Change search
Refine search result
1234567 1 - 50 of 1555
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abbasi, Saeed
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Nanostructured particles in/outside compartment of running train, an on board measurement2013Report (Other academic)
  • 2.
    Abbasi, Saeed
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Non-exhaust Nano particle emission in Rail traffic2010Conference paper (Refereed)
  • 3.
    Abbasi, Saeed
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Towards elimination of airborne particles from rail traffic2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Since the investigation of wear particles from rail transport started in the late 1910s, the high mass concentrations of these particles have prompted concern among researchers interested in air quality. However, effective action has yet to be taken because relevant knowledge is still missing. This thesis provides knowledge of airborne wear particles originating from rail transport. Some aspects of their characteristic parameters, such as size, mass concentration, number concentration, and morphology, were investigated in the field and in laboratory tests. We also discuss means to mitigate non-exhaust emissions, as well as the advantages and disadvantages of various test set-ups in the seven appended journal papers:Paper A reviews recent studies of exhaust and non-exhaust emissions from rail vehicles. The results, measurements, adverse health effects, and proposed or applied solutions presented in this literature are summarized in this paper.Paper B summarizes the results of field tests we conducted. The effects of curve negotiation and braking under different real conditions were investigated in a field test in which on-board measurements were made. The elemental composition and morphology of the particles emitted and their potential sources were also investigated.Paper C describes how a pin-on-disc machine can be used to reproduce real operating conditions during mechanical train braking in a controlled laboratory setting. The results were validated by comparing the field test results with the results of laboratory studies.Paper D presents comprehensive results of laboratory studies of airborne particles from different braking materials. A new index is introduced in this paper, which can be used as a quantitative metric for assessing airborne wear particle emission rates.Paper E describes the effects of using various friction modifiers and lubricants on the characteristics of airborne particles from wheel–rail contact under lubricated and unlubricated conditions.Paper F reports work to simulate thermoelastic instability in the cast-iron braking material. We simulated the fluctuation of the flash temperature by considering the temperature dependency of the material properties and the transformation of the contact state due to thermomechanical phenomena and wear.Paper G reviews new full- and sub-scale measurements of non-exhaust emissions from ground transport. The advantages and disadvantages of on-board measurements, pin-on-disc tests, dynamometer tests, and test rig studies are discussed in this paper.

  • 4.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Ekstrand-Hammarström, Barbara
    Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI),.
    Bergström, Ulrika
    Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI),.
    Bucht, Anders
    Deptartment of Public Health and Clinical Medicine, Umeå University Hospital, Umeå, 901 89, Sweden.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Jansson, Anders
    Department of Applied Environmental Science, Stockholm University, Stockholm, 106 91, Sweden.
    Biological response in lung cells by brake dust from a novel set-up to generate one sourcewear particles2013Conference paper (Refereed)
  • 5.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Jansson, Anders
    Stockholm University, Applied Environmental Science, Stockholm, Sweden.
    Olander, Lars
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Services Engineering.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A pin-on-disc study of the rate of airborne wear particle emissions from railway braking materials2012In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 284, 18-29 p.Article in journal (Refereed)
    Abstract [en]

    The current study investigates the characteristics of particles generated from the wear of braking materials, and provides an applicable index for measuring and comparing wear particle emissions. A pin-on-disc tribometer equipped with particle measurement instruments was used. The number concentration, size, morphology, and mass concentration of generated particles were investigated and reported for particles 10 nm-32 mu m in diameter. The particles were also collected on filters and investigated using EDS and SEM. The effects of wear mechanisms on particle morphology and changes in particle concentration are discussed. A new index, the airborne wear particle emission rate (AWPER), is suggested that could be used in legislation to control non-exhaust emissions from transport modes, particularly rail transport.

  • 6.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Jansson, Anders
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Particle emissions from rail traffic: a literature review2013In: Critical reviews in environmental science and technology, ISSN 1064-3389, E-ISSN 1547-6537, Vol. 43, no 23, 2211-2244 p.Article, review/survey (Refereed)
    Abstract [en]

    Particle emissions are a drawback of rail transport. This work is a comprehensive presentation of recent research into particle emissions from rail vehicles. Both exhaust and non-exhaust particle emissions are considered when examining particle characteristics such as  PM10, and PM2.5 concentration levels, size, morphology, composition, as well as adverse health effects, current legislation, and available and proposed solutions for reducing such emissions. High concentration levels in enclosed rail traffic environments are reported and some toxic effects of the particles. We find that only a few limited studies have examined the adverse health effects of non-exhaust particle emissions and that no relevant legislation exists. Thus further research in this area is warranted.

  • 7.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olander, Lars
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Services Engineering.
    Larsson, Christina
    Bombardier Transportation Sweden AB, Västerås, Sweden.
    Jansson, Anders
    Stockholm University, Applied Environmental Science, Stockholm, Sweden.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A field test study of airborne wear particles from a running regional train2012In: IMechE, Part F: Journal of Rail and Rapid Transit, ISSN 0954-4097, Vol. 226, no 1, 95-109 p.Article in journal (Refereed)
    Abstract [en]

    Inhalable airborne particles have inverse health affect. In railways, mechanical brakes, the wheel–rail contact, current collectors, ballast, sleepers, and masonry structures yield particulate matter. Field tests examined a Swedish track using a train instrumented with particle measurement devices, brake pad temperature sensors, and speed and brake sensors. The main objective of this field test was to study the characteristics of particles generated from disc brakes on a running train with an on-board measuring set-up.

    Two airborne particle sampling points were designated, one near a pad–rotor disc brake contact and a second under the frame, not near a mechanical brake or the wheel–rail contact; the numbers and size distributions of the particles detected were registered and evaluated under various conditions (e.g. activating/deactivating electrical brakes or negotiating curves). During braking, three speed/temperature-dependent particle peaks were identified in the fine region, representing particles 280 nm, 350 nm, and 600 nm in diameter. In the coarse region, a peak was discerned for particles 3–6 μm in diameter. Effects of brake pad temperature on particle size distribution were also investigated. Results indicate that the 280 nm peak increased with increasing temperature, and that electrical braking significantly reduced airborne particle numbers. FESEM images captured particles sizing down to 50 nm. The ICP-MS results indicated that Fe, Cu, Zn, Al, Ca, and Mg were the main elements constituting the particles.

     

  • 8.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A study of friction modifiers on airborne wear particles from wheel-rail contact2012Conference paper (Refereed)
    Abstract [en]

    Wheel-rail contact and its wear process are crucial issues in maintenance and operating of rolling stocks. During wheel-rail contact, materials in mating faces are worn off and some of them transferred to airborne particles. Eventhough the wear process in wheel-rail contact are well-known, few studies have been conducted on the airborne particles from wheel-rail contact.

    The purpose of this study is to investigate the effect of using different friction modifier on the amount of airbotne particles from wheel-rail contact in a laboratory simulation. In this regard, a series laboratory tests were used by using round head pin (R=25mm) and dead weight 40 N in a pin-on-disc machine. This set-up simulates a contact pressure around 750 MPa on the pin head.

    The amount of airborne particles and their characteristics were investigated in dry-contact, and non-dry contacts whereas a lubricant, Binol rail 510 and a friction modifier, tramsilence were used. According to the results, the effects of using Binol rail to reduce the amount of airborne particles were considerable.

  • 9.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Airborne wear particles from train traffic2010Conference paper (Refereed)
  • 10.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Experiences of measuring airborne wear particles from braking materials and wheel-rail contact2012Conference paper (Refereed)
    Abstract [en]

    During braking both of the discs and pads of disc brakes are worn. Since disc brakes are not sealed, some of the generated wear particles can become airborne.  Wheel-rail is also subjected to wear process during braking as well as normal running. They also contribute to generate airborne particles. Several studies have found an association between adverse health effects and the concentration of particles in the atmosphere, so it is of interest to improve our knowledge of the airborne wear particles generated by disc brakes.

    The present work includes results from full scale testing of rail vehicles. Particle size distribution, morphology and elemental contents are presented and discussed for different combinations of disc and pad materials. Due to high back ground concentration levels in field tests, dedicated laboratory test set ups on a reduced scale were designed and utilized for airborne particle studies with zero background level.

    Promising correlation between field test and the lab set up is identified. Different ways of using this test set up for evaluating how the composition of the airborne particles is classified with respect to their health effects are discussed. Furthermore, different ways of using the proposed method to rank and to quantify airborne particle emission factors are presented.

  • 11.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Lack of applicable criteria in non-exhaust emission legislation: AWPER index a practical solution2011Conference paper (Refereed)
  • 12.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olander, Lars
    A field investigation of the size and morphology and chemical composition of airborne particles in rail transport2010Conference paper (Refereed)
  • 13.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olander, Lars
    Larsson, christina
    A field investigation of the size, morphology and chemical composition of airborne particles in rail transport2010Conference paper (Refereed)
    Abstract [en]

    The health effects of inhalable airborne particles are well documented. In the European Union the European Council mandates that the level of airborne particles with a diameter smaller than 10 µm (PM10) must not exceed an annual average of 40 µg/m3. Examples of possible sources from rail transport are mechanical brakes, wheel rail contact, current collectors, ballast, sleepers and masonry structures. In this regard, a series of field tests have been conducted on a regular Swedish track using a regional train instrumented with: particle measurement devices, temperature sensors in brake pads and sensors to measure the magnitude of train speed and a GPS.

    Two sampling points for airborne particles were designated in the train under frame. One of the sampling points was near a pad to rotor disc brake contact and a second global sampling point was chosen under the frame, but not near a mechanical brake or the wheel-rail contact. The first one was highly influenced by brake pad wear debris and the other one was influenced by all of the brake pads, wheel and rail wear debris as well as re-suspension. In each sampling points, three tubes were linked to three particle measurement devices. Two sets of Ptrak, Dustrak and Grimm devices were used. The Ptrak 8525 was an optical particle measurement device which could measure particle diameter in the size interval of 20 nm up to 1 micrometer. The Dustrak was used to measure particle mass concentration. The Grimm 1.109 was an aerosol spectrometer which counted number of particles from 0.25 micrometer to 32 micrometer in 31 intervals. These two Grimm devices were equipped with Millipore filters in the devices outlets to capture particles for further studies on morphology and matter of particles.

    The total number and size distribution of the particles for these two sampling points were registered and evaluated in different situations such as activating and deactivating electrical brake or train curve negotiating.

    During braking, three peaks of 250 nm, 350 nm and 600 nm in diameter, with the 350 nm peak dominating were identified in the fine particle region. In the coarse particle region, a peak of around 3-6 µm in diameter was discovered. The brake pad temperature effects on particle size distribution were also investigated and the results showed that the peak around 250 nm increased. Furthermore, the activation of electrical braking significantly reduced the number of airborne particles.

    A SEM was used to capture the images from collected particles on filters. Furthermore, an ICP-Ms method was used to investigate the elemental contents of the particulates on the filter.  In this case the main contribution belonged to Fe, Si, Al, Ca, Cu, Zn. The higher amount of some elements weights such as calcium, silicon, sodium and aluminum in the global sampling point filters revealed that ballast and concrete sleepers were the main sources for these particles although some of them originated from rail, wheel, brake disc and brake pad as well.

  • 14.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Tritscher, Trosten
    TSI.
    Krinke, Thomas
    TSI.
    On-board study of nano- and micrometer-particle characteristics of a running electric train2013Conference paper (Refereed)
  • 15.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Zhu, Yi
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Pin-on-disc study of the effects of railway friction modifiers on airborne wear particles from wheel-rail contact2013In: Tribology International, ISSN 0301-679X, Vol. 60, 136-139 p.Article in journal (Refereed)
    Abstract [en]

    Knowledge of wheel–rail interaction is crucial to wheel and rail maintenance. In this interaction, some of theworn-off material is transformed into airborne particles. Although such wear is well understood, few studiestreat the particles generated. We investigated friction modifiers' effects on airborne particles characteristicsgenerated in wheel-rail contacts in laboratory conditions. Pin-on-disc machine testing with a round-head pinloaded by a dead weight load 40 N simulated maximum contact pressure over 550 MPa. Airborne particlecharacteristics were investigated in dry contacts and in ones lubricated with biodegradable rail grease andwater- and oil-based friction modifiers. The number of particles declined with the grease; the number ofultrafine particles increased with the water-based friction modifier, mainly due to water vaporization.

  • 16.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Particle emission from rail vehicles: A literature review2012In: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Sage Publications, 2012Conference paper (Refereed)
    Abstract [en]

    Emission of airborne particles is a side effect from rail transport. This work reviews recent research on particle emissions from rail vehicles. Both exhaust and non-exhaust particle emissions are characterized by size, morphology, composition, and size distribution. Current legislation, knowledge of adverse health effects, and available and proposed solutions for emission reductions are also treated. There has been much focus on exhaust emissions, but only a few limited studies have investigated non-exhaust particle emissions, which contain a significant amount of metallic materials. A new method for measuring the airborne wear particle emission rate (AWPER) is proposed as a first step to guide new legislations and to focus further research on non-exhaust airborne emission, i.e., research on the generation mechanisms for particle emissions and their adverse health effects.

  • 17.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Technical note: Experiences of studying airborne wear particles from road and rail transport2013In: Aerosol and Air Quality Research, ISSN 1680-8584, Vol. 13, no 4, 1161-1169 p.Article in journal (Refereed)
    Abstract [en]

    Airborne particles and their adverse effects on air quality have been recognized by humans since ancient times. Current exhaust emission legislations increase the relative contribution of wear particles on the PM levels. Consequently, wearbased particle emissions from rail and road transport have raised concerns as ground transportation is developing quickly. Although scientific research on airborne wear-based particles started in 1909, there is almost no legislation that control the generation of wear-based particles. In addition, there is no accepted and approved standard measurement technique for monitoring and recording particle characteristics. The main objective of this study is to review recent experimental work in this field and to discuss their set-ups, the sampling methods, the results, and their limitations, and to propose measures for reducing these limitations.

  • 18.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. Department of Mechanical engineering, Golpayegan University of Technology.
    Teimourimanesh, Shahab
    Chalmers.
    Vernersson, Tore
    Chalmers.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Lunden, Roger
    Chalmers.
    Temperature and Thermoelastic Instability at Tread Braking Using Cast Iron Friction Material2013In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 314, no 1–2, 171-180 p.Article in journal (Refereed)
    Abstract [en]

    Braking events in railway traffic often induce high frictional heating and thermoelastic instability (TEI) at the interfacing surfaces. In the present paper, two approaches are adopted to analyse the thermomechanical interaction in a pin-on-disc experimental study of railway braking materials. In a first part, the thermal problem is studied to find the heat partitioning between pin and disc motivated by the fact that wear mechanisms can be explained with a better understanding of the prevailing thermal conditions. The numerical model is calibrated using the experimental results. In a second part, the frictionally induced thermoelastic instabilities at the pin-disc contact are studied using a numerical method and comparing them with the phenomena observed in the experiments. The effects of temperature on material properties and on material wear are considered. It is found from the thermal analysis that the pin temperature and the heat flux to the pin increase with increasing disc temperatures up to a transition stage. This agrees with the behaviour found in the experiments. Furthermore, the thermoelastic analysis displays calculated pressure and the temperature distributions at the contact interface that are in agreement with the hot spot behaviour observed in the experiments.

  • 19.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Teimourimanesh, Shahab
    Chalmers.
    Vernersson, Tore
    Chalmers.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Lunden, Roger
    Chalmers.
    Temperature and thermo-elastic instability of tread braking friction materials2012Conference paper (Refereed)
  • 20.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olander, Lars
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Services Engineering.
    Larsson, Christina
    Bombardier Transportation Sweden AB, Västerås, Sweden.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A study of airborne wear particles generated from organic railway brake pads and brake discs2011In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 273, no 1, 93-99 p.Article in journal (Refereed)
    Abstract [en]

    Brake pads on wheel-mounted disc brakes are often used in rail transport due to their good thermal properties and robustness. During braking, both the disc and the pads are worn. This wear process generates particles that may become airborne and thus affect human health. The long term purpose of ‘Airborne particles in Rail transport’ project is to gain knowledge on the wear mechanisms in order to find means of controlling the number and size distribution of airborne particles. In this regard, a series of full-scale field tests and laboratory tests with a pin-on-disc machine have been conducted. The morphology and the matter of particles, along with their size distribution and concentration, have been studied. The validity of results from the pin-on-disc simulation has been verified by the field test results. Results show an ultra-fine peak for particles with a diameter size around 100 nm in diameter, a dominant fine peak for particles with a size of around 350 nm in diameter, and a coarse peak with a size of 3-7 μm in diameter. Materials such as iron, copper, aluminium, chromium, cobalt, antimony, and zinc have been detected in the nano-sized particles.

  • 21.
    Abu Baker Karim, Aria
    et al.
    Örebro University, School of Science and Technology.
    Schnelzer, Anna
    Örebro University, School of Science and Technology.
    Optimering av glidlager och utveckling av dess konstruktion2012Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    We have in this project become engrossed in a plain bearing design that is located in a screw press. The screw press compact an unknown mass that is confidential. Robustus have a suggestion to over dimensioning the present plain bearing. The aim of this project was to analyze and to do an optimization on some plain bearings and compare them to the present bearing and to take the choice of material and the environment where the bearing is located into account. The analysis and the optimizations showed that the current plain bearing had the best geometry but not the optimal material selection. The project is in an early state and it needs some geometrical changes. The most important of everything is that the problem has been identified with the help of the wrecked plain bearing and with an excel model.

  • 22.
    Ainegren, Mats
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Carlsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Tinnsten, Mats
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    A portable roller ski rolling resistance measurement system2013In: The Impact of Technology on Sport V: Procedia Engineering / [ed] Subic A, Fuss FK, Clifton P, Chan KM., Elsevier, 2013, 79-83 p.Conference paper (Refereed)
    Abstract [en]

    Roller skis are used by cross-country skiers, biathletes and ski-orienteers for their snow-free training and in roller ski competitions. Additionally, much of the current sports research into the physiology and biomechanics of crosscountry skiing is conducted indoors on treadmills using roller skis. For elite athletes, the differences in performance are quite small, thus emphasising the importance of knowing the roller skis' rolling resistance coefficient, especially in connection to research and roller ski competitions. The purpose of this study was to develop a roller ski rolling resistance measurement system (P-RRMS) that is portable and therefore useful in different contexts and locations. The P-RRMS was designed as a small treadmill, equipped with roller ski stabilizing lateral supports and a screwed bar for applying different vertical loads on the roller ski. The design uses only one force sensor, with possible measurements of three directions of force and torque around three axes. The weight of the P-RRMS is 100 kg and it is equipped with wheels to facilitate transportation.

  • 23.
    Aiso, Toshiharu
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Wiklund, Urban
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Kubota, Manabu
    Nippon Steel & Sumitomo Metal Corporation.
    Jacobson, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Influence of Mn and Al additions to carbon steel on material transfer and coating damage mechanism in a sliding contact between steel and TiN coated HSS tool2016In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 101, 414-424 p.Article in journal (Refereed)
    Abstract [en]

    A crossed cylinders sliding test, simulating the contact between the chip and the cutting tool, is used to evaluate material transfer, friction characteristics and coating damage of a TiN coated high speed steel against specifically designed model steels. These steels include one reference with C as the only alloy element (Base steel), and two alloyed also with 1 mass% Mn or Al. When sliding against the Base steel, an Fe–O layer forms on the coating and protects it from wear. Against the Mn alloyed steel, Fe–Mn–O forms, which has no protective effect. Against the Al alloyed steel, an almost pure Al–O layer forms. This leads to the highest friction, rapidly causing substrate softening and coating fracture.

  • 24. Alemani, Mattia
    et al.
    Nosko, Oleksii
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Metinoz, Ibrahim
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A study on emission of airborne wear particles from car brake friction pairs2015In: SAE International Journal of Materials & Manufacturing, ISSN 1946-3979, E-ISSN 1946-3987, Vol. 9, no 1, 147-157 p., 2015-01-2665Article in journal (Refereed)
    Abstract [en]

    The emission of airborne wear particles from friction material / cast iron pairs used in car brakes was investigated, paying special attention to the influence of temperature. Five low-metallic materials and one non-asbestos organic material were tested using a pin-on-disc machine. The machine was placed in a sealed chamber to allow airborne particle collection. The concentration and size distribution of 0.0056 to 10 μm particles were obtained by a fast mobility particle sizer and an optical particle sizer. The temperature was measured by a thermocouple installed in the disc. The experiments show that as the temperature increases from 100 to 300 °C the emission of ultrafine particles intensifies while that of coarse particles decreases. There is a critical temperature at which the ultrafine particle emission rate rises stepwise by 4 to 6 orders of magnitude. For the friction pairs investigated, the critical temperature was found to be between 165 and 190 °C. Below the critical temperature, fine particles outnumber coarse and ultrafine particles, although coarse particles make up the bulk of the particulate matter mass. The friction pairs differ in the ultrafine particle emission rate by 1 to 2 orders of magnitude. Above the critical temperature, ultrafine particles constitute almost 100% of the total particle number and their relative mass contribution can exceed 50%. Analysis of the particle size distributions revealed peaks at 0.19-0.29, 0.9 and 1.7 μm. Above the critical temperature, one more peak appears in the ultrafine particle range at 0.011-0.034 μm.

  • 25. Alemani, Mattia
    et al.
    Perricone, Guido
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Söderberg, Anders
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Ciotti, Alessandro
    A proposed dyno bench test cycle to study particle emissions from disc brakes2014Conference paper (Refereed)
  • 26.
    Alfredsson, Bo
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Nordin, E.
    An Elastic-Plastic Model for Single Shot-Peening Impacts2013In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 52, no 2, 231-251 p.Article in journal (Refereed)
    Abstract [en]

    A model was developed for impacts of elastic perfectly plastic spherical particles with impact velocities up to 250 m/s. The model is based on the two master curves, for normalized pressure and projected contact area c (2), which both are functions of the representative strain I > at maximum impact. The model and its parameters were fitted to finite element results for elastic perfectly plastic and strain rate-independent materials. It was applied to a wide range of materials with different ratio between yield stress and elastic properties, different ball sizes and impact velocities. The impact model predicted the results from finite element method for contact radius, maximum impact depth in both target and ball as well as remaining impact depth in target and ball. The remaining impact depth was determined from elastic spring back with Hertzian and quadratic pressure at maximum impact. The rebound velocity was also estimated by following the load-deformation path during spring back. If the strain rate-compensated yield stress was used for the master curve parameters, then the model predicted the impact results also for the investigated strain rate-dependent materials.

  • 27.
    Almeida, Nuno A.F.
    et al.
    Mechanical Engineering Department & TEMA, University of Aveiro, Campus Universitário de Santiago.
    Rodrigues, Joana
    Physics Department & I3N, University of Aveiro, Campus Universitário de Santiago.
    Silva, Patricia
    Mechanical Engineering Department & TEMA, University of Aveiro, Campus Universitário de Santiago.
    Emami, Nazanin
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Soares, Manuel J.
    Physics Department & I3N, University of Aveiro, Campus Universitário de Santiago.
    Monteiro, Teresa
    Physics Department & I3N, University of Aveiro, Campus Universitário de Santiago.
    Lopes-da-Silva, José A.
    Chemistry Department & QOPNA, University of Aveiro, Campus Universitário de Santiago.
    Marques, Paula A.A.P.
    Mechanical Engineering Department & TEMA, University of Aveiro, Campus Universitário de Santiago.
    Pressure dependent luminescence in titanium dioxide particles modified with europium ions2016In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 234, 137-144 p.Article in journal (Refereed)
    Abstract [en]

    Particles of titanium dioxide were prepared in the presence of europium ions (TiO2:Eu) by a solvothermal method and thermal annealed in air at 500 °C. The spectroscopic properties of TiO2:Eu particles were analyzed indicating that the Eu3+ ions are likely distributed at the surface or near the surface of the titanium dioxide particles. The photoluminescence analysis showed that the intraionic emission was strongly sensitive to reduced pressure conditions, as seen by its absence under vacuum conditions. The ion emission was re-established as soon as the atmosphere was restored. Additionally, the ion integrated emission intensity follows a linearly dependence with pressure in the range of 150 to 800 mbar revealing a high sensitivity to small variations in pressure, which is an unprecedented result. This innovation will allow the study of new technologies in the area of low vacuum sensors where TiO2:Eu may act as the active element of an optical sensor for a pressure device.

  • 28.
    Almqvist, Andreas
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Homogenization of the Reynolds equation governing hydrodynamic flow in a rotating device2011In: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 133, no 2, 021705-1 p.Article in journal (Refereed)
    Abstract [en]

    In this paper, a method facilitating the analysis of the effects of surface roughness on the lubrication of a rotating device is presented. The analysis utilizes homogenization—a suitable technique for averaging the effects of roughness as modeled by the Reynolds equation. The originality of this work lies in a novel way of deriving the so called local problems, also known as microbearing problems. It is clearly shown how this increases the computational efficiency by eliminating the dependence of the global coordinates on the formulation of these local problems. This does not only speed up the computation, it also means that the derived flow factors or flow tensors require less storage space. To provide for good usability, alongside the flow factors for the averaged Reynolds equation, the correction factors for the averaged friction torque (and force) and the expression for averaged load carrying capacity are presented here.

  • 29.
    Almqvist, Andreas
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    On the effects of surface roughness in lubrication2009Doctoral thesis, comprehensive summary (Other academic)
  • 30.
    Almqvist, Andreas
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    On the effects of surface roughness in lubrication2006Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Tribology is a multidisciplinary field defined as the science and technology of interacting surfaces in relative motion, and embraces the study of friction, wear and lubrication. A typical tribological application is the rolling element bearing. Tribological contacts may also be found in other types of bearings, cam-mechanisms, gearboxes and hydraulic systems. Examples of bearings inside the human body are the operation of the human hip joint and the contact between teeth during chewing. To fully understand the operation of this type of application one has to understand the couplings between the lubricant fluid dynamics, the structural dynamics of the bearing material, the thermodynamical aspects and the resulting chemical reactions. This makes modeling tribological applications an extremely delicate task. Because of the multidisciplinary nature, such theoretical models lead to mathematical descriptions generally in the form of non-linear integro-differential systems of equations. Some of these systems of equations are sufficiently well posed to allow numerical solutions to be carried out, resulting in accurate predictions on performance. In this work, the influence on performance of a surface microscopical nature, the surface roughness, in contact interfaces between different types of machine element components is the subject of study. An example is the non-conformal lubricated contact between one of the rollers and the inner ring in a rolling element bearing. The tribological contact controlling the operation of the human hip joint is also very similar to this. Another example of a non-conformal contact occurs when driving on rainy roads, where the hydrodynamic action of the water separates the tire. To enable investigations of these types of problems, different theoretical models were studied; for the selected model, a numerical solution technique was developed within this project. This model is based on the Reynolds equation coupled with the film thickness equation. The numerical solution technique involves a multilevel technique to facilitate the solution process. Results presented in this thesis, utilizing this approach, study elementary surface features such as ridges and indentations passing each other inside the lubricated conjunction. The Reynolds equation is derived under the assumptions of thin fluid film and creeping flow, and considers in its most general form shear thinning of the lubricant. This type of equation describes the hydrodynamic action of the lubricant flow and may be used when the interfaces consist of either conformal or non-conformal conjunctions. Examples of applications having conformal interfaces are thrust- and journal- bearings or the contact between the eye and a (optical) contact lens. In such types of applications the load carried by the interface is distributed over a fairly large area that under certain circumstances helps to prevent mechanical deformation of the contacting surfaces. Such applications are said to operate in the hydrodynamic lubrication (HL) regime. Lubricant compressibility and cavitation are important aspects and have received some attention. However, the main objective when modeling HL has been to investigate and develop methods that enable the influence of surface roughness to be to be studied efficiently. Homogenization is a rigorous mathematical concept that when applied to a certain problem may be regarded as an averaging technique as well as it provides information about the induced effects of local surface roughness. Homogenization inflicts no restrictions on the surface roughness representation other than the representative part of the chosen surface roughness being assumed periodically distributed and of course the assumptions of thin film flow made through the Reynolds equation. The homogenization process leads to a two sets of equations one for the local scale describing surface roughness, scale and one for the global scale describing application geometry. The unequivocally determined coefficients of the global problem, which may be regarded as flow factors, are obtained through the solution of local problems. This makes homogenization an eminent approach to be used investigating the influence of surface roughness on hydrodynamic performance. In the present work, homogenization has been used to derive computationally feasible forms of problems originating from incompressible and compressible Reynolds type equations that describe stationary and unstationary flows in both cartezian and cylindrical co-ordinates. This technique enables simulations of surface roughness induced effects when considering surface roughness descriptions originating from measurements. Moreover, the application of homogenization facilitates the interpretation of results. Numerical investigations following the homogenization process have been carried out to verify the applicability of homogenization in hydrodynamic lubrication. Homogenization has also been shown here to enable efficient analysis of rough hydrodynamically lubricated problems. Also of note, in connection to the scientific contribution within tribology, collaboration with a group in applied mathematics has lead to the development of novel techniques in that area. These ideas have also been successfully applied, with some results presented in this thesis. At start-ups, the contact in a rolling element bearing could be both starved and drained from lubricant. In this case the hydrodynamic action becomes negligible in terms of load carrying capacity. The load is carried exclusively by surface asperities, the tribo film, or both. This is hereby modeled as the unlubricated frictionless contact between rough surfaces, i.e. a contact mechanical approach. A variational principle was used in which the real area of contact and the contact pressure distribution minimize the total complementary potential energy. The material model is linear elastic-perfectly plastic and the energy dissipation due to plastic deformation is accounted for. The numerics of this contact mechanical approach involve the fast Fourier transformation (FFT) technique in order to facilitate the solution process. Investigation results of the contact mechanics of realistic surfaces are presented in this thesis. In this investigation the variation in the real area of contact, the plasticity index and some surface roughness parameters due to applied load were studied.

  • 31.
    Almqvist, Andreas
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Rough surface elastohydrodynamic lubrication and contact mechanics2004Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the field of tribology, there are numerous theoretical models that may be described mathematically in the form of integro-differential systems of equations. Some of these systems of equations are sufficiently well posed to allow for numerical solutions to be carried out resulting in accurate predictions. This work has focused on the contact between rough surfaces with or without a separating lubricant film. The objective was to investigate how surface topography influences contact conditions. For this purpose two different numerical methods were developed and used. For the lubricated contact between rough surfaces the Reynolds equation were used as a basis. This equation is derived under the assumptions of thin fluid film and creeping flow. In highly loaded, lubricated, non- conformal contacts of surfaces after running-in, the load concentration no longer results in plastic deformations, however large elastic deformations will be apparent. It is the interaction between the hydrodynamic action of the lubricant and the elastic deformations of the surfaces that, in certain applications, enable the lubricant film to fully separate the surfaces. This is commonly referred to as full film elastohydrodynamic (EHD) lubrication. Typical machine elements that operates in the full film EHD lubrication (FL) regime include rolling element bearings, cams and gears. Unfortunately, a cost effective way of machining engineering surfaces seldom results in a surface topography that influence contact conditions in the same way as a surface after running-in. Such topographies may prevent the lubricant from fully separating the surfaces because of deteriorated hydrodynamic action. In this case the applied load is carried in part by the lubricant and in part by surface asperities and/or surface active lubricant additives. This could also be the case in lubricant starved contacts, which is a common situation in not only grease lubricated contacts but also in many liquid lubricated contacts, such as high speed operating rolling element bearings. The load sharing between the highly compressed lubricant and the surface and/or surface active lubricant additives is the reason why this lubrication regime is most commonly referred to as mixed EHD lubrication (ML). Machine elements that while running operate in the FL regime may experience a transition into the ML regime at stops or due to altered operating conditions. It is not possible to simulate direct contact between the surfaces using a numerical method based on Reynolds equation. A parameter study, of elementary surface features passing each other inside the EHD lubricated conjunction, was performed. The results obtained, even though no direct contact could be simulated, does indicate that a transition from the FL to the ML regime would occur for certain combinations of the varied parameters. At start-ups, the contact in a rolling element bearing could be both starved and drained from lubricant. In this case the hydrodynamic action becomes negligible in terms of load carrying capacity. The load is carried exclusively by surface asperities and/or surface active lubricant additives. This regime is referred to as boundary lubrication (BL). Operation conditions could also make both FL and ML impossible to achieve, for example, in the case in a low rpm operating rolling element bearing. The BL regime is in this work modeled as the unlubricated frictionless contact between rough surfaces, i.e., a dry contact approach. A variational principle was used in which the real area of contact and contact pressure distribution are those which minimize the total complementary energy. A linear elastic-perfectly plastic deformation model in which energy dissipation due to plastic deformation is accounted for was used. The dry contact method was applied to the contact between four different profiles and a plane. The variation in the real area of contact, the plasticity index and some surface roughness parameters due to applied load were investigated. The surface roughness parameters of the profiles differed significantly.

  • 32.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Campañá, C
    University of Ottawa, Department of Chemistry, Ottawa, Canada K1N6N5.
    Prodanov, N
    Sumy State University, 2 Rimskii-KorsakovStr., 40007 Sumy, Ukraine.
    Persson, B N J
    IFF, Jülich.
    Interfacial separation between elastic solids with randomly rough surfaces: Comparison between theory and numerical techniques2011In: Journal of the mechanics and physics of solids, ISSN 0022-5096, E-ISSN 1873-4782, Vol. 59, no 11, 2355-2369 p.Article in journal (Refereed)
    Abstract [en]

    We study the distribution of interfacial separations at the contact region between two elastic solids with randomly rough surfaces. An analytical expression is derived for the distribution of interfacial separations using Persson's theory of contact mechanics, and is compared to numerical solutions obtained using (a) a half-space method based on the Boussinesq equation, (b) a Green's function molecular dynamics technique and (c) smart-block classical molecular dynamics. Overall, we find good agreement between all the different approaches.

  • 33.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Dasht, Johan
    The homogenization process of the Reynolds equation describing compressible liquid flow2006In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 39, no 9, 994-1002 p.Article in journal (Refereed)
    Abstract [en]

    This paper summarizes the homogenization process of rough, hydrodynamic lubrication problems governed by the Reynolds equation used to describe compressible liquid flow. Here, the homogenized equation describes the limiting result when the wavelength of a modeled surface roughness goes to zero. The lubricant film thickness is modeled by one part describing the geometry/shape of the bearing and a periodic part describing the surface topography/roughness. By varying the periodic part as well as its wavelength, we can try to systematically investigate the applicability of homogenization on this type of problem. The load carrying capacity is the target parameter; deterministic solutions are compared to homogenized by this measure. We show that the load carrying capacity rapidly converges to the homogenized results as the wavelength decreases, proving that the homogenized solution gives a very accurate representation of the problem when real surface topographies are considered

  • 34.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Dasht, Johan
    Glavatskih, Sergei
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Marklund, Pär
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Persson, Lars-Erik
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Sahlin, Fredrik
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Homogenization of the Reynolds equation2005Report (Other academic)
  • 35.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Essel, Emmanuel Kwame
    Department of Mathematics and Statistics, University of Cape Coast.
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Multiscale homogenization of a class of nonlinear equations with applications in lubrication theory and applications2011In: Journal of Function Spaces and Applications, ISSN 0972-6802, E-ISSN 1758-4965, Vol. 9, no 1, 17-40 p.Article in journal (Refereed)
    Abstract [en]

    We prove a homogenization result for monotone operators by using the method of multiscale convergence. More precisely, we study the asymptotic behavior as epsilon -> 0 of the solutions u(epsilon) of the nonlinear equation div a(epsilon)(x, del u(epsilon)) = div b(epsilon), where both a(epsilon) and b(epsilon) oscillate rapidly on several microscopic scales and a(epsilon) satisfies certain continuity, monotonicity and boundedness conditions. This kind of problem has applications in hydrodynamic thin film lubrication where the bounding surfaces have roughness on several length scales. The homogenization result is obtained by extending the multiscale convergence method to the setting of Sobolev spaces W-0(1,p)(Omega), where 1 < p < infinity. In particular we give new proofs of some fundamental theorems concerning this convergence that were first obtained by Allaire and Briane for the case p = 2.

  • 36.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Essel, Emmanuel Kwame
    Fabricius, John
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Reiterated homogenization applied in hydrodynamic lubrication2008In: Proceedings of the Institution of mechanical engineers. Part J, journal of engineering tribology, ISSN 1350-6501, E-ISSN 2041-305X, Vol. 222, no 7, 827-841 p.Article in journal (Refereed)
    Abstract [en]

    This work is devoted to studying the combined effect that arises due to surface texture and surface roughness in hydrodynamic lubrication. An effective approach in tackling this problem is by using the theory of reiterated homogenization with three scales. In the numerical analysis of such problems, a very fine mesh is needed, suggesting some type of averaging. To this end, a general class of problems is studied that, e.g. includes the incompressible Reynolds problem in both artesian and cylindrical coordinate forms. To demonstrate the effectiveness of the method several numerical results are presented that clearly show the convergence of the deterministic solutions towards the homogenized solution.Moreover, the convergence of the friction force and the load carrying capacity of the lubricant film is also addressed in this paper. In conclusion, reiterated homogenization is a feasible mathematical tool that facilitates the analysis of this type of problem.

  • 37.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Essel, Emmanuel Kwame
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Reiterated homogenization of a nonlinear Reynolds-type equation2008Report (Other academic)
  • 38.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Essel, Emmanuel Kwame
    Department of Mathematics and Statistics, University of Cape Coast.
    Fabricius, John
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Variational bounds applied to unstationary hydrodynamic lubrication2008In: International Journal of Engineering Science, ISSN 0020-7225, E-ISSN 1879-2197, Vol. 46, no 9, 891-906 p.Article in journal (Refereed)
    Abstract [en]

    This paper is devoted to the effects of surface roughness in hydrodynamic lubrication. The numerical analysis of such problems requires a very fine mesh to resolve the surface roughness, hence it is often necessary to do some type of averaging. Previously, homogenization (a rigorous form of averaging) has been successfully applied to Reynolds type differential equations. More recently, the idea of finding upper and lower bounds on the effective behavior, obtained by homogenization, was applied for the first time in tribology. In these pioneering works, it has been assumed that only one surface is rough. In this paper we develop these results to include the unstationary case where both surfaces may be rough. More precisely, we first use multiple-scale expansion to obtain a homogenization result for a class of variational problems including the variational formulation associated with the unstationary Reynolds equation. Thereafter, we derive lower and upper bounds corresponding to the homogenized (averaged) variational problem. The bounds reduce the numerical analysis, in that one only needs to solve two smooth problems, i.e. no local scale has to be considered. Finally, we present several examples, where it is shown that the bounds can be used to estimate the effects of surface roughness with very high accuracy.

  • 39.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Essel, Emmanuel Kwame
    Persson, Lars-Erik
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Homogenization of the unstationary incompressible Reynolds equation2007In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 40, no 9, 1344-1350 p.Article in journal (Refereed)
    Abstract [en]

    This paper is devoted to the effects of surface roughness during hydrodynamic lubrication. In the numerical analysis a very fine mesh is needed to resolve the surface roughness, suggesting some type of averaging. A rigorous way to do this is to use the general theory of homogenization. In most works about the influence of surface roughness, it is assumed that only the stationary surface is rough. This means that the governing Reynolds type equation does not involve time. However, recently, homogenization was successfully applied to analyze a situation where both surfaces are rough and the lubricant is assumed to have constant bulk modulus. In this paper we will consider a case where both surfaces are assumed to be rough, but the lubricant is incompressible. It is also clearly demonstrated, in this case that homogenization is an efficient approach. Moreover, several numerical results are presented and compared with those corresponding to where a constant bulk modulus is assumed to govern the lubricant compressibility. In particular, the result shows a significant difference in the asymptotic behavior between the incompressible case and that with constant bulk modulus.

  • 40.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    A new approach for studying cavitation in lubrication2014In: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 136, no 1, 11706Article in journal (Refereed)
    Abstract [en]

    The underlying theory, in this paper, is based on clear physical arguments related to conservation of mass flow and considers both incompressible and compressible fluids. The result of the mathematical modeling is a system of equations with two unknowns, which are related to the hydrodynamic pressure and the degree of saturation of the fluid. Discretization of the system leads to a linear complementarity problem (LCP), which easily can be solved numerically with readily available standard methods and an implementation of a model problem in matlab code is made available for the reader of the paper. The model and the associated numerical solution method have significant advantages over today's most frequently used cavitation algorithms, which are based on Elrod-Adams pioneering work

  • 41.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Reynolds equation flow factor estimates by means of homogenization2010In: ASIATRIB 2010: Frontiers in tribology - knowledge & friendship . proceedings of the fourth Asia International Conference on Tribology, 5-9 December 2010, Perth, Western Australia, 2010, 185- p.Conference paper (Refereed)
  • 42.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Lundström, Staffan
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Flow in thin domains with a microstructure: Lubrication and thin porous media2017In: AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616, Vol. 1798, 020172Article in journal (Refereed)
    Abstract [en]

    This paper is devoted to homogenization of different models of flow in thin domains with a microstructure. The focus is on applications connected to the effect of surface roughness in full film lubrication, but a parallel to flow in thin porous media is also discussed. Mathematical models of such flows naturally include two small parameters. One is connected to the fluid film thickness and the other to the microstructure. The corresponding asymptotic analysis is a delicate problem, since the result depends on how fast the two small parameters tend to zero relative to each other. We give a review of the current status in this area and point out some future challenges.

  • 43.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Spencer, Andrew
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Similarities and differences between the flow factor method by Patir and Cheng and homogenization2011In: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 133, no 3, 031702-1 p.Article in journal (Refereed)
    Abstract [en]

    Different averaging techniques have proved to be useful for analyzing the effects of surface roughness in hydrodynamic lubrication. This paper compares two of these averaging techniques, namely the flow factor method by Patir and Cheng (P&C) and homogenization. It has been rigorously proved by many authors that the homogenization method provides a correct solution for arbitrary roughness. In this work it is shown that the two methods coincide if and only if the roughness exhibits certain symmetries. Hence, homogenization is always the preferred method.

  • 44.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Homogenization of a Reynolds equation describing compressible flow2011Report (Other academic)
  • 45.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Homogenization of a Reynolds equation describing compressible flow2012In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 390, no 2, 456-471 p.Article in journal (Refereed)
    Abstract [en]

    We homogenize a Reynolds equation with rapidly oscillating film thickness function hε, assuming a constant compressiblity factor in the pressure-density relation. The oscillations are due to roughness on the bounding surfaces of the fluid film. As shown by previous studies, homogenization is an effective approach for analyzing the effects of surface roughness in hydrodynamic lubrication. By two-scale convergence theory we obtain the limit problem (homogenized equation) and strong convergence in L2 for the unknown density ρε. By adding a small corrector term we also obtain strong convergence in the Sobolev norm.

  • 46.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Glavatskih, Sergei
    Larsson, Roland
    Marklund, Pär
    Sahlin, Fredrik
    Dasht, Johan
    Persson, Lars-Erik
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Homogenization of Reynolds equation2005Report (Other academic)
  • 47.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Hardell, Jens
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Prakash, Braham
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Selected papers from those presented at the 3rd International Tribology Symposium of IFToMM2014In: Lubrication Science, ISSN 0954-0075, E-ISSN 1557-6833, Vol. 26, no 5, 273-275 p.Article in journal (Refereed)
  • 48. Almqvist, Andreas
    et al.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    The effect of two-sided roughness in rolling/sliding EHL line contacts2004In: Transient processes in tribology: proceedings of the 30th Leeds-Lyon Symposium on Tribology / [ed] Gerard Dalmaz, Amstersam: Elsevier, 2004Conference paper (Refereed)
    Abstract [en]

    In most theoretical studies carried out to date on the effect of surface roughness in elastohydrodynamic lubrication (EHL) one surface is considered smooth and one as being rough. In real tribological contacts however, both surfaces normally have similar roughness heights. When modelling a rolling contact it is possible to simply sum the roughness of the two contact surfaces but in a sliding EHL contact, a continuously changing effective surface roughness occurs. The aim of this work was to investigate the influence of elementary surface features such as dents and ridges on the film thickness and pressure. This was done numerically using transient non-Newtonian simulations of an EHL line contact using a coupled smoother combined with a multilevel technique. Four different "overtaking" phenomena were investigated; ridge-ridge, dent-ridge, ridge-dent, and dent-dent. It was shown that the minimum film-thickness produced by a ridge is further reduced in a dent-ridge overtaking event. The squeeze effect seen in the ridge-ridge case resulted in large deformations and film-thickness heights comparable to the corresponding smooth case just before the overtaking event occurred. These local effects arising from simulating two-sided roughness were compared to simulations using a traditional "one-sided rough surface contacting a perfectly smooth surface.".

  • 49. Almqvist, Andreas
    et al.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Sahlin, Fredrik
    Development of a lubrication simulation model2009In: Svenska mekanikdagarna: Södertälje 2009, Stockholm: Svenska nationalkommittén för mekanik , 2009, 74- p.Conference paper (Other academic)
  • 50. Almqvist, Andreas
    et al.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    The homogenization process of the time dependent Reynolds equation describing compressible liquid flow2006Report (Other academic)
1234567 1 - 50 of 1555
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf