Digitala Vetenskapliga Arkivet

Endre søk
Begrens søket
1234567 51 - 100 of 58444
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Abbas, Muhammad Tahir
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Eklund, Johan
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Grinnemo, Karl-Johan
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Brunström, Anna
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Impact of Tunable Parameters in NB-IoT Stack onthe Energy Consumption2019Inngår i: Proceedings of Fifteenth Swedish National Computer Networking Workshop (SNCNW), 2019Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper studies the impact of tunable parametersin the NB-IoT stack on the energy consumption of a user equipment(UE), e.g., a wireless sensor. NB-IoT is designed to enablemassive machine-type communications for UE while providing abattery lifetime of up to 10 years. To save battery power, most oftime the UE is in dormant state and unreachable. Still, duringthe CONNECTED and IDLE state, correct tuning of criticalparameters, like Discontinuous reception (DRX), and extendedDiscontinuous reception (eDRX), respectively, are essential to savebattery power. Moreover, the DRX and eDRX actions relate tovarious parameters which are needed to be tuned in order toachieve a required UE battery lifetime. The objective of thispaper is to observe the influence of an appropriate tuning ofthese parameters to reduce the risk of an early battery drainage

  • 52.
    Abbas, Muhammad Tahir
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Eklund, Johan
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Grinnemo, Karl-Johan
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Brunström, Anna
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Science, Mathematics and Engineering Education Research (SMEER).
    Alfredsson, Stefan
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Science, Mathematics and Engineering Education Research (SMEER). Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Alay, Özgü
    University of Oslo and Simula Metropolitan, NOR.
    Katona, Sándor
    Ericsson AB.
    Seres, Gergely
    Ericsson AB.
    Rathonyi, Bela
    Ericsson AB.
    Guidelines for an Energy Efficient Tuning of the NB-IoT Stack2020Inngår i: 45th IEEE Conference on Local Computer Networks (LCN), IEEE Communications Society, 2020, s. 60-69, artikkel-id 9363265Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this paper, we study the energy consumptionof Narrowband IoT devices. The paper suggests that key tosaving energy for NB-IoT devices is the usage of full Discontinuous Reception (DRX), including the use of connected-mode DRX (cDRX): In some cases, cDRX reduced the energy consumption over a 10-year period with as much as 50%. However, the paper also suggests that tunable parameters, such as the inactivity timer, do have a significant impact. On the basis of our findings, guidelines are provided on how to tune the NB-IoT device so that it meets the target of the 3GPP, i.e., a 5-Wh battery should last for at least 10 years. It is further evident from our results that the energy consumption is largely dependent on the intensity and burstiness of the traffic, and thus could be significantly reduced if data is sent in bursts with less intensity,irrespective of cDRX support.

  • 53.
    Abbas, Muhammad Tahir
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Grinnemo, Karl-Johan
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Eklund, Johan
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Alfredsson, Stefan
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Rajiullah, Mohammad
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Brunström, Anna
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Caso, Giuseppe
    Ericsson Research, Sweden.
    Kousias, Konstantinos
    Simula Research Laboratory, Norway.
    Alay, Özgü
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). University of Oslo, Norway.
    Energy-Saving Solutions for Cellular Internet of Things - A Survey2022Inngår i: IEEE Access, E-ISSN 2169-3536, Vol. 10, s. 62096-62096Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Cellular Internet of Things (CIoT), a new paradigm, paves the way for a large-scale deployment of IoT devices. CIoT promises enhanced coverage and massive deployment of low-cost IoT devices with an expected battery life of up to 10 years. However, such a long battery life can only be achieved provided the CIoT device is configured with energy efficiency in mind. This paper conducts a comprehensive survey on energy-saving solutions in 3GPP-based CIoT networks. In comparison to current studies, the contribution of this paper is the classification and an extensive analysis of existing energy-saving solutions for CIoT, e.g., the configuration of particular parameter values and software modifications of transport- or radio-layer protocols, while also stressing key parameters impacting the energy consumption such as the frequency of data reporting, discontinuous reception cycles (DRX), and Radio Resource Control (RRC) timers. In addition, we discuss shortcomings, limitations, and possible opportunities which can be investigated in the future to reduce the energy consumption of CIoT devices.

    Fulltekst (pdf)
    fulltext
  • 54.
    Abbas, Muhammad Tahir
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Muhammad, Afaq
    Sarhad Univ Sci & Informat Technol, Pakistan.
    Song, Wang-Cheol
    Jeju Natl Univ, South Korea.
    SD-IoV: SDN enabled routing for internet of vehicles in road-aware approach2019Inngår i: Journal of Ambient Intelligence and Humanized Computing, ISSN 1868-5137, E-ISSN 1868-5145, Vol. 11, nr 3, s. 1265-1280Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Proposing an optimal routing protocol for internet of vehicles with reduced overhead has endured to be a challenge owing to the incompetence of the current architecture to manage flexibility and scalability. The proposed architecture, therefore, consolidates an evolving network standard named as software defined networking in internet of vehicles. Which enables it to handle highly dynamic networks in an abstract way by dividing the data plane from the control plane. Firstly, road-aware routing strategy is introduced: a performance-enhanced routing protocol designed specifically for infrastructure-assisted vehicular networks. In which roads are divided into road segments, with road side units for multi-hop communication. A unique property of the proposed protocol is that it explores the cellular network to relay control messages to and from the controller with low latency. The concept of edge controller is introduced as an operational backbone of the vehicle grid in internet of vehicles, to have a real-time vehicle topology. Last but not least, a novel mathematical model is estimated which assists primary controller in a way to find not only a shortest but a durable path. The results illustrate the significant performance of the proposed protocol in terms of availability with limited routing overhead. In addition, we also found that edge controller contributes mainly to minimizes the path failure in the network.

    Fulltekst (pdf)
    fulltext
  • 55.
    Abbas, Naeem
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik- och datorsystem, ECS.
    Runtime Parallelisation Switching for MPEG4 Encoder on MPSoC2008Independent thesis Advanced level (degree of Master (Two Years)), 80 poäng / 120 hpOppgave
    Abstract [en]

    The recent development for multimedia applications on mobile terminals raised the need for flexible and scalable computing platforms that are capable of providing considerable (application specific) computational performance within a low cost and a low energy budget. The MPSoC with multi-disciplinary approach, resolving application mapping, platform architecture and runtime management issues, provides such multiple heterogeneous, flexible processing elements. In MPSoC, the run-time manager takes the design time exploration information as an input and selects an active Pareto point based on quality requirement and available platform resources, where a Pareto point corresponds to a particular parallelization possibility of target application. To use system’s scalability at best and enhance application’s flexibility a step further, the resource management and Pareto point selection decisions need to be adjustable at run-time. This thesis work experiments run-time Pareto point switching for MPEG-4 encoder. The work involves design time exploration and then embedding of two parallelization possibilities of MPEG-4 encoder into one single component and enabling run-time switching between parallelizations, to give run-time control over adjusting performance-cost criteria and allocation de-allocation of hardware resources at run-time. The newer system has the capability to encode each video frame with different parallelization. The obtained results offer a number of operating points on Pareto curve in between the previous ones at sequence encoding level. The run-time manager can improve application performance up to 50% or can save memory bandwidth up to 15%, according to quality request.

    Fulltekst (pdf)
    fulltext
  • 56. Abbas, Q.
    et al.
    Hassan, Syed Ali
    Pervaiz, H.
    Ni, Q.
    A Markovian Model for the Analysis of Age of Information in IoT Networks2021Inngår i: IEEE Wireless Communications Letters, ISSN 2162-2337, E-ISSN 2162-2345, Vol. 10, nr 7, s. 1596-1600, artikkel-id 9410556Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Age of Information (AoI) is a critical metric in status update systems as these systems require the fresh updates. This letter investigates the uplink of an Internet-of-Thing (IoT) network where L nodes transmit their information packets to a base station. The effects of the arrival rate of packets at the nodes, the number of nodes in the system, and queue length of each node have been studied by devising a discrete time Markov chain (MC) model. This model helps in predicting the values of AoI and probability of packet drops in such systems. The notion of first-in first-out is used for queuing, which transmits the oldest packet first, resulting in decreasing the overall AoI of the system. The results show that AoI increases with the increase in queue length, number of nodes and arrival rate and we quantify the aforementioned metrics using the MC model. The results found using the MC model are also validated using extensive simulations. © 2012 IEEE.

  • 57. Abbas, Q.
    et al.
    Zeb, S.
    Hassan, S. A.
    Age of Information in Backscatter Communication2021Inngår i: Internet Things, Springer , 2021, s. 67-80Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Age of Information (AoI) has been introduced to characterize the newness of data which is observed in real time. In other words, it is the measure of time elapsed since the generation of last received update about a process and is a vital metric in networks such as Internet of things (IoTs), especially when the application demands fresh updates. Most of the applications require fresh data e.g., applications related to environmental monitoring, smart agriculture, body area networks etc. On the other hand backscatter communication promises to resolve one of the most challenging issues of IoT devices, i.e., making them capable for communication without the batteries. The importance of AoI in backscatter communication is paramount to gauge performance of backscatter IoT networks. This chapter addresses the significance of AoI in backscatter communication and suggests some techniques to design a communication system with minimum AoI, maximum energy efficiency, and minimum outage. © 2021, Springer Nature Switzerland AG.

  • 58.
    Abbas, Taimoor
    et al.
    Lund Univ, Elect & Informat Technol Dept, S-22100 Lund, Sweden..
    Sjöberg, Katrin
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES).
    Kåredal, Johan
    Lund Univ, Elect & Informat Technol Dept, S-22100 Lund, Sweden..
    Tufvesson, Fredrik
    Lund Univ, Elect & Informat Technol Dept, S-22100 Lund, Sweden..
    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations2015Inngår i: International Journal of Antennas and Propagation, ISSN 1687-5869, E-ISSN 1687-5877, artikkel-id 190607Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non-line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.

  • 59.
    Abbas, Zainab
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Programvaruteknik och datorsystem, SCS.
    Scalable Streaming Graph and Time Series Analysis Using Partitioning and Machine Learning2021Doktoravhandling, monografi (Annet vitenskapelig)
    Abstract [en]

    Recent years have witnessed a massive increase in the amount of data generated by the Internet of Things (IoT) and social media. Processing huge amounts of this data poses non-trivial challenges in terms of the hardware and performance requirements of modern-day applications. The data we are dealing with today is of massive scale, high intensity and comes in various forms. MapReduce was a popular and clever choice of handling big data using a distributed programming model, which made the processing of huge volumes of data possible using clusters of commodity machines. However, MapReduce was not a good fit for performing complex tasks, such as graph processing, iterative programs and machine learning. Modern data processing frameworks, that are being popularly used to process complex data and perform complex analysis tasks, overcome the shortcomings of MapReduce. Some of these popular frameworks include Apache Spark for batch and stream processing, Apache Flink for stream processing and Tensor Flow for machine learning.

    In this thesis, we deal with complex analytics on data modeled as time series, graphs and streams. Time series are commonly used to represent temporal data generated by IoT sensors. Analysing and forecasting time series, i.e. extracting useful characteristics and statistics of data and predicting data, is useful for many fields that include, neuro-physiology, economics, environmental studies, transportation, etc. Another useful data representation we work with, are graphs. Graphs are complex data structures used to represent relational data in the form of vertices and edges. Graphs are present in various application domains, such as recommendation systems, road traffic analytics, web analysis, social media analysis. Due to the increasing size of graph data, a single machine is often not sufficient to process the complete graph. Therefore, the computation, as well as the data, must be distributed. Graph partitioning, the process of dividing graphs into subgraphs, is an essential step in distributed graph processing of large scale graphs because it enables parallel and distributed processing.

    The majority of data generated from IoT and social media originates as a continuous stream, such as series of events from a social media network, time series generated from sensors, financial transactions, etc. The stream processing paradigm refers to the processing of data streaming that is continuous and possibly unbounded. Combining both graphs and streams leads to an interesting and rather challenging domain of streaming graph analytics. Graph streams refer to data that is modelled as a stream of edges or vertices with adjacency lists representing relations between entities of continuously evolving data generated by a single or multiple data sources. Streaming graph analytics is an emerging research field with great potential due to its capabilities of processing large graph streams with limited amounts of memory and low latency. 

    In this dissertation, we present graph partitioning techniques for scalable streaming graph and time series analysis. First, we present and evaluate the use of data partitioning to enable data parallelism in order to address the challenge of scale in large spatial time series forecasting. We propose a graph partitioning technique for large scale spatial time series forecasting of road traffic as a use-case. Our experimental results on traffic density prediction for real-world sensor dataset using Long Short-Term Memory Neural Networks show that the partitioning-based models take 12x lower training time when run in parallel compared to the unpartitioned model of the entire road infrastructure. Furthermore, the partitioning-based models have 2x lower prediction error (RMSE) compared to the entire road model. Second, we showcase the practical usefulness of streaming graph analytics for large spatial time series analysis with the real-world task of traffic jam detection and reduction. We propose to apply streaming graph analytics by performing useful analytics on traffic data stream at scale with high throughput and low latency. Third, we study, evaluate, and compare the existing state-of-the-art streaming graph partitioning algorithms. We propose a uniform analysis framework built using Apache Flink to evaluate and compare partitioning features and characteristics of streaming graph partitioning methods. Finally, we present GCNSplit, a novel ML-driven streaming graph partitioning solution, that uses a small and constant in-memory state (bounded state) to partition (possibly unbounded) graph streams. Our results demonstrate that \ours provides high-throughput partitioning and can leverage data parallelism to sustain input rates of 100K edges/s. GCNSplit exhibits a partitioning quality, in terms of graph cuts and load balance, that matches that of the state-of-the-art HDRF (High Degree Replicated First) algorithm while storing three orders of magnitude smaller partitioning state.

    Fulltekst (pdf)
    fulltext
  • 60.
    Abbas, Zainab
    et al.
    KTH Royal Institute of Technology, Sweden.
    Al-Shishtawy, Ahmad
    RISE - Research Institutes of Sweden, ICT, SICS.
    Girdzijauskas, Sarunas
    RISE - Research Institutes of Sweden, ICT, SICS. KTH Royal Institute of Technology, Sweden.
    Vlassov, Vladimir
    KTH Royal Institute of Technology, Sweden.
    Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks2018Inngår i: Proceedings - 2018 IEEE International Congress on Big Data, BigData Congress 2018 - Part of the 2018 IEEE World Congress on Services, Institute of Electrical and Electronics Engineers Inc. , 2018, s. 57-65Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Short-term traffic prediction allows Intelligent Transport Systems to proactively respond to events before they happen. With the rapid increase in the amount, quality, and detail of traffic data, new techniques are required that can exploit the information in the data in order to provide better results while being able to scale and cope with increasing amounts of data and growing cities. We propose and compare three models for short-term road traffic density prediction based on Long Short-Term Memory (LSTM) neural networks. We have trained the models using real traffic data collected by Motorway Control System in Stockholm that monitors highways and collects flow and speed data per lane every minute from radar sensors. In order to deal with the challenge of scale and to improve prediction accuracy, we propose to partition the road network into road stretches and junctions, and to model each of the partitions with one or more LSTM neural networks. Our evaluation results show that partitioning of roads improves the prediction accuracy by reducing the root mean square error by the factor of 5. We show that we can reduce the complexity of LSTM network by limiting the number of input sensors, on average to 35% of the original number, without compromising the prediction accuracy. .

  • 61.
    Abbas, Zainab
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Programvaruteknik och datorsystem, SCS.
    Ivarsson, Jón Reginbald
    KTH.
    Al-Shishtawy, A.
    Vlassov, Vladimir
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Programvaruteknik och datorsystem, SCS.
    Scaling Deep Learning Models for Large Spatial Time-Series Forecasting:
    2019Inngår i: Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019:
    , Institute of Electrical and Electronics Engineers Inc. , 2019, s. 1587-1594
    Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Neural networks are used for different machine learning tasks, such as spatial time-series forecasting. Accurate modelling of a large and complex system requires large datasets to train a deep neural network that causes a challenge of scale as training the network and serving the model are computationally and memory intensive. One example of a complex system that produces a large number of spatial time-series is a large road sensor infrastructure deployed for traffic monitoring. The goal of this work is twofold: 1) To model large amount of spatial time-series from road sensors; 2) To address the scalability problem in a real-life task of large-scale road traffic prediction which is an important part of an Intelligent Transportation System.We propose a partitioning technique to tackle the scalability problem that enables parallelism in both training and prediction: 1) We represent the sensor system as a directed weighted graph based on the road structure, which reflects dependencies between sensor readings, and weighted by sensor readings and inter-sensor distances; 2) We propose an algorithm to automatically partition the graph taking into account dependencies between spatial time-series from sensors; 3) We use the generated sensor graph partitions to train a prediction model per partition. Our experimental results on traffic density prediction using Long Short-Term Memory (LSTM) Neural Networks show that the partitioning-based models take 2x, if run sequentially, and 12x, if run in parallel, less training time, and 20x less prediction time compared to the unpartitioned model of the entire road infrastructure. The partitioning-based models take 100x less total sequential training time compared to single sensor models, i.e., one model per sensor. Furthermore, the partitioning-based models have 2x less prediction error (RMSE) compared to both the single sensor models and the entire road model. 

  • 62. Abbasi, A. G.
    et al.
    Muftic, Sead
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikation: Infrastruktur och tjänster, Kommunikationssystem, CoS.
    Schmölzer, Gernot
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikation: Infrastruktur och tjänster, Kommunikationssystem, CoS.
    A model and design of a security provider for Java applications2009Inngår i: International Conference for Internet Technology and Secured Transactions, ICITST 2009, 2009, s. 5402592-Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The model and design of a generic security provider provides a comprehensive set of security services, mechanisms, encapsulation methods, and security protocols for Java applications. The model is structured in four layers; each layer provides services to the upper layer and the top layer provide services to applications. The services reflect security requirements derived from a wide range of applications; from small desktop applications to large distributed enterprise environments. Based on the abstract model, this paper describes design and implementation of an instance of the provider comprising various generic security modules: symmetric key cryptography, asymmetric key cryptography, hashing, encapsulation, certificates management, creation and verification of signatures, and various network security protocols. This paper also describes the properties extensibility, flexibility, abstraction, and compatibility of the Java Security Provider.

  • 63. Abbasi, A. G.
    et al.
    Muftic, Sead
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikation: Infrastruktur och tjänster, Kommunikationssystem, CoS.
    Schmölzer, Gernot
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikation: Infrastruktur och tjänster, Kommunikationssystem, CoS.
    CryptoNET: A model of generic security provider2010Inngår i: International Journal of Internet Technology and Secured Transactions, ISSN 1748-569X, E-ISSN 1748-5703, Vol. 2, nr 3-4, s. 321-335Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The model and design of a generic security provider provides a comprehensive set of security services, mechanisms, encapsulation methods, and security protocols for Java applications. The model is structured in four layers; each layer provides services to the upper layer and the top layer provide services to applications. The services reflect security requirements derived from a wide range of applications; from small desktop applications to large distributed enterprise environments. Based on the abstract model, this paper describes design and implementation of an instance of the provider comprising various generic security modules: symmetric key cryptography, asymmetric key cryptography, hashing, encapsulation, certificates management, creation and verification of signatures, and various network security protocols. This paper also describes the properties for extensibility, flexibility, abstraction, and compatibility of the Java security provider.

  • 64.
    Abbasi, Abdul G
    et al.
    RISE Research Institutes of Sweden, Digitala system, Industriella system.
    Rydberg, Anna
    RISE Research Institutes of Sweden, Bioekonomi och hälsa, Jordbruk och livsmedel.
    Altmann, Peter
    Digg Agency for Digital Government, Sweden.
    Towards a verifiable and secure data sharing platform for livestock supply chain2022Inngår i: Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022, Institute of Electrical and Electronics Engineers Inc. , 2022Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The digitization of a supply chain involves satisfying several functional and non-functional context specific requirements. The work presented herein builds on efforts to elicit trust and profit requirements from actors in the Swedish livestock supply chain, specifically the beef supply chain. Interviewees identified several benefits related to data sharing and traceability but also emphasized that these benefits could only be realized if concerns around data security and data privacy were adequately addressed. We developed a data sharing platform as a response to these requirements. Requirements around verifiability, traceability, secure data sharing of potentially large data objects, fine grained access control, and the ability to link together data objects was realized using distributed ledger technology and a distributed file system. This paper presents this data sharing platform together with an evaluation of its usefulness in the context of beef supply chain traceability. 

  • 65.
    Abbasi, Abdul Gahafoor
    et al.
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Khan, Zaheer
    University of the West of England, UK.
    Veidblock: Verifiable identity using blockchain and ledger in a software defined network2017Inngår i: UCC 2017 Companion - Companion Proceedings of the 10th International Conference on Utility and Cloud Computing, Association for Computing Machinery, Inc , 2017, s. 173-179Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Blockchain and verifiable identities have a lot of potential in future distributed software applications e.g. smart cities, eHealth, autonomous vehicles, networks, etc. In this paper, we proposed a novel technique, namely VeidBlock 1 , to generate verifiable identities by following a reliable authentication process. These entities are managed by using the concepts of blockchain ledger and distributed through an advance mechanism to protect them against tampering. All identities created using VeidBlock approach are verifiable and anonymous therefore it preserves user’s privacy in verification and authentication phase. As a proof of concept, we implemented and tested the VeidBlock protocols by integrating it in a SDN based infrastructure. Analysis of the test results yield that all components successfully and autonomously performed initial authentication and locally verified all the identities of connected components.

  • 66.
    Abbasi, Abdul Ghafoor
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikation: Infrastruktur och tjänster, Kommunikationssystem, CoS.
    Muftic, Sead
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikation: Infrastruktur och tjänster, Kommunikationssystem, CoS.
    Mumtaz, Shahzad Ahmed
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikation: Infrastruktur och tjänster, Kommunikationssystem, CoS.
    Security extensions of windows environment based on FIPS 201 (PIV) smart card2011Inngår i: World Congr. Internet Secur., WorldCIS, 2011, s. 86-92Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper describes security extensions of various Windows components based on usage of FIPS 201 (PIV) smart cards. Compared to some other similar solutions, this system has two significant advantages: first, smart cards are based on FIPS 201 standard and not on some proprietary technology; second, smart card security extensions represent an integrated solution, so the same card is used for security of several Microsoft products. Furthermore, our smart card system uses FIPS 201 applet and middleware with smart card APIs, so it can also be used by other developers to extend their own applications with smart card functions in a Windows environment. We support the following security features with smart cards: start-up authentication (based on PIN and/or fingerprint), certificate-based domain authentication, strong authentication, and protection of local resources. We also integrated our middleware and smart cards with MS Outlook and MS Internet Explorer.

  • 67.
    Abbasi, Jasim Aftab
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Test of Rapid Control System Development using TargetLink2012Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
    Abstract [en]

    The aim of this thesis is to employ and evaluate an evaluation board with the standard microprocessor freescale MPC5554EVB board for implementation of control algorithms which are created in Matlab/Simulink instead of using dSPACE prototyping hardware. The Simulink real-time model shall be compiled to the MPC5554EVB board. TargetLink is a powerful software tool which allows an automatic generation of efficient C code from Simulink and facilitates model-based control design. The goal of this thesis is to learn how to use TargetLink in a control design workflow from model to real code and what are the limitations of a microprocessor platform and to evaluate the capabilities of TargetLink to generate a working code for a generic microprocessor.

  • 68.
    Abbasi, Mahdi
    Högskolan i Gävle, Institutionen för teknik och byggd miljö.
    Characterization of a 5GHz Modular Radio Frontend for WLAN Based on IEEE 802.11p2008Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
    Abstract [en]

    The number of vehicles has increased significantly in recent years, which causeshigh density in traffic and further problems like accidents and road congestions.A solution regarding to this problem is vehicle-to-vehicle communication, wherevehicles are able to communicate with their neighboring vehicles even in the absenceof a central base station, to provide safer and more efficient roads and toincrease passenger safety.The goal of this thesis is to investigate basic physical layer parameters of ainter-vehicle communication system, like emission power, spectral emission, errorvector magnitude, guard interval, ramp-up/down time, and third order interceptpoint. I also studied the intelligent transportation system’s channel layout inEurope, how the interference of other systems are working in co-channel and adjacentchannels, and some proposals to use the allocated frequency bands. On theother hand, the fundamentals of OFDM transmission and definitions of OFDMkey parameters in IEEE 802.11p are investigated.The focus of this work is on the measurement of transmitter frontend parametersof a new testbed designed and fabricated in order to be used at inter-vehiclecommunication based on IEEE 802.11p.

    Fulltekst (pdf)
    FULLTEXT01
  • 69.
    ABBASI, MUHAMMAD MOHSIN
    KTH, Skolan för elektro- och systemteknik (EES), Signalbehandling.
    Solving Sudoku by Sparse Signal Processing2015Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
    Abstract [en]

    Sudoku is a discrete constraints satisfaction problem which is modeled as an underdetermined linear

    system. This report focuses on applying some new signal processing approaches to solve sudoku and

    comparisons to some of the existing approaches are implemented. As our goal is not meant for

    sudoku only in the long term, we applied approximate solvers using optimization theory methods. A

    Semi Definite Relaxation (SDR) convex optimization approach was developed for solving sudoku. The

    idea of Iterative Adaptive Algorithm for Amplitude and Phase Estimation (IAA-APES) from array

    processing is also being used for sudoku to utilize the sparsity of the sudoku solution as is the case in

    sensing applications. LIKES and SPICE were also tested on sudoku and their results are compared with

    l1-norm minimization, weighted l1-norm, and sinkhorn balancing. SPICE and l1-norm are equivalent

    in terms of accuracy, while SPICE is slower than l1-norm. LIKES and weighted l1-norm are equivalent

    and better than SPICE and l1-norm in accuracy. SDR proved to be best when the sudoku solutions are

    unique; however the computational complexity is worst for SDR. The accuracy for IAA-APES is

    somewhere between SPICE and LIKES and its computation speed is faster than both.

    Fulltekst (pdf)
    fulltext
  • 70.
    Abbasi, Muneeb Mehmood
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Jabbar, Mohammad Abdul
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Design and Performance Analysis of Low-Noise Amplifier with Band-Pass Filter for 2.4-2.5 GHz2012Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
    Abstract [en]

    Low power wireless electronics is becoming more popular due to durability, portability and small dimension. Especially, electronic devices in instruments, scientific and medical (ISM) band is convenient from the spectrum regulations and technology availability point of view. In the communication engineering society, to make a robust transceiver is always a matter of challenges for the better performance.

    However, in this thesis work, a new approach of design and performance analysis of Low-Noise Amplifier with Band-Pass filter is performed at 2.45 GHz under the communication electronics research group of Institute of Science and Technology (ITN). Band-Pass Filtered Low-Noise Amplifier is designed with lumped components and transmission lines. Performances of different designs are compared with respect to noise figure, gain, input and output reflection coefficient. In the design process, a single stage LNA is designed with amplifier, ATF-58143. Maximally flat band-pass (BPF) filters were designed with lumped components and distributed elements. Afterwards, BPF is integrated with the LNA at the front side of LNA to get a compact Band-Pass Filtered Low-Noise Amplifier with good performance.

    Advanced Design System (ADS) tool was used for design and simulation, and each design was tuned to get the optimum value for noise figure, gain and input reflection coefficient. LNA stand-alone gives acceptable value of noise figure and gain but the bandwidth was too wide compared to specification. Band-Pass Filtered Low-Noise Amplifier with lumped components gives also considerable values of noise and gain. But the gain was not so flat and the bandwidth was also wide. Then, Band-Pass Filtered Low-Noise Amplifier was designed with transmission lines where the optimum value of noise figure and gain was found. The gain was almost flat over the whole band, i.e., 2.4-2.5 GHz compared to LNA stand-alone and Band-Pass Filtered Low-Noise Amplifier designed with lumped components. It is observed that deviations of results from schematic to layout level are considerable, i.e., electromagnetic simulation is needed to predict the Band-Pass Filtered Low-Noise Amplifier performance.

    Prototype of LNA, Band-Pass Filtered Low-Noise Amplifier with lumped and transmission lines are made at ITN’s PCB laboratory. Due to unavailability of exact values of Murata components and for some other technical reasons, the measured values of Band-Pass Filtered Low-Noise Amplifier with lumped components and transmission lines are deviated compared to predicted values from simulation.

    Fulltekst (pdf)
    fulltext
  • 71. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Deoskar, Kunal
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Finley, Chad
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Hultqvist, Klas
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Jansson, Matti
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Walck, Christian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Zhang, Z.
    A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory2021Inngår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 16, nr 7, artikkel-id P07041Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction method based on convolutional architectures and hexagonally shaped kernels is presented. The presented method is robust towards systematic uncertainties in the simulation and has been tested on experimental data. In comparison to standard reconstruction methods in IceCube, it can improve upon the reconstruction accuracy, while reducing the time necessary to run the reconstruction by two to three orders of magnitude.

  • 72. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Deoskar, Kunal
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Finley, Chad
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Hultqvist, Klas
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Jansson, Matti
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Walck, Christian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Zhelnin, P.
    Framework and tools for the simulation and analysis of the radio emission from air showers at IceCube2022Inngår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 17, nr 6, artikkel-id P06026Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km(2). Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules that have been developed to work with time-and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field.

  • 73.
    Abbasi, S.
    et al.
    Islamic Azad University, Tehran, Iran.
    Rahmani, A. M.
    National Yunlin University of Science and Technology, Douliou, Yunlin, Taiwan.
    Balador, Ali
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system. RISE Research Institute of Sweden, Västerås, Sweden.
    Sahafi, A.
    Islamic Azad University, Tehran, Iran.
    Internet of Vehicles: Architecture, services, and applications2021Inngår i: International Journal of Communication Systems, ISSN 1074-5351, E-ISSN 1099-1131, Vol. 34, nr 10Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The connection between objects and information exchange has been possible in recent years, with the advent of the Internet of Things (IoT) in different industries. We can meet different requirements in each industry utilizing this feature. Intelligent transportation uses the Internet of Vehicles (IoV) as a solution for communication among vehicles. It improves traffic management applications and services to guarantee safety on roads. We categorize services, applications, and architectures and propose a taxonomy for IoV. Then, we study open issues and challenges for future works. We highlighted applications and services due to drivers' requirements and nonfunctional requirements, considering the qualitative characteristic. This paper summarizes the current state of the IoV in architectures, services, and applications. It can be a start view to provide the solutions for challenges in traffic management in cities. The present study is beneficial for smart city developments and management. According to this paper's result, the services and applications evaluate performance with 34% frequency, safety and data accuracy, and security with a 13% frequency in selected papers. These measurements are essential due to the IoV characteristics such as real-time operation, accident avoidance in applications, and complicated user data management. 

  • 74.
    Abbasi, Shirin
    et al.
    Islamic Azad University, Iran.
    Rahmani, Amir Masoud
    Islamic Azad University, Tehran, Iran; National Yunlin University of Science and Technology, Taiwan.
    Balador, Ali
    Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.
    Sahafi, Amir
    Islamic Azad University, Iran.
    A fault-tolerant adaptive genetic algorithm for service scheduling in internet of vehicles2023Inngår i: Applied Soft Computing, ISSN 1568-4946, E-ISSN 1872-9681, Vol. 143, artikkel-id 110413Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Over the years, a range of Internet of Vehicles services has emerged, along with improved quality parameters. However, the field still faces several limitations, including resource constraints and the time response requirement. This paper extracts cost, energy, processing power, service management, and resource allocation parameters. Mathematical equations are then defined based on these parameters. To simplify the process complexity and ensure scalability, we propose an algorithm that uses the genetic algorithm for fault and cost management during resource allocation to services. The main concept is to pick resources for services using a genetic algorithm. We discuss the processing and energy costs associated with this function, which is the algorithm's objective function and is created to optimize cost. Our approach goes beyond the conventional genetic algorithm in two stages. In the first step, services are prioritized, and resources are allocated in accordance with those priorities; in the second step, load balancing in message transmission paths is ensured, and message failures are avoided. The algorithm's performance is evaluated using various parameters, and it was shown to outperform other metaheuristic algorithms like the classic genetic algorithm, particle swarm, and mathematical models. Different scenarios with various nodes and service variables are defined in various system states, including fault occurrences to various percentages of 10, 20, and 30. To compare methods, we consider different parameters, the most significant being performance success rate. Moreover, the cost optimization has a good convergence after iterations, and the rate of improvement in the big scenario has slowed down after 150 iterations. Besides, it provides acceptable performance in response time for services.

  • 75.
    Abbasi, Ziwar
    et al.
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Bernebrand, Anna
    Högskolan i Borås, Akademin för textil, teknik och ekonomi.
    Projektering av elnätet för ett exploateringsområde2018Independent thesis Basic level (professional degree), 10 poäng / 15 hpOppgave
    Abstract [sv]

    Det växande invånarantalet i Sverige har under det senaste decenniet lett till ett stort behov av nybyggnationer av bostäder. Till följd av detta har nybyggnationer av bostäder ökat kraftigt. För att bemöta kapacitetsbehovet krävs stora investeringar från elnätsbolagen för att kunna ansluta de nytillkomna bostadsområdena samt för att möjliggöra utbyggnad av ny infrastruktur. Expansionsmöjligheterna som har uppstått i den aktuella kommunen har lett till utbyggnad av elnätet för ett nytt bostadsområde. Syftet med projekteringen är att hitta en rationell lösning för att kunna förse ett exploateringsområde bestående av 19 bostäder med elektricitet. För att uppnå ett önskvärt resultat med projekteringen har företagsriktlinjer och branschstandarder använts. Det projekterade distributionsnätet utformas av radiellt system, vilket innebär att matning enbart sker från ett håll. Distributionsnätet är uppbyggt av två olika fördelningssystem: TN-S och TN-C. Projekteringen omfattar även nätberäkningar som utförts med både optimeringsprogrammet NetBas och även manuellt. De parametrar som har beräknats är spänningsfall, kortslutningsströmmar och utlösningstider. Dimensioneringen av distributionsnätet, som utfördes endast med hjälp av NetBas, resulterade i placering av en nätstation, fem stycken kabelskåp, 0,9 kilometer lågspänningskabel och 0,13 kilometer högspänningskabel. Projektets totala investeringskostnad har approximativt beräknats till 568 000 kronor.

    Fulltekst (pdf)
    fulltext
  • 76.
    Abbaspour Asadollah, Sara
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Bugs and Debugging of Concurrent and Multicore Software2016Licentiatavhandling, med artikler (Annet vitenskapelig)
    Fulltekst (pdf)
    fulltext
  • 77.
    Abbaspour Asadollah, Sara
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Concurrency Bugs: Characterization, Debugging and Runtime Verification2018Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Concurrent software has been increasingly adopted in recent years, mainly due to the introduction of multicore platforms. However, concurrency bugs are still difficult to test and debug due to their complex interactions involving multiple threads (or tasks). Typically, real world concurrent software has huge state spaces. Thus, testing techniques and handling of concurrency bugs need to focus on exposing the bugs in this large space. However, existing solutions typically do not provide debugging information to developers (and testers) for understanding the bugs.

    Our work focuses on improving concurrent software reliability via three contributions: 1) An investigation of concurrent software challenges with the aim to help developers (and testers) to better understand concurrency bugs. We propose a classification of concurrency bugs and discuss observable properties of each type of bug. In addition, we identify a number of gaps in the body of knowledge on concurrent software bugs and their debugging. 2) Exploring concurrency related bugs in real-world software with respect to the reproducibility of bugs, severity of their consequence and effort required to fix them. Our findings here is that concurrency bugs are different from other bugs in terms of their fixing time and severity, while they are similar in terms of reproducibility. 3) A model for monitoring concurrency bugs and the implementation and evaluation of a related runtime verification tool to detect the bugs. In general, runtime verification techniques are used to (a) dynamically verify that the observed behaviour matches specified properties and (b) explicitly recognize understandable behaviors in the considered software. Our implemented tool is used to detect concurrency bugs in embedded software and is in its current form tailored for the FreeRTOS operating system. It helps developers and testers to automatically identify concurrency bugs and subsequently helps to reduce their finding and fixing time.

    Fulltekst (pdf)
    fulltext
  • 78.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Hansson, Hans
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Sundmark, Daniel
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Eldh, Sigrid
    Ericsson AB, Kista, Sweden.
    Towards Classification of Concurrency Bugs Based on Observable Properties2015Inngår i: Proceedings - 1st International Workshop on Complex Faults and Failures in Large Software Systems, COUFLESS 2015, 2015, s. 41-47Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In software engineering, classification is a way to find an organized structure of knowledge about objects. Classification serves to investigate the relationship between the items to be classified, and can be used to identify the current gaps in the field. In many cases users are able to order and relate objects by fitting them in a category. This paper presents initial work on a taxonomy for classification of errors (bugs) related to concurrent execution of application level software threads. By classifying concurrency bugs based on their corresponding observable properties, this research aims to examine and structure the state of the art in this field, as well as to provide practitioner support for testing and debugging of concurrent software. We also show how the proposed classification, and the different classes of bugs, relates to the state of the art in the field by providing a mapping of the classification to a number of recently published papers in the software engineering field.

  • 79.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Inam, Rafia
    Ericsson AB, Kista, Sweden.
    Hansson, Hans
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    A Survey on Testing for Cyber Physical System2015Inngår i: Testing Software and Systems: 27th IFIP WG 6.1 International Conference, ICTSS 2015, Sharjah and Dubai, United Arab Emirates, November 23-25, 2015, Proceedings, 2015, s. 194-207Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Cyber Physical Systems (CPS) bridge the cyber-world of computing and communications with the physical world and require development of secure and reliable software. It asserts a big challenge not only on testing and verifying the correctness of all physical and cyber components of such big systems, but also on integration of these components. This paper develops a categorization of multiple levels of testing required to test CPS and makes a comparison of these levels with the levels of software testing based on the V-model. It presents a detailed state-of-the-art survey on the testing approaches performed on the CPS. Further, it provides challenges in CPS testing.

  • 80.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system. RISE Acreo AB, Sweden.
    Lindén, Maria
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    GholamHosseini, Hamid
    Auckland University of Technology, Auckland, New Zealand.
    Naber, A.
    Chalmers University of Technology, Gothenburg, Sweden.
    Ortiz-Catalan, M.
    Chalmers University of Technology, Gothenburg, Sweden.
    Evaluation of surface EMG-based recognition algorithms for decoding hand movements2020Inngår i: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 58, nr 1, s. 83-100Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Myoelectric pattern recognition (MPR) to decode limb movements is an important advancement regarding the control of powered prostheses. However, this technology is not yet in wide clinical use. Improvements in MPR could potentially increase the functionality of powered prostheses. To this purpose, offline accuracy and processing time were measured over 44 features using six classifiers with the aim of determining new configurations of features and classifiers to improve the accuracy and response time of prosthetics control. An efficient feature set (FS: waveform length, correlation coefficient, Hjorth Parameters) was found to improve the motion recognition accuracy. Using the proposed FS significantly increased the performance of linear discriminant analysis, K-nearest neighbor, maximum likelihood estimation (MLE), and support vector machine by 5.5%, 5.7%, 6.3%, and 6.2%, respectively, when compared with the Hudgins’ set. Using the FS with MLE provided the largest improvement in offline accuracy over the Hudgins feature set, with minimal effect on the processing time. Among the 44 features tested, logarithmic root mean square and normalized logarithmic energy yielded the highest recognition rates (above 95%). We anticipate that this work will contribute to the development of more accurate surface EMG-based motor decoding systems for the control prosthetic hands.

  • 81.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Saadatmand, Mehrdad
    SICS Swedish ICT, Västerås, Sweden.
    Eldh, Sigrid
    Ericsson AB, Kista, Sweden.
    Sundmark, Daniel
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Hansson, Hans
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    A Model for Systematic Monitoring and Debugging of Starvation Bugs in Multicore Software2016Inngår i: 2016 ASE Workshop on Specification, Comprehension, Testing and Debugging of Concurrent Programs SCTDCP2016, 2016Konferansepaper (Fagfellevurdert)
    Abstract [en]

    With the development of multicore hardware, concurrent, parallel and multicore software are becoming increasingly popular. Software companies are spending a huge amount of time and resources to nd and debug the bugs. Among all types of software bugs, concurrency bugs are also important and troublesome. This type of bugs is increasingly becoming an issue particularly due to the growing prevalence of multicore hardware. In this position paper, we propose a model for monitoring and debugging Starvation bugs as a type of concurrency bugs in multicore software. The model is composed into three phases: monitoring, detecting and debugging. The monitoring phase can support detecting phase by storing collected data from the system execution. The detecting phase can support debugging phase by comparing the stored data with starvation bug's properties, and the debugging phase can help in reproducing and removing the Starvation bug from multicore software. Our intention is that our model is the basis for developing tool(s) to enable solving Starvation bugs in software for multicore platforms.

  • 82.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Sundmark, Daniel
    Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.
    Eldh, S.
    Ericsson AB, Kista, Sweden.
    Hansson, Hans
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    A Runtime Verification Tool for Detecting Concurrency Bugs in FreeRTOS Embedded Software2018Inngår i: Proceedings - 17th International Symposium on Parallel and Distributed Computing, ISPDC 2018, Institute of Electrical and Electronics Engineers Inc. , 2018, s. 172-179, artikkel-id 8452035Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This article presents a runtime verification tool for embedded software executing under the open source real-time operating system FreeRTOS. The tool detects and diagnoses concurrency bugs such as deadlock, starvation, and suspension based-locking. The tool finds concurrency bugs at runtime without debugging and tracing the source code. The tool uses the Tracealyzer tool for logging relevant events. Analysing the logs, our tool can detect the concurrency bugs by applying algorithms for diagnosing each concurrency bug type individually. In this paper, we present the implementation of the tool, as well as its functional architecture, together with illustration of its use. The tool can be used during program testing to gain interesting information about embedded software executions. We present initial results of running the tool on some classical bug examples running on an AVR 32-bit board SAM4S. 

  • 83.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Sundmark, Daniel
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Eldh, Sigrid
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system. Ericsson AB, Kista, Sweden .
    Hansson, Hans
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Afza, Wasif
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    10 Years of research on debugging concurrent and multicore software: a systematic mapping study2017Inngår i: Software quality journal, ISSN 0963-9314, E-ISSN 1573-1367, Vol. 25, nr 1, s. 49-82Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Debugging – the process of identifying, localizing and fixing bugs – is a key activity in software development. Due to issues such as non-determinism and difficulties of reproducing failures, debugging concurrent software is significantly more challenging than debugging sequential software. A number of methods, models and tools for debugging concurrent and multicore software have been proposed, but the body of work partially lacks a common terminology and a more recent view of the problems to solve. This suggests the need for a classification, and an up-to-date comprehensive overview of the area. 

    This paper presents the results of a systematic mapping study in the field of debugging of concurrent and multicore software in the last decade (2005– 2014). The study is guided by two objectives: (1) to summarize the recent publication trends and (2) to clarify current research gaps in the field.

    Through a multi-stage selection process, we identified 145 relevant papers. Based on these, we summarize the publication trend in the field by showing distribution of publications with respect to year , publication venues , representation of academia and industry , and active research institutes . We also identify research gaps in the field based on attributes such as types of concurrency bugs, types of debugging processes , types of research  and research contributions.

    The main observations from the study are that during the years 2005–2014: (1) there is no focal conference or venue to publish papers in this area, hence a large variety of conferences and journal venues (90) are used to publish relevant papers in this area; (2) in terms of publication contribution, academia was more active in this area than industry; (3) most publications in the field address the data race bug; (4) bug identification is the most common stage of debugging addressed by articles in the period; (5) there are six types of research approaches found, with solution proposals being the most common one; and (6) the published papers essentially focus on four different types of contributions, with ”methods” being the type most common one.

    We can further conclude that there is still quite a number of aspects that are not sufficiently covered in the field, most notably including (1) exploring correction  and fixing bugs  in terms of debugging process; (2) order violation, suspension  and starvation  in terms of concurrency bugs; (3) validation and evaluation research  in the matter of research type; (4) metric  in terms of research contribution. It is clear that the concurrent, parallel and multicore software community needs broader studies in debugging.This systematic mapping study can help direct such efforts.

  • 84.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Sundmark, Daniel
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Eldh, Sigrid
    Ericsson AB, Kista, Sweden.
    Hansson, Hans
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Paul Enoiu, Eduard
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    A Study on Concurrency Bugs in an Open Source Software2016Inngår i: IFIP Advances in Information and Communication Technology, vol. 472, 2016, Vol. 472, s. 16-31Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Concurrent programming puts demands on software debugging and testing, as concurrent software may exhibit problems not present in sequential software, e.g., deadlocks and race conditions. In aiming to increase efficiency and effectiveness of debugging and bug-fixing for concurrent software, a deep understanding of concurrency bugs, their frequency and fixingtimes would be helpful. Similarly, to design effective tools and techniques for testing and debugging concurrent software understanding the differences between non-concurrency and concurrency bugs in real-word software would be useful.

  • 85.
    Abbaspour Asadollah, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Sundmark, Daniel
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Hansson, Hans
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Runtime Verification for Detecting Suspension Bugs in Multicore and Parallel Software2017Inngår i: Proceedings - 10th IEEE International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2017, 2017, s. 77-80Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Multicore hardware development increases the popularity of parallel and multicore software, while testing and debugging the software become more difficult, frustrating and costly. Among all types of software bugs, concurrency bugs are both important and troublesome. This type of bugs is increasingly becoming an issue, particularly due to the growing prevalence of multicore hardware. Suspension-based-locking bug is one type of concurrency bugs. This position paper proposes a model based on runtime verification and reflection technique in the context of multicore and parallel software to monitor and detect suspension-based-locking bugs. The model is not only able to detect faults, but also diagnose and even repair them. The model is composed of four layers: Logging, Monitoring, Suspension Bug Diagnosis and Mitigation. The logging layer will observe the events and save them into a file system. The monitoring layer will detect the presents of bugs in the software. The suspension bug diagnosis will identify Suspension bugs by comparing the captured data with the suspension bug properties. Finally, the mitigation layer will reconfigure the software to mitigate the suspension bugs. A functional architecture of a runtime verification tool is also proposed in this paper. This architecture is based on the proposed model and is comprised of different modules. 

  • 86.
    Abbaspour Gildeh, Saedeh
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Fotouhi, Faranak
    Fotouhi, Hossein
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Vahabi, Maryam
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Lindén, Maria
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Deep learning-based motion activity recognition using smartphone sensors2020Inngår i: 12th International Conference on e-Health e-Health'20, 2020Konferansepaper (Fagfellevurdert)
  • 87.
    Abbaspour, Sara
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Electromyogram Signal Enhancement and Upper-Limb Myoelectric Pattern Recognition2019Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Losing a limb causes difficulties in our daily life. To regain the ability to live an independent life, artificial limbs have been developed. Hand prostheses belong to a group of artificial limbs that can be controlled by the user through the activity of the remnant muscles above the amputation. Electromyogram (EMG) is one of the sources that can be used for control methods for hand prostheses. Surface EMGs are powerful, non-invasive tools that provide information about neuromuscular activity of the subjected muscle, which has been essential to its use as a source of control for prosthetic limbs. However, the complexity of this signal introduces a big challenge to its applications. EMG pattern recognition to decode different limb movements is an important advancement regarding the control of powered prostheses. It has the potential to enable the control of powered prostheses using the generated EMG by muscular contractions as an input. However, its use has yet to be transitioned into wide clinical use. Different algorithms have been developed in state of the art to decode different movements; however, the challenge still lies in different stages of a successful hand gesture recognition and improvements in these areas could potentially increase the functionality of powered prostheses. This thesis firstly focuses on improving the EMG signal’s quality by proposing novel and advanced filtering techniques. Four efficient approaches (adaptive neuro-fuzzy inference system-wavelet, artificial neural network-wavelet, adaptive subtraction and automated independent component analysis-wavelet) are proposed to improve the filtering process of surface EMG signals and effectively eliminate ECG interferences. Then, the offline performance of different EMG-based recognition algorithms for classifying different hand movements are evaluated with the aim of obtaining new myoelectric control configurations that improves the recognition stage. Afterwards, to gain proper insight on the implementation of myoelectric pattern recognition, a wide range of myoelectric pattern recognition algorithms are investigated in real time. The experimental result on 15 healthy volunteers suggests that linear discriminant analysis (LDA) and maximum likelihood estimation (MLE) outperform other classifiers. The real-time investigation illustrates that in addition to the LDA and MLE, multilayer perceptron also outperforms the other algorithms when compared using classification accuracy and completion rate.

    Fulltekst (pdf)
    fulltext
  • 88.
    Abbaspour, Sara
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Evaluation of surface EMG-based recognition algorithms for decoding hand movementsManuskript (preprint) (Annet vitenskapelig)
  • 89.
    Abbaspour, Sara
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Proposing Combined Approaches to Remove ECG Artifacts from Surface EMG Signals2015Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Electromyography (EMG) is a tool routinely used for a variety of applications in a very large breadth of disciplines. However, this signal is inevitably contaminated by various artifacts originated from different sources. Electrical activity of heart muscles, electrocardiogram (ECG), is one of sources which affects the EMG signals due to the proximity of the collection sites to the heart and makes its analysis non-reliable. Different methods have been proposed to remove ECG artifacts from surface EMG signals; however, in spite of numerous attempts to eliminate or reduce this artifact, the problem of accurate and effective de-noising of EMG still remains a challenge. In this study common methods such as high pass filter (HPF), gating method, spike clipping, hybrid technique, template subtraction, independent component analysis (ICA), wavelet transform, wavelet-ICA, artificial neural network (ANN), and adaptive noise canceller (ANC) and adaptive neuro-fuzzy inference system (ANFIS) are used to remove ECG artifacts from surface EMG signals and their accuracy and effectiveness is investigated. HPF, gating method and spike clipping are fast; however they remove useful information from EMG signals. Hybrid technique and ANC are time consuming. Template subtraction requires predetermined QRS pattern. Using wavelet transform some artifacts remain in the original signal and part of the desired signal is removed. ICA requires multi-channel signals. Wavelet-ICA approach does not require multi-channel signals; however, it is user-dependent. ANN and ANFIS have good performance, but it is possible to improve their results by combining them with other techniques. For some applications of EMG signals such as rehabilitation, motion control and motion prediction, the quality of EMG signals is very important. Furthermore, the artifact removal methods need to be online and automatic. Hence, efficient methods such as ANN-wavelet, adaptive subtraction and automated wavelet-ICA are proposed to effectively eliminate ECG artifacts from surface EMG signals. To compare the results of the investigated methods and the proposed methods in this study, clean EMG signals from biceps and deltoid muscles and ECG artifacts from pectoralis major muscle are recorded from five healthy subjects to create 10 channels of contaminated EMG signals by adding the recorded ECG artifacts to the clean EMG signals. The artifact removal methods are also applied to the 10 channels of real contaminated EMG signals from pectoralis major muscle of the left side. Evaluation criteria such as signal to noise ratio, relative error, correlation coefficient, elapsed time and power spectrum density are used to evaluate the performance of the proposed methods. It is found that the performance of the proposed ANN-wavelet method is superior to the other methods with a signal to noise ratio, relative error and correlation coefficient of 15.53, 0.01 and 0.98 respectively.

    Fulltekst (pdf)
    fulltext
  • 90.
    Abbaspour, Sara
    et al.
    Amirkabir University of technology,Tehran, Iran.
    Fallah, Ali
    Amirkabir University of technology,Tehran, Iran.
    Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique2014Inngår i: Biomedical Physics and Engineering, ISSN 2251-7200, Vol. 4, nr 1, s. 33-38Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful. Objective: Removing electrocardiogram contamination from electromyogram signals. Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and electrocardiogram signal were recorded from leg muscles, the pectoralis major muscle of the left side and V4, respectively. After the pre-processing, contaminated electromyogram signal is simulated with a combination of clean electromyogram and electrocardiogram artifact. Then, contaminated electromyogram is cleaned using adaptive subtraction method. This method contains some steps; (1) QRS detection, (2) formation of electrocardiogram template by averaging the electrocardiogram complexes, (3) using low pass filter to remove undesirable artifacts, (4) subtraction. Results: Performance of our method is evaluated using qualitative criteria, power spectrum density and coherence and quantitative criteria signal to noise ratio, relative error and cross correlation. The result of signal to noise ratio, relative error and cross correlation is equal to 10.493, 0.04 and %97 respectively. Finally, there is a comparison between proposed method and some existing methods. Conclusion: The result indicates that adaptive subtraction method is somewhat effective to remove electrocardiogram artifact from contaminated electromyogram signal and has an acceptable result.

  • 91.
    Abbaspour, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Fallah, Ali
    Amirkabir University of Technology, Tehran, Iran.
    Lindén, Maria
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    GholamHosseini, Hamid
    Auckland University of Technology, Auckland, New Zealand.
    A Novel Approach for Removing ECG Interferences from Surface EMG signals Using a Combined ANFIS and Wavelet2016Inngår i: Journal of Electromyography & Kinesiology, ISSN 1050-6411, E-ISSN 1873-5711, Vol. 26, s. 52-59Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In recent years, the removal of electrocardiogram (ECG) interferences from electromyogram (EMG) signals has been given large consideration. Where the quality of EMG signal is of interest, it is important to remove ECG interferences from EMG signals. In this paper, an efficient method based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and wavelet transform is proposed to effectively eliminate ECG interferences from surface EMG signals. The proposed approach is compared with other common methods such as high-pass filter, artificial neural network, adaptive noise canceller, wavelet transform, subtraction method and ANFIS. It is found that the performance of the proposed ANFIS-wavelet method is superior to the other methods with the signal to noise ratio and relative error of 14.97 dB and 0.02 respectively and a significantly higher correlation coefficient (p < 0.05).

  • 92.
    Abbaspour, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    GholamHosseini, Hamid
    Mälardalens högskola, Akademin för innovation, design och teknik. School of Engineering, Auckland University of TechnologyAuckland, New Zealand .
    Lindén, Maria
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Evaluation of wavelet based methods in removing motion artifact from ECG signal2015Inngår i: IFMBE Proceedings, 2015, s. 1-4Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Accurate recording and precise analysis of the electrocardiogram (ECG) signals are crucial in the pathophysiological study and clinical treatment. These recordings are often corrupted by different artifacts. The aim of this study is to propose two different methods, wavelet transform based on nonlinear thresholding and a combination method using wavelet and independent component analysis (ICA), to remove motion artifact from ECG signals. To evaluate the performance of the proposed methods, the developed techniques are applied to the real and simulated ECG data. The results of this evaluation are presented using quantitative and qualitative criteria. The results show that the proposed methods are able to reduce motion artifacts in ECG signals. Signal to noise ratio (SNR) of the wavelet technique is equal to 13.85. The wavelet-ICA method performed better with SNR of 14.23.

  • 93.
    Abbaspour, Sara
    et al.
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Lindén, Maria
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    GholamHosseini, Hamid
    Auckland University of Technology, New Zealand.
    ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA2015Inngår i: Studies in Health Technology and Informatics, Volume 211, 2015, s. 91-97Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This study aims at proposing an efficient method for automated electrocardiography (ECG) artifact removal from surface electromyography (EMG) signals recorded from upper trunk muscles. Wavelet transform is applied to the simulated data set of corrupted surface EMG signals to create multidimensional signal. Afterward, independent component analysis (ICA) is used to separate ECG artifact components from the original EMG signal. Components that correspond to the ECG artifact are then identified by an automated detection algorithm and are subsequently removed using a conventional high pass filter. Finally, the results of the proposed method are compared with wavelet transform, ICA, adaptive filter and empirical mode decomposition-ICA methods. The automated artifact removal method proposed in this study successfully removes the ECG artifacts from EMG signals with a signal to noise ratio value of 9.38 while keeping the distortion of original EMG to a minimum.

  • 94.
    Abbaspour, Sara
    et al.
    Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA.;Harvard Med Sch, Div Sleep Med, Boston, MA 02114 USA..
    Naber, Autumn
    Ctr Bion & Pain Res, S-43180 Molndal, Sweden.;Chalmers Univ Technol, Dept Elect Engn, S-41296 Gothenburg, Sweden..
    Ortiz-Catalan, Max
    Ctr Bion & Pain Res, S-43180 Molndal, Sweden.;Chalmers Univ Technol, Dept Elect Engn, S-41296 Gothenburg, Sweden.;Sahlgrens Univ Hosp, Operat Area 3, S-43180 Molndal, Sweden.;Univ Gothenburg, Sahlgrenska Acad, Inst Clin Sci, Dept Orthopaed, S-43180 Molndal, Sweden..
    GholamHosseini, Hamid
    Auckland Univ Technol, Dept Elect & Elect Engn, Auckland 1010, New Zealand..
    Lindén, Maria
    Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
    Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements2021Inngår i: Sensors, E-ISSN 1424-8220, Vol. 21, nr 16, artikkel-id 5677Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Pattern recognition algorithms have been widely used to map surface electromyographic signals to target movements as a source for prosthetic control. However, most investigations have been conducted offline by performing the analysis on pre-recorded datasets. While real-time data analysis (i.e., classification when new data becomes available, with limits on latency under 200-300 milliseconds) plays an important role in the control of prosthetics, less knowledge has been gained with respect to real-time performance. Recent literature has underscored the differences between offline classification accuracy, the most common performance metric, and the usability of upper limb prostheses. Therefore, a comparative offline and real-time performance analysis between common algorithms had yet to be performed. In this study, we investigated the offline and real-time performance of nine different classification algorithms, decoding ten individual hand and wrist movements. Surface myoelectric signals were recorded from fifteen able-bodied subjects while performing the ten movements. The offline decoding demonstrated that linear discriminant analysis (LDA) and maximum likelihood estimation (MLE) significantly (p < 0.05) outperformed other classifiers, with an average classification accuracy of above 97%. On the other hand, the real-time investigation revealed that, in addition to the LDA and MLE, multilayer perceptron also outperformed the other algorithms and achieved a classification accuracy and completion rate of above 68% and 69%, respectively.

  • 95. Abbeloos, W.
    et al.
    Ataer-Cansizoglu, E.
    Caccamo, Sergio
    KTH.
    Taguchi, Y.
    Domae, Y.
    3D object discovery and modeling using single RGB-D images containing multiple object instances2018Inngår i: Proceedings - 2017 International Conference on 3D Vision, 3DV 2017, Institute of Electrical and Electronics Engineers (IEEE), 2018, s. 431-439Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Unsupervised object modeling is important in robotics, especially for handling a large set of objects. We present a method for unsupervised 3D object discovery, reconstruction, and localization that exploits multiple instances of an identical object contained in a single RGB-D image. The proposed method does not rely on segmentation, scene knowledge, or user input, and thus is easily scalable. Our method aims to find recurrent patterns in a single RGB-D image by utilizing appearance and geometry of the salient regions. We extract keypoints and match them in pairs based on their descriptors. We then generate triplets of the keypoints matching with each other using several geometric criteria to minimize false matches. The relative poses of the matched triplets are computed and clustered to discover sets of triplet pairs with similar relative poses. Triplets belonging to the same set are likely to belong to the same object and are used to construct an initial object model. Detection of remaining instances with the initial object model using RANSAC allows to further expand and refine the model. The automatically generated object models are both compact and descriptive. We show quantitative and qualitative results on RGB-D images with various objects including some from the Amazon Picking Challenge. We also demonstrate the use of our method in an object picking scenario with a robotic arm.

  • 96.
    Abboud, Mohamad Moulham
    Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för fysik och elektroteknik (IFE).
    Simulation of 3ph induction motor in Matlab with Direct and Soft starting methods.2015Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
    Abstract [en]

    Asynchronous machines are considered nowadays the most commonly used electrical machines, which are mainly used as electrical induction motors. Starting the induction motor is the most important and dangerous step. The theory behind this project is based on representing the real motor by a set of equations and values in Matlab using the subsystem feature, forming a corresponding idealistic motor in a way where all the physical effects are similar. The motor is started under different loads in two methods: Direct and Soft starting. Each method is studied and discussed using supporting simulation of currents, torque, speed, efficiency and power factor curves.

    Fulltekst (pdf)
    fulltext
  • 97.
    Abboud, Mohamad Moulham
    Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, Bio- och miljösystemforskning (BLESS), Energivetenskap.
    Simulation of 3ph induction motor in Matlab with VVVF starting method2016Independent thesis Advanced level (degree of Master (One Year)), 40 poäng / 60 hpOppgave
    Abstract [en]

    Nowadays, three-phase induction motors are widely used on industrial and other types of processes. Therefore, accurate knowledge of an induction motor performance is very essential to have an idea of its operation conditions. This study is a sequel of a previous one, where Direct and Soft starting methods of three-phase motors has been simulated and compared. As in the previous study, the theory behind this one is based on representing the real motor by aset of equations and values in Matlab, forming a corresponding idealistic motor in a way where all the physical effects are similar. The motor is started under three different frequencies in the VVVF method using supporting simulation of the current, torque, speed,efficiency and power factor curves. The results of the three starting methods are then discussed and compared.

    Fulltekst (pdf)
    fulltext
  • 98. Abd El Ghany, M. A.
    et al.
    El-Moursy, M. A.
    Ismail, Mohammed
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektroniksystem.
    High throughput architecture for CLICHÉ network on chip2009Inngår i: Proceedings - IEEE International SOC Conference, SOCC 2009, 2009, s. 155-158Konferansepaper (Fagfellevurdert)
    Abstract [en]

    High Throughput Chip-Level Integration of Communicating Heterogeneous Elements (CLICHÉ) architecture to achieve high performance Networks on Chip (NoC) is proposed. The architecture increases the throughput of the network by 40% while preserving the average latency. The area of High Throughput CLICHÉ switch is decreased by 18% as compared to CLICHÉ switch. The total metal resources required to implement High Throughput CLICHÉ design is increased by 7% as compared to the total metal resources required to implement CLICHÉ design. The extra power consumption required to achieve the proposed architecture is 8% of the total power consumption of the CLICHÉ architecture.

  • 99. Abd El Ghany, M. A.
    et al.
    El-Moursy, M. A.
    Ismail, Mohammed
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektroniksystem. Ohio State University, Columbus, United States .
    High throughput architecture for high performance NoC2009Inngår i: ISCAS: 2009 IEEE International Symposium on Circuits and Systems, IEEE , 2009, s. 2241-2244Konferansepaper (Fagfellevurdert)
    Abstract [en]

    High Throughput Butterfly Fat Tree (HTBFT) architecture to achieve high performance Networks on Chip (NoC) is proposed. The architecture increases the throughput of the network by 38% while preserving the average latency. The area of HTBFT switch is decreased by 18% as compared to Butterfly Fat Tree switch. The total metal resources required to implement HTBFT design is increased by 5% as compared to the total metal resources required to implement BFT design. The extra power consumption required to achieve the proposed architecture is 3% of the total power consumption of the BFT architecture.

  • 100. Abd El Ghany, M. A.
    et al.
    El-Moursy, M. A.
    Korzec, D.
    Ismail, Mohammed
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar. Ohio State University, Columbus, OH, United States .
    Asynchronous BFT for low power networks on chip2010Inngår i: ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, IEEE , 2010, s. 3240-3243Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Asynchronous Butterfly Fat Tree (BFT) architecture is proposed to achieve low power Network on Chip (NoC). Asynchronous design could reduce the power dissipation of the network if the activity factor of the data transfer between two switches (αdata satisfies a certain condition. The area of Asynchronous BFT switch is increased by 25% as compared to Synchronous switch. However, the power dissipation of the Asynchronous architecture could be decreased by up to 33% as compared to the power dissipation of the conventional Synchronous architecture when the αdata equals 0.2 and the activity factor of the control signals is equal to 1/64 of the αdata. The total metal resources required to implement Asynchronous design is decreased by 12%.

1234567 51 - 100 of 58444
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf