandpass filters (see Gugercin and Antoulas [2004]). However, the method
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in Gawronski and Juang [1990] cannot guarantee stability. A modification to this

method that guarantee stability, has been presented in Gugercin and Antoulas

[2004].

4.3 Overview of Model-Reduction Methods using the
H2-Norm

The problem of finding a reduced-order model that, in H2 sense, resembles the

original model well has been a goal in many investigations. Especially since the

work of Meier and Luenberger [1967], and especially Wilson [1970], in which

they derive first-order optimality conditions for minimization of the H2-norm,

see also, for example, Lepschy et al. [1991], Beattie and Gugercin [2007], Fulcheri

and Olivi [1998], Yan and Lam [1999] and references therein. One reason for this

could be the fact that the H2 criterion provides a meaningful characterization

of the error, both in deterministic and stochastic contexts. For example, given

two discrete-time asymptotically-stable siso systems G and Ĝ, with the outputs

y(t) and ŷ(t) respectively, and a white-noise input u(t) (i.e., the input spectrum is

Φu(ω) = 1), then it holds that

minimize
Ĝ

E
[
(y − ŷ)2

]
= minimize

Ĝ

π∫
−π

∣∣∣G(eiω) − Ĝ(eiω)
∣∣∣2 Φu(ω)dω

= minimize
Ĝ

π∫
−π

∣∣∣G(eiω) − Ĝ(eiω)
∣∣∣2 dω = minimize

Ĝ

∣∣∣∣∣∣G − Ĝ∣∣∣∣∣∣2H2
. (4.5)

Finding global minimizers for the H2 approximation problem is very difficult, it

is in fact a nonlinear non-convex optimization problem (see Example 4.1). The ex-

isting methods for H2 approximation have the more modest goal of finding local

minimizers and can crudely be categorized into two categories; methods using

tangential interpolation techniques or methods using gradient-flow techniques.

Example 4.1: Non-Convexity
To show that the cost function

V =
∣∣∣∣∣∣Ĝ − Gtrue

∣∣∣∣∣∣2H2

is non-convex, we start with the system

Gtrue =

[ −1 1

1 0

]
.

A system

Ĝ =

[
a b
c 0

]
,

that approximates the system Gtrue, is sought, where a, b and c are the decision
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variables. Consider an initial guess in an optimization formulation to be the sys-

tem

G0 =

[ −8 −4
−2 0

]
.

Now, given the system G0, pick a descent direction for the cost function V (t), for
example (δa, δb, δc)T = (7, 5, 5)T, such that

Ĝ(t) =

[ −8 + 7t −4 + 5t
−2 + 5t 0

]
, t ∈ [0, 1],

then the value of the cost function, V (t) =
∣∣∣∣∣∣Ĝ(t) − Gtrue

∣∣∣∣∣∣2H2
, along the descent

direction is non-convex, see Figure 4.2.
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V
(t
)

V (t) along the search direction

Figure 4.2: The value of the cost function along the search direction de-

scribed in Example 4.1. The function clearly demonstrates the presence of

local minimas along the search direction.

The gradient-flow algorithms use the gradients of
∣∣∣∣∣∣G − Ĝ∣∣∣∣∣∣H2

with respect to the

state-space matrices, derived inWilson [1974] and let these evolve in time to find

a local approximation of the given system, see for example Yan and Lam [1999],

Fulcheri and Olivi [1998] and Huang et al. [2001]. The different algorithms in

this class use different techniques to assure that the reduced model is stable, to

speed up the process and to guarantee convergence.
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The interpolation-based H2 model-reduction techniques tries to find a model

whose transfer function interpolates the transfer function of the full-order sys-

tem (and its derivative) at selected interpolation points. These methods often

use computationally effective Krylov-based algorithms which makes these tech-

niques suitable for large-scale problems. Examples of these algorithms are Xu

and Zeng [2011], Beattie and Gugercin [2007] and Poussot-Vassal [2011].

4.4 Model Reduction using an H2-Measure

In this section, the proposed methods for model reduction are presented. We

consider the following description for the model-reduction problem. Given a

system G, search for the system Ĝ such that

Ĝ = argmin
Ĝ

∣∣∣∣∣∣∣∣Wo

(
G − Ĝ

)
Wi

∣∣∣∣∣∣∣∣2H2,ω
. (4.6)

It is assumed that the systems G and Ĝ have the state-space realizations

G =

[
A B
C D

]
, Ĝ =

[
Â B̂
Ĉ D̂

]
, (4.7)

where

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m,
Â ∈ Rn̂×n̂, B̂ ∈ Rn̂×m, Ĉ ∈ Rp×n̂, D̂ ∈ Rp×m. (4.8)

Since theH2-norm is used, it is also assumed that the system that is to be reduced,

G, is asymptotically stable. Since, otherwise, the H2-norm is not defined.

The idea with the proposed methods is to try an approach that tries to tackle the

model-reduction problem head on. In Helmersson [1994] the model reduction

problem (inH∞-norm) is rewritten as an sdp problem with bmis, which, even for

small models, leads to large optimization problems that are hard to solve. In Anić
et al. [2013] they rewrite the model-reduction problem to an interpolation prob-

lem which makes it hard to incorporate structure in the system matrices. The

proposed technique to solve the model-reduction problem is instead to use a non-

linear optimization approach and simply use a quasi-Newton algorithm. Using

this technique, the problem is not rewritten in any other format, which makes

it possible to both use and incorporate structure in the system matrices. Addi-

tionally, by taking caution when differentiating the different cost functions, and
using the structure, the computational complexity can be kept low (in general an

overhead cost of O(n3) and O(n2n̂ + nn̂2) per iteration).

4.4.1 Standard Model Reduction

The method presented in this section was proposed already in Wilson [1970]

for continuous time, however as a special case. The derivation in this section

will include weighting filters and also the discrete-time case. In this thesis, a

different derivation will be used, compared toWilson [1970], with focus on being
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computationally efficient and also laying a foundation for the methods to come

in the following sections.

The objective is to minimize the error between the givenmodel, G, and the sought

reduced-order model, Ĝ, in the H2-norm with weighting filters, Wi and Wo, i.e.,

Ĝ = argmin
Ĝ

||E||2H2
, E = Wo

(
G − Ĝ

)
Wi, (4.9)

where it is assumed thatWi andWo are given by the user and have the realizations

Wi =

[
Ai Bi
Ci Di

]
, Wo =

[
Ao Bo
Co Do

]
, (4.10)

where

Ai ∈ Rni×ni , Bi ∈ Rni×m, Ci ∈ Rp×ni , Di ∈ Rp×m,
Ao ∈ Rno×no , Bo ∈ Rno×m, Co ∈ Rp×no , Do ∈ Rp×m. (4.11)

Using the realizations of G, Ĝ,Wi and Wo, E can be realized as

E =

[
AE BE
CE DE

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A 0 BCi 0
0 Â B̂Ci 0
0 0 Ai 0

BoC −BoĈ 0 Ao

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
BDi

B̂Di
Bi
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(
DoC −DoĈ 0 Co

)
Do

(
D − D̂

)
Di

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.12)

To be able to use the structure in the realization of E, a partitioning of the Grami-

ans, PE and QE , is introduced

PE =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
P P12 P13 P14

PT
12 P̂ P23 P24

PT
13 PT

23 Pi P34

PT
14 PT

24 PT
34 Po

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , QE =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Q Q12 Q13 Q14

QT
12 Q̂ Q23 Q24

QT
13 QT

23 Qi Q34

QT
14 QT

24 QT
34 Qo

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.13)

Since there will be some differences between the continuous and the discrete-

time cases, both cases will be presented. However, due to many similarities be-

tween the two, the continuous-time case will be presented in more detail than

the discrete-time case.

Continuous Time

In the continuous-time case, it is assumed that the system is strictly proper, oth-

erwise the H2-norm will be unbounded, i.e., Do

(
D − D̂

)
Di = 0. Assuming this,

the cost function in (4.9) can be written as, see Section 2.1.3,

||E||2H2
= trBT

EQEBE (4.14a)

= trCEPEC
T
E, (4.14b)

which are two equivalent ways of computing the cost function, where PE and

QE are the controllability and observability Gramians respectively, for the error
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system E, satisfying the equations

AEPE + PEA
T
E + BEB

T
E = 0, (4.15a)

AT
EQE +QEAE + CT

ECE = 0. (4.15b)

Using (4.14) and (4.15) it is possible to state the general necessary conditions for

optimality, in which the gradients of the problem readily can be extracted to be

used in a quasi-Newton algorithm. In order to be as general as possible, we first

neglect the structure in (4.12).

Theorem 4.2 (Necessary conditions for optimality). Assume that G, Ĝ,Wi and

Wo are asymptotically stable and that E is strictly proper, for the H2-norm to be

defined, i.e., A, Â,Ai and Ao are Hurwitz and Do

(
D − D̂

)
Di = 0. In order for

the matrices Â, B̂, Ĉ to be optimal for the problem (4.9), it is necessary that they

satisfy the equations in (4.15) and that

∂ ||E||2H2

∂Â
= 2ÊTQEPE Ê = 0, (4.16a)

∂ ||E||2H2

∂B̂
= 2ÊT

(
QEPEEiC

T
i +QEBEDi

)
= 0, (4.16b)

∂ ||E||2H2

∂Ĉ
= −2

(
BT
oE

T
oQEPE +DT

oCEPE

)
Ê = 0, (4.16c)

where

Ê =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×n̂
In̂×n̂
0ni×n̂
0no×n̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ei =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×n̂
0n̂×n̂
Ini×n̂
0no×n̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Eo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×n̂
0n̂×n̂
0ni×n̂
Ino×n̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.17)

Before proving the theorem above, two lemmas are needed to simplify the proof.

Lemma 4.1. If M and N satisfy the Sylvester equations

AM +MB + C = 0, NA + BN +D = 0,

then trCN = trDM.

Proof of Lemma 4.1: Multiplying the first Sylvester equation from the left with

N and the second from the right with M, entails

NAM +NMB +NC = 0, NAM + BNM +DM = 0.

Now taking the trace of both equations yields

− tr (NAM +NMB) = trCN, − tr (NAM +NMB) = trDM.

Hence, it holds that trCN = trDM.
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Lemma 4.2. If A ∈ R
n×p , B ∈ R

m×n and C ∈ R
p×m and aij = [A]ij , then it holds

that

tr

(
B

∂A
∂aij

C
)
=

[
BTCT

]
ij
∀i, j or equivalently

∂
∂A

(trBAC) = BTCT.

Proof of Lemma 4.2: First note that ∂A
∂aij

= eieTj , which is a matrix with a one in

element (i, j) and zeros elsewhere. Now, it holds that

tr

(
B

∂A
∂aij

C
)
= tr

(
Beie

T
j C

)
= tr

(
eTj CBei

)
= eTj CBei = [CB]j i =

[
BTCT

]
ij
.

Now, continuing with the proof for Theorem 4.2.

Proof of Theorem 4.2: If A, Â,Ai and Ao are Hurwitz, then all the equations in

(4.15) are uniquely solvable. The solutions to the equations in (4.15) are needed

to compute the cost function and its gradient. Now, the gradient of the cost func-

tion with respect to Â, B̂, Ĉ have to be computed. Let aij , bij and cij denote ele-

ment (i, j) in Â, B̂ and Ĉ respectively, now differentiating (4.14) with respect to

aij , bij and cij entails

∂ ||E||2H2

∂aij
= tr

∂QE

∂aij
BEB

T
E, (4.18a)

∂ ||E||2H2

∂bij
= tr

(
2
∂BT

E

∂bij
QEBE +

∂QE

∂bij
BEB

T
E

)
, (4.18b)

∂ ||E||2H2

∂cij
= tr

(
2
∂CT

E

∂cij
CEPE +

∂PE

∂cij
CT
ECE

)
. (4.18c)

Differentiate (4.15) with respect to aij , bij and cij ,

AT
E
∂QE

∂aij
+
∂QE

∂aij
AE +

∂AT
E

∂aij
QE +QE

∂AE

∂aij
, (4.19a)

AT
E
∂QE

∂bij
+
∂QE

∂bij
AE +

∂AT
E

∂bij
QE +QE

∂AE

∂bij
, (4.19b)

AE
∂PE

∂cij
+
∂PE

∂cij
AT

E +
∂AE

∂cij
PE + PE

∂AT
E

∂cij
. (4.19c)
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Using Lemma 4.1 with (4.18) and (4.19) yields

∂ ||E||2H2

∂aij
=2 tr

∂AT
E

∂aij
QEPE, (4.20a)

∂ ||E||2H2

∂bij
=2 tr

(
∂AT

E

∂bij
QEPE +

∂BT
E

∂bij
QEBE

)
, (4.20b)

∂ ||E||2H2

∂cij
=2 tr

(
∂AE

∂cij
QEPE +

∂CT
E

∂cij
CEPE

)
. (4.20c)

Using the structure in the realization of E, (4.12), and Lemma 4.2, entails

∂ ||E||2H2

∂Â
= 2ÊTQEPE Ê = 0, (4.21a)

∂ ||E||2H2

∂B̂
= 2ÊT

(
QEPEEiC

T
i +QEBEDi

)
= 0, (4.21b)

∂ ||E||2H2

∂Ĉ
= −2

(
BT
oE

T
oQEPE +DT

oCEPE

)
Ê = 0, (4.21c)

where

Ê =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×n̂
In̂×n̂
0ni×n̂
0no×n̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ei =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×ni
0n̂×ni
Ini×ni
0no×ni

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Eo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×no
0n̂×no
0ni×no
Ino×no

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.22)

At a first glance, it can seem restrictive to have a technique that operates on sys-

tem matrices, since one is given a model in a specific realization. Does this in-

fluence the realization of the resulting model or in other ways restrict the sought

model? As can be seen in Theorem 4.3 below, this is not the case since the opti-

mization problem becomes invariant to the realization of the given model to be

reduced.

Theorem 4.3. The cost function in the optimization problem (4.6) and its gradi-

ent, given in Theorem 4.2, are invariant under state transformations of the sys-

tems G, Wi and Wo.

Proof: Given the realizations of G, Wi and Wo in (4.7) and (4.10). The realiza-

tions of the transformed systems, given the transformations matrices T,Ti and

To, become

G =

[
Ā B̄
C̄ D̄

]
=

[
T−1AT T−1B
CT D

]
,
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Wi =

[
Āi B̄i
C̄i D̄i

]
=

[
T−1i AiTi T−1i Bi
CiTi Di

]
,

Wo =

[
Āo B̄o
C̄o D̄o

]
=

[
T−1o AoTo T−1o Bo
CoTo Do

]
.

This can be written as

E =

[
ĀE B̄E
C̄E D̄E

]
=

[
T−1E AETE T−1E BE
CETE DE

]
, TE =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
T 0 0 0
0 I 0 0
0 0 Ti 0
0 0 0 To

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.23)

The matrices PE and QE will be transformed as

PE = TE P̄ET
T
E, QE = T−TE Q̄ET

−1
E . (4.24)

Now it is easy to see that the cost function (4.14) is invariant under the transfor-

mation TE , since

||E||2H2
= trBT

EQEBE = tr B̄T
ET

T
ET
−T
E Q̄ET

−1
E TEB̄E = tr B̄T

EQ̄EB̄E. (4.25)

Before continuing with the gradient, the matrix products ÊTT−TE , TT
EEi and ET

oT
−T
E

are evaluated,

ÊTT−TE = ÊT, TT
EEi = EiT

T
i , E

T
oT
−T
E = T−To ET

o . (4.26)

Using (4.26) when computing the gradient entails,

∂ ||E||2H2

∂Â
= 2ÊTQEPE Ê = 2ÊTT−TE Q̄ET

−1
E TE P̄ET

T
E Ê = 2ÊTQ̄E P̄E Ê,

∂ ||E||2H2

∂B̂
= 2ÊT

(
QEPEEiC

T
i +QEBEDi

)
= 2ÊTT−TE

(
QET

−1
E TE P̄ET

T
EEiT

−T
i C̄T

i +QET
−1
E TEBED̄i

)
= 2ÊT

(
Q̄E P̄EEiC̄

T
i + Q̄EB̄ED̄i

)
,
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∂ ||E||2H2

∂Ĉ
= −2

(
BT
oE

T
oQEPE +DT

oCEPE

)
Ê

= −2
(
B̄T
oT

T
oE

T
oT
−T
E Q̄ET

−1
E TE P̄E + D̄T

o C̄ET
−1
E TE P̄E

)
TT
E Ê

= −2
(
B̄T
oE

T
o Q̄E P̄E + D̄T

o C̄E P̄E

)
Ê.

Looking at the special case when not having any weighting filters, i.e.,Wi = I and

Wo = I, ni = no = 0, yields the cost function

||E||2H2
= tr

(
BTQB + 2BTQ12B̂ + B̂TQ̂B̂

)
, (4.27a)

||E||2H2
= tr

(
CPCT − 2CP12Ĉ

T + ĈP̂ĈT
)
, (4.27b)

and the first-order conditions for the gradient simplify to

∂ ||E||2H2

∂Â
= 2

(
Q̂P̂ +QT

12P12

)
= 0, (4.28a)

∂ ||E||2H2

∂B̂
= 2

(
Q̂B̂ +QT

12B
)
= 0, (4.28b)

∂ ||E||2H2

∂Ĉ
= 2

(
ĈP̂ − CP12

)
= 0. (4.28c)

P,Q, P̂, Q̂,P12 and Q12 satisfy the equations

AP + PAT + BBT = 0, (4.29a)

AP12 + P12Â
T + BB̂T = 0, (4.29b)

ÂP̂ + P̂ÂT + B̂B̂T = 0, (4.29c)

ATQ +QA + CTC = 0, (4.29d)

ATQ12 +Q12Â − CTĈ = 0, (4.29e)

ÂTQ̂ + Q̂Â + ĈTĈ = 0. (4.29f)

Note that P and Q satisfy the Lyapunov equations for the controllability and ob-

servability Gramians for the given system, G, and P̂ and Q̂ satisfy the Lyapunov

equations for the controllability and observability Gramians for the sought sys-

tem, Ĝ.
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For this special case it is also quite straightforward to derive the Hessian for the

cost function. Using differentiated (with respect to aij , bij , cij ) versions of the

equations in (4.29) and using Lemma 4.1 and Lemma 4.2, yields

∂2V
∂aij∂akl

=2

⎛⎜⎜⎜⎜⎝
[
Q̂

∂P̂
∂aij

]
kl

+

[
Q̂

∂P̂
∂akl

]
ij

+

[
QT

12

∂P12

∂aij

]
kl

+

[
QT

12

∂P12

∂akl

]
ij

⎞⎟⎟⎟⎟⎠ , (4.30a)

∂2V
∂bij∂bkl

=

{
2
[
Q̂

]
ik
, l = j

0, l � j
, (4.30b)

∂2V
∂cij∂ckl

=

⎧⎪⎪⎨⎪⎪⎩2
[
P̂
]
lj
, i = k

0, i � k
, (4.30c)

∂2V
∂aij∂bkl

=2

[
Q̂

∂P̂
∂bkl

]
ij

+ 2

[
QT

12

∂P12

∂bij

]
kl

, (4.30d)

∂2V
∂cij∂akl

=2

[
Ĉ

∂P̂
∂akl

]
ij

− 2
[
C
∂P12

∂akl

]
ij

, (4.30e)

∂2V
∂cij∂bkl

=2

[
Ĉ

∂P̂
∂bkl

]
ij

− 2
[
C
∂P12

∂bkl

]
ij

. (4.30f)

The explicit equations for the cost function, the gradient and the Lyapunov equa-

tions for the case when having both input and output filters are included in Ap-

pendix 4.B.1.

Discrete Time

In the discrete-time case the cost function in (4.6) can be rewritten as, see Sec-

tion 2.1.3,

||E||2H2
= trBT

EQEBE +DT
EDE (4.31a)

= trCEPEC
T
E +DED

T
E, (4.31b)

which are two equivalent ways of computing the cost function. The matrices PE
and QE are the controllability and observability Gramians respectively, for the

error system E, and in this case they satisfy the discrete Lyapunov equations

AEPEA
T
E − PE + BEB

T
E = 0, (4.32a)

AT
EQEAE −QE + CT

ECE = 0. (4.32b)

Note that in the discrete-time case, the system E does not any longer have to be

strictly proper, however it still has to be asymptotically stable for the H2-norm

to be defined.

Theorem 4.4 (Necessary conditions for optimality). Assume that G, Ĝ,Wi and

Wo are asymptotically stable, for the H2-norm to be defined, i.e., A, Â,Ai and Ao
are Schur. In order for the matrices Â, B̂, Ĉ and D̂ to be optimal for the problem
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(4.9), it is necessary that they satisfy the equations in (4.32) and that

∂ ||E||2H2

∂Â
= 2ÊTQEAEPE Ê = 0, (4.33a)

∂ ||E||2H2

∂B̂
= 2ÊT

(
QEAEPEEiC

T
i +QEBEDi

)
= 0, (4.33b)

∂ ||E||2H2

∂Ĉ
= −2

(
BT
oE

T
oQEAEPE +DT

oCEPE

)
Ê = 0, (4.33c)

∂ ||E||2H2

∂D̂
= 2DT

oDo

(
D̂ −D

)
DiD

T
i = 0, (4.33d)

where

Ê =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×n̂
In̂×n̂
0ni×n̂
0no×n̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ei =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×n̂
0n̂×n̂
Ini×n̂
0no×n̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Eo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×n̂
0n̂×n̂
0ni×n̂
Ino×n̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.34)

Proof: The proof is analogous to the proof of Theorem 4.2 for the continuous

time case.

Theorem 4.5. The cost function of the optimization problem (4.6) and its gradi-

ent, given in Theorem 4.4, are invariant under state transformations of the sys-

tems G, Wi and Wo.

Proof: The proof is analogous with the proof for Theorem 4.3.

Now looking at the special case when not having any weighting filters, i.e.,Wi = I

and Wo = I, ni = no = 0, yields the cost function

||E||2H2
= tr

(
BTQB + 2B̂TQT

12B + B̂TQ̂B̂ +DTD − 2D̂TD + D̂TD̂
)
, (4.35a)

||E||2H2
= tr

(
CPCT − 2ĈPT

12C
T + ĈP̂ĈT +DDT − 2DD̂T + D̂D̂T

)
, (4.35b)

and the first-order conditions for the gradient simplify to

∂ ||E||2H2

∂Â
= 2

(
Q̂ÂP̂ +QT

12AP12

)
= 0, (4.36a)

∂ ||E||2H2

∂B̂
= 2

(
Q̂B̂ +QT

12B
)
= 0, (4.36b)

∂ ||E||2H2

∂Ĉ
= 2

(
ĈP̂ − CP12

)
= 0, (4.36c)

∂ ||E||2H2

∂D̂
= 2

(
D̂ −D

)
= 0, (4.36d)
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where P,Q, P̂, Q̂,P12 and Q12 satisfy the equations

APAT − P + BBT = 0, (4.37a)

AP12Â
T − P12 + BB̂T = 0, (4.37b)

ÂP̂ÂT − P̂ + B̂B̂T = 0, (4.37c)

ATQA −Q + CTC = 0, (4.37d)

ÂTQT
12A −QT

12 − ĈTC = 0, (4.37e)

ÂTQ̂Â − Q̂ + ĈTĈ = 0. (4.37f)

Note that P and Q satisfy the Lyapunov equations for the controllability and ob-

servability Gramians for the given system, G, and P̂ and Q̂ satisfy the Lyapunov

equations for the controllability and observability Gramians for the sought sys-

tem, Ĝ. For this special case, in discrete time, it is also quite straightforward

to derive the Hessian for the cost function. Using differentiated (with respect to

aij , bij , cij ) versions of the equations in (4.37) and using Lemma 4.1 and Lemma

4.2, entails

∂2V
∂aij∂akl

=2

[
QT

12A
∂P12

∂aij

]
kl

+ 2

[
QT

12A
∂P12

∂akl

]
ij

+ 2
[
Q̂

]
ik

[
P̂
]
lj

+ 2

[
Q̂Â

∂P̂
∂aij

]
kl

+ 2

[
Q̂Â

∂P̂
∂akl

]
ij

. (4.38a)

∂2V
∂bij∂bkl

=

{
2
[
Q̂

]
ik
, l = j

0, l � j
, (4.38b)

∂2V
∂cij∂ckl

=

⎧⎪⎪⎨⎪⎪⎩2
[
P̂
]
lj
, i = k

0, i � k
, (4.38c)

∂2V
∂dij∂dkl

=

{
2, i = k, j = l
0, otherwise

, (4.38d)

∂2V
∂aij∂bkl

=2

[
Q̂Â

∂P̂
∂bkl

]
ij

+ 2

[
QT

12A
∂P12

∂bkl

]
ij

, (4.38e)

∂2V
∂cij∂akl

=2

[
Ĉ

∂P̂
∂akl

]
ij

− 2
[
C
∂P12

∂akl

]
ij

, (4.38f)

∂2V
∂cij∂bkl

=2

[
Ĉ

∂P̂
∂bkl

]
ij

− 2
[
C
∂P12

∂bkl

]
ij

, (4.38g)

∂2V
∂aij∂dkl

=
∂2V

∂bij∂dkl
=

∂2V
∂cij∂dkl

= 0. (4.38h)
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The explicit equations for the cost function, the gradient and the Lyapunov equa-

tions for the case when having both input and output filters are included in Ap-

pendix 4.B.2.

4.4.2 Robust Model Reduction

In the previous section, it has been tacitly assumed that the given data, (i.e., the

state-space matrices) are exact. In a more realistic setting, the presence of er-

rors (e.g., modeling, truncation or round-off) in these data can be assumed. The

question is how to cope with these errors and take them into account. This can

for example be done using robust optimization. However, this is a very difficult

problem, see, e.g., Bertsimas et al. [2011] or Ben-Tal and Nemirovski [2002]. In

this section, a different view of robust optimization is investigated, that is to use

regularization as a proxy for robust optimization, which can be seen as a worst-

case optimization approach.

Before presenting the equations for the regularized model-reduction problem,

the idea is first presented by using a more general description to get an intuition

for the idea. The idea is then exemplified using a least-squares (ls) problem and

a quadratic programming (qp) problem.

Regularization can be used to make ill-posed problems well posed or to make a

solution less sensitive when having small amount of data. Commonly used reg-

ularization methods are for example �1- and �2-regularization, for least-squares
problems referred to, in the �1-case as lasso and in the �2-case Tikhonov regular-

ization or ridge regression, see e.g., Hastie et al. [2001]. In these regularizations

an extra term, Vrob(x), is added to the cost function, Voriginal(x), to penalize the

�1- or �2-norm of the sought variables, i.e.,

Vreg(x) = Voriginal(x) + λVrob(x). (4.39)

The regularization parameter, here denoted λ, is seen as a design parameter and

is in most cases hard to tune (see for example Bauer and Lukas [2011]).

Inmany applications, there is no a priori knowledge about the variables, e.g., that

they should be small (typically achieved by �2-regularization) or that the solution
should be sparse (typically achieved using �1-regularization). Instead, one would

like to make the solution less sensitive to uncertainties. As mentioned above, in

this section, regularization will be used as a proxy for robust optimization. The

idea is to penalize the first-order derivative (with respect to data) of the cost

function to make it less sensitive to uncertainties in data. This can be interpreted

as doing a first-order approximation of the general robust optimization problem

minimize
x

max
||Λ||2≤λ

V (x, ŷ), ŷ � y + Λ, (4.40)

where ŷ ∈ R
m is the given data, y ∈ R

m is the unperturbed data, Λ ∈ R
m repre-

sents the uncertainty in the data and x ∈ R
n is the sought variable. To see how

a regularization can be an approximation of the robust optimization problem, a

Taylor expansion of the cost function with respect to the data is made. Assuming

that the cost function is differentiable in the data variables, the cost function can
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be expressed as

V (x, ŷ) = V (x, y) + (ŷ − y)T∇ŷV (x, y) + O(||ŷ − y||22)
= V (x, y) + ΛTfŷ(x, y) + O(||Λ||2). (4.41)

Limiting the uncertainty to be bounded, i.e., ||Λ||2 ≤ λ, and computing the maxi-

mum of (4.41), yields

max
||Λ||2≤λ

V (x, ŷ) = max
||Λ||2≤λ

V (x, y) + ΛT∇ŷV (x, y) + O(||Λ||22)
= V (x, y) + λ

∣∣∣∣∣∣∇ŷV (x, y)
∣∣∣∣∣∣
2
+ O(λ2). (4.42)

To make this more clear, some examples are presented for an ls problem and a

qp problem.

Example 4.2: Robust ls and qp
Let us start with one of the most common problems, an ls problem. Assume that

the data A and b are given and a solution x, fulfilling

x � argmin
x

V (x,A,b) = argmin
x

(Ax − b)T (Ax − b) , (4.43)

is sought. To see how, for example, the A-matrix influence the cost function, the

cost function is differentiated with respect to A, i.e.

∂V (x,A,b)
∂aij

= 2 tr
(
eje

T
i [Ax − b] xT

)
, (4.44)

where aij is the (i, j) element in A. This yields

∂V (x,A,b)
A

= 2 (Ax − b) xT. (4.45)

Hence, ∣∣∣∣∣
∣∣∣∣∣∂V (x,A,b)

A

∣∣∣∣∣
∣∣∣∣∣
2
= 2 ||Ax − b||2 ||x||2 . (4.46)

An interesting fact about the term in (4.46) is that it can be rewritten as

2 ||Ax − b||2 ||x||2 = 2
||Ax − b||2
||x||2 ||x||22 = μ(x) ||x||22 ,

where μ(x) resembles Miller’s choice of regularization parameter (see El Ghaoui

and Lebret [1997] or Miller [1970]). InMiller [1970] the regularization parameter

μ(x) is determined iteratively.

It is also possible to differentiate with respect to b in the ls problem. This term,

together with the terms coming from differentiating with respect to H and f in a

qp problem

V (x;H, f) = xTHx + fTx, (4.47)

are collected in Table 4.1.
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Table 4.1: The different regularization terms for the different variables in

the special cases, ls problem and qp problem

Problem Variable Uncertainty in Reg. term

ls A ||Λ||F ≤ λ λ ||x||2 ||Ax − b||2 = λ ||Ax−b||2||x||2 ||x||22
ls b ||Λ||2 ≤ λ λ ||Ax||2
qp H (not sym.) ||Λ||F ≤ λ 1

2λ ||x||22
qp H (sym.) ||Λ||F ≤ λ λ ||x||22

√
1 − 3

4
tr(xxT�xxT)
||x||42

qp f ||Λ||2 ≤ λ λ ||x||2

Now, the regularization strategy explained above will be used as an extension

to the special case of the model-reduction method in Section 4.4.1, having no

weighting filters. To reduce the influence of errors in data, the unregularized cost

function (4.27) is regularized by adding three new terms. These are the Frobenius

norms of the derivatives of the cost function with respect to the given data,A, B,C
and D, i.e., the solution obtained is inclined to be less sensitive to uncertainties

in the data.

The optimization problem with these new terms becomes

min
Â,B̂,Ĉ,D̂

||E||2H2
+ Vrob, E = G − Ĝ, (4.48)

where

Vrob = εA

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂ ||E||2H2

∂A

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F

+εB

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂ ||E||2H2

∂B

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F

+εC

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂ ||E||2H2

∂C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F

+εD

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂ ||E||2H2

∂D

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F

. (4.49)

Note that here the term Vrob includes the regularization parameters, εA, εB, εC
and εD.

Vrob becomes different in the continuous-time case and the discrete-time case. By

exploiting the symmetry in (4.27), (4.28) and (4.29) with respect to (Â, B̂, Ĉ) and
(A,B,C) we obtain, in continuous time that Vrob is

Vrob = 2
(
εA

∣∣∣∣∣∣QP +Q12P
T
12

∣∣∣∣∣∣
F
+ εB

∣∣∣∣∣∣QB +Q12B̂
∣∣∣∣∣∣
F
+ εC

∣∣∣∣∣∣CP − ĈPT
12

∣∣∣∣∣∣
F

)
, (4.50)

and in the discrete-time cases it becomes

Vrob = 2
(
εA

∣∣∣∣∣∣QAP +Q12ÂP
T
12

∣∣∣∣∣∣
F
+ εB

∣∣∣∣∣∣QB +Q12B̂
∣∣∣∣∣∣
F

+ εC
∣∣∣∣∣∣CP − ĈPT

12

∣∣∣∣∣∣
F
+ εD

∣∣∣∣∣∣D − D̂∣∣∣∣∣∣
F

)
. (4.51)

By differentiating the cost function (4.48) it is possible to state the necessary con-

ditions for optimality, both for the continuous-time case and the discrete-time

case.
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Theorem 4.6 (Necessary conditions for optimality in continuous time). As-

sume that G and Ĝ are asymptotically stable and that E is strictly proper, for the

H2-norm to be defined. In order for the matrices Â, B̂ and Ĉ to be optimal for

(4.48), in continuous time, it is necessary that they satisfy the equations in (4.29)

and the equations

ÂTW1 +W1A +QT
12

(
QP +Q12P

T
12

)
= 0, (4.52a)

AW2 +W2Â
T +

(
QP +Q12P

T
12

)
P12 = 0, (4.52b)

AW3 +W3Â
T +

(
QB +Q12B̂

)
B̂T = 0, (4.52c)

ÂTW4 +W4A + ĈT
(
ĈPT

12 − CP
)
= 0, (4.52d)

and that

∂ ||E||2H2

∂Â
+
∂Vrob

∂Â
= 0, (4.53a)

∂ ||E||2H2

∂B̂
+
∂Vrob

∂B̂
= 0, (4.53b)

∂ ||E||2H2

∂Ĉ
+
∂Vrob

∂Ĉ
= 0. (4.53c)

With

∂Vrob

∂Â
=4εA

W1P12 +QT
12W2∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂A

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εB
QT

12W3∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂B

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εC
W4P12∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂C

∣∣∣∣∣
∣∣∣∣∣
F

,

∂Vrob

∂B̂
=4εA

W1B∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂A

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εB
QT

12

(
QB +Q12B̂

)
∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂B

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εC
W4B∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂C

∣∣∣∣∣
∣∣∣∣∣
F

,

∂Vrob

∂Ĉ
= − 4εA CW2∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂A

∣∣∣∣∣
∣∣∣∣∣
F

− 4εB CW3∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂B

∣∣∣∣∣
∣∣∣∣∣
F

− 4εC
(
CP − ĈPT

12

)
P12∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂C

∣∣∣∣∣
∣∣∣∣∣
F

,

and
∂||E||2H2

∂Â
,
∂||E||2H2

∂B̂
and

∂||E||2H2
∂Ĉ

as in (4.28).

Proof: If G and Ĝ are asymptotically stable, the equations in (4.29) and (4.52)

are uniquely solvable. The solutions to the equations in (4.29) and (4.52) are

needed to compute the cost function and its gradient. Now the gradient of the

cost function with respect to Â, B̂ and Ĉ has to be computed. The first part of the

gradient
∂||E||2H2

∂Â
,
∂||E||2H2

∂B̂
and

∂||E||2H2
∂Ĉ

has been computed in Theorem 4.2 and can

be found in (4.28). Only the equations for the gradient of the Vrob-part is left to

be calculated, since this part enters as an additive term in the cost function. The

calculations of this part of the gradient are moved to Appendix 4.A.
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An analogous result can be stated in discrete time.

Theorem 4.7 (Necessary conditions for optimality in discrete time). Assume

that G and Ĝ are asymptotically stable, for the H2-norm to be defined. In order

for the matrices Â, B̂, Ĉ and D̂ to be optimal for (4.48), in discrete time, it is

necessary that they satisfy the equations in (4.37) and the equations

ÂTW1A −W1 + ÂTQT
12

(
QAP +Q12ÂP

T
12

)
= 0, (4.55a)

AW2Â
T −W2 +

(
QAP +Q12ÂP

T
12

)
P12Â

T = 0, (4.55b)

AW3Â
T −W3 +

(
QB +Q12B̂

)
B̂T = 0, (4.55c)

ÂTW4A −W4 + ĈT
(
ĈPT

12 − CP
)
= 0, (4.55d)

QT
12

(
Q12ÂP

T
12 +QAP

)
P12 = W5, (4.55e)

and that

∂ ||E||2H2

∂Â
+
∂Vrob

∂Â
= 0, (4.56a)

∂ ||E||2H2

∂B̂
+
∂Vrob

∂B̂
= 0, (4.56b)

∂ ||E||2H2

∂Ĉ
+
∂Vrob

∂Ĉ
= 0. (4.56c)

With

∂Vrob

∂Â
=4εA

W5 +W1AP12 +QT
12AW2∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂A

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εB
QT

12AW3∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂B

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εC
W4AP12∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂C

∣∣∣∣∣
∣∣∣∣∣
F

,

∂Vrob

∂B̂
=4εA

W1B∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂A

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εB
QT

12

(
QB +Q12B̂

)
∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂B

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εC
W4B∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂C

∣∣∣∣∣
∣∣∣∣∣
F

,

∂Vrob

∂Ĉ
= − 4εA CW2∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂A

∣∣∣∣∣
∣∣∣∣∣
F

− 4εB CW3∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂B

∣∣∣∣∣
∣∣∣∣∣
F

− 4εC
(
CP − ĈPT

12

)
P12∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂C

∣∣∣∣∣
∣∣∣∣∣
F

,

∂Vrob

∂D̂
=4εD

D̂ −D∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂D

∣∣∣∣∣
∣∣∣∣∣
F

,

and
∂||E||2H2

∂Â
,
∂||E||2H2

∂B̂
and

∂||E||2H2
∂Ĉ

as in (4.36).

Proof: The proof is analogous with the one for Theorem 4.6.
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4.4.3 Frequency-Limited Model Reduction

The method proposed in this section is a new method that was introduced in

Petersson and Löfberg [2012a]. The method relies heavily on the theory in Chap-

ter 3. The variants of this method for continuous and discrete time are similar

and, therefore, the continuous-time case will be presented in full detail and we

will not provide as much detail for the discrete-time case.

The method proposed in this section is a model-reduction method that given

a model G, finds a reduced order model Ĝ, which is a good approximation of

G on a chosen frequency interval, e.g., [0, ω]. The objective is to minimize the

discrepancy between the given model and the sought reduced-order model in a

frequency-limitedH2-norm, using the frequency-limited Gramians. Correspond-

ingly, the optimization problem for this purpose is as follows

Ĝ = argmin
Ĝ

||E||2H2,ω
, E = G − Ĝ, (4.58)

where ||E||2H2,ω
is defined in Chapter 3.

Given the realization in (4.7), the error system can be realized, in state-space

form, as

E :

[
AE BE
CE DE

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
A 0
0 Â

) (
B
B̂

)
(
C −Ĉ

)
D − D̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4.59)

Continuous Time

In the continuous-time case, the cost function of the optimization problem in

(4.58) can be rewritten as, see Section 3.2.1

||E||2H2,ω
= trCEPE,ωC

T
E + 2 tr

[(
CESE,ωBE +DE

ω
2π

)
DT

E

]
(4.60a)

= trBT
EQE,ωBE + 2 tr

[(
CESE,ωBE +DE

ω
2π

)
DT

E

]
. (4.60b)

where

AEPE,ω + PE,ωA
T
E + SE,ωBEB

T
E + BEB

T
ES
∗
E,ω = 0, (4.61a)

AT
EQE,ω +QE,ωAE + S∗E,ωCT

ECE + CT
ECESE,ω = 0, (4.61b)

with

SE,ω = Re

[ i
2π

ln (−AE − iωI)

]
. (4.62)

Now, the cost function (4.60) can be rewritten using the inherent structure in the

problem. This is done by using the realization given in (4.59) and by partitioning
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the Gramians PE,ω and QE,ω as

PE,ω =

(
Pω P12,ω

PT
12,ω P̂ω

)
, QE,ω =

(
Qω Q12,ω

QT
12,ω Q̂ω

)
, (4.63)

and SE,ω as

SE,ω =

(
Sω 0
0 Ŝω

)
. (4.64)

Pω,Qω, P̂ω, Q̂ω,P12,ω and Q12,ω satisfy, by (4.61), the Sylvester and Lyapunov

equations

APω + PωA
T + SωBB

T + BBTS∗ω = 0, (4.65a)

AP12,ω + P12,ωÂ
T + SωBB̂

T + BB̂TŜ∗ω = 0, (4.65b)

ÂP̂ω + P̂ωÂ
T + ŜωB̂B̂

T + B̂B̂TŜ∗ω = 0, (4.65c)

ATQω +QωA + S∗ωCTC + CTCSω = 0, (4.65d)

ATQ12,ω +Q12,ωÂ − S∗ωCTĈ − CTĈŜω = 0, (4.65e)

ÂTQ̂ω + Q̂ωÂ + Ŝ∗ωĈTĈ + ĈTĈŜω = 0, (4.65f)

with

Sω = Re

[ i
2π

ln (−A − iωI)

]
, Ŝω = Re

[ i
2π

ln
(
−Â − iωI

) ]
. (4.66)

Note that Pω and Qω satisfy the Lyapunov equations for the frequency-limited

controllability and observability Gramians for the given model, and P̂ω and Q̂ω
satisfy the Lyapunov equations for the frequency-limited controllability and ob-

servability Gramians for the sought model, see Section 3.1.1.

With the partitioning of PE,ω and QE,ω, it is possible to rewrite (4.60) in two

alternative forms

||E||2H2,ω
= tr

(
BTQωB + 2BTQ12,ωB̂ + B̂TQ̂ωB̂

)
+ 2 tr

[
CSωB +D

ω
2π
−

(
ĈŜωB̂ + D̂

ω
2π

) ] (
DT − D̂T

)
, (4.67a)

||E||2H2,ω
= tr

(
CPωC

T − 2CP12,ωĈ
T + ĈP̂ωĈ

T
)

+ 2 tr

[
CSωB +D

ω
2π
−

(
ĈŜωB̂ + D̂

ω
2π

) ] (
DT − D̂T

)
. (4.67b)

Of course, as in Chapter 3, it is possible to have arbitrary segments in the fre-

quency domain, e.g., ||E||2H2,Ω
, Ω = [−ω4,−ω3] ∪ [−ω2,−ω1] ∪ [ω1, ω2] ∪ [ω3, ω4],

0 < ω1 < ω2 < ω3 < ω4. Important to note, is that if Ω does not contain an

infinite interval, then neither the given system to be reduced, G, nor the reduced

system, Ĝ, have to be strictly proper.

An appealing feature of the proposed optimization problem (4.58), is that the cor-

responding cost function, (4.67), is differentiable in the system matrices, Â, B̂, Ĉ
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and D̂. In addition, the closed-form expressions obtained when differentiating
the cost function is expressed in the given data (A,B,C and D), the optimization

variables (Â, B̂, Ĉ and D̂) and solutions to the equations in (4.65). This makes

it possible to formulate necessary conditions for optimality for the optimization

problem (4.58).

Theorem 4.8 (Necessary conditions for optimality). Assume that G and Ĝ are

asymptotically stable, for the frequency-limited H2-norm to be defined, i.e., A
and Â are Hurwitz. In order for the matrices Â, B̂, Ĉ and D̂ to be optimal for the

problem (4.58), it is necessary that they satisfy the equations in (4.65) and the

equations in (4.29) and that

∂ ||E||2H2,ω

∂Â
=2

(
QT

12,ωP12 + Q̂ωP̂
)
− 2W = 0, (4.68a)

∂ ||E||2H2,ω

∂B̂
=2

(
Q̂ωB̂ +QT

12,ωB − ŜTωĈT
[
D − D̂

] )
= 0, (4.68b)

∂ ||E||2H2,ω

∂Ĉ
=2

(
ĈP̂ω − CP12,ω −

[
D − D̂

]
B̂TŜTω

)
= 0, (4.68c)

∂ ||E||2H2,ω

∂D̂
= − 2

(
CSωB +D

ω
π
− ĈŜωB̂ − D̂ω

π

)
= 0, (4.68d)

where

W =Re

( i
π
L
(
−Â − iωI,V

) )T
, (4.68e)

V =ĈTĈP̂ − ĈTCP12 − ĈT
(
D − D̂

)
B̂T (4.68f)

with the function L( · , · ) being the Frechét derivative of the matrix logarithm, see

Higham [2008].

Proof: IfA and Â are Hurwitz, then the equations in (4.65) are uniquely solvable,

see Theorem 2.1. These are needed to compute the cost function and its gradient.

Now, the gradient of the cost function with respect to Â, B̂, Ĉ and D̂ have to be

calculated. However, this is done in Appendix 4.C, since the calculations are

quite long.

As in Section 4.4.1 the optimization problem in this section also becomes invari-

ant to the realization of the given model to be reduced, as can be seen in the

following theorem.

Theorem 4.9. The cost function in the optimization problem(4.58) and its gradi-

ent, given in Theorem 4.8, are invariant under state transformations of the system

G.

Proof: Given the realization of G in (4.7) and a transformations matrix T, the
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realization of the transformed system becomes

G =

[
Ā B̄
C̄ D̄

]
=

[
T−1AT T−1B
CT D

]
.

Realizing that Sω = T−1S̄ωT, since

Sω = Re

[ i
2π

ln (−A − iωI)

]
= Re

[ i
2π

ln
(
T−1

[
−Ā − iωI

]
T
) ]

= T−1 Re
[ i
2π

ln
([
−Ā − iωI

] ) ]
T = T−1S̄ωT,

the proof is analogous to the proof in Theorem 4.3.

Discrete Time

In the discrete-time case, the cost function in (4.58) can be written as, see Sec-

tion 3.2.2,

||G||2H2,ω
= trCPωC

T + tr ĈP̂ωĈ
T − 2 trCP12,ωĈ

T

+ 2 tr

(
CRωB +

ω
2
D − ĈR̂ωB̂ − ω

2
D̂

) (
D − D̂

)T
(4.69a)

= trBTQωB + 2 trBTQ12,ωB̂ + tr B̂TQ̂ωB̂

+ 2 tr
(
D − D̂

)T (
CRωB +

ω
2
D − ĈR̂ωB̂ − ω

2
D̂

)
, (4.69b)

where

APωA
T − Pω + SωBB

T + BBTSTω = 0, (4.70a)

ATQωA −Qω + STωC
TC + CTCSω = 0, (4.70b)

AP12,ωA
T − P12,ω + SωBB

T + BBTSTω = 0, (4.70c)

ATQ12,ωA −Q12,ω + STωC
TC + CTCSω = 0, (4.70d)

with

Sω =
1

2π
Re

(
ωI − 2i ln

(
I −Ae−iω

) )
, Ŝω =

1

2π
Re

(
ωI − 2i ln

(
I − Âe−iω

) )
,

(4.70e)

Rω = − 1
π
A−1 Re

(
i ln

(
I −Ae−iω

) )
, R̂ω = − 1

π
Â−1 Re

(
i ln

(
I − Âe−iω

) )
. (4.70f)

For the discrete-time case it is also possible to calculate a closed form expression

for the gradient of the cost function, and again this makes it possible to formulate

necessary conditions for optimality.

Theorem 4.10 (Necessary conditions for optimality). Assume that G and Ĝ
are asymptotically stable, for the frequency-limited H2-norm to be defined, i.e.,

A and Â are Schur. In order for the matrices Â, B̂, Ĉ and D̂ to be optimal for the

problem in (4.58), it is necessary that they satisfy the equations in (4.70) and the
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equations in (4.37) and that

∂ ||E||2H2,ω

∂Â
=2

(
QT

12,ωAP12 + Q̂ωÂP̂
)
+W

+ 2Â−TĈT
(
D − D̂

)
B̂TR̂T = 0, (4.71a)

∂ ||E||2H2,ω

∂B̂
=2

(
Q̂ωB̂ +QT

12,ωB − R̂T
ωĈ

T
[
D − D̂

] )
= 0, (4.71b)

∂ ||E||2H2,ω

∂Ĉ
=2

(
ĈP̂ω − CP12,ω −

[
D − D̂

]
B̂TR̂T

ω

)
= 0, (4.71c)

∂ ||E||2H2,ω

∂D̂
= − 2

(
CRωB +Dω − ĈR̂ωB̂ − D̂ω

)
= 0, (4.71d)

where

W =Re

( i
π
e−iπωL

(
I − Âe−iω,V

) )T
, (4.72a)

V =P̂ĈTĈ − PT
12C

TĈ − B̂
(
D − D̂

)T
ĈÂ−1 (4.72b)

with the function L( · , · ) being the Frechét derivative of the matrix logarithm, see

Higham [2008].

Proof: The proof is analogous to the proof for Theorem 4.8 for continuous time.

Theorem 4.11. The cost function to the optimization problem (4.6) and its gra-

dient, given in Theorem 4.10, are invariant under state transformations of the

system G.

Proof: Realizing that Sω = T−1S̄ωT and Rω = T−1R̄ωT, makes the proof analo-

gous to the proof in Theorem 4.3.

4.5 Computational Aspects of the Optimization
Problems

In this section, suggestions for how to initialize the optimization and how the op-

timization can be performed efficiently, by using the inherent structure to speed

up the computations, will be presented.

For all the methods that have been presented in Section 4.4, a cost function has

been given and necessary conditions for optimality. The gradients for all the

methods are readily extracted from the necessary conditions for optimality for

the methods. With this information it is straightforward to, for example, use any

quasi-Newton solver, see Section 2.2.1, to solve the optimization problem in (4.6).

For two special cases, the Hessians were also calculated, which can be used to
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Figure 4.3: Models in parallel

initialize the Hessian in the quasi-Newton solver. Computing the Hessian in all

iterations would be to computationally expensive.

4.5.1 Structure in Variables

In some cases, the system matrices A,B,C and D have a certain structure, that is

desired to preserve while computing Ĝ. In other words, it is desirable to have a

similar structure in the system matrices for Ĝ, i.e., Â, B̂, Ĉ and D̂. For example,

assume that G has the structure as given in Figure 4.3, with two systems in par-

allel where we want to use model reduction on the system G, but also keep the

internal parallel structure. In this case a block diagonal Â-matrix is desired.

Looking at all the cost functions in Section 4.4, there is nothing holding us back

from introducing structure in the system matrices, e.g., block diagonal Â, when

formulating our optimization problem. The question is if the derived gradients

are still usable when having structure in the system matrices, and the answer is,

yes. This is because all the steps in deriving the gradients have been done element

wise for all the system matrices. If, for example, a diagonal Â is desirable, only

the diagonal elements in the gradient for Â are relevant and are hence used. In

general, for this purpose, the so called structure variables SÂ,SB̂,SĈ and SD̂, are
introduced, which holds the structure of the systemmatrices, i.e., element (i, j) in
SÂ is 1 if element (i, j) is a variable in the sought system matrix and 0 otherwise.

The gradients now become

∂ ||E||2H2,ω

∂Â
� SÂ,

∂ ||E||2H2,ω

∂B̂
� SB̂,

∂ ||E||2H2,ω

∂Ĉ
� SĈ,

∂ ||E||2H2,ω

∂D̂
� SD̂,

where � denotes the Hadamard (element wise) product of two matrices.

Furthermore, with Â, B̂, Ĉ and D̂ initialized with structure according to SÂ,SB̂,SĈ
and SD̂, the structure will remain when moving along a quasi-Newton step.

4.5.2 Initialization

The optimization problem in (4.6), is both nonlinear and non-convex, see, for

instance, Example 4.1. This makes the initialization an important part of the
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problem. For the methods proposed in this chapter, the model used for initial-

ization has to be asymptotically stable. Since there exists numerous methods for

model reduction, which are easily computed and produces asymptotically stable

reduced models, e.g., balanced truncation, see Section 4.2, any of them can be

used to create a model for initialization. In the special cases, in Section 4.4.1,

where there are no input or output filters, even more can be done for the initial-

ization. Looking at the cost functions, (4.27) and (4.35), one sees that the cost

functions becomes quadratic in B̂ (or Ĉ) if Â and Ĉ (or Â and B̂) are fixed, and

since Q̂ (and P̂) is positive semidefinite, the quadratic program is solvable. Hence,

first a basic initialization is used to obtain a model with the correct number of

states, e.g., using balanced truncation. This model is then used in the quadratic

program described above to obtain a better initialization for B̂ and Ĉ.

4.5.3 Structure in Equations

In this section, the inherent structure in the equations will be used to speed up

the computations. First, remember that the problem is a model reduction prob-

lem, and in most cases n̂ << n. The analysis in this section will be based on the

continuous-time case, but the same results are also valid for the discrete-time

case. Consider the cost function for the general case, when using input and out-

put filters, (4.98). The terms DT
i B

TQBDi and DoCPCTDT
o do not depend on any

of the optimization variables and are the only terms that include the matrices P
and Q (see (4.96), (4.97) and (4.98)). Hence, P and Q does not have to be com-

puted. The same applies for the terms BTQωB and CPωCT and the matrices Pω
and Qω in (4.65).

In all the presented methods, for every iteration in the solver, both the cost func-

tion and its gradient have to be computed. To do this a number of Lyapunov and

Sylvester equations have to be solved. This is where most of the computational

time is spent. Therefore, before starting to analyze what is done in every iteration,

a brief explanation on how to solve a general Sylvester equation is presented. A

general Sylvester equation can be written as

AX + XB + C = 0, A ∈ Rn×n, B ∈ Rn̂×n̂, C ∈ Rn×n̂. (4.73)

The first main step when solving a Sylvester equation is to Schur factorize (see

e.g., Golub and Van Loan [1996] or Bartels and Stewart [1972]) A and B, which

can be done in O(n3) operations for A and O(n̂3) operations for B. Now the equa-

tion

ASXS + XSBS = CS (4.74)

has to be solved, where AS = UTAU and BS = VTBV are block upper triangular,

computed using the Schur factorization and CS = UTCV and XS = UTXV. It is

not hard to verify that the new system of linear equations, (4.74), can be solved in

O(n2n̂ + nn̂2) complexity, and the solution to (4.73) is computed as, X = UXSVT

which also costs O(n2n̂ + nn̂2). It can be concluded that when solving several

Sylvester equations with the same factors A and B but different C:s, speed can

be gained in the computations if A and B are Schur factorized before solving the
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equations. It can also be concluded that it is computationally muchmore efficient

to use the structure in the realizations (4.12) and (4.59) and split up the large

Lyapunov equations for PE and QE in a number of smaller Lyapunov/Sylvester

equations, as described in (4.96) and (4.97), which can be solved much more effi-

ciently.

For the methods in Section 4.4.1 and Section 4.4.3, which are invariant under

state transformations, the given system G (and the input and/or output filter

if they are present) can be transformed to a basis such that the A-matrices are

upper triangular (Schur factorize the A-matrices). In other words, given a Schur

factorization of A, such that A = UĀUT, where Ā is block upper triangular and U
is orthogonal, we can transform the system as follows,

G =

[
UTAU UTB
CU D

]
=

[
Ā B̄
C̄ D̄

]
, (4.75)

and use this realization during the iterations. Additionally, looking at the Lya-

punov/Sylvester equations needed to be solved (equations (4.96) and (4.97) or

equations (4.65) or (4.52)), one observes that they all have the same underlying

structure, i.e., their factors in the equations are A, Â, Ai , and Ao. Assuming that

A (and Ai and Ao) is given in real Schur form, then for every iteration only the

matrix Â has to be Schur factorized, which is small compared to A, to be able to

solve all Lyapunov/Sylvester equations at a maximum cost of O(n2n̂ + nn̂2).

4.6 Examples

In this section, some examples that show the applicability of the proposed meth-

ods will be presented. Where it is possible, comparisons with other relevant meth-

ods will be made. To be able to measure how well different methods perform, the

relative error for the particular norm in use will be utilized, i.e.,∣∣∣∣∣∣G − Ĝ∣∣∣∣∣∣H
||G||H . (4.76)

To shorten the names and make the figures more readable our proposed methods

will be denoted as

• h2nl– the ordinary model-reduction method without weights, described

in Section 4.4.1

• wh2nl– the ordinary model-reduction method with weights, described in

Section 4.4.1

• flh2nl– the frequency-limited model-reduction method, described in Sec-

tion 4.4.3

• rh2nl– the robust model-reduction method, described in Section 4.4.2

The methods that will be used for comparison, in the different examples, are
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• bt– ordinary balanced truncation, the implementation used is the function

schurmr in Robust Control Toolbox in Matlab

• wbt– weighted balanced truncation, an implementation of the method in

Enns [1984]

• flbt– frequency-limited balanced truncation, an implementation of the

method in Gawronski and Juang [1990]

• mflbt– modified frequency-limited balanced truncation, an implementa-

tion of the method in Gugercin and Antoulas [2004]

• itia– iterative tangential interpolation algorithm, the implementation in

the more-toolbox is used (see Poussot-Vassal and Vuillemin [2012])

• istia– iterative svd-tangential interpolation algorithm (see Poussot-Vassal

and Vuillemin [2012]), the implementation in the more-toolbox is used

• flistia– frequency-limited iterative tangential interpolation algorithm(see

Vuillemin et al. [2013]), the implementation in the more-toolbox is used

We start with an example to illustrate that the balanced truncation method can

be used for initialization of the proposed methods.

Example 4.3: H2 Model Reduction
In this example 10000 random asymptotically stable and strictly proper siso sys-

tems with 20 states using the function rss in Control System Toolbox inMatlab
are generated. On each of these systems, the number of states are reduced to 10

with h2nl and bt. When reducing the order of a system with h2nl, the reduced
model from bt is used as the initial point. In this caseh2nlworks as a refinement

step on top of bt.

In Figure 4.4, two histograms are plotted. They show the histograms of the en-

tities
||G−Ĝbt||H2∣∣∣∣∣∣G−Ĝh2nl∣∣∣∣∣∣H2 and

||G−Ĝbt||H∞∣∣∣∣∣∣G−Ĝh2nl∣∣∣∣∣∣H∞ respectively. In other words, they show how

much the systems reduced using bt have been improved, in H2-norm and H∞-
norm, using h2nl. h2nl works well as a model-reduction method and can in

most cases decrease the model reduction error 1-6 times, measured in the H2-

norm. The average improvement in H2-norm is 4.15. Observe that also the H∞-
norm can be improved when using h2nl, this is because of the fact that bt is not
a solution to a minimum norm, H2 or H∞, problem. In average a run with h2nl
takes 1.82 seconds and with bt it takes 0.07 seconds.

We continue with two more examples based on a medium-scale model of a clamp-

ed beam. For the first example we use ordinary model reduction without weights

and for the second one the frequency-limited model-reduction method is uti-

lized.
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Figure 4.4: The figure illustrates, in two histograms, how much a system

reduced using bt has been improved using h2nl. The x-axis is the quotient
between the H∞-norm and H2-norm of the error system from using bt and

the error system from using h2nl, i.e.,
||G−Ĝbt||H∣∣∣∣∣∣G−Ĝh2nl∣∣∣∣∣∣H .

Example 4.4: Clamped BeamModel, varying order
In this example a model of a clamped beam, a siso model with 348 states which

can be found in Leibfritz and Lipinski [2003], is used. The model will be reduced

to different orders, nr ∈ [4, 30], with h2nl. The reduced models using h2nl will

be compared with models reduced using istia, itia and bt. In the left plot of

Figure 4.5, it can be observed that for small nr , h2nl, itia and istia are better

than bt, for the H2-norm, and for larger nr the error approaches zero for all

methods. It can also be observed, in the right plot of Figure 4.5, that, even though

we are minimizing theH2-norm, theH∞-norm remains small for all the methods.

Example 4.5: Clamped BeamModel, limited frequency interval
In this example, the model of the clamped beam from the previous example is

reused. This time, instead of trying different orders, the focus will be on finding

reduced models for different frequency intervals, [0, ω], ω ∈ [2, 40] and fix the

reduced-order model to have 12 states, nr = 12. The proposed method flh2nl
will be used and it will be compared with the frequency-limited methods flistia,
flbt and mflbt. Additionally, the methods wh2nl and wbt will be used, both

with a tenth order Butterworth low-pass filter, with the cut-off frequency equal

to ω. Looking at the left plot of Figure 4.6, it can be observed that for small ω,

all the H2 optimal methods do very well. However, for ω > 7, h2nl gives better
result than all the other methods. As in the previous example, the relative H∞-
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Figure 4.5: Reduction of a clamped beam model to different orders using
h2nl, itia, istia and bt. To the left, the relative H2 error and to the right
the relative H∞ error.

norm remains low, for almost all ω, the H2 optimal methods have better relative
H∞-error than the methods using balanced truncation.

Now, two smaller examples are presented to show how models coming from
frequency-limited methods can look in the frequency region of interest and out-
side this region. We start with a small toy example.

Example 4.6: Small toy example
This example considers a small model with four states. The model is composed

of two second-order models in series, one with a resonance frequency at ω = 1
and the other at ω = 3. The frequency range is limited to ω ∈ [0, 2] to try to only
capture the first model. The model used is

G = G1G2 =
1

s2 + 0.2s + 1
9

s2 + 0.003s + 9
. (4.77)

The methods flh2nl, flistia, flbt and mflbt are compared. These methods
are also compared with the methods wh2nl and wbt using a tenth order low-
pass Butterworth filter with a cut-off frequency of 2, see Figure 4.7. The results
from the different methods can be seen in Figure 4.8, Figure 4.9 and Table 4.2.
As can be seen in the result, flh2nl, wh2nl, flistia and flbt are successful
in finding a good model for the relevant frequencies, especially flh2nl, which
is almost six times better, in H2-norm, than the second best model, wh2nl, see
Table 4.2. mflbt captures the wrong resonance mode (from our perspective) and
fails completely in the lower frequency region, and wbt misses to capture the
gain at both the resonance frequency and at the cut-off frequency. Interesting to
note is how the methods, that does a good job, sacrifices the model fit at higher
frequencies for the lower.
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Figure 4.6: Reduction of a clamped beam model to 12 states with focus
on the frequency interval [0, ω], ω ∈ [2, 40] using flh2nl, wh2nl, flistia,
flbt and mflbt. The filter used for the weighted methods is a tenth order
Butterworth low-pass filter with cut-off frequency ω. To the left, the relative
H2 error and to the right the relative H∞ error.
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Figure 4.7: The true and filtered model and the low-pass filter for Example
4.6. The dashed vertical line denotes ω = 2.
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Figure 4.8: The true and reduced-order models for Example 4.6. The dashed
vertical line denotesω = 2. flh2nl,wh2nl, flistia and flbt are successful
in finding a good model for the relevant frequencies while mflbt and wbt
fails.
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Figure 4.9: The error models for the different methods for Example 4.6. The
dashed vertical line denotes ω = 2. flh2nl, wh2nl, flistia and flbt are
successful in finding a good model for the relevant frequencies whilemflbt
andwbt fails.
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Table 4.2: Numerical results for Example 4.6
||G−Ĝ||H2 ,ω
||G||H2 ,ω

||G−Ĝ||H∞ ,ω
||G||H∞ ,ω

Reλmax

wbt 3.01e-01 2.91e-01 -1.00e-01
mflbt 1.00e+00 1.00e+00 -1.51e-03
flbt 6.31e-02 4.00e-02 -9.93e-02

flistia 6.38e-02 3.96e-02 -9.99e-02
flh2nl 1.02e-02 1.15e-02 -1.01e-01
wh2nl 5.97e-02 3.95e-02 -1.00e-01
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Figure 4.10: The true and filtered model and the band-pass filter for Exam-
ple 4.7. The dashed vertical lines denote ω = 10 and ω = 10000.

Example 4.7: CD player
This example uses a slightly larger model, a model of a compact-disc player with
120 states and two inputs and two outputs, see Leibfritz and Lipinski [2003]. In
this example, to illustrate the result in the same way as in the previous example,
only one siso part of the transfer function is chosen, namely the transfer function
from the second input to the first output of the model. Here, focus will be on a
banded frequency interval, ω ∈ [10, 1000] where the main peak gain is, see Fig-
ure 4.10. The methods that will be compared are the frequency-limited methods
flbt, mflbt, flistia and flh2nl and the weighted methods wbt and wh2nl
with a tenth order Butterworth band-pass filter with cut-off frequencies equal to
ω = 10 and ω = 1000. Looking at the results in Figure 4.11, Figure 4.12 and Ta-
ble 4.3 all the methods, except flistia, does a good job, and again flh2nl finds
the best model.
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Figure 4.11: The true and reduced order models for Example 4.7. The
dashed vertical lines denote ω = 10 and ω = 10000. flh2nl, wh2nl,
mflbt, wbt and flbt are successful in finding a good model for the rele-
vant frequencies. However, in this example the method flistia fails.
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Figure 4.12: The error models for the different methods for Example 4.7.
The dashed vertical lines denote ω = 10 and ω = 10000. flh2nl, wh2nl,
mflbt,wbt and flbt are successful in finding a good model for the relevant
frequencies. However, in this example the method flistia fails.
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Table 4.3: Numerical results for Example 4.7

||G−Ĝ||H2 ,ω||G||H2 ,ω
||G−Ĝ||H∞ ,ω

||G||H∞ ,ω
Re λmax

wbt 1.24e-03 9.50e-04 -5.55e+00

mflbt 1.25e-03 9.43e-04 -5.54e+00

flbt 1.24e-03 9.41e-04 -5.54e+00

flistia 8.23e-02 5.64e-02 -2.26e-01

flh2nl 6.95e-04 6.83e-04 -5.63e+00

wh2nl 8.94e-04 7.76e-04 -5.80e+00

Example 4.8: CD player with perturbed poles
In this example, the model of the CD player from the last example is used again.

However, in this case the system matrices of the model are perturbed such that

Apert = A + EA �A,

Bpert = B + EB � B,

Cpert = C + EC � C,

where the elements in EA, EB and EC are independent random variables with

the distribution N
(
0, 0.052

)
. The perturbed model will be reduced to a fifteenth

order model using h2nl. This will be compared with reducing the model with

rh2nl with different values of the regularization parameter. This procedure is

repeated 250 times with different realizations of the random variables and the

average is computed. The result from the optimization can be seen in Figure 4.13.

In this figure, the average relative error between the true, unperturbed, model

and the reduced models, as a function of the regularization parameter, for rh2nl
and h2nl are plotted.

In Figure 4.13 one observes that for the tested values of the regularization param-

eters it is possible, in this case, to find a better model. Even for the H∞-norm, it

is possible to find a model that performs better than the unregularized method.

Some more examples using model reduction methods will be performed in Chap-

ter 7, where two larger examples are presented which need more background.

4.7 Conclusions

In this chapter, three model-reduction methods (in both continuous and discrete

time) based on minimizing theH2-norm using optimization have been presented.

For these methods, both cost functions and gradients have been derived, which

makes it possible to efficiently use of-the-shelves quasi-Newton solvers. For a

few cases the Hessians have been derived, which also can be utilized in the quasi-

Newton solver. The derivation of the methods enables us to impose structural
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Figure 4.13: The black line is the average relative error, over different per-
turbations, for rh2nl using different values of the regularization parameter
and the blue line is the average relative error, over different perturbations,
for h2nl (H2-norm in the left plot and H∞-norm in the right).

constraints, e.g., block diagonal Â-matrix, in the system matrices. Additionally,
a number of examples showing the applicability of the methods, both for small
and medium-scale problems have been presented, for which the methods have
performed well.

One of the drawbacks with the methods is the non-convexity of the problem.
One way to possibly reduce the influence of the non-convexity is to have a better
initialization, which is a subject of further research. However, for the examples
presented in this chapter the proposed initialization procedure seems to work.



Appendix

4.A Gradient of Vrob

In this appendix, the derivation of the gradient, with respect to Â, B̂ and Ĉ, for
Vrob in (4.49) in Section 4.4.2 will be presented, where

Vrob = εA

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂ ||E||2H2

∂A

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F

+εB

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂ ||E||2H2

∂B

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F

+εC

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂ ||E||2H2

∂C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F

+εD

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂ ||E||2H2

∂D

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F

. (4.78)

To differentiate Vrob, we first need the definition of the Frobenius norm. Given a

function f (x), the Frobenius norm is defined as

||f (x)||F �
√
tr f (x)Tf (x). (4.79)

Differentiating ||f (x)||F with respect to x, yields

∂ ||f (x)||F
∂x

=

∂
∂x tr f (x)

Tf (x)

2 ||f (x)||F
. (4.80)

This means that the still unknown part when calculating
∂||f (x)||F

∂x given f (x), is the
numerator part. Given the structure of Vrob in (4.78) this means that to obtain an

expression for Vrob, we need to calculate, for example, terms like

∂

∂Â
tr

⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣∂ ||E||

2
H2

∂A

⎤⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎣∂ ||E||

2
H2

∂A

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ .

In this appendix, elements in the matrices Â, B̂ and Ĉwill be denoted with aij , bij
and cij respectively.
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To simplify the equations later on, four new Sylvester equations are defined,

ÂTW1 +W1A +QT
12

(
QP +Q12P

T
12

)
= 0, (4.81a)

AW2 +W2Â
T +

(
QP +Q12P

T
12

)
P12 = 0, (4.81b)

AW3 +W3Â
T +

(
QB +Q12B̂

)
B̂T = 0, (4.81c)

ÂTW4 +W4A + ĈT
(
ĈPT

12 − CP
)
= 0, (4.81d)

whose origin will become clear soon. Differentiated versions of the equations in

(4.29) will also be needed

A
∂P12

∂aij
+
∂P12

∂aij
ÂT + P12

∂ÂT

∂aij
= 0, (4.82a)

ÂT∂Q
T
12

∂aij
+
∂QT

12

∂aij
A +

∂ÂT

∂aij
QT

12 = 0, (4.82b)

ÂT ∂Q̂
∂aij

+
∂Q̂
∂aij

Â +
∂ÂT

∂aij
Q̂ + Q̂

∂Â
∂aij

= 0, (4.82c)

A
∂P12

∂bij
+
∂P12

∂bij
ÂT + B

∂B̂T

∂bij
= 0, (4.82d)

ÂT∂Q
T
12

∂cij
+
∂QT

12

∂cij
A − ∂ĈT

∂cij
C = 0. (4.82e)

We start with the terms containing
∂||E||2H2

∂A ,

tr
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T
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] )

= 4 tr
(
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T
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T
12Q12P

T
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)
. (4.83)

Differentiating with respect to Â:

∂
∂aij

tr
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. (4.84)

Differentiating with respect to B̂:

∂
∂bij

tr
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Differentiating with respect to Ĉ:

∂
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Now, continue with the terms containing
∂||E||2H2

∂B ,

tr
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Differentiating with respect to Â:
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Differentiating with respect to B̂:
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Differentiating with respect to Ĉ:
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Continuing with the terms containing
∂||E||2H2

∂C ,
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)
(4.91)

Differentiating with respect to Â:

∂
∂aij

tr

⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣∂ ||E||

2
H2

∂C

⎤⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎣∂ ||E||

2
H2

∂C

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ = 8 tr

(
∂P12

∂aij
ĈT

[
ĈPT

12 − CP
] )

(4.92)
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Differentiating with respect to B̂:

∂
∂bij

tr

⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣∂ ||E||

2
H2

∂C

⎤⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎣∂ ||E||

2
H2

∂C

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ = 8 tr

(
∂P12

∂bij
ĈT

[
ĈPT

12 − CP
] )

(4.93)

Differentiating with respect to Ĉ:

∂
∂cij

tr

⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣∂ ||E||

2
H2

∂C

⎤⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎣∂ ||E||

2
H2

∂C

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ = −8 tr

(
∂ĈT

∂cij

[
CP − ĈPT

12

]
P12

)
(4.94)

Here is where the equations forW1,W2,W3 andW4 from (4.81) comes in. Using

Lemma 4.1 with the equations in (4.81) and (4.82) together with the equations

above entails

∂Vrob

∂Â
= 4εA

W1P12 +QT
12W2∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂A

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εB
QT

12W3∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂B

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εC
W4P12∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂C

∣∣∣∣∣
∣∣∣∣∣
F

, (4.95a)

∂Vrob

∂B̂
= 4εA

W1B∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂A

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εB
QT

12

(
QB +Q12B̂

)
∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂B

∣∣∣∣∣
∣∣∣∣∣
F

+ 4εC
W4B∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂C

∣∣∣∣∣
∣∣∣∣∣
F

, (4.95b)

∂Vrob

∂Ĉ
= −4εA CW2∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂A

∣∣∣∣∣
∣∣∣∣∣
F

− 4εB CW3∣∣∣∣∣
∣∣∣∣∣∂||E||2H2∂B

∣∣∣∣∣
∣∣∣∣∣
F

− 4εC
(
CP − ĈPT

12

)
P12∣∣∣∣∣

∣∣∣∣∣∂||E||2H2∂C

∣∣∣∣∣
∣∣∣∣∣
F

. (4.95c)

4.B Equations for Frequency-Weighted Model
Reduction

In this appendix, the equations that comes from partitioning PE and QE as in

(4.13) and using the realization (4.12) of E, will be presented, both for continuous

and discrete time.
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4.B.1 Continuous Time

Splitting the equations in (4.15) using the partitioning in (4.13) yields the equa-

tions

AP + PAT + BCiP
T
13 + P13C

T
i B

T + BDiD
T
i B

T = 0, (4.96a)

ÂP̂ + P̂ÂT + B̂CiP
T
23 + P23C

T
i B̂

T + B̂DiD
T
i B̂

T = 0, (4.96b)

AiPi + PiA
T
i + BiB

T
i = 0, (4.96c)

AoPo + PoA
T
o + BoCP14 + PT

14C
TBT

o − BoĈP24 − PT
24Ĉ

TBT
o = 0, (4.96d)

AP12 + P12Â
T + BCiP

T
23 + P13C

T
i B̂

T + BDiD
T
i B̂

T = 0, (4.96e)

AP13 + P13A
T
i + BCiPi + BDiB

T
i = 0, (4.96f)

AP14 + P14A
T
o + BCiP34 + PCTBT

o − P12Ĉ
TBT

o = 0, (4.96g)

ÂP23 + P23A
T
i + B̂CiPi + B̂DiB

T
i = 0, (4.96h)

ÂP24 + P24A
T
o + B̂CiP34 + PT

12C
TBT

o − P̂ĈTBT
o = 0, (4.96i)

AiP34 + P34A
T
o + PT

13C
TBT

o − PT
23Ĉ

TBT
o = 0, (4.96j)

and

QA +ATQ +Q14BoC + CTBT
oQ

T
14 + CTDT

oDoC = 0, (4.97a)

Q̂Â + ÂTQ̂ −Q24BoĈ − ĈTBT
oQ

T
24 + ĈTDT

oDoĈ = 0, (4.97b)

QiAi +AT
i Qi +QT

13BCi + CT
i B

TQ13 +QT
23B̂Ci + CT

i B̂
TQ23 = 0, (4.97c)

QoAo +AT
oQo + CT

oCo = 0, (4.97d)

Q12Â +ATQ12 −Q14BoĈ + CTBT
oQ

T
24 − CTDT

oDoĈ = 0, (4.97e)

Q13Ai +ATQ13 +QBCi +Q12B̂Ci + CTBT
oQ

T
34 = 0, (4.97f)

Q14Ao +ATQ14 + CTBT
oQo + CTDT

oCo = 0, (4.97g)

Q23Ai + ÂTQ23 +QT
12BCi + Q̂B̂Ci − ĈTBT

oQ
T
34 = 0, (4.97h)

Q24Ao + ÂTQ24 − ĈTBT
oQo − ĈTDT

oCo = 0, (4.97i)

Q34Ao +AT
i Q34 + CT

i B
TQ14 + CT

i B̂
TQ24 = 0. (4.97j)

Splitting the cost function, (4.14), using the realization of E, (4.12) and the parti-

tioning of PE and QE , yields

||E||2H2
= tr

(
DT

i B
TQBDi + 2DT

i B̂
TQT

12BDi +DT
i B̂

TQ̂B̂Di

+ BT
i QiBi + 2BT

i Q
T
13BDi + 2BT

i Q
T
23B̂Di

)
, (4.98a)

||E||2H2
= tr

(
DoCPC

TDT
o − 2DoĈP

T
12C

TDT
o +DoĈP̂Ĉ

TDT
o

+ CoPoC
T
o + 2DoCP14C

T
o − 2DoĈP24C

T
o

)
. (4.98b)
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The gradient becomes

∂ ||E||2H2

∂Â
= 2

(
Q̂P̂ +QT

12P12 +Q23P
T
23 +Q24P

T
24

)
, (4.99a)

∂ ||E||2H2

∂B̂
= 2

(
QT

12P13 + Q̂P23 +Q23Pi +Q24P
T
34

)
CT
i

+ 2
(
Q̂B̂Di +QT

12BDi +Q23Bi

)
DT

i , (4.99b)

∂ ||E||2H2

∂Ĉ
= −2BT

o

(
QT

14P12 +QT
24P̂ +QT

34P
T
23 +QoP

T
24

)
+ 2DT

o

(
DoĈP̂ −DoCP12 − CoP

T
24

)
. (4.99c)

4.B.2 Discrete Time

Splitting the equations in (4.32) using the partitioning in (4.13) yields the equa-

tions

APAT − P + BCiP
T
13A

T +AP13C
T
i B

T + BCiPiC
T
i B

T + BDiD
T
i B

T = 0,
(4.100a)

ÂP̂ÂT − P̂ + B̂CiP
T
23Â

T + ÂP23C
T
i B̂

T + B̂CiPiC
T
i B̂

T + B̂DiD
T
i B̂

T = 0,
(4.100b)

AiPiA
T
i − Pi + BiB

T
i = 0,

(4.100c)

AoPoA
T
o − Po + BoCP14A

T
o +AoP

T
14C

TBT
o − BoĈP24A

T
o −AoP

T
24Ĉ

TBT
o

−BoĈP12C
TBT

o − BoCP
T
12Ĉ

TBo + BoCPC
TBT

o + BoĈP̂Ĉ
TBT

o = 0,
(4.100d)

AP12Â
T − P12 + BCiP

T
23Â

T +AP13C
T
i B̂

T + BCiPiC
T
i B̂

T + BDiD
T
i B̂

T = 0,
(4.100e)

AP13A
T
i − P13 + BCiPiA

T
i + BDiB

T
i = 0,

(4.100f)

AP14A
T
o − P14 + BCiP34A

T
o +APCTBT

o −AP12Ĉ
TBT

o

+BCiP
T
13C

TBT
o − BCiP

T
23Ĉ

TBT
o = 0,

(4.100g)

ÂP23A
T
i − P23 + B̂CiPiA

T
i + B̂DiB

T
i = 0,
(4.100h)

ÂP24A
T
o − P24 + B̂CiP34A

T
o + ÂPT

12C
TBT

o − ÂP̂ĈTBT
o

+B̂CiP
T
13C

TBT
o − B̂CiP

T
23Ĉ

TBT
o = 0,

(4.100i)

AiP34A
T
o − P34 +AiP

T
13C

TBT
o −AiP

T
23Ĉ

TBT
o = 0,

(4.100j)
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and

ATQA −Q +ATQ14BoC + CTBT
oQ

T
14A + CTBT

oQoBoC + CTDT
oDoC=0,

(4.101a)

ÂTQ̂Â − Q̂ − ÂTQ24BoĈ − ĈTBT
oQ

T
24Â + ĈTBT

oQoBoĈ + ĈTDT
oDoĈ=0,

(4.101b)

AT
i QiAi −Qi +AT

i Q
T
13BCi + CT

i B
TQ13Ai +AT

i Q
T
23B̂Ci + CT

i B̂
TQ23Ai

+CT
i B̂

TQT
12BCi + CT

i B
TQ12B̂Ci + CT

i B
TQBCi + CT

i B̂
TQ̂B̂Ci =0,

(4.101c)

AT
oQoAo −Qo + CT

oCo=0,
(4.101d)

ATQ12Â −Q12 −ATQ14BoĈ + CTBT
oQ

T
24Â

−CTBT
oQoBoĈ − CTDT

oDoĈ=0,
(4.101e)

ATQ13Ai −Q13 +ATQBCi +ATQ12B̂Ci + CTBT
oQ

T
34Ai

+CTBT
oQ

T
14BCi + CTBT

oQ
T
24B̂Ci =0,

(4.101f)

ATQ14Ao −Q14 + CTBT
oQoAo + CTDT

oCo=0,
(4.101g)

ÂTQ23Ai −Q23 + ÂTQT
12BCi + ÂTQ̂B̂Ci − ĈTBT

oQ
T
34Ai

−ĈTBT
oQ

T
14BCi − ĈBT

oQ24B̂Ci =0,
(4.101h)

ÂTQ24Ao −Q24 − ĈTBT
oQoAo − ĈTDT

oCo=0,
(4.101i)

AT
i Q34Ao −Q34 + CT

i B
TQ14Ao + CT

i B̂
TQ24Ao=0.

(4.101j)

Using the partitioning in (4.13) again, yields the cost function

||E||2H2
= tr

(
DT

i B
TQBDi + 2DT

i B̂
TQT

12BDi +DT
i B̂

TQ̂B̂Di + BT
i QiBi

+ 2BT
i Q

T
13BDi + 2BT

i Q
T
23B̂Di +DT

i

[
DT − D̂T

]
DT

oDo

[
D − D̂

]
Di

)
, (4.102a)

||E||2H2
= tr

(
DoCPC

TDT
o − 2DoĈP

T
12C

TDT
o +DoĈP̂Ĉ

TDT
o + CoPoC

T
o

+ 2DoCQ14C
T
o − 2DoĈQ24C

T
o +Do

[
D − D̂

]
DiD

T
i

[
DT − D̂T

]
DT

o

)
. (4.102b)
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The gradient becomes

∂ ||E||2H2

∂Â
= 2

(
Q̂ÂP̂ +QT

12AP12 +Q23AiP
T
23 +Q24AoP

T
24

+Q24Bo

[
CP12 − ĈP̂

] )
, (4.103a)

∂ ||E||2H2

∂B̂
= 2

(
QT

12AP13 + Q̂ÂP23 +Q23AiPi +Q24AoQ
T
34

+Q24Bo

[
CP13 − ĈP23

]
+

[
QT

12B + Q̂B̂
]
CiPi

)
CT
i

+ 2
(
Q̂B̂Di +QT

12BDi +Q23Bi

)
DT

i , (4.103b)

∂ ||E||2H2

∂Ĉ
= −2BT

o

(
QT

14AP12 +QT
24ÂP̂ +QT

34AiP
T
23 +QoAoP

T
24

+QoBo

[
CP12 − ĈP̂

]
+

[
QT

14B +QT
24B̂

]
CiP

T
23

)
+ 2DT

o

(
DoĈP̂ −DoCP12 − CoP

T
24

)
, (4.103c)

∂ ||E||2H2

∂D̂
= 2DT

oDo

(
D̂ −D

)
DiD

T
i . (4.103d)

4.C Gradient of the Frequency-Limited Case

In this section, the derivation of the gradient of the cost function (4.67) will be

presented. We start by differentiating the cost function (4.67) with respect to

B̂, Ĉ and D̂. First, note that neither Qω,Q12,ω nor Q̂ω in equation (4.67a) depend

on B̂. This means that (4.67a) is quadratic in B̂. Analogous observations can be

made with equation (4.67b) and the variable Ĉ and similarly with D̂. Hence, the

derivative of the cost function with respect B̂, Ĉ and D̂ becomes

∂ ||E||2H2,ω

∂B̂
= 2

(
Q̂ωB̂ +QT

12,ωBŜ
T
ωĈ

T
[
D − D̂

] )
, (4.104a)

∂ ||E||2H2,ω

∂Ĉ
= 2

(
ĈP̂ω − CP12,ω −

[
D − D̂

]
B̂TŜTω

)
, (4.104b)

∂ ||E||2H2,ω

∂D̂
= −2

(
CSωB +Dω − ĈŜωB̂ − D̂ω +

[
D − D̂

]
ω
)
. (4.104c)

When differentiating with respect to Â it is important to remember that Q̂ω and

Q12,ω depend on Â.
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∂ ||E||2H2,ω

∂aij
= tr

(
2B̂BT∂Q12,ω

∂aij
+ B̂B̂T∂Q̂ω

∂aij
− 2Ĉ∂Ŝω

∂aij
B̂

(
DT − D̂T

))
, (4.105)

where
∂Q12,ω
∂aij

and
∂Q̂ω
∂aij

depend on Â via the differentiated versions of the equations

in (4.65),

ÂT∂Q
T
12,ω

∂aij
+
∂QT

12,ω

∂aij
A +

∂ÂT

∂aij
QT

12,ω −
∂ŜTω
∂aij

ĈTC = 0, (4.106a)

ÂT∂Q̂ω

∂aij
+
∂Q̂ω

∂aij
Â +

∂ÂT

∂aij
Q̂ω + Q̂ω

∂Â
∂aij

+
∂ŜTω
∂aij

ĈTĈ + ĈTĈ
∂Ŝω
∂aij

= 0. (4.106b)

Using Lemma 4.1 on (4.105) with the equations in (4.29) and (4.106) yields

∂ ||E||2H2,ω

∂aij
= 2 tr

(
∂ÂT

∂aij

[
YT
ωX + Q̂ωP̂

]
+
∂ŜTω
∂aij

[
ĈTĈP̂ − ĈTCX

])

− 2 tr
(
∂Ŝω
∂aij

[
B̂

(
DT − D̂T

)
Ĉ
] )

. (4.107)

What remains is to rewrite the two last terms in (4.107), which includes
∂Ŝω
∂aij

and

∂ŜTω
∂aij

. Recall the definition of Ŝω,

Ŝω � Re

( i
π
ln

(
−Â − iωI

) )
(4.108)

and differentiate with respect to an element in Â, i.e., aij . This yields

∂Ŝω
∂aij

= Re

(
i
2π

L

(
−Â − iωI,

∂
∂aij

(
−Â − iωI

) ) )

= Re

(
i
2π

L

(
−Â − iωI,− ∂Â

∂aij

) )
, (4.109)

where L(A,E) is the Frechét derivative of the matrix logarithm with

L(A,E) =

1∫
0

(t(A − I) + I)−1 E (t(A − I) + I)−1 dt, (4.110)

see Higham [2008].

The function L(A,E) can be efficiently evaluated using the algorithm in Higham

[2008] or Al-Mohy et al. [2012]. Substituting (4.109) into (4.107) and using

(4.110) with the fact that the tr-operator and the integral can be interchanged,
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yields

∂ ||E||2H2,ω

∂aij
= 2 tr

(
∂ÂT

∂aij

[
QT

12,ωP12 + Q̂ωP̂
]
+
∂ŜTω
∂aij

[
ĈTĈP̂ − ĈTCP12

])

− 2 tr
(
∂Ŝω
∂aij

[
B̂

{
DT − D̂T

}
Ĉ
] )

= 2 tr

(
∂ÂT

∂aij

[
QT

12,ωP12 + Q̂ωP̂
] )
− 2 tr

(
∂ÂT

∂aij
Re

[ i
π
L
(
−Â − iωI,V

) ]T )

= tr

(
∂ÂT

∂aij

[
2
{
QT

12,ωP12 + Q̂ωP̂
}
− 2W

] )
, (4.111)

where

W =Re

( i
π
L
(
−Â − iωI,V

) )T
, (4.112)

V =ĈTĈP̂ − ĈTCP12 − ĈT
(
D − D̂

)
B̂T. (4.113)



5
LPV Modeling

In this chapter, local methods to approximate lpv models are developed. The

methods use an approach that tries to preserve the input-output relations from

the given models in the resulting lpvmodel. This is done by minimizing the sum

of the H2-norms of the difference between the given models and a parametrized

lpv model. When developing the methods, large effort is made on making the

method computationally efficient. The material in this chapter is largely based

on Petersson and Löfberg [2012c].

5.1 Introduction

In the last decades, intensive research has been carried out on linear parameter-

varying models (lpv models), see e.g., Rugh and Shamma [2000], Leith and Leit-

head [2000], Tóth [2008], Lovera et al. [2011] or Mohammadpour and Scherer

[2012]. An important reason for this interest is that it is a powerful tool for mod-

eling and analysis of nonlinear systems, such as aircrafts (see Marcos and Balas

[2004]) or wafer stages (see Wassink et al. [2005]). Some advanced robustness

analysis methods, such as IQC-analysis and μ-analysis, see e.g., Megretski and

Rantzer [1997], Zhou et al. [1996], require a conversion of the lpv model into a

linear fractional representation (lfr), see e.g., Zhou et al. [1996]. For this to be

possible it is necessary that the parametric matrices A(p), B(p), C(p) and D(p)
of the lpv model are rational in p. This requirement is often violated in lpv
models generated directly from a non-fractional model description, either due to

presence of non-fractional parametric expressions or tabulated data in the model.

In both cases, rational approximations must be used to obtain a suitable model.

This motivates a method that both can approximate a nonlinear model with an

lpvmodel and approximate a complex lpvmodel with a less complex one.
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As described in Section 2.1.5, lpv-models can be described by linear differential
equations whose coefficients depend on scheduling parameters,

ẋ(t) = A(p)x(t) + B(p)u(t), (5.1)

y(t) = C(p)x(t) +D(p)u(t), (5.2)

where x(t) is the state, u(t) and y(t) are the input and output signals and p(t) is the
vector of scheduling parameters. For example, in flight control applications, the

components of p(t) are typically mass, position of centre of gravity and various

aerodynamic coefficients, but can also include state dependent parameters such

as altitude and velocity, specifying current flight conditions.

Generation of lpv models can simplistically be divided into two main families

of methods, global methods (see e.g., Nemani et al. [1995], Lee and Poolla [1999],

Bamieh and Giarre [2002], Felici et al. [2007], Tóth [2008]) and local methods (see

e.g., Steinbuch et al. [2003], Wassink et al. [2005], Lovera and Mercere [2007],

De Caigny et al. [2011], Pfifer and Hecker [2008], De Caigny et al. [2012]). A

survey of existing methods can be found in Tóth [2008]. The global methods will

only be mentioned briefly, since the main focus will be on local methods.

5.2 Global Methods

In the class of global methods, a global identification experiment is performed

by exciting the system while the scheduling parameters change the dynamics of

the system. An advantage with this approach, of generating lpv models, is that

it is also possible to capture the rate of change of the parameters and how they

can vary between different operating points. However, one drawback is that it is

sometimes, for example in some flight applications, not possible to perform such

an experiment.

5.3 Local Methods

In the class of local methods, a set of ltimodels,M =

{
Gi =

[
Ai Bi
Ci Di

]
,pi

}N

i=1

,

are interpolated, or in some other way combined, to generate an lpv model.

These local models, Gi , can, for example, have been identified using a set of input-

output measurements where the parameters have been kept constant, for which

there exists several methods, see e.g., Ljung [1999], or by linearizing a nonlinear

model in different operating points.

In this family of methods it is assumed that the system can operate at different
fixed operating points, where the scheduling parameters are “frozen”. There are

of course systems where this is not possible and where this family of methods is

inapplicable, requiring the use of global methods. Another drawback with this

family of methods is that it does not take time variations of the scheduling param-

eters into account, thus limiting local methods to systems where the scheduling
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parameters vary slowly in time, which is a commonly used assumption in gain

scheduling, see Shamma and Athans [1992]. To see this more clearly, write the

lpv system as

G(p, ṗ, . . . ) =
[
AS (p) BS (p)
CS (p) DS (p)

]
+

[
AD(p, ṗ, . . . ) BD(p, ṗ, . . . )
CD(p, ṗ, . . . ) DD(p, ṗ, . . . )

]
= GS (p) + GD(p, ṗ, . . . ), (5.3)

where GS (p) only depends on the current parameter value and does not include

any dynamic dependence of the parameters, and GD(p, ṗ, . . . ) includes all the dy-
namic dependence of the parameters. GD has the property that GD(p, 0, 0, . . . ) =
0. If the parameters are kept constant and the models, Gi , are generated

G(pi , 0, 0, , . . . ) = GS (pi ) + GD(pi , 0, 0, . . . ) = GS (pi ),

one observes that the information in GD is lost. This is one reason why one has to

be careful when doing model interpolation. A paper that explains the pitfalls of

interpolation is Tóth et al. [2007].

A common drawback of many of the local methods is that they need the local

models to be given in the same state-space basis, see e.g., Pfifer andHecker [2008].

However, the ltimodels given inM are related to the true lpv system as

Gi =

[
Ai Bi
Ci Di

]
=

[
T−1i AS (p)Ti T−1i BS (p)
CS (p)Ti DS (p)

]
,

for some invertible matrices Ti , which are unknown. Hence, one cannot, in gen-

eral, assume that the given ltimodels are described in the same state-space basis.

Some methods have remedies to this, by trying to find invertible matrices T̂i to

be able to transform the lti models, Gi , to a common basis that encourage inter-

polation, usually some canonical form, see e.g., Steinbuch et al. [2003]. However,

these ltimodels in canonical forms may suffer from bad numerics. In De Caigny

et al. [2012] they solve this problem by fixing one of the given models as a ref-

erence model and transforming the other models to state-space bases that are

consistent with the reference model.

5.4 LPV Modeling using an H2-Measure

The methods that will be described in this section are based on the model-reduc-

tion techniques introduced in Section 4.4 and are in the family of local methods.

The goal with the methods proposed in this section is to try to preserve the input-

output relations of the given lti models inM, instead of doing direct interpola-

tion of system matrices. Let G(p) denote the true lpv system, then ideally the

goal would be to find an lpv model, Ĝ(p), that is optimal with respect to some

global discrepancy measure on the model error, for instance the following inte-

gral
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min
Â(p),B̂(p),Ĉ(p),D̂(p)

∫ ∣∣∣∣∣∣G(p) − Ĝ(p)
∣∣∣∣∣∣2H2,ω

dp, (5.4)

where

Ĝ(p) :
{

ẋ(t) = Â(p)x(t) + B̂(p)u(t)
y(t) = Ĉ(p)x(t) + D̂(p)u(t)

. (5.5)

This is not always practical or even tractable. In many applications, e.g., flight

applications, one often only have a simulation model available or a model that is

used for computational fluid-dynamic calculations and not an analytical nonlin-

ear model and it is only possible to extract linearized models for discrete values

of the scheduling parameters, pi , i.e., we are given the model setM = {Gi,pi }Ni=1.
Having this in mind (5.4) is changed into a discretized, in the parameters, ver-

sion,

min
Â(p),B̂(p),Ĉ(p),D̂(p)

N∑
i=1

∣∣∣∣∣∣Gi − Ĝ(pi )
∣∣∣∣∣∣2H2,ω

. (5.6)

The two most widely used norms in system theory are the H2- and H∞-norms,

both capturing the input-output relation of the system. As indicated in (5.4) and

(5.6), the norm that will be used here is the H2-norm (or the frequency-limited

H2-norm). The main reason for this choice is, as in Chapter 4, that the cost

function, again, becomes differentiable with respect to the optimization variables,

with readily computed gradients.

5.4.1 General Properties

Since the lpvmethods in this section will be based on the methods in Section 4.4,

they also inherit the property that they are invariant under state transformations

of the given lti systems. This was useful in the model-reduction scheme since it

does not matter in which state basis the given system is described. For the lpv
methods, this fact can be utilized again. As explained in Section 5.3, what we are

searching for in the local methods is the GS (p)-part of the lpv model, which is

related to the model setM as

M = {Gi,pi }Ni=1, Gi =

[
Ai Bi
Ci Di

]
=

[
T−1i AS (p)Ti T−1i BS (p)
CS (p)Ti DS (p)

]
,

where Ti are some unknown invertible matrices, which, generally, are not related

to each other. Since the methods are invariant under state transformations we do

not seek to find these Ti , only GS (p), which is an advantage compared to most

other local methods.

One thing that has been left out so far, is how the system matrices Â(p),B̂(p),Ĉ(p)
and D̂(p) are parametrized. These matrices are taken to be linear combinations of

some basis functions wk(p), e.g., in the polynomial case, monomials. The system
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matrices in the lpvmodel, Ĝ(p), will then depend on p as

Â(p) =
∑
k

wk(p)Â
(k), (5.7a)

B̂(p) =
∑
k

wk(p)B̂
(k), (5.7b)

Ĉ(p) =
∑
k

wk(p)Ĉ
(k), (5.7c)

D̂(p) =
∑
k

wk(p)D̂
(k), (5.7d)

where the functions wk(p) are design choices that can be hard to choose to not

make the model class to restrictive. However, it is not as restrictive as one might

think. To see this, start by looking at how an lpv model changes when doing

a state transformation, which can depend on the parameters. Given the state

transformation

x̄ = T̄(p)x, (5.8)

where T̄(p), in the continuous-time case is a nonsingular continuously differen-
tiable matrix for all valid parameter values, and in the discrete-time case is a

matrix rational function of p and invertible for all pk . For the continuous-time

case, given an lpvmodel as in (5.3), entails

Ḡ(p, ṗ, . . . ) =
[
T̄(p)AS (p)T̄−1(p) T̄(p)BS (p)
CS (p)T̄−1(p) DS (p)

]

+

[
T̄(p)AD(p, ṗ, . . . )T̄−1(p) + ˙̄T(p)T̄−1(p) T̄(p)BD(p, ṗ, . . . )

CD(p, ṗ, . . . )T̄−1(p) DD(p, ṗ, . . . )

]
= ḠS (p) + ḠD(p, ṗ, . . . ). (5.9)

Important to note here is that the part GS (p) is transformed using only a static

dependence in the parameters and, hence, it will, after the transformation, still

only depend statically on the parameters. This fact can be used to realize that the

choices of wk(p) in (5.7) are not as restrictive as one can think. Let us illustrate

this with an example.

Example 5.1: Effect of State Transformations
Assume samples from the continuous-time lpv model, G(p) are given. G(p)
do not have any dynamic dependence of the parameters, i.e., G(p) = GS (p) =[
A(p) B(p)
C(p) D(p)

]
, where

A(p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.4p2 + 3p − 3.6 −0.4(p3−24p−40)

p
0.2(27p3+55p2+37p−160)

p

0.4p2 + 3.6p − 3.2 −0.2(2p3+3p2−46p−10)
p

0.2(27p3+23p2−96p−20)
p

1.6p − 1.6 −0.2(8p2−33p−5)
p

0.2(23p2−68p−10)
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
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B(p) =

⎛⎜⎜⎜⎜⎜⎜⎝
8 + 7p + p2

6 + 2p + p2

3

⎞⎟⎟⎟⎟⎟⎟⎠ ,
C(p) =

(
0.2 + 0.2p −0.2(−9p+p2−10)

p −0.8(−p+4p2−5)
p

)
,

D(p) = 0.

This lpv model does not have any dynamic dependence in the parameter and to

be certain to be in the correct model class we can use the basis functions, wk(p) =
{p−1, 1, p, p2}. However, a different realization of this model is given by

AT (p) = T̄(p)A(p)T̄−1(p) =

⎛⎜⎜⎜⎜⎜⎜⎝
−2 + p 3 + p 5 + 2p
2 + 2p −4 + 3p 1 + 5p
−8 + 8p 1 + 5p −2 + 3p

⎞⎟⎟⎟⎟⎟⎟⎠ ,

BT (p) = T̄(p)B(p) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 + p
2 + p
3

⎞⎟⎟⎟⎟⎟⎟⎠ ,
CT (p) = C(p)T̄−1(p) =

(
1 + p 2 + 2p 3 + 3p

)
,

DT (p) = D(p) = 0,

T̄(p) =

⎛⎜⎜⎜⎜⎜⎜⎝
5 p 1

0 p 2

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
Obviously, in this realization, the model is only affine in p. This means that it is

also possible to find the correct model using only the basis functions {1, p}.

In the example above, it can be observed that the choice of wk(p) can sometimes

be a little forgiving, since we have methods that are invariant to the state basis

that the given models are represented in.

5.4.2 The Optimization Problem

The general optimization problem that will be studied can be written as

minimize
Â(k),B̂(k),Ĉ(k),D̂(k)

N∑
i=1

∣∣∣∣∣∣∣∣Wo,i

(
Gi − Ĝ(pi )

)
Wi,i

∣∣∣∣∣∣∣∣2H2,ω

= minimize
Â(k),B̂(k),Ĉ(k),D̂(k)

N∑
i=1

∣∣∣∣∣∣Wo,iEiWi,i

∣∣∣∣∣∣2H2,ω
, Ei = Gi − Ĝ(pi ). (5.10)

To study the problem in (5.10), start by looking at the case when there is only one

model and see what can be concluded. This problem becomes, almost, identical

to the problems in Section 4.4. The only difference is that the system matrices
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are parametrized as in (5.7). However, the new optimization variables Â(k), B̂(k),

Ĉ(k) and D̂(k) enter linearly in Â(p), B̂(p), Ĉ(p) and D̂(p) which makes it easy to

express the gradient in the new variables instead, for example,

∂
∣∣∣∣∣∣∣∣Wo,i

(
Gi − Ĝ(pi )

)
Wi,i

∣∣∣∣∣∣∣∣2H2

∂Â(k)
= 2wk(pi )Ê

TQE,iPE,i Ê. (5.11)

Now returning to the original problem, (5.10), when having a number of lti
models given, instead of just one. This is also a simple extension of the problems

in Section 4.4, since this is a sum of the H2-norm over a number of lti models,

which yields the structure

∂
∑

i

∣∣∣∣∣∣∣∣Wo,i

(
Gi − Ĝ(pi )

)
Wi,i

∣∣∣∣∣∣∣∣2H2

∂Â(k)
=

N∑
i=1

∂
∣∣∣∣∣∣∣∣Wo,i

(
Gi − Ĝ(pi )

)
Wi,i

∣∣∣∣∣∣∣∣2H2

∂Â(k)

= 2

N∑
i=1

wk(pi )Ê
TQE,iPE,i Ê. (5.12)

When converting the model-reduction methods in Section 4.4 into lpv methods,

they will not only inherit the properties, but also the prerequisites of themethods,

that is, when extending all the methods, it is required that the given lti models

inM are all asymptotically stable, and additionally for the continuous-time case

and the methods in Section 4.4.1 and Section 4.4.2, the ltimodels require the er-

ror system to be strictly proper, i.e., Di = D̂(pi ). For these methods, the problem

of finding D̂(p) can be seen as a separate problem.

Before stating the necessary conditions for optimality for the proposed lpvmeth-

ods (derived from the model-reduction methods), some notation has to be estab-

lished. The given systems, Gi in the setM are assumed to have the realizations

Gi =

[
Ai Bi
Ci Di

]
, (5.13)

and correspond to the parameter values pi . The notation and partitioning will

be the same as in Section 4.4, with the exception that all variables will have a

subscript i corresponding to the parameter value considered, pi . Only the nec-

essary conditions for the continuous-time cases are stated, since most of the de-

tails are covered in Section 4.4 and the discrete-time cases are analogous with

the continuous-time case. From the necessary conditions for optimality, the ex-

pressions for the gradients can be readily extracted to be used in, for example, a

quasi-Newton algorithm.

The necessary conditions for optimality for the lpv version of the method in

Section 4.4.1 can be stated as follows.

Theorem 5.1 (Necessary conditions for optimality). Assume that Gi, Ĝi , Wi,i
and Wo,i are asymptotically stable and that Ei is strictly proper, for the H2-norm



94 5 lpvModeling

to be defined, i.e., Ai , Âi ,Ai,i and Ao,i are Hurwitz and Do,i

(
Di − D̂i

)
Di,i = 0 for

all i. In order for the matrices Â(k), B̂(k), Ĉ(k) to be optimal for the problem

minimize
Â(k),B̂(k),Ĉ(k)

∑
i

||Ei ||2H2
, Ei = Wo,i

(
Gi − Ĝi

)
Wi,i , (5.14)

it is necessary that they satisfy the equations

AE,iPE,i + PE,iA
T
E,i + BE,iB

T
E,i = 0, (5.15a)

AT
E,iQE,i +QE,iAE,i + CT

E,iCE,i = 0, (5.15b)

for all i:s, and that

∂ ||E||2H2

∂Â(k)
= 2

∑
i

wk(pi )Ê
TQE,iPE,i Ê = 0, (5.16a)

∂ ||E||2H2

∂B̂(k)
= 2

∑
i

wk(pi )Ê
T
(
QE,iPE,iEiC

T
i +QE,iBE,iDi

)
= 0, (5.16b)

∂ ||E||2H2

∂Ĉ(k)
= −2

∑
i

wk(pi )
(
BT
oE

T
oQE,iPE,i +DT

oCE,iPE,i

)
Ê = 0, (5.16c)

where

Ê =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×n̂
In̂×n̂
0ni×n̂
0no×n̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ei =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×n̂
0n̂×n̂
Ini×n̂
0no×n̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Eo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0n×n̂
0n̂×n̂
0ni×n̂
Ino×n̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (5.17)

Proof: The proof is analogous with Theorem 4.2.

The necessary conditions for optimality for the lpv version of the method pre-

sented in Section 4.4.2, the robust extension, can be stated as

Theorem 5.2 (Necessary conditions for optimality). Assume that Gi, Ĝi , Wi,i
and Wo,i are asymptotically stable and that Ei is strictly proper, for the H2-norm

to be defined, i.e., Ai , Âi ,Ai,i and Ao,i are Hurwitz and Do,i

(
Di − D̂i

)
Di,i = 0 for

all i. In order for the matrices Â(k), B̂(k), Ĉ(k) to be optimal for the problem

min
Â(k),B̂(k),Ĉ(k)

∑
i

||Ei ||2H2
+ Vrob,

Vrob =
∑
i

2εA
∣∣∣∣∣∣QiPi +Q12,iP

T
12,i

∣∣∣∣∣∣
F

+ 2εB
∣∣∣∣∣∣QiBi +Q12,i B̂i

∣∣∣∣∣∣
F
+ 2εC

∣∣∣∣∣∣CiPi − ĈiP
T
12,i

∣∣∣∣∣∣
F
, (5.18)

it is necessary that they satisfy the equations in (5.15) (for Wi,i = Wo,i = I) and
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the equations

ÂT
i W1,i +W1,iAi +QT

12,i

(
QiPi +Q12,iP

T
12,i

)
= 0, (5.19a)

AiW2,i +W2,iÂ
T
i +

(
QiPi +Q12,iP

T
12,i

)
P12,i = 0, (5.19b)

AiW3,i +W3,iÂ
T
i +

(
QiBi +Q12,i B̂i

)
B̂T
i = 0, (5.19c)

ÂT
i W4,i +W4,iAi + ĈT

i

(
ĈiP

T
12,i − CiPi

)
= 0. (5.19d)

for all i and that

∂ ||E||2H2

∂Â(k)
+
∂Vrob

∂Â(k)
= 0, (5.20a)

∂ ||E||2H2

∂B̂(k)
+
∂Vrob

∂B̂(k)
= 0, (5.20b)

∂ ||E||2H2

∂Ĉ(k)
+
∂Vrob

∂Ĉ(k)
= 0. (5.20c)

With

∂Vrob

∂Â(k)
= 4

∑
i

wk(pi )

⎛⎜⎜⎜⎜⎝εAW1,iP12,i +QT
12,iW2,i∣∣∣∣∣∣QiPi +Q12,iPT

12,i

∣∣∣∣∣∣
F

+ εB
QT

12,iW3,i∣∣∣∣∣∣QiBi +Q12,i B̂i

∣∣∣∣∣∣
F

+ εC
W4,iP12,i∣∣∣∣∣∣CiPi − ĈiPT

12,i

∣∣∣∣∣∣
F

⎞⎟⎟⎟⎟⎠,

∂Vrob

∂B̂(k)
= 4

∑
i

wi (pi )

⎛⎜⎜⎜⎜⎝εA W1,iBi∣∣∣∣∣∣QiPi +Q12,iPT
12,i

∣∣∣∣∣∣
F

+ εB
QT

12,i

(
QiBi +Q12,i B̂i

)
∣∣∣∣∣∣QiBi +Q12,i B̂i

∣∣∣∣∣∣
F

+ εC
W4,iBi∣∣∣∣∣∣CiPi − ĈiPT

12,i

∣∣∣∣∣∣
F

⎞⎟⎟⎟⎟⎠,

∂Vrob

∂Ĉ(k)
= −4

∑
i

wk(pi )

⎛⎜⎜⎜⎜⎝εA CiW2,i∣∣∣∣∣∣QiPi +Q12,iPT
12,i

∣∣∣∣∣∣
F

+ εB
CiW3,i∣∣∣∣∣∣QiBi +Q12,i B̂i

∣∣∣∣∣∣
F

+ εC

(
CiPi − ĈiPT

12,i

)
P12,i∣∣∣∣∣∣CiPi − ĈiPT

12,i

∣∣∣∣∣∣
F

⎞⎟⎟⎟⎟⎠.
and

∂||E||2H2
∂Â(k) ,

∂||E||2H2
∂B̂(k) and

∂||E||2H2
∂Ĉ(k) as in (5.16).

Proof: The proof is analogous with the proof for Theorem 4.6.

For the lpv version of the frequency-limited method, described in Section 4.4.3,

the necessary conditions for optimality can be stated as
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Theorem 5.3. Assume that all Gi and Ĝi are asymptotically stable, for the lim-

ited H2-norm to be defined, i.e., all Ai and Âi are Hurwitz for all i. In order for

the matrices Â(k), B̂(k), Ĉ(k) and D̂(k) to be optimal for the problem

minimize
Â(k),B̂(k),Ĉ(k),D̂(k)

∑
i

||Ei ||2H2,ω
, Ei = Gi − Ĝi , (5.22)

where ||Ei ||2H2,ω
is defined in Chapter 3, it is necessary that they satisfy the equa-

tions in (4.65) and the equations in (4.29) for all i and that

∂
∑

i ||Ei ||2H2,ω

∂Â(k)
=2

∑
i

wk(pi )
([
QT

12,ω,iP12,i + Q̂ω,i P̂i

]
−Wi

)
= 0, (5.23a)

∂
∑

i ||Ei ||2H2,ω

∂B̂(k)
=2

∑
i

wk(pi )
(
Q̂ω,i B̂i +QT

12,ω,iBi − ŜTω,iĈ
T
i

[
Di − D̂i

] )
= 0,

(5.23b)

∂
∑

i ||Ei ||2H2,ω

∂Ĉ(k)
=2

∑
i

wk(pi )
(
Ĉi P̂ω,i − CiP12,ω,i −

[
Di − D̂i

]
B̂T
i Ŝ

T
ω,i

)
= 0, (5.23c)

∂
∑

i ||Ei ||2H2,ω

∂D̂(k)
= − 2

∑
i

wk(pi )

(
CiSω,iBi +Di

ω
π
− Ĉi Ŝω,i B̂i − D̂i

ω
π

)
= 0, (5.23d)

where

Wi =Re

( i
π
L
(
−Âi − iωI,Vi

) )T
, (5.23e)

Vi =Ĉ
T
i Ĉi P̂i − ĈT

i CiP12,i − ĈT
i

(
Di − D̂i

)
B̂T
i . (5.23f)

With the function L( · , · ) being the Frechét derivative of the matrix logarithm,

see Higham [2008].

Proof: The proof is analogous with the proof for Theorem 4.8.

Low Rank Coefficient Matrices

For some applications it can be preferable to be able to control the rank of some of

the matrices Â(k), B̂(k), Ĉ(k) and D̂(k). See, for instance, the example in Section 7.1,

where this is important.

One way of controlling the rank of the coefficient matrices, is to parametrize them

as

Â(k) =V(k)
A W(k)T

A , (5.24a)

B̂(k) =V(k)
B W(k)T

B , (5.24b)

Ĉ(k) =V(k)
C W(k)T

C . (5.24c)

If, for example, it is assumed that the resulting lpv model should have nr states,
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Â(k) ∈ R
nr×nr ,∀k, and the rank of the matrix Â(k) should be nk < nr , then V(k)

A ∈
R
nr×nk and W(k)

A ∈ R
nr×nk is chosen. This type of parametrization have, with

success, been used in, for example, Burer and Monteiro [2003] for semidefinite

programs.

If this new parametrization is introduced, the only change in Theorem 5.1, The-

orem 5.2 and Theorem 5.3, will be a small change in the gradients. For example,

the gradient for Â(k) in Theorem 5.1 was computed as

∂ ||E||2H2

∂Â(k)
= 2

∑
i

wk(pi )Ê
TQE,iPE,i Ê.

The new equations for the gradient, given the parametrization in (5.24), would

be

∂ ||E||2H2

∂V(k)
A

= 2
∑
i

wk(pi )Ê
TQE,iPE,i ÊW

(k)
A , (5.25a)

∂ ||E||2H2

∂W(k)
A

= 2
∑
i

wk(pi )
(
ÊTQE,iPE,i Ê

)T
V(k)

A . (5.25b)

The equations for V(k)
B , W(k)T

B , V(k)
B and W(k)T

C follow analogously.

5.5 Computational Aspects of the Optimization
Problems

In this section, as in Section 4.5, an initialization will be suggested and again

how to use both the structure in the variables and the equations to speed up the

computations is shown.

As with the methods in Section 4.5, both the cost functions and gradients are

given for the lpvmethods and it is straightforward to use, for example, any quasi-

Newton solver to solve the optimization problem.

5.5.1 Structure in Variables and Equations

What was explained in Section 4.5.1, about structure in the sought system matri-

ces, is applicable, with the same motivation, for the lpv methods. Hence, it is

easy to impose structure in the system matrices, e.g., block-diagonal A-matrix.

In Section 4.5.3, it was explained how to use the inherent structure of the equa-

tions in the problem to, more efficiently, compute the Lyapunov/Sylvester equa-

tions that is needed to compute the cost function and the gradient. For the model-

reduction case it was possible to reduce the complexity for every iteration to

O
(
n2n̂ + nn̂2

)
. For the lpv case, the same structure can be utilized for every

lti model inM and iteration. This means that the complexity per iteration will

be O
(
N

[
n2n̂ + nn̂2

] )
, where N is the number of ltimodels inM.
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5.5.2 Initialization

A subject that needs more attention though, is the initialization. It is assumed, for

the initializations described here, that one basis function for the sought system

matrices is wk(p) = 1, i.e., there is a constant term in the parametrization (5.7). A

simple initialization is to use one of the given models inM and set the constant

matrix coefficient terms to this model.

As with the model reduction problem, a bit more can be done in then case when

there are no input or output filters. The cost functions in this case becomes∑
i

||Ei ||2H2
=

∑
i

tr
(
BT
i QiBi + 2BT

i Q12,i B̂i + B̂T
i Q̂i B̂i

)
, (5.26a)

∑
i

||Ei ||2H2
=

∑
i

tr
(
CiPiC

T
i − 2CiP12,iĈ

T
i + Ĉi P̂iĈ

T
i

)
. (5.26b)

These functions are quadratic in the B̂(k) (or Ĉ(k)) matrices if the Â(k) and Ĉ(k) (or

Â(k) and Ĉ(k)) matrices are fixed. First, to have a system to start from, any of the

given lti models inM is chosen, denote this system as G̃ =

[
Ã B̃
C̃ D̃

]
. Now set

Â(p) = Ã, i.e., choose Â to be a constant matrix that does not depend on p, and
do the same thing for Ĉ. The problem of finding B̂(k) is now a quadratic problem

which can be solved as explained below.

B̂i can be written as

B̂i =
(
Iw1(pi ) Iw2(pi ) Iw3(pi ) . . . IwNw

(pi )
)

×
((
B̂(1)

)T (
B̂(2)

)T (
B̂(3)

)T
. . .

(
B̂(Nw)

)T)T
= p̄i B̄, (5.27)

where wk(pi ) and B̂ are defined in (5.7) and I is the identity matrix of compatible

size.

Now rewrite the cost function (5.26a) as

V =
∑
i

tr
(
BT
i QiBi + 2BT

i Q12,i B̂i + B̂T
i Q̂i B̂i

)

=
∑
i

tr

(
BT
i QiBi + 2BT

i Q12,i p̄i B̄ + B̄Tp̄T
i Q̂i p̄i B̄

)

= tr

⎛⎜⎜⎜⎜⎜⎝∑
i

BTQiBi +

⎡⎢⎢⎢⎢⎢⎣2∑
i

BT
i Q12,i p̄i

⎤⎥⎥⎥⎥⎥⎦ B̄ +
1

2
B̄T

⎡⎢⎢⎢⎢⎢⎣2∑
i

p̄T
i Q̂i p̄i

⎤⎥⎥⎥⎥⎥⎦ B̄
⎞⎟⎟⎟⎟⎟⎠

= tr

(
b1 + b2B̄ +

1

2
B̄Tb3B̄

)
. (5.28)

The solution to the problem minB̄ V , which always exists since b3 is positive
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semidefinite, is the solution to the linear system of equations

b3B̄ = −bT
2 . (5.29)

Analogous calculations can be used to compute a starting point for Ĉ(k); define

C̄ =
(
Ĉ(1), Ĉ(2), . . . , Ĉ(Nw)

)
, use the same Â as for finding B̂(k) but use the B̂ that

was found solving the quadratic problem described above. Now, the equations

V = tr

(
c1 + c2C̄

T +
1

2
C̄c3C̄

T
)

(5.30)

are obtained, where c1 =
∑

i CiPiCT
i , c2 = −2∑

i CiP12,i p̄i and c3 = 2
∑

i p̄
T
i P̂i p̄i .

The solution to the quadratic problem in this case, which also always exists since

c3 is positive semidefinite, is the solution to the system of linear equations

C̄c3 = −c2. (5.31)

These are suggestions for finding initial values for Â,B̂ and Ĉ.

When using the fact that the rank of the Â(k), B̂(k) and Ĉ(k) matrices can be con-

trolled, the initialization strategy above has to be used with caution. In the above

strategy, using the parametrization

Â(p) = Â(1) +
∑
k

wk(p)V
(k)
A W(k)T

A , (5.32)

V̂(k) and Ŵ(k) are initialized as matrices with all zeros. Looking at (5.25), it can

be realized that doing this will cause the gradient for V̂(k)
A and Ŵ(k)

A to stay zero

for all iterations. This can be solved by, e.g., initializing one of V̂(k) and Ŵ(k) to

zero and the other one to a matrix with random values, or more generally to two

orthogonal matrices. This will avoid the problem described above.

5.6 Examples

In this section, an illustrative example to shed light on some properties of the

proposed methods will be presented. A larger more extensive example using the

methods in this chapter will be presented in Chapter 7, since it requires more

background material.

When solving the example, the function fminunc inMatlab is used as the quasi-

Newton solver framework. To generate a starting point for the solver, which is

an extremely important problem in need of significant amounts of research, the

initialization procedure explained in Section 5.5.2 is used.

As a comparison, a method that will be called smile is used. The method is

described in detail in De Caigny et al. [2012]. This method uses interpolation of

the systemmatrices, by first changing all the given ltimodels to a common basis

and then do a standard interpolation of the elements in the system matrices.
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Example 5.2: Small lpv Approximation Example

To show the potential of the lpv approximation and illustrate the importance of

addressing system properties, a small example is studied.

The system in this example is defined by a connection of two second-order sys-

tems, i.e., a system with four states, with parameter dependent damping,

G = G1G2, where G1 =
1

s2 + 2ζ1s + 1
, G2 =

9

s2 + 6ζ2s + 9
, (5.33a)

ζ1 = 0.1 + 0.9p, ζ2 = 0.1 + 0.9(1 − p), p ∈ [0, 1]. (5.33b)

The system was sampled by selecting 10 equidistant points in p ∈ [0, 1], i.e., 10
linear models with four states each are given as data to the method.

The data is given in a state basis where all the lti models are balanced. The

elements in the system matrices happen to depend nonlinearly on the parameter

p, see the gray dashed lines in Figure 5.1. The interesting and obvious property

of this example is that there exists state bases (for example, observable canonical

form) for which the model has affine dependence on p; in fact only two elements

of the system matrix A are affine in p while all other matrix elements in A,B and

C are constants, see the black solid lines in Figure 5.1.

The method h2nl will be used with an affine parametrization with respect to

the parameters, and we investigate if it is possible to find a representation of the

true system with this structure, given the data where the individual elements

in the system matrices depends nonlinearly on the parameter. Additionally, the

method h2nl, where we control the rank in Â(1), where Â(p) = Â(0) + pÂ(1), will

also be used. We will choose the rank to be two, since there exists a state-space

basis where only two elements of the systemmatrix A are affine in p and all other

elements are constant, see the black lines in Figure 5.1.

From the results in Table 5.1 it can be observed that when h2nl is used, both

with rank 4 and rank 2, a high accuracy low order (indeed affine) lpv model of

the system can be found.

Using smile with an affine parametrization, a much worse model is obtained.

Achieving comparable results using the smile strategy requires polynomials of

order two. To further illustrate the accuracy, 100 validation points are generated

from (5.33) and the relativeH2-norm for the error model in these points is shown

in Figure 5.2.

In this example, the importance of addressing the behavior of the system instead

of interpolating the system matrices can be seen. First of all, it is hard to find

base transformations such that all the given lti models are represented in the

same basis (called a coherent state basis in De Caigny et al. [2012]), and second

you cannot control how the system depends on the parameters in this basis, as is

illustrated with the smilemethod using different orders in the polynomial of the

parameter.
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Figure 5.1: The elements in the A-matrices as function of p for the four state

lpv system (5.33) for two different state bases. The gray dashed lines rep-

resents the elements in the A-matrix when any lti model extracted is given

in a balanced form. For this state basis, the elements depend nonlinearly on

p, This is also the basis for which the lti models that are given as data are

extracted from. The black lines represents the elements in the A-matrix for

another state basis when only two elements depend affine on p and the rest

are constant. This state basis is shown here to show that there exist another,

input-output equivalent, system which has a simple structure.

5.7 Conclusions

In this chapter, new local methods for computing an lpvmodel, given a set of lti
models are proposed. These methods use a nonlinear optimization approach that

is based on the model-reduction techniques in Chapter 4. The proposed methods

try to preserve the input-output behavior of the given systems by minimizing

the H2-norm of the error systems. The cost functions and their gradients are

derived to be computationally efficient. This enables us to have a measure of first

order optimality and to efficiently use standard quasi-Newton solvers to solve

the problem. The method has been shown to work both conceptually, on small

examples, and on real-world examples, as we will see in Chapter 7.

There are two main advantages with the proposed methods, compared to existing

local methods. The first one is that it is possible to impose structure in the ele-

ments in the system matrices. The other one is that the method tries to capture

the input-output behavior of the given systems. However, this comes at the price

of computational burden, which makes the method slower than many existing

local methods. The fact that the methods consider the input-output behavior, us-

ing the H2-norm, implies that the method is invariant to which state-space bases
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Table 5.1: Numerical results from Example 5.2

Method
∑

i ||Ei ||H2
Degree

h2nl, rank 2 1.44 · 10−4 1

h2nl, rank 4 2.54 · 10−5 1

smile 2.54 · 10−13 2

smile 6.70 1
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Figure 5.2: The figure illustrates the relative H2-norm of the error system in

100 validation points for the different methods. Note the different scales and
that it takes a polynomial of order two using the smile approach to obtain a

satisfactory result, as with the proposed method using an affine function.

the given local ltimodels are represented in and even howmany states the given

models have. It also implies that it is possible to find an lpv model with low

dependence on the parameters, despite apparently complex dependence of the

parameter.
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Controller Synthesis

Let us start by quoting a sentence from Syrmos et al. [1997]: “The static out-

put feedback problem is one of the basic problems in feedback design, which, in

the multivariable case, is still analytically unsolved.” In Blondel and Tsitsiklis

[1997] they show that the static output-feedback stabilization problem is indeed

NP-hard if one constrains the coefficients of the controller to lie in prespecified in-

tervals. They also conjecture that already the unconstrained problem is NP-hard.

This chapter does not include a revolutionary solution to this problem, instead

it proposes a computational method for finding locally optimal solutions to the

mentioned problem and as will be shown, the method works for medium-scale

systems and for controllers that have structural constraints. A method for synthe-

sizing controllers for lpv systems, based on the first method, is also presented.

The methods use, as the methods in the previous chapters, a general nonlinear

optimization approach.

6.1 Overview

The problem of finding an unstructured state-feedback H2 or H∞ controller is

well known to be a problem that, under certain assumptions, see, e.g., Zhou et al.

[1996], easily can be solved. However, the problem of finding a static output-

feedbackH2 (orH∞) controller is generally a non-convex problem and not solved

as easily. The problem of finding an H2 controller is closely related to the prob-

lem of finding an optimal controller with a quadratic performance criterion. This

problem was introduced in Kalman [1960] and has been studied since then. The

problem has been attacked in different ways, both using direct general-purpose

minimization, see, e.g., Rautert and Sachs [1997], and using semidefinite pro-

103
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grams (sdp) see, e.g., Stingl [2006]. These methods can handle problems of mod-

erate sizes but can experience problems already for small-scale systems. sdp has
been a hot topic during the last years, but the problem with the sdp approach

is that it scales badly with the dimension of the problem. When formulating

this particular optimization problem, of finding a reduced-order controller, it

involves bilinear matrix inequalities (bmis) that makes the problem even more

difficult to solve, see Mesbahi et al. [1995]. Another approach that very recently

has been published is the more direct approach in Lin et al. [2009] (and Fardad

et al. [2009]) that formulates the problem as a general nonlinear optimization

problem and uses a dedicated quasi-Newton algorithm to solve the problem. The

first method presented in this chapter resembles closely the method presented

in Lin et al. [2009], but has been independently derived with an, in our opinion,

more straightforward derivation. The main focus in Lin et al. [2009] is on the

ability to create structured controllers, e.g., interconnected systems subject to ar-

chitectural constraints on the distributed controller. In this chapter the main goal

is to find a method that is applicable to medium-scale systems and is expandable

to a framework for creating robust H2 controllers or controllers for lpv system,

e.g., controllers for systems with parametric uncertainties. The first method is

then extended to handle controller synthesis for lpv systems, much as how the

methods in Chapter 5 are extensions of the methods in Chapter 4.

The methods proposed in this chapter, for controller synthesis, both for lti and
lpv systems, will of course have at least two drawbacks. The first one is that

the methods need a stabilizing controller to be able to start the optimization and

finding a stabilizing controller is most likely an NP-hard problem. The second

one is that, given a stabilizing controller, the problem of finding a static output-

feedbackH2 controller is a non-convex problem, therefore the proposed methods

can not guarantee to find a globally optimal controller but only a locally optimal

one.

6.2 Static Output-Feedback H2-Controllers

In this section, a method for synthesizing static output-feedback H2 controllers

for lti systems will be presented, and as explained in Section 2.1.4, this method

can also be used to synthesize reduced-order controllers. The proposed method

will, as the methods presented in Chapter 4 and Chapter 5, be based on minimiz-

ing the H2-norm.

The goal with the optimization problem in this section is to formulate an op-

timization problem for synthesizing a static output-feedback controller. When

formulating this optimization problem, great care need to be taken when deriv-

ing the expression for the cost function and its gradient to make sure that the

expressions can be evaluated efficiently. The method presented in this section

is designed to work on medium-scale systems, which will be shown later, and it

also works with structural constraints in the controller.

As described in Section 2.1.4, the model that will be used to measure the perfor-
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mance of a system is ⎛⎜⎜⎜⎜⎜⎜⎝
ẋ
z
y

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝
A B1 B2

C1 D11 D12

C2 D21 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
x
w
u

⎞⎟⎟⎟⎟⎟⎟⎠ , (6.1)

where x ∈ R
nx is the state vector, w ∈ R

nw the disturbance signal, u ∈ R
nu the

control signal, z ∈ R
nz the performance measure and y ∈ R

ny the measurement

signal.

Closing the loop with a static output-feedback controller, u = Ky, where K is a

matrix describing the controller, yields the closed-loop system

Tw,z =

[
AT BT
CT DT

]
=

[
A + B2KC2 B1 + B2KD21

C1 +D12KC2 D11 +D12KD21

]
. (6.2)

Now, let us formulate the optimization problem of minimizing the H2-norm of

the closed-loop system from w to z, Tw,z , in (6.2), i.e.,

min
K

∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣2H2
. (6.3)

Since the equations will differ in continuous and discrete time but the general

ideas are the same, both versions will be presented but with less detail in the

discrete-time case.

6.2.1 Continuous Time

For the H2-norm to be defined, the system Tw,z has to be asymptotically stable

and strictly proper, i.e., A + B2KC2 has to be Hurwitz and D11 + D12KD21 =

0. Note that already the problem of finding a K that stabilizes the system is,

as explained in the beginning of this chapter, most likely an NP-hard problem.

Because of this, for the rest of the chapter, if nothing else is mentioned, it will be

assumed that K stabilizes the system.

To compute the cost function for the optimization problem (6.3), the cost function

have to be expressed in a more suitable form for evaluation. Using (2.21), the cost

function for the optimization problem (6.3) can be expressed as∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣2H2
= trBT

TQTBT (6.4a)

= trCTPTC
T
T , (6.4b)

where QT and PT satisfy the Lyapunov equations

ATPT + PTA
T
T + BTB

T
T = 0, (6.5a)

AT
TQT +QTAT + CT

TCT = 0. (6.5b)

Now, with the equations in (6.4) and (6.5) it is possible to state necessary condi-

tions for optimality for (6.3). In the theorem below, which states the necessary

conditions for optimality, the gradient of the cost function for the optimization
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problem (6.3) can be readily extracted to be used in, for example, a quasi-Newton

algorithm.

Theorem 6.1 (Necessary conditions for optimality). Given a system G as in

(6.1) and a static output-feedback controller, described by the matrix K, such

that u = Ky. The system G and the controller are given such that the closed-

loop system, Tw,z in (6.2), is asymptotically stable and strictly proper, i.e., AT is

Hurwitz and DT = 0. In order for the matrix K to be optimal for the problem

(6.3), it is necessary that K satisfies the equations in (6.5) and that

∂
∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣2H2

∂K
= 2

(
BT
2QTPTC

T
2 + BT

2QTBTD
T
21 +DT

21CTPTC
T
2

)
= 0. (6.6)

Proof: If AT is Hurwitz, then the equations in (6.5) are uniquely solvable. These

are needed to compute the cost function and its gradient. Now the gradient of

the cost function with respect to K has to be computed. Let kij denote element

(i, j) in K. First differentiate (6.5b) with respect to kij , which will be needed later

on, which entails

AT
T
∂QT

∂kij
+
∂QT

∂kij
AT +

∂AT
T

∂kij
QT +QT

∂AT

∂kij
+
∂CT

T

∂kij
CT + CT

T
∂CT

∂kij
= 0. (6.7)

Now differentiate the cost function (6.4a) with respect to kij ,

∂
∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣2H2

∂kij
= 2 tr

∂BT
T

∂kij
QTBT + tr

∂QT

∂kij
BTB

T
T . (6.8)

Using Lemma 4.1 on the equation above together with equations (6.5a) and (6.7)

entails

∂
∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣2H2

∂kij
= 2 tr

(
∂AT

T

∂kij
QTPT +

∂BT
T

∂kij
QTBT +

∂CT
T

∂kij
CTPT

)
. (6.9)

Using the structure of the variables AT , BT and CT in (6.2) and Lemma 4.2 yields

∂
∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣2H2

∂K
= 2

(
BT
2QTPTC

T
2 + BT

2QTBTD
T
21 +DT

12CTPTC
T
2

)
. (6.10)
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For the optimization problem (6.3) it is also quite straightforward to derive the

Hessian, in the same manner as deriving the gradient, ending up in

∂2
∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣2H2

∂kij∂kkl
= 2 tr

(
∂KT

∂kij

[
BT
2

∂QT

∂kkl
BTD

T
21 +DT

21CT
∂PT

∂kkl
CT
2 + BT

2

∂QT

∂kkl
PTC

T
2

+BT
2QT

∂PT

∂kkl
CT
2 + BT

2QTB2
∂K
∂kkl

D21D
T
21 +DT

21D21
∂K
∂kkl

C2PTC
T
2

] )

= 2

[
DT

12CT
∂PT

∂kkl
CT
2

]
ij

+ 2

[
DT

12CT
∂PT

∂kij
CT
2

]
kl

+ 2

[
BT
2QT

∂PT

∂kkl
CT
2

]
ij

+ 2

[
BT
2QT

∂PT

∂kij
CT
2

]
kl

+ 2
[
BT
2QTB2

]
ik

[
D21D

T
21

]
lj
+ 2

[
DT

12D12

]
ik

[
C2PTC

T
2

]
lj
.

(6.11)

6.2.2 Discrete Time

In discrete time, for the H2-norm to be defined, the system Tw,z must be asymp-

totically stable, i.e., A + B2KC2 has to be Schur. To compute the cost function in

(6.3) for discrete-time systems the equations∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣2H2
= trBT

TQTBT + trDTD
T
T (6.12a)

= trCTPTC
T
T + trDT

TDT , (6.12b)

can be used, where QT and PT satisfy the discrete-time Lyapunov equations

ATPTA
T
T − PT + BTB

T
T = 0, (6.13a)

AT
TQTAT +QT + CT

TCT = 0. (6.13b)

Theorem 6.2 (Necessary conditions for optimality). Given a system G as in

(6.1) and a static output-feedback controller, described by the matrix K, such

that u = Ky. The system G and the controller are given such that the closed-loop

system, Tw,z in (6.2), is asymptotically stable, i.e., AT is Schur. In order for the

matrix K to be optimal for the problem (6.3), it is necessary that it satisfies the

equations in (6.13) and that

∂
∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣2H2

∂K
= 2

(
BT
2QTATPTC

T
2 + BT

2QTBTD
T
21 +DT

21CTPC
T
2 +DT

12DTD
T
21

)
= 0.

(6.14)

Proof: The proof is analogous to the proof for Theorem 6.1

As in the continuous-time case it also here possible to compute the Hessian,
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which becomes

∂2
∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣2H2

∂kij∂kkl
= 2

[
DT

12CT
∂PT

∂kkl
CT
2

]
ij

+ 2

[
DT

12CT
∂PT

∂kij
CT
2

]
kl

+ 2

[
BT
2QTAT

∂PT

∂kkl
CT
2

]
ij

+ 2

[
BT
2QTAT

∂PT

∂kij
CT
2

]
kl

+ 2
[
BT
2QTB2

]
ik

[
C2PTC

T
2

]
lj

+2
[
BT
2QTB2

]
ik

[
D21D

T
21

]
lj
+2

[
DT

12D12

]
ik

[
C2PTC

T
2

]
lj
+2

[
DT

12D12

]
ik

[
D21D

T
21

]
lj
.

(6.15)

6.3 Static Output-Feedback H2 LPV Controllers

The controller synthesis method for lpv systems presented in this section will

be an extension of the method presented in the previous section, much as how

the methods in Chapter 5 are extensions of the methods in Chapter 4. The goal

with the optimization problem in this section, is to synthesize a static output-

feedback linear parameter-varyingH2 controller. The idea is to be able to directly

synthesize a controller using data, instead of first identifying an lpv model and

then from that model synthesize a controller. As talked about in Chapter 5, given

an lpvmodel,

G(p) :

⎛⎜⎜⎜⎜⎜⎜⎝
ẋ
z
y

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝
A(p) B1(p) B2(p)
C1(p) D11(p) D12(p)
C2(p) D21(p) 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
x
w
u

⎞⎟⎟⎟⎟⎟⎟⎠ (6.16)

what ideally is wanted, is to minimize the integral

min
K(p)

∫ ∣∣∣∣∣∣Tw,z(p)∣∣∣∣∣∣2H2
dp, (6.17)

where Tw,z(p) is the closed-loop system when closing the loop for the lpv model

G(p) with the lpv controller K(p). However, in this section, it is assumed that

a set, M, of N lti models, Gi , for different fixed parameter values, pi , just as

in Chapter 5, is given. This will of course lead to the fact that it is not possi-

ble to control the dynamic behavior coming from when the parameters are not

fixed, as discussed in Chapter 5, since this information is not present in the data

given. However, this is a common problem when working with gain-scheduling

and it is assumed in this thesis that the parameters move slowly such that the

dynamics from the parameters do not influence the system much, a commonly

used assumption, see Shamma and Athans [1992]. The optimization problem

now becomes

minimize
K(p)

N∑
i=1

∣∣∣∣∣∣Tw,z(pi )
∣∣∣∣∣∣2H2

, (6.18)

which for a fixed i becomes equivalent to the problem in Section 6.2.



6.4 Computational Aspects 109

The parametrization of the controller

K(p) : u(t) = K(p)y(t) (6.19)

with respect to the parameters is taken as

K(p) =
∑
k

wk(p)K
(k). (6.20)

As when identifying lpvmodels, the functions wk(p) are design choices that can

be hard to choose. However, given such a parametrization and a set of ltimodels,

as in (6.16), where the given ltimodels are denoted as G(pi ) = Gi , the controller

as K(pi ) = Ki and the closed loop system as Tw,z(pi ) = Tw,z,i , the optimization

problem can be written as

minimize
K(k)

N∑
i=1

∣∣∣∣∣∣Tw,z,i ∣∣∣∣∣∣2H2
(6.21)

where QT ,i and PT ,i satisfy the Lyapunov equations

AT ,iPT ,i + PT ,iA
T
T ,i + BT ,iB

T
T ,i = 0, (6.22a)

AT
T ,iQT ,i +QT ,iAT ,i + CT

T ,iCT ,i = 0, (6.22b)

for the continuous-time case and their discrete-time counterpart in the discrete-

time case.

Now we formulate the necessary conditions for optimality for this method in

continuous time, the conditions for the discrete-time case are analogous.

Theorem 6.3 (Necessary conditions for optimality). Assume that Ki stabilizes

the system Gi and that all closed-loop systems, Tw,z,i are strictly proper, i.e., AT ,i

is Hurwitz and DT ,i = 0 for all i. In order for the matrices K(k) to be optimal for

the problem (6.21), it is necessary that K(p) satisfies the equations in (6.22) for

all i, and that

∂
∑

i

∣∣∣∣∣∣Tw,z,i ∣∣∣∣∣∣2H2

∂K
= 2

N∑
i=1

wk(pi )
(
BT
2,iQT ,iPT ,iC

T
2,i + BT

2,iQT ,iBT ,iD
T
21,i

+DT
12,iCT ,iPT ,iC

T
2,i

)
= 0. (6.23)

Proof: The proof is analogous with the proof for Theorem 6.1.

6.4 Computational Aspects

In this section, a suggestion of how the methods in this chapter can be initialized

and how to speed up the computations will be presented.

As with the methods in the previous chapters, both cost functions and their gra-
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dients have been calculated and can easily be used in, e.g., a quasi-Newton al-

gorithm to solve the optimization problem. For the methods described in this

chapter also the Hessians have been calculated, which can be utilized in a quasi-

Newton algorithm to initialize the Hessian approximation in, e.g., bfgs. We do

not want to use the Hessian information in every iteration since this would be too

heavy, computationally.

The derivations for the gradients and the Hessians in Section 6.2, have been done

element wise, as with the methods in the previous chapters. This means that it

is possible, also for these methods, to introduce structure in the controller, e.g. a

diagonal controller.

For the methods in this chapter it is, however, not as straightforward to utilize

the structure in the Lyapunov equations (6.22) (or (6.5)) since, in the realization

(6.2), there is no obvious structure that can be exploited. What can be used, is

that if both the cost function and the gradient have to be computed, bothQT and

PT must be computed, andQT and PT can be solved efficiently together by using

the fact that AT is the factor in both of the Lyapunov equations, see for example

Benner et al. [1998].

The optimization problems (6.3) and (6.21) are both non-convex and nonlinear,

which makes the initialization an important problem. Additionally, it is required

that the initializing controller is stabilizing, which is probably an NP-hard prob-

lem, see Blondel and Tsitsiklis [1997]. If the given system (or systems if given a

set of models) is asymptotically stable, then the initialization used is a controller

with all zeros. However, if given an unstable system for which an H2 controller

should be computed we take use of other, existing, methods/algorithms to try

and stabilize the system and then start ourmethodwith this stabilizing controller.

The algorithm used to find a stabilizing controller is hifoo (see Gumussoy et al.

[2009]).

6.5 Examples

In this section, we will try to show the applicability of the methods presented in

this chapter using some examples. We begin with an example where the method

presented in Section 6.2 is used on some systems in the COMPleib benchmark

collection (see Leibfritz and Lipinski [2003]).

Example 6.1: COMPleib-Systems
In this example our goal is to compare the method presented in Section 6.2,

which will be called h2nlctrl, with the sdp-method described in Stingl [2006],

called stingl, and the method described in Arzelier et al. [2011], called hifoo.

The systems used in this example comes from COMPleib (see Leibfritz and Lipin-

ski [2003]), and are systems ranging from 2 to 1100 states. In all systems we have

D11 = 0 and D12 = 0 or D21 = 0, to make sure that D11 +D12KD21 = 0, so that

the H2-norm of the closed-loop system is defined.
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To initialize h2nlctrl and hifoo, a heuristic approach is used. First it is check-

ed if the system is open-loop stable and if that is the case, then the optimization

is initialized with K = 0. If this does not hold then the optimization package hi-
foo, see Gumussoy et al. [2009], is called to minimize the real part of the largest

eigenvalue of the matrix A + B2KC2. Only cases where a stabilizing controller is

found are reported in the tables.

In Table 6.1, Table 6.2, Table 6.3, Table 6.4 and Table 6.5, results from the numer-

ical benchmark are presented. The name of the COMPleib-system is displayed in

the first column. In the second column, the relevant sizes, i.e., number of states,

number of output and number of inputs are display and are denoted nx, ny and

nu respectively. In columns three, four and five the H2-norm for the resulting

closed-loop systems are displayed and in columns six, seven and eight how long

time it took for the methods h2nlctrl, hifoo and stingl to find the controller

are displayed. For the first 31 systems, which also occur in the test performed

in Stingl [2006], the results are compared to the results reported in Stingl [2006].

For the reminder of systems a “–” in the fourth column denotes that we do not

have any other results from Stingl [2006] to compare with. In Stingl [2006] they

could not find a controller for these systems, mostly because of numerical prob-

lems and rapid growth of the sdps, since they optimize over both K and the

Lyapunov matrices P or Q.

When the results using hifoo and h2nlctrl are compared with the results

from stingl, hifoo and h2nlctrl find for almost all systems the same value

for
∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣H2

, however, generally, much faster. When comparing h2nlctrl and

hifoo they perform very similar for most of the systems regarding the value∣∣∣∣∣∣Tw,z ∣∣∣∣∣∣H2
. However, for a large number of the systems, h2nlctrl is able to find

the controller faster than hifoo and for a few systems hifoo is not able to com-

pute a controller due to out of memory, denoted with “–” in the fifth column,

where h2nlctrl can.

The results in the tables below also show the benefit with the new method, apart

from being able to handle structure in the controller, it can handle medium-scale

systems. The amount of optimization variables does not grow with the amount of

states in the systems, as in the sdp case used by Stingl [2006], but only depends

on the size of the controller.
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Table 6.6: Numerical values for the coefficients in the lpv controllers in

Example 6.2 and the time to compute them.

Model K(0) K(1) K(2) Time [s]

Constant 0.1638 – – 0.09 s

Linear 0.259 -0.305 – 0.12 s

Quadratic 0.2936 -0.935 0.6903 0.11 s

A small example of an lpv controller synthesis problem is now presented to show

the potential of the method proposed in Section 6.3.

Example 6.2

The system in this example is the same as in Example 5.2

G = G1G2, where (6.24a)

G1 =
1

s2 + 2ζ1s + 1
, G2 =

9

s2 + 6ζ2s + 9
, (6.24b)

ζ1 = 0.1 + 0.9p, ζ2 = 0.1 + 0.9(1 − p), p ∈ [0, 1]. (6.24c)

From these equations we obtain A(p),B2(p),C2(p) and D22(p), using the notation

in (2.31), that represents the dynamical system. Then we create the matrices

B1(p) = I4×4, C1(p) = I4×4

D11(p) = 04×4, D12(p) =

(
03×1
1

)
, D21(p) = 01×4

to have a fully defined performance measure of the system. From this system we

extract five systems representing five equidistant points in p ∈ [0, 1], i.e., we are

given five ltimodels, extracted from the lpv system (6.24), with four states each.

The lpv system is expressed in a balanced state basis. In this state basis the

lpv system depend nonlinearly on the parameter p, see Figure 6.1. Hence, judg-

ing from the given data, one could easily suspect that a complex lpv controller

would be required. However, in this example, using the proposed method from

Section 6.3, we will try to find three static output-feedback lpv controllers of dif-
ferent complexity, one that is constant and independent of the parameter p, one
that is linear in p and one that is quadratic in p. For example, the quadratic lpv
controller has the structure,

u(t) = K(p)y(t), K(p) = K(0) +K(1)p +K(2)p2. (6.25)

The specific values for the resulting lpv controllers and times for computing

them can be found in Table 6.6

To validate the controllers, 100 validation points were generated from (6.24),

for p ∈ [0, 1]. For each of these 100 models, an optimal static output-feedback



118 6 Controller Synthesis

−4
0

4

−4
0

4

−4
0

4

0 0.5 1
−4
0

4

0 0.5 1 0 0.5 1 0 0.5 1

Figure 6.1: The elements in the A-matrices as function of p for the four state

lpv system (6.24) in the given state basis.

controller was created (the associated optimization problem is a scalar problem,

hence trivially solved using, e.g., gridding). In Figure 6.2 the ratio between the

H2-performance for the different lpv controllers and the H2-performance with

the optimal static output-feedback controller in the different validation points is

shown, i.e., the closer the curve is to the value one the closer the lpv controller

is to the optimal controller. In Figure 6.2, we see that method is able to find lpv
controllers that, depending on the complexity of the lpv controller, is close to

the optimal reference controller in the validation points.

In Figure 6.3, the reference controller and the resulting lpv controllers (constant,
linear and quadratic in p) are plotted. Looking at both Figure 6.2 and Figure 6.3

one can see that with an lpv controller that is quadratic in p we find a controller

that is very similar to the globally optimal one.

6.6 Conclusions

In this chapter, two methods for synthesizingH2 controllers have been presented,

one for lti systems and one for lpv systems. The methods use a direct nonlinear

optimization approach to solve the problem which makes it possible to control

the structure of the controller to create, e.g., a diagonal or bidiagonal controller.

For these methods, both cost functions, gradients and hessians have been derived,

which makes it possible to effectively use of-the-shelf quasi-Newton solvers and

makes it possible to solve problems of medium-scale size. One of the drawbacks

with the methods is the non-convexity of the problems and the possible fact that

finding a stabilizing controller is an NP-hard problem. However, this is a problem
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in p, dotted line) plotted as functions of the parameter, p.
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that the methods have in common with other methods too, and is one of the

problems that need more attention in the future. One possible direct extension

that has not been tested is to use the idea of controlling the rank of the system

matrices, as in Section 5.4.2. By using a method that can control the rank, one

could, for example, enforce the controller to have integrators.



7
Examples of Applications

In this chapter, the methods from Chapter 4 and Chapter 5 are illustrated with

two more elaborate examples. In the first example, both model-reduction meth-

ods from Chapter 4 and lpv generation methods from Chapter 5 are used on an

Airbus aircraft model, to show the applicability of the methods on a real-world

example. In the second example, we show how model-reduction methods can be

used in system identification to obtain better estimates for certain model struc-

tures.

7.1 Aircraft Example

The models used in this section, are models of an Airbus aircraft that were de-

veloped and used in an EU project called cofcluo (Clearance Of Flight Control

Laws Using Optimization, see http://cofcluo.isy.liu.se/ and Varga et al.

[2012]). The main objective of the cofcluo project was to develop methods that

use optimization techniques to make clearance of flight control laws more effi-

cient and reliable, see for example Garulli et al. [2013]. The clearance of flight

control laws is an important part of the certification and qualification process

for the airplane industry. The models used in the examples below are three lpv
models that, with different complexity, describe an airplane in closed loop in the

longitudinal direction. All models are siso lpv models with 22 states and all

depend polynomially on the parameters. The difference between the lpv mod-

els is that they depend on one (different configurations for the center tank), two

(different configurations for the center tank and the outer tank) or three param-

eters (different configurations for the center tank, the outer tank and payload)

respectively.

121



122 7 Examples of Applications

7.1.1 LPV Simplification

To be able to use certain analysis methods for evaluating performance criteria

for flight clearance, the lpv models have to be represented as linear fractional

representations, lfrs, (see, e.g., Zhou et al. [1996] or Hecker [2006]). To be able

to use the analysis methods efficiently the lfrs have to be of low order. Generally,

any lpvmodel with rational dependence in the parameters can be turned into an

lfr. However, it is a difficult problem to guarantee that the resulting lfr is

of minimal order. There exist some special cases for when this is possible, for

example, when the lpv depends affinely on the parameters, see Hecker [2006]).

Take an lpvmodel

G(p) =
[
A(p) B(p)
C(p) D(p)

]
,

where the system matrices depend affinely on the parameters in p, i.e., A(p) =
A(0) + A(1)p1 + A(2)p2 + · · · + A(N )pN and the same for B(p), C(p) and D(p). Now

create the matrices F(0), F(1), F(2), . . ., F(N ) as

F(0) =
(
A(0) B(0)

C(0) D(0)

)
, F(1) =

(
A(1) B(1)

C(1) D(1)

)
, F(2) =

(
A(2) B(2)

C(2) D(2)

)
, . . . .

The minimal order the lfr, generated from G(p), can have is
∑N

i=1 rankF
(i) and

this lfr is easy to compute, see Hecker [2006].

In this example, the lpv generation methods described in Chapter 5 will be used

to reduce the complexity, with respect to the parameters, of the original lpvmod-

els. The strategy that will be used is to sample a number of lti models from the

three given lpv models and choose an affine parametrization for the generated

lpv models to be able to guarantee that a low order lfr can be computed from

the generated lpvmodels.

The given lpv models are not strictly proper, which is a problem when using

methods based on the H2-norm, since the H2-norm is infinite if D � 0. To cir-

cumvent this problem, the D matrices are first ignored and an affine lpv model

is computed using only the A, B and Cmatrices. To find the resultingDmatrices

a simple element-wise interpolation problem is solved. However, since theDma-

trices are unaffected by state transformations the complexity cannot as easy be

reduced for the D matrices and a higher order polynomial might be necessary in

the interpolation to obtain a sufficiently good approximation.

As mentioned above, an lfr of low order is preferred. The first step towards

this was to use an affine parametrization. However, by using the rank control-

ling method described in Section 5.4.2, it is possible to control the rank of the

coefficient matrices (F(1), F(2), . . .) in the generated lpv. Hence, using the rank

controlling method described in Section 5.4.2 the complexity of the resulting lfr
can be lowered even more by constraining the appropriate matrices to have low

rank.

In this example, we sample 10, 100 and 125 lti models from the one, two and



7.1 Aircraft Example 123

three parameter lpv models, respectively. The lti models are sampled equidis-

tantly in the parameter space. These lti models are used as inputs to the pro-

posed methods. Two lpv models will be generated for the data sets from the

lpvmodels with one and two parameters, one with full rank in all the coefficient

matrices and one with rank deficient A(1) and A(2) matrices.

A few different ranks for the A(1), A(2) and A(3) matrices were tested and for the

one parameter model set, rank two was chosen for the matrixA(1) and for the two

parameter model set, rank eleven was used for both A(1) and A(2). For the three

parameter model set, no sufficiently good model, for the ranks tested, was found

and only the result using coefficient matrices with full rank will be presented.

The validity of the resulting lpv models are evaluated by sampling a new, dif-

ferent, set of lti models from each of the given lpv models and compare these

with the generated lpvmodels. The models are compared both using the relative

H2-norm, ignoring the D matrices and the relative H∞-norm, including the D
matrices. The results from the lpv generation are displayed for the one parame-

ter case in Figure 7.1. For the two parameter case, the full rank case is displayed

in Figure 7.2 and for the low rank case in Figure 7.3. The result from the three

parameter case is displayed in Figure 7.4.

In Figure 7.1 – 7.4, we can see that all the generated lpv models have a low

relative H2-norm for all validation models. This suggests that we have found

good approximations of the original lpv models. Not only is the relative H2-

norm low, but also the relative H∞-norm, which gives another certificate that the

generated models approximates the given lpvmodels well. Looking at Table 7.1,

we can also see that complexity of the resulting lfr have decreased in most cases

and especially in the cases where we were able to find lpv models with rank

deficient coefficient matrices. These facts suggest that the proposed lpvmethods

can be used to reduce the complexity of lpv models and their lfrs. Another

interesting fact that can be seen in Figure 7.1 is that for the one parameter model,

the resulting model using a rank deficient coefficient matrix finds a better model

than the one with full rank. Two likely explanations are that it could be due to the

non-convexity of the problem or that the full rank case is an over-parametrization

and the low rank method works as a regularization to the problem.

7.1.2 Model Reduction

The three lpvmodels, described in the previous section, describe an aircraft, and

more precisely a flexible aircraft. The original models were computed using finite

element computations and were very large. These models were then reduced

such that the dynamics above 15 rad/s in the models were truncated. Hence,

the given lpv models are only valid up till 15 rad/s, which makes these models

suitable for testing the frequency-limited model-reduction method, described in

Section 4.4.3. As can be seen in Figure 7.5, which plots the magnitude curve of

one of the lti models, it would be beneficial to be able to ignore the dynamics

after 15 rad/s when doing model reduction.

For this example we extract one lti model from the one parameter lpv model
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rank.
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Table 7.1: A table showing the amount of time it took to compute the differ-
ent lpv models from Section 7.1.1 and the sizes of the corresponding lfrs.
n̄∆ represents the size of the resulting lfr coming from the proposed meth-
ods and n∆ represents the size of the resulting lfr from the original lpv
model.

lpvModel n̄∆ n∆ Time

1 parameter, full rank 26 20 7m 56s
1 parameter, rank 2 6 20 8m 56s
2 parameters, full rank 52 62 1h 35m 31s
2 parameters, rank 11 32 62 50m 44s
3 parameters, full rank 94 98 1h 55m 53s
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Figure 7.5: A magnitude plot for a sampled lti model from the one param-
eter lpvmodel. The dashed vertical line denotes ω = 15 rad/s.



7.1 Aircraft Example 127

10−2 10−1 100 101 102

−50

0

50

Frequency [rad/s]

M
ag

ni
tu
d
e
[d
B
]

Magnitude plot for the error models

wbt
mflbt
flbt
flistia
flh2nl
wh2nl

Figure 7.6: The error models resulting from the different methods, from
Section 7.1.2. The dashed vertical line denotes ω = 15 rad/s. The red line
(flbt) seems to have found the best model. However, this model is unstable.
The best model, inH2-norm, is then the green model, which is our proposed
method from Section 4.4.3.

at the nominal value p = 0. This model will be reduced using the methods de-
scribed in Chapter 4 and will be compared with other model-reduction meth-
ods. The methods flh2nl (which is our proposed frequency-limited model-
reduction method, see Section 4.4.3), flistia, flbt and mflbt are compared.
These methods are also compared with the methods wh2nl (which is our pro-
posed frequency-weighted model-reduction method, see Section 4.4.1) and wbt
using a tenth order low-pass Butterworth filter with a cut-off frequency of 15
rad/s. The model is reduced from 22 states to 16 states.

The results from the different methods can be seen in Figure 7.6, showing the
different error models, and Figure 7.7, showing the true and reduced models,
and Table 7.2. In Figure 7.6 it seems that flbt has found a good approximation.
However, looking at Table 7.2 we see that the model from flbt is unstable. All the
other methods find models that are acceptable for the relevant frequency range
and as in the examples in Section 4.6, flh2nl finds the model with the best H2
fit.

In this example we had a model that was only valid up till a certain frequency and
looking at the result in Figure 7.6 and Figure 7.7 and Table 7.2, we see that the
frequency-limited model-reduction methods sacrifices the model fit in the upper
frequencies for the valid, lower, frequency regions. Hence, we see the importance
of using methods that are able focus on the relevant region.
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Figure 7.7: The true and reduced-order models, for the different methods,
from Section 7.1.2. The dashed vertical line denotes ω = 15 rad/s.

Table 7.2: Numerical results for the example in Section 7.1.2.
||G−Ĝ||H2 ,ω
||G||H2 ,ω

||G−Ĝ||H∞ ,ω
||G||H∞ ,ω

Reλmax

wbt 9.90e-03 1.12e-02 -1.63e-01
mflbt 2.90e-02 2.07e-02 -1.19e-01
flbt ∞ 3.87e-04 6.12e+00
istia 7.79e-03 9.33e-03 -1.35e-01

flh2nl 1.68e-03 5.11e-03 -1.90e-01
wh2nl 8.12e-03 1.37e-02 -1.82e-01

7.2 Model Reduction in System Identification

In this example we will show how model reduction can be used in system iden-
tification to obtain parameter estimates with a smaller covariance matrix than
with direct system identification. The example that will be used is taken from
Tjärnström [2003] where also the theoretical results are presented.

We will be work with a siso discrete-time output-error (oe, see Ljung [1999])
model with Ts = 1. Let y(t) denote the output of the system and u(t) the input
and N is the total number of measured data. The signal y(t) is assumed to be
generated from the true system, G0(q), as

y(t) = G0(q)u(t) + e(t),

where q is the discrete-time shift operator and the additive noise, e(t), is a zero-
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mean, white-noise sequence, independent of the input. The sought system is

parametrized as an oe model and denoted Ĝ(q, θ), where θ is a vector holding

the parameters for the oe model. To identify a model using the input-output

data the prediction-error method (pem) (see Ljung [1999]) can be used. One cost

function that is commonly used when doing system identification using pem is

VN (θ) =
1

2N

N∑
t=1

ε2(t, θ),

ε(t, θ) = y(t) − Ĝ(q, θ)u(t),

and the estimate of θ given N data points, θ̂N , is taken as

θ̂N = argmin
θ

VN (θ).

Using the notation and definitions above we can state a connection between sys-

tem identification, using pem, and model reduction, using the H2-norm. Under

weak conditions, it holds that

θ̂N → θ∗ = argmin
θ

1

2
Ēε2(t, θ) � V̄ (θ), as N →∞,

where Ēf (t) � limN→∞ 1
N

∑N
t=1 Ef (t) and using Parseval’s formula and an oe

model structure, we have that

V̄ (θ) =
1

4π

π∫
−π

∣∣∣G(eiω) − Ĝ(eiω, θ)
∣∣∣2 Φu(ω)dω =

1

2

∣∣∣∣∣∣G − Ĝ(θ)
∣∣∣∣∣∣2
Φu ,H2

.

Results in Tjärnström and Ljung [2002] and Tjärnström [2003] states, when es-

timating an oe model of low order (undermodeling), it is better to estimate the

low-order model with model reduction of a high-order model compared to esti-

mating the low-order model directly from data. This was exemplified already

in Tjärnström [2003]. However, not by using a H2 model-reduction algorithm

but by using a first-order approximation of the covariance expression for the pa-

rameters, see Tjärnström [2003]. First in this example we will use the method

proposed in Section 4.4.1 to do the model reduction when having a white-noise

input. Secondly, we will use an input signal with a frequency-limited spectrum

that requires the use of the method proposed in Section 4.4.3.

In this example the true system is given by

y(t) =
B(q)

F(q)
u(t) + e(t),

where

B(q) = 2q−1 − q−2
F(q) = 1 − 0.7q−1 + 0.52q−2 − 0.092q−3 − 0.1904q−4.



130 7 Examples of Applications

The input, u, and noise, e, are jointly independent. The noise is a zero-mean

white-noise process with variance 1.

First we will use a zero-mean white-noise process with variance 1 for the in-

put. The system is simulated with this input with N = 250 to obtain a data

set with input and output data. This data set is used first to directly estimate,

using pem, three low-order oe models with orders {nb = 1, nf = 1, nk = 1},
{nb = 2, nf = 2, nk = 1} and {nb = 3, nf = 3, nk = 1} respectively. Now, using

the same data set an oe model with order {nb = 4, nf = 4, nk = 1} is estimated

using pem and this estimated model of order {nb = 4, nf = 4, nk = 1} are re-

duced, using h2nl, to three oe models with orders {nb = 1, nf = 1, nk = 1},
{nb = 2, nf = 2, nk = 1} and {nb = 3, nf = 3, nk = 1} respectively. This procedure
is repeated 500 times and from the obtained estimates, Monte Carlo based esti-

mates of the covariance matrices are computed. From each of the six covariance

matrices, as in Tjärnström [2003], the eigenvalues are determined to represent

the size of the covariance matrices. The results are presented in Table 7.3.

Table 7.3: Numerical results for the example in Section 7.2 using a zero-

mean white-noise process with variance 1 for the input. The cases marked

“direct” means that the model comes from directly using pem and “reduced”

means that first a fourth order model is identified using pem and then this

model is then reduced using model reduction to the desired order.

Model – Method λ1 λ2 λ3 λ4 λ5 λ6

oe (1, 1, 1) – direct 0.930 0.0859 – – – –

oe (1, 1, 1) – reduced 0.924 0.0671 – – – –

oe (2, 2, 1) – direct 1.87 0.916 0.0919 0.0440 – –

oe (2, 2, 1) – reduced 1.81 0.910 0.0871 0.0431 – –

oe (3, 3, 1) – direct 233 3.57 0.915 0.355 0.0413 0.0276

oe (3, 3, 1) – reduced 179 2.11 0.952 0.305 0.0407 0.0265

In a second experiment we use an input with a limited spectrum. The input

in this case is a zero-mean gaussian signal with a non-zero spectrum on the fre-

quency interval [0, π/2] and with variance 1. The same procedure as above is

used to estimate six different oe models using the direct and reduced approach.

The difference compared to the case above is that the proposed method from

Section 4.4.3 is used instead. From each of the six covariance matrices, as in

Tjärnström [2003], the eigenvalues are determined to represent the size of the

covariance matrices. The results are presented in Table 7.4

This example repeats the results from Tjärnström [2003], that H2 model reduc-

tion can in some cases be used to find better estimates in system identification,

by finding smaller covariance matrices, see Table 7.3 and Table 7.4. However,

this time using an H2 model-reduction algorithm, both for the case of having

white-noise input and an input with limited spectrum. This example is meant to

highlight the connection between system identification and H2 model reduction,

and illustrate yet another application of our results.
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Table 7.4: Numerical results for the example in Section 7.2 using a zero-

mean gaussian process with a limited spectrumwith variance 1 for the input.

With “direct” means that the model comes from directly using pem and with

reducedmeans that first a fourth order model is identified using pem and the

this model is reduced, using model reduction to the correct order.

Model – Method λ1 λ2 λ3 λ4 λ5 λ6

oe (1, 1, 1) – direct 43.2 0.411 – – – –

oe (1, 1, 1) – reduced 40.6 0.400 – – – –

oe (2, 2, 1) – direct 1290 80.9 10.1 0.214 – –

oe (2, 2, 1) – reduced 1210 65.9 8.18 0.246 – –

oe (3, 3, 1) – direct 3590 595 466 128 3.63 0.170

oe (3, 3, 1) – reduced 1940 530 488 99.6 3.51 0.180

7.3 Conclusions

The two examples in this chapter have been chosen to highlight some properties

and applications for the model reduction and lpv algorithms and to show their

applicability on a real-world example. In the aircraft example in Section 7.1 we

could see how the lpv generating algorithms could be used to lower the complex-

ity of an existing lpv model and how the limited-frequency model-reduction

algorithm can be used to capture relevant frequency regions when performing

model reduction. In the system identification example in Section 7.2 we high-

light the connection between system identification andH2 model reduction using

an example that shows how the covariance matrix of the estimates can be made

smaller using model reduction together with system identification.





8
Concluding Remarks

The previous chapters have introduced, and shown the applicability of, some new

methods for reducing the complexity of lti and lpv systems and for synthesizing

H2 controllers. All methods are based on the same technique, which is minimiz-

ing the H2-norm of different systems, and utilizing the structure of the problems

to make the methods more efficient. The methods have been developed such that

an off-the-shelf quasi-Newton solver can be used to solve the problems using the

equations derived in the thesis.

In Section 4.4.1 a method for model reduction, for which the basic idea is not

new, was presented. However, we presented how to utilize the structure of the

problem and also laid the foundation for the other methods that were presented.

In Section 4.4.2 a model-reduction method that tries to cope with errors in the

given data was presented. The method uses the foundation laid in Section 4.4.1

together with a different view of robust optimization, namely using regulariza-

tion as a proxy for robust optimization.

In Chapter 3 a more complete and uniform derivation, than in the existing litera-

ture, of frequency-limited Gramians were presented. In Section 4.4.3 a frequency-

limited model-reduction method was presented. This method was based on the

derivations in Chapter 3 together with the foundation laid in Section 4.4.1.

All the model-reduction methods in Chapter 4 were then extended into an lpv
framework to be able to handle lpv systems and to be able to reduce the com-

plexity both in the states and the parameters for the lpv systems. Many of the

existing lpv generating methods have one drawback in common, which is that

they are not invariant to the state basis the lti models are given in. This draw-

back makes it hard for the existing models to be able to reduce the complexity of

133
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the lpv model. However, by using a model-reduction method as the foundation

to the lpv generating methods in Chapter 5 this drawback is eliminated.

The model-reduction problem is closely related to the controller-synthesis prob-

lem and using the same techniques as in Chapter 4 and Chapter 5, H2 controller-

synthesis methods were developed in Chapter 6. As discussed in Chapter 6, a

possible extension of the methods for synthesizing controllers could be to use the

idea of controlling the rank of the system matrices, as in Section 5.4.2. By using

this idea, of controlling the rank, one could, for example, enforce the controller

to have integrators.

The presented methods have been shown to work well on the presented examples,

which are both small academic examples and relevant real-world examples, for

example a model of an Airbus aircraft.

All the methods described in this thesis tries to solve non-convex optimization

problems, which are difficult problems and only local solutions can be guaran-

teed. Hence, the initialization problem is a very important part of the methods

presented in this thesis. We have presented some suggestions for initializing the

methods and, in our examples, they have worked well. However, this is a part of

the problem that is in need of further research and much can be gained by mak-

ing even better initializations, e.g., faster and more reliable computations, since

we can hopefully start even closer to an optimum.

Another problem that is in need of further research is the problem of finding a

stabilizing controller, which is a problem that has not been discussed much in

this thesis. The problem, of finding stabilizing controllers, is crucial to be able to

use the methods in Chapter 6, and in this thesis only one simple suggestion that

relies on existing methods is presented.
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