Endre søk
Begrens søket
1234567 1 - 50 of 1344
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abbas, Nahla
    et al.
    School of Engineering and Technology, Central Queensland University, Melbourne .
    Wasimi, Saleh A.
    School of Engineering and Technology, Central Queensland University, Melbourne .
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Climate Change Impacts on Water Resources of Greater Zab River, Iraq: Climate Change Impacts on Water Resources of Greater Zab River, Iraq2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, nr 12, 1384-1402 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Greater Zab is the largest tributary of the Tigris River in Iraq where the catchment area is currently being plagued by water scarcity and pollution problems. Contemporary studies have revealed that blue and green waters of the basin have been manifesting increasing variability contributing to more severe droughts and floods apparently due to climate change. In order to gain greater appreciation of the impacts of climate change on water resources in the study area in near and distant future, SWAT (Soil and Water Assessment Tool) has been used. The model is first tested for its suitability in capturing the basin characteristics, and then, orecasts from six GCMs (general circulation models) with about half-a-century lead time to 2046~2064 and one-century lead time to 2080~2100 are incorporated to evaluate the impacts of climate change on water resources under three emission scenarios: A1B, A2 and

    B1. The results showed worsening water resources regime into the future.

  • 2.
    Abbas, Nahla
    et al.
    School of Engineering & Technology, Central Queensland University, Melbourne.
    Wasimi, Saleh A.
    School of Engineering & Technology, Central Queensland University, Melbourne.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Model-Based Assessment of Climate Change Impact on Isaac River Catchment, Queensland2016Inngår i: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 8, nr 7, 460-470 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Isaac River catchment, which is located within Fitzroy basin in Central Queensland, Australia is mostly a semi-arid region, sparsely populated, but rife with economic activities such as mining, grazing, cropping and production forestry. Hydro-meteorological data over the past several decades reveal that the catchment is experiencing increasing variability in precipitation and streamflow contributing to more severe droughts and floods supposedly due to climate change. The exposure of the economic activities in the catchment to the vagaries of nature and the possible impacts of climate change on the stream flow regime are to be analyzed. For the purpose, SWAT model was adopted to capture the dynamics of the catchment. During calibration of the model 12parameters were found to be significant which yielded a R2 value of 0.73 for calibration and 0.66 for validation. In the next stage, six GCMs from CMIP3 namely, CGCM3.1/T47, CNRM-CM3, GFDLCM2.1, IPSLCM4, MIROC3.2 (medres) and MRI CGCM2.3.2 were selected for climate change projections in the Fitzroy basin under a very high emissions scenario (A2), a medium emissions scenario(A1B) and a low emissions scenario (B1) for two future periods (2046-2064) and (2080-2100). All GCMs showed consistent increases in temperature, and as expected, highest rate for A2 and lowest rate for B1. Precipitation predictions were mixed-reductions in A2 and increases in A1B and B1, and more variations in distant future compared to near future. When the projected temperaturesand precipitation were inputted into the SWAT model, and the model outputs were compared with the baseline period (1980-2010), the picture that emerged depicted worsening water resources variability.

  • 3.
    Abbas, Nahla
    et al.
    School of Engineering and Technology, Central Queensland University, Melbourne.
    Wasimi, Saleh A.
    School of Engineering and Technology, Central Queensland University, Melbourne.
    Bhattarai, Surya
    School of Medical and Applied Sciences, Centra l Queensland University, Melbourne .
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    The Impacts of Climate Change on Fitzroy River Basin, Queensland, Australia: The Impacts of Climate Change on Fitzroy River Basin, Queensland, Australia2017Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 11, nr 1, 38-47 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing

    trend in extreme floods and droughts apparently attributable to increased variability of blue and green waters which could be due to

    climate change. In order to get a better understanding of the impacts of climate change on the water resources of the study area for near

    future as well as distant future, SWAT (soil and water assessment tool) model was applied. The model is first tested for its suitability in

    capturing the basin characteristics with available data, and then, forecasts from six GCMs (general circulation model) with about

    half-a-century lead time to 2046~2064 and about one-century lead time to 2080~2100 are incorporated to evaluate the impacts of

    climate change under three marker emission scenarios: A2, A1B and B1. The results showed worsening water resources regime into the

    future.

  • 4.
    Abbas, Nahlah
    et al.
    The school of engineering & technology, Central Queensland University, Melbourne, Australia.
    Wasimi, Saleh A.
    The school of engineering & technology, Central Queensland University, Melbourne, Australia.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Impacts of Climate Change on Water Resources of Greater Zab and Lesser Zab Basins, Iraq, Using Soil and Water Assessment Tool Model2017Inngår i: International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, ISSN 2010-376X, Vol. 11, nr 10, 823-829 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Greater Zab and Lesser Zab are the major tributaries of Tigris River contributing the largest flow volumes into the river. The impacts of climate change on water resources in these basins have not been well addressed. To gain a better understanding of the effects of climate change on water resources of the study area in near future (2049-2069) as well as in distant future (2080-2099), Soil and Water Assessment Tool (SWAT) was applied. The model was first calibrated for the period from 1979 to 2004 to test its suitability in describing the hydrological processes in the basins. The SWAT model showed a good performance in simulating streamflow. The calibrated model was then used to evaluate the impacts of climate change on water resources. Six general circulation models (GCMs) from phase five of the Coupled Model Intercomparison Project (CMIP5) under three Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 for periods of 2049-2069 and 2080-2099 were used to project the climate change impacts on these basins. The results demonstrated a significant decline in water resources availability in the future.

  • 5.
    Abbaszadeh Shahri, Abbas
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik. College of Civil Engineering, Roudehen branch, Islamic Azad University, Tehran, Iran.
    Larsson, Stefan
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Johansson, Fredrik
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    CPT-SPT correlations using artificial neural network approach: A Case Study in Sweden2015Inngår i: The Electronic journal of geotechnical engineering, ISSN 1089-3032, E-ISSN 1089-3032, Vol. 20, nr 28, 13439-13460 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The correlation between Standard and Cone Penetration Tests (SPT and CPT) as two of the most used in-situ geotechnical tests is of practical interest in engineering designs. In this paper, new SPT-CPT correlations for southwest of Sweden are proposed and developed using an artificial neural networks (ANNs) approach. The influences of soil type, depth, cone tip resistance, sleeve friction, friction ratio and porewater pressure on obtained correlations has been taken into account in optimized ANN models to represent more comprehensive and accurate correlation functions. Moreover, the effect of particle mean grain size and fine content were investigated and discussed using graph analyses. The validation of ANN based correlations were tested using several statistical criteria and then compared to existing correlations in literature to quantify the uncertainty of the correlations. Using the sensitivity analyses, the most and least effective factors on CPT-SPT predictions were recognized and discussed. The results indicate the ability of ANN as an attractive alternative method regarding to conventional statistical analyses to develop CPT-SPT relations.

  • 6.
    Abbaszadeh Shahri, Abbas
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap.
    Naderi, Shima
    Modified correlations to predict the shear wave velocity using piezocone penetration test data and geotechnical parameters: a case study in the southwest of Sweden2016Inngår i: INNOVATIVE INFRASTRUCTURE SOLUTIONS, ISSN 2364-4176, Vol. 1, nr 1, UNSP 13Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Shear wave velocity (VS) is an important geotechnical characteristic for determining dynamic soil properties. When no direct measurements are available, V-S can be estimated based on correlations with common in situ tests, such as the piezocone penetration test (CPTu). In the current paper, three modified equations to predict the V-S of soft clays based on a comprehensive provided CPTu database and related geotechnical parameters for southwest of Sweden were presented. The performance of the obtained relations were examined and investigated by several statistical criteria as well as graph analyses. The best performance was observed by implementing of corrected cone tip resistance (q(t)) and pore pressure ratio (B-q) which directly can be found from CPTu data. The introduced modifications were developed and validated for available soft clays of the studied area in southwest of Sweden, and thus, their applicability for proper prediction in other areas with different characteristics should be controlled. However, the used method as a suitable tool can be employed to investigate.

  • 7. Abderrazek, K.
    et al.
    Uheida, Abdusalam
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Seffen, M.
    Muhammed, Mamoun
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Srasra, N. Frini
    Srasra, E.
    Photocatalytic degradation of indigo carmine using [Zn-Al] LDH supported on PAN nanofibres2015Inngår i: Clay minerals, ISSN 0009-8558, E-ISSN 1471-8030, Vol. 50, nr 2, 185-197 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Zn-Al layered double hydroxides (LDH), before and after calcination, were tested for the removal of indigo carmine (IC) dye from solution. These LDH photocatalysts were characterized by powder x-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry/differential thermogravimetry (TG/DTG), nitrogen physisorption at -196 degrees C, scanning electron microscopy (SEM) and diffuse reflectance spectrophotometry (DRS). The different photocatalysts were supported on polyacrylonitrile (PAN) nanofibres, so that filtration was unnecessary. The PXRD and FTIR analyses showed that the IC adsorption on c-Zn-Al-3-500 (LDH calcined at 500 degrees C) was enhanced by construction of the hydrotalcite matrix intercalated with the dye. The intercalation was clearly evidenced by the appearance of a peak at low degrees 2 theta values. All of the materials prepared exhibited photocatalytic activity, which for the c-Zn-Al-3-500 was comparable to that of commercial PAN-supported ZnO nanoparticles (100% degradation after 180 min). Kinetic studies showed that the degradation of the IC followed a pseudo-first order rate. The high activity and the ease of both synthesis and separation processes rendered this photocatalyst a promising candidate for environmental remediation.

  • 8.
    Abdullah, Twana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Ali, Salahalddin
    University of Sulaimani.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Groundwater assessment of Halabja Saidsadiq Basin, Kurdistan region, NE of Iraq using vulnerability mapping2016Inngår i: Arabian Journal of Geosciences, ISSN 1866-7511, E-ISSN 1866-7538, Vol. 9, nr 3, 223Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Halabja Saidsadiq Basin is located in the northeastern part of Iraq covering an area of about 1278 km2 with a population of about 190,727. Groundwater is the principal source of water in this area. Agricultural practices within the basin are widespread and located close to groundwater wells. This poses imminent threat to these resources. DRASTIC model integrated with GIS tool has been used to evaluate the groundwater vulnerability of this area. In addition, theDRASTIC model was modified using nitrate concentrations and sensitivity analysis to modify the recommended weighting value to get accurate results. The modified rates were calculated using the relations between each parameterand the nitrate concentration in the groundwater based on the Wilcoxon rank-sum non-parametric statistical test. While, to calibrate all types of modifications, the Pearson’s correlation coefficient was applied. The standard vulnerability map of the studied basin classified the basin into four zones ofvulnerability index including very low (34 %), low(13 %), moderate (48 %), and high (5 %) vulnerability index, while the combined modification classified the area into five classes: very low (7 %), low (35 %), moderate (19 %), high (35 %),and very high (4 %). The results demonstrate that both modified DRASTIC rate and weight were dramatically superior to the standard model; therefore, the most appropriate method to apply is the combination of modified rate-weight.

  • 9.
    Abdullah, Twana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Ali, Salahalddin
    University of Sulaimani, Kurdistan Region.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Classification of groundwater based on irrigation water quality index and GIS in Halabja Saidsadiq basin, NE Iraq2016Inngår i: Journal of Environmental Hydrology, ISSN 1058-3912, E-ISSN 1996-7918, Vol. 24, 5Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Assessment of groundwater for irrigation purpose is proposed using the Irrigation Water Quality Index (IWQI) within the GIS environment. The model was applied to several aquifers in the study basin. Water samples were collected from thirty-nine sites from both water wells and springs from the dry season (September 2014) and the wet season (May 2015). Samples were tested chemically and physically for several variables: EC, Ca+2, Mg+2, Cl-, Na+ and HCO3- and SAR. The accuracy and precision methods were applied to find out the uncertainty of the chemical analysis results and its validity of application for the geochemical interpretations. Based on the spatial distribution of IWQI, the groundwater quality of HSB classified into several classes of both dry and wet seasons in terms of its restrictions on irrigation purposes. The classes include, Severe Restriction (SR), High Restriction (HR) and Moderate Restriction (MR). The coverage areas of all three classes are 1.4%, 52.4% and 46.2% for the dry season and 0.7%, 83.3% and16% for wet seasons respectively. The considerable variations in all these classes have been noted from dry to wet seasons, this might be related to increasing the aquifer recharges from precipitation and decreasing the aquifer discharges by the consumers in the wet season. Then the model was validated based on the relation between the aquifer recharge and spatial distribution of IWQI, the result of this validation confirmed the outcome of this study.

  • 10.
    Abdullah, Twana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Ali, Salahalddin
    University of Sulaimani.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Groundwater Vulnerability Mapping Using Lineament Density on Standard DRASTIC Model: Case Study in Halabja Saidsadiq Basin, Kurdistan Region, Iraq2015Inngår i: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 7, nr 10, 644-667 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Groundwater is the most important source of water in the Halabja-Saidsadiq Basin. In this study, to generate a map of groundwater pollution vulnerability of the basin, the standard DRASTIC method has been applied. Due to the close relation between lineament density and groundwater flow and yield, the lineament density map was applied to the standard DRASTIC model in order to ensure accuracy towards the consideration of the effects of potential vulnerability to contamination. A lineament map is extracted from Enhanced Thematic Mapper plus (ETM+) satellite imagery using different techniques in remote sensing and GIS. The lineament density map illustrates that only six classes of lineament density can be identified ranged from (0 - 2.4). The lineament density map was rated and weighted and then converted to lineament index map. This index map is an additional parameter which was added to the standard DRASTIC model so as to map the modified DRASTIC vulnerability in HSB. The standard vulnerability map, classified the basin into four vulnerability index zones: very low (34%), low (13%), moderate (48%) and high (5%). While the modified model classified the area into four categories as well: very low (28.75%), low (14.31%), moderate (46.91%) and high (10.04%). The results demonstrate that there is no significant variation in the rate of vulnerability. Therefore, the nitrate concentration between two different seasons (dry and wet) was analyzed from (30) water wells, considerable variations in nitrate concentration from dry to wet seasons had been noted. Consequently, it confirmed that the HSB are capable to receive the contaminant because of suitability in terms of geological and hydrogeological conditions. Based on this verification, it could be claimed that the effect of lineament density is weak on the vulnerability system in HSB, because of its low density value.

  • 11.
    Abdullah, Twana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Ali, Salahalddin
    University of Sulaimani, Sulaymaniyah.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Groundwater Vulnerability Using DRASTIC and COP Models: Case Study of Halabja Saidsadiq Basin, Iraq2016Inngår i: Engineering, ISSN 1947-3931, Vol. 8, nr 11, 741-760 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To avoid groundwater from contamination, the groundwater vulnerability tool can be examined. In this study, two methods were applied, namely: DRASTIC (Groundwater depth, Net recharge, Aquifer media, Soil map, Topography, Impact of vadose zone and Hydraulic Conductivity) and COP (Concentration of flow, Overlying layer and Precipitation) to model groundwater vulnerability to pollution. The result illustrated that four vulnerability classes were recognized based on both models including very low, low, moderate and high vulnerability classes. The coverage areas of each class are (34%, 13%, 48% and 5%) by DRASTIC model and (1%, 37%, 2% and 60%) by COP model, respectively. The notable dissimilarity between these two models was recognized. For this reason, nitrate elements were selected as a pollution indicator to validate the result. The concentrations of nitrate were recorded in two following seasons in (30) watering wells; as a result, the substantial variation was noted. This indicates that contaminants can be easily reached the groundwater due to its suitability in geological and hydrogeological conditions in terms of contaminant transportation. Based on this confirmation, the standard DRASTIC method becomes more sensible than COP method.

  • 12.
    Abdullah, Twana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Ali, Salahalddin
    University of Sulaimani, Kurdistan Region, NE Iraq.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Vulnerability of groundwater to pollution using three different models inHalabja Saidsadiq basin, Iraq2017Inngår i: Proceedings of the 10th World Congress of European Water Resources Association ‘Panta Rhei’, 5-9 July 2017, Athens, Greece / [ed] George Tsakisis, Vassilakos A. Tsihrintzis, Harris Vangelis, Dimitris Tigkas, Athens: European Water Resources AssociationSSOCIATION , 2017, 1827-1834 s.Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Halabja Saidsadiq Basin (HSB) is one of a major basin of Iraq in terms of groundwater reservoirs. Intensive agricultural practices and economic revolution are widespread and located close to groundwater wells, which pose imminent threats to these resources. Therefore, the most effective and realistic solution is to prevent the contamination of groundwater through. The present study targets the computation of the vulnerability of groundwater reservoirs of the study area. Three methods have been examined, namely DRASTIC, VLDA and COP to model a map of groundwater vulnerability for contamination. The standard DRASTIC vulnerability maps classified the basin of four vulnerability index zones: very low (34%), low (13%), moderate (48%) and high (5%). The VLDA model also classified the area into four categories as well: low (2%), moderate (44%), high (53%) and very high (1%).Four vulnerability classes were recognized based on COP model including very low, low, moderate and high vulnerability classes with coverage areas of (1%, 37%, 2% and 60%) respectively. After constructing every vulnerability map, it required to be confirmed in order to estimate the validity of the theoretical sympathetic of current hydrogeological conditions. In this study, nitrate concentration analysis was selected as a contamination indicator to validate the result. Considerable variations in nitrate concentration on dry to wet seasons had been renowned. Consequently, it points toward that groundwater in the HSB are capable to receive the contaminant due to suitability of overlies strata in terms of geological and hydrogeological conditions. Based on this confirmation, the result exemplifies that the degree

    and distribution of vulnerability classes acquired using VLDA model is more sensible.

  • 13.
    Abdullah, Twana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Ali, Salahalddin
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Vulnerability of groundwater to pollution using VLDA model in Halabja Saidsadiq Basin, Iraq.2016Inngår i: IWA Specialist Groundwater Conference: Conference Proceedings & Book of Abstracts, 09-11 June 2016, Belgrade Serbia / [ed] Milan A. Dimkic, Belgrade: Jaroslav Cerni Institute for the Development of Water Resources , 2016, 72-75 s.Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Groundwater considered being the most vital source of water in several regions in the world. Specifically in the Halabja-Saidsadiq Basin, groundwater plays an important role as one of the essential source of water supplies. Therefore, it needs to be taken care of. In this study, VLDA method applied to model a map of groundwater vulnerability to contamination. The VLDA models classified the area into four categories with different coverage areas: low (2%), moderate (44%), high (53%) and very high (1%). After constructing every vulnerability map, it required to be confirmed in order to estimate the validity of the theoretical sympathetic of current hydrogeological conditions. In this study, nitrate concentration analysis was selected as a contamination indicator to validate the result. The nitrate concentration on two different seasons (dry and wet) was analyzed from (30) watering wells, considerable variations in nitrate concentration from dry to wet seasons had been noted. Consequently, it points toward that groundwater in the HSB are capable to receive the contaminant due to suitability of overlies strata in terms of geological and hydrogeological conditions. Based on this confirmation, the result exemplifies that the degree and distribution of vulnerability classes acquired using VLDA model is more sensible.

  • 14.
    Abdullah, Twana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi. Department of Geology, University of Sulaimani.
    Ali, Salahalddin S.
    University of Sulaimani, Kurdistan Region .
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Assessing the Vulnerability of Groundwater to Pollution Using DRASTIC and VLDA Modelsin Halabja Saidsadiq Basin, NE, Iraq2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, nr 10, 1144-1159 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Groundwater plays important roles as one of the essential source of water supplies of the studied area. Consequently, it needs to be prevented from contamination. In this study, two methods have been examined, namely DRASTIC (depth to groundwater, net recharge, aquifer media, soil map, topography, impact of vadose zone and hydraulic conductivity) and VLDA (vadose zone lithology, land use patterns, depth to groundwater and aquifer media) to model a map of groundwater vulnerability for contamination of the basin. The standard DRASTIC vulnerability maps classified the basin of four vulnerability index zones: very low (34%), low (13%), moderate (48%) and high (5%). While the VLDA model classified the area into four categories as well: low (2%), moderate (44%), high(53%) and very high (1%). The results demonstrate that there is a significant dissimilarity in the rate of vulnerability. Validation of the constructed maps is required to confirm the validity of the theoretical sympathetic of current hydrogeological conditions. In this study, nitrate concentration analysis was selected as a contamination indicator to validate the result. The nitrate concentration of two different seasons (dry and wet) was analyzed from (30) watering wells, considerable variations in nitrate concentration from dry to wet seasons had been noted. Consequently, it points toward that groundwater in the HSB (Halabja Saidsadiq Basin) is capable to receive the contaminant due to suitability of overlies strata in terms of geological and hydrogeological conditions. Based on this confirmation, the result exemplifies that the degree and distribution of vulnerability level acquired using VLDA model is more sensible than that attained from the standard DRASTIC method .In addition, the DRASTIC models need to be modified based on the land use pattern, which clarifies the role of human activity on the vulnerability system.

  • 15.
    Abdullah, Twana O.
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi. Department of Geology, University of Sulaimani, Kurdistan Region, NE..
    Ali, Salahalddin S.
    University of Sulaimani, Kurdistan Region, NE Iraq.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Vulnerability of groundwater to pollution using three different models in Halabja Saidsadiq basin, Iraq2017Inngår i: European Water, ISSN 1105-7580, Vol. 57, 353-359 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Halabja Saidsadiq Basin (HSB) is one of a major basin of Iraq in terms of groundwater reservoirs. Intensive agricultural practices and economic revolution are widespread and located close to groundwater wells, which pose imminent threats to these resources. Therefore, the most effective and realistic solution is to prevent the contamination of groundwater through. The present study targets the computation of the vulnerability of groundwater reservoirs of the study area. Three methods have been examined, namely DRASTIC, VLDA and COP to model a map of groundwater vulnerability for contamination. The standard DRASTIC vulnerability maps classified the basin of four vulnerability index zones: very low (34%), low (13%), moderate (48%) and high (5%). The VLDA model also classified the area into four categories as well: low (2%), moderate (44%), high (53%) and very high (1%). Four vulnerability classes were recognized based on COP model including very low, low, moderate and high vulnerability classes with coverage areas of (1%, 37%, 2% and 60%) respectively. After constructing every vulnerability map, it required to be confirmed in order to estimate the validity of the theoretical sympathetic of current hydrogeological conditions. In this study, nitrate concentration analysis was selected as a contamination indicator to validate the result. Considerable variations in nitrate concentration on dry to wet seasons had been renowned. Consequently, it points toward that groundwater in the HSB are capable to receive the contaminant due to suitability of overlies strata in terms of geological and hydrogeological conditions. Based on this confirmation, the result exemplifies that the degree and distribution of vulnerability classes acquired using VLDA model is more sensible.

  • 16.
    Abdullah, Twana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Salahalddin, Ali
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Effect of Agricultural activities on Groundwater Vulnerability: Case Study of Halabja Saidsadiq Basin, Iraq2015Inngår i: Journal of Environmental Hydrology, ISSN 1058-3912, E-ISSN 1996-7918, Vol. 23, nr 10Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Groundwater is one of the main sources of water in Halabja-Saidsadiq Basin of northeast Iraq. It covers an area of 1278 square kilometers with population of about 190,727.In this study, the standard DRASTIC method has been applied to generate a map of groundwater pollution vulnerability of the basin. In addition, two different scenes of landsat Thematic Mapper (TM) were used with the aid of ERDAS IMAGINE software and the GIS technique to prepare digital image classification of the study basin. Supervised classification for level I of USGS was conducted with band combination RGB/742 to prepare The Land Use and Land Cover (LULC) map. The LULC map illustrates that only five classes of land use can be identified these are: barren, agricultural, vegetation, urban and wet land or water body. The LULC map converted to LULC index map. This index map has an additional parameter added to the standard DRASTIC model to map the modified DRASTIC vulnerability in the study basin. Nitrate concentration analysis was selected and added as a pollution indicator to validate this modification. In this study, the nitrate concentration between two different seasons (dry and wet) was analyzed from (30) water wells. The standard vulnerability map of the studied basin classified the basin into four vulnerability index zones: very low (34%), low (13%), moderate (48%) and high (5%). While the combined modification classified the area into five classes: very low (1.17%), low (36.82%), moderate (17.57%), high (43.42%) and very high (1.02%). The results s that the modified DRASTIC model was dramatically superior to the standard model; therefore, the most appropriate method to apply is the combination of standard DRASTIC model with LULC index map. This conclusion is based on the results of nitrate content, as its concentration in the dry season is much lower than in the wet season.

  • 17. Abitew, Aymiro
    et al.
    Zeinali, Amin
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Hydraulic conductivity of tailings deposit used as dam construction material at Aitik mine in Sweden2013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Distribution of vertical and horizontal hydraulic conductivity and their correlation to geotechnical parameters affecting the hydraulic conductivity of tailings deposit at Aitik mine have been determined. The investigation was carried out along three sections which cover approximately 3km2 of area and 4-5meters of thickness. 3-5 test pits have been excavated in each section and samples are collected from various levels. The horizontal hydraulic conductivity has been found to have a good relation with fraction of fine particles in the deposit and void ratio. However, similar to the results of Jantzer et al (2008) from the same mine, the vertical hydraulic conductivity did not correspond to void ratio. According to evaluation of existing empirical relations to estimate hydraulic conductivity from particle size analysis, Hazen formula (1911) gives 25 and 45 times the measured values of vertical and horizontal hydraulic conductivity respectively. On the other hand, Chapuis et al (2003) has not been succeeded for prediction of hydraulic conductivity of undisturbed samples from the investigated area. However, it gives comparatively good prediction of hydraulic conductivity for disturbed samples which are compacted to their field dry density.

  • 18. Abitew, Aymiro
    et al.
    Zeinali, Amin
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Hydraulic conductivity of tailings sand used for dam construction at Aitik mine in Sweden2012Inngår i: SWEMP 2012: International symposium on Environmental Issues and Waste Management in Energy and Mineral Production, 2012Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Distribution of vertical and horizontal hydraulic conductivity and their correlation to geotechnical parameters affecting the hydraulic conductivity of tailings deposit at Aitik mine have been determined. The investigation was carried out along three sections which cover approximately 3km2 of area and 4-5meters of thickness. 3-5 test pits have been excavated in each section and samples are collected from various levels. The horizontal hydraulic conductivity has been found to have a good relation with fraction of fine particles in the deposit and void ratio. However, similar to the results of Jantzer et al (2008) from the same mine, the vertical hydraulic conductivity did not correspond to void ratio. According to evaluation of existing empirical relations to estimate hydraulic conductivity from particle size analysis, Hazen formula (1911) gives 25 and 45 times the measured values of vertical and horizontal hydraulic conductivity respectively. On the other hand, Chapuis et al (2003) has not been succeeded for prediction of hydraulic conductivity of undisturbed samples from the investigated area. However, it gives comparatively good prediction of hydraulic conductivity for disturbed samples which are compacted to their field dry density.

  • 19.
    Abshirini, Ehsan
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik.
    Koch, Daniel
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Arkitektur.
    Rivers as integration devices in cities2016Inngår i: City, Territory and Architecture, ISSN 0885-7024, E-ISSN 2195-2701, Vol. 3, nr 1, 1-21 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: As dynamic systems rivers and cities have been in interaction under changing relations over time, and the morphology of many cities has risen through a long and steady struggle between the city functions and the river system flowing inside. This makes river cities an interesting case to study how the presence of geographical features interacts with spatial morphology in the formation of cities.

    Methods: The basis of this research is enabled by utilizing a novel model for cross-city comparison presented by Hillier in his Santiago keynote in 2012 called a “star model”. This is done on large samples of cities investigating concurrent configurations, as well as how the properties in this star model react to specific forms of disturbance.

    Results: Results illustrate that the foreground network as identified through maximum choice values in cities are more vital to the structure of cities than the bridges. The overall syntactic structure tends to retain its character (degree of distributedness) and the location of its foreground network (which street segments constitute the foreground network) even when bridges are targeted. Furthermore, counter to the initial hypothesis, river cities tend to change less than non-river cities after targeted disturbance of the systems. Finally, the results show that while there is a statistical morphological difference between river cities and non-river cities, this difference is not directly explained through the bridges.

    Conclusion: Integrating space syntax with statistical and geospatial analysis can throw light on the way in which the properties of city networks and urban structure reflect the relative effect of rivers on the morphology of river cities. The paper, finally, contributes through offering one piece of a better perception of the structure of river-cities that can support strategies of river-cities interaction as well as enhance our knowledge on the constraints and limits to that interaction.

  • 20.
    Abshirini, Ehsan
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geodesi och geoinformatik.
    Koch, Daniel
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Arkitektur.
    Visibility Analysis, Similarity and Dissimilarity in General Trends of Building Layouts and their Functions2013Inngår i: Proceedings of Ninth International Space Syntax Symposium / [ed] Young Ook Kim, Hoon Tae Park, Kyung Wook Seo, Seoul: Sejong University Press , 2013, 11:1-11:15 s.Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Visibility analysis is one of the key methods in space syntax theory that discusses visual information conveyed to observers from any location in space that is potentially directly visible for the observer without any obstruction. Visibility – simply defined as what we can see – not only affects the spatial function of buildings, but also has visual relation to the perception of buildings by inhabitants and visitors. In this paper we intend to present the result of visibility analysis applied on a sample of building layouts of different sizes and functions from a variety of places of periods. The main aim of this paper is to statistically explore the general trends of building layouts and show if and how visibility properties such as connectivity, clustering coefficient, mean depth, entropy, and integration values can make distinctions among different functions of buildings. Our findings reveal that there are significant correlation coefficients among global properties of visibility in which we consider the mean value of properties, a similarity suggesting that they are not intensively manipulated by architecture. On the other hand, there are correlations although less so than the previous, still significant among local properties of visibility in which we consider the (max-min) value of properties, suggesting that social, cultural or other physical parameters distinguish buildings individually. We also show that functions such as ‘museum’ and ‘veterinary’ are relatively well-clustered, while functions such as ‘ancient’ and ‘shopping’ show high diversity. In addition, using a decision tree model we show that, in our sample, functions such as ‘museum’ and ‘library’ are more predictable rather than functions such as ‘hospital’ and ‘shopping.’ All of these mean that – at least in our sample – the usability and applicability of well-clustered and well-predicted functions have been predominant in shaping their interior spaces; vice versa, in well-diverse and unpredicted functions, the pragmatic solutions of people’s daily life developed in material culture affect the visual properties of their interior spaces.

  • 21.
    Ackermann, N.L.
    et al.
    Clarkson University, Department of Civil and Environmental Engineering, Potsdam, NY.
    Shen, Hung Tao
    Clarkson University, Department of Civil and Environmental Engineering, Potsdam, NY.
    Olsson, P.
    Luleå tekniska universitet.
    Local scour around circular piers under ice covers2002Inngår i: Ice in the environment: proceedings 16th International Symposium on Ice, Dunedin, New Zealand, 2 - 6 December 2002 / [ed] Vernon A. Squire, Dunedin: Dep. of Physic, Univ. of Otago , 2002, 149-155 s.Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper presents a laboratory investigation on the effect of ice cover on local scour around circular bridge piers. Experiments were performed in a 12-meter flume with recirculating sediment discharge. Both smooth and rough artificial covers were used. The bed material consisted of uniform ripple-forming sand. The tests were run for both clear water as well as live bed conditions. The results showed that for equivalent averaged flow velocities the existence of an ice cover could increase the local scour depth scour by 25 to 35 % from the free surface condition. The largest difference occurs at a live bed condition when the flow velocity, U, is in the rage of 1.5 to 2 times of the critical velocity for bed movement, U (sub c) . A rough cover gives slightly larger scour depth than a smooth cover. The movement of bed forms led to variations of scour depth with time.

  • 22.
    Acuña, José
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Tillämpad termodynamik och kylteknik.
    Distributed thermal response tests: New insights on U-pipe and Coaxial heat exchangers in groundwater-filled boreholes2013Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    U-pipe Borehole Heat Exchangers (BHE) are widely used today in ground source heating and cooling systems in spite of their less than optimal performance. This thesis provides a better understanding on the function of U-pipe BHEs and Investigates alternative methods to reduce the temperature difference between the circulating fluid and the borehole wall, including one thermosyphon and three different types of coaxial BHEs.

    Field tests are performed using distributed temperature measurements along U-pipe and coaxial heat exchangers installed in groundwater filled boreholes. The measurements are carried out during heat injection thermal response tests and during short heat extraction periods using heat pumps. Temperatures are measured inside the secondary fluid path, in the groundwater, and at the borehole wall. These type of temperature measurements were until now missing.

    A new method for testing borehole heat exchangers, Distributed Thermal Response Test (DTRT), has been proposed and demonstrated in U-pipe, pipe-in-pipe, and multi-pipe BHE designs. The method allows the quantification of the BHE performance at a local level.

    The operation of a U-pipe thermosyphon BHE consisting of an insulated down-comer and a larger riser pipe using CO2 as a secondary fluid has been demonstrated in a groundwater filled borehole, 70 m deep. It was found that the CO2 may be sub-cooled at the bottom and that it flows upwards through the riser in liquid state until about 30 m depth, where it starts to evaporate.

    Various power levels and different volumetric flow rates have been imposed to the tested BHEs and used to calculate local ground thermal conductivities and thermal resistances. The local ground thermal conductivities, preferably evaluated at thermal recovery conditions during DTRTs, were found to vary with depth. Local and effective borehole thermal resistances in most heat exchangers have been calculated, and their differences have been discussed in an effort to suggest better methods for interpretation of data from field tests.

    Large thermal shunt flow between down- and up-going flow channels was identified in all heat exchanger types, particularly at low volumetric flow rates, except in a multi-pipe BHE having an insulated central pipe where the thermal contact between down- and up-coming fluid was almost eliminated.

    At relatively high volumetric flow rates, U-pipe BHEs show a nearly even distribution of the heat transfer between the ground and the secondary fluid along the depth. The same applies to all coaxial BHEs as long as the flow travels downwards through the central pipe. In the opposite flow direction, an uneven power distribution was measured in multi-chamber and multi-pipe BHEs.

    Pipe-in-pipe and multi-pipe coaxial heat exchangers show significantly lower local borehole resistances than U-pipes, ranging in average between 0.015 and 0.040 Km/W. These heat exchangers can significantly decrease the temperature difference between the secondary fluid and the ground and may allow the use of plain water as secondary fluid, an alternative to typical antifreeze aqueous solutions. The latter was demonstrated in a pipe-in-pipe BHE having an effective resistance of about 0.030 Km/W.

    Forced convection in the groundwater achieved by injecting nitrogen bubbles was found to reduce the local thermal resistance in U-pipe BHEs by about 30% during heat injection conditions. The temperatures inside the groundwater are homogenized while injecting the N2, and no radial temperature gradients are then identified. The fluid to groundwater thermal resistance during forced convection was measured to be 0.036 Km/W. This resistance varied between this value and 0.072 Km/W during natural convection conditions in the groundwater, being highest during heat pump operation at temperatures close to the water density maximum.

  • 23. Adamo, Nasrat
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Mosul Dam Full Story: Safety Evaluations of Mosul Dam2016Inngår i: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 6, nr 3, 185-212 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mosul Dam is the second biggest dam in the Middle East due to the capacity of its reservoir. Since the operation of this dam in 1986, it is suffering from seepage problems in the foundation of the dam due to the dissolution of gypsum and anhydrite layers under the foundation. This phenomenon has raised concern about the safety of the dam. Studies done during the recent years showed that grouting works can only be considered as a temporary solution at its best. It is clear now that while grouting must be continued search for long term solution must be sought if dam failure consequences are to be avoided. This must be done as soon as possible as the dam is showing more and more signs of weakness. It is further considered that the suggestions and recommendations forwarded by the team of Lulea University of Technology and the Panel of Experts in the Stockholm Workshop 24-25 May, 2016 give the most practical and suitable solutions for this problem.

  • 24. Adamo, Nasrat
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Mosul Dam Full Story: What If The Dam Fails?2016Inngår i: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 6, nr 3, 245-269 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dams are very important infrastructure to any country where they serve for different purposes. Unfortunately, they represent risks to life and property due to their potential to fail and cause catastrophic flooding. Recent studies indicate the possibility of Mosul Dam failure. For this reason different failure models were used to estimate the consequences of such failure. Almost all models applied gave similar results. It is assumed that in case the water level in Mosul Dam reservoir is at its maximum operational level the effected population will reach 6,248,000 (about one million will lose their life) and the inundated area will be 7202 square kilometer. This catastrophe requires prudent emergency evacuation planning to minimize loses.

  • 25. Adamo, Nasrat
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Mosul Dam the Full Story: Engineering Problems2016Inngår i: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 6, nr 3, 213-244 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The idea of building of Mosul Dam project started in 1950 and it was referred to as Aski Mosul Dam. Since that time, number of companies worked on the site selection and design of the dam. All the above companies suggested that the dam should be Earth-fill type with compressed clay core but there were different views about the exact location of the dam, spillway and electricity generating station. Grouting was suggested to be performed under the dam, spillway and the electricity generating station. In addition, they suggested that detailed geological investigation should be performed before any construction activities. In 1978, the Swiss Consultants Consortium was asked to be the consultants for Mosul Dam project. The consultants suggested that the operational water level at the dam to be 330 m (a.s.l.) while the flood and normal water levels to be 338 and 335 m (a.s.l.), respectively. The work started on 25th January, 1981 and finished 24th July, 1986. The foundation of the dam is built on alternating beds of limestone and gysum. Seepages due to the dissolution of gypsum were noticed and after impounding in 1986, new seepage locations were recognized. Grouting operations continued and various studies were conducted to find suitable grout or technique to overcome this problem. The seepage due to the dissolution of gypsum and anhydrite beds raised a big concern about the safety of the dam and its possible failure. It is believed that grouting will not solve this problem permanently

  • 26. Adamo, Nasrat
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Issa, Issa
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Mystery of Mosul Dam the Most Dangerous Dam in the World: Experts Proposals and Ideas on Mosul Dam2015Inngår i: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, nr 3, 79-93 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    During and after the construction of Mosul Dam, in Iraq, all the studies expressed a clear concern on the fact that the region of the dam suffers from extensive presence of soluble rock formations that might undermine the safety of the dam with its large reservoir. Most of the studies dealt with foundation treatment and safety hazards due to the dissolution of gypsum and anhydrite. To overcome the problem, grouting operations were performed. The seepage of water continued and this highlighted the possibility of the dam failure. Different grouting techniques and methods were suggested but the results were the same. Finally, it was decided to limit the maximum operation water level to EL. 319 m (a.s.l.) instead of EL.330 m (a.s.l.). This recommendation has remained in force up to now with the loss of sizable storage of irrigation water and power potential

  • 27. Adamo, Nasrat
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Issa, Issa
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Mystery of Mosul Dam the most Dangerous Dam in the World: Foundation Treatment during Construction2015Inngår i: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, nr 3, 59-69 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mosul dam was constructed on the beds of Fatha Formation (Middle Miocene). The beds of the formation are about 250 m thick composed of Marls, chalky limestone; gypsum, anhydrite, and limestone form a layered sequence. They are highly karstified. As a consequence, plenty of grouting operations were carried out to fill all the cavities, fractures, joints and to stop the seepage under the foundation of the dam. The main grouting operations were Blanket grouting and deep grout curtain. It was necessary to perform an extensive maintenance program to control the seepage process within the grouted zone to stop dissolution of gypsum and protect the safety of the dam.

  • 28. Adamo, Nasrat
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Issa, Issa
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Mystery of Mosul Dam the Most Dangerous Dam in the World: Maintenance Grouting2015Inngår i: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, nr 3, 71-77 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dissolution of gypsum and anhydrite at the foundation of Mosul Dam continued after its construction since 1986 onwards. After impounding, acceptable residual permeability could not be reached and new areas of high grout takes appeared in some other locations. New grout mixes were tested and even methods of delivering and injecting large grout quantities were developed. Sandy mixes were developed by adding certain weight of sand to the cement mix. In addition, pouring gravel after completion of grouting in large takes' zones was performed. As a result of gravel addition, it was concluded that it was not effective and very difficult to pour. Massive grouting was used where bentonite was added to the mix. Piezometric observation was used for checking the conditions of the grout curtain and the detection of problematic areas where additional treatment was required. Massive grouting, however, did not stop the dissolution processes altogether and it seems that it is not likely to do so in the future. The continuation of this program year after year does not preclude some bad implications. More research work is required to improve massive grout durability by adding chemicals which may interact with gypsum beds and hinder dissolution. This can help to improve gypsum resistance and increase its stability. Mathematical models might also be used to understand the mechanism of cavities formation and collapsing.

  • 29. Adamo, Nasrat
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Issa, Issa
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Mystery of Mosul Dam the most Dangerous Dam in the World: Problems Encountered During and after Impounding the Reservoir2015Inngår i: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, nr 3, 47-58 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mosul dam was built on the River Tigris northern part of Iraq during the period 25th January, 1981 and finished on 24th July, 1986. The foundation of the dam lies on the Fatha Formation. This formation is composed of alternating beds of marls, limestone, gypsum and clay. The beds of this formation are highly karstified. After impounding, several sinkholes developed within the vicinity of the dam site. The surface expression of the sinkholes suggests that they are caused by underground collapse.The appearance of the downstream sinkholes is most likely related to fluctuations in the tail water level of the main dam during operation of the dam and the downstream regulating reservoir. In addition, water seepage also was noticed in various areas indicating the dissolution of gypsum and anhydrite from the foundation. During the period February-August, 1986 the dissolution intensity ranged from 42 to 80 t /day.

  • 30. Adamo, Nasrat
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Laue, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Sissakian, Varoujan
    Erbil, Iraq.
    Mosul Dam: A Catastrophe yet to unfold2017Inngår i: Engineering, ISSN 1947-3931, Vol. 9, nr 3, 263-278 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mosul Dam is multipurpose earth fill dam 3.4km long, 113m in height and its storage capacity reaches 11.11 km3 of which 2.95 km3 dead storage. The dam is located on the River Tigris in the northern part of Iraq about 60km north west Mosul city. The dam was built on highly karstified alternating beds of gypsum, marl and limestone. The dam was operating in 1986 and since then, seepage problems started due to the solubility of the gypsum beds, presence of karstification and the effect of the local groundwater aquifer. To stop the seepage insensitive grouting program was put to ensure the stability of the dam. Despite the injection of large quantities of grouting material, it did not stop the seepage. The situation became worse in 2014 when ISIS occupied the dam area and grouting operations were halted. Recent evaluation of the conditions indicates that the dam is in its worst conditions.

    The failure models of the dam indicate that 6 million people will be affected, and 7202km2 of land will be inundated. It is believed that to stop this catastrophe, grouting operations should be continued intensively to elongate the span life of the dam. As a permanent solution, another dam should be built downstream Mosul Dam so that it can take the wave of Mosul Dam in case of its failure.

  • 31. Adamo, Nasrat
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Laue, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Sissakian, Varoujan
    Department of Geology, University of Kurdistan, Hewler.
    Risk Management Concepts in Dam Safety Evaluation:Mosul Dam as a Case Study2017Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 11, nr 7, 635-652 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Gradual shift has been observed lately of dam safety procedures from the conventional technical based towards a widerscope of risk management procedure based on risk analysis. The new approach considers the likelihood level of occurrence of a multitude of hazards and the magnitude of the resulting possible consequences in case of failure using rational cause and effect arguments. Most dam owners are shifting towards the use of the new risk based procedures; and even governments themselves are moving towards formalizing the new trend. Legislations in the United States were promulgated [1] after serious dam failures and the adoption of stringent levels of scrutiny led such federal dam owners to pioneer in this field and in developing the concepts and methods required. The corner stone in risk analysis is the definition of the potential modes that may lead to failure and assessment of the likelihood levels of their occurrence and possible category of the consequences which, after thorough evaluation, will shape thedecision making. This type of analysis was applied to Mosul Dam as a case study and resulted in definite recommendations.

  • 32. Adamo, Nasrat
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Sissakian, Varoujan
    University of Kurdistan, Erbil.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Laue, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Is Mosul Dam the Most Dangerous Dam in the World?: Review of Previous Work and Possible Solutions2017Inngår i: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 9, nr 10, 801-823 s., 79510Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mosul Dam is an earth fill dam located on the Tigris River in North Western part of Iraq. It is 113 m in height, 3.4 km in length, 10 m wide in its crest and has a storage capacity of 11.11 billion cubic meters. It is, constructed on be- drocks which consist of gypsum beds alternated with marl and limestone, in cyclic nature. The thickness of the gypsum beds attains 18 m; they are in- tensely karstified even in foundation rocks. This has created number of prob- lems during construction, impounding and operation of the dam. Construc- tion work in Mosul Dam started on January 25th, 1981 and started operating on 24th July, 1986. After impounding in 1986, seepage locations were recog- nized. The cause of seepage is mainly due to: 1) The karsts prevailing in the dam site and in the reservoir area. 2) The existence of gypsum/anhydrite rock formations in the dam foundation alternating with soft marl layers and wea- thered and cavernous limestone beddings. 3) The presence of an extensive ground water aquifer called Wadi Malleh aquifer, which affects considerably the ground water regime in the right bank. The dissolution intensity of the gypsum/anhydrite ranged from 42 to 80 t/day which was followed by a noti- ceable increase in the permeability and leakages through the foundation. In- spection of the dam situation in 2014 and 2015 indicates that the dam is in a state of extreme unprecedentedly high relative risk. In this work, possible so- lutions to the problem are to be discussed. It is believed that grouting opera- tions will elongate the span life of the dam but do not solve the problem. Building another dam downstream Mosul Dam will be the best protective measures due to the possible failure of Mosul Dam, to secure the safety of thedownstream area and its’ population.

  • 33.
    Adevik, Sebastian
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Effekt av överlast på förstärkt jord: FEM- analys för att visa överlastens verkningsgrad på krypsättningar i kalkcementpelarförstärkt lös jord2013Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
    Abstract [sv]

    Applicering av överlast på kalkcementförstärkta jordar är ofta förekommande idag, forskning indikerar dock på att överlasten här, inte ger samma effekt som på oförstärkta jordar. Med grund i uppmätta värden i fält, visas i denna rapport, sättningsdifferenser mellan att använda överlast jämfört med att endast applicera brukslast. Resultat av analyserna visar på sättningsbeteende observerat i fält. Om erforderlig liggtid för brukslast finns, uppstår endast små sättningsdifferenser mellan att använda överlast eller inte.

    Genom att utföra sensitivitetsanalys i FEM- programvaran PLAXIS studeras kryputvecklingen i den förstärkta jorden. Effekten av att applicera en överlast visas för krypsättningar över lång tid.

    Inget resultat från de numeriska FEM- analyserna visade att märkbart gynnsam effekt uppstår på grund av överlastens applicering, med avseende på krypsättningar.

    De numeriska analyserna utförs i 2 och 3 dimensioner för att belysa effekt av förenkling av ett lastfall som inte uppfyller krav för oförstärkta jordar i plant töjningstillstånd.

    Utöver detta ges efter en litteraturstudie, förslag på hur vissa indataparametrar kan utvärderas från empiriska relationer. Indataparametrar som ligger till grund för analyserna är utvärderade från sonderingsresultat i kombination med värden från laborationsförsök och empiriska data.

  • 34.
    Ahlund, Rasmus
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Ögren, Oscar
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Pore pressures and settlements generated from two different pile drilling methods2016Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
    Abstract [en]

    For piling works in sensitive soil, especially in inner city projects, it is essential to be aware of the available methods and to choose the most suitable method to minimize the risk of damaging existing buildings or endanger the workers at the construction site. Down-the-hole drilling of piles is a relatively safe method and can be separated into drilling with air powered hammers and water powered hammers. This study compares water powered drilling with air powered drilling and shows that the impact on the soil generated by air powered drilling is larger than that from water powered drilling.

    A field study was carried out where 4 piles were drilled, two with air powered DTH drilling and two with water powered DTH drilling. The drilling was carried out in clay resting on an approximately 4 m layer of silt and friction soil. The total soil depth was about 12- 15 m. To analyze the soil influence, settlements were measured at ground level and in depth and pore pressure was measured in the middle of the clay layer. This study distinguished two major problems when drilling through this type of soil. The first is the risk of over-drilling in the friction layer. The second problem is the risk of increasing the pore pressure in the clay. Both these problems were experienced when using air powered drilling but for the water powered case only a small pore pressure increase and no over-drilling was observed. In conclusion, drilling with water has less influence on the soil in the sense that it gives a smaller effect on the pore water pressure and causes smaller settlements.

  • 35. Ahmed, K. M.
    et al.
    Bhattacharya, Prosun
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Mark- och vattenteknik, Miljögeokemi och ekoteknik.
    Hasan, M. A.
    Rahman, M
    von Brömssen, Mattias
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Mark- och vattenteknik, Miljögeokemi och ekoteknik.
    Jacks, Gunnar
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Mark- och vattenteknik, Miljögeokemi och ekoteknik.
    Hossain, Mohammed
    Islam, M. Mainul
    Rahman, Marina
    Rashid, S.M.A.
    Sustainable Arsenic Mitigation (SASMIT) in Bangladesh: The Matlab strategy2010Inngår i: Abstracts with programs (Geological Society of America), ISSN 0016-7592, Vol. 42, nr 5, 652- s.Artikkel i tidsskrift (Annet vitenskapelig)
  • 36. Ahmed, K. M.
    et al.
    Sultana, S.
    Hasan, M. A.
    Bhattacharya, Prosun
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Mark- och vattenteknik (flyttat 20130630), Miljögeokemi och ekoteknik.
    Hasan, M. K.
    Burgess, W. K.
    Hoque, M. A.
    Groundwater quality contrasts between Upper and Lower Dupi Tila Aquifers in Megacity Dhaka, Bangladesh2011Inngår i: Groundwater quality contrasts between Upper and Lower Dupi Tila Aquifers in Megacity Dhaka, Bangladesh: Proc. 7th International Groundwater Quality Conference, 2011, 71-74 s.Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Dhaka is one of the fastest growing megacities of the world and is set to become the third largest by 2025. Currently about 86% of the municipal water supply comes from over 500 wells drilled in the Dupi Tila aquifers underlying the city. The Upper Dupi Tila aquifer (UDTA) is overexploited and a large part has been dewatered; abstractions from the lower Dupi Tila started only recently. Results of water analysis and EC surveys have been used to decipher the variations in groundwater quality in the UDTA and LDTA. EC surveys reveal a systematic deterioration of water quality in the vicinity of the Buriganga River in southeast Dhaka. The UDTA is more widely affected by anthropogenic processes than the LDTA, which still largely exhibits its intrinsic water quality characteristics. Regular monitoring and proper management practices are essential to protect the quality of this precarious resource.

  • 37.
    Al Dahaan, Saadi
    et al.
    University of Kufa, Kufa, Iraq.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Influence of Groundwater Hypothetical Salts on Electrical Conductivity Total Dissolved Solids2016Inngår i: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 8, nr 11, 823-830 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A relationship between electrical conductivity (EC) and total dissolved solids (TDS) was tested for solutions of same salinity levels with respect to different artificial salts with their combinations. Results showed remarkable jumping at the order of the artificial salt sequence specially that of the magnesium type. A computer model is designed with an input of EC and TDS. The output will be the possible prevailing artificial salts. The accuracy of the model was tested by using the groundwater data of Safwan-Zubair area south of Iraq and it proved to be significant at 95% matching. The 5% unmatched results are due to the possibility of having more than one type of prevailing salt.

  • 38.
    Al Maliki, Ali
    et al.
    Environment Research Centre, Ministry of Since and Technology, Jadriah, Baghdad.
    Al-lami, Ahmed Kadhim
    Department of Physics, College of Science, Al-Nahrain University, Jadriah, Baghdad.
    Hussain, H.M.
    Faculty of Science, University of Kufa.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Comparison between inductively coupled plasma and X-ray fluorescence performance for Pb analysis in environmental soil samples2017Inngår i: Environmental Earth Sciences, ISSN 1866-6280, E-ISSN 1866-6299, Vol. 76, nr 12, 433Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Comparison of two conventional analytical techniques such as X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) for measuring Pb concentrations in soil samples was achieved using field and laboratory work. Seventy-three samples were collected from urban areas surrounding the large lead smelter at South Australia, as an indicator of the environment impact of smelter activity. Soil Pb concentrations were determined using hand-held XRF analyser under laboratory conditions. ICP-MS analysis on digested soils (using a microwave-assisted nitric acid digestion-extraction) was applied to validate p-XRF data. The analysis showed that Pb concentrations determined by XRF correlated with high linearity with Pb concentrations determined by ICP-MS measurements (R2 = 0.89). Statistical test (t test) was applied to the data of both methods applied without any significant difference between the two techniques. These results indicated that ICP-MS corroborated XRF for Pb soil measurements and suggests that XRF was a reliable and quick alternative to traditional analytical methods in studies of environmental health risk assessment, allowing for much larger sampling regimes in relatively shorter times and could be applied in the field.

  • 39.
    Alakangas, Lena
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Dagli, Deniz
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Literature review on potential geochemical and geotechnical effects of adopting paste technology under cold climate conditions2013Rapport (Annet vitenskapelig)
    Abstract [en]

    The purpose of this literature review is to summarize the recent research regarding geochemical and geotechnical stability of paste tailings, identify knowledge gaps and future research needs. The present study has been conducted by the Division of Geosciences and Environmental Engineering together with the Division of Mining and Geotechnical Engineering at Luleå University of Technology on behalf of Boliden Mineral, LKAB and Outotec.A survey conducted by MEND (Mine Environment Neutral Drainage) in 2006 on the environmental effects related to the use of paste tailings summarizes that only a few studies had been performed about long-term effects on the surface and groundwater quality. Instead, the focus had been on the additives and the strength of the paste. It is still uncertain how the paste technology affects the long-term environmental stability from a geochemical point of view. Concerns regarding the stability of paste with high sulphide content are still relevant. Studies performed indicate that sulphide oxidation occurs within cemented paste as well as on the surface of non-cemented paste and cracks formed on the surfaces could induce oxidation. For cemented paste, metals released by sulphide oxidation might be sequestered due to high pH induced by the alkaline additives, but anion such as Se has been shown to be mobilized. The leachate has been shown to be near-neutral initially, but the neutrality decreases with time and probably metals sequestered in the matrix will also be released. Again, it should be noted that no long term study was performed on leaching of paste, cemented or uncemented. The longest leaching study was performed for one year. Arsenic has been proven to be retained in Ca-arsenates in cemented paste, but the long term stability of these precipitates is relatively unknown. Expanded secondary phases e.g. gypsum and ettringite have been observed to form when there is sulphate in the process or drainage of water. These phases could crack the paste, but, on the other hand, can also fill former cracks when deposited in layers. The effects of the formation of these phases are relatively uncertain in a long-term perspective. Presence of different elements such as ammonium, sulphates and metals in the water has been shown to negatively affect the curing process and therefore water is suggested to be treated before use. The presence of carbon dioxide during the paste formation could also affect the curing process, but could sequester metals in carbonate phases.Geotechnical and rheological properties of paste is well defined and documented. Several case studies have been found in literature providing valuable information about the details of the works being carried out. However, a difficulty has been noted during the investigation of the effects of cold climate conditions when current practice is applied in the colder parts of the world. It is not certain how some specific and vital parameters are going to be affected by cold temperatures. Parameters such as deposition slopes and deposition scheme, strength development of the paste are expected to be responsive to cold climate conditions. There are predictions about which properties are going to be affected in what way, but there is also a need to establish a scientific base for discussion. These have been highlighted as research needs and information gaps at the end of the report.

  • 40.
    Alamaa, Angelica
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    High-speed railway embankments: a comparison of different regulation2016Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
    Abstract [en]

    Swedish transport administration initiated this Master Thesis project and the aim was to compare regulations for the design of high-speed railways from three European countries: France, Germany and Spain. The reason why this is of interest for the Swedish transport administration is the design of the first Swedish high-speed railway, called Ostlänken. Therefore, a literature study of the regulations and other literature regarding high-speed railway has been carried out. A basic description of railway components, slab track and ballasted tracks is presented.

    Ballasted embankments usually consist of a trackbed layer (ballast onto subballast), and the ultimate thickness of this layer is discussed, as there are a number of methods available to calculate the appropriate thickness, with a number of different design parameters. These design methods results in different trackbed thickness and choosing the “wrong” method might lead to an overestimation or underestimation of the trackbed layer. Constructing a ballastless railway line means that the ballast is replaced by another material, usually a slab made of reinforced concrete or asphalt, and the rail is cast onto this slab. Countries design their slab using different methods. Germany has constructed high-speed railway lines with a slab track solution, generally slabs with low flexible stiffness. France has until recently constructed their high-speed line ballasted but is now developing a new slab track technique, called NBT (New Ballastless Track) and Spain uses various methods.

    It is difficult to compare the regulations, however, there are some factors that at least begin to explain the differences between the countries: the frost hazard, the inherent ground quality, purpose with the railway (mixed traffic, solely passenger traffic, etc.), design parameters (life, axle load, etc.). Furthermore, the settlement requirements, soil classification and bearing capacity are factors that varies from country to country, but the origin for this variation is harder to detect.

  • 41.
    Alanbari, Mohammad A.
    et al.
    Babylon University.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Altaee, S.A.
    Babylon University.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Application of Simapro7 on Karbala Wastewater Treatment Plant, Iraq2014Inngår i: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 4, nr 2, 55-68 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The use of treated wastewater is becoming more popular especially in countries suffering from water shortages despite the fact that wastewater plants have some environmental implications. For this reason there are various software designed to do the assessment. Among these is SimaPro software package designed to make a valuable contribution. It is a powerful tool for analyzing the environmental impact to products during their whole life cycle. A huge amount of knowledge about the environment is built into the program and database, enabling to analyze a product with a minimum of specialized knowledge. In this study, Simapro was used to analyze and evaluate the impacts that result from Karbala Wastewater treatment plant. The results of Life Cycle Assessment (LCA) show that Karbala WWTP has an impact and damage on the environment of the order of 171 point for each 1 cubic meter of wastewater. The most environmental impacts potential were global warming, respiratory inorganics and non-renewable energy. The study also showed that most of the effects were as a result of the phase of construction more than of the operational phase.

  • 42. Alanbari, Mohammad
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Jasim, Hadeel
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Mseiab Qadaa landfill site selection using GIS and multicriteria decision analysis2014Inngår i: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 6, nr 9, 526-549 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Solid waste management is becoming more serious problem with time especially in developing countries like Iraq. It is not regulated sufficiently in Iraq. At present, there are various techniques used for solid waste management such as landfill, thermal treatment, biological treatment, recycling etc. The landfill is the most common mode for the disposal of solid waste. There are no regulations for landfill site selection which is quite complex process. In this study, landfill site selection was performed by using Multicriteria Decision Analysis (MCDA) and Geographic Information System (GIS) for the Al-Mseiab qadaa. Even in the case of existing landfills in this qadaa, it's temporary or non-conforming to the environmental condition. In order to determine landfill site that is good for the inhabitants and the environment several criteria (e.g. as Urban centers, Land use, Airports, Pipes, Power lines, Railways, Roads, Slope, Streams, Surface water, Industrial areas, Oil pipes, Liquid gas pipes, Soil types) were used to select the proper site. The MCDA was used to measure the relative importance weighting for each criterion used. Each map layer was formed with the aid of GIS and final suitability map was created by overlay analyses of each criterion map. According to obtained results, high and low suitable areas were determined in the study area. Field checks were also performed to determine the accuracy and suitability of candidate site.

  • 43. Alanbari, Mohammad
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Jasim, Hadeel
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Modeling landfill suitability based on GIS and multicriteria decision analysis: case study in Al-Mahaweel Qadaa2014Inngår i: Natural Science, ISSN 2150-4091, E-ISSN 2150-4105, Vol. 6, nr 11, 828-851 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Waste management system is not regulated in Iraq. At present, there are various techniques used for solid waste management such as landfill, thermal treatment, biological treatment, recycling etc. Landfill is the most common mode for the disposal of solid waste. However, landfill site selection is quite complex process and it depends on several criteria and regulations. In this study landfill site selection is performed for Al-Mahaweel qadaa using Multicriteria Decision Analysis (MCDA) And Geographic Information System (GIS). It should be mentioned however, that the existing landfill in this area, is temporary and does not fulfill the environmental conditions. To select suitable landfill site, several criteria were considered such as Urban centers, Land use, Airports, Pipes, Power lines, Railways, Roads, slope, streams, Surface water, Industrial areas, Oil pipes, Liquid gas pipes, Soil types are prepared. (MCDA) was used to evaluate the relative importance of each criterion. Each map layers were formed with the aid of GIS and final suitability map was created by overlay analyses of each criterion map. According to obtained results, high and low suitable areas were determined in the study area. Field and office checks were performed out to determine the accuracy and suitability of the candidate sites.

  • 44.
    Alanbari, Mohammad
    et al.
    Babylon University.
    Alazzawi, Hind
    Babylon University.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Application of SimaPro7 on Al-Hilla City Sewerage Network, Iraq2015Inngår i: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 7, nr 5, 224-229 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    SimaPro is a software package designed to make a valuable contribution for analyzing the environmental impact on products during their whole life cycle. A huge amount of knowledge about the environment is built into the program and database, enabling to analyze a product with a minimum of specialized knowledge. In this study, SimaPro was used to analyze and evaluate the impacts that resulted from sewerage network in Al-Hilla city, Iraq. The results of Life Cycle Assessment (LCA) showed that sewerage network had an impact and damage on the environment by 291 points for every cubic meter of collect wastewater. The most potential environmental impacts were global warming, respiratory inorganics and non-renewable energy, contributing to the sewerage network. The study also showed that most of the effects were as a result of energy consumption in the pumping of wastewater, pipes used and diesel using for network operation.

  • 45.
    Alanbari, Mohammad
    et al.
    College of Engineering, Babylon University.
    Alazzawi, Hind
    College of Engineering, Babylon University.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Environmental Assessment of Al-Hilla City Wastewater Treatment Plants2015Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 9, nr 6, 749-755 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Iraq is one of the countries that is suffering from water shortage problems and, for this reason, wastewater treatment plantsbecome a necessity to minimize this problem. In this study, the impact of Al-Hilla WWTP (wastewater treatment plant) on theenvironment has been studied. This was achieved using SimaPro software package. This software is a powerful tool for analyzing theenvironmental impact on products during their whole life cycle. A huge amount of knowledge about the environment is built into theprogram and database, enabling to analyze a product with a minimum of specialized knowledge. The results of LCA (life cycleassessment) showed that the impact and damage on the environment by Al-Hilla WWTP was 41 bad points for each 1 m3 of treatedwastewater. The most environmental impacts potentially were global warming, respiratory inorganics and non-renewable energy. Thestudy also showed that most of the effects were the result of the use of cement, steel and electricity consumption

  • 46.
    Alanbari, Mohammad
    et al.
    Babylon University.
    Alazzawi, Hind
    Babylon University.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Selecting sustainability indicators of urban water systems: case study of al-Hilla City, Iraq2015Inngår i: Journal of Environmental Hydrology, ISSN 1058-3912, E-ISSN 1996-7918, Vol. 22, 6Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The present study used environmental criteria to appraise the sustainability of the urban water system(UWS) of Al-Hilla city, Iraq. The study focused on the assessment of the environmental impact anddamage to the urban water system. Environmental criteria of sustainability included a number ofindicators. These indicators were selected using tools of sustainability analysis, where life cycleassessment (LCA) was used to select and analyze the environmental indicators by applyingSimaPro7.1.8. LCA. The results for urban water system in Al-Hilla city showed that water treatmentplants (WTPs) and distribution network were most sustainable compared with sewerage network andwaste water treatment plants (WWTP). WTPs impact and damage on the environment and distributionnetwork was 4 and 11.5 points respectively, while Al-Hilla WWTP and sewerage network was 41 and291 points respectively, for delivery of one cubic meter of potable water at the point of consumption ortreatment of one cubic meter of wastewater. In addition, the study showed that most of the effects weredue to electricity consumption, pumping raw water and clean water, chemical use (such as chlorine),pipes used in water distribution and sewage collection networks, and diesel used for plant operation.

  • 47.
    Alanbari, Mohammad Ali
    et al.
    Babylon University.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Jasim, Hadeel Kareem
    Babylon University.
    GIS and Multicriteria Decision Analysis for Landfill Site Selection in AL-HashimyahQadaa2014Inngår i: Natural Science, ISSN 2150-4091, E-ISSN 2150-4105, Vol. 6, nr 5, 282-304 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Waste management system is not well regulated in Iraq. Despite the fact that there are various techniques used for solid waste disposal, landfill is the most common mode for the disposal of solid waste in Iraq, landfill site selection criteria is quite complex process and it depends on several regulation and factors. In this study landfill site selection is performed by using Multicriteria Decision Analysis (MCDA) and Geographic Information System (GIS) for the Al-Hashimyahqadaa. Existing landfills in qadaa are temporary and/or non-conforming to the environmental conditions. In order to determine landfill site, several criteria were examined such as Urban centers, Land use, Airports, Pipes, Power lines, Railways, Roads, Slope, Streams, Surface water, Industrial areas, Oil pipes, Liquid gas pipes, Soil types are prepared. MCDA was used to measure the relative importance weighting for each criterion. Each map layer was prepared using GIS and the final suitable map was created by overlay analyses of each criterion maps. According to the results, high and low suitable areas were determined in the study area. Field site check was performed to determine the accuracy and suitability of the candidate sites.

  • 48. Alanbari, Mohammad
    et al.
    Rahman, Israa
    College of Engineering , University of Babylon.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Comparison of Potential Environmental Impacts on the Production of Gasoline and Kerosene, Al-Daura Refinery, Baghdad, Iraq2016Inngår i: Engineering, ISSN 1947-3931, Vol. 8, nr 11, 767-776 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Oil represents the main energy sources used by mankind. In addition, petroleum products serve as feedstock for several consumer goods, thus playing an important growing role in people’s lives. For this reason there are various software applications designed to do the environmental assessment to see their impact on the environment. Among these is SimaPro software package designed to make a valuable contribution. It is a powerful tool for analyzing the environmental impact of products during their whole life cycle. In this study, it was pplied to analyze and evaluate the impacts for Al-Daura refinery for the gasoline and kerosene fuel production. This refinery located in Baghdad, Iraq was analyzed. The results of the life cycle assessment (LCA) show that gasoline has a (single score) of the order of 11.1 point for each 1 cubic meter produce from gasoline fuel compared with 4.83 point for each 1 cubic meter produce from kerosene. Global warming, respiratory inorganics and nonrenewable energy were the most effective environmental impacts.

  • 49.
    Al-Anbari, Mohammad
    et al.
    Babylon University, Collage of Engineering.
    Thameer, Mohanad
    Babylon University, Collage of Engineering.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Estimation of Domestic Solid Waste Amount and Its Required Landfill Volume in Najaf Governorate-Iraq for the Period 2015-20352016Inngår i: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 8, nr 6, 339-346 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Solid waste management is one of the most important challenges facing the local administration in the governorate of Najaf. This paper investigates the domestic amount generated in Najaf gover- norate for period 2015-2035 and the required landfill volume for the disposal of the waste. The daily per capita waste generation in Al-Najaf is 0.42 kg, the humidity content about 43% and the ound 473 kg/m3. The total amount was about 5,914,415 ton and the required landfill volume is 11,828,829 m3.

  • 50.
    Al-Anbari, Mohammad
    et al.
    Babylon University, Collage of Engineering.
    Thameer, Muhannad
    Babylon University, Collage of Engineering.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Landfill Site Selection in Al-Najaf Governorate, Iraq2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, nr 6, 651-660 s.Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Solid waste management aspect is one of the most important challenges facing the local administration in the Governorate of Najaf. Therefore, this study aims to provide for solid waste management problem by choosing the best locations for the establishment of sanitary landfills in the governorate. In this study, GIS (geographic information system) and MCDA (multi-criteria decision analysis) were used based on 17 environmental, economic and geological criteria converted to input digital map layers. These were urban centres, cemetery, airports, electrical power lines, oil pipes, railways, roads, slope, historical sites, main rivers,industrial areas, religion sites, wells, military area, electrical power plants, nature reserves and national borders to select most importance sites in the governorate. AHP (analytic hierarchy process) method was used in weighting the criteria used. All layers’ maps were graded from 0 (not suitable) to 5 (most suitable) using spatial information scale then SAW (simple additive weighting)method was integrated in GIS used to calculate the suitability index for the studied area. The results indicated that 4.4% of the study region is suitable for land¿ll siting with grading values greater than 4.0. This included five sites distributed in three qadhaas of governorate.

1234567 1 - 50 of 1344
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf