Change search
Refine search result
1234567 1 - 50 of 4904
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aaboud,
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for heavy long-lived multicharged particles in proton-proton collisions at root s=13 TeV using the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 052003Article in journal (Refereed)
    Abstract [en]

    A search for heavy long-lived multicharged particles is performed using the ATLAS detector at the LHC. Data with an integrated luminosity of 36.1 fb(-1) collected in 2015 and 2016 from proton-proton collisions at root s = 13 TeV are examined. Particles producing anomalously high ionization, consistent with long-lived massive particles with electric charges from vertical bar q vertical bar = 2e to vertical bar q vertical bar = 7e, are searched for. No events are observed, and 95% confidence level cross-section upper limits are interpreted as lower mass limits for a Drell-Yan production model. Multicharged particles with masses between 50 and 980-1220 GeV (depending on their electric charge) are excluded.

  • 2. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for pairs of highly collimated photon-jets in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 1, article id 012008Article in journal (Refereed)
    Abstract [en]

    Results of a search for the pair production of photon-jets-collimated groupings of photons-in the ATLAS detector at the Large Hadron Collider are reported. Highly collimated photon-jets can arise from the decay of new, highly boosted particles that can decay to multiple photons collimated enough to be identified in the electromagnetic calorimeter as a single, photonlike energy cluster. Data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.7 fb(-1), were collected in 2015 and 2016. Candidate photon-jet pair production events are selected from those containing two reconstructed photons using a set of identification criteria much less stringent than that typically used for the selection of photons, with additional criteria applied to provide improved sensitivity to photon-jets. Narrow excesses in the reconstructed diphoton mass spectra are searched for. The observed mass spectra are consistent with the Standard Model background expectation. The results are interpreted in the context of a model containing a new, high-mass scalar particle with narrow width, X, that decays into pairs of photon-jets via new, light particles, a. Upper limits are placed on the cross section times the product of branching ratios sigma x B(X -> aa) x B(a -> gamma gamma)(2) for 200 GeV < m(X) < 2 TeV and for ranges of m(a) from a lower mass of 100 MeV up to between 2 and 10 GeV, depending upon m(X). Upper limits are also placed on sigma x B(X -> aa) x B(a -> 3 pi(0))(2) for the same range of m(X) and for ranges of m(a) from a lower mass of 500 MeV up to between 2 and 10 GeV.

  • 3.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva.
    Search for new phenomena in high-mass diphoton final states using 37 fb−1 of proton–proton collisions collected at √s=13 TeV with the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 775, p. 105-125Article in journal (Refereed)
    Abstract [en]

    Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb−1 at a centre-of-mass energy √s=13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extra-dimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model

  • 4.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    University of Belgrade, Institute of Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Université Grenoble-Alpes, Laboratoire de Physique Subatomique et de Cosmologie.
    Maddocks, H.J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K
    DESY, Hamburg and Zeuthen.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    University of Washington, Department of Physics.
    Zwalinski, L.
    CERN, Geneva.
    Measurement of top quark pair differential cross sections in the dilepton channel in pp collisions at √s=7 and 8 TeV with ATLAS2016In: PHYSICAL REVIEW D, ISSN 2470-0010, Vol. 94, no 9, article id 092003Article in journal (Refereed)
    Abstract [en]

    Measurements of normalized differential cross sections of top quark pair (t¯t) production are presented as a function of the mass, the transverse momentum and the rapidity of the t¯t system in proton-proton collisions at center-of-mass energies of √s=7 and 8 TeV. The data set corresponds to an integrated luminosity of 4.6  fb−1 at 7 TeV and 20.2  fb−1 at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a b hadron. The measured distributions are corrected for detector effects and selection efficiency to cross sections at the parton level. The differential cross sections are compared with different Monte Carlo generators and theoretical calculations of t¯t production. The results are consistent with the majority of predictions in a wide kinematic range.

  • 5.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski,
    et al,
    Measurements of inclusive and differential fiducial cross-sections of t(t)over-bar production with additional heavy-flavour jets in proton-proton collisions at root s=13 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 046Article in journal (Refereed)
    Abstract [en]

    This paper presents measurements of tt (t) over bar production in association with additional b-jets in pp collisions at the LHC at a centre-of-mass energy of 13 TeV. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb(-1). Fiducial cross-section measurements are performed in the dilepton and lepton-plus-jets tt (t) over bar decay channels. Results are presented at particle level in the form of inclusive cross-sections of tt final states with three and four b-jets as well as differential cross-sections as a function of global event properties and properties of b-jet pairs. The measured inclusive fiducial cross-sections generally exceed the t (t) over barb (b) over bar predictions from various next-to-leading-order matrix element calculations matched to a parton shower but are compatible within the total uncertainties. The experimental uncertainties are smaller than the uncertainties in the predictions. Comparisons of state-of-the-art theoretical predictions with the differential measurements are shown and good agreement with data is found for most of them.

  • 6. Aaboud, M.
    et al.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Searches for third-generation scalar leptoquarks in s=13 TeV pp collisions with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 6, article id 144Article in journal (Refereed)
    Abstract [en]

    Limits are set on the pair production of scalar leptoquarks, where all possible decays of the leptoquark into a quark (t, b) and a lepton (, ) of the third generation are considered. The limits are presented as a function of the leptoquark mass and the branching ratio into charged leptons for up-type (LQ<sub ) and down-type (/t) leptoquarks. Many results are reinterpretations of previously published ATLAS searches. In all cases, LHC proton-proton collision data at a centre-of-mass energy of = 13 TeV recorded by the ATLAS detector in 2015 and 2016 are used, corresponding to an integrated luminosity of 36.1 fb(-1). Masses below 800 GeV are excluded for both LQu and LQd independently of the branching ratio, with masses below about 1 TeV being excluded for the limiting cases of branching ratios equal to zero or unity.

  • 7.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 048Article in journal (Refereed)
    Abstract [en]

    A measurement of the four-lepton invariant mass spectrum is made with the ATLAS detector, using an integrated luminosity of 36.1 fb(-1) of proton-proton collisions at root s = 13 TeV delivered by the Large Hadron Collider. The differential cross-section is measured for events containing two same-flavour opposite-sign lepton pairs. It exhibits a rich structure, with different mass regions dominated in the Standard Model by single Z boson production, Higgs boson production, and Z boson pair production, and non-negligible interference effects at high invariant masses. The measurement is compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. These calculations are used to interpret the data in terms of gg -> ZZ -> 4l and Z -> 4l subprocesses, and to place constraints on a possible contribution from physics beyond the Standard Model.

  • 8.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Search for Higgs boson pair production in the b(b)over-barWW* decay mode at root s=13 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 092Article in journal (Refereed)
    Abstract [en]

    A search for Higgs boson pair production in the bbWW decay mode is performed in the bb`qq fi nal state using 36.1 fb of proton-proton collision data at a centreof- mass energy of 13TeV recorded with the ATLAS detector at the Large Hadron Collider. No evidence of events beyond the background expectation is found. Upper limits on the non-resonant pp ! HH production cross section of 10 pb and on the resonant production cross section as a function of the HH invariant mass are obtained. Resonant production limits are set for scalar and spin-2 graviton hypotheses in the mass range 500 to 3000 GeV.

  • 9.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zmeskal, J.
    et al.,
    Cross-section measurements of the Higgs boson decaying into a pair of tau-leptons in proton-proton collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 7, article id 072001Article in journal (Refereed)
    Abstract [en]

    A measurement of production cross sections of the Higgs boson in proton-proton collisions is presented in the H -> tau tau decay channel. The analysis is performed using 36.1 fb(-1) of data recorded by the ATLAS experiment at the Large Hadron Collider at a center-of-mass energy of root s = 13 TeV. All combinations of leptonic (tau -> l v (v) over bar with l = e, mu) and hadronic (tau -> hadrons v) tau decays arc considered. The H -> tau tau signal over the expected background from other Standard Model processes is established with an observed (expected) significance of 4.4 (4.1) standard deviations. Combined with results obtained using data taken at 7 and 8 TeV center-of-mass energies, the observed (expected) significance amounts to 6.4 (5.4) standard deviations and constitutes an observation of H -> tau tau decays. Using the data taken at root s = 13 TeV, the total cross section in the H -> tau tau decay channel is measured to be 3.77(-0.59)(+0.60)(stat)(-0.74)(+0.87) (syst) pb, for a Higgs boson of mass 125 GeV assuming the relative contributions of its production modes as predicted by the Standard Model. Total cross sections in the H -> tau tau decay channel are determined separately for vector-boson-fusion production and gluon-gluon-fusion production to be sigma(VBF)(H -> tau tau) = 0.28 +/- 0.09 (stat)(-0.09)(+0.11) (syst) pb and sigma(ggF)(H -> tau tau) = 3.1 +/- 1.0 (stat)(-1.3)(+1.6) (syst) pb, respectively. Similarly, results of a fit are reported in the framework of simplified template cross sections. All measurements are in agreement with Standard Model expectations.

  • 10.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 2, article id 120Article in journal (Refereed)
    Abstract [en]

    This paper describes a strategy for a general search used by the ATLAS Collaboration to find potential indications of new physics. Events are classified according to their final state into many event classes. For each event class an automated search algorithm tests whether the data are compatible with the Monte Carlo simulated expectation in several distributions sensitive to the effects of new physics. The significance of a deviation is quantified using pseudo-experiments. A data selection with a significant deviation defines a signal region for a dedicated follow-up analysis with an improved background expectation. The analysis of the data-derived signal regions on a new dataset allows a statistical interpretation without the large look-elsewhere effect. The sensitivity of the approach is discussed using Standard Model processes and benchmark signals of new physics. As an example, results are shown for 3.2fb-1 of proton-proton collision data at a centre-of-mass energy of 13TeV collected with the ATLAS detector at the LHC in 2015, in which more than 700 event classes and more than 105 regions have been analysed. No significant deviations are found and consequently no data-derived signal regions for a follow-up analysis have been defined.

  • 11.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Measurements of W and Z boson production in pp collisions at root s = 5.02TeV with the ATLAS detector (vol 79, 128, 2019)2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 5, article id 374Article in journal (Refereed)
  • 12.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Search for long-lived particles in final states with displaced dimuon vertices in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 1, article id 012001Article in journal (Refereed)
    Abstract [en]

    A search is performed for a long-lived particle decaying into a final state that includes a pair of muons of opposite-sign electric charge, using proton-proton collision data collected at root s = 13 TeV by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 32.9 fb(-1). No significant excess over the Standard Model expectation is observed. Limits at 95% confidence level on the lifetime of the long-lived particle are presented in models of new phenomena including gauge-mediated supersymmetry or decay of the Higgs boson, H, to a pair of dark photons, Z(D). Lifetimes in the range c tau = 1-2400 cm are excluded, depending on the parameters of the model. In the supersymmetric model, the lightest neutralino is the next-to-lightest supersymmetric particle, with a relatively long lifetime due to its weak coupling to the gravitino, the lightest supersymmetric particle. The lifetime limits are determined for very light gravitino mass and various assumptions for the neutralino mass in the range 300-1000 GeV. In the dark photon model, the lifetime limits are interpreted as exclusion contours in the plane of the coupling between the Z(D) and the Standard Model Z boson versus the Z(D) mass (in the range 20-60 GeV), for various assumptions for the H -> Z(D)Z(D) branching fraction.

  • 13. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of jet fragmentation in Pb plus Pb and pp collisions at root S-NN=5.02 TeV with the ATLAS detector2018In: Physical Review C: Covering Nuclear Physics, ISSN 2469-9985, E-ISSN 2469-9993, Vol. 98, no 2, article id 024908Article in journal (Refereed)
    Abstract [en]

    This paper presents a measurement of jet fragmentation functions in 0.49 nb(-1) of Pb +Pb collisions and 25 pb(-1) of pp collisions at root S-NN = 5.02 TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultrarelativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in pp collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed.

  • 14. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the Soft-Drop Jet Mass in pp Collisions at root s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 9, article id 092001Article in journal (Refereed)
    Abstract [en]

    Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log(10)rho(2), where rho is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb(-1) of root s = 13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

  • 15. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurements of b-jet tagging efficiency with the ATLAS detector using t(t)over-bar events at root s=13 TeV2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 8, article id 089Article in journal (Refereed)
    Abstract [en]

    The efficiency to identify jets containing b-hadrons (b-jets) is measured using a high purity sample of dileptonic top quark-antiquark pairs (t (t) over bar) selected from the 36.1 fb(-1) of data collected by the ATLAS detector in 2015 and 2016 from proton-proton collisions produced by the Large Hadron Collider at a centre-of-mass energy root s = 13 TeV. Two methods are used to extract the efficiency from t (t) over bar events, a combinatorial likelihood approach and a tag-and-probe method. A boosted decision tree, not using b-tagging information, is used to select events in which two b-jets are present, which reduces the dominant uncertainty in the modelling of the flavour of the jets. The efficiency is extracted for jets in a transverse momentum range from 20 to 300 GeV, with data-to-simulation scale factors calculated by comparing the efficiency measured using collision data to that predicted by the simulation. The two methods give compatible results, and achieve a similar level of precision, measuring data-to-simulation scale factors close to unity with uncertainties ranging from 2% to 12% depending on the jet transverse momentum.

  • 16. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the llbb final state in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 783, p. 392-414Article in journal (Refereed)
    Abstract [en]

    A search for a heavy neutral Higgs boson, A, decaying into a Z boson and another heavy Higgs boson, H, is performed using a data sample corresponding to an integrated luminosity of 36.1 fb(-1) from proton-proton collisions at root s = 13 TeV recorded in 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search considers the Z boson decaying to electrons or muons and the H boson into a pair of b-quarks. No evidence for the production of an A boson is found. Considering each production process separately, the 95% confidence-level upper limits on the pp -> A -> ZH production cross-section times the branching ratio H -> bb are in the range of 14-830 fb for the gluon-gluon fusion process and 26-570 fb for the b-associated process for the mass ranges 130-700 GeV of the H boson and 230-800 GeV of the A boson. The results are interpreted in the context of two-Higgs-doublet models.

  • 17. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for B - L R-parity-violating top squarks in root s=13 TeV pp collisions with the ATLAS experiment2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 97, no 3, article id 032003Article in journal (Refereed)
    Abstract [en]

    A search is presented for the direct pair production of the stop, the supersymmetric partner of the top quark, that decays through an R-parity-violating coupling to a final state with two leptons and two jets, at least one of which is identified as a b-jet. The data set corresponds to an integrated luminosity of 36.1 fb(-1) of proton-proton collisions at a center-of-mass energy of root s = 13 TeV, collected in 2015 and 2016 by the ATLAS detector at the LHC. No significant excess is observed over the Standard Model background, and exclusion limits are set on stop pair production at a 95% confidence level. Lower limits on the stop mass are set between 600 GeV and 1.5 TeV for branching ratios above 10% for decays to an electron or muon and a b-quark.

  • 18. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for heavy resonances decaying to a photon and a hadronically decaying Z/W/H boson in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 3, article id 032015Article in journal (Refereed)
    Abstract [en]

    Many extensions of the Standard Model predict new resonances decaying to a Z, W, or Higgs boson and a photon. This paper presents a search for such resonances produced in pp collisions at root s = 13 TeV using a data set with an integrated luminosity of 36.1 fb(-1) collected by the ATLAS detector at the LHC. The Z/W/H bosons are identified through their decays to hadrons. The data are found to be consistent with the Standard Model expectation in the entire investigated mass range. Upper limits are set on the production cross section times branching fraction for resonance decays to Z.W + gamma in the mass range from 1.0 to 6.8 TeV and for the first time into H + gamma in the mass range from 1.0 to 3.0 TeV.

  • 19. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for long-lived particles produced in pp collisions at root s=13 TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 052005Article in journal (Refereed)
    Abstract [en]

    A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb(-1) of proton-proton collision data at root s =13 TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two-vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined.

  • 20. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 3, article id 032016Article in journal (Refereed)
    Abstract [en]

    A search for new resonances decaying into jets containing b-hadrons in pp collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 to 7 TeV. The data set corresponds to an integrated luminosity of up to 36.1 fb(-1) collected in 2015 and 2016 at root s = 13 TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% C.L. In addition, 95% C.L. upper limits are set on the cross sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.

  • 21. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for top squarks decaying to tau sleptons in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 3, article id 032008Article in journal (Refereed)
    Abstract [en]

    A search for direct pair production of top squarks in final states with two tau leptons, b-jets, and missing transverse momentum is presented. The analysis is based on proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1) recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. Two exclusive channels with either two hadronically decaying tau leptons or one hadronically and one leptonically decaying tau lepton are considered. No significant deviation from the Standard Model predictions is observed in the data. The analysis results are interpreted in terms of model-independent limits and used to derive exclusion limits on the masses of the top squark (t) over tilde (1) and the tau slepton (tau) over tilde (1) in a simplified model of supersymmetry with a nearly massless gravitino. In this model, masses up to m((t) over tilde (1)) = 1.16 TeV and m ((tau) over tilde (1)) = 1.00 TeV are excluded at 95% confidence level.

  • 22. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the cross-section for electroweak production of dijets in association with a Z boson in pp collisions at root s=13 TeV with the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 775, p. 206-228Article in journal (Refereed)
    Abstract [en]

    The cross-section for the production of two jets in association with a leptonically decaying Z boson (Zjj) is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data recorded with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb(-1). The electroweak Zjj cross-section is extracted in a fiducial region chosen to enhance the electroweak contribution relative to the dominant Drell-Yan Zjj process, which is constrained using a data-driven approach. The measured fiducial electroweak cross-section is sigma(Zjj)(EW) = 119 +/- 16 (stat.) +/- 20 (syst.) +/- 2 (lumi.) fb for dijet invariant mass greater than 250 GeV, and 34.2 +/- 5.8 (stat.) +/- 5.5 (syst.) +/- 0.7 (lumi.) fb for dijet invariant mass greater than 1 TeV. Standard Model predictions are in agreement with the measurements. The inclusive Zjj cross-section is also measured in six different fiducial regions with varying contributions from electroweak and Drell-Yan Zjj production.

  • 23. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for dark matter in association with a Higgs boson decaying to two photons at root s=13 TeV with the ATLAS detector2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 11, article id 112004Article in journal (Refereed)
    Abstract [en]

    A search for dark matter in association with a Higgs boson decaying to two photons is presented. This study is based on data collected with the ATLAS detector, corresponding to an integrated luminosity of 36.1 fb(-1) of proton-proton collisions at the LHC at a center-of-mass energy of 13 TeV in 2015 and 2016. No significant excess over the expected background is observed. Upper limits at 95% confidence level are set on the visible cross section for beyond the Standard Model physics processes, and the production cross section times branching fraction of the Standard Model Higgs boson decaying into two photons in association with missing transverse momentum in three different benchmark models. Limits at 95% confidence level are also set on the observed signal in two-dimensional mass planes. Additionally, the results are interpreted in terms of 90% confidence-level limits on the dark-matternucleon scattering cross section, as a function of the dark-matter particle mass, for a spin-independent scenario.

  • 24. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for squarks and gluinos in events with an isolated lepton, jets, and missing transverse momentum at root s=13 TeV with the ATLAS detector2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 11, article id 112010Article in journal (Refereed)
    Abstract [en]

    The results of a search for squarks and gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton-proton collision data at a center-of-mass energy of root s = 13 TeV are presented. The data set used was recorded during 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 36.1 fb(-1). No significant excess beyond the expected background is found. Exclusion limits at 95% confidence level are set in a number of supersymmetric scenarios, reaching masses up to 2.1 TeV for gluino pair production and up to 1.25 TeV for squark pair production.

  • 25. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Study of the material of the ATLAS inner detector for Run 2 of the LHC2017In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, article id P12009Article in journal (Refereed)
    Abstract [en]

    The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity root s = 13 TeV pp collision sample corresponding to around 2.0 nb(-1) collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.

  • 26. Aaboud, M.
    et al.
    Kastanas, Konstatinos
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at root s=13 TeV with the ATLAS detector2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 7, article id 072002Article in journal (Refereed)
    Abstract [en]

    Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 3.2 fb(-1) collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-k(t) algorithm with radius parameter R = 0.4. Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with 20 < p(T) < 2000 GeV and pseudorapidities of vertical bar eta vertical bar < 4.5, using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region (vertical bar eta vertical bar < 1.2) for jets with 100 < p(T) < 500 GeV. An uncertainty of about 4.5% is found for low-p(T) jets with p(T) = 20 GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets (vertical bar eta vertical bar > 0.8) is derived from dijet p(T) balance measurements. For jets of p(T) = 80 GeV, the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range vertical bar eta vertical bar > 3.5 and in a narrow slice of 2.2 < vertical bar eta vertical bar < 2.4.

  • 27. Aaboud, M.
    et al.
    Kastanas, Konstatinos
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for new phenomena in dijet events using 37 fb(-1) of pp collision data collected at root s=13 TeV with the ATLAS detector2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 5, article id 052004Article in journal (Refereed)
    Abstract [en]

    Dijet events are studied in the proton-proton collision dataset recorded at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated luminosities of 3.5 fb(-1) and 33.5 fb(-1) respectively. Invariant mass and angular distributions are compared to background predictions and no significant deviation is observed. For resonance searches, a new method for fitting the background component of the invariant mass distribution is employed. The dataset is then used to set upper limits at a 95% confidence level on a range of new physics scenarios. Excited quarks with masses below 6.0 TeV are excluded, and limits are set on quantum black holes, heavy W' bosons, W* bosons, and a range of masses and couplings in a Z' dark matter mediator model. Model-independent limits on signals with a Gaussian shape are also set, using a new approach allowing factorization of physics and detector effects. From the angular distributions, a scale of new physics in contact interaction models is excluded for scenarios with either constructive or destructive interference. These results represent a substantial improvement over those obtained previously with lower integrated luminosity.

  • 28. Aaboud, M.
    et al.
    Kastanas, Konstatinos
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Measurement of the cross section for inclusive isolated-photon production in pp collisions at root s=13 TeV using the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 770, p. 473-493Article in journal (Refereed)
    Abstract [en]

    Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13 TeV is studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2 fb(-1). The cross section is measured as a function of the photon transverse energy above 125 GeV in different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data.

  • 29. Aaboud, M.
    et al.
    Lund Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P.E.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at s =13 TeV using the ATLAS detector2016In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 94, no 3, article id 032005Article in journal (Refereed)
    Abstract [en]

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 3.2 fb-1 at s=13 TeV collected in 2015 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons. Several signal regions are considered with increasing missing-transverse-momentum requirements between ETmiss>250 GeV and ETmiss>700 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with large extra spatial dimensions, pair production of weakly interacting dark-matter candidates, and the production of supersymmetric particles in several compressed scenarios.

  • 30. Aaboud, M
    et al.
    Lund Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of exclusive γγ →w+W- production and search for exclusive Higgs boson production in pp collisions at s =8 TeV using the ATLAS detector2016In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 94, no 3, article id 032011Article in journal (Refereed)
    Abstract [en]

    Searches for exclusively produced W boson pairs in the process pp(γγ)→pW+W-p and an exclusively produced Higgs boson in the process pp(gg)→pHp have been performed using e±μ final states. These measurements use 20.2 fb-1 of pp collisions collected by the ATLAS experiment at a center-of-mass energy s=8 TeV at the LHC. Exclusive production of W+W- consistent with the Standard Model prediction is found with 3.0σ significance. The exclusive W+W- production cross section is determined to be σ(γγ→W+W-→e±μX)=6.9±2.2(stat)±1.4(sys) fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95% confidence level as -1.7×10-6<a0W/Λ2<1.7×10-6 GeV-2 and -6.4×10-6<aCW/Λ2<6.3×10-6 GeV-2. A 95% confidence-level upper limit on the total production cross section for an exclusive Higgs boson is set to 1.2 pb.

  • 31.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Constraints on mediator-based dark matter and scalar dark energy models using root s= 13 TeV pp collision data collected by the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 142Article in journal (Refereed)
    Abstract [en]

    Constraints on selected mediator-based dark matter models and a scalar dark energy model using up to 37 fb(-1) = 13 TeV pp collision data collected by the ATLAS detector at the LHC during 2015-2016 are summarised in this paper. The results of experimental searches in a variety of final states are interpreted in terms of a set of spin-1 and spin-0 single-mediator dark matter simplified models and a second set of models involving an extended Higgs sector plus an additional vector or pseudo-scalar mediator. The searches considered in this paper constrain spin-1 leptophobic and leptophilic mediators, spin-0 colour-neutral and colour-charged mediators and vector or pseudo-scalar mediators embedded in extended Higgs sector models. In this case, also = 8 TeV pp collision data are used for the interpretation of the results. The results are also interpreted for the first time in terms of light scalar particles that could contribute to the accelerating expansion of the universe (dark energy).

  • 32.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Measurement of VH, H -> b(b)over-barproduction as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 141Article in journal (Refereed)
    Abstract [en]

    Cross-sections of associated production of a Higgs boson decaying into bottomquark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the simplified template cross-section' framework. The results are obtained using 79.8 fb(-1) of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons.

  • 33. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Properties of g -> b(b)over-bar at small opening angles in pp collisions with the ATLAS detector at root s=13 TeV2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 052004Article in journal (Refereed)
    Abstract [en]

    The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to b-quark pairs is a unique probe into the properties of gluon fragmentation because identified b-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the g -> b (b) over bar process are measured using 33 fb(-1) of root s = 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-k(t) jet algorithm with radius parameter R = 0.2, are used to probe angular scales below the R = 0.4 jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into b-quarks.

  • 34. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Search for new phenomena in high-mass diphoton final states using 37 fb(-1) of proton-proton collisions collected at root s=13 TeV with the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 775, p. 105-125Article in journal (Refereed)
    Abstract [en]

    Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb(-1) at a centre-of-mass energy root s = 13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extra-dimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model.

  • 35. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et, al
    Measurement of the b(b)over-bar dijet cross section in pp collisions at root s=7TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 12, article id 670Article in journal (Refereed)
    Abstract [en]

    The dijet production cross section for jets containing a b-hadron (b-jets) has been measured in protonproton collisions with a centre-of-mass energy of root s = 7TeV, using the ATLAS detector at the LHC. The data used correspond to an integrated luminosity of 4.2 fb(-1). The cross section is measured for events with two identified b-jets with a transverse momentum pT > 20GeV and a minimum separation in the eta-phi plane of Delta R = 0.4. At least one of the jets in the event is required to have p(T) > 270GeV. The cross section is measured differentially as a function of dijet invariant mass, dijet transverse momentum, boost of the dijet system, and the rapidity difference, azimuthal angle and angular distance between the b-jets. The results are compared to different predictions of leading order and next-to-leading order perturbative quantum chromodynamics matrix elements supplemented with models for parton-showers and hadronization.

  • 36. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Maddocks, Harvey J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at root s=8 TeV with the ATLAS detector2016In: Physical Review D, ISSN 2470-0010, Vol. 94, no 3, article id 032006Article in journal (Refereed)
    Abstract [en]

    Measurements of the top-antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-p(T) leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of 20.3 fb(-1) from pp collisions at a center-of-mass energy root s = 8 TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the tt system arc performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: A(c)(ll) based on the selected leptons and A(c)(tt) based on the reconstructed tt final state. The inclusive asymmetries are measured in the full phase space to be A(c)(ll)= 0.008 +/- 0.006 and A(c)(tt)= 0.021 +/- 0.016, which are in agreement with the Standard Model predictions of A(c)(ll)= 0.0064 +/- 0.0003 and A(c)(tt)= 0.0111 +/- 0.0004.

  • 37. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Study of heavy-flavor quarks produced in association with top-quark pairs at root s=7 TeV using the ATLAS detector2014In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 89, no 7, p. 072012-Article in journal (Refereed)
    Abstract [en]

    Using a sample of dilepton top-quark pair ((tt) over bar) candidate events, a study is performed of the production of top-quark pairs together with heavy-flavor (HF) quarks, the sum of (tt) over bar + b + X and (tt) over bar + c + X, collectively referred to as (tt) over bar + HF. The data set used corresponds to an integrated luminosity of 4.7 fb(-1) of proton-proton collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The presence of additional HF (b or c) quarks in the (tt) over bar sample is inferred by looking for events with at least three b-tagged jets, where two are attributed to the b quarks from the (tt) over bar decays and the third to additional HF production. The dominant background to (tt) over bar + HF in this sample is (tt) over bar + jet events in which a light-flavor jet is misidentified as a heavy-flavor jet. To determine the heavy-and light-flavor content of the additional b-tagged jets, a fit to the vertex mass distribution of b-tagged jets in the sample is performed. The result of the fit shows that 79 +/- 14 (stat) +/- 22 (syst) of the 105 selected extra b-tagged jets originate from HF quarks, 3 standard deviations away from the hypothesis of zero (tt) over bar + HF production. The result for extra HF production is quoted as a ratio (R-HF) of the cross section for (tt) over bar + HF production to the cross section for (tt) over bar production with at least one additional jet. Both cross sections are measured in a fiducial kinematic region within the ATLAS acceptance. R-HF is measured to be [6.2 +/- 1.1(stat) +/- 1.8 (syst)]% for jets with p(T) > 25 GeV and vertical bar eta vertical bar < 2.5, in agreement with the expectations from Monte Carlo generators.

  • 38. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the parity-violating asymmetry parameter ab and the helicity amplitudes for the decay Lambda(0)(b) -> J/psi Lambda(0) with the ATLAS detector2014In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 89, no 9, p. 092009-Article in journal (Refereed)
    Abstract [en]

    A measurement of the parity-violating decay asymmetry parameter, ab, and the helicity amplitudes for the decay.Lambda(0)(b) -> J/psi(mu(+) mu(-)) Lambda(0)(p pi(-)) is reported. The analysis is based on 1400 Lambda(0)(b)and (Lambda) over bar (0)(b) baryons selected in 4.6 fb(-1) of proton-proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. By combining the.0 b and. _ 0 b samples under the assumption of CP conservation, the value of ab is measured to be 0.30 +/- 0.16(stat) +/- 0.06(syst). This measurement provides a test of theoretical models based on perturbative QCD or heavy-quark effective theory.

  • 39. Aad, G.
    et al.
    Bélanger-Champagne, Camille
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hansen, C. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zutshi, V.
    Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC2010In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 105, no 16, p. 161801-Article in journal (Refereed)
    Abstract [en]

    A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the LHC and correspond to an integrated luminosity of 315 nb(-1) collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% C. L. the q* mass interval 0: 30< m(q)*< 1:26 TeV, extending the reach of previous experiments.

  • 40.
    Aad, G.
    et al.
    Ist Nazl Fis Nucl, Lab Nazl Frascati.
    Grahn, Karl-Johan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    Univ Michigan, Dept Phys.
    Zutshi, V.
    No Illinois Univ, Dept Phys, De Kalb.
    et al.,
    Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector2011In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 71, no 2Article in journal (Refereed)
    Abstract [en]

    Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb(-1) recorded at the Large Hadron Collider. The anti-k(t) algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable chi. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.

  • 41. Aad, G.
    et al.
    Grahn, Karl-Johan
    DESY, D-2000 Hamburg, Germany .
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy root s=7 TeV with the ATLAS detector2011In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 84, no 5, p. 054001-Article in journal (Refereed)
    Abstract [en]

     Jets are identified and their properties studied in center-of-mass energy root s = 7 TeV proton-proton collisions at the Large Hadron Collider using charged particles measured by the ATLAS inner detector. Events are selected using a minimum bias trigger, allowing jets at very low transverse momentum to be observed and their characteristics in the transition to high-momentum fully perturbative jets to be studied. Jets are reconstructed using the anti-k(t) algorithm applied to charged particles with two radius parameter choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section measurement from 4 GeV to 100 GeV is shown for four ranges in rapidity extending to 1.9 and corrected to charged particle-level truth jets. The transverse momenta and longitudinal momentum fractions of charged particles within jets are measured, along with the charged particle multiplicity and the particle density as a function of radial distance from the jet axis. Comparison of the data with the theoretical models implemented in existing tunings of Monte Carlo event generators indicates reasonable overall agreement between data and Monte Carlo. These comparisons are sensitive to Monte Carlo parton showering, hadronization, and soft physics models.

  • 42. Aad, G.
    et al.
    Grahn, Karl-Johan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    University of Chicago.
    Zwalinski, L.
    Lafaye, Remi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Search for Diphoton Events with Large Missing Transverse Energy in 7 TeV Proton-Proton Collisions with the ATLAS Detector2011In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 106, no 12, p. 121803-Article in journal (Refereed)
    Abstract [en]

    A search for diphoton events with large missing transverse energy is presented. The data were collected with the ATLAS detector in proton-proton collisions at root s = 7 TeV at the CERN Large Hadron Collider and correspond to an integrated luminosity of 3: 1 pb(-1). No excess of such events is observed above the standard model background prediction. In the context of a specific model with one universal extra dimension with compactification radius R and gravity-induced decays, values of 1/R < 729 GeV are excluded at 95% C. L., providing the most sensitive limit on this model to date.

  • 43. Aad, G.
    et al.
    Grahn, Karl-Johan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    University of Chicago.
    Zwalinski, L.
    Lafaye, Remi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et, al
    Measurement of the centrality dependence of J/psi yields and observation of Z production in lead-lead collisions with the ATLAS detector at the LHC2011In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 697, no 4, p. 294-312Article in journal (Refereed)
    Abstract [en]

    Using the ATLAS detector, a centrality-dependent suppression has been observed in the yield of J/psi mesons produced in the collisions of lead ions at the Large Hadron Collider. In a sample of minimum-bias lead-lead collisions at a nucleon-nucleon centre of mass energy root s(NN) = 2.76 TeV, corresponding to an integrated luminosity of about 6.7 mu b(-1), J/psi mesons are reconstructed via their decays to mu(+)mu(-) pairs. The measured J/psi yield, normalized to the number of binary nucleon-nucleon collisions, is found to significantly decrease from peripheral to central collisions. The centrality dependence is found to be qualitatively similar to the trends observed at previous, lower energy experiments. The same sample is used to reconstruct Z bosons in the mu(+)mu(-) final state, and a total of 38 candidates are selected in the mass window of 66 to 116 GeV. The relative Z yields as a function of centrality are also presented, although no conclusion can be inferred about their scaling with the number of binary collisions, because of limited statistics. This analysis provides the first results on J/psi and Z production in lead-lead collisions at the LHC.

  • 44.
    Aad, G.
    et al.
    Univ Freiburg.
    Grahn, Karl-Johan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Lafaye, Remi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et, al
    Search for contact interactions in dimuon events from pp collisions at root s=7 TeV with the ATLAS detector2011In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 84, no 1, p. 011101-Article in journal (Refereed)
    Abstract [en]

    A search for contact interactions has been performed using dimuon events recorded with the ATLAS detector in proton-proton collisions at root s = 7 TeV. The data sample corresponds to an integrated luminosity of 42 pb(-1). No significant deviation from the standard model is observed in the dimuon mass spectrum, allowing the following 95% C. L. limits to be set on the energy scale of contact interactions: Lambda > 4: 9 TeV (4.5 TeV) for constructive (destructive) interference in the left-left isoscalar compositeness model. These limits are the most stringent to date for mu mu qq contact interactions.

  • 45. Aad, G.
    et al.
    Grahn, Karl-Johan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    University of Chicago.
    Zwalinski, L.
    Lafaye, Remi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et, al
    Search for Supersymmetry Using Final States with One Lepton, Jets, and Missing Transverse Momentum with the ATLAS Detector in root s=7 TeV pp Collisions2011In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 106, no 13, p. 131802-1-131802-19Article in journal (Refereed)
    Abstract [en]

    This Letter presents the first search for supersymmetry in final states containing one isolated electron or muon, jets, and missing transverse momentum from root s = 7 TeV proton-proton collisions at the LHC. The data were recorded by the ATLAS experiment during 2010 and correspond to a total integrated luminosity of 35 pb(-1). No excess above the standard model background expectation is observed. Limits are set on the parameters of the minimal supergravity framework, extending previous limits. Within this framework, for A(0) = 0 GeV, tan beta = 3, and mu > 0 and for equal squark and gluino masses, gluino masses below 700 GeV are excluded at 95% confidence level.

  • 46. Aad, G.
    et al.
    Grahn, Karl-Johan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    University of Chicago.
    Zwalinski, L.
    Lafaye, Remi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et, al
    Study of jet shapes in inclusive jet production in pp collisions at root s=7 TeV using the ATLAS detector2011In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 83, no 5, p. 052003-Article in journal (Refereed)
    Abstract [en]

    Jet shapes have been measured in inclusive jet production in proton-proton collisions at root s = 7 TeV using 3 pb(-1) of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-k(t) algorithm with transverse momentum 30 GeV < p(T) < 600 GeV and rapidity in the region vertical bar y vertical bar < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and nonperturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.

  • 47. Aad, G
    et al.
    Jovicevic, J
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kuwertz, E S
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Morley, Anthony
    KTH, School of Engineering Sciences (SCI), Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Centrality and rapidity dependence of inclusive jet production in root(NN)-N-S=5.02 TeV proton-lead collisions with the ATLAS detector2015In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 748, p. 392-413Article in journal (Refereed)
    Abstract [en]

    Measurements of the centrality and rapidity dependence of inclusive jet production in root(NN)-N-S = 5.02 TeV proton-lead (p + Pb) collisions and the jet cross-section in root s = 2.76 TeV proton-proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb(-1) and 4.0 pb(-1), respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The p + Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval -4.9 < eta < -3.2 in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum (p(T)) for minimum-bias and centrality-selected p + Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a p(T)-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all p(T) at forward rapidities and for large pT at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics. (C) 2015 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V.

  • 48. Aad, G
    et al.
    Jovicevic, Jelena
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kuwertz, Emma
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Morley, Anthony
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of differential production cross-sections for a Z boson in association with b-jets in 7 TeV proton-proton collisions with the ATLAS detector2014In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, p. 141-Article in journal (Refereed)
    Abstract [en]

    Measurements of differential production cross-sections of a Z boson in association with b-jets in pp collisions at root s = 7 TeV are reported. The data analysed correspond to an integrated luminosity of 4.6 fb(-1) recorded with the ATLAS detector at the Large Hadron Collider. Particle-level cross-sections are determined for events with a Z boson decaying into an electron or muon pair, and containing b-jets. For events with at least one b-jet, the cross-section is presented as a function of the Z boson transverse momentum and rapidity, together with the inclusive b-jet cross-section as a function of b-jet transverse momentum, rapidity and angular separations between the b-jet and the Z boson. For events with at least two b-jets, the cross-section is determined as a function of the invariant mass and angular separation of the two highest transverse momentum b-jets, and as a function of the Z boson transverse momentum and rapidity. Results are compared to leading-order and next-to-leading-order perturbative QCD calculations.

  • 49. Aad, G
    et al.
    Jovicevic, Jelena
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kuwertz, Emma
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Morley, Anthony
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the Higgs boson mass from the H -> gamma gamma and H -> ZZ* -> 4l channels in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector2014In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 90, no 5, p. 052004-Article in journal (Refereed)
    Abstract [en]

    An improved measurement of the mass of the Higgs boson is derived from a combined fit to the reconstructed invariant mass spectra of the decay channels H -> gamma gamma and H -> ZZ* -> 4l. The analysis uses the pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at center-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of 25 fb(-1). The measured value of the Higgs boson mass is m(H) = 125.36 +/- 0.37(stat) +/- 0.18 (syst) GeV. This result is based on improved energy-scale calibrations for photons, electrons, and muons as well as other analysis improvements, and supersedes the previous result from ATLAS. Upper limits on the total width of the Higgs boson are derived from fits to the invariant mass spectra of the H -> gamma gamma and H -> ZZ* -> 4l decay channels.

  • 50. Aad, G
    et al.
    Jovicevic, Jelena
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kuwertz, Emma
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Morley, Anthony
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurements of normalized differential cross sections for t(t)over-bar production in pp collisions at root(s)=7 TeV using the ATLAS detector2014In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 90, no 7, p. 072004-Article in journal (Refereed)
    Abstract [en]

    Measurements of normalized differential cross sections for top-quark pair production are presented as a function of the top-quark transverse momentum, and of the mass, transverse momentum, and rapidity of the t (t) over bar system, in proton proton collisions at a center-of-mass energy of root s = 7 TeV. The data set corresponds to an integrated luminosity of 4.6 fb(-1), recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton jets channel, requiring exactly one lepton and at least four jets with at least one of the jets tagged as originating from a b-quark. The measured spectra are corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations and theory calculations. The results are in fair agreement with the predictions in a wide kinematic range. Nevertheless, data distributions are softer than predicted for higher values of the mass of the t (t) over bar system and of the top-quark transverse momentum. The measurements can also discriminate among different sets of parton distribution functions.

1234567 1 - 50 of 4904
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf