Change search
Refine search result
1234567 1 - 50 of 729
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Oldest first
  • Newest first
Select all
  • 1.
    Abbasi, Saeed
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Nanostructured particles in/outside compartment of running train, an on board measurement2013Report (Other academic)
  • 2.
    Abbasi, Saeed
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Non-exhaust Nano particle emission in Rail traffic2010Conference paper (Refereed)
  • 3.
    Abbasi, Saeed
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Towards elimination of airborne particles from rail traffic2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Since the investigation of wear particles from rail transport started in the late 1910s, the high mass concentrations of these particles have prompted concern among researchers interested in air quality. However, effective action has yet to be taken because relevant knowledge is still missing. This thesis provides knowledge of airborne wear particles originating from rail transport. Some aspects of their characteristic parameters, such as size, mass concentration, number concentration, and morphology, were investigated in the field and in laboratory tests. We also discuss means to mitigate non-exhaust emissions, as well as the advantages and disadvantages of various test set-ups in the seven appended journal papers:Paper A reviews recent studies of exhaust and non-exhaust emissions from rail vehicles. The results, measurements, adverse health effects, and proposed or applied solutions presented in this literature are summarized in this paper.Paper B summarizes the results of field tests we conducted. The effects of curve negotiation and braking under different real conditions were investigated in a field test in which on-board measurements were made. The elemental composition and morphology of the particles emitted and their potential sources were also investigated.Paper C describes how a pin-on-disc machine can be used to reproduce real operating conditions during mechanical train braking in a controlled laboratory setting. The results were validated by comparing the field test results with the results of laboratory studies.Paper D presents comprehensive results of laboratory studies of airborne particles from different braking materials. A new index is introduced in this paper, which can be used as a quantitative metric for assessing airborne wear particle emission rates.Paper E describes the effects of using various friction modifiers and lubricants on the characteristics of airborne particles from wheel–rail contact under lubricated and unlubricated conditions.Paper F reports work to simulate thermoelastic instability in the cast-iron braking material. We simulated the fluctuation of the flash temperature by considering the temperature dependency of the material properties and the transformation of the contact state due to thermomechanical phenomena and wear.Paper G reviews new full- and sub-scale measurements of non-exhaust emissions from ground transport. The advantages and disadvantages of on-board measurements, pin-on-disc tests, dynamometer tests, and test rig studies are discussed in this paper.

  • 4.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Ekstrand-Hammarström, Barbara
    Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI),.
    Bergström, Ulrika
    Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI),.
    Bucht, Anders
    Deptartment of Public Health and Clinical Medicine, Umeå University Hospital, Umeå, 901 89, Sweden.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Jansson, Anders
    Department of Applied Environmental Science, Stockholm University, Stockholm, 106 91, Sweden.
    Biological response in lung cells by brake dust from a novel set-up to generate one sourcewear particles2013Conference paper (Refereed)
  • 5.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Jansson, Anders
    Stockholm University, Applied Environmental Science, Stockholm, Sweden.
    Olander, Lars
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Services Engineering.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A pin-on-disc study of the rate of airborne wear particle emissions from railway braking materials2012In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 284, 18-29 p.Article in journal (Refereed)
    Abstract [en]

    The current study investigates the characteristics of particles generated from the wear of braking materials, and provides an applicable index for measuring and comparing wear particle emissions. A pin-on-disc tribometer equipped with particle measurement instruments was used. The number concentration, size, morphology, and mass concentration of generated particles were investigated and reported for particles 10 nm-32 mu m in diameter. The particles were also collected on filters and investigated using EDS and SEM. The effects of wear mechanisms on particle morphology and changes in particle concentration are discussed. A new index, the airborne wear particle emission rate (AWPER), is suggested that could be used in legislation to control non-exhaust emissions from transport modes, particularly rail transport.

  • 6.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Jansson, Anders
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Particle emissions from rail traffic: a literature review2013In: Critical reviews in environmental science and technology, ISSN 1064-3389, E-ISSN 1547-6537, Vol. 43, no 23, 2211-2244 p.Article, review/survey (Refereed)
    Abstract [en]

    Particle emissions are a drawback of rail transport. This work is a comprehensive presentation of recent research into particle emissions from rail vehicles. Both exhaust and non-exhaust particle emissions are considered when examining particle characteristics such as  PM10, and PM2.5 concentration levels, size, morphology, composition, as well as adverse health effects, current legislation, and available and proposed solutions for reducing such emissions. High concentration levels in enclosed rail traffic environments are reported and some toxic effects of the particles. We find that only a few limited studies have examined the adverse health effects of non-exhaust particle emissions and that no relevant legislation exists. Thus further research in this area is warranted.

  • 7.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olander, Lars
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Services Engineering.
    Larsson, Christina
    Bombardier Transportation Sweden AB, Västerås, Sweden.
    Jansson, Anders
    Stockholm University, Applied Environmental Science, Stockholm, Sweden.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A field test study of airborne wear particles from a running regional train2012In: IMechE, Part F: Journal of Rail and Rapid Transit, ISSN 0954-4097, Vol. 226, no 1, 95-109 p.Article in journal (Refereed)
    Abstract [en]

    Inhalable airborne particles have inverse health affect. In railways, mechanical brakes, the wheel–rail contact, current collectors, ballast, sleepers, and masonry structures yield particulate matter. Field tests examined a Swedish track using a train instrumented with particle measurement devices, brake pad temperature sensors, and speed and brake sensors. The main objective of this field test was to study the characteristics of particles generated from disc brakes on a running train with an on-board measuring set-up.

    Two airborne particle sampling points were designated, one near a pad–rotor disc brake contact and a second under the frame, not near a mechanical brake or the wheel–rail contact; the numbers and size distributions of the particles detected were registered and evaluated under various conditions (e.g. activating/deactivating electrical brakes or negotiating curves). During braking, three speed/temperature-dependent particle peaks were identified in the fine region, representing particles 280 nm, 350 nm, and 600 nm in diameter. In the coarse region, a peak was discerned for particles 3–6 μm in diameter. Effects of brake pad temperature on particle size distribution were also investigated. Results indicate that the 280 nm peak increased with increasing temperature, and that electrical braking significantly reduced airborne particle numbers. FESEM images captured particles sizing down to 50 nm. The ICP-MS results indicated that Fe, Cu, Zn, Al, Ca, and Mg were the main elements constituting the particles.

     

  • 8.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Experiences of measuring airborne wear particles from braking materials and wheel-rail contact2012Conference paper (Refereed)
    Abstract [en]

    During braking both of the discs and pads of disc brakes are worn. Since disc brakes are not sealed, some of the generated wear particles can become airborne.  Wheel-rail is also subjected to wear process during braking as well as normal running. They also contribute to generate airborne particles. Several studies have found an association between adverse health effects and the concentration of particles in the atmosphere, so it is of interest to improve our knowledge of the airborne wear particles generated by disc brakes.

    The present work includes results from full scale testing of rail vehicles. Particle size distribution, morphology and elemental contents are presented and discussed for different combinations of disc and pad materials. Due to high back ground concentration levels in field tests, dedicated laboratory test set ups on a reduced scale were designed and utilized for airborne particle studies with zero background level.

    Promising correlation between field test and the lab set up is identified. Different ways of using this test set up for evaluating how the composition of the airborne particles is classified with respect to their health effects are discussed. Furthermore, different ways of using the proposed method to rank and to quantify airborne particle emission factors are presented.

  • 9.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A study of friction modifiers on airborne wear particles from wheel-rail contact2012Conference paper (Refereed)
    Abstract [en]

    Wheel-rail contact and its wear process are crucial issues in maintenance and operating of rolling stocks. During wheel-rail contact, materials in mating faces are worn off and some of them transferred to airborne particles. Eventhough the wear process in wheel-rail contact are well-known, few studies have been conducted on the airborne particles from wheel-rail contact.

    The purpose of this study is to investigate the effect of using different friction modifier on the amount of airbotne particles from wheel-rail contact in a laboratory simulation. In this regard, a series laboratory tests were used by using round head pin (R=25mm) and dead weight 40 N in a pin-on-disc machine. This set-up simulates a contact pressure around 750 MPa on the pin head.

    The amount of airborne particles and their characteristics were investigated in dry-contact, and non-dry contacts whereas a lubricant, Binol rail 510 and a friction modifier, tramsilence were used. According to the results, the effects of using Binol rail to reduce the amount of airborne particles were considerable.

  • 10.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Lack of applicable criteria in non-exhaust emission legislation: AWPER index a practical solution2011Conference paper (Refereed)
  • 11.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Airborne wear particles from train traffic2010Conference paper (Refereed)
  • 12.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olander, Lars
    A field investigation of the size and morphology and chemical composition of airborne particles in rail transport2010Conference paper (Refereed)
  • 13.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olander, Lars
    Larsson, christina
    A field investigation of the size, morphology and chemical composition of airborne particles in rail transport2010Conference paper (Refereed)
    Abstract [en]

    The health effects of inhalable airborne particles are well documented. In the European Union the European Council mandates that the level of airborne particles with a diameter smaller than 10 µm (PM10) must not exceed an annual average of 40 µg/m3. Examples of possible sources from rail transport are mechanical brakes, wheel rail contact, current collectors, ballast, sleepers and masonry structures. In this regard, a series of field tests have been conducted on a regular Swedish track using a regional train instrumented with: particle measurement devices, temperature sensors in brake pads and sensors to measure the magnitude of train speed and a GPS.

    Two sampling points for airborne particles were designated in the train under frame. One of the sampling points was near a pad to rotor disc brake contact and a second global sampling point was chosen under the frame, but not near a mechanical brake or the wheel-rail contact. The first one was highly influenced by brake pad wear debris and the other one was influenced by all of the brake pads, wheel and rail wear debris as well as re-suspension. In each sampling points, three tubes were linked to three particle measurement devices. Two sets of Ptrak, Dustrak and Grimm devices were used. The Ptrak 8525 was an optical particle measurement device which could measure particle diameter in the size interval of 20 nm up to 1 micrometer. The Dustrak was used to measure particle mass concentration. The Grimm 1.109 was an aerosol spectrometer which counted number of particles from 0.25 micrometer to 32 micrometer in 31 intervals. These two Grimm devices were equipped with Millipore filters in the devices outlets to capture particles for further studies on morphology and matter of particles.

    The total number and size distribution of the particles for these two sampling points were registered and evaluated in different situations such as activating and deactivating electrical brake or train curve negotiating.

    During braking, three peaks of 250 nm, 350 nm and 600 nm in diameter, with the 350 nm peak dominating were identified in the fine particle region. In the coarse particle region, a peak of around 3-6 µm in diameter was discovered. The brake pad temperature effects on particle size distribution were also investigated and the results showed that the peak around 250 nm increased. Furthermore, the activation of electrical braking significantly reduced the number of airborne particles.

    A SEM was used to capture the images from collected particles on filters. Furthermore, an ICP-Ms method was used to investigate the elemental contents of the particulates on the filter.  In this case the main contribution belonged to Fe, Si, Al, Ca, Cu, Zn. The higher amount of some elements weights such as calcium, silicon, sodium and aluminum in the global sampling point filters revealed that ballast and concrete sleepers were the main sources for these particles although some of them originated from rail, wheel, brake disc and brake pad as well.

  • 14.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Tritscher, Trosten
    TSI.
    Krinke, Thomas
    TSI.
    On-board study of nano- and micrometer-particle characteristics of a running electric train2013Conference paper (Refereed)
  • 15.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Zhu, Yi
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Pin-on-disc study of the effects of railway friction modifiers on airborne wear particles from wheel-rail contact2013In: Tribology International, ISSN 0301-679X, Vol. 60, 136-139 p.Article in journal (Refereed)
    Abstract [en]

    Knowledge of wheel–rail interaction is crucial to wheel and rail maintenance. In this interaction, some of theworn-off material is transformed into airborne particles. Although such wear is well understood, few studiestreat the particles generated. We investigated friction modifiers' effects on airborne particles characteristicsgenerated in wheel-rail contacts in laboratory conditions. Pin-on-disc machine testing with a round-head pinloaded by a dead weight load 40 N simulated maximum contact pressure over 550 MPa. Airborne particlecharacteristics were investigated in dry contacts and in ones lubricated with biodegradable rail grease andwater- and oil-based friction modifiers. The number of particles declined with the grease; the number ofultrafine particles increased with the water-based friction modifier, mainly due to water vaporization.

  • 16.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Particle emission from rail vehicles: A literature review2012In: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Sage Publications, 2012Conference paper (Refereed)
    Abstract [en]

    Emission of airborne particles is a side effect from rail transport. This work reviews recent research on particle emissions from rail vehicles. Both exhaust and non-exhaust particle emissions are characterized by size, morphology, composition, and size distribution. Current legislation, knowledge of adverse health effects, and available and proposed solutions for emission reductions are also treated. There has been much focus on exhaust emissions, but only a few limited studies have investigated non-exhaust particle emissions, which contain a significant amount of metallic materials. A new method for measuring the airborne wear particle emission rate (AWPER) is proposed as a first step to guide new legislations and to focus further research on non-exhaust airborne emission, i.e., research on the generation mechanisms for particle emissions and their adverse health effects.

  • 17.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Technical note: Experiences of studying airborne wear particles from road and rail transport2013In: Aerosol and Air Quality Research, ISSN 1680-8584, Vol. 13, no 4, 1161-1169 p.Article in journal (Refereed)
    Abstract [en]

    Airborne particles and their adverse effects on air quality have been recognized by humans since ancient times. Current exhaust emission legislations increase the relative contribution of wear particles on the PM levels. Consequently, wearbased particle emissions from rail and road transport have raised concerns as ground transportation is developing quickly. Although scientific research on airborne wear-based particles started in 1909, there is almost no legislation that control the generation of wear-based particles. In addition, there is no accepted and approved standard measurement technique for monitoring and recording particle characteristics. The main objective of this study is to review recent experimental work in this field and to discuss their set-ups, the sampling methods, the results, and their limitations, and to propose measures for reducing these limitations.

  • 18.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Teimourimanesh, Shahab
    Chalmers.
    Vernersson, Tore
    Chalmers.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Lunden, Roger
    Chalmers.
    Temperature and thermo-elastic instability of tread braking friction materials2012Conference paper (Refereed)
  • 19.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. Department of Mechanical engineering, Golpayegan University of Technology.
    Teimourimanesh, Shahab
    Chalmers.
    Vernersson, Tore
    Chalmers.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Lunden, Roger
    Chalmers.
    Temperature and Thermoelastic Instability at Tread Braking Using Cast Iron Friction Material2013In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 314, no 1–2, 171-180 p.Article in journal (Refereed)
    Abstract [en]

    Braking events in railway traffic often induce high frictional heating and thermoelastic instability (TEI) at the interfacing surfaces. In the present paper, two approaches are adopted to analyse the thermomechanical interaction in a pin-on-disc experimental study of railway braking materials. In a first part, the thermal problem is studied to find the heat partitioning between pin and disc motivated by the fact that wear mechanisms can be explained with a better understanding of the prevailing thermal conditions. The numerical model is calibrated using the experimental results. In a second part, the frictionally induced thermoelastic instabilities at the pin-disc contact are studied using a numerical method and comparing them with the phenomena observed in the experiments. The effects of temperature on material properties and on material wear are considered. It is found from the thermal analysis that the pin temperature and the heat flux to the pin increase with increasing disc temperatures up to a transition stage. This agrees with the behaviour found in the experiments. Furthermore, the thermoelastic analysis displays calculated pressure and the temperature distributions at the contact interface that are in agreement with the hot spot behaviour observed in the experiments.

  • 20.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olander, Lars
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Services Engineering.
    Larsson, Christina
    Bombardier Transportation Sweden AB, Västerås, Sweden.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A study of airborne wear particles generated from organic railway brake pads and brake discs2011In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 273, no 1, 93-99 p.Article in journal (Refereed)
    Abstract [en]

    Brake pads on wheel-mounted disc brakes are often used in rail transport due to their good thermal properties and robustness. During braking, both the disc and the pads are worn. This wear process generates particles that may become airborne and thus affect human health. The long term purpose of ‘Airborne particles in Rail transport’ project is to gain knowledge on the wear mechanisms in order to find means of controlling the number and size distribution of airborne particles. In this regard, a series of full-scale field tests and laboratory tests with a pin-on-disc machine have been conducted. The morphology and the matter of particles, along with their size distribution and concentration, have been studied. The validity of results from the pin-on-disc simulation has been verified by the field test results. Results show an ultra-fine peak for particles with a diameter size around 100 nm in diameter, a dominant fine peak for particles with a size of around 350 nm in diameter, and a coarse peak with a size of 3-7 μm in diameter. Materials such as iron, copper, aluminium, chromium, cobalt, antimony, and zinc have been detected in the nano-sized particles.

  • 21.
    Abu Baker Karim, Aria
    et al.
    Örebro University, School of Science and Technology, Örebro University, Sweden.
    Schnelzer, Anna
    Örebro University, School of Science and Technology, Örebro University, Sweden.
    Optimering av glidlager och utveckling av dess konstruktion2012Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    We have in this project become engrossed in a plain bearing design that is located in a screw press. The screw press compact an unknown mass that is confidential. Robustus have a suggestion to over dimensioning the present plain bearing. The aim of this project was to analyze and to do an optimization on some plain bearings and compare them to the present bearing and to take the choice of material and the environment where the bearing is located into account. The analysis and the optimizations showed that the current plain bearing had the best geometry but not the optimal material selection. The project is in an early state and it needs some geometrical changes. The most important of everything is that the problem has been identified with the help of the wrecked plain bearing and with an excel model.

  • 22.
    Ainegren, Mats
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Carlsson, Peter
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    Tinnsten, Mats
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
    A portable roller ski rolling resistance measurement system2013In: The Impact of Technology on Sport V: Procedia Engineering / [ed] Subic A, Fuss FK, Clifton P, Chan KM., Elsevier, 2013, 79-83 p.Conference paper (Refereed)
    Abstract [en]

    Roller skis are used by cross-country skiers, biathletes and ski-orienteers for their snow-free training and in roller ski competitions. Additionally, much of the current sports research into the physiology and biomechanics of crosscountry skiing is conducted indoors on treadmills using roller skis. For elite athletes, the differences in performance are quite small, thus emphasising the importance of knowing the roller skis' rolling resistance coefficient, especially in connection to research and roller ski competitions. The purpose of this study was to develop a roller ski rolling resistance measurement system (P-RRMS) that is portable and therefore useful in different contexts and locations. The P-RRMS was designed as a small treadmill, equipped with roller ski stabilizing lateral supports and a screwed bar for applying different vertical loads on the roller ski. The design uses only one force sensor, with possible measurements of three directions of force and torque around three axes. The weight of the P-RRMS is 100 kg and it is equipped with wheels to facilitate transportation.

  • 23.
    Aiso, Toshiharu
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Wiklund, Urban
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Kubota, Manabu
    Nippon Steel & Sumitomo Metal Corporation.
    Jacobson, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Influence of Mn and Al additions to carbon steel on material transfer and coating damage mechanism in a sliding contact between steel and TiN coated HSS tool2016In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 101, 414-424 p.Article in journal (Refereed)
    Abstract [en]

    A crossed cylinders sliding test, simulating the contact between the chip and the cutting tool, is used to evaluate material transfer, friction characteristics and coating damage of a TiN coated high speed steel against specifically designed model steels. These steels include one reference with C as the only alloy element (Base steel), and two alloyed also with 1 mass% Mn or Al. When sliding against the Base steel, an Fe–O layer forms on the coating and protects it from wear. Against the Mn alloyed steel, Fe–Mn–O forms, which has no protective effect. Against the Al alloyed steel, an almost pure Al–O layer forms. This leads to the highest friction, rapidly causing substrate softening and coating fracture.

  • 24. Alemani, Mattia
    et al.
    Nosko, Oleksii
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Metinoz, Ibrahim
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A study on emission of airborne wear particles from car brake friction pairs2015In: SAE International Journal of Materials & Manufacturing, ISSN 1946-3979, E-ISSN 1946-3987, Vol. 9, no 1, 147-157 p., 2015-01-2665Article in journal (Refereed)
    Abstract [en]

    The emission of airborne wear particles from friction material / cast iron pairs used in car brakes was investigated, paying special attention to the influence of temperature. Five low-metallic materials and one non-asbestos organic material were tested using a pin-on-disc machine. The machine was placed in a sealed chamber to allow airborne particle collection. The concentration and size distribution of 0.0056 to 10 μm particles were obtained by a fast mobility particle sizer and an optical particle sizer. The temperature was measured by a thermocouple installed in the disc. The experiments show that as the temperature increases from 100 to 300 °C the emission of ultrafine particles intensifies while that of coarse particles decreases. There is a critical temperature at which the ultrafine particle emission rate rises stepwise by 4 to 6 orders of magnitude. For the friction pairs investigated, the critical temperature was found to be between 165 and 190 °C. Below the critical temperature, fine particles outnumber coarse and ultrafine particles, although coarse particles make up the bulk of the particulate matter mass. The friction pairs differ in the ultrafine particle emission rate by 1 to 2 orders of magnitude. Above the critical temperature, ultrafine particles constitute almost 100% of the total particle number and their relative mass contribution can exceed 50%. Analysis of the particle size distributions revealed peaks at 0.19-0.29, 0.9 and 1.7 μm. Above the critical temperature, one more peak appears in the ultrafine particle range at 0.011-0.034 μm.

  • 25. Alemani, Mattia
    et al.
    Perricone, Guido
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Söderberg, Anders
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Ciotti, Alessandro
    A proposed dyno bench test cycle to study particle emissions from disc brakes2014Conference paper (Refereed)
  • 26.
    Alfredsson, Bo
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Nordin, E.
    An Elastic-Plastic Model for Single Shot-Peening Impacts2013In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 52, no 2, 231-251 p.Article in journal (Refereed)
    Abstract [en]

    A model was developed for impacts of elastic perfectly plastic spherical particles with impact velocities up to 250 m/s. The model is based on the two master curves, for normalized pressure and projected contact area c (2), which both are functions of the representative strain I > at maximum impact. The model and its parameters were fitted to finite element results for elastic perfectly plastic and strain rate-independent materials. It was applied to a wide range of materials with different ratio between yield stress and elastic properties, different ball sizes and impact velocities. The impact model predicted the results from finite element method for contact radius, maximum impact depth in both target and ball as well as remaining impact depth in target and ball. The remaining impact depth was determined from elastic spring back with Hertzian and quadratic pressure at maximum impact. The rebound velocity was also estimated by following the load-deformation path during spring back. If the strain rate-compensated yield stress was used for the master curve parameters, then the model predicted the impact results also for the investigated strain rate-dependent materials.

  • 27.
    Almeida, Nuno A.F.
    et al.
    Mechanical Engineering Department & TEMA, University of Aveiro, Campus Universitário de Santiago.
    Rodrigues, Joana
    Physics Department & I3N, University of Aveiro, Campus Universitário de Santiago.
    Silva, Patricia
    Mechanical Engineering Department & TEMA, University of Aveiro, Campus Universitário de Santiago.
    Emami, Nazanin
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Soares, Manuel J.
    Physics Department & I3N, University of Aveiro, Campus Universitário de Santiago.
    Monteiro, Teresa
    Physics Department & I3N, University of Aveiro, Campus Universitário de Santiago.
    Lopes-da-Silva, José A.
    Chemistry Department & QOPNA, University of Aveiro, Campus Universitário de Santiago.
    Marques, Paula A.A.P.
    Mechanical Engineering Department & TEMA, University of Aveiro, Campus Universitário de Santiago.
    Pressure dependent luminescence in titanium dioxide particles modified with europium ions2016In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 234, 137-144 p.Article in journal (Refereed)
    Abstract [en]

    Particles of titanium dioxide were prepared in the presence of europium ions (TiO2:Eu) by a solvothermal method and thermal annealed in air at 500 °C. The spectroscopic properties of TiO2:Eu particles were analyzed indicating that the Eu3+ ions are likely distributed at the surface or near the surface of the titanium dioxide particles. The photoluminescence analysis showed that the intraionic emission was strongly sensitive to reduced pressure conditions, as seen by its absence under vacuum conditions. The ion emission was re-established as soon as the atmosphere was restored. Additionally, the ion integrated emission intensity follows a linearly dependence with pressure in the range of 150 to 800 mbar revealing a high sensitivity to small variations in pressure, which is an unprecedented result. This innovation will allow the study of new technologies in the area of low vacuum sensors where TiO2:Eu may act as the active element of an optical sensor for a pressure device.

  • 28.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    A new approach for studying cavitation in lubrication2014In: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 136, no 1, 11706Article in journal (Refereed)
    Abstract [en]

    The underlying theory, in this paper, is based on clear physical arguments related to conservation of mass flow and considers both incompressible and compressible fluids. The result of the mathematical modeling is a system of equations with two unknowns, which are related to the hydrodynamic pressure and the degree of saturation of the fluid. Discretization of the system leads to a linear complementarity problem (LCP), which easily can be solved numerically with readily available standard methods and an implementation of a model problem in matlab code is made available for the reader of the paper. The model and the associated numerical solution method have significant advantages over today's most frequently used cavitation algorithms, which are based on Elrod-Adams pioneering work

  • 29.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Lundström, Staffan
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Flow in thin domains with a microstructure: Lubrication and thin porous media2017In: AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616, Vol. 1798, 020172Article in journal (Refereed)
    Abstract [en]

    This paper is devoted to homogenization of different models of flow in thin domains with a microstructure. The focus is on applications connected to the effect of surface roughness in full film lubrication, but a parallel to flow in thin porous media is also discussed. Mathematical models of such flows naturally include two small parameters. One is connected to the fluid film thickness and the other to the microstructure. The corresponding asymptotic analysis is a delicate problem, since the result depends on how fast the two small parameters tend to zero relative to each other. We give a review of the current status in this area and point out some future challenges.

  • 30.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Fabricius, John
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Homogenization of a Reynolds equation describing compressible flow2012In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 390, no 2, 456-471 p.Article in journal (Refereed)
    Abstract [en]

    We homogenize a Reynolds equation with rapidly oscillating film thickness function hε, assuming a constant compressiblity factor in the pressure-density relation. The oscillations are due to roughness on the bounding surfaces of the fluid film. As shown by previous studies, homogenization is an effective approach for analyzing the effects of surface roughness in hydrodynamic lubrication. By two-scale convergence theory we obtain the limit problem (homogenized equation) and strong convergence in L2 for the unknown density ρε. By adding a small corrector term we also obtain strong convergence in the Sobolev norm.

  • 31.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Hardell, Jens
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Prakash, Braham
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Selected papers from those presented at the 3rd International Tribology Symposium of IFToMM2014In: Lubrication Science, ISSN 0954-0075, E-ISSN 1557-6833, Vol. 26, no 5, 273-275 p.Article in journal (Refereed)
  • 32. Almqvist, Andreas
    et al.
    Sahlin, Fredrik
    Larsson, Roland
    Glavatskikh, Sergei
    Luleå University of Technology, Division of Machine Elements.
    On the dry elasto-plastic contact of nominally flat surfaces2007In: Tribology International, ISSN 0301-679X, Vol. 40, no 4, 574-579 p.Article in journal (Refereed)
    Abstract [en]

    A model to be used for numerical simulation of the contact of linear elastic perfectly plastic rough surfaces was developed. Energy dissipation due to plastic deformation is taken into account. Spectral theory and an FFT-techique are used to facilitate the numerical solution process. Results of simulations using four two-dimensional profiles with different topographies in contact with a rigid plane for a number loads are reported. From the results it is clear that the real area of contact (Ar) changes almost linearly with load and is only slightly affected by the difference in topography. A plasticity index is defined as the ratio of plastically deformed area (Ap) and Ar. Plastic deformation occurs even at low loads and there is a significant difference in plasticity index between the surface profiles considered. An investigation on how the spectral content of the surface profile influences the results presented is also performed. This is to ensure that the metrological limitations of the optical profilerused to measure the surfaces do not have a significant influence. It is concluded that the highest frequencies of the measured profile have a negligible influence on the real area of contact.

  • 33.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Modelling cavitation in (elasto)hydrodynamic lubrication2016In: Advances in tribology / [ed] Pranav H. Darji, Croatia: INTECH, 2016, 198-213 p.Chapter in book (Refereed)
    Abstract [en]

    In this chapter we will present a derivation of a mathematical model describing how cavitation influences the pressure distribution in a thin lubricant film between two moving surfaces. The main idea in the derivation is to first describe the influence of cavitation on the mass flow and thereafter using a conservation law for the mass. This leads to a nonlinear system with two complementary variables: one is the pressure distribution and the other is related to the density, i.e. a nonlinear complementarity problem (NLCP). The proposed approach is used to derive a mass conserving cavitation model considering that density, viscosity and film thickness of the lubricant depend on the pressure. To demonstrate the applicability and evaluate the proposed model and the suggested numerical implementation, a few model problems are analysed and presented.

  • 34.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Homogenization of the Reynolds equation2013In: Encyclopedia of Tribology, Berlin: Springer-Verlag New York Inc. , 2013, 1685-1690 p.Chapter in book (Refereed)
  • 35.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    A new concept in cavitation modelling2013In: Tribo Lyon 2013: book of abstracts : a joint event of WTC 2013, Lyon, 2013, 170- p.Conference paper (Refereed)
  • 36.
    Alvarez-Asencio, Rubén
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Bettini, Eleonora
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Pan, Jinshan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Nanotribology and Microstructure of a CoCrMo Alloy: A TribologicalProperties Mapping StudyManuscript (preprint) (Other academic)
  • 37.
    Alvarez-Asencio, Rubén
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Pan, Jinshan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Thormann, Esben
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Tribological Properties Mapping: Local Variation in Friction Coefficient and Adhesion2013In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 50, no 3, 387-395 p.Article in journal (Refereed)
    Abstract [en]

    Tribological properties mapping is a new technique that extracts friction coefficient and adhesion maps obtained from lateral atomic force microscope (LAFM) images. By imaging the surface systematically as a function of load, a series of images can be tiled, and pixelwise fitted to a modified Amontons' Law to obtain friction coefficient and adhesion maps. This removes the ambiguity of friction contrast in LAFM imaging which can be a function of the load used for imaging. In ambient laboratory, air and tetradecane, a sample of Vancron(A (R))40, commercial powder metallurgical tool alloy containing nitrogen, have been scanned using a standard silicon cantilever in order to obtain tribological data. The tribological properties mapping provides unique information regarding the heterogeneous alloy microstructure as well as shedding light on the tribological behavior of the alloy.

  • 38.
    Alvarez-Asencio, Rubén
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Sabibi, Majid
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Pan, Jinshan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Ejnermark, Sebastian
    Ekman, Lars
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Role of Microstructure on Pitting  Corrosion Initiation of an Experimental Tool Alloy: A Peak Force QNM Atomic Force Micrscopy StudyManuscript (preprint) (Other academic)
  • 39.
    Alvarez-Asencio, Rubén
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Wallqvist, Viveca
    Kjellin, Mikael
    Leungo, Gustavo
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Nordgren, Niklas
    Nanomechanical Properties of Human Skin Studies by AFM and a Novel Hair IndenterManuscript (preprint) (Other academic)
  • 40.
    Anderberg, Cecilia
    et al.
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Cabanettes, Frederic
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Dimkovski, Zlate
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Rosén, Bengt-Göran
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Liner Surface Improvements for Low Friction Piston Ring Packs2009In: Society of Tribologists and Lubrication Engineers annual meeting & exhibition 2009: Lake Buena Vista, Florida, USA, 17 - 21 May 2009, Red Hook, NY: Curran Associates, Inc., 2009, 455-459 p.Conference paper (Refereed)
  • 41.
    Andersson, Joel
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Modelling of wear and tribofilm growth2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Wear is a consequence of nature which becomes costly if uncontrolled. Basic wear protection is provided by lubrication which will decrease the severity of the contact between asperities. If the conditions of a contact are such that there can be no hydrodynamic lift off by the oil and most of the contact occurs in between such asperities, the protection is provided by chemically reacted layers, sometimes as thin as just a few nanometers.In such cases where wear is governed by the most basic wear mechanisms, analytical models and numerical simulation tools have been developed and used to predict the extent of wear. Few of these models concider the interplay between contact mechanics and wear mechanisms. Wear modelling must keep improving.The goal for this work is to examine the predictive efficiency of current models and initiate construction of reliable models for the chemical growth of wear reducing layers. To achieve this, numerical simulations of contact mechanics are used in Paper A to calculate the wear of contact surfaces and in Paper B as a basis for conditions of chemical growth.The contact mechanics model is based on a solution to Boussinesq’s problem applied to equations for the potential energy by Kalker. The method takes the contact’s surface topographies and substrate material properties as input and outputs elastic and plastic deformation, contact pressure and contact area. The numerical implementation is efficiently evaluated by means of FFT-accelerated techinques. The wear is usually treated as a linear function of contact pressure and in this case the Archard wear equation constitute a feasible approximation. This equation is implemented in the present contact mechanics model to approximately predict the extent of wear, in boundary lubricated contacts, by means of numerical simulations.The chemistry of lubricant additives is discussed. Using chemical theory for adsorption as by Arrhenius, the molecular perspective of antiwear additives is explored. Mechanical properties of tribochemical antiwear layers are taken into account in the developed method. The results in Paper A from wear simulations and comparison with an experiment shows the usefulness of wear equations of geometrical contact mechanics. The chemical model in Paper B for tribofilm growth is applied to rough surfaces allowing comparison of the synergy between contact mechanics and chemistry fordifferent surface contacts. The results show how tribofilms grow on rough or smooth surfaces. The model can be used to compare chemical acitivity for different surface designs.

  • 42.
    Andersson, Joel
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Almqvist, Andreas
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Grahn, Mattias
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Minami, Ichiro
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Semi-deterministic chemo-mechanical model of boundary lubrication2012In: Faraday discussions (Online), ISSN 1359-6640, E-ISSN 1364-5498, Vol. 156, 343-360 p.Article in journal (Refereed)
    Abstract [en]

    A model for tribofilm growth is developed. The model is used in combination with numerical contact mechanics tools to enable evaluation of the combined effects of chemistry and contact mechanics. The model is tuned with experimental data and is thereafter applied to rough surfaces. The growth of the tribofilm is evaluated for 3 different contact cases and short-term tribofilm growth behaviour is analyzed. The results show how tribofilms grow in patches. The model is expected to be used as a tool for analysis of the interaction between rough surfaces.

  • 43.
    Andersson, Martin
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Churning losses and efficiency in gearboxes2014Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Efficient transmissions systems are key to producing competitive motor vehicles that have a smaller environmental impact. Gears are the main components in vehicle transmissions and although they are already highly efficient, there is still room for improvement. In this study, the focus falls on the lubricant used to create separating films between gears and todissipate heat. When driving, the gears churn this lubricant, giving rise to power losses that are related to the amount and properties of the lubricant. However, any attempt to reduce these losses must not compromise the required lubrication and heat dissipation. Paper A reports on the use of an FZG gear test rig to investigate power losses and heat generation for different gear immersion depths, surface roughness and coatings. The results show that lower gear roughness reduces gear mesh losses and heat generation. A polishing affect was obtained when a non-coated gear ran against a coated gear.The aim of the research reported in paper B was to increase the accuracy of efficiency testing. It investigated how and whether repeated disassembly and re-assembly of the same test equipment, as well as test performance and rig conditions, affect the measured torque loss in an FZG gear test rig. It was shown that the measured torque loss changes between one assembly and another. Repeatability between tests is crucial for accurate conclusions.The aim of the research reported in paper C was to study whether gear efficiency could be increased by a running-in procedure, which would reduce the need for a coolant. A back-to-back gear test rig was used to test two running-in loads. Higher gear mesh efficiency was seen when a higher running-in load was used.

  • 44.
    Andersson, Martin
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    An experimental investigation of spur gear efficiency and temperature: A comparison between ground and superfinished surfaces2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis focuses on reliability when testing gear efficiency and on how gear mesh efficiency can be increased without detrimental effects on the gears. Test equipment commonly used in gear research was analysed to identify important parameters for gear efficiency testing. The effect of the bearing model's load-dependent losses on gear mesh efficiency was also investigated. Two different surface finishes of gears, ground and superfinished, were investigated to determine how two different load levels during running-in affect gear mesh efficiency and changes in surface roughness. Efficiency and gear temperature were also measured for ground and superfinished gears with dip lubrication, as well as two different forms of spray lubrication (before and after gear mesh contact).

    Tests on a gear test rig, showed that different assemblies of the same test setup can yield different measurements of torque loss. The applied bearing model had a significant effect on the estimated gear mesh efficiency. The mesh efficiency of ground gears is affected by the running-in procedure, with a higher running-in load resulting in a higher mesh efficiency than a lower load. This effect was not seen for superfinished gears, which show the same gear mesh efficiency for both running-in loads. Gearbox efficiency increased with spray lubrication rather than dip lubrication. The gear mesh efficiency increased, and thus gear temperatures were reduced, when superfinished gears were used rather than ground gears. A lower gear temperature was measured when gears were spray lubricated at the mesh inlet rather than the mesh outlet.

  • 45.
    Andersson, Martin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Björklund, Stefan
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    A study of the influence of gear surface roughness and immersion depth on gear efficiency and temperature2014In: Proceedings of the 16th Nordic Symposium on Tribology - NORDTRIB 2014, 2014, A 1-A 6 p.Conference paper (Refereed)
  • 46.
    Andersson, Martin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Sosa, Mario
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Efficiency and temperature of spur gears using spray lubrication compared to dip lubricationIn: Journal of Engineering TribologyArticle in journal (Refereed)
  • 47.
    Andersson, Martin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Sosa, Mario
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Efficiency and temperature of spray lubricated superfinished spur gearsArticle in journal (Refereed)
  • 48.
    Andersson, Martin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Sosa, Mario
    Sjöberg, Sören
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Effect of Assembly Errors in Back-to-Back Gear Efficiency Testing2014In: International Gear Conference 2014: 26th–28th August 2014, Lyon, Woodhead Publishing Limited, 2014, 784-793 p.Conference paper (Refereed)
    Abstract [en]

    As gear efficiency is improved in small steps, it is important to be able to distinguish actual improvements from scatter that can occur while testing. An FZG back-to-back gear test rig was used to investigate how the assembly and re-assembly of the same test setup affects the measurements. A spread in loss torque between one assembly and another of the same test setup were observed. Rig conditions also affected the spread in input torque. With knowledge of how the spread in loss torque varies due to assembly, test results could be distinguished between changes due to assembly and actual differences between tests.

  • 49.
    André, Benny
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Jacobson, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Comparisons between commercial low-friction coatings and emerging coating concepts in ball-on-disc tests – coefficient of friction, tribofilm formation and surface damage2008Conference paper (Refereed)
  • 50.
    Angserud, Jenny
    et al.
    Sandvik Mining.
    From, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Wallin, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Jacobson, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Norgren, Susanne
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    On a wear test for rock drill inserts2013Conference paper (Refereed)
    Abstract [en]

    In this work wear of cemented carbide rock drill inserts is evaluated by using a rotating rock cylinder as counter surface. The influence on wear rate and degradation mechanisms from varying dry and wet conditions, cemented carbide grade, abrasive particle type and size as well as load is studied. The used abrasive media are alumina and silica.

    Test results show high repeatability and the three tested cemented carbide grades can be differentiated, even though their relative difference in sample hardness is modest. The loads used, 100–200 N, are sufficiently high to cause fracture and wear of the granite rock. The degraded microstructure of inserts tested under wet and dry conditions as well as with added silica particles is similar to field worn inserts. Hence, the same wear mechanisms occur and the test successfully mimics rock drill wear. Typical insert wear includes cracking and fragmentation of WC grains, depletion of Co binder phase and adhered material originating from the rock.

    Tests under dry conditions always cause less measured wear than tests under wet conditions.

    Addition of alumina particles, which are harder than the used cemented carbide samples, causes a significant wear rate increase but does not provide wear similar to rock drilling.

1234567 1 - 50 of 729
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf