Change search
Refine search result
1234567 1 - 50 of 219886
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    ., .
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut.
    Publikationer 1920-19601960Report (Other (popular science, discussion, etc.))
    Abstract [en]

    Förteckning över de publikationer som utgetts av SP under åren 1920-1960

  • 2.
    A. Hosseini, Vahid
    et al.
    University West, Sweden ; Innovatum AB, Sweden.
    Karlsson, Leif
    University West, Sweden.
    Örnek, Cem
    RISE - Research Institutes of Sweden, Swerea, Swerea KIMAB. KTH Royal Institute of Technology, Sweden.
    Reccagni, Pierfrance
    The University of Manchester, UK.
    Wessman, Sten
    University West, Sweden.
    Engelberg, Dirk
    The University of Manchester, UK.
    Microstructure and functionality of a uniquely graded super duplex stainless steel designed by a novel arc heat treatment method2018In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 139, p. 390-400Article in journal (Refereed)
    Abstract [en]

    A novel arc heat treatment technique was applied to design a uniquely graded super duplex stainless steel (SDSS), by subjecting a single sample to a steady state temperature gradient for 10 h. A new experimental approach was used to map precipitation in microstructure, covering aging temperatures of up to 1430 °C. The microstructure was characterized and functionality was evaluated via hardness mapping. Nitrogen depletion adjacent to the fusion boundary depressed the upper temperature limit for austenite formation and influenced the phase balance above 980 °C. Austenite/ferrite boundaries deviating from Kurdjumov–Sachs orientation relationship (OR) were preferred locations for precipitation of σ at 630–1000 °C, χ at 560–1000 °C, Cr2N at 600–900 °C and R between 550 °C and 700 °C. Precipitate morphology changed with decreasing temperature; from blocky to coral-shaped for σ, from discrete blocky to elongated particles for χ, and from polygonal to disc-shaped for R. Thermodynamic calculations of phase equilibria largely agreed with observations above 750 °C when considering nitrogen loss. Formation of intermetallic phases and 475 °C-embrittlement resulted in increased hardness. A schematic diagram, correlating information about phase contents, morphologies and hardness, as a function of exposure temperature, is introduced for evaluation of functionality of microstructures. 

  • 3. A. Madsen, Kevin
    et al.
    J. Bergholtz, Emil
    Stockholm University, Faculty of Science, Department of Physics.
    Brouwer, Piet W.
    Josephson effect in a Weyl SNS junction2017In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 6, article id 064511Article in journal (Refereed)
    Abstract [en]

    We calculate the Josephson current density j (phi) for a Weyl superconductor-normal-metal-superconductor junction for which the outer terminals are superconducting Weylmetals and the normal layer is a Weyl (semi) metal. We describe the Weyl (semi) metal using a simple model with two Weyl points. The model has broken time-reversal symmetry, but inversion symmetry is present. We calculate the Josephson current for both zero and finite temperature for the two pairing mechanisms inside the superconductors that have been proposed in the literature, zero-momentum BCS-like pairing and finite-momentum FFLO-like pairing, and assuming the short-junction limit. For both pairing types we find that the current is proportional to the normal-state junction conductivity, with a proportionality coefficient that shows quantitative differences between the two pairing mechanisms. The current for the BCS-like pairing is found to be independent of the chemical potential, whereas the current for the FFLO-like pairing is not.

  • 4.
    A. Strumpfer, Johan
    et al.
    University of Illinois at Urbana Champaign, Urbana, IL, USA; Beckman Institute, Urbana, IL, USA.
    von Castelmur, Eleonore
    Institute of Integrative Biology, University of Liverpool, Liverpool, IL, USA.
    Franke, Barbara
    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
    Barbieri, Sonia
    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
    Bogomolovas, Julijus
    Universitätsmedizin Mannheim, Mannheim, Germany.
    Qadota, Hiroshi
    Department of Pathology, Emory University, Atlanta, GA, USA.
    Konarv, Petr
    European Molecular Biology Laboratory, Hamburg, Germany.
    Svergun, Dmitri
    European Molecular Biology Laboratory, Hamburg, Germany.
    Labeit, Siegfried
    Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Mannheim, Germany.
    Schulten, Klaus
    University of Illinois at Urbana Champaign, Urbana, IL, USA Beckman Institute, Urbana, IL, USA.
    Benian, Guy
    Department of Pathology, Emory University, Atlanta, GA, USA.
    Mayans, Olga
    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
    Stretching of Twitchin Kinase2012In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 102, no 3 Supplement 1, p. 361a-362aArticle in journal (Refereed)
    Abstract [en]

    The giant proteins from the titin family, that form cytoskeletal filaments, have emerged as key mechanotransducers in the sarcomere. These proteins contain a conserved kinase region, which is auto-inhibited by a C-terminal tail domain. The inhibitory tail domain occludes the active sites of the kinases, thus preventing ATP from binding. It was proposed that through application of a force, such as that arising during muscle contraction, the inhibitory tail becomes detached, lifting inhibition. The force-sensing ability of titin kinase was demonstrated in AFM experiments and simulations [Puchner, et al., 2008, PNAS:105, 13385], which showed indeed that mechanical forces can remove the autoinhibitory tail of titin kinase. We report here steered molecular dynamics simulations (SMD) of the very recently resolved crystal structure of twitchin kinase, containing the kinase region and flanking fibronectin and immuniglobulin domains, that show a variant mechanism. Despite the significant structural and sequence similarity to titin kinase, the autoinhibitory tail of twitchin kinase remains in place upon stretching, while the N-terminal lobe of the kinase unfolds. The SMD simulations also show that the detachment and stretching of the linker between fibronectin and kinase regions, and the partial extension of the autoinhibitory tail, are the primary force-response. We postulate that this stretched state, where all structural elements are still intact, may represent the physiologically active state.

  • 5. Aaberg, Jenny B.
    et al.
    Samec, Joseph S. M.
    Baeckvall, Jan-E.
    Mechanistic investigation on the hydrogenation of imines by [p-(Me2CH)C6H4Me]RuH(NH2CHPhCHPhNSO2C6H4-p-CH3). Experimental support for an ionic pathway.2006In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, no 26, p. 2771-2773Article in journal (Refereed)
    Abstract [en]

    The need for acidic activation in the stoichiometric hydrogenation of benzyl-[1-phenyl-ethylidene]-amine (6a) or [1-(4-methoxy-phenyl)-ethylidene]-methyl-amine (6b) by Noyori's catalyst [p-(Me2CH)C6H4Me]RuH(NH2CHPhCHPhNSO2C6H4-p-CH3) (2) is inconsistent with the proposed concerted mechanism and supports an ionic mechanism. [on SciFinder(R)]

  • 6. Aabloo, A
    et al.
    Klintenberg, M
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Molecular dynamics simulation of a polymer-inorganic interface.2000In: Electrochim.Acta, Vol. 45, p. 1425-Article in journal (Refereed)
  • 7. Aabloo, A.
    et al.
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Molecular dynamics simulation of lithium ion mobility in a PEO surface.2001In: Solid State Ionics, Vol. 143, p. 83-Article in journal (Refereed)
  • 8.
    Aabloo, A
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Molecular dynamics simulation of Nd3+ ions in a crystalline PEO surface1998In: ELECTROCHIMICA ACTA, ISSN 0013-4686, Vol. 43, no 10-11, p. 1361-1364Article in journal (Other scientific)
    Abstract [en]

    Poly(ethylene oxide) based electrolytes are systems in which ionic salts are dissolved into an amorphous EO matrix. Potentials developed earlier to model crystalline and amorphous bulk PEO systems are here used for the MD simulation at 400 K of the behavi

  • 9.
    Aabloo, A
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Molecular dynamics simulations of a poly(ethylene oxide) surface1997In: POLYMER, ISSN 0032-3861, Vol. 38, no 18, p. A47-A51Article in journal (Refereed)
    Abstract [en]

    Potentials developed earlier for crystalline and amorphous bulk PEO systems have been used for the MD simulation of a PEO surface model. The surface comprises the outer region of a 122 Angstrom-thick sheet of PEO in which the PEO, -(CH2-CH2-O)(n)- chains

  • 10. Aabou, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    ZZ -> l(+)l(-)l '(+)l '(-) cross-section measurements and search for anomalous triple gauge couplings in 13 TeV pp collisions with the ATLAS detector2018In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490XArticle in journal (Refereed)
    Abstract [en]

    Measurements of ZZ production in the l(+)l(-)l'(+)l'(-) channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 fb(-1) of collisions collected by the ATLAS experiment in 2015 and 2016. Here l and l ' stand for electrons or muons. Integrated and differential ZZ -> l(+)l(-)l'(+)l'(-) cross sections with Z -> l(+)l(-) candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all standard model decays of Z bosons with mass between 66 GeV and 116 GeV, resulting in a value of 17.3 +/- 0.9 [+/- 0.6(start) +/- 0.5 (syst) +/- 0.6 (lumi)] pb. The measurements are found to be in good agreement with the standard model. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading Z boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters.

  • 11. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb(-1) of proton-proton collision data at root s=13 TeV2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 760, p. 647-665Article in journal (Refereed)
    Abstract [en]

    A search for heavy long-lived charged R-hadronsis reported using a data sample corresponding to 3.2fb(-1)of proton-proton collisions at root s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived R-hadronsin the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.

  • 12. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for Higgs and Z Boson Decays to phi gamma with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 11, article id 111802Article in journal (Refereed)
    Abstract [en]

    A search for the decays of the Higgs and Z bosons to a phi meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb(-1) collected at root s = 13 TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to phi gamma of 1.4 x 10(-3) and 8.3 x 10(-6), respectively, are obtained.

  • 13. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at s=13 TeV2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 760, p. 520-537Article in journal (Refereed)
    Abstract [en]

    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb (1) of proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at root s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions.

  • 14. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for scalar leptoquarks in pp collisions at √s = 13 TeV with the ATLAS experiment2016In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 18, no 9, article id 093016Article in journal (Refereed)
    Abstract [en]

    We report a search for first generation scalar leptoquarks using 1.03 fb(-1) of proton-proton collisions data produced by the Large Hadron Collider at root s = 7 TeV and recorded by the ATLAS experiment. Leptoquarks are sought via their decay into an electron or neutrino and a quark, producing events with two oppositely charged electrons and at least two jets, or events with an electron, missing transverse momentum and at least two jets. Control data samples are used to validate background predictions from Monte Carlo simulation. In the signal region, the observed event yields are consistent with the background expectations. We exclude at 95% confidence level the production of first generation scalar leptoquark with masses m(LQ) < 660 (607) GeV when assuming the branching fraction of a leptoquark to a charged lepton is equal to 1.0 (0.5).

  • 15.
    Aaboud, M.
    et al.
    Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco.
    Aad, G.
    CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
    Abbott, B.
    Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, United States of America.
    Abdallah, J.
    University of Iowa, Iowa City, United States of America.
    Augsten, K.
    Czech Technical University in Prague, Praha, Czech Republic.
    Caforio, D.
    Czech Technical University in Prague, Praha, Czech Republic.
    Gallus, P.
    Czech Technical University in Prague, Praha, Czech Republic.
    Guenther, J.
    Czech Technical University in Prague, Praha, Czech Republic.
    Hubaček, Z.
    Czech Technical University in Prague, Praha, Czech Republic.
    Myska, M.
    Czech Technical University in Prague, Praha, Czech Republic.
    Pospisil, S.
    Czech Technical University in Prague, Praha, Czech Republic.
    Seifert, F.
    Czech Technical University in Prague, Praha, Czech Republic.
    Simak, V.
    Czech Technical University in Prague, Praha, Czech Republic.
    Slavicek, Tomas
    Czech Technical University in Prague, Praha, Czech Republic.
    Smolek, K.
    Czech Technical University in Prague, Praha, Czech Republic.
    Solar, M.
    Czech Technical University in Prague, Praha, Czech Republic.
    Sopczak, A.
    Czech Technical University in Prague, Praha, Czech Republic.
    Sopko, V.
    Czech Technical University in Prague, Praha, Czech Republic.
    Suk, M.
    Czech Technical University in Prague, Praha, Czech Republic.
    Tureček, D.
    Czech Technical University in Prague, Praha, Czech Republic.
    Search for the Standard Model Higgs boson produced by vector-boson fusion and decaying to bottom quarks in root s=8TeV pp collisions with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 112Article in journal (Refereed)
    Abstract [en]

    A search with the ATLAS detector is presented for the Standard Model Higgs boson produced by vector-boson fusion and decaying to a pair of bottom quarks, using 20.2 fb−1 of LHC proton-proton collision data at s=8" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">s√=8s=8 TeV. The signal is searched for as a resonance in the invariant mass distribution of a pair of jets containing b-hadrons in vector-boson-fusion candidate events. The yield is measured to be −0.8 ± 2.3 times the Standard Model cross-section for a Higgs boson mass of 125 GeV. The upper limit on the cross-section times the branching ratio is found to be 4.4 times the Standard Model cross-section at the 95% confidence level, consistent with the expected limit value of 5.4 (5.7) in the background-only (Standard Model production) hypothesis.

  • 16. Aaboud, M
    et al.
    Amorim, Antonio
    KTH.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L
    et al.,
    Search for metastable heavy charged particles with large ionization energy loss in pp collisions at root s=13 TeV using the ATLAS experiment2016In: Physical Review D. Particles and fields, ISSN 0556-2821, E-ISSN 1089-4918, Vol. 93, no 11, article id 112015Article in journal (Refereed)
    Abstract [en]

    This paper presents a search for massive charged long-lived particles produced in pp collisions at root s = 13 TeV at the LHC using the ATLAS experiment. The data set used corresponds to an integrated luminosity of 3.2 fb(-1). Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as R-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the root s = 8 TeV data set, thanks to the increase in expected signal cross section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross sections and masses are set. Gluino R-hadrons with lifetimes above 0.4 ns and decaying to q (q) over bar plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 and 1590 GeV. In the case of stable R-hadrons the lower mass limit at the 95% confidence level is 1570 GeV

  • 17. Aaboud, M.
    et al.
    Annovi, A.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the llbb final state in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 783, p. 392-414Article in journal (Refereed)
    Abstract [en]

    A search for a heavy neutral Higgs boson, A, decaying into a Z boson and another heavy Higgs boson, H, is performed using a data sample corresponding to an integrated luminosity of 36.1 fb(-1) from proton-proton collisions at root s = 13 TeV recorded in 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search considers the Z boson decaying to electrons or muons and the H boson into a pair of b-quarks. No evidence for the production of an A boson is found. Considering each production process separately, the 95% confidence-level upper limits on the pp -> A -> ZH production cross-section times the branching ratio H -> bb are in the range of 14-830 fb for the gluon-gluon fusion process and 26-570 fb for the b-associated process for the mass ranges 130-700 GeV of the H boson and 230-800 GeV of the A boson. The results are interpreted in the context of two-Higgs-doublet models.

  • 18.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco; LPTPM, Oujda, Morocco.
    Artamonov, A.
    ITEP, Moscow, Russia.
    Asimakopoulou, Eleni Myrto
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV pp collisions with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 9, article id 050Article in journal (Refereed)
    Abstract [en]

    A search for supersymmetric partners of top quarks decaying as (t) over tilde (1) -> c (chi) over tilde (0)(1)and supersymmetric partners of charm quarks decaying as (c) over tilde (1) -> c (chi) over tilde (0 )(1)where (chi) over tilde (0)(1) is the lightest neutralino, is presented. The search uses 36.1 fb(-1) pp collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to c (chi) over tilde (0)(1), top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For m (t) over tilde (1,(c) over tilde1) - m((chi) over tilde 10)< 100 GeV, top and charm squark masses up to 500 GeV are excluded.

  • 19.
    Aaboud, M.
    et al.
    LPTPM, Oujda, Morocco;Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb(-1) of proton-proton collision data at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 5, article id 052008Article in journal (Refereed)
    Abstract [en]

    Searches for new heavy resonances decaying into different pairings of W, Z, or Higgs bosons, as well as dirffiffiffiectly into leptons, are presented using a data sample corresponding to 36.1 fb(-1) of pp collisions at root s = 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting bosonic decay modes in the qqqq, vvqq, evqq, eeqq, evev, eevv, evee, eeee, qqbb, vvbb, evbb, and eebb final states are combined, searching for a narrow-width resonance. Likewise, analyses selecting the leptonic ev and ee final states are also combined. These two sets of analyses are then further combined. No significant deviation from the Standard Model predictions is observed. Three benchmark models are tested: a model predicting the existence of a new heavy scalar singlet, a simplified model predicting a heavy vector-boson triplet, and a bulk Randall-Sundrum model with a heavy spin-2 Kaluza-Klein excitation of the graviton. Cross section limits are set at the 95% confidence level using an asymptotic approximation and are compared with predictions for the benchmark models. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The data exclude a heavy vector-boson triplet with mass below 5.5 TeV in a weakly coupled scenario and 4.5 TeV in a strongly coupled scenario, as well as a Kaluza-Klein graviton with mass below 2.3 TeV.

  • 20. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of jet fragmentation in Pb plus Pb and pp collisions at root S-NN=5.02 TeV with the ATLAS detector2018In: Physical Review C: Covering Nuclear Physics, ISSN 2469-9985, E-ISSN 2469-9993, Vol. 98, no 2, article id 024908Article in journal (Refereed)
    Abstract [en]

    This paper presents a measurement of jet fragmentation functions in 0.49 nb(-1) of Pb +Pb collisions and 25 pb(-1) of pp collisions at root S-NN = 5.02 TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultrarelativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in pp collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed.

  • 21. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of b-jet tagging efficiency with the ATLAS detector using tt&#x00AF;" role="presentation">tt¯ events at s=13" role="presentation">s√=13 TeV2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 8, article id 089Article in journal (Refereed)
    Abstract [en]

    The efficiency to identify jets containing b-hadrons (b-jets) is measured using a high purity sample of dileptonic top quark-antiquark pairs (t (t) over bar) selected from the 36.1 fb(-1) of data collected by the ATLAS detector in 2015 and 2016 from proton-proton collisions produced by the Large Hadron Collider at a centre-of-mass energy root s = 13 TeV. Two methods are used to extract the efficiency from t (t) over bar events, a combinatorial likelihood approach and a tag-and-probe method. A boosted decision tree, not using b-tagging information, is used to select events in which two b-jets are present, which reduces the dominant uncertainty in the modelling of the flavour of the jets. The efficiency is extracted for jets in a transverse momentum range from 20 to 300 GeV, with data-to-simulation scale factors calculated by comparing the efficiency measured using collision data to that predicted by the simulation. The two methods give compatible results, and achieve a similar level of precision, measuring data-to-simulation scale factors close to unity with uncertainties ranging from 2% to 12% depending on the jet transverse momentum.

  • 22. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Prompt and non-prompt J/psi elliptic flow in Pb plus Pb collisions at root S-NN=5.02 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 9, article id 784Article in journal (Refereed)
    Abstract [en]

    The elliptic flow of prompt and non-prompt J/psi was measured in the dimuon decay channel in Pb+Pb collisions at root S-NN = 5.02 TeV with an integrated luminosity of 0.42 nb(-1) with the ATLAS detector at the LHC. The prompt and non-prompt signals are separated using a two-dimensional simultaneous fit of the invariant mass and pseudo-proper decay time of the dimuon system from the J/psi decay. The measurement is performed in the kinematic range of dimuon transverse momentum and rapidity 9 < p(T) < 30 GeV, vertical bar y vertical bar < 2, and 0-60% collision centrality. The elliptic flow coefficient, v(2), is evaluated relative to the event plane and the results are presented as a function of transverse momentum, rapidity and centrality. It is found that prompt and non-prompt J/psi mesons have non-zero elliptic flow. Prompt J/psi v(2 )decreases as a function of p(T), while for non-prompt J/psi it is, with limited statistical significance, consistent with a flat behaviour over the studied kinematic region. There is no observed dependence on rapidity or centrality.

  • 23.
    Aaboud, M.
    et al.
    LPTPM, Oujda, Morocco;Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for charged Higgs bosons decaying via H-+/- -> tau(+/-)nu(tau) in the tau plus jets and tau plus lepton final states with 36 fb(-1) of pp collision data recorded at root s=13 TeV with the ATLAS experiment2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 9, article id 139Article in journal (Refereed)
    Abstract [en]

    Charged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via H-+/-! -> tau(+/-)nu(tau), are searched for in 36.1 fb(-1) of proton-proton collision data at root s = 13TeV recorded with the ATLAS detector. Depending on whether the top-quark produced together with H-+/- decays hadronically or leptonically, the search targets tau+jets and tau+lepton fi nal states, in both cases with a hadronically decaying tau-lepton. No evidence of a charged Higgs boson is found. For the mass range of m(H)+/- = 90-2000 GeV, upper limits at the 95% con fi dence level are set on the production cross-section of the charged Higgs boson times the branching fraction B (H-+/-->tau(+/-)nu(tau)) in the range 4.2-0.0025 pb. In the mass range 90{160 GeV, assuming the Standard Model cross-section for tit production, this corresponds to upper limits between 0.25% and 0.031% for the branching fraction B (t -> bH(+/-)) x B (H-+/- -> tau(+/-)nu(tau)).

  • 24. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for flavor-changing neutral currents in top quark decays t -> Hc and t -> Hu in multilepton final states in proton-proton collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 3, article id 032002Article in journal (Refereed)
    Abstract [en]

    Flavor-changing neutral currents are not present in the Standard Model at tree level and are suppressed in loop processes by the unitarity of the Cabibbo-Kobayashi-Maskawa matrix; the corresponding rates for top quark decay processes are experimentally unobservable. Extensions of the Standard Model can generate new flavor-changing neutral current processes, leading to signals which, if observed, would be unambiguous evidence of new interactions. A data set conesponding to an integrated luminosity of 36.1 fb(-1) of pp collisions at a center-of-mass energy of root s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider is used to search for top quarks decaying to up or charm quarks with the emission of a Higgs boson, with subsequent Higgs boson decay to final states with at least one electron or muon. No signal is observed and limits on the branching fractions B(t -> Hc) < 0.16% and B(t -> Hu) < 0.19% at 95% confidence level are obtained (with expected limits of 0.15% in both cases).

  • 25. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in pp Collisions at √s=13  TeV2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 8, article id 081801Article in journal (Refereed)
    Abstract [en]

    Searches for dijet resonances with sub-TeV masses using the ATLAS detector at the Large Hadron Collider can be statistically limited by the bandwidth available to inclusive single-jet triggers, whose data-collection rates at low transverse momentum are much lower than the rate from standard model multijet production. This Letter describes a new search for dijet resonances where this limitation is overcome by recording only the event information calculated by the jet trigger algorithms, thereby allowing much higher event rates with reduced storage needs. The search targets low-mass dijet resonances in the range 450-1800 GeV. The analyzed data set has an integrated luminosity of up to 29.3 fb(-1) and was recorded at a center-of-mass energy of 13 TeV. No excesses are found; limits are set on Gaussian-shaped contributions to the dijet mass distribution from new particles and on a model of dark-matter particles with axial-vector couplings to quarks.

  • 26.
    Aaboud, M.
    et al.
    Univ Mohamed Premier & LPTPM, Fac Sci, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for pair production of heavy vector-like quarks decaying into high-(PT) W bosons and top quarks in the lepton-plus-jets final state in pp collisions at root s=13 TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 8, article id 048Article in journal (Refereed)
    Abstract [en]

    A search is presented for the pair production of heavy vector-like B quarks, primarily targeting B quark decays into a W boson and a top quark. The search is based on 36.1 fb(-1) of pp collisions at root s = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, characterised by a high-transverse-momentum isolated electron or muon, large missing transverse momentum, and multiple jets, of which at least one is b-tagged. No significant deviation from the Standard Model expectation is observed. The 95% confidence level lower limit on the B mass is 1350 GeV assuming a 100% branching ratio to Wt. In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. The 100% branching ratio limits are found to be also applicable to heavy vector-like X production, with charge +5/3, that decay into Wt. This search is also sensitive to a heavy vector-like B quark decaying into other final states (Zb and Hb) and thus mass limits on B production are set as a function of the decay branching ratios.

  • 27.
    Aaboud, M.
    et al.
    Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 3, article id 032016Article in journal (Refereed)
    Abstract [en]

    A search for new resonances decaying into jets containing b-hadrons in pp collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 to 7 TeV. The data set corresponds to an integrated luminosity of up to 36.1 fb(-1) collected in 2015 and 2016 at root s = 13 TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% C.L. In addition, 95% C.L. upper limits are set on the cross sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.

  • 28.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco;LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for W ' -> tb decays in the hadronic final state using pp collisions at root s=13 TeV with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 781, p. 327-348Article in journal (Refereed)
    Abstract [en]

    A search for W'-boson production in the W' -> t (b) over bar -> q (q) over bar 'b (b) over bar decay channel is presented using 36.1 fb(-1) of 13 TeV proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The search is interpreted in terms of both a left-handed and a right-handed chiral W' boson within the mass range 1-5 TeV. Identification of the hadronically decaying top quark is performed using jet substructure tagging techniques based on a shower deconstruction algorithm. No significant deviation from the Standard Model prediction is observed and the results are expressed as upper limits on the W' -> t (b) over bar production cross-section times branching ratio as a function of the W'-boson mass. These limits exclude W' bosons with right-handed couplings with masses below 3.0 TeV and W' bosons with left-handed couplings with masses below 2.9 TeV, at the 95% confidence level.

  • 29. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zur Nedden, M.
    Prompt and non-prompt J/psi and psi(2S) suppression at high transverse momentum in 5.02 TeV Pb+Pb collisions with the ATLAS experiment2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 9, article id 762Article in journal (Refereed)
    Abstract [en]

    A measurement of J/psi and psi(2S) production is presented. It is based on a data sample from Pb+Pb collisions at root s(NN) = 5.02 TeV and pp collisions at root s = 5.02 TeV recorded by the ATLAS detector at the LHC in 2015, corresponding to an integrated luminosity of 0.42 nb(-1) and 25 pb(-1) in Pb+Pb and pp, respectively. The measurements of per-event yields, nuclear modification factors, and non-prompt fractions are performed in the dimuon decay channel for 9 < p(T)(mu mu) < 40 GeV in dimuon transverse momentum, and -2 < y(mu mu) < 2 in rapidity. Strong suppression is found in Pb+Pb collisions for both prompt and non-prompt J/psi, increasing with event centrality. The suppression of prompt psi(2S) is observed to be stronger than that of J/psi, while the suppression of non-prompt psi(2S) is equal to that of the non-prompt J/psi within uncertainties, consistent with the expectation that both arise from b-quarks propagating through the medium. Despite prompt and non-prompt J/psi arising from different mechanisms, the dependence of their nuclear modification factors on centrality is found to be quite similar.

  • 30. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the Higgs boson mass in the H -> ZZ* -> 4l and H -> gamma gamma channels with root s=13 TeV pp collisions using the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 784, p. 345-366Article in journal (Refereed)
    Abstract [en]

    The mass of the Higgs boson is measured in the H -> ZZ* -> 4l and in the H -> gamma gamma decay channels with 36.1 fb(-1) of proton-proton collision data from the Large Hadron Collider at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector in 2015 and 2016. The measured value in the H -> ZZ* -> 4l channel is m(H)(ZZ*) = 124.79 +/- 0.37 GeV, while the measured value in the H -> gamma gamma channel is m(H)(gamma gamma) = 124.93 +/- 0.40 GeV. Combining these results with the ATLAS measurement based on 7 and 8 TeV proton-proton collision data yields a Higgs boson mass of m(H) = 124.97 +/- 0.24 GeV.

  • 31.
    Aaboud, M.
    et al.
    Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for heavy resonances decaying to a photon and a hadronically decaying Z/W/H boson in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 3, article id 032015Article in journal (Refereed)
    Abstract [en]

    Many extensions of the Standard Model predict new resonances decaying to a Z, W, or Higgs boson and a photon. This paper presents a search for such resonances produced in pp collisions at root s = 13 TeV using a data set with an integrated luminosity of 36.1 fb(-1) collected by the ATLAS detector at the LHC. The Z/W/H bosons are identified through their decays to hadrons. The data are found to be consistent with the Standard Model expectation in the entire investigated mass range. Upper limits are set on the production cross section times branching fraction for resonance decays to Z.W + gamma in the mass range from 1.0 to 6.8 TeV and for the first time into H + gamma in the mass range from 1.0 to 3.0 TeV.

  • 32. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in root s=13 TeV pp collisions with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 8, article id 625Article in journal (Refereed)
    Abstract [en]

    A search for new phenomena in final states containing an e(+)e(-) or m(+)m(-) pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton-proton collision data with an integrated luminosity of 36.1 fb(-1), collected during 2015 and 2016 at a centre of-mass energy Os = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an e(+)e(-) or m(+)m(-) pair and the lightest neutralino ((c) over tilde (0)(1)) via one of two next-to-lightest neutralino ((c) over tilde (0)(2)) decay mechanisms: (c) over tilde (0)(2) Z (c) over tilde (0)(1), where the Z boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the Z boson mass; and (c) over tilde (0)(2) l(+)1(-) (c) over tilde (0)(1) with no intermediate l(+)l(-) resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 and 1.3 TeV at 95% confidence level, respectively.

  • 33.
    Aaboud, M.
    et al.
    Univ Clermont Auvergne, CNRS IN2P3, LPC, Clermont Ferrand, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 7, article id 089Article in journal (Refereed)
    Abstract [en]

    A search for pair production of up-type vector-like quarks (T) with a significant branching ratio into a top quark and either a Standard Model Higgs boson or a Z boson is presented. The same analysis is also used to search for four-top-quark production in several new physics scenarios. The search is based on a dataset of pp collisions at root s = 13TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider and corresponds to an integrated luminosity of 36.1 fb(-1). Data are analysed in the lepton+jets final state, characterised by an isolated electron or muon with high transverse momentum, large missing transverse momentum and multiple jets, as well as the jets+E-T(miss) final state, characterised by multiple jets and large missing transverse momentum. The search exploits the high multiplicity of jets identified as originating from b-quarks, and the presence of boosted, hadronically decaying top quarks and Higgs bosons reconstructed as large-radius jets, characteristic of signal events. No significant excess above the Standard Model expectation is observed, and 95% CL upper limits are set on the production cross sections for the different signal processes considered. These cross-section limits are used to derive lower limits on the mass of a vector-like T quark under several branching ratio hypotheses assuming contributions from T -> Wb, Zt, Ht decays. The 95% CL observed lower limits on the T quark mass range between 0.99TeV and 1.43TeV for all possible values of the branching ratios into the three decay modes considered, significantly extending the reach beyond that of previous searches. Additionally, upper limits on anomalous four-top-quark production are set in the context of an effective field theory model, as well as in an universal extra dimensions model.

  • 34.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco;LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for High-Mass Resonances Decaying to tau nu in pp Collisions at root s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 16, article id 161802Article in journal (Refereed)
    Abstract [en]

    A search for high-mass resonances decaying to tau nu using proton-proton collisions at root s = 13 TeV produced by the Large Hadron Collider is presented. Only tau-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb(-1). No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible tau nu production cross section. Heavy W' bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2-3.8 TeV depending on the coupling in the nonuniversal Go(221) model are excluded at the 95% credibility level.

  • 35. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 784, p. 173-191Article in journal (Refereed)
    Abstract [en]

    The observation of Higgs boson production in association with a top quark pair (t (t) over barH), based on the analysis of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider, is presented. Using data corresponding to integrated luminosities of up to 79.8 fb(-1), and considering Higgs boson decays into b (b) over bar, WW*, tau(+)tau(-), gamma gamma, and ZZ*, the observed significance is 5.8 standard deviations, compared to an expectation of 4.9 standard deviations. Combined with the t (t) over barH searches using a dataset corresponding to integrated luminosities of 4.5 fb(-1) at 7 TeV and 20.3 fb(-1) at 8 TeV, the observed (expected) significance is 6.3 (5.1) standard deviations. Assuming Standard Model branching fractions, the total t (t) over barH production cross section at 13 TeV is measured to be 670 +/- 90(stat.)(-100)(+110)(syst.) fb, in agreement with the Standard Model prediction.

  • 36.
    Aaboud, M.
    et al.
    Univ Mohammed, Fac Sci, Rabat, Morocco; Univ Arizona, Dept Phys, Tucson, AZ USA; Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton–proton collisions at √s=13 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 7, article id 565Article in journal (Refereed)
    Abstract [en]

    A search for new heavy particles that decay into top-quark pairs is performed using data collected from proton-proton collisions at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The integrated luminosity of the data sample is 36.1 fb(-1). Events consistent with top-quark pair production are selected by requiring a single isolated charged lepton, missing transverse momentum and jet activity compatible with a hadronic top-quark decay. Jets identified as likely to contain b-hadrons are required to reduce the background from other Standard Model processes. The invariant mass spectrum of the candidate top-quark pairs is examined for local excesses above the background expectation. No significant deviations from the Standard Model predictions are found. Exclusion limits are set on the production cross-section times branching ratio for hypothetical Z' bosons, Kaluza-Kein gluons and Kaluza-Klein gravitons that decay into top-quark pairs.

  • 37.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco; LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni Myrto
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for Higgs bosons produced via vector-boson fusion and decaying into bottom quark pairs in √s=13  TeV pp collisions with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 5, article id 052003Article in journal (Refereed)
    Abstract [en]

    A search for the b (b) over bar decay of the Standard Model Higgs boson produced through vector-boson fusion is presented. Three mutually exclusive channels are considered: two all-hadronic channels and a photon-associated channel. Results are reported from the analysis of up to 30.6 fb(-1) of pp data at root s = 13 TeV collected with the ATLAS detector at the LHC. The measured signal strength relative to the Standard Model prediction from the combined analysis is 2.5(-1.3)(+1.4) for inclusive Higgs boson production and 3.0(-1.6)(+1.7) for vector-boson fusion production only.

  • 38. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the k(t) splitting scales in Z -> ll events in pp collisions at root s=8TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, article id 26Article in journal (Refereed)
    Abstract [en]

    A measurement of the splitting scales occuring in the k(t) jet-clustering algorithm is presented for final states containing a Z boson. The measurement is done using 20.2 fb(-1) of proton-proton collision data collected at a centre-of-mass energy of root s = 8TeV by the ATLAS experiment at the LHC in 2012. The measurement is based on charged-particle track information, which is measured with excellent precision in the p(T) region relevant for the transition between the perturbative and the non-perturbative regimes. The data distributions are corrected for detector effects, and are found to deviate from state-of-the-art predictions in various regions of the observables.

  • 39. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for pair production of vector-like top quarks in events with one lepton, jets, and missing transverse momentum in root S=13 TeV pp collisions with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, article id 52Article in journal (Refereed)
    Abstract [en]

    The results of a search for vector-like top quarks using events with exactly one lepton, at least four jets, and large missing transverse momentum are reported. The search is optimised for pair production of vector-like top quarks in the Z(->nu nu) t + X decay channel. LHC pp collision data at a centre-of-mass energy of root S = 13TeV recorded by the ATLAS detector in 2015 and 2016 are used, corresponding to an integrated luminosity of 36.1 fb(-1). No significant excess over the Standard Model expectation is seen and upper limits on the production cross-section of a vector-like T quark pair as a function of the T quark mass are derived. The observed (expected) 95% CL lower limits on the T mass are 870 GeV (890 GeV) for the weak-isospin singlet model, 1.05 TeV (1.06 TeV) for the weak-isospin doublet model and 1.16 TeV (1.17 TeV) for the pure Zt decay mode. Limits are also set on the mass as a function of the decay branching ratios, excluding large parts of the parameter space for masses below 1 TeV.

  • 40. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Maddocks, H.J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Zwalinski, L.
    Measurements of electroweak Wjj production and constraints on anomalous gauge couplings with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 7, article id 474Article in journal (Refereed)
    Abstract [en]

    Measurements of the electroweak production of a W boson in association with two jets at high dijet invariant mass are performed using s√= 7 and 8 TeV proton–proton collision data produced by the Large Hadron Collider, corresponding respectively to 4.7 and 20.2 fb−1 of integrated luminosity collected by the ATLAS detector. The measurements are sensitive to the production of a W boson via a triple-gauge-boson vertex and include both the fiducial and differential cross sections of the electroweak process.

  • 41. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Jet reconstruction and performance using particle flow with the ATLAS Detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, article id 466Article in journal (Refereed)
    Abstract [en]

    This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb(-1) of ATLAS data from 8 TeV proton-proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.

  • 42. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for charged Higgs bosons produced in association with a top quark and decaying via H± → τν using pp collision data recorded at √s = 13 TeV by the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 759, p. 555-574Article in journal (Refereed)
    Abstract [en]

    Charged Higgs bosons produced in association with a single top quark and decaying via H ± → τ ν are searched for with the \{ATLAS\} experiment at the LHC, using proton–proton collision data at s = 13   TeV corresponding to an integrated luminosity of 3.2   fb − 1 . The final state is characterised by the presence of a hadronic τ decay and missing transverse momentum, as well as a hadronically decaying top quark, resulting in the absence of high-transverse-momentum electrons and muons. The data are found to be consistent with the expected background from Standard Model processes. A statistical analysis leads to 95% confidence-level upper limits on the production cross section times branching fraction, σ ( p p → [ b ] t H ± ) × \{BR\} ( H ± → τ ν ) , between 1.9 pb and 15 fb, for charged Higgs boson masses ranging from 200 to 2000 GeV. The exclusion limits for this search surpass those obtained with the proton–proton collision data recorded at s = 8   TeV. 

  • 43. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the Inelastic Proton-Proton Cross Section at root s=13 TeV with the ATLAS Detector at the LHC2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 18, article id 182002Article in journal (Refereed)
    Abstract [en]

    This Letter presents a measurement of the inelastic proton-proton cross section using 60 mu b(-1) of pp collisions at a center-of-mass energy root s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.07 <vertical bar eta vertical bar < 3.86) of the detector. A cross section of 68.1 +/- 1.4 mb is measured in the fiducial region. xi = M-X(2) > s > 10(-6), where M-X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this xi range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M-X > 13 GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1 +/- 2.9 mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

  • 44. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Maddocks, H. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for bottom squark pair production in proton-proton collisions at root s=13 TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 10, article id 547Article in journal (Refereed)
    Abstract [en]

    The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ((b) over tilde (1)) is reported. The search uses 3.2 fb(-1) of pp collisions at root s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from b-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95 % confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric R-parity-conserving models in which the (b) over tilde (1) is the lightest squark and is assumed to decay exclusively via (b) over tilde (1) -> b (chi) over tilde (0)(1), where (chi) over tilde (0)(1) is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the. (chi) over tilde (0)(1) mass below 360 (100) GeV whilst differences in mass above 100 GeV between the (b) over tilde (1) and the (chi) over tilde (0)(1) are excluded up to a (b) over tilde (1) mass of 500 GeV.

  • 45. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of charged-particle distributions sensitive to the underlying event in root s=13 TeV proton-proton collisions with the ATLAS detector at the LHC2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 3, article id 157Article in journal (Refereed)
    Abstract [en]

    We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb−1. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function of both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.

  • 46.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    DESY, Hamburg and Zeuthen.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva.
    Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb−1 of √s=13 TeV pp collision data with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 9, article id 084Article in journal (Refereed)
    Abstract [en]

    A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons (e or μ), or at least three isolated leptons, is presented. The analysis relies on the identification of b-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton-proton collisions at √s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb−1, is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring R-parity conservation or R-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.

  • 47.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences, Oujda; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva.
    Measurement of the exclusive gamma gamma -> mu(+)mu(-) process in proton-proton collisions at root s=13 TeV with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 777, p. 303-323Article in journal (Refereed)
    Abstract [en]

    The production of exclusive gamma gamma -> mu(+)mu(-) events in proton-proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb(-1). The measurement is performed for a dimuon invariant mass of 12 GeV < m(mu+mu-) < 70 GeV. The integrated cross-section is determined within a fiducial acceptance region of the ATLAS detector and differential cross-sections are measured as a function of the dimuon invariant mass. The results are compared to theoretical predictions both with and without corrections for absorptive effects.

  • 48. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Maddocks, H. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at √s=13  TeV with the ATLAS detector2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, no 7, article id 072002Article in journal (Refereed)
    Abstract [en]

    Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of √s=13  TeV, corresponding to an integrated luminosity of 3.2  fb−1 collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-ktalgorithm with radius parameter R=0.4. Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with 20<pT<2000  GeV and pseudorapidities of |η|<4.5, using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region (|η|<1.2) for jets with 100<pT<500  GeV. An uncertainty of about 4.5% is found for low-pT jets with pT=20  GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets (|η|>0.8) is derived from dijet pT balance measurements. For jets of pT=80  GeV, the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range |η|>3.5 and in a narrow slice of 2.2<|η|<2.4.

  • 49.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg-August-Universität, II Physikalisches Institut, Göttingen.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva.
    Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at √s=8 TeV using the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 776, p. 295-317Article in journal (Refereed)
    Abstract [en]

    This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb(-1). The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: vertical bar eta(gamma)vertical bar < 1.37 and 1.56 < vertical bar eta(gamma)vertical bar < 2.37. The measurement covers photon transverse energies 25 < E-T(gamma) < 400 GeV and 25 < E-T(gamma) < 350 GeV respectively for the two vertical bar eta(gamma)vertical bar regions. For each jet flavour, the ratio of the cross sections in the two vertical bar eta(gamma)vertical bar regions is also measured. The measurement is corrected for detector effects and compared to leading-order and next-to-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central gamma+b measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions.

  • 50.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences, Oujda; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg-August-Universität, II Physikalisches Institut, Göttingen.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva.
    Measurement of longitudinal flow decorrelations in Pb plus Pb collisions at root s(NN)=2.76 and 5.02 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, article id 142Article in journal (Refereed)
    Abstract [en]

    Measurements of longitudinal flow correlations are presented for charged particles in the pseudorapidity range vertical bar eta vertical bar < 2.4 using 7 mu b(-1) and 470 mu b(-1) of Pb+Pb collisions at root s(NN) = 2.76 and 5.02 TeV, respectively, recorded by the ATLAS detector at the LHC. It is found that the correlation between the harmonic flow coefficients v(n) measured in two separated eta intervals does not factorise into the product of single-particle coefficients, and this breaking of factorisation, or flow decorrelation, increases linearly with the eta separation between the intervals. The flow decorrelation is stronger at 2.76 TeVthan at 5.02 TeV. Higher-order moments of the correlations are also measured, and the corresponding linear coefficients for the kth-moment of the v(n) are found to be proportional to k for v(3), but not for v(2). The decorrelation effect is separated into contributions from the magnitude of v(n) and the event-plane orientation, each as a function of eta. These two contributions are found to be comparable. The longitudinal flow correlations are also measured between v(n) of different order in n. The decorrelations of v(2) and v(3) are found to be independent of each other, while the decorrelations of v(4) and v(5) are found to be driven by the nonlinear contribution from v(2)(2) and v(2)v(3), respectively.

1234567 1 - 50 of 219886
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf