Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bagge, Joakim
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Hedman, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Smedsrud, Sabina
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Svärdström, Cornelia
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Söderberg, Elisabeth
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Valdez, Fernando
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Utveckling av metodik för påvisning och typning av Listeria i livsmedelskedjan2017Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
  • 2.
    Bengtsson, Katarina
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Design of a galvanotaxic track for cells, using polymer electrodes.2011Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Galvanotaxis is the movement of cells in an applied electric field. The first steps to design a chip for observations of galvanotaxic behavior of cells were done in this work. The chip is a miniaturised system of previous larger galvanotaxis systems and uses materials which are thought to be biocompatible. The system was constructed on microscope slides with a channel in PDMS with adjacent polymer electrodes. The polymer electrodes were made from poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), glycerol and Silquest A-187. The PEDOT:PSS electrodes were connected with either an evaporated metal electrode of titanium and gold or a gold net. Systems with PEDOT:PSS are neutralised when put in excessive amount of PBS (pH=7.4) for 24 hours. The final system had a channel with dimension length=14 mm, width=0.5 mm and height=0.25 mm. PEDOT:PSS worked as an electrode material and the achieved electric field through the channel was between 55 V/m and 160 V/m with an applied voltage of 1 V. The decrease of the electric field within the first hour was between 10 % and 30%.  Further development of this system could give an easy way to observe galvanotaxic behaviour of cells or an instrument that can distinguish between different cell types.

  • 3.
    Berglund, Joel
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    THE PROSPECT OF LIVING FILTERS: Reducing building sector energy demands by improving indoor air quality2018Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Today people spend all the more time indoors. Asthma, allergies and Sick Building Syndrome (SBS) are affecting an increasing number of people. The remedy for all these affections has long been to increase the volume flow of outdoor air in the ventilation but at the same time cities all over the world are struggling with air pollution and smog rising above endangering levels. Living filters present a new solution where part of the indoor air can be purified and recirculated in a building. This project has compiled research on the area to describe the how and why concerning air purification by plants. Independent research conclude that plants can reduce most hazardous chemical agents in the air.

    Climate change, global warming and increasing demands on energy performance induces a race for countries and companies to improve energy efficiency in all sectors. To the building engineering sector living filters presents a unique solution to cut ventilation energy loses. A powerful simulation tool IDA ICE was used to estimate the energy saving capacity when a living filter is applied in the lunch room of an office floor. Another simulation software; Comsol Multiphysics was used to illustrate the aspects of ventilation flow when a living filter cabinet is deployed in a room. The simulation results show that for three living filter cabinets each measuring 0,7x0,8x1,73 cm the buildings energy usage is reduced with more than the living filters use to operate. The single room simulations then show how a living filter can be accommodated with both mixing and displacing ventilation. However, these simulations also illustrate the importance of the living filters placement to achieve maximum ventilation efficiency. 

    The conclusions from this work are that living filters can reduce building sector energy demands and provide significant indoor environmental benefits. The main issue for using living filters is identified to be building regulations putting strict demands on outdoor air flow and that the hygienic function of each living filter must be verified before it may replace outdoor air.

  • 4.
    Cecilia, Bill
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Improving anti-drug antibody assay performance in Gyrolab for therapeutic recombinant antibody Infliximab2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Monoclonal antibodies can be used as targeting therapies for several diseases. One major concern when using these therapies is anti-drug antibodies which may hamper the drugs efficiency. Gyrolab is an automated platform which can be used to develop bridging immunoassays where the anti-drug antibodies affinity towards the monoclonal antibody is utilized. Anti-drug antibody immunoassay development on Gyrolab is limited mainly by three factors which may inappropriately affect signal intensity levels. In this project different variants of bridging immunoassays based on drug Fab fragments have been developed for monoclonal antibody Infliximab, with the purpose to illustrate the effects of these three factors.

    Findings indicate that an assay based completely on drug Fab fragments is more sensitive compared to an assay based on intact drug since less affected by unspecific interactions between drug reagents and complex formations. Surprisingly findings also indicate that an assay based completely on drug Fab fragments is affected by human anti-hinge antibodies which decrease assay sensitivity. The most optimal assay variant is based on the combination between intact capture drug and Fab fragment as detection. This variant is insensitive to false positive reactions caused by Rheumatoid factor and human anti-hinge antibodies, less prone to form unspecific interactions between drug reagents and complex formations in the presence of anti-drug antibodies. The optimal assay variant also demonstrates best drug tolerance in combination with acid dissociation.

  • 5.
    Dev, Apurba
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics. Uppsala University, Sweden.
    Horak, J.
    Kaiser, A.
    Yuan, X.
    Perols, A.
    Björk, P.
    Karlström, A. E.
    Kleimann, P.
    Linnros, Jan
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Electrokinetic effect for molecular recognition: A label-free approach for real-time biosensing2016In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 82, p. 55-63Article in journal (Refereed)
    Abstract [en]

    We present a simple and inexpensive method for label-free detection of biomolecules. The method monitors the changes in streaming current in a fused silica capillary as target biomolecules bind to immobilized receptors on the inner surface of the capillary. To validate the concept, we show detection and time response of different protein-ligand and protein-protein systems: biotin-avidin and biotin-streptavidin, barstar-dibarnase and Z domain-immunoglobulin G (IgG). We show that specific binding of these biomolecules can be reliably monitored using a very simple setup. Using sequential injections of various proteins at a diverse concentration range and as well as diluted human serum we further investigate the capacity of the proposed technique to perform specific target detection from a complex sample. We also investigate the time for the signal to reach equilibrium and its dependence on analyte concentration and demonstrate that the current setup can be used to detect biomolecules at a concentration as low as 100 pM without requiring any advanced device fabrication procedures. Finally, an analytical model based on diffusion theory has been presented to explain the dependence of the saturation time on the analyte concentration and capillary dimensions and how reducing length and inner diameter of the capillary is predicted to give faster detection and in practice also lower limit of detection. © 2016 Elsevier B.V.

  • 6.
    Griffith, May
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Lee, Chyan-Jang
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Buznyk, Oleksiy
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Filatov Inst Eye Dis and Tissue Therapy, Ukraine.
    Artificial Corneas, and Reinforced Composite Implants for High Risk Donor Cornea Transplantation2017In: STEM CELL MICROENVIRONMENT AND ITS ROLE IN REGENERATIVE MEDICINE AND CANCER PATHOGENESIS, RIVER PUBLISHERS , 2017, Vol. 7, p. 93-102Chapter in book (Refereed)
    Abstract [en]

    Here, we review examples of artificial corneas that have been developed as alternatives to donor cornea transplantation. These consist of artificial corneas developed as prostheses and regenerative scaffolds. Examples of reinforced and composite implants developed within our group are profiled.

  • 7.
    Iredahl, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Assessment of microvascular and metabolic responses in the skin2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The general aim of this project was to develop experimental in vivo models that allow for minimally invasive investigations of responses in the skin to microvascular and metabolic provocations. The cutaneous microvasculature has emerged as a valuable model and been proposed to mirror the microcirculation in other organs. Dysfunction in the cutaneous microcirculation has thus been linked to systemic diseases such as hypertension and diabetes mellitus. Models for investigating skin responses could facilitate the understanding of pathophysiological mechanisms as well as effects of drugs.

    In the first study, three optical measurement techniques (laser Doppler flowmetry (LDF), laser speckle contrast imaging (LSCI) and tissue viability imaging (TiVi)) were compared against each other and showed differences in their ability to detect microvascular responses to provocations in the skin. TiVi was found more sensitive for measurement of noradrenaline-induced vasoconstriction, while LSCI was more sensitive for measurement of vascular occlusion. In the second study, microvascular responses in the skin to iontophoresis of vasoactive drugs were found to depend on the drug delivery protocol. Perfusion half-life was defined and used to describe the decay in the microvascular response to a drug after iontophoresis. In the third study, the role of nitric oxide (NO) was assessed during iontophoresis of insulin. The results showed a NO-dependent vasodilation in the skin by insulin. In the fourth study the vasoactive and metabolic effects of insulin were studied after both local and endogenous administration. Local delivery of insulin increased skin blood flow, paralleled by increased skin concentrations of interstitial pyruvate and lactate, although no change in glucose concentration was observed. An oral glucose load resulted in an increased insulin concentration in the skin paralleled by an increase in blood flow, as measured using the microdialysis urea clearance technique, although no changes in perfusion was measured by LSCI.

    The thesis concludes that when studying skin microvascular responses, the choice of measurement technique and the drug delivery protocol has an impact on the measurement results, and should therefore be carefully considered. The thesis also concludes that insulin has metabolic and vasodilatory effects in the skin both when administered locally and as an endogenous response to an oral glucose load. The vasodilatory effect of insulin in the skin is mediated by nitric oxide.

  • 8.
    Johansson, Johannes D.
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Fredriksson, Ingemar
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Eriksson, Ola
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Simulation of reflected light intensity changes during navigation and radio frequency lesioning in the brain2009In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 14, no 044040Article in journal (Refereed)
    Abstract [en]

    An electrode with adjacent optical fibers for measurements during navigation and radio frequency lesioning in the brain was modeled for Monte Carlo simulations of light transport in brain tissue. Relative reflected light intensity at 780 nm, I780, from this electrode and probes with identical fiber configuration were simulated using the intensity from native white matter as reference. Models were made of homogeneousnative and coagulated gray, thalamus, and white matter as well as blood. Dual layermodels, including models with a layer of cerebrospinal fluid between the fibers andthe brain tissue, were also made. Simulated I780 was 0.16 for gray matter, 0.67 forcoagulate gray matter, 0.36 for thalamus, 0.39 for coagulated thalamus, unity forwhite matter, 0.70 for coagulated white matter and 0.24 for blood. Thalamic matterhas also been found to reflect more light than gray matter and less than white matterin clinical studies. In conclusion the reflected light intensity can be used todifferentiate between gray and white matter during navigation. Furthermore,coagulation of light gray tissue, such as the thalamus, might be difficult to detectusing I780, but coagulation in darker gray tissue should result in a rapid increase of I780.

  • 9.
    Nordesjö, Olle
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Pontén, Victor
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Herman, Stephanie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Ås, Joel
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Jamal, Sabri
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Nyberg, Alona
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Ett sannolikhetsbaserat kvalitetsmått förbättrar klassificeringen av oförväntade sekvenser i in situ sekvensering2014Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    In situ sequencing is a method that can be used to localize differential expression of mRNA directly in tissue sections, something that can give valuable insights to many statest of disease. Today, many of the registered sequences from in situ sequencing are lost due to a conservative quality measure used to filter out incorrect sequencing reads. There is room for improvement in the performance of the current method for base calling since the technology is in an early stage of development. We have performed exploratory data analysis to investigate occurrence of systematic errors, and corrected for these by using various statistical methods. The primary methods that have been investigated are the following:

    I) Correction of emission spectra overlap resulting in spillover between channels.

    II) A probability-based interpretation of intensity data, resulting in a novel quality measure and an alternative classifier based on supervised learning.

    III) Analysis of occurrence of cycle dependent effects, e.g. incomplete dehybridization of fluorescent probes.

    We suggest the following:

    • Implementation and evaluation of the probability-based quality measure
    • Development and implementation of the proposed classifier
    • Additional experiments to investigate the possible occurrence of incomplete dehybridization
  • 10.
    Rogozea, Dan
    Jönköping University, School of Engineering.
    Design, 3D Bioprinting, and Testing of Otic Prosthesis2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The middle ear is a complex organ with multiple functions. It is prone to accidental, genetic, excessive noise exposure, or age-related damage. Its main role is to convey and amplify the mechanical vibrations of the tympanic membrane to the acoustic nerve through three connected small bones, the ossicles; malleus, incus, and stapes. When severely damaged, the most used solution is currently a partial or total ossicle replacement with inorganic titanium prostheses, which are not anatomically similar. However, 3D models derived from micro-CT scans of human ossicular chains are freely available for research and educational purposes in high resolution 3D files. Therefore, these files were scaled to anatomical size and used to print partial models of the malleus and incus using an extrusion contact method using a bioprinter and OsteoInk, a calcium phosphate-based paste sold by the bioprinting company regenHU. The use of this biologically analogous material to 3D print anatomically sized and shaped ossicles is novel. The process and settings for bioprinting the malleus and incus were devised and tested for repeatability. OsteoInk was found suitable to form hard bone-like objects after printing and curing. However, for this process to be successful with OsteoInk, the models required a flat base; the first .560 mm of the virtual model were not printed. A support structure is required for creating complete ossicles, but the hydrogel and polymer structures attempted were not deemed feasible. The support structure could be created by combining the OsteoInk with other biomaterials, or by fibers printed through Melt Electrospinning Writing. The workflow devised in this project is applicable to other bioprinters, and to thus to further the research in the field of bioprinting.

    The full text will be freely available from 2018-12-24 07:44
  • 11.
    Valenti, Marco
    et al.
    Delft University of Technology, Netherlands.
    Kontoleta, Evgenia
    Delft University of Technology, Netherlands.
    Digdaya, Ibadillah A.
    Delft University of Technology, Netherlands.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Biskos, George
    Delft University of Technology, Netherlands; Cyprus Institute, Cyprus.
    Schmidt-Ott, Andreas
    Delft University of Technology, Netherlands.
    Smith, Wilson A.
    Delft University of Technology, Netherlands.
    The Role of Size and Dimerization of Decorating Plasmonic Silver Nanoparticles on the Photoelectrochemical Solar Water Splitting Performance of BiVO4 Photoanodes2016In: CHEMNANOMAT, ISSN 2199-692X, Vol. 2, no 7, p. 739-747Article in journal (Refereed)
    Abstract [en]

    Ag nanoparticles (NPs) are deposited on BiVO4 photoanodes to study their effect on the photoelectrochemical (PEC) water splitting performance of the semiconductor. 15 nm light-absorbing NPs and 65 nm light scattering NPs were studied separately to compare their light trapping ability for enhancing the semiconductors absorption through light concentration and light scattering, respectively. The 15 nm NPs enhanced the BiVO4 external quantum efficiency throughout the semiconductors absorption range (e.g.,approximate to 2.5 fold at lambda=400 nm). However, when a hole scavenger was added to the electrolyte, no enhancement was ob-served upon NP deposition, indicating that the NPs only facilitate the injection of holes from the semiconductor surface to the electrolyte but do not enhance its absorption. On the other hand, the 65 nm scattering NPs not only facilitated hole injection to the electrolyte, but also enhanced the absorption of the semiconductor (by approximate to 6%) through light scattering. Such a dual effect, i.e., of enhancing both the surface properties and the absorption of the semiconductor, makes light scattering Ag NPs an ideal decoration for PEC water splitting photoelectrodes.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf