Change search
Refine search result
15161718 851 - 890 of 890
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 851.
    Botner, Olga
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Brenner, Richard
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Hallgren, Allan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    SEARCHES FOR INVISIBLY DECAYING HIGGS BOSONS WITH THE DELPHI DETECTOR AT LEP2004In: Eur.Phys.J., Vol. C, no 32, p. 475-492Article in journal (Other (popular scientific, debate etc.))
  • 852.
    Botner, Olga
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Brenner, Richard
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Hallgren, Allan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    SEARCHES FOR NEUTRAL HIGGS BOSONS IN EXTENDED MODELS2004In: Eur.Phys.J., Vol. C, no 38, p. 1-28Article in journal (Refereed)
  • 853.
    Botner, Olga
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Brenner, Richard
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Hallgren, Allan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    SEARCHES FOR SUPERSYMMETRIC PARTICLES IN E+ E- COLLISIONS UP TO 208-GEV AND INTERPRETATION OF THE RESULTS WITHIN THE MSSM2004In: Eur.Phys.J., Vol. C, no 31, p. 421-479Article in journal (Refereed)
  • 854.
    Botner, Olga
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Brenner, Richard
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Hallgren, Allan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    STUDY OF TAU-PAIR PRODUCTION IN PHOTON-PHOTON COLLISIONS AT LEP AND LIMITS ON THE ANOMALOUS ELECTROMAGNETIC MOMENTS OF THE TAU LEPTON2004In: Eur.Phys.J., Vol. C, no 35, p. 159-170Article in journal (Refereed)
  • 855.
    Botner, Olga
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Brenner, Richard
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Hallgren, Allan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    THE MEASUREMENT OF ALPHA(S) FROM EVENT SHAPES WITH THE DELPHI DETECTOR AT THE HIGHEST LEP ENERGIES2004In: Eur.Phys.J., Vol. C, no 37, p. 1-23Article in journal (Refereed)
  • 856.
    Botner, Olga
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Brenner, Richard
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Hallgren, Allan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Tegenfeldt, Fredrik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Determination of heavy quark non-perturbative parameters from spectral moments in semileptonic B decays2006In: Eur. Phys. J., ISSN 1434-6044, 1434-6052, Vol. C, no 45, p. 35-59Article in journal (Refereed)
  • 857.
    Botner, Olga
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Brenner, Richard
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Hallgren, Allan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Tegenfeldt, Fredrik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Search for neutral MSSM Higgs bosons at LEP2006In: Eur. Phys. J., ISSN 1434-6044, 1434-6052, Vol. C, no 47, p. 547-587Article in journal (Refereed)
  • 858.
    Brenner, Richard
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics.
    Eklund, Lars
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics.
    Construction and performance of the ATLAS silicon microstrip barrel modules2002In: Nucl. Instrum. Meth. Phys. Res.: A, Vol. 485, p. 27-42Article in journal (Refereed)
  • 859. Caspers, Fritz
    et al.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Johnson, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signal Processing.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signal Processing. Signals and systems.
    Öjefors, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signal Processing. Signals and systems.
    The EUROTeV confocal resonator monitor task2006Conference paper (Refereed)
  • 860. Citron, Zvi
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Electroweak probes of small and large systems with the ATLAS detector2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 603-606Article in journal (Refereed)
    Abstract [en]

    Measurements of isolated prompt photon and massive electroweak (W and Z) boson production in different collision systems are of great interest to understand the partonic structure of heavy nuclei, and serve as a constraint on the initial state in larger collision systems. These channels are sensitive to a variety of effects such as the modification of the parton densities in nuclei in certain kinematic regions, and the energy loss of partons as they undergo multiple interactions in the nucleus before the hard parton-parton scattering. High-statistics samples of lead-lead and proton-lead collision data at root s(NN)=5.02 TeV and 8.16 TeV, respectively, taken by the ATLAS experiment at the LHC, as well as proton-proton comparison data at analogous collision energies, allow for a detailed study of these phenomena in data and comprehensive comparisons to the predictions of a variety of theoretical approaches. This paper presents the latest ATLAS results in these topics, including updated results on inclusive prompt photon production in proton-lead collisions over a broad kinematic range and high-precision W boson results in lead lead collisions.

  • 861. Derendarz, Dominik
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the flow harmonic correlations in pp, p+Pb and low multiplicity Pb+Pb collisions with the ATLAS detector at the LHC2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 479-482Article in journal (Refereed)
    Abstract [en]

    Recent measurements of the correlations between flow harmonics obtained using four-particle symmetric cumulants and three-particle asymmetric cumulants with the ATLAS detector at the LHC are described. The data sets of pp, p+Pb and peripheral Pb+Pb collisions at various energies are analyzed, aiming to probe the long-range collective nature of multi-particle production in small systems. The sensitivity of the standard cumulant method to non-flow correlations is investigated by introducing the subevents method. A systematic reduction of non-flow effects is observed when using the two-subevent method. Further reduction is observed with the three-subevent method that is consistent with the results obtained with the four-subevent one. A negative correlation between v(2) and v(3) and a positive correlation between v(2) and v(4), for all studied collision systems and over full multiplicity range, is observed. The correlation strength computed as symmetric cumulants normalized by the < v(n)(2)> is similar for all collision systems and weakly depends on multiplicity. These measurements provide new evidence for long-range multi-particle collectivity in small collision systems and quantify the nature of its event-by-event fluctuations.

  • 862. Eerola, Paula
    et al.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Högenergifysik.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Högenergifysik.
    Hansen, John Renner
    Hellman, Sten
    Konstantinov, Aleksandr
    Kónya, Balázs
    Myklebust, Trond
    Nielsen, Jakob Langgaard
    Ould-Saada, Farid
    Smirnova, Oxana
    Wäänänen, Anders
    Atlas Data-Challenge 1 on NorduGrid2003In: Proceedings of CHEP 2003, 2003Conference paper (Other scientific)
    Abstract [en]

    The first LHC application ever to be executed in a computational Grid environment is the so-called ATLAS Data-Challenge 1, more specifically, the part assigned to the Scandinavian members of the ATLAS Collaboration. Taking advantage of the NorduGrid testb

  • 863. Eerola, Paula
    et al.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Högenergifysik.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Högenergifysik.
    Hansen, John Renner
    Konstantinov, Aleksandr
    Kónya, Balázs
    Nielsen, Jakob Langgaard
    Ould-Saada, Farid
    Smirnova, Oxana
    Wäänänen, Anders
    The NorduGrid architecture and tools2003In: Proceedings of CHEP 2003, 2003Conference paper (Other scientific)
    Abstract [en]

    The NorduGrid project designed a Grid architecture with the primary goal to meet the requirements of production tasks of the LHC experiments. While it is meant to be a rather generic Grid system, it puts emphasis on batch processing suitable for problems

  • 864. Eerola, Paula
    et al.
    Kónya, Balázs
    Smirnova, Oxana
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Högenergifysik.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Högenergifysik.
    Hansen, John Renner
    Nielsen, Jakob Langgaard
    Wäänänen, Anders
    Konstantinov, Aleksandr
    Herrala, Juha
    Tuisku, Miika
    Myklebust, Trond
    Ould-Saada, Farid
    Vinter, Brian
    The NorduGrid production Grid infrastructure, status and plans2003In: Proc. Fourth International Workshop on Grid Computing, 2003, p. 158-165Conference paper (Other scientific)
    Abstract [en]

    NorduGrid offers reliable Grid services for academic users over an increasing set of computing & storage resources spanning through the Nordic countries Denmark, Finland, Norway and Sweden. A small group of scientists has already been using the NorduGrid

  • 865.
    Ellert, Mattias
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Brenner, Richard
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Botner, Olga
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Hallgren, Allan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Tegenfeldt, Fredrik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Search for Charged Higgs Bosons at LEP in general two higgs doublet models2004In: European Physics Journal, ISSN 1434-6044, Vol. C, no 34, p. 399-418Article in journal (Refereed)
    Abstract [en]

    A search for pair-produced charged Higgs bosons was performed in the data collected by the DELPHI detector at LEP II at centre-of-mass energies from 189 GeV to 209 GeV. Five different final states, τ<sup>+</sup>ν<sub>τ</sub>τ<sup>-</sup>ν̄<sub>τ</sub>, cs̄c̄s, cs̄τ<sup>-</sup>ν̄<sub>τ</sub>, W<sup>*</sup>AW<sup>*</sup>A and W<sup>*</sup>Aτ<sup>-</sup>ν̄<sub>τ</sub> were considered, accounting for the major expected decays in type I and type II Two Higgs Doublet Models. No significant excess of data compared to the expected Standard Model processes was observed. The existence of a charged Higgs boson with mass lower than 76.7 GeV/<i>c</i><sup>2</sup> (type I) or 74.4 GeV/<i>c</i><sup>2</sup> (type II) is excluded at the 95% confidence level, for a wide range of the model parameters. Model independent cross-section limits have also been calculated.

  • 866.
    Goryashko, Vitaliy
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Johansson, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Noor, Masih
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Yogi, Rutambhara A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Proposal for Design and Test of a 352 MHz Spoke RF Source2012Report (Other academic)
    Abstract [en]

    More than a dozen of spoke resonators prototypes (SSR, DSR, TSR) have been constructed and tested worldwide. None have accelerated beam until now and the ESS LINAC will be the first accelerator to operate with spoke cavities. Experience with other types of superconducting cavities indicates that high-power test is vital for reliable operation of the cavity in an accelerator. Although characteristics of a bare cavity can be obtained in a low-power test some important features of a `dressed' cavity like the electroacoustic stability and tuning system can be studied only in a high-power test stand. The ESS LINAC is a pulsed machine and the Lorentz detuning originating from the electromagnetic pressure on the cavity walls is expected to be strong. The Lorentz force along with the cavity sensitivity to mechanical excitations at some resonant frequencies may lead to self-sustained mechanical vibrations which make cavity operation dicult. Practical experience shows that increasing the boundary stiness will decrease the static Lorentz force detuning but not necessarily the dynamic one. Therefore, the FREIA group at Uppsala University is building a high-power test stand able to study performance of the ESS spoke cavity at high power. The RF test stand will be able to drive the cavity not only in the self-excitation mode but also with closed RF loop and fixed frequency. The later technique will be used to reproduce the shape of the cavity voltage pulse as it is expected to be in the cavity operating in the ESS LINAC such that the cavity tuning compensation system will be tested under realistic conditions.

  • 867. Grabowska-Bold, Iwona
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Highlights from the ATLAS experiment2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 8-14Article in journal (Refereed)
    Abstract [en]

    This report provides an overview of the new results obtained by the ATLAS Collaboration at the LHC, which were presented at the Quark Matter 2018 conference. These measurements were covered in 12 parallel talks, one flash talk and 11 posters. In this document, a discussion of results is grouped into four areas: electromagnetic interactions, jet quenching, quarkonia and heavy-flavour production, and collectivity in small and larger systems. Measurements from the xenon-xenon collisions based on a short run collected in October 2017 are reported for the first time.

  • 868.
    Hansen, Christian
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Gollub, Nils
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics. Högenergifysik.
    DISCOVERY POTENTIAL FOR A CHARGED HIGGS BOSON DECAYING IN THE CHARGINO-NEUTRALINO CHANNEL OF THE ATLAS DETECTOR AT THE LHC2005In: Eur.Phys.J., Vol. C, no 44S2, p. 1-9Article in journal (Refereed)
  • 869. Hu, Qipeng
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of heavy flavor production and azimuthal anisotropy in small and large systems with ATLAS2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 687-690Article in journal (Refereed)
    Abstract [en]

    Heavy-flavor hadron production and collective motion in A+A collisions provide insight into the energy loss mechanism and transport properties of heavy quarks in the QGP. The same measurements in p+A collisions serve as an important baseline for understanding the observations in A+A collisions. For example, detailed studies of heavy-flavor hadron azimuthal anisotropy in p+A collisions may help to address whether the observed long-range "ridge" correlation arises from hard or semi-hard processes, or if it is the result of mechanisms unrelated to the initial hardness scale. These proceedings summarize heavy-flavor hadron production, via their semi-leptonic decay to muons in 2.76 TeV Pb+Pb and pp collisions, non-prompt J/psi in 5.02 TeV Pb+Pb and pp collisions, and prompt D-0 mesons in 8.16 TeV p+Pb collisions using ATLAS detector at the LHC. Azimuthal anisotropy of heavy-flavor hadrons is studied via their decay muons in 2.76 TeV Pb+Pb and 8.16 TeV p+Pb collisions, and via non-prompt J/psi in 5.02 TeV Pb+Pb collisions. Strong suppression of heavy-flavor hadron production and azimuthal anisotropy are observed in Pb+Pb collisions, while significant azimuthal anisotropy of heavy-flavor muons is observed in p+Pb collisions, without evidence of the modification of their production rates.

  • 870.
    Jacewicz, Marek
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dubrovskiy, A.
    CERN, CH-1211 Geneva 23, Switzerland.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Spectrometers for RF breakdown studies for CLIC2016In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 828, p. 63-71Article in journal (Refereed)
    Abstract [en]

    An e(+)e(-) collider of several TeV energy will be needed for the precision studies of any new physics discovered at the LHC collider at CERN. One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving high accelerating gradients in high energy accelerators such as the CLIC is the electrical breakdown at very high electrical field. The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of the emitted breakdown currents during two-beam acceleration experiments. It gives a unique possibility to measure the energy of electrons and ions in combination with the arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands. The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN. Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the vacuum breakdown phenomenon.

  • 871.
    Jacewicz, Marek
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dubrovskiy, Alexey
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Spectrometers for RF breakdown studies for CLIC2016Report (Other academic)
    Abstract [en]

    A e+e- collider of several TeV energy will be needed for the precision studies of any new physics discovered atthe LHC collider at CERN.  One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving highaccelerating gradients in high energy accelerators such asthe CLIC is the electrical breakdown at very high electrical field.The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of  the emitted breakdown currents during two-beam acceleration experiments. It gives an unique possibility to measure the energy of electrons and ions in combination withthe arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands.The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN.  Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the vacuum breakdown phenomenon.

  • 872.
    Jia, Jiangyong
    et al.
    SUNY Stony Brook, Chem Dept, Stony Brook, NY 11794 USA.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Heavy Ion Results from ATLAS2017In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 967, p. 51-58Article in journal (Refereed)
    Abstract [en]

    These proceedings provide an overview of the new results obtained with the ATLAS detector at the LHC, which were presented in the Quark Matter 2017 conference. These results were covered by twelve parallel talks, one flash talk and eleven posters. These proceedings group these results into five areas: initial state, jet quenching, quarkonium production, longitudinal flow dynamics, and collectivity in small systems.

  • 873.
    Olvegård, Maja
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Bhattacharyya, Anirban
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Fransson, Kjell
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Holz, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Li, Han
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Nicander, Harald
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Yogi, Ruthambara
    European Spallation Source.
    PROGRESS AT THE FREIA LABORATORY2015In: Proceedings of IPAC'15, JACoW: The Joint Accelerator Conferences Website , 2015Conference paper (Refereed)
    Abstract [en]

    The FREIA Facility for Research Instrumentation and Accelerator Development at Uppsala University, Sweden, has reached the stage where the testing of superconducting cavities for the European Spallation Source (ESS) is starting. The new helium liquefaction plant has been commissioned and now supplies a custom-made, versatile horizontal cryostat, HNOSS, with liquid helium at up to 140 l/h. The cryostat has been designed and built to house up to two accelerating cavities, or, later on, other superconducting equipment such as magnets or crab cavities. A prototype cavity for the spoke section of the ESS linac will arrive mid 2015 for high-power testing in the horizontal cryostat. Two tetrode-based commercial RF power stations will deliver 400 kW peak power each, at 352 MHz, to the cavity through an RF distribution line developed at FREIA. In addition, significant progress has been made with in-house development of solid state amplifier modules and powercombiners for future use in particle accelerators. We report here on these and other ongoing activities at the FREIA laboratory.

  • 874.
    Olvegård, Maja
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Benedetto, Elena
    European Organization for Nuclear Research - CERN.
    Cieslak-Kowalska, Magdalena
    European Organization for Nuclear Research - CERN.
    Martini, Michel
    European Organization for Nuclear Reasearch - CERN.
    Schönauer, Horst
    European Organization for Nuclear Reasearch - CERN.
    Wildner, Elena
    European Organization for Nuclear Reasearch - CERN.
    Overview Of The ESSnuSB Accumulator Ring2016In: Proceedings of the 57th ICFA Advanced Beam Dynamics Workshop on High-Intensity, High Brightness and High Power Hadron Beams / [ed] Mohammad Eshraqi (ESS), Garry Trahern (ESS), Volker RW Schaa (GSI), 2016, p. 105-109, article id MOPR021Conference paper (Other academic)
    Abstract [en]

    The European Spallation Source (ESS) is a research center based on the world's most powerful proton driver, 2.0 GeV, 5 MW on target, currently under construction in Lund. With an increased pulse frequency, the ESS linac could deliver additional beam pulses to a neutrino target, thus giving an excellent opportunity to produce a high-performance ESS neutrino Super-Beam (ESSnuSB). The focusing system surrounding the neutrino target requires short pulses. An accumulator ring and acceleration of an H- beam in the linac for charge-exchange injection into the accumulator could provide such short pulses. In this paper we present an overview of the work with optimizing the accumulator design and the challenges of injecting and storing 1.1E15 protons per pulse from the linac. In particular, particle tracking simulations with space charge will be described.

  • 875.
    Olvegård, Maja
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Koutchouk, Jean-Pierre
    CERN.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    ON THE SUITABILITY OF A SOLENOID HORN FOR THE ESS NEUTRINO SUPERBEAM2015In: Proceedings of IPAC'15, JACoW , 2015Conference paper (Other academic)
    Abstract [en]

    The European Spallation Source (ESS), now under construction in Lund, Sweden, offers unique opportunities for experimental physics, not only in neutron science but potentially in particle physics. The ESS neutrino superbeam project plans to use a 5 MW proton beam from the ESS linac to generate a high intensity neutrino superbeam, with the final goal of detecting leptonic CP-violation in an underground megaton Cherenkov water detector. The neutrino production requires a second target station and a complex focusing system for the pions emerging from the target. The normal-conducting magnetic horns that are normally used for these applications cannot accept the 2.86 ms long proton pulses of the ESS linac, which means that pulse shortening in an accumulator ring would be required. That, in turn, requires H- operation in the linac to accommodate the high intensity. As an attractive alternative, we investigate the possibility of using superconducting solenoids for the pion focusing. This solenoid horn system needs to also separate positive and negative pion charge as completely as possible, in order to generate separately neutrino and anti-neutrino beams. We present here progress in the study of such a solenoid horn.

  • 876. Perepelitsa, Dennis, V
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Photon-tagged measurements of jet quenching with ATLAS2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 595-598Article in journal (Refereed)
    Abstract [en]

    Events containing a high transverse momentum (p(T)) prompt photon offer a useful way to study the dynamics of the hot, dense medium produced in heavy ion collisions. Because photons do not carry color charge, they are unaffected by the medium, and thus provide information about the momentum, direction, and flavor (quark or gluon) of the associated hard-scattered parton before it begins to shower and become quenched. In particular, the presence of a high-p(T) photon can be used to select pp and Pb+Pb events with the same configuration before quenching, limiting the effects of quenching-induced selection biases present in other jet measurements. The large statistics pp and Pb+Pb data delivered by the LHC in 2015 allow for a detailed study of photon-tagged jet quenching effects, such as the overall parton energy loss and modified structure of the component of the shower which remains correlated with the initial parton direction (e.g. in cone). In this proceeding, photon-tagged measurements of jet quenching by ATLAS are reported.

  • 877. Puri, Akshat
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and pp collisions at √sNN=5.02TeV with ATLAS at the LHC2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 177-179Article in journal (Refereed)
    Abstract [en]

    Studies of the fragmentation of jets into charged particles in heavy-ion collisions can help in understanding the mechanism of jet quenching by the hot and dense QCD matter created in such collisions, the quark-gluon plasma. These proceedings present a measurement of the angular distribution of charged particles around the jet axis in root s(NN) = 5.02 TeV Pb+Pb and pp collisions, done using the ATLAS detector at the LHC. The measurement is performed inside jets reconstructed with the anti-k(t) algorithm with radius parameter R = 0.4, and is extended to regions outside the jet cone. Results are presented as a function of Pb+Pb collision centrality, and both jet and charged-particle transverse momenta.

  • 878.
    Ruber, Roger
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Yogi, Rutambhara
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Gajewski, Konrad
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Lofnes, Tor
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Santiago Kern, Rocio
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Wedberg, Rolf
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Tests of the Spoke Cavity RF Source and Cryomodules in Uppsala: ESS TDR Contribution2012Report (Other academic)
  • 879.
    Ruber, Roger
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    The Cryogenic System at the FREIA Laboratory2015Report (Other academic)
  • 880.
    Ruber, Roger
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Tord, Ekelöf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Palaia, Andrea
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Farabolini, Wilfrid
    Corsini, Roberto
    The CTF3 Two-beam Test Stand2013In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 729, p. 546-553Article in journal (Refereed)
    Abstract [en]

    The Two-beam Test Stand (TBTS) has been constructed and operated at the CLIC test facility CTF3 at CERN. The TBTS comprises two parallel and independent electron beam lines and has been designed to demonstrate the feasibility of a two-beam high gradient acceleration concept as proposed for the Compact Linear Collider (CLIC). In the CLIC scheme, the RF power is extracted from a high current drive beam using RF power extraction structures while the main beam is accelerated using this RF power which is fed into high gradient high frequency normal conducting accelerating structures. The Two-beam Test Stand is a unique facility to demonstrate the feasibility of the CLIC two-beam high gradient acceleration concept and to test the individual CLIC components and complete two-beam CLIC modules. The TBTS is particularly well suited to investigate the effects on the beam of RF breakdown in the high gradient accelerating structures. We report on the design, construction and commissioning of the Two-beam Test Stand.

  • 881. Schael, S
    et al.
    Botner, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hallgren, Allan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Tegenfeldt, F
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zivkovic, L
    Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP2013In: Physics Reports-Review Section of Physics Letters, ISSN 0370-1573, Vol. 532, no 4, p. 119-244Article, review/survey (Refereed)
    Abstract [en]

    Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. 

  • 882. Smirnova, Oxana
    et al.
    Eerola, Paula
    Ekelöf, Tord
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics.
    Ellert, Mattias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics.
    Hansen, John Renner
    Konstantinov, Aleksandr
    Kónya, Balázs
    Nielsen, Jakob Langgaard
    Ould-Saada, Farid
    Wäänänen, Anders
    The NorduGrid Architecture And Middleware for Scientific Applications2003In: Lecture Notes in Computer Science, 2003, p. 264-273Conference paper (Other scientific)
    Abstract [en]

    The NorduGrid project operates a production Grid infrastructure in Scandinavia and Finland using own innovative middleware solutions. The resources range from small test clusters at academic institutions to large farms at several supercomputer centers, a

  • 883. Spousta, Martin
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Jet suppression and jet substructure in Pb plus Pb and Xe plus Xe collisions with the ATLAS detector2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 611-614Article in journal (Refereed)
    Abstract [en]

    This short summary presents latest measurements of the nuclear modification factor, R-AA, for R = 0.4 jets in Pb+Pb collisions at root s(NN) = 5.02 TeV with the ATLAS detector at the LHC. The analysis is performed over a large range of transverse momentum, up to p(T) = 1 TeV, and differentially in jet p(T), rapidity, and collision centrality. The jet R-AA is measured also differentially in the jet mass, m, which provides new information on the dependence of the energy loss on the substructure of jets. Latest results by ATLAS on the dijet momentum balance in Xe+Xe collisions at root s(NN) = 5.44 TeV are presented and compared to the same quantity measured in Pb+Pb collisions at root s(NN) = 5.02 TeV. These recent measurements should help us understand mechanisms of parton energy loss and properties of hot and dense matter created in heavy-ion collisions.

  • 884. Steinberg, Peter
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Electromagnetic processes with quasireal photons in Pb+Pb collisions: QED, QCD, and the QGP2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 259-262Article in journal (Refereed)
    Abstract [en]

    Electromagnetic processes, both photon-photon and photon-nucleus, are shown to be useful in studying aspects of QED, QCD, and potentially the QGP. Using lead-lead collisions at root s(NN) = 5.02 TeV, the ATLAS detector has performed measurements of exclusive dimuon production, light-by-light scattering (via exclusive diphoton production), and photo-nuclear dijet production. These are all important examples of ultraperipheral collisions, where the nuclei do not interact hadronically. A recent study of the opening angles of dimuons produced in hadronic heavy-ion collisions, after subtracting heavy-flavor backgrounds, demonstrates that the dimuons carry information correlated with the overlap geometry, potentially about the density of charges in the QGP itself.

  • 885.
    Wedberg, Rolf
    et al.
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Yogi, Rutambhara A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Santiago-Kern, Rocio
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Lofnes, Tor
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gajewski, Konrad
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Power Supplies for Tetrode High Power Amplfiers at FREIA: ESS TDR Contribution2012Report (Other academic)
    Abstract [en]

    This paper select the topology of the power supplies to the RF power amplifier to one spoke cavity to be tested at FREIA Uppsala University.The power supplies are thought to fulfill the requirements of ESS in Lund.

    The amplifiers pulsed operation will have a strong impact of the choice of topology. The RF amplifier will have two tetrodes in the final stage.

    The anode power supply is studied for different topologies and number of anodes to supply.

    Storing the energy for pulse current to the anodes at high voltage or at low voltage is considered.

    The short circuit protection can be with a crowbar or a series switch. The series switch is selected for reasons of short interrupts in case of temporary short circuits.

    The grid and filament supplies are thought to be standard of the shelf power supplies.

    Cost estimate and comments on maintenance in the end of the paper.

  • 886.
    Wildner, Elena
    et al.
    European Organization for Nuclear Reasearch - CERN.
    Baussan, Eric
    IPHC, Université de Strasbourg, CNRS/IN2P3.
    Blennow, M.
    KTH Royal Institute of Technology.
    Bogomilov, M.
    University of Sofia.
    Burgman, Alexander
    Lund Univ, Dept Phys, POB 118, S-22100 Lund, Sweden.
    Bouquerel, Elian
    IPHC, Université de Strasbourg, CNRS/IN2P3.
    Carlile, Colin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. European Spallation Source.
    Cederkäll, Joakim
    Lund Univ, Dept Phys, POB 118, S-22100 Lund, Sweden.
    Peder, Christiansen
    Lund Univ, Dept Phys, POB 118, S-22100 Lund, Sweden.
    Cupial, Piotr
    AGH University of Science and Technology, Krakow.
    Danered, Håkan
    European Spallation Source.
    Dracos, Marcos
    IPHC, Université de Strasbourg, CNRS/IN2P3.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Eshraqi, Mohamad
    European Spallation Source.
    Hall-Wilton, R.
    ESS ERIC, European Spallat Source, POB 176, S-22100 Lund, Sweden.
    Lindroos, Mats
    European Spallation Source.
    Koutchouk, Jean-Pierre
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Martini, Michel
    European Organization for Nuclear Reasearch - CERN.
    Matev, R.
    Sofia Univ St Kliment Ohridski, Dept Atom Phys, Sofia 1164, Bulgaria.
    McGinnis, D.
    European Spallation Source.
    Miyamoto, Ryoichi
    European Spallation Source.
    Ohlsson, Tommy
    KTH, Royal Institute of Technology.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Olvegård, Maja
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Schönauer, Horst
    European Organization for Nuclear Reasearch - CERN.
    Tang, J. Y.
    Tsenov, R.
    Sofia Univ St Kliment Ohridski, Dept Atom Phys, Sofia 1164, Bulgaria.
    Vankova-Kirilova, Galina
    Sofia Univ St Kliment Ohridski, Dept Atom Phys, Sofia 1164, Bulgaria.
    Vassilopoulos, N.
    Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
    The Opportunity Offered by the ESSnuSB Project to Exploit the Larger Leptonic CP Violation Signal at the Second OscillationMaximum and the Requirements of This Project on the ESSAccelerator Complex2016In: Advances in High Energy Physics, ISSN 1687-7357, E-ISSN 1687-7365, article id 8640493Article in journal (Refereed)
    Abstract [en]

    The European Spallation Source (ESS), currently under construction in Lund, Sweden, is a research center that will provide, by 2023, the world's most powerful neutron source. The average power of the proton linac will be 5 MW. Pulsing this linac at higher frequency will make it possible to raise the average total beam power to 10 MW to produce, in parallel with the spallation neutron production, a very intense neutrino Super Beam of about 0.4 GeV mean neutrino energy. This will allow searching for leptonic CP violation at the second oscillation maximum where the sensitivity is about 3 times higher than at the first. The ESS neutrino Super Beam, ESSnuSB operated with a 2.0 GeV linac proton beam, together with a large undergroundWater Cherenkov detector located at 540 km from Lund, will make it possible to discover leptonic CP violation at 5 sigma. significance level in 56% (65% for an upgrade to 2.5 GeV beam energy) of the leptonic CP-violating phase range after 10 years of data taking, assuming a 5% systematic error in the neutrino flux and 10% in the neutrino cross section. The paper presents the outstanding physics reach possible for CP violation with ESSnuSB obtainable under these assumptions for the systematic errors. It also describes the upgrade of the ESS accelerator complex required for ESSnuSB.

  • 887.
    Wildner, Elena
    et al.
    European Organization for Nuclear Reasearch - CERN.
    Holzer, Bernard
    European Organization for Nuclear Reasearch - CERN.
    Martini, Michel
    European Organization for Nuclear Reasearch - CERN.
    Papaphilippou, Yannis
    European Organization for Nuclear Reasearch - CERN.
    Schönauer, Horst
    European Organization for Nuclear Reasearch - CERN.
    Eshraqi, Mohammad
    European Spallation Source.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Olvegård, Maja
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    THE ACCUMULATOR OF THE ESSnuSB FOR NEUTRINO PRODUCTION2015In: Proceedings of IPAC'15, Richmond, VA, USA, JACoW , 2015Conference paper (Other academic)
    Abstract [en]

    The European Spallation Source (ESS) is a research center based on the world’s most powerful neutron source currently under construction in Lund, Sweden. 2.0 GeV, 2.86 ms long proton pulses at 14 Hz are produced for the spallation facility (5MW on target). The possibility to pulse the linac at higher frequency to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. Short pulses on the target require an accumulator ring. The optimization of the accumulator lattice to store these high intensity beams from the linac (1.1E15 protons per pulse) has to take into account the space available on the ESS site, transport of H− beams (charge exchange injection), radiation and shielding needs. Space must be available in the ring for collimation and an RF system for the extraction gap and loss control. We present the status of the accumulator for the ESS neutrino facility.

  • 888.
    Yogi, Rutambhara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Gajewski, Konrad
    Uppsala University, The Svedberg Laboratory.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Noor, Masih
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Wedberg, Rolf
    Uppsala University, The Svedberg Laboratory.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Lofnes, Tor
    Uppsala University, The Svedberg Laboratory.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaly
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ruber, R J M Y
    CERN, Geneve, Schweiz.
    Uppsala high power test stand for ESS spoke cavities2012In: Proceedings of LINAC2012, 2012, p. 711-713Conference paper (Refereed)
  • 889.
    Yogi, Rutambhara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Selection of RF Power Source and Distribution Scheme at 352 MHz for Spoke Cavities at ESS and FREIA2012Report (Other academic)
    Abstract [en]

    The report describes selection of RF power source and distribution scheme for spoke cavities at ESS and FREIA.  The European Spallation Source (ESS) is the world’s most powerful neutron source, which contain 36 superconducting spoke cavities at 352MHz and provide power of 0.5MW to the beam. The baseline for the RF system is a point-to-point generation and distribution  from a single source to a single accelerating cavity.The RF system that has to generate this power and distribute it to the accelerating cavities, is a main resource driver for linear accelerators in form of investment, operation and maintenance. Therefore the technical alternatives are compared to minimize capital and running cost of the accelerator, without compromising its reliability. At 352 MHz and 350 kW RF power output, tetrode amplifiers are selected because of their advantages of being cheap, reliable, simple and efficient as compared to the other RF power amplifiers. The tetrodes, due to their low gain, need a pre-driver. The solid state amplifier technology is selected as a pre-driver due to its simplicity, reliability and efficiency. Half height aluminum WR2300 wave guides shall be used for RF distribution. This solution makes it possible to discard the circulator from the RF distribution chain, thus improving system efficiency.

  • 890. Zhou, Mingliang
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Flow fluctuations in Pb plus Pb collisions at √sNN=5.02 TeV with the ATLAS detector2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 323-326Article in journal (Refereed)
    Abstract [en]

    Measurements of four-particle cumulants c(n){4} for n = 1, 2, 3, 4 are presented using 470 mu b(-1) of Pb+Pb collisions at root s(NN) = 5.02 TeV with the ATLAS detector at the LHC. These cumulants provide information on the event-by-event fluctuations of single harmonics p(v(n)). For the first time, a negative c(1){4} is observed. The c(4){4} is found to be negative in central collisions but changes sign around 20-25% centrality. This behavior is consistent with a nonlinear contribution to v(4) that is proportional to v(2)(2). c(2){4} and c(3){4} are calculated using two reference event classes in order to investigate the influence of volume fluctuations. Over most of the centrality range, c(2){4} and c(3){4} are found to be negative, while in the ultra-central collisions, c(2){4} changes sign and becomes positive, suggesting a deviation from Gaussian behavior in the event-by-event fluctuation of v(2). The magnitudes of the sign change are also found to be dependent of the event class definition .

15161718 851 - 890 of 890
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf