Change search
Refine search result
1234567 1 - 50 of 1599
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Oldest first
  • Newest first
Select all
  • 1.
    Aartsen, M. G.
    et al.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Abraham, K.
    Tech Univ Munich, D-85748 Garching, Germany..
    Ackermann, M.
    DESY, D-15735 Zeuthen, Germany..
    Adams, J.
    Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand..
    Aguilar, J. A.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Ahlers, M.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Ahrens, M.
    Univ Stockholm, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden..
    Altmann, D.
    Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Anderson, T.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Archinger, M.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Arguelles, C.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Arlen, T. C.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Auffenberg, J.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Bai, X.
    South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA..
    Barwick, S. W.
    Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA..
    Baum, V.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Bay, R.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Beatty, J. J.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.;Ohio State Univ, Dept Astron, Columbus, OH 43210 USA..
    Tjus, J. Becker
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Becker, K. -H
    Beiser, E.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    BenZvi, S.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Berghaus, P.
    DESY, D-15735 Zeuthen, Germany..
    Berley, D.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Bernardini, E.
    DESY, D-15735 Zeuthen, Germany..
    Bernhard, A.
    Tech Univ Munich, D-85748 Garching, Germany..
    Besson, D. Z.
    Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA..
    Binder, G.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Bindig, D.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Bissok, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Blaufuss, E.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Blumenthal, J.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Boersma, David J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bohm, C.
    Univ Stockholm, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden..
    Boerner, M.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Bos, F.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Bose, D.
    Sungkyunkwan Univ, Dept Phys, Suwon 440 746, South Korea..
    Boeser, S.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Botner, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Braun, J.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Brayeur, L.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    Bretz, H. -P
    Brown, A. M.
    Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand..
    Buzinsky, N.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Casey, J.
    Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.;Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA..
    Casier, M.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    Cheung, E.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Chirkin, D.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Christov, A.
    Univ Geneva, Dept phys nucl & corpusculaire, CH-1211 Geneva, Switzerland..
    Christy, B.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Clark, K.
    Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada..
    Classen, L.
    Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Coenders, S.
    Tech Univ Munich, D-85748 Garching, Germany..
    Cowen, D. F.
    Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.;Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Silva, A. H. Cruz
    DESY, D-15735 Zeuthen, Germany..
    Daughhetee, J.
    Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.;Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA..
    Davis, J. C.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA..
    Day, M.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    de Andre, J. P. A. M.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    De Clercq, C.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    Dembinski, H.
    Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA..
    De Ridder, S.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Desiati, P.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    de Vries, K. D.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    de Wasseige, G.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    de With, M.
    Humboldt Univ, D-12489 Berlin, Germany..
    DeYoung, T.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Diaz-Velez, J. C.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Dumm, J. P.
    Univ Stockholm, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden..
    Dunkman, M.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Eagan, R.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Eberhardt, B.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Ehrhardt, T.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Eichmann, B.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Euler, Sebastian
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Evenson, P. A.
    Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA..
    Fadiran, O.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Fahey, S.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Fazely, A. R.
    Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA..
    Fedynitch, A.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Feintzeig, J.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Felde, J.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Filimonov, K.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Finley, C.
    Univ Stockholm, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden..
    Fischer-Wasels, T.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Flis, S.
    Univ Stockholm, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden..
    Fuchs, T.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Glagla, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Gaisser, T. K.
    Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA..
    Gaior, R.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Gallagher, J.
    Univ Wisconsin, Dept Astron, Madison, WI 53706 USA..
    Gerhardt, L.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Ghorbani, K.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Gier, D.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Gladstone, L.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Gluesenkamp, T.
    DESY, D-15735 Zeuthen, Germany..
    Goldschmidt, A.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Golup, G.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    Gonzalez, J. G.
    Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA..
    Gora, D.
    DESY, D-15735 Zeuthen, Germany..
    Grant, D.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Gretskov, P.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Groh, J. C.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Gross, A.
    Tech Univ Munich, D-85748 Garching, Germany..
    Ha, C.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Haack, C.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Ismail, A. Haj
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Hallgren, Allan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Halzen, F.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Hansmann, B.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Hanson, K.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Hebecker, D.
    Humboldt Univ, D-12489 Berlin, Germany..
    Heereman, D.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Helbing, K.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Hellauer, R.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Hellwig, D.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Hickford, S.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Hignight, J.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Hill, G. C.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Hoffman, K. D.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Hoffmann, R.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Holzapfel, K.
    Tech Univ Munich, D-85748 Garching, Germany..
    Homeier, A.
    Univ Bonn, Inst Phys, D-53115 Bonn, Germany..
    Hoshina, K.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Huang, F.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Huber, M.
    Tech Univ Munich, D-85748 Garching, Germany..
    Huelsnitz, W.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Hulth, P. O.
    Univ Stockholm, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden..
    Hultqvist, K.
    Univ Stockholm, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden..
    In, S.
    Sungkyunkwan Univ, Dept Phys, Suwon 440 746, South Korea..
    Ishihara, A.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Jacobi, E.
    DESY, D-15735 Zeuthen, Germany..
    Japaridze, G. S.
    Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA..
    Jero, K.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Jurkovic, M.
    Tech Univ Munich, D-85748 Garching, Germany..
    Kaminsky, B.
    DESY, D-15735 Zeuthen, Germany..
    Kappes, A.
    Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Karg, T.
    DESY, D-15735 Zeuthen, Germany..
    Karle, A.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Kauer, M.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.;Yale Univ, Dept Phys, New Haven, CT 06520 USA..
    Keivani, A.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Kelley, J. L.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Kemp, J.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Kheirandish, A.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Kiryluk, J.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Klaes, J.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Klein, S. R.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Kohnen, G.
    Univ Mons, B-7000 Mons, Belgium..
    Kolanoski, H.
    Humboldt Univ, D-12489 Berlin, Germany..
    Konietz, R.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Koob, A.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Koepke, L.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Kopper, C.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Kopper, S.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany.;DESY, D-15735 Zeuthen, Germany..
    Koskinen, D. J.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Kowalski, M.
    Humboldt Univ, D-12489 Berlin, Germany..
    Krings, K.
    Tech Univ Munich, D-85748 Garching, Germany..
    Kroll, G.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Kroll, M.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Kunnen, J.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    Kurahashi, N.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA..
    Kuwabara, T.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Labare, M.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Lanfranchi, J. L.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Larson, M. J.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Lesiak-Bzdak, M.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Leuermann, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Leuner, J.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Luenemann, J.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Madsen, J.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA..
    Maggi, G.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    Mahn, K. B. M.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Maruyama, R.
    Yale Univ, Dept Phys, New Haven, CT 06520 USA..
    Mase, K.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Matis, H. S.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Maunu, R.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    McNally, F.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Meagher, K.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Medici, M.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Meli, A.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Menne, T.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Merino, G.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Meures, T.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Miarecki, S.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Middell, E.
    DESY, D-15735 Zeuthen, Germany..
    Middlemas, E.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Miller, J.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    Mohrmann, L.
    DESY, D-15735 Zeuthen, Germany..
    Montaruli, T.
    Univ Geneva, Dept phys nucl & corpusculaire, CH-1211 Geneva, Switzerland..
    Morse, R.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Nahnhauer, R.
    DESY, D-15735 Zeuthen, Germany..
    Naumann, U.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Niederhausen, H.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Nowicki, S. C.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Nygren, D. R.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Obertacke, A.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Olivas, A.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Omairat, A.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    O'Murchadha, A.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Palczewski, T.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Paul, L.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Pepper, J. A.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    de los Heros, Carlos. Perez
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pfendner, C.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA..
    Pieloth, D.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Pinat, E.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Posselt, J.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Price, P. B.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Przybylski, G. T.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Puetz, J.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Quinnan, M.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Raedel, L.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Rameez, M.
    Univ Geneva, Dept phys nucl & corpusculaire, CH-1211 Geneva, Switzerland..
    Rawlins, K.
    Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA..
    Redl, P.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Reimann, R.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Relich, M.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Resconi, E.
    Tech Univ Munich, D-85748 Garching, Germany..
    Rhode, W.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Richman, M.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA..
    Richter, S.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Riedel, B.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Robertson, S.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Rongen, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Rott, C.
    Sungkyunkwan Univ, Dept Phys, Suwon 440 746, South Korea..
    Ruhe, T.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Ruzybayev, B.
    Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA..
    Ryckbosch, D.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Saba, S. M.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Sabbatini, L.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Sander, H. -G
    Sandrock, A.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Sandroos, J.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Sarkar, S.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.;Univ Oxford, Dept Phys, Oxford OX1 3NP, England..
    Schatto, K.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Scheriau, F.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Schimp, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Schmidt, T.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Schmitz, M.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Schoenen, S.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Schoeneberg, S.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Schoenwald, A.
    DESY, D-15735 Zeuthen, Germany..
    Schukraft, A.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Schulte, L.
    Univ Bonn, Inst Phys, D-53115 Bonn, Germany..
    Seckel, D.
    Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA..
    Seunarine, S.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA..
    Shanidze, R.
    DESY, D-15735 Zeuthen, Germany..
    Smith, M. W. E.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Soldin, D.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Spiczak, G. M.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA..
    Spiering, C.
    DESY, D-15735 Zeuthen, Germany..
    Stahlberg, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Stamatikos, M.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA..
    Stanev, T.
    Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA..
    Stanisha, N. A.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Stasik, A.
    DESY, D-15735 Zeuthen, Germany..
    Stezelberger, T.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Stokstad, R. G.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA..
    Stoessl, A.
    DESY, D-15735 Zeuthen, Germany..
    Strahler, E. A.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    Ström, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Strotjohann, N. L.
    DESY, D-15735 Zeuthen, Germany..
    Sullivan, G. W.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Sutherland, M.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA..
    Taavola, Henric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Taboada, I.
    Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.;Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA..
    Ter-Antonyan, S.
    Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA..
    Terliuk, A.
    DESY, D-15735 Zeuthen, Germany..
    Tesic, G.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Tilav, S.
    Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA..
    Toale, P. A.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Tobin, M. N.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Tosi, D.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Tselengidou, M.
    Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Unger, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Usner, M.
    DESY, D-15735 Zeuthen, Germany..
    Vallecorsa, S.
    Univ Geneva, Dept phys nucl & corpusculaire, CH-1211 Geneva, Switzerland..
    van Eijndhoven, N.
    Vrije Univ Brussel, Dienst ELEM, Brussels, Belgium..
    Vandenbroucke, J.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    van Santen, J.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Vanheule, S.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Veenkamp, J.
    Tech Univ Munich, D-85748 Garching, Germany..
    Vehring, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Voge, M.
    Univ Bonn, Inst Phys, D-53115 Bonn, Germany..
    Vraeghe, M.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Walck, C.
    Univ Stockholm, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden..
    Wallraff, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Wandkowsky, N.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Weaver, Ch.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Wendt, C.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Westerhoff, S.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Whelan, B. J.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Whitehorn, N.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Wichary, C.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Wiebe, K.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Wiebusch, C. H.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Wille, L.
    Univ Wisconsin, Dept Phys, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Williams, D. R.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Wissing, H.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Wolf, M.
    Univ Stockholm, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden..
    Wood, T. R.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Woschnagg, K.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Xu, D. L.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Xu, X. W.
    Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA..
    Xu, Y.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Yanez, J. P.
    DESY, D-15735 Zeuthen, Germany..
    Yodh, G.
    Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA..
    Yoshida, S.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Zarzhitsky, P.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Zoll, M.
    Univ Stockholm, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden..
    Search for dark matter annihilation in the Galactic Center with IceCube-792015In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 75, no 10, 492Article in journal (Refereed)
    Abstract [en]

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, < sAv >, for WIMP masses ranging from 30GeV up to 10TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to similar or equal to 4 . 10(-24) cm(3) s(-1), and similar or equal to 2.6 . 10(-23) cm(3) s(-1) for the nu(nu) over bar channel, respectively.

  • 2. Abdelsalam, UM
    et al.
    Moslem, WM
    Shukla, Padma Kant
    Umeå University, Faculty of Science and Technology, Department of Physics. Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Nonlinear Physics Centre & Center for Plasma Science and Astrophysics, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany; GoLP/Instituto Superior Técnico, 1049-001 Lisbon, Portugal; CCLRC Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 0QX, UK; SUPA Department of Physics, University of Strathclyde, Glasgow G 40NG, UK; School of Physics, Faculty of Science & Agriculture, University of Kwazulu-Natal, Durban 4000, South Africa; Department of Physics, CITT, Islamabad, Pakistan.
    Ion-acoustic solitary waves in a dense pair-ion plasma containing degenerate electrons and positrons2008In: Physics Letters A, ISSN 0375-9601, E-ISSN 1873-2429, Vol. 372, no 22, 4057-4061 p.Article in journal (Refereed)
    Abstract [en]

    Fully nonlinear propagation of ion-acoustic solitary waves in a collisionless dense/quantum electron-positron-ion plasma is investigated. The electrons and positrons are assumed to follow the Thomas-Fermi density distribution and the ions are described by the hydrodynamic equations. An energy balance-like equation involving a Sagdeev-type pseudo-potential is derived. Finite amplitude solutions are obtained numerically and their characteristics are discussed. The small-but finite-amplitude limit is also considered and an exact analytical solution is obtained. The present studies might be helpful to understand the excitation of nonlinear ion-acoustic solitary waves in a degenerate plasma such as in superdense white dwarfs.

  • 3. Abdelsalam, UM
    et al.
    Moslem, WM
    Shukla, Padma Kant
    Umeå University, Faculty of Science and Technology, Department of Physics. Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Nonlinear Physics Centre & Center for Plasma Science and Astrophysics, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany; GoLP/Instituto Superior Técnico, 1049-001 Lisbon, Portugal; CCLRC Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 0QX, UK; SUPA Department of Physics, University of Strathclyde, Glasgow G 40NG, UK; School of Physics, Faculty of Science & Agriculture, University of Kwazulu-Natal, Durban 4000, South Africa; Department of Physics, CITT, Islamabad, Pakistan.
    Localized electrostatic excitations in a Thomas-Fermi plasma containing degenerate electrons2008In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 15, no 5, 052303Article in journal (Refereed)
    Abstract [en]

    By using the Thomas-Fermi electron density distribution for quantum degenerate electrons, the hydrodynamic equations for ions, and the Poisson equation, planar and nonplanar ion-acoustic solitary waves in an unmagnetized collisionless plasma are investigated. The reductive perturbation method is used to derive cylindrical and spherical Korteweg-de Vries equations. Numerical solutions of the latter are presented. The present results can be useful in understanding the features of small but finite amplitude localized ion-acoustic solitary pulses in a degenerate plasma.

  • 4. Adhikary, N C
    et al.
    Misra, Amar P
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Bailung, H
    Chutia, J
    Ion-beam driven dust ion-acoustic solitary waves in dusty plasmas2010In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 17, no 4, 044502Article in journal (Refereed)
    Abstract [en]

    The nonlinear propagation of small but finite amplitude dust ion-acoustic waves (DIAWs) in an ion-beam driven plasma consisting of Boltzmannian electrons, positive ions, and stationary negatively charged dust grains is studied by using the standard reductive perturbation technique. It is shown that there exist two critical values (γc1) and (γc2) of ion beam to ion phase velocity ratio (γ), above and below which the beam generated solitons are not possible. The effects of the parameters, namely, γ, the ratio of the ion beam to plasma ion density (μi), the dust to ion density ratio (μd), and the ion beam to plasma ion mass ratio (μ) on both the amplitude and width of the stationary DIAWs, are analyzed numerically, and applications of the results to laboratory ion beam as well as space plasmas (e.g., auroral plasmas) are explained.

  • 5.
    Ahmed, Hamad
    et al.
    Queen's University Belfast, UK.
    Dieckmann, Mark Eric
    Queen's University Belfast, UK.
    Romagnani, Lorenzo
    Ecole Polytechnique, Palaiseau, France.
    Doria, Domenico
    Queen's University Belfast, UK.
    Sarri, Gianluca
    Queen's University Belfast.
    Cherchez, Mirelie
    University of Düsseldorf, Germany.
    Ianni, E.
    Universita di Pisa, Italy.
    Kourakis, Ioannis
    Queen's University Belfast, UK.
    Giesecke, Anna Lena
    University of Düsseldorf, Germany.
    Notley, Margaret
    Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK.
    Prasad, R.
    Queen's University Belfast, UK.
    Quinn, Kevin
    Queen's University Belfast, UK.
    Willi, Oswald
    University of Düsseldorf, Germany.
    Borghesi, Marco
    Queen's University Belfast, UK.
    Time-Resolved Characterization of the Formation of a Collisionless Shock2013In: Physical Review Letters, ISSN 0031-9007, Vol. 110, no 20Article in journal (Refereed)
    Abstract [en]

    We report on the temporally and spatially resolved detection of the precursory stages that lead to the formation of an unmagnetized, supercritical collisionless shock in a laser-driven laboratory experiment. The measured evolution of the electrostatic potential associated with the shock unveils the transition from a current free double layer into a symmetric shock structure, stabilized by ion reflection at the shock front. Supported by a matching particle-in-cell simulation and theoretical considerations, we suggest that this process is analogous to ion reflection at supercritical collisionless shocks in supernova remnants.

  • 6.
    Ahmed, Hamad
    et al.
    Centre for Plasma Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK.
    Doria, Domenico
    Centre for Plasma Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK.
    Dieckmann, Mark Eric
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Sarri, Gianluca
    Centre for Plasma Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK.
    Romagnani, Lorenzo
    LULI, École Polytechnique, CNRS, CEA, UPMC, Palaiseau, France.
    Bret, Antoine
    ETSI Industriales, Universidad Castilla La Mancha, E-13 071 Ciudad Real, Spain.
    Cerchez, M
    Institute for Laser and Plasma Physics, University of Düsseldorf, Germany.
    Giesecke, AL
    Institute for Laser and Plasma Physics, University of Düsseldorf, Germany.
    Ianni, E
    Centre for Plasma Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK.
    Kar, Satya
    Centre for Plasma Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK.
    Notley, Margaret
    Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, UK.
    Prasad, R
    Centre for Plasma Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK.
    Quinn, Kevin
    Centre for Plasma Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK.
    Willi, Oswald
    Institute for Laser and Plasma Physics, University of Düsseldorf, Germany.
    Borghesi, Marco
    Centre for Plasma Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK.
    Experimental Observation of Thin-shell Instability in a Collisionless Plasma2017In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 834, no 2, L21Article in journal (Refereed)
    Abstract [en]

    We report on the experimental observation of the instability of a plasma shell, which formed during the expansion of a laser-ablated plasma into a rarefied ambient medium. By means of a proton radiography technique, the evolution of the instability is temporally and spatially resolved on a timescale much shorter than the hydrodynamic one. The density of the thin shell exceeds that of the surrounding plasma, which lets electrons diffuse outward. An ambipolar electric field grows on both sides of the thin shell that is antiparallel to the density gradient. Ripples in the thin shell result in a spatially varying balance between the thermal pressure force mediated by this field and the ram pressure force that is exerted on it by the inflowing plasma. This mismatch amplifies the ripples by the same mechanism that drives the hydrodynamic nonlinear thin-shell instability (NTSI). Our results thus constitute the first experimental verification that the NTSI can develop in colliding flows.

  • 7. Aiba, N
    et al.
    Giroud, C
    Honda, M
    Delabie, E
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Saarelma, S
    Hillesheim, J
    Pamela, S
    Wiesen, S
    Maggi, C
    Urano, H
    Drewelow, P
    Leyland, M
    Moulton, D
    Menmuir, S
    Diamagnetic MHD Equations for Plasmas with Fast Flow and its Application to ELM Analysis in JT-60U and JET-ILW2016In: 26th IAEA Fusion Energy Conference, 17-22 October 2016, 2016Conference paper (Refereed)
  • 8. Aiba, N
    et al.
    Giroud, C
    Honda, M
    Delabie, E
    Saarelma, S
    Lupelli, I
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Maggi, C
    Impact of rotation and ion diamagnetic drift on ELM stability in JET-ILW2016In: 33rd Annual meeting of Japan society of plasma science and nuclear fusion research JSPF, Nov 2016. Japan, 2016Conference paper (Other academic)
  • 9.
    Aiempanakit, Montri
    et al.
    Linkoping University.
    Aijaz, Asim
    Linkoping University.
    Helmersson, Ulf
    Linkoping University.
    Kubart, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Hysteresis effect in reactive high power impulse magnetron sputtering of metal oxides2011Conference paper (Refereed)
    Abstract [en]

    In order to get high deposition rate and good film properties, the stabilization of the transition zone between the metallic and compound modes is beneficial. We have shown earlier that at least in some cases, HiPIMS can reduce hysteresis effect in reactive sputtering. In our previous work, mechanisms for the suppression/elimination of the hysteresis effect have been suggested. Reactive HiPIMS can suppress/eliminate the hysteresis effect in the range of optimum frequency [1] lead to the process stability during the deposition with high deposition rate. The mechanisms behind this optimum frequency may relate with high erosion rate during the pulse [2,3] and gas rarefaction effect in front of the target [4]. 

     

    In this contribution, reactive sputtering process using high power impulse magnetron sputtering (HiPIMS) has been studied with focus on the gas rarefaction. Through variations in the sputtering conditions such as pulse frequencies, peak powers, and target area, their effect on the shape of current waveforms have been analyzed. The current waveforms in compound mode are strongly affected. Our experiments show that the shape and amplitude of peak current cannot be explained by the change of the secondary electron yield due to target oxidation only. Reduced rarefaction in compound mode contributes to the observed very high peak current values.

  • 10. Aijaz, Asim
    et al.
    Sarakinos, Kostas
    Lundin, Daniel
    Brenning, Nils
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Helmersson, Ulf
    A strategy for increased carbon ionization in magnetron sputtering discharges2012In: Diamond and related materials, ISSN 0925-9635, Vol. 23, 1-4 p.Article in journal (Refereed)
    Abstract [en]

    A strategy that facilitates a substantial increase of carbon ionization in magnetron sputtering discharges is presented in this work. The strategy is based on increasing the electron temperature in a high power impulse magnetron sputtering discharge by using Ne as the sputtering gas. This allows for the generation of an energetic C+ ion population and a substantial increase in the C+ ion flux as compared to a conventional Ar-HiPIMS process. A direct consequence of the ionization enhancement is demonstrated by an increase in the mass density of the grown films up to 2.8 g/cm(3); the density values achieved are substantially higher than those obtained from conventional magnetron sputtering methods.

  • 11. Aikio, A T
    et al.
    Blomberg, Lars
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Yamauchi, M
    On the origin of the high-altitude electric field fluctuations in the auroral zone1996In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 101, no A12, 27157-27170 p.Article in journal (Refereed)
    Abstract [en]

    Intense fluctuations in the electric field at high altitudes in the auroral zone are frequently measured by the Viking satellite. We have made an analysis of the origin of electric and magnetic fluctuations in the frequency range of 0.1 - 1 Hz by assuming four different sources for the signals: (I) spatial structures, (2) spatial structures with a parallel potential drop below the satellite, (3) traveling; shear Alfven waves, and (4) interfering shear Alfven waves. We will shaw that these different sources of the signals may produce similar amplitude ratios and phase differences between the perpendicular electric and magnetic fields. Since the different sources have different frequency dependencies, this can be used as an additional test if the signals are broadband. In other cases, additional information is needed, for example, satellite particle measurements or ground; magnetic measurements. The ideas presented in the theory were tested for one Viking eveningside pass over Scandinavia, where ground-based magnetometer and EISCAT radar measurements were available. The magnetic conditions were active during this pass and several interfering shear Alfven waves were found. Also, a spatial structure with a parallel potential drop below the satellite was identified. The magnitude of the 10-km-wide potential drop was at least 2 kV and the upward field-aligned current 26 mu A m(-2) (value mapped to the ionospheric level). The held-aligned conductance was estimated as 1.3 - 2.2x10(-8) S m(-2).

  • 12. Aikio, Anita T.
    et al.
    Pitkänen, Timo
    Fontaine, Dominic
    Dandouras, Iannis
    Amm, Olaf
    Kozlovsky, Alexander
    Vaivads, Andris
    Fazakerley, Andrew
    EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary2008In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 26, 87-105 p.Article in journal (Refereed)
  • 13.
    Aikio, Anita T.
    et al.
    Department of Physical Sciences, University of Oulu, Finland.
    Pitkänen, Timo
    Department of Physical Sciences, University of Oulu, Finland.
    Fontaine, Dominic
    CETP/UVSQ, Velizy, France.
    Dandouras, Iannis
    CESR/CNRS, Toulouse, France.
    Amm, Olaf
    Finnish meteorological Institute, Helsinki, Finland.
    Kozlovsky, Alexander
    Department of Physical Sciences, University of Oulu, Finland; Sodankylä Geophysical Observatory, Sodankylä, Finland.
    Vaivads, Andris
    Swedish Institute of Space Physics, Ångströmlaboratoriet, Uppsala, Sweden.
    Fazakerley, Andrew
    Mullard Space Science Laboratory, University College, London, UK.
    EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary2008In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 26, 87-105 p.Article in journal (Refereed)
    Abstract [en]

    The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromsø (66.6 degree cgmLat) and Longyearbyen (75.2 degree cgmLat) on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB) made zig-zag-type motion with amplitude of 2.5 degree cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL). The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992). The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm.

    During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4RE mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL) as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency) fluctuations.

    The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2 degree during ˜ 5 min. The beginning of the poleward motion of the PCB was associated with an intensification of the downward FAC at the boundary. We suggest that the downward FAC sheet at the PCB is the high-altitude counterpart of the Earthward flowing FAC produced in the vicinity of the magnetotail neutral line by the Hall effect (Sonnerup, 1979) during a short-lived reconnection pulse.

  • 14.
    Aikio, Anita T.
    et al.
    Oulu, Finland.
    Pitkänen, Timo
    Oulu, Finland.
    Honkonen, Ilja
    Helsinki, Finland.
    Palmroth, Minna
    Helsinki, Finland.
    Amm, Olaf
    Helsinki, Finland.
    IMF effect on the polar cap contraction and expansion during a period of substorms2013In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 31, 1021-1034 p.Article in journal (Refereed)
    Abstract [en]

    The polar cap boundary (PCB) location and motion in the nightside ionosphere has been studied by using measurements from the EISCAT radars and the MIRACLE magnetometers during a period of four substorms on 18 February 2004. The OMNI database has been used for observations of the solar wind and the Geotail satellite for magnetospheric measurements. In addition, the event was modelled by the GUMICS-4 MHD simulation. The simulation of the PCB location was in a rather good agreement with the experimental estimates at the EISCAT longitude. During the first three substorm expansion phases, neither the local observations nor the global simulation showed any poleward motions of the PCB, even though the electrojets intensified. Rapid poleward motions of the PCB took place only in the early recovery phases of the substorms. Hence, in these cases the nightside reconnection rate was locally higher in the recovery phase than in the expansion phase.

    In addition, we suggest that the IMF Bz component correlated with the nightside tail inclination angle and the PCB location with about a 17-min delay from the bow shock. By taking the delay into account, the IMF northward turnings were associated with dipolarizations of the magnetotail and poleward motions of the PCB in the recovery phase. The mechanism behind this effect should be studied further.

  • 15. Aikio, Anita T.
    et al.
    Pitkänen, Timo
    Honkonen, Ilja
    Palmroth, Minna
    Amm, Olaf
    IMF effect on the polar cap contraction and expansion during a period of substorms2013In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 31, 1021-1034 p.Article in journal (Refereed)
  • 16. Aikio, Anita T.
    et al.
    Pitkänen, Timo
    Kozlovsky, Alexander
    Amm, Olaf
    Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event2006In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 24, 1905-1917 p.Article in journal (Refereed)
  • 17. Airila, M. I.
    et al.
    Aho-Mantila, L.
    Brezinsek, S.
    Coad, J. P.
    Kirschner, A.
    Likonen, J.
    Matveev, D.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics. KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Strachan, J. D.
    Widdowson, A.
    Wiesen, S.
    ERO modelling of local deposition of injected C-13 tracer at the outer divertor of JET2009In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T138, 014021- p.Article in journal (Refereed)
    Abstract [en]

    The 2004 tracer experiment of JET with the injection of (CH4)-C-13 into H-mode plasma at the outer divertor has been modelled with the Monte Carlo impurity transport code ERO. EDGE2D solutions for inter-ELM and ELM-peak phases were used as plasma backgrounds. Local two-dimensional (2D) deposition patterns at the vertical outer divertor target plate were obtained for comparison with post-mortem surface analyses. ERO also provides emission profiles for comparison with radially resolved spectroscopic measurements. Modelling indicates that enhanced re-erosion of deposited carbon layers is essential in explaining the amount of local deposition. Assuming negligible effective sticking of hydrocarbons, the measured local deposition of 20-34% is reproduced if re-erosion of deposits is enhanced by a factor of 2.5-7 compared to graphite erosion. If deposits are treated like the substrate, the modelled deposition is 55%. Deposition measurements at the shadowed area around injectors can be well explained by assuming negligible re-erosion but similar sticking behaviour there as on plasma-wetted surfaces.

  • 18. Airila, M. I.
    et al.
    Jarvinen, A.
    Groth, M.
    Belo, P.
    Wiesen, S.
    Brezinsek, S.
    Lawson, K.
    Borodin, D.
    Kirschner, A.
    Coad, J. P.
    Heinola, K.
    Likonen, J.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Widdowson, A.
    Preliminary Monte Carlo simulation of beryllium migration during JET ITER-like wall divertor operation2015In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 463, 800-804 p.Article in journal (Refereed)
    Abstract [en]

    Migration of beryllium into the divertor and deposition on tungsten in the final phase of the first ITER-like-wall campaign of JET are modelled with the 3D Monte Carlo impurity transport code ERO. The simulation covers the inner wall and the inner divertor. To generate the plasma background for Monte Carlo tracing of impurity particles, we use the EDGE2D/EIRENE code set. At the relevant regions of the wall, the estimated plasma conditions vary around T-e approximate to 5eV and n(e) 2 x 10(17) m(-3) (far-scrape-off layer; more than 10 cm away from the LCFS). We calculate impurity distributions in the plasma using the main chamber source as a free parameter in modelling and attempt to reproduce inter-ELM spectroscopic BeII line (527 nm) profiles at the divertor. The present model reproduces the level of emission close to the inner wall, but further work is needed to match also the measured emission peak values and ultimately link the modelled poloidal net deposition profiles of beryllium to post mortem data.

  • 19.
    Alaniz, Monica
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Belyayev, Serhiy
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Bergman, David
    Casselbrant, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Honeth, Mark
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Huang, Jiangwei
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Ivchenko, Nickolay
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Laukkanen, Mikko
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Michelsen, Jacob
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Pronenko, Vira
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Paulson, Malin
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Schlick, Georg
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Tibert, Gunnar
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Valle, Mario
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    The SQUID sounding rocket experiment2011In: Proceedings of the 20th ESA Symposium on European Rocket and Balloon Programmes and Related Research, European Space Agency, 2011, 159-166 p.Conference paper (Refereed)
    Abstract [en]

    The objective of the SQUID project is to develop and in flight verify a miniature version of a wire boom deployment mechanism to be used for electric field measurements in the ionosphere. In February 2011 a small ejectable payload, built by a team of students from The Royal Institute of Technology (KTH), was launched from Esrange on-board the REXUS-10 sounding rocket. The payload separated from the rocket, deployed and retracted the wire booms, landed with a parachute and was subsequently recovered. Here the design of the experiment and post fight analysis are presented.

  • 20. Alfier, A.
    et al.
    Pasqualotto, R.
    Spizzo, G.
    Canton, A.
    Fassina, A.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Electron temperature profiles in RFX-mod2008In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 50, no 3, 035013- p.Article in journal (Refereed)
    Abstract [en]

    Electron temperature profiles have been measured by the main Thomson scattering ( TS) diagnostic on the RFX-mod reversed field pinch experiment in Padova, Italy. The increased accuracy and spatial and temporal resolution permits one to measure in detail the improvements in T-e profiles, obtained with the active saddle coil system, which allows one to obtain core temperature 30% higher and scaling stronger with plasma current, steeper gradients in the core (+30%) and at the edge (+60%). 1D power balance calculations show that the active control of MHD modes largely reduces the values of electron heat diffusivity along the whole plasma radius, with similar to 50% reduction at the edge and similar to 30% in the core. The resulting electron energy confinement time is doubled. Further improvements occur during quasi-single helicity (QSH) states: the new TS allows one to study in detail the hot island that develops in the core. A characterization of the island electron thermal profile is presented, in terms of width, temperature increase, gradients and asymmetry; the effect on density profile is also discussed. A 2D transport code has been applied to calculate the heat diffusivity inside the magnetic island corresponding to the QSH state, also considering the correlation between temperature increase and pressure gradient with the chaos level around the island. Finally, electron energy confinement time during QSH states is compared with that in MH states.

  • 21.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Double Radio Sources and the New Approach to Cosmic Plasma Physics1977Report (Other academic)
  • 22.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Annihilation Model of the QSOs1979Report (Other academic)
  • 23.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Rymdforskningen och vår världsbild1982Report (Other academic)
  • 24.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Electric Current Model of Magnetosphere1979Report (Other academic)
  • 25.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Paradigm Transition in Cosmic Plasma Physics1982Report (Other academic)
  • 26.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Cosmology in the Plasma Universe1987Report (Other academic)
  • 27.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Electric currents in cosmic plasmas1977Report (Other academic)
  • 28.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Origin of the solar system1976Report (Other academic)
  • 29.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Solar System History as Recorded in the Saturnian Ring Structure1983Report (Other academic)
  • 30.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Observations and hypotheses in cosmology1978Report (Other academic)
  • 31.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Plasma Universe1986Report (Other academic)
  • 32.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Space Research and Cosmic Plasma Physics1983Report (Other academic)
  • 33.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Science and the future of Europe1978Report (Other academic)
  • 34.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Comment on H. Arp "The Persistent Problem of Spiral Galaxies"1987Report (Other academic)
  • 35.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Cosmogony as an Extrapolation of Magnetospheric Research1984Report (Other academic)
  • 36.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Magnetospheric Research and the History of the Solar System1984Report (Other academic)
  • 37.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Double radio sources and the new approach to cosmic plasma physics1977Report (Other academic)
  • 38.
    Alfvén, Hannes
    KTH, Superseded Departments.
    Double Layers and Circuits in Astrophysics1986Report (Other academic)
  • 39.
    Alfvén, Hannes
    et al.
    KTH, Superseded Departments.
    Arrhenius, Gustaf
    Cosmogonic Scenario1985Report (Other academic)
  • 40.
    Alfvén, Hannes
    et al.
    KTH, Superseded Departments.
    Axnäs, Ingvar
    KTH, Superseded Departments.
    Brenning, Nils
    KTH, Superseded Departments.
    Lindqvist, Per-Arne
    KTH, Superseded Departments.
    Voyager Saturnian Ring Measurements and the Early History of the Solar System1985Report (Other academic)
  • 41.
    Alfvén, Hannes
    et al.
    KTH, Superseded Departments.
    Axnäs, Ingvar
    KTH, Superseded Departments.
    Brenning, Nils
    KTH, Superseded Departments.
    Lindqvist, Per-Arne
    KTH, Superseded Departments.
    Further Explorations of Cosmogonic Shadow Effects in the Saturnian Rings1985Report (Other academic)
  • 42.
    Alfvén, Hannes
    et al.
    KTH, Superseded Departments.
    Fälthammar, Carl-Gunne
    KTH, Superseded Departments.
    Astrophysics in a Nutshell - from the Telescope to the Sputnik1988Report (Other academic)
  • 43.
    Alfvén, Hannes
    et al.
    KTH, Superseded Departments, Alfvén Laboratory.
    Fälthammar, Carl-Gunne
    KTH, Superseded Departments, Alfvén Laboratory.
    Can the Big Bang Survive in the Space Age?1990Report (Other academic)
  • 44. Ali, S
    et al.
    Moslem, WM
    Shukla, Padma Kant
    Umeå University, Faculty of Science and Technology, Department of Physics. Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Max-Planck Institut für extraterrestrische Physik, D-85741 Garching, Germany; GoLP/Instituto Superior Técnico, 1049-001 Lisbon, Portugal; CCLRC Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 0QX, UK; SUPA Department of Physics, University of Strathclyde, Glasgow G 40NG, UK.
    Wake potential with mobile positive/negative ions in multicomponent dusty plasmas2008In: Physics Letters A, ISSN 0375-9601, E-ISSN 1873-2429, Vol. 372, no 44, 6650-6652 p.Article in journal (Refereed)
    Abstract [en]

    We employ the test charge approach to calculate the electrostatic potential for a test charge in a multicomponent dusty plasma, whose constituents are the Boltzmann distributed electrons, mobile positive and negative ions, and immobile positive/negative charged dust particles. By using the modified dielectric constant of the dust-ion-acoustic (DIA) waves, the Debye screening and wake potentials are obtained. It is found that the presence of mobile negative ions significantly modify the DIA speed and the wake potential. The present results are relevant to polar mesosphere and microelectronic in the context of charged particle attraction and repulsion.

  • 45. Ali, S
    et al.
    Shukla, Padma K
    Umeå University, Faculty of Science and Technology, Department of Physics. Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Max-Planck Institut für extraterrestrische Physik, D-85741 Garching, Germany, GoLP/Instituto Superior Técnico, 1049-001 Lisbon, Portugal, Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 0QX, United Kingdom, and Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom .
    Dust acoustic solitary waves in a quantum plasma2006In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 13, no 2, 022313Article in journal (Refereed)
    Abstract [en]

    By employing one-dimensional quantum hydrodynamic (QHD) model for a three species quantum plasma, nonlinear properties of dust acoustic solitary waves are studied. For this purpose a Korteweg-de Vries (KdV) equation is derived, incorporating quantum corrections. The quantum mechanical effects are also examined numerically both on the profiles of the amplitude and the width of dust acoustic solitary waves. It is found that the amplitude remains constant but the width shrinks for different values of a dimensionless electron quantum parameter H-e=root(Z(d0)h(2)omega(2)(pd))/m(e)m(d)C(d)(4), where Z(d0) is the dust charge state, h is the Planck constant divided by 2 pi, omega(pd) is the dust plasma frequency, m(e) (m(d)) is the electron (dust) mass, and C-d is the dust acoustic speed.

  • 46. Ali, S
    et al.
    Shukla, Padma Kant
    Umeå University, Faculty of Science and Technology, Department of Physics. Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Max-Planck Institut für extraterrestrische Physik, D-85741 Garching, Germany; GoLP/Instituto Superior Técnico, 1049-001 Lisbon, Portugal; Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 0QX, United Kingdom; Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom.
    Dispersion properties of compressional electromagnetic waves in quantum dusty magnetoplasmas2006In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 13, no 5, 052113Article in journal (Refereed)
    Abstract [en]

    A new dispersion relation for low-frequency compressional electromagnetic waves is derived by employing quantum magnetohydrodynamic model and Maxwell equations in cold quantum dusty magnetoplasmas. The latter is composed of inertialess electrons, mobile ions, and immobile charged dust particulates. The dispersion relation for the low-frequency compressional electromagnetic modes is further analyzed for the waves propagating parallel, perpendicular, and oblique to the external magnetic field direction. It is found theoretically and numerically that the quantum parameter alpha(q)=(n(i0)/n(e0))h(2)/(4m(e)m(i)) affects the real angular frequencies and the phase speeds of the compressional electromagnetic modes. Here, n(i0) (n(e0)) is the equilibrium number density of the ions (electrons), m(e) (m(i)) is the electron (ion) mass, and h is the Plank constant divided by 2 pi.

  • 47.
    Ali, Shahid
    Umeå University, Faculty of Science and Technology, Physics.
    Waves and instabilities in quantum plasmas2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The study of waves and instabilities in quantum plasmas is of fundamental importance for understanding collective interactions in superdense astrophysical objects, in high intense laser-plasma/solid-matter interactions, in microelectronic devices and metallic nanostructures. In dense quantum plasmas, there are new pressure laws associated with the Fermi-Dirac distribution functions and new quantum forces associated with the quantum Bohm potential and the Bohr magnetization involving electron ½ spin. These forces significantly alter the collective behavior of dense quantum plasmas. This thesis contains six papers, considering several novel collective modes and instabilities at quantum scales. In Paper I, we have used the quantum hydrodynamical (QHD) model for studying the one-dimensional dust-acoustic (DA) waves incorporating the Fermi pressure law and the quantum Bohm potential. The latter modifies the DA wave dispersion relation in a collisional plasma. In Paper II, we have calculated the electrostatic potential of a test charge in an unmagnetized electron-ion quantum plasma. It is found that the Debye-Hückel and oscillatory wake potentials strongly depend upon the Fermi energy at quantum scales. The results can be of interest for explaining the charged particle attraction and repulsion in degenerate quantum plasmas, such as those in semiconductor and microelectronic devices. Paper III presents the parametric study of nonlinear electrostatic waves in two-dimensional collisionless quantum dusty plasmas. A reductive perturbation method has been employed to the QHD equations together with the Poisson equation, obtaining the cylindrical Kadomtsev-Petviashvili (CKP) equations and their stationary localized solutions. We have numerically examined the quantum mechanical and geometrical effects on the profiles of nonplanar quantum dust-ion-acoustic (DIA) and DA solitary waves. The role of static as well as mobile (negatively or positively charged) dust particles on the low-frequency electrostatic waves has also been highlighted for metallic nanostructures. Paper IV introduces the nonlinear properties of the ion-sound waves in a dense electron-ion Fermi magnetoplasma. The computational analysis of the nonlinear system reveals that the Sagdeev-like potential and the ion-sound density excitations are significantly affected by the wave direction cosine and the Mach number at quantum scales. Paper V considers the nonlinear interactions of electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfvén waves in a quantum magnetoplasma. The nonlinear dispersion relations have been analyzed analytically to obtain the growth rates for both the decay and modulational instabilities involving the dispersive IC, LH, and Alfvén waves. In Paper VI, we have identified a new drift-like dissipative instability in a collisional quantum plasma. The modified unstable drift-like mode can cause cross-field anomalous ion-diffusion at quantum scales.

  • 48.
    Allen, R. C.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Zhang, J. -C
    Kistler, L. M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Spence, H. E.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lin, R. -L
    Klecker, B.
    Max Planck Inst Extraterr Phys, D-85748 Garching, Germany..
    Dunlop, M. W.
    Rutherford Appleton Lab, Div Space Sci, Harwell, Oxon, England..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Jordanova, V. K.
    Los Alamos Natl Lab, Los Alamos, NM USA..
    A statistical study of EMIC waves observed by Cluster: 1. Wave properties2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 7, 5574-5592 p.Article in journal (Refereed)
    Abstract [en]

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10years (2001-2010) of data from Cluster, totaling 25,431min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  • 49.
    Alm, L.
    et al.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Argall, M. R.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.;Southwest Res Inst, San Antonio, TX USA..
    Farrugia, C. J.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA..
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    Marklund, G. T.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Shuster, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Coll Comp Math & Nat Sci, College Pk, MD 20742 USA..
    EDR signatures observed by MMS in the 16 October event presented in a 2-D parametric space2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 3, 3262-3276 p.Article in journal (Refereed)
    Abstract [en]

    We present a method for mapping the position of satellites relative to the X line using the measured B-L and B-N components of the magnetic field and apply it to the Magnetospheric multiscale (MMS) encounter with the electron diffusion region (EDR) which occurred on 13:07 UT on 16 October 2015. Mapping the data to our parametric space succeeds in capturing many of the signatures associated with magnetic reconnection and the electron diffusion region. This offers a method for determining where in the reconnection region the satellites were located. In addition, parametric mapping can also be used to present data from numerical simulations. This facilitates comparing data from simulations with data from in situ observations as one can avoid the complicated process using boundary motion analysis to determine the geometry of the reconnection region. In parametric space we can identify the EDR based on the collocation of several reconnection signatures, such as electron nongyrotropy, electron demagnetization, parallel electric fields, and energy dissipation. The EDR extends 2-3km in the normal direction and in excess of 20km in the tangential direction. It is clear that the EDR occurs on the magnetospheric side of the topological X line, which is expected in asymmetric reconnection. Furthermore, we can observe a north-south asymmetry, where the EDR occurs north of the peak in out-of-plane current, which may be due to the small but finite guide field.

  • 50.
    Alm, Love
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Cluster investigations of the extent and altitude distribution of the auroral density cavity2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The auroral density cavity constitutes the boundary between the cold, dense ionospheric plasma and the hot, tenuous plasma sheet plasma. The auroral density cavity is characterized by low electron density and particle populations modified by parallel electric fields. Inside the cavity the electron densities can be as much as a factor 100-1000 lower than same altitude outside the cavity.The Cluster mission's wide range of instruments, long lifetime and ability to make multi-spacecraft observations has been very successful. Over its 15 year lifespan, the Cluster satellites have gathered data on auroral density cavities over a large altitude range and throughout an entire solar cycle, providing a vast data material.The extent of the density cavity and acceleration region is large compared to the typical altitude coverage of a satellite crossing the cavity. This makes it difficult to produce a comprehensive altitude/density profile from a single crossing. In order to facilitate comparisons between data from different events, we introduce a new reference frame, pseudo altitude. Pseudo altitude describes the satellites' position relative to the acceleration region, as opposed to relative to the Earth. This pseudo altitude is constructed by dividing the parallel potential drop below the satellite with the total parallel potential drop. A pseudo altitude of 0 corresponds to the bottom of the acceleration region and a pseudo altitude of 1 to the top of the acceleration region. As expected, the pseudo altitude increases with altitude. The electron density exhibits an anti-correlation with the pseudo altitude, the density becomes lower close to the upper edge of the acceleration region. The upper edge of the acceleration region is located between a geocentric altitude of 4.375 and 5.625 RE. Above the upper edge of the acceleration region, the electron density continues to decrease for the entire range of the study, 3.0-6.5 RE. This is much further than the geocentric altitude range of 2-3 RE which is suggested by previous models. We can conclude that the auroral density cavity is not confined by the auroral acceleration region, as suggested by previous models, and may extend all the way to the plasma sheet.

1234567 1 - 50 of 1599
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf